Science.gov

Sample records for sheet metal workers

  1. Sheet Metal Worker: A Training Profile.

    ERIC Educational Resources Information Center

    Ontario Ministry of Skills Development, Toronto.

    This training profile is intended for use by program developers and trainers in the development of training courses and programs for sheet metal workers. It contains 17 modules: safety for sheet metal worker; tools and machinery; materials and gauges; drafting and shop drawing; pattern development; methods of joining sheet metal; shearing and…

  2. Blueprint Reading for Sheet Metal Workers. Training Guide.

    ERIC Educational Resources Information Center

    Anoka-Hennepin Technical Coll., Minneapolis, MN.

    This training guide, developed during a project to retrain defense industry workers at risk of job loss or dislocation because of conversion of the defense industry, is designed for a course in blueprint reading for sheet metal workers. The following are among the topics covered in the course: orthographic projection; isometric and oblique…

  3. Asbestos disease in sheet metal workers: proportional mortality update

    SciTech Connect

    Michaels, D.; Zoloth, S.

    1988-01-01

    This paper, updating the findings of an earlier study, provides additional evidence that sheet metal workers in the construction trades are at increased risk for asbestos-related disease. A proportional analysis of cause of death among 331 New York sheet metal workers found a significantly elevated PMR for lung cancer (PMR = 186). In addition, there were six deaths attributable to mesothelioma (three classified as lung cancer deaths) and three death certificates mentioned asbestosis or pulmonary fibrosis, although none of these three deaths were attributed to these diseases.

  4. 75 FR 15741 - Sheet Metal Workers Internationl Association, Local 292: Troy, MI; Notice of Termination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Sheet Metal Workers Internationl Association, Local 292: Troy, MI... investigation was initiated in response to a petition filed on July 13, 2009 on behalf of workers of Steel...

  5. Mississippi Curriculum Framework for Sheet Metal Programs (Program CIP: 48.0506--Sheet Metal Worker). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document provides the framework for a postsecondary sheet metal program of instruction. A foreword provides guidelines that were used in developing the program and should be considered in compiling and revising course syllabi and daily lesson plans at the local level. A description of the sheet metal programs (building trades sheet metal work…

  6. Change in prevalence of asbestos-related disease among sheet metal workers 1986 to 2004.

    PubMed

    Welch, Laura S; Haile, Elizabeth; Dement, John; Michaels, David

    2007-03-01

    In 1985, the Sheet Metal Workers International Association and the Sheet Metal and Air Conditioning National Association formed The Sheet Metal Occupational Health Institute Trust to examine the health hazards of the sheet metal industry in the United States and Canada. Between 1986 and 2004, 18,211 individuals were examined. The mean age of this cohort was 57.9 years, and the participants had worked for a mean (+/- SD) duration of 32.9 +/- 6 years in the sheet metal trade. Twenty-three percent of participants were current smokers, 49% were former smokers, and 28% were never-smokers. A total of 9.6% of participants (1,745 participants) had findings that were consistent with parenchymal disease (International Labor Organization [ILO] score, >/= 1/0); 60% of those with an ILO score >/= 1/0 were classified as 1/0, 34% as 1/1 to 1/2, and 6% as >/= 2/1. A total of 21% of participants (3,827 participants) had pleural scarring. There was a lower prevalence of nonmalignant asbestos-related disease among those who began to work after 1970, when compared to workers who began to work before 1949; those who began to work between 1950 and 1969 had a prevalence between the other two groups. The strongest predictor of both parenchymal and pleural disease on a chest radiograph was the calendar year in which the worker began sheet metal work; work in a shipyard was also an important risk. The results of this study suggest that the efforts to reduce asbestos exposure in the 1980s through strengthened Occupational Safety and Health Administration regulation have had a positive public health impact.

  7. [The investigation of adaptation processes in sheet metal workers].

    PubMed

    Konevskikh, L A; Semennikova, T K; Likhacheva, E I; Oranskiĭ, I E

    1998-01-01

    The study covered 100 individuals long working in hot metallurgic shops (forging and nonferrous metals processing) under unfavorable occupational conditions. Heating microclimate appeared to be leading occupational hazard. Adaptation to occupational environment was studied in all the examinees and 4 groups were defined according to the adaptation level and functional state of cardiovascular system. The study also included testing of psychiatric balneologic complex--bromide and iodine baths with magnetic laser therapy on Zakharyin-Ged zones.

  8. Observed use of voluntary controls to reduce physical exposures among sheet metal workers of the mechanical trade

    PubMed Central

    Dale, Ann Marie; Miller, Kim; Gardner, Bethany T.; Hwang, Ching-Ting; Evanoff, Bradley; Welch, Laura

    2015-01-01

    Introduction Little is known about the transfer into the workplace of interventions designed to reduce the physical demands of sheet metal workers. Methods We reviewed videos from a case series of 15 sheet metal worksite assessments performed in 2007–2009 to score postures and physical loads, and to observe the use of recommended interventions to reduce physical exposures in sheet metal activities made by a NIOSH stakeholder meeting in 2002. Results Workers showed consistent use of material handling devices, but we observed few uses of recommended interventions to reduce exposures during overhead work. Workers spent large proportions of time in awkward shoulder elevation and low back rotation postures. Conclusions In addition to the development of new technologies and system designs, increased adoption of existing tools and practices could reduce time spent in awkward postures and other risks for musculoskeletal disorders in sheet metal work. PMID:26360196

  9. Asbestos disease in sheet metal workers: the results of a proportional mortality analysis

    SciTech Connect

    Zoloth, S.; Michaels, D.

    1985-01-01

    The results of a proportional mortality analysis of a cohort of sheet metal workers who have only intermittent exposure to asbestos demonstrates a significant excess of cancer at the three sites most frequently associated with asbestos: lung, colon and rectum, and the mesothelium. No excess nonmalignant respiratory disease was detected. These data strongly suggest that significant asbestos-related disease is present in populations with secondary exposure to asbestos and emphasize the importance of considering possible asbestos-related disease when treating patients with a history of employment in the construction industry.

  10. Occupational exposure to dust and lung disease among sheet metal workers.

    PubMed Central

    Hunting, K L; Welch, L S

    1993-01-01

    A previous large medical survey of active and retired sheet metal workers with 20 or more years in the trade indicated an unexpectedly high prevalence of obstructive pulmonary disease among both smokers and non-smokers. This study utilised interviews with a cross section of the previously surveyed group to explore occupational risk factors for lung disease. Four hundred and seven workers were selected from the previously surveyed group on the basis of their potential for exposure to fibreglass and asbestos. Selection was independent of health state, and excluded welders. A detailed history of occupational exposure was obtained by telephone interview for 333 of these workers. Exposure data were analysed in relation to previously collected data on chronic bronchitis, obstructive lung disease, and personal characteristics. Assessment of the effects of exposure to fibreglass as distinct from the effects of exposure to asbestos has been difficult in previous studies of construction workers. The experienced workers studied here have performed a diversity of jobs involving exposure to many different types of materials, and this enabled exposure to each dust to be evaluated separately. The risk of chronic bronchitis increased sharply by pack-years of cigarettes smoked; current smokers had a double risk compared with those who had never smoked or had stopped smoking. The occurrence of chronic bronchitis also increased with increasing duration of exposure to asbestos. Workers with a history of high intensity exposure to fibreglass had a more than doubled risk of chronic bronchitis. Obstructive lung disease, defined by results of pulmonary function tests at the medical survey, was also related to both smoking and occupational risk factors. Number of pack years smoked was the strongest predictor of obstructive lung disease. Duration of direct and indirect exposure to welding fume was also a positive predictor of obstructive lung disease. Duration of exposure to asbestos was

  11. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  12. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  13. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  14. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  15. Shop Math for the Metal Trades. Combination Welder Apprentice, Machinist Helper, Precision Metal Finisher, Sheet Metal Worker Apprentice. A Report on Metal Trades Industry Certified, Single-Concept, Mathematical Learning Projects to Eliminate Student Math Fears.

    ERIC Educational Resources Information Center

    Newton, Lawrence R.

    This project (1) identifies basic and functional mathematics skills (shop mathematics skills), (2) provides pretests on these functional mathematics skills, and (3) provides student learning projects (project sheets) that prepare metal trades students to read, understand, and apply mathematics and measuring skills that meet entry-level job…

  16. Metals Fact Sheet: Yttrium

    SciTech Connect

    1992-09-01

    Yttrium is a metallic element usually included among the rare earth metals, which it resembles chemically and with which it usually occurs in minerals. Yttrium was named after the village of Ytterby in Sweden---the element was discovered in a quarry near the village. This article discusses sources of the element, the world market for the element, and various applications of the material.

  17. Metals fact sheet: Ruthenium

    SciTech Connect

    1996-06-01

    Ruthenium, named after Ruthenia, a province in Western Russia, was discovered in 1827 by Osann in placer ores from Russia`s Ural mountains. A minor platinum group metal (PGM), Ruthenium was the last of the PGMs to be isolated. In 1844, Klaus prepared the first 6 grams of pure ruthenium metal.

  18. Metals fact sheet - lanthanum

    SciTech Connect

    1995-04-01

    Mosander was the first to extract the elusive rare earth, lanthanum, from unrefined cerium nitrate in 1839. The name was derived from the Greek word lanthanein, meaning {open_quotes}to escape notice.{close_quotes} Lanthanum is the lightest rare earth and a very malleable metal-soft enough to be cut with a knife. Used primarily as an additive in steels and non-ferrous metals, lanthanum is the lightest rare earth element and one of four rare earths from which mischmetal is made. Additional applications include advanced batteries, optical fibers, and phosphors.

  19. Metals fact sheet - uranium

    SciTech Connect

    1996-04-01

    About 147 million pounds of this radioactive element are consumed annually by the worldwide nuclear power and weapons industries, as well as in the manufacture of ceramics and metal products. The heaviest naturally occurring element, uranium is typically found in intrusive granites, igneous and metamorphic veins, tabular sedimentary deposits, and unconformity-related structures. This article discusses the geology, exploitation, market, and applications of uranium and uranium ores.

  20. Air Guide for Sheet-Metal Grinder

    NASA Technical Reports Server (NTRS)

    Heermann, T.

    1984-01-01

    Tool attachment reduces heat distortion of sheet. Air-guide attachment directs air from grinder motor to grinding wheel and metal sheet being ground. Cooling air reduces thermal distortion of workpiece due to localized frictional heating. Particularly useful when grinding sheet metal.

  1. Aircraft Sheet Metal Practices, Blueprint Reading, Sheet Metal Forming and Heat Treating; Sheet Metal Work 2: 9855.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This course is designed to familiarize vocational students with construction in sheet metal layout. The document outlines goals, specific block objectives, layout practices, blueprint reading, sheet metal forming (by hand and by machine), and heat treatment of metals, and includes posttest samples. Layout techniques and air foil developing are…

  2. Contact dermatoses in metal workers.

    PubMed

    Papa, G; Romano, A; Quaratino, D; Di Fonso, M; Viola, M; Sernia, S; Boccia, I; Di Gioacchino, M; Venuti, A; Calvieri, S

    2000-01-01

    We studied 150 metal workers occupationally exposed to metals and metalworking fluids (MWFs) to determine the prevalence and nature of contact dermatitis. 150 office workers were used as non-exposed control group. Questionnaires were administered to evaluate occupational and non-occupational exposure. All subjects underwent a dermatological examination and patch-testing with standard allergen series and MWFs used in the plant. Twenty-eight metal workers (18.6%) presented minor skin disorders involving the hands (vs. only 2% of the controls), ten (6.6%) had major disorders (similar to the figure for the control group - 5.4%), and 112 (74.8%) had no lesions, as opposed to 92.6% of the control group. Positive patch tests were found in ten metal workers: eight had major skin disorders (six to nickel, cobalt and chromium, one to nickel and cobalt, one to nickel) and the remaining two were asymptomatic (one positive for nickel and chromium, one for nickel). Among the controls there were three cases of positivity, all among asymptomatic subjects. Patch tests with MWFs were negative. The prevalence of dermatoses among the metal workers was significantly higher than that of controls (p<0.01), and all cases of allergy in this group were provoked by metals themselves.

  3. Synthesis of Metal Phthalocyanine Sheet Polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A.

    1986-01-01

    New method for synthesizing metal phthalocyanine tetracarboxylic acids (MPTCA's) yields high purity end product. In addition, high-purity metal phthalocyanine sheet polymers synthesized from compounds. Monomer formed into sheet polymer by heating. Units of polymer linked in manner similar to phenyl-group linkages in biphenyl: Conjugation extends throughout macromolecule, thereby increasing delocalization of TT-electrons. Increases conductivity and thermal stability of polymer.

  4. Synthesis of Metal Phthalocyanine Sheet Polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A.

    1986-01-01

    New method for synthesizing metal phthalocyanine tetracarboxylic acids (MPTCA's) yields high purity end product. In addition, high-purity metal phthalocyanine sheet polymers synthesized from compounds. Monomer formed into sheet polymer by heating. Units of polymer linked in manner similar to phenyl-group linkages in biphenyl: Conjugation extends throughout macromolecule, thereby increasing delocalization of TT-electrons. Increases conductivity and thermal stability of polymer.

  5. Aircraft Sheet Metal Practices; Sheet Metal Work 2: 9855.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline will serve as a guide to the 11th grade student interested in sheet metal occupations. Requiring 135 clock hours, the basic course covers orientation and techniques in aircraft sheet metal. Emphasis will be placed on the proper use of tools and machines, safety, fabrication methods, aircraft materials, basic layout, and special…

  6. Interior view of the Sheet Metal Shop showing the roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Sheet Metal Shop showing the roof trusses and corrugated metal roof covering, view facing northwest - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  7. Forming Limits for Anisotropic Sheet Metals

    NASA Astrophysics Data System (ADS)

    Kim, Youngsuk; Kim, Chul; Lee, Sangryong; Won, Sungyeun; Hwang, Sangmoo

    Most failures of ductile materials in metal forming processes occurred due to material damage evolution-void nucleation, growth and coalescence. In this paper, modified version of Gurson-Tvergaard's yield function in conjunction with the Hosford's non-quadratic anisotropic yield criterion is studied to clarify the plastic deformation characteristic of voided anisotropic sheet metals. The void growth of an anisotropic sheet under biaxial tensile loading and damage effect of void growth on forming limits of sheet metals are investigated. Also the characteristic length defining the neck geometry is introduced in M-K model to incorporate the effect of triaxial stress in necked region on forming limits. The forming limits theoretically predicted are compared with some experimental data. Satisfactory agreement was obtained between the predictions and experimental data.

  8. Constitutive Modeling for Sheet Metal Forming

    SciTech Connect

    Barlat, Frederic

    2005-08-05

    This paper reviews aspects of the plastic behaviour common in sheet metals. Macroscopic and microscopic phenomena occurring during plastic deformation are described succinctly. Constitutive models of plasticity suitable for applications to forming, are discussed in a very broad manner. Approaches to plastic anisotropy are described in a somewhat more detailed manner.

  9. Metals Fact Sheet: Gadolinium GD

    SciTech Connect

    1992-10-01

    Gadolinium is a silvery-white, malleable, ductile metallic element used to improve the high-temperature characteristics of iron, chromium, and related metallic alloys. It was named after the French chemist, Gadolin, discoverer of yttrium. This article discusses sources of the element, the world supply and demand, and also a number of applications. With the largest thermal neutron absorption cross section of any element, one of these applications is as a burnable poison in reactors and as neutron absorbers in other nuclear devices.

  10. Metals fact sheet--cesium

    SciTech Connect

    1997-03-01

    Cesium, the most alkaline and electropositive metal, is used by several industries for a variety of applications, including chemical catalysis, biomedical, photoelectrical, and glass manufacturing. While the traditional market for cesium has remained small, potential growth areas exist in the chemical catalysis and the oil and gas industry.

  11. Structures of Thin Sheet Metal, Their Design and Construction

    NASA Technical Reports Server (NTRS)

    Wagner, Herbert

    1928-01-01

    This report presents a brief survey of the uses of sheet-metal coverings in conjunction with the inner structure. A method of construction is presented as well as a discussion on the strength of sheet metal.

  12. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  13. Introduction to Sheet Metal. Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in sheet metal work to students who have chosen to explore careers in construction. The following topics are covered in the course's three instructional units: sheet metal materials, sheet metal tools, and applied skills. Each unit contains some…

  14. Introduction to Sheet Metal. Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in sheet metal work to students who have chosen to explore careers in construction. The following topics are covered in the course's three instructional units: sheet metal materials, sheet metal tools, and applied skills. Each unit contains some…

  15. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  16. Face split interpretations in sheet metal design

    NASA Astrophysics Data System (ADS)

    Vitalii, Vorkov; Dewil, Reginald; Mannaerts, Jef; Vandepitte, Dirk; Duflou, Joost R.

    2016-10-01

    Most of the modern CAD systems have capabilities to work with sheet metal parts. However, the functionality of these modules is limited to modelling, unfolding and delivering project documentation. In some cases the proposed design cannot be manufactured without splitting one or more faces of the part. In the current work, the graph representation of sheet metal parts and corresponding flat patterns are discussed. A splitting procedure is introduced which keeps all existing connections between faces intact. In addition, three interpretations for splitting are presented and recommendations for possible usage are given. The splitting procedure is found to be a convenient option to create feasible flat patterns. In addition, the different splitting interpretations present more flexibility to the designer.

  17. Fabricating Slotted-Waveguide Arrays From Sheet Metal

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1983-01-01

    Low-cost lightweight waveguides formed from rolls of aluminum. Array formed from sheared, punched, and bent aluminum sheets. Sheets alined with punched jig holes and joined by laser-beam or resistance spot welding. Process permits use of thin metal to reduce raw material costs and mass. Also holds closer tolerances than usually attained in sheet-metal work.

  18. Career Preparation Program Curriculum Guide for: Metal Fabrication, Sheet Metal.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria. Curriculum Development Branch.

    This curriculum outline provides secondary and postsecondary instructors with detailed information on student learning outcomes for completion of the sheet metal fabrication program requirements. A program overview discusses the aims of education; secondary school philosophy; and career preparation programs and their goals, organization, and…

  19. Damage Prediction in Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Saanouni, Khémais; Badreddine, Houssem

    2007-05-01

    Ductile (or plastic) damage often occurs during sheet metal forming processes due to the large plastic flow localization. Accordingly, it is crucial for numerical tools, used in the simulation of that processes, to use fully coupled constitutive equations accounting for both hardening and damage. This can be used in both cases, namely to overcome the damage initiation during some sheet metal forming processes as deep drawing, … or to enhance the damage initiation and growth as in sheet metal cutting. In this paper, a fully coupled constitutive equations accounting for combined isotropic and kinematic hardening as well as the ductile damage is implemented into the general purpose Finite Element code for metal forming simulation. First, the fully coupled anisotropic constitutive equations in the framework of Continuum Damage Mechanics are presented. Attention is paid to the strong coupling between the main mechanical fields as elasto-viscoplasticity, mixed hardening, ductile isotropic damage and contact with friction. The anisotropy of the plastic flow is taken into account using various kinds of quadratic or non quadratic yield criteria in the framework of non associative finite plasticity theory with two types of normality rules. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined thanks to the Newton iterative scheme applied to a reduced system of 2 equations. For the global resolution of the initial and boundary value problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. The numerical implementation of the damage is made in such a manner that calculations can be executed with or without damage effect, i.e. fully coupled or uncoupled calculations. For the 2D processes an advanced adaptive meshing procedure is used in order to enhance the numerical solution and

  20. 46. NORTH THROUGH SHEET METAL AND ASSEMBLY AREA IN SOUTHWESTERN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. NORTH THROUGH SHEET METAL AND ASSEMBLY AREA IN SOUTHWESTERN QUADRANT OF FACTORY AS SEEN FROM DOORWAY IN SOUTH FRONT WALL. ALONG WEST INTERIOR WALL ARE SHELVES BEARING WATER PUMPS, PARTS FOR PUMPS AND WATER SUPPLY EQUIPMENT, AND NEW OLD STOCK MERCHANDISE. IN FRONT OF THE WALL ARE THE CIRCA 1900 SHEET METAL SHEAR AND CIRCA 1900 SHEET METAL BRAKE. AT THE RIGHT SIDE OF THE IMAGE ALONGSIDE VERTICAL CEILING SUPPORTS IS METAL-COVERED BENCH FOR SHEET METAL WORK. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  1. Sheet Metal Formability Analysis for Anisotropic Materials

    NASA Astrophysics Data System (ADS)

    Stoughton, Thomas B.; Yoon, Jeong Whan

    2004-06-01

    Sheet metal formability is conventionally assessed in a two dimensional plot of principal strains or stresses in comparison to a forming limit curve. This method implicitly assumes that the forming limit is isotropic in the plane of the sheet, an assumption that is intrinsically inconsistent with the use of material models that are anisotropic. Since the trend today is to utilize models with full anisotropy in order to more accurately capture the physics of material behavior, the issue of anisotropy of forming limits must also be addressed. The challenge is that the forming limit is no longer defined by a curve but requires the definition of a surface in strain or stress space, and therefore it is no longer appropriate to view these limits with the convenience of the conventional two dimensional diagrams. Furthermore, recent developments in the characterization of sheet forming limits under nonproportional loading suggest that is advantageous to view forming limit behavior in terms of stresses rather than strains, a view that is adopted in this paper. A solution to the challenge of assessing formability for an anisotropic material is proposed and illustrated using an analysis of the 2-Stage Forming Benchmark highlighted in the Numisheet '99 Conference.

  2. Aircraft Sheet Metal General Repairs; Sheet Metal Work 3: 9857.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The outline will serve as a guide to the high school student interested in the field of sheet metal work. Intended for the 12th grade level, the course is organized into three instructional blocks: (1) general repairs, (2) line maintenance, (3) brazing and soldering, followed by a posttest. The advanced course is 135 hours in length and offers…

  3. Theoretical analysis of sheet metal formability

    NASA Astrophysics Data System (ADS)

    Zhu, Xinhai

    Sheet metal forming processes are among the most important metal-working operations. These processes account for a sizable proportion of manufactured goods made in industrialized countries each year. Furthermore, to reduce the cost and increase the performance of manufactured products, in addition to the environmental concern, more and more light weight and high strength materials have been used as a substitute to the conventional steel. These materials usually have limited formability, thus, a thorough understanding of the deformation processes and the factors limiting the forming of sound parts is important, not only from a scientific or engineering viewpoint, but also from an economic point of view. An extensive review of previous studies pertaining to theoretical analyses of Forming Limit Diagrams (FLDs) is contained in Chapter I. A numerical model to analyze the neck evolution process is outlined in Chapter II. With the use of strain gradient theory, the effect of initial defect profile on the necking process is analyzed. In the third chapter, the method proposed by Storen and Rice is adopted to analyze the initiation of localized neck and predict the corresponding FLDs. In view of the fact that the width of the localized neck is narrow, the deformation inside the neck region is constrained by the material in the neighboring homogeneous region. The relative rotation effect may then be assumed to be small and is thus neglected. In Chapter IV, Hill's 1948 yield criterion and strain gradient theory are employed to obtain FLDs, for planar anisotropic sheet materials by using bifurcation analysis. The effects of the strain gradient coefficient c and the material anisotropic parameters R's on the orientation of the neck and FLDs are analyzed in a systematic manner and compared with experiments. In Chapter V, Hill's 79 non-quadratic yield criterion with a deformation theory of plasticity is used along with bifurcation analyses to derive a general analytical

  4. Thin, porous metal sheets and methods for making the same

    SciTech Connect

    Liu, Wei; Li, Xiaohong Shari; Canfield, Nathan L.

    2015-07-14

    Thin, porous metal sheets and methods for forming them are presented to enable a variety of applications and devices. The thin, porous metal sheets are less than or equal to approximately 200 .mu.m thick, have a porosity between 25% and 75% by volume, and have pores with an average diameter less than or equal to approximately 2 .mu.m. The thin, porous metal sheets can be fabricated by preparing a slurry having between 10 and 50 wt % solvent and between 20 and 80 wt % powder of a metal precursor. The average particle size in the metal precursor powder should be between 100 nm and 5 .mu.m.

  5. Precision Sheet Metal. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in precision sheet metal. Included among the topics addressed in the course are the following: employment opportunities in metalworking, measurement and layout, orthographic projection, precision sheet metal drafting, simple layout, hand tools,…

  6. Electrical upsetting of metal sheet forms weld edge

    NASA Technical Reports Server (NTRS)

    Scherba, E. S.

    1966-01-01

    Electric gathering of sheet stock edges forms metal sheets in the shape of gore sections with heavier edge areas that can be welded without loss of strength. The edges are gathered by progressive resistance heating and upsetting, and are formed automatically. This process avoids disturbance of the metals internal structure.

  7. Sheet Metal 12-22-32. Industrial Education Curriculum.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This curriculum guide contains learning module outlines for teaching a series of courses in sheet metal working in high schools in Alberta. Each module provides learning experiences selected to develop basic competence in the sheet metal trades. Each module consists of an introduction, objectives, learning resources list, content summary, and a…

  8. 44. SOUTHWEST TO CIRCA 1900 SHEET METAL BRAKE, THE MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. SOUTHWEST TO CIRCA 1900 SHEET METAL BRAKE, THE MACHINE USED TO BEND SHEET METAL TO EXACT ANGLES AS IN STEEL WATER TANK MANUFACTURE. IN THE BACKGROUND IS THE INTERIOR WEST WALL OF THE FACTORY, ITS SHELVES BEARING WATER PUMPS, PARTS FOR PUMPS AND WATER SUPPLY EQUIPMENT, AND NEW OLD STOCK MERCHANDISE. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  9. 43. WEST TO DETAIL OF WHEELED SHEET METAL WORK STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. WEST TO DETAIL OF WHEELED SHEET METAL WORK STATION BEARING ON LEFT CIRCA 1900 ROLLS FOR BENDING STEEL WINDMILL BLADES TO PROPER CURVATURE AND ON RIGHT CIRCA 1900 BEADING MACHINE FOR ADDING STIFFENING CREASES TO THE EDGES OF SHEET METAL PARTS SUCH AS BLADES. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  10. 45. WEST TO CIRCA 1900 SHEET METAL SHEAR, THE MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. WEST TO CIRCA 1900 SHEET METAL SHEAR, THE MACHINE USED TO CUT SHEET METAL USED IN WINDMILLS AND WATER TANKS. IN THE BACKGROUND IS THE INTERIOR WEST WALL OF THE FACTORY, ITS SHELVES BEARING WATER PUMPS, PARTS FOR PUMPS AND WATER SUPPLY EQUIPMENT, AND NEW OLD STOCK MERCHANDISE. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  11. Overview of Boiler House and Sheet Metal and Electrical Shops ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Boiler House and Sheet Metal and Electrical Shops Building (center - with single large chimney), note the monitor on the original section of the Boiler House Building, view facing north - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  12. Sheet metal forming optimization by using surrogate modeling techniques

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Ye, Fan; Chen, Lei; Li, Enying

    2017-01-01

    Surrogate assisted optimization has been widely applied in sheet metal forming design due to its efficiency. Therefore, to improve the efficiency of design and reduce the product development cycle, it is important for scholars and engineers to have some insight into the performance of each surrogate assisted optimization method and make them more flexible practically. For this purpose, the state-of-the-art surrogate assisted optimizations are investigated. Furthermore, in view of the bottleneck and development of the surrogate assisted optimization and sheet metal forming design, some important issues on the surrogate assisted optimization in support of the sheet metal forming design are analyzed and discussed, involving the description of the sheet metal forming design, off-line and online sampling strategies, space mapping algorithm, high dimensional problems, robust design, some challenges and potential feasible methods. Generally, this paper provides insightful observations into the performance and potential development of these methods in sheet metal forming design.

  13. Modeling of Sandwich Sheets with Metallic Foam

    SciTech Connect

    Mata, H.; Jorge, R. Natal; Fernandes, A. A.; Parente, M. P. L.; Santos, A.; Valente, R. A. F.

    2011-08-22

    World-wide vehicles safety experts agree that significant further reductions in fatalities and injuries can be achieved as a result of the use of new lightweight and energy absorbing materials. On this work, the authors present the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications. The mathematical model used to describe the behavior of sandwich shells with metal cores foam is presented and some numerical examples are presented. In order to validate those results mechanical experiments are carried out. Using the crushable foam constitutive model, available on ABAQUS, a set of different mechanical tests were simulated. There are two variants of this model available on ABAQUS: the volumetric hardening model and the isotropic hardening model. As a first approximation we chose the isotropic hardening variant. The isotropic hardening model available uses a yield surface that is an ellipse centered at the origin in the p-q stress plane. Based on this constitutive model for the foam, numerical simulations of the tensile and bulge test will be conducted. The numerical results will be validated using the data obtained from the experimental results.

  14. Ductile Fracture Initiation of Anisotropic Metal Sheets

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Li, Shuhui; He, Ji

    2017-07-01

    The objective of this research is to investigate the influence of material plastic anisotropy on ductile fracture in the strain space under the assumption of plane stress state for sheet metals. For convenient application, a simple expression is formulated by the method of total strain theory under the assumption of proportional loading. The Hill 1948 quadratic anisotropic yield model and isotropic hardening flow rule are adopted to describe the plastic response of the material. The Mohr-Coulomb model is revisited to describe the ductile fracture in the stress space. Besides, the fracture locus for DP590 in different loading directions is obtained by experiments. Four different types of tensile test specimens, including classical dog bone, flat with cutouts, flat with center holes and pure shear, are performed to fracture. All these specimens are prepared with their longitudinal axis inclined with the angle of 0°, 45°, and 90° to the rolling direction, respectively. A 3D digital image correlation system is used in this study to measure the anisotropy parameter r 0, r 45, r 90 and the equivalent strains to fracture for all the tests. The results show that the material plastic anisotropy has a remarkable influence on the fracture locus in the strain space and can be predicted accurately by the simple expression proposed in this study.

  15. Method and apparatus for determining weldability of thin sheet metal

    DOEpatents

    Goodwin, Gene M.; Hudson, Joseph D.

    1988-01-01

    A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.

  16. 6. DETAIL VIEW OF SHEET METAL CORNICE AT SOUTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF SHEET METAL CORNICE AT SOUTHEAST CORNER OF MILL HOUSE, LOOKING NORTHWEST - Sperry Corn Elevator Complex, Weber Avenue (North side), West of Edison Street, Stockton, San Joaquin County, CA

  17. Working with Design: A Package for Sheet Metal

    ERIC Educational Resources Information Center

    Fiebich, Paul D.

    1974-01-01

    The author describes a design approach used to study sheet metal layout in junior high and high school mechanical drafting courses. Students observe packaging in stores, study package construction, and design and produce their own packages. (EA)

  18. Working with Design: A Package for Sheet Metal

    ERIC Educational Resources Information Center

    Fiebich, Paul D.

    1974-01-01

    The author describes a design approach used to study sheet metal layout in junior high and high school mechanical drafting courses. Students observe packaging in stores, study package construction, and design and produce their own packages. (EA)

  19. Method and Apparatus for Die Forming Metal Sheets and Extrusions.

    DTIC Science & Technology

    of a variety of die blocks for introducing a variety of angled joggles in the metal sheets and extrusions. Relatively low melting temperature material is used for the castings. Keywords: Patents; Aircraft parts. (kt)

  20. New Modelling of Localized Necking in Sheet Metal Stretching

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo

    2011-01-01

    Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is

  1. Analytical study for deformability of laminated sheet metal

    PubMed Central

    Serror, Mohammed H.

    2012-01-01

    While a freestanding high-strength sheet metal subject to tension will rupture at a small strain, it is anticipated that lamination with a ductile sheet metal will retard this instability to an extent that depends on the relative thickness, the relative stiffness, and the hardening exponent of the ductile sheet. This paper presents an analytical study for the deformability of such laminate within the context of necking instability. Laminates of high-strength sheet metal and ductile low-strength sheet metal are studied assuming: (1) sheets are fully bonded; and (2) metals obey the power law material model. The effect of hardening exponent, volume fraction and relative stiffness of the ductile component has been studied. In addition, stability of both uniform and nonuniform deformations has been investigated under plane strain condition. The results have shown the retardation of the high-strength layer instability by lamination with the ductile layer. This has been achieved through controlling the aforementioned key parameters of the ductile component, while the laminate exhibits marked enhancement in strength–ductility combination that is essential for metal forming applications. PMID:25685405

  2. 20 Facts on Women Workers. Fact Sheet No. 88-2.

    ERIC Educational Resources Information Center

    Women's Bureau (DOL), Washington, DC.

    This fact sheet lists 20 interpreted statistics on women workers. The facts cover the following data: number of women workers and their percentage in the labor force; length of time women are expected to stay in the labor force; racial and ethnic groups in the labor force; part-time and full-time employment; types of occupations in which women are…

  3. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    PubMed

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  4. Laser Indirect Shock Welding of Fine Wire to Metal Sheet

    PubMed Central

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-01-01

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent. PMID:28895900

  5. Joining of Thin Metal Sheets by Shot Peening

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori

    2011-01-01

    In shot peening the substrate undergoes large plastic deformation near the surface due to the hit with shots. The plastic flow areas formed by cold working may form the surface layer. Authors have recently proposed new joining methods using shot peening, shot lining and shot caulking. Our approach has been applied to the butt joining of the dissimilar metal sheets. In the present study, joining of thin metal sheets using a shot peening process was investigated to improve the joinability. In the joined section, the edge of sheets is the equally-spaced slits. In this method, the convex edges of the sheet are laid on top of the other sheet. Namely, the two sheets are superimposed in the joining area. When the connection is shot-peened, the material of the convex area undergoes large plastic deformation near the surface due to the collision of shots. In this process, particularly noteworthy is the plastic flow near surface layer. The convex edges of the sheet can be joined to the other sheet, thus two sheets are joined each other. In the experiment, the shot peening treatment was performed by using an air-type peening machine. The shots used were made of high carbon cast steel. Air pressure was 0.6 MPa and peening time was in the range of 30-150s. The peening conditions were controlled in the experiment. The thin sheets were commercial low-carbon steel, stainless steel, pure aluminum, and aluminium alloy. The effects of processing conditions on the joinability were mainly examined. The joint strength increased with the kinetic energy of shots. It was found that the present method was effective for joining of thin metal sheets.

  6. Clinical findings among hard metal workers.

    PubMed Central

    Fischbein, A; Luo, J C; Solomon, S J; Horowitz, S; Hailoo, W; Miller, A

    1992-01-01

    In 1940, the first report appeared describing a pulmonary disorder associated with occupational exposures in the cemented tungsten carbide industry. The disease, known as "hard metal disease," has subsequently been characterised in detail and comprises a wide range of clinical signs and symptoms. In this report, clinical findings in a group of 41 hard metal workers employed until recently are described. A high prevalence of respiratory symptoms was found. Thirteen workers (31%) had abnormal chest radiographs indicative of interstitial lung disease. Fifty per cent of these had been employed in hard metal manufacturing for less than 10 years. Abnormalities of pulmonary function were also frequent and included a restrictive pattern of impairment and decrease in diffusing capacity (27%). Associations were found between diffusing capacity, chest radiographic abnormalities and right ventricular ejection fraction at exercise indicating cardiopulmonary effects. The findings show the continuous need to control excessive occupational exposures to prevent hard metal disease, the history of which now enters its sixth decade. PMID:1733452

  7. Including die and press deformations in sheet metal forming simulations

    NASA Astrophysics Data System (ADS)

    Pilthammar, Johan; Sigvant, Mats; Kao-Walter, Sharon

    2016-08-01

    Structural analysis, in Abaqus, of a stamping die and subsequent morphing of the tool surfaces in AutoForm were performed to improve a sheet metal forming simulation. First, the tool surfaces of the XC90 rear door inner were scanned. They were not matching when the die was unloaded and could therefore not give any satisfying results in sheet metal forming simulations. Scanned surface geometries were then added to a structural FE-model of the complete stamping die and some influential parts of the production press. The structural FE- model was analysed with Abaqus to obtain the structural deformations of the die. The calculated surface shapes were then transferred to AutoForm where a forming simulation was performed. Results from the different sheet metal forming simulations were compared to measured draw in curves and showed a substantial increase in accuracy and ability to analyse dies in running production when the morphed surfaces were used.

  8. Formability Evaluation of Sheet Metals Based on Global Strain Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Lin, Jianping; Min, Junying; Ye, You; Kang, Liugen

    2016-06-01

    According to the conventional methods for formability evaluation, e.g., forming limit curve (FLC), limit dome height, and total elongation, inconsistent results are observed when comparing the formability of four advanced high-strength steels (AHSS) with an ultimate tensile strength grade of 1000 MPa. The strain distribution analysis with the aid of digital image correlation technique shows that different uniform deformation capabilities of sheet metals under the same loading conditions are responsible for this inconsistency. In addition, metallurgical analysis suggests that inhomogeneous microstructure distribution and phase transformation during deformation in some materials play important roles in the uniform deformation capability of sheet metal. Limit strains on the commonly used FLC only relate to the major and minor strains of local deforming elements associated with the onset of necking. However, the formability of a sheet metal component is determined by the strain magnitudes of all deforming elements involved during the forming process. Hence, the formability evaluation of sheet metals from a global aspect is more applicable for practical engineering. A new method based on two indices (i.e., which represent global formability and uniform deformation capability, respectively) is proposed to evaluate the formability of sheet metals based on global strain distribution. The formability and evolution of deformation uniformity of the investigated AHSS at different stress states are studied with this new method. Compared with other formability evaluation methods, the new method is demonstrated to be more appropriate for practical engineering, and it is applicable to both in-plane and out-of-plane deformation. Additionally, the global formability of sheet metals can be more comprehensively understood with this new method.

  9. 17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS WERE FORMED INTO SHAPES. (7/2/86) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  10. A Collaborative Design Curriculum for Reviving Sheet Metal Handicraft

    ERIC Educational Resources Information Center

    Chan, Patrick K. C.

    2015-01-01

    Galvanised sheet metal was a popular and important material for producing handmade home utensils in Hong Kong from the 1930s onwards. It was gradually replaced by new materials like stainless steel and plastic because similar goods made with these are cheaper, more standardised, more durable and of much better quality. The handicrafts behind sheet…

  11. Introduction to Sheet Metal. Introduction to Construction Series. Instructor Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This competency-based curriculum guide on the specialty area of sheet metal is part of the Introduction to Construction series. The series is designed with the flexible training requirements of open shop contractors, preapprenticeship programs, multicraft high school programs, technology education programs, and cooperative education programs in…

  12. A Collaborative Design Curriculum for Reviving Sheet Metal Handicraft

    ERIC Educational Resources Information Center

    Chan, Patrick K. C.

    2015-01-01

    Galvanised sheet metal was a popular and important material for producing handmade home utensils in Hong Kong from the 1930s onwards. It was gradually replaced by new materials like stainless steel and plastic because similar goods made with these are cheaper, more standardised, more durable and of much better quality. The handicrafts behind sheet…

  13. Anisotropy and Formability in Sheet Metal Forming

    SciTech Connect

    Houtte, P. van; Bael, A.; He, S. van

    2007-05-17

    Two types of anisotropy have been introduced in the Marciniak model for the prediction of forming limit diagrams (FLDs) of sheet material. One type is due to crystallographic texture, the other is due to dislocation substructure. First, an anisotropic plastic potential is derived from a measured crystallographic texture using a multilevel model. The yield locus can be derived from this plastic potential. In addition to this, a model is used to simulate microstructure-induced work hardening and softening. This model can take effects of strain path changes into account. Both the texture-based and microstructure-based anisotropic model are then implemented in the Marciniak model and used for FLD calculation. Examples of application are given for IOF steel and for aluminium alloys. Recent research has focused on the physical basis of the microstructure-induced work hardening and softening. The principles of this model will be elucidated.

  14. Formability of porous tantalum sheet-metal

    NASA Astrophysics Data System (ADS)

    Nebosky, Paul S.; Schmid, Steven R.; Pasang, Timotius

    2009-08-01

    Over the past ten years, a novel cellular solid, Trabecular Metal™, has been developed for use in the orthopaedics industry as an ingrowth scaffold. Manufactured using chemical vapour deposition (CVD) on top of a graphite foam substrate, this material has a regular matrix of interconnecting pores, high strength, and high porosity. Manufacturing difficulties encourage the application of bending, stamping and forming technologies to increase CVD reactor throughput and reduce material wastes. In this study, the bending and forming behaviour of Trabecular Metal™ was evaluated using a novel camera-based system for measuring surface strains, since the conventional approach of printing or etching gridded patterns was not feasible. A forming limit diagram was obtained using specially fabricated 1.65 mm thick sheets. A springback coefficient was measured and modeled using effective hexagonal cell arrangements.

  15. Advances in characterization of sheet metal forming limits

    NASA Astrophysics Data System (ADS)

    Stoughton, Thomas B.; Carsley, John E.; Min, Junying; Lin, Jianping

    2016-08-01

    This paper accounts for nonlinear strain path, sheet curvature, and sheet-tool contact pressure to explain the differences in measured forming limit curves (FLCs) obtained by Marciniak and Nakajima Tests. While many engineers working in the sheet metal forming industry use the raw data from one or the other of these tests without consideration that they reflect the convolution of material properties with the complex processing conditions involved in these two tests, the method described in this paper has the objective to obtain a single FLC for onset of necking for perfectly linear strain paths in the absence of through-thickness pressure and restricted to purely in-plane stretching conditions, which is proposed to reflect a true material property. The validity of the result is checked using a more severe test in which the magnitude of the nonlinearity, curvature, and pressure are doubled those involved in the Nakajima Test.

  16. How To Cut a Round and a Square Inside Opening in a Piece of Sheet Metal Using Aviation Snips. Sheet Metal 1-001. Lesson Plan No. 2.

    ERIC Educational Resources Information Center

    Shibayama, Guy T.

    As part of a 90-hour community college course in sheet metal working, this 50-minute lesson was designed to enable a student to: (1) identify and use right and left hand aviation snips; (2) cut out a 6-inch round opening in a piece of sheet metal using aviation snips; and (3) cut out a 6-by-6 inch square opening in a piece of sheet metal using…

  17. How To Cut a Round and a Square Inside Opening in a Piece of Sheet Metal Using Aviation Snips. Sheet Metal 1-001. Lesson Plan No. 2.

    ERIC Educational Resources Information Center

    Shibayama, Guy T.

    As part of a 90-hour community college course in sheet metal working, this 50-minute lesson was designed to enable a student to: (1) identify and use right and left hand aviation snips; (2) cut out a 6-inch round opening in a piece of sheet metal using aviation snips; and (3) cut out a 6-by-6 inch square opening in a piece of sheet metal using…

  18. Some Approaches of Ultrasonic Evaluation of Metal Sheets Adhesive Bonds

    NASA Astrophysics Data System (ADS)

    Maeva, E. Yu.; Severina, I. A.; O'Neill, B.; Severin, F. M.; Maev, R. Gr.

    2004-02-01

    Proper interpretation of ultrasonic inspection results for adhesive bonding of thin metal sheets is discussed. Several approaches including pulse-echo imaging, resonance spectrometry and Lamb wave technique are compared. New method of signal processing based on estimation of cross-correlation function is proposed. Theoretical speculations are supported by experiments with plane and spherically focused acoustic beams. The practical aspects of discussed methods as well as technical recommendations are provided for developing a specialized inspection system.

  19. Method and apparatus for die forming metal sheets and extrusions

    NASA Astrophysics Data System (ADS)

    Darter, John L.

    1986-06-01

    The invention comprises an apparatus for die forming metal sheets and extrusions which utilizes die blocks of low melting temperature metallic material. The die blocks are formed in an adjustable mold which comprises a mold box, a pivotable dam within the mold box and blocking means for locking the pivotable dam member in a desired angular position. Once a desired die block angle is ascertained for a particular joggle, the pivotable member of the mold box is adjusted to produce the desired angle in the die casting made in the mold box.

  20. Electromagnetic confinement and movement of thin sheets of molten metal

    DOEpatents

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1990-01-01

    An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.

  1. Electronic and magnetic properties of metal-doped BN sheet: A first-principles study.

    PubMed

    Zhou, Y G; Xiao-Dong, J; Wang, Z G; Xiao, H Y; Gao, F; Zu, X T

    2010-07-21

    The electronic and magnetic properties of a BN sheet doped with 3d transition metals (Fe, Co and Ni) have been investigated using ab initio calculations. Our calculations show many interesting physical properties in a metal-doped BN sheet. A Fe-doped BN sheet is a half-metal with the magnetic moment of 2.0 micro(B), and Co-doped BN sheet becomes a narrow-gap semiconductor with a magnetic moment of 1.0 micro(B). However, no magnetic moment is induced on a Ni-doped BN sheet, which has the same band gap as a pristine BN sheet. Furthermore, Fe atom easily forms an isolated particle on the BN sheet, while Ni and Co atoms are likely to form a sheet-supported metal nanotemplate. These results are useful for spintronics application and could help in the development of magnetic nanotructures and metallic nanotemplate at room temperature.

  2. Electronic and Magnetic Properties of Metal-Doped BN Sheet: A First-Principles Study

    SciTech Connect

    Zhou, Yungang; Xiao-Dong, J.; Wang, Zhiguo; Xiao, Haiyan Y.; Gao, Fei; Zu, Xiaotao T.

    2010-07-21

    Electronic and magnetic properties of BN sheet doped with 3d transition metals (Fe, Co and Ni) have been investigated using ab initio calculations. Our calculations show many interesting physical properties in metal-doped BN sheet. Fe-doped BN sheet is a half-metal with the magnetic moment of 2.0 μB, and Co-doped BN sheet becomes a narrow-gap semiconductor with the magnetic moment of 1.0 μB. However, no magnetic moment is induced on Ni-doped BN sheet, which has the same band gap as pristine BN sheet. Furthermore, Fe atom is easy to form isolated particle on BN sheet, while Ni and Co atoms are likely to form sheet-supported metal nanotemplate. These results are useful for spintronics application and could help in the development of magnetic nanotructures and metallic nanotemplate at room temperature.

  3. WORKER REMOVING SLAG FROM THE MOLTEN METAL BATH IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKER REMOVING SLAG FROM THE MOLTEN METAL BATH IN THE ELECTRIC FURNACE AFTER ADDING A CHEMICAL COAGULANT TO FORCE IT TO THE SURFACE. - Southern Ductile Casting Company, Melting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  4. Fact Sheets: Final Rules to Reduce Toxic Air Pollutants from Surface Coating of Metal Cans

    EPA Pesticide Factsheets

    This page contains the August 2003 final rule fact sheet and the December 2005 final rule fact sheet that contain information on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Surface Coating of Metal Cans.

  5. Laser-assisted sheet metal working in series production

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    2013-02-01

    Based on the demand for a responsible use of natural resources and energy the need for lightweight materials is increasing. The most common materials for lightweight production are high and highest strength steel. These materials are difficult to machine using conventional sheet metal working processes because the high strength leads to a limited formability and high tool wear. The Fraunhofer IPT developed the laser-assisted sheet metal working. Selective laser based heating of the part directly before machining softens the material locally. Thus the quality of the following cut can be increased, for example for shearing 1.4310 the clear cut surface ratio can be increased from 20% up to 100% using a shearing gap of 10% of the sheet thickness. Because of the softening of the material and thus the increased formability, parts with a higher complexity can be produced. For example 1.4310 can be bent laser-assisted with a radius of 0.25 mm instead of 2-3 mm using the conventional process. For the first time spring steel can be embossed with conventional tools up to 50% of the sheet thickness. For the implementation in series production a modular system upgrade "hy-PRESS" has been developed to include laser and scanner technology into existing presses. For decoupling the sensitive optical elements of the machine vibrations an active-passive damping system has been developed. The combination of this new hybrid process and the system technology allows to produce parts of high strength steel with a high complexity and quality.

  6. Sectional Finite Element Analysis on Viscous Pressure Forming of Sheet Metal

    NASA Astrophysics Data System (ADS)

    Liu, Jianguang; Wang, Zhongjin; Liu, Yan

    2007-05-01

    Viscous pressure forming (VPF) is a recently developed sheet flexible-die forming process, which uses a kind of semi-solid, flowable and viscous material as pressure-carrying medium that typically applied on one side of the sheet metal or on both sides of sheet metal. Different from traditional sheet metal forming processes in which sheet metal is the unique deformation-body, VPF is a coupling process of visco-elastoplastic bulk deformation of viscous medium and elasto-plastic deformation of sheet metal. A sectional finite element model for the coupled deformation between visco-elastoplastic body and elasto-plastic sheet metal was proposed to analyze VPF. The resolution of the Updated Lagrangian formulation is based on a static approach. By using static-explicit time integration strategy, the deformation of elasto-plastic sheet metal and visco-elastoplastic body can keep stable. The frictional contact between sheet metal and visco-elastoplastic body is treated by penalty function method. Using the proposed algorithm, sheet metal viscous pressure bulging (VPB) process is analyzed and compared with experiments. A good agreement between numerical simulation results and experimental ones proved the efficiency and stability of this algorithm.

  7. Heated Hydro-Mechanical Deep Drawing of Magnesium Sheet Metal

    NASA Astrophysics Data System (ADS)

    Kurz, Gerrit

    In order to reduce fuel consumption efforts have been made to decrease the weight of automobile constructions by increasing the use of lightweight materials. In this field of application magnesium alloys are important because of their low density. A promising alternative to large surfaced and thin die casting parts has been found in construction parts that are manufactured by sheet metal forming of magnesium. Magnesium alloys show a limited formability at room temperature. A considerable improvement of formability can be achieved by heating the material. Formability increases above a temperature of approximately T = 225 °C.

  8. Variation simulation for compliant sheet metal assemblies with applications

    NASA Astrophysics Data System (ADS)

    Long, Yufeng

    Sheet metals are widely used in discrete products, such as automobiles, aircraft, furniture and electronics appliances, due to their good manufacturability and low cost. A typical automotive body assembly consists of more than 300 parts welded together in more than 200 assembly fixture stations. Such an assembly system is usually quite complex, and takes a long time to develop. As the automotive customer demands products of increasing quality in a shorter time, engineers in automotive industry turn to computer-aided engineering (CAE) tools for help. Computers are an invaluable resource for engineers, not only to simplify and automate the design process, but also to share design specifications with manufacturing groups so that production systems can be tooled up quickly and efficiently. Therefore, it is beneficial to develop computerized simulation and evaluation tools for development of automotive body assembly systems. It is a well-known fact that assembly architectures (joints, fixtures, and assembly lines) have a profound impact on dimensional quality of compliant sheet metal assemblies. To evaluate sheet metal assembly architectures, a special dimensional analysis tool need be developed for predicting dimensional variation of the assembly. Then, the corresponding systematic tools can be established to help engineers select the assembly architectures. In this dissertation, a unified variation model is developed to predict variation in compliant sheet metal assemblies by considering fixture-induced rigid-body motion, deformation and springback. Based on the unified variation model, variation propagation models in multiple assembly stations with various configurations are established. To evaluate the dimensional capability of assembly architectures, quantitative indices are proposed based on the sensitivity matrix, which are independent of the variation level of the process. Examples are given to demonstrate their applications in selecting robust assembly

  9. Numerical Prediction of Springback Shape of Severely Bent Sheet Metal

    SciTech Connect

    Iwata, Noritoshi; Murata, Atsunobu; Yogo, Yasuhiro; Tsutamori, Hideo; Niihara, Masatomo; Ishikura, Hiroshi; Umezu, Yasuyoshi

    2007-05-17

    In the sheet metal forming simulation, the shell element widely used is assumed as a plane stress state based on the Mindlin-Reissner theory. Numerical prediction with the conventional shell element is not accurate when the bending radius is small compared to the sheet thickness. The main reason is because the strain and stress formulation of the conventional shell element does not fit the actual phenomenon. In order to predict precisely the springback of a bent sheet with a severe bend, a measurement method for through-thickness strain has been proposed. The strain was formulated based on measurement results and calculation results from solid element. Through-thickness stress distribution was formulated based on the equilibrium. The proposed shell element based on the formulations was newly introduced into the FEM code. The accuracy of this method's prediction of the springback shape of two bent processes has been confirmed. As a result, it was found that the springback shape even in severe bending can be predicted with high accuracy. Moreover, the calculation time in the proposed shell element is about twice that in the conventional shell element, and has been shortened to about 1/20 compared to a solid element.

  10. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofang; Cui, Xinrui; Liu, Yiding; Yin, Yadong

    2015-10-01

    A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the catalytic efficiency. The advantages of this ultra-stable architecture together with the densely dispersed catalytic sites were demonstrated by their high stability and superior catalytic activity in reducing hydrophilic 4-nitrophenol and hydrophobic nitrobenzene.A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the

  11. RIGGERS LOFT/PAINT SHOP/SHEET METAL SHOP, VIEW TO SOUTHEAST. THE PAINT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RIGGERS LOFT/PAINT SHOP/SHEET METAL SHOP, VIEW TO SOUTHEAST. THE PAINT SHOP WAS LOCATED IN THE CLOSEST CORNER OF THE BUILDING. THE SHEET METAL SHOP WAS LOCATED IN THE CORNER OF THE BUILDING ON THE RIGHT. THE RIGGERS LOFT WAS LOCATED IN THE PORTION OF THE BUILDING OUT OF VIEW TO THE LEFT - Rosie the Riveter National Historical Park, Riggers Loft/Paint Shop/Sheet Metal Shop, 1322 Canal Boulevard, Richmond, Contra Costa County, CA

  12. Self-Pierce Riveting Through 3 Sheet Metal Combinations

    SciTech Connect

    Andersson, Roger; Jonason, Paul; Pettersson, Tommy

    2011-05-04

    One way to reduce the CO{sub 2} emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensive door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.

  13. Self-Pierce Riveting Through 3 Sheet Metal Combinations

    NASA Astrophysics Data System (ADS)

    Andersson, Roger; Jonason, Paul; Pettersson, Tommy

    2011-05-01

    One way to reduce the CO2 emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensive door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.

  14. On the mechanics of localized necking in anisotropic sheet metals

    NASA Astrophysics Data System (ADS)

    Hill, R.

    2001-09-01

    The ductility of sheet metals formed by cold rolling is often assessed by tension tests on long rectangular strips which are cut from a sheet at various angles to the direction of rolling. A strip typically deforms homogeneously to begin with, but eventually fails at a site where a narrow neck develops along a line that crosses the gauge section obliquely from side to side. The degree of obliquity depends on the material as well as on the cutting angle; so also does the stage of deformation at which a neck first appears. It has long been evident that material orthotropy and progressive hardening are crucial factors, but a theoretical analysis of the phenomenon that takes due account of both of these is apparently still lacking. Their joint influence is investigated here on the basis of the classical rigid/plastic constitutive model in its original form. Some pragmatic notions which were added later are excluded as being too simplistic and unnecessarily restrictive. The present analysis has been deliberately freed from ad hoc empiricism of any kind with a view to more realistic modeling in the future. Other than basic analytic requirements, there are no theoretical limitations on the path dependences of orthotropic parameters and the rate of strain hardening, nor on the evolving geometries of subsequent yield surfaces. It appears to the writer that, with well planned experiments and improved instrumentation, strip tests could be much more effective as a means to investigate orthotropic behaviour in metals.

  15. Formability models for warm sheet metal forming analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Sen

    Several closed form models for the prediction of strain space sheet metal formability as a function of temperature and strain rate are proposed. The proposed models require only failure strain information from the uniaxial tension test at an elevated temperature setting and failure strain information from the traditionally defined strain space forming limit diagram at room temperature, thereby featuring the advantage of offering a full forming limit description without having to carry out expensive experimental studies for multiple modes of deformation under the elevated temperature. The Power law, Voce, and Johnson-Cook hardening models are considered along with the yield criterions of Hill's 48 and Logan-Hosford yield criteria. Acceptable correlations between the theory and experiment are reported for all the models under a plane strain condition. Among all the proposed models, the model featuring Johnson-Cook hardening model and Logan-Hosford yield behavior (LHJC model) was shown to best correlate with experiment. The sensitivity of the model with respect to various forming parameters is discussed. This work is significant to those aiming to incorporate closed-form formability models directly into numerical simulation programs for the purpose of design and analysis of products manufactured through the warm sheet metal forming process. An improvement based upon Swift's diffuse necking theory, is suggested in order to enhance the reliability of the model for biaxial stretch conditions. Theory relating to this improvement is provided in Appendix B.

  16. Electrically driven rapidly vaporizing foils, wires and strips used for collision welding and sheet metal forming

    SciTech Connect

    Vivek, Anupam; Daehn, Glenn S; Taber, Geoffrey A; Johnson, Jason R

    2015-05-05

    A method for forming a piece of a sheet metal is performed by positioning a consumable body, made of metal, proximate to the piece of the sheet metal. The consumable body is rapidly vaporized, and the gas pressure generated thereby is directed into the piece of the sheet metal. This results in acceleration of the piece of sheet metal, and it is collided into a stationary body at a velocity, generally in excess of 200 m/s. Depending upon the type of stationary body, the piece of sheet metal is deformed into a predetermined shape or is welded onto the stationary body. The vaporization is accomplished by passing a high current of electricity into the consumable body. The effect of the vaporized metal may be augmented by additional components in the consumable body.

  17. Evaluation of anti-vibration interventions for the hand during sheet metal assembly work.

    PubMed

    Dale, Ann Marie; Rohn, A E; Burwell, A; Shannon, W; Standeven, J; Patton, A; Evanoff, B

    2011-01-01

    Occupational use of vibrating hand tools contributes to the development of upper extremity disorders. While several types of vibration damping materials are commercially available, reductions in vibration exposure are usually tested in the laboratory rather than in actual work environments. This study evaluated reductions in hand vibration with different vibration damping interventions under actual work conditions. Three experienced sheet metal assemblers at a manufacturing facility installed sheet metal fasteners with a pneumatic tool using no vibration damping (bare hand) and each of six anti-vibration interventions (five different gloves and a viscoelastic tool wrap). Vibration was measured with tri-axial accelerometers on the tool and the back of the hand. Unweighted mean vibration measured at the hand showed reduced vibration (p<0.001) for all six interventions (range = 3.07-5.56 m/s(2)) compared to the bare hand condition (12.91 m/s(2)). All of the interventions were effective at reducing vibration at the hand during testing under usual work conditions. Field testing beyond laboratory-based testing accounts for the influences of worker, tools, and materials on vibration transmission to the body from specific work operations. © 2011 - IOS Press and the authors. All rights reserved

  18. Metal-material workers and lung cancer in Japan.

    PubMed

    Hirayama, T

    1976-01-01

    The distribution by occupation of 39,255 lung cancer deaths in eight years, from 1960 to 1967, was analyzed. An age-standardized comparison of actual deaths and expected deaths revealed that cancer of the lung had tendency to occur with a significantly higher frequency in (1) metal material workers (Obs., 232; Exp., 176.5), and (2) workers in mining and quarrying occupations (Obs., 151; Exp., 127.9). By similar analysis, farmers, miners, and metal-material workers were noted as high-risk occupations for stomach cancer and clerical workers, and farmers were noted as such for leukemia. The value of occupational cancer in monitoring by such a simple analysis was stressed (see Figure 1).

  19. A New Sheet Metal Forming System Based on Incremental Punching

    NASA Astrophysics Data System (ADS)

    Luo, Yuanxin

    Stamping is one of the most commonly used manufacturing processes. Everyday, millions of parts are formed by this process. The conventional stamping is to form a part in one or several operations with a press machine and a set/sets of dies. It is very efficient but is not cost effective for small batch production parts and prototypes as the dies are expensive and time consuming to make. Recently, with the increasing demands for low-volume and customer-made products, a die-less forming method, Incremental Sheet Metal Forming (ISMF), has become one of the leading R&D topics in the industry. ISMF uses a small generic tool to apply a sequence of operations along the given path to deform the sheet incrementally. These small deformations accumulate to form the final shape of the part. As a result, different parts can be made by the same setup. Despite of some 30 years of research and development, however, ISMF technology is still premature for industrial applications due to the following reasons: The accuracy of the part is limited; the surface roughness is poor; and the productivity is low. This motivates the presented research. In this research, a new incremental forming system based on incremental punching is designed and built. The system consists of a 3-axes CNC platform, a high speed hydraulic cylinder with a hemispherical forming tool, and a PC-based CNC control system. The hydraulic system provides the forming force to deform the sheet metal with constant stokes, while the CNC system positions the part. When forming a part, the forming tool punches the sheet metal along the given contour of the part punch by punch; when one layer of the part is completed, the forming tool moves down to the next layer; and the process is finished till all layers are completed. The CNC control system works with standard NC code, and hence, is easy to use. In order to ensure the desirable performance of the machine, dynamic analysis of the machine is necessary. The analysis is

  20. Editorial input for the right price: tobacco industry support for a sheet metal indoor air quality manual.

    PubMed

    Campbell, Richard; Balbach, Edith

    2013-01-01

    Following legal action in the 1990s, internal tobacco industry documents became public, allowing unprecedented insight into the industry's relationships with outside organizations. During the 1980s and 1990s, the National Energy Management Institute (NEMI), established by the Sheet Metal Workers International Association and the Sheet Metal and Air Conditioning Contractors' National Association, (SMACNA) received tobacco industry funding to establish an indoor air quality services program. But the arrangement also required NEMI to serve as an advocate for industry efforts to defeat indoor smoking bans by arguing that ventilation was a more appropriate solution to environmental tobacco smoke. Drawing on tobacco industry documents, this paper describes a striking example of the ethical compromises that accompanied NEMI's collaboration with the tobacco industry, highlighting the solicitation of tobacco industry financial support for a SMACNA indoor air quality manual in exchange for sanitizing references to the health impact of environmental tobacco smoke prior to publication.

  1. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    EPA Pesticide Factsheets

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  2. Additive Manufacturing of Functional Elements on Sheet Metal

    NASA Astrophysics Data System (ADS)

    Schaub, Adam; Ahuja, Bhrigu; Butzhammer, Lorenz; Osterziel, Johannes; Schmidt, Michael; Merklein, Marion

    Laser Beam Melting (LBM) process with its advantages of high design flexibility and free form manufacturing methodology is often applied limitedly due to its low productivity and unsuitability for mass production compared to conventional manufacturing processes. In order to overcome these limitations, a hybrid manufacturing methodology is developed combining the additive manufacturing process of laser beam melting with sheet forming processes. With an interest towards aerospace and medical industry, the material in focus is Ti-6Al-4V. Although Ti-6Al-4V is a commercially established material and its application for LBM process has been extensively investigated, the combination of LBM of Ti-6Al-4V with sheet metal still needs to be researched. Process dynamics such as high temperature gradients and thermally induced stresses lead to complex stress states at the interaction zone between the sheet and LBM structure. Within the presented paper mechanical characterization of hybrid parts will be performed by shear testing. The association of shear strength with process parameters is further investigated by analyzing the internal structure of the hybrid geometry at varying energy inputs during the LBM process. In order to compare the hybrid manufacturing methodology with conventional fabrication, the conventional methodologies subtractive machining and state of the art Laser Beam Melting is evaluated within this work. These processes will be analyzed for their mechanical characteristics and productivity by determining the build time and raw material consumption for each case. The paper is concluded by presenting the characteristics of the hybrid manufacturing methodology compared to alternative manufacturing technologies.

  3. Large Patternable Metal Nanoparticle Sheets by Photo/E-beam Lithography.

    PubMed

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-08-30

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20-μm-wide line and space patterns, and a 170-nm-wide line of the silver nanoparticle sheets. © 2017 IOP Publishing Ltd.

  4. Numerical Tool Path Optimization for Conventional Sheet Metal Spinning Processes

    NASA Astrophysics Data System (ADS)

    Rentsch, Benedikt; Manopulo, Niko; Hora, Pavel

    2016-08-01

    To this day, conventional sheet metal spinning processes are designed with a very low degree of automation. They are usually executed by experienced personnel, who actively adjust the tool paths during production. The practically unlimited freedom in designing the tool paths enables the efficient manufacturing of complex geometries on one hand, but is challenging to translate into a standardized procedure on the other. The present study aims to propose a systematic methodology, based on a 3D FEM model combined with a numerical optimization strategy, in order to design tool paths. The accurate numerical modelling of the spinning process is firstly discussed, followed by an analysis of appropriate objective functions and constraints required to obtain a failure free tool path design.

  5. Remapping algorithms: application to trimming operations in sheet metal forming

    NASA Astrophysics Data System (ADS)

    Neto, D. M.; Diogo, C. M. A.; Neves, T. F.; Oliveira, M. C.; Alves, J. L.; Menezes, L. F.

    2016-08-01

    Most of sheet metal forming processes comprise intermediate trimming operations to remove superfluous material. These operations are required for subsequent forming operations. On the other hand, the springback is strongly influenced by the trimming operations that change the part stiffness and the stress field. From the numerical point of view, this involves the geometrical trimming of the finite element mesh and subsequent remapping of the state variables. This study presents a remapping method based on Dual Kriging interpolation, specifically developed for hexahedral finite elements, which has been implemented in DD3TRIM in-house code. Its performance is compared with the one of the Incremental Volumetric Remapping method, using the split-ring test to highlight their advantages and limitations. The numerical simulation of the forming processes is performed with DD3IMP finite element solver.

  6. On The Prediction Of Plastic Instability In Metal Sheets

    SciTech Connect

    Mattiasson, Kjell; Sigvant, Mats; Larsson, Mats

    2007-05-17

    The current report presents some results from a study on the prediction of necking failure in ductile metal sheets. In particular methods for creating Forming Limit Curves (FLCs) are discussed in the present report. Three groups of methods are treated: Experimental methods, Theoretical/analytical methods, and the Finite Element Method (FEM). The various methods are applied to two different materials: An aluminum alloy and a high strength steel. These materials do both exhibit a distinct necking behavior before fracture, and they do both exhibit only a small strain rate dependence. As can be expected, the resulting FLCs from the various experimental, theoretical, and numerical methods show a substantial scatter. The reasons for these deviating results are analyzed, and some conclusions are drawn regarding the applicability of the different methods.

  7. Process Windows for Sheet Metal Parts based on Metamodels

    NASA Astrophysics Data System (ADS)

    Harsch, D.; Heingärtner, J.; Hortig, D.; Hora, P.

    2016-08-01

    Achieving robust production of deep drawn sheet metal parts is challenging. The fluctuations of process and material properties often lead to robustness problems. Numerical simulations are used to validate the feasibility and to detect critical regions of a part. To enhance the consistency with the real process conditions, the measured material data and the force distribution are taken into account. The simulation metamodel contains the virtual knowledge of a particular forming process, which is determined based on a series of finite element simulations with variable input parameters. Based on the metamodels, process windows can be evaluated for different parameter configurations. This helps improving the operating point search, to adjust process settings if the process becomes unstable and to visualize the influence of arbitrary parameters on the process window.

  8. Bifurcation Instability of sheet metal during spring-back

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Bong; Yang, Dong-Yol; Yoon, Jeong Whan

    2013-05-01

    In automotive and home appliance industries, there are many complex-shaped sheet metal components which need to be fabricated in multiple stamping operations. For example, the manufacturing of an outer case of washing machine consists of stamping followed by a bending operation. After the first stage of the stamping process, a large amount of spring-back takes place, and therefore, it is difficult to proceed to the next stage of the bending process. In the stamping process of that kind of sheet component with low geometric constraint, the forming area is large compared to the forming depth. Therefore, the formed part is in an unstable state and is less geometrically constrained, which causes a large amount of spring-back. To investigate this phenomenon, finite element analyses are carried out. During a spring-back analysis after forming, bifurcation takes place and the finite element solution procedure using the Newton-Raphson scheme becomes unstable. To get a stable post-bifurcation solution, a bifurcation algorithm is introduced at the bifurcation point. The deformed shapes obtained from finite element analyses are in good agreement with the experimental data. From this study, it is shown that the bifurcation behaviour enlarges the spring-back and the degree of dimensional error. To obtain additional possible post-bifurcation solutions, non-bifurcation analyses using initial guesses obtained in a modal analysis are carried. For the initial guesses, lowed four eigenmodes are utilized. Finally, the post-bifurcation behaviour and spring-back amount are investigated for various process parameters including the forming depth, punch width and corner radius.

  9. Determination of Anisotropic Hardening of Sheet Metals by Shear Tests

    SciTech Connect

    Schikorra, Marco; Brosius, Alexander; Kleiner, Matthias

    2005-08-05

    With regard to the increasing necessity of accurate material data determination for the prediction of springback, a material testing equipment has been developed and set up for the measurement of material hardening within cyclic loading. One reason for inaccurate springback predictions can be seen in a missing consideration of load reversal effects in a realistic material model description. Due to bending and unbending while the material is drawn from the flange over a radius of a deep drawing tool, a hardening takes place which leads to an expanding or shifting of the elastic area and yield locus known as isotropic, kinematic, or combined hardening. Since springback is mainly influenced by the actual stress state and a correct distinction between elastic and elastic-plastic regions, an accurate prediction of these stress and strain components is basically required to simulate springback accurately, too. The presented testing method deals with shearing of sheet metal specimens in one or more load cycles to analyze the change of yield point and yield curve. The experimental set up is presented and discussed and the results are shown for different materials such as aluminum A199.5, stainless steel X5CrNi18.10, dual phase steel DP600, and copper Cu99.99. To guarantee a wide experimental range, different sheet thicknesses were used additionally. Simulations using the finite element method were carried out to compare the measured results with calculated results from different yield criterions and different hardening laws mentioned above. It was possible to show that commonly used standard material hardening laws like isotropic and kinematic hardening laws often do not lead to accurate stress state predictions when load reversals occur. The work shows the range of occurring differences and strategies to obtain to a more reliable prediction.

  10. An anthropometric study of Serbian metal industry workers.

    PubMed

    Omić, S; Brkić, V K Spasojevic; Golubović, T A; Brkić, A D; Klarin, M M

    2017-01-01

    There are recent studies using new industrial workers' anthropometric data in different countries, but for Serbia such data are not available. This study is the first anthropometric study of Serbian metal industry workers in the country, whose labor force is increasingly employed both on local and international markets. The metal industry is one of Serbia's most important economic sectors. To this end, we collected the basic static anthropometric dimensions of 122 industrial workers and used principal components analysis (PCA) to obtain multivariate anthropometric models. To confirm the results, the dimensions of an additional 50 workers were collected. The PCA methodology was also compared with the percentile method. Comparing both data samples, we found that 96% of the participants are within the tolerance ellipsoid. According to this study, multivariate modeling covers a larger extent of the intended population proportion compared to percentiles. The results of this research are useful for the designers of metal industry workstations. This information can be used in dimensioning the workplace, thus increasing job satisfaction, reducing the risk of injuries and fatalities, and consequently increasing productivity and safety.

  11. Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes

    PubMed Central

    Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J.; Wang, Liliang; Lin, Jianguo

    2016-01-01

    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions. PMID:28060298

  12. Towards Industrial Application of Damage Models for Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Doig, M.; Roll, K.

    2011-05-01

    Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.

  13. Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes.

    PubMed

    Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J; Wang, Liliang; Lin, Jianguo

    2016-12-13

    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions.

  14. Biomonitoring of toxic metals in incinerator workers: A systematic review.

    PubMed

    Mauriello, Maria Chiara; Sbordone, Carmine; Montuori, Paolo; Alfano, Rossella; Triassi, Maria; Iavicoli, Ivo; Manno, Maurizio

    2017-04-15

    Exposure to chemicals released during urban waste disposal and treatment is increasingly regarded as a potential occupational health issue. Indeed, several toxic metals emitted by an incinerator, including As, Be, Cd, Cr, Pb, Mn, Hg, Ni and V, have potentially toxic properties and their exposure, therefore, may be of concern for the health of the workers involved. The levels of exposure should therefore be carefully measured. Environmental monitoring, however, may be unable, alone, to assess true exposure, due to its intrinsic limitations mainly concerning its inability to assess oral and dermal absorption. In these cases biological monitoring may represent a fundamental supplementary tool for the definition of the workers' true occupational exposure and for the prevention of the related health effects. There is, therefore, an increasing interest in developing and using, in these workers, sensitive and specific biomarkers for health risk assessment, particularly at low or even very low levels of exposure. Despite the large number of original and review articles present in the literature on the biomonitoring of workers exposed to metals, the data on subjects employed in waste treatment activities are scattered and results are sometimes inconsistent. This is the first systematic review, performed according to PRISMA methodology, of the major studies investigating the levels of different toxic metals measured in the main biological matrices (blood, urine, hair) of incinerator workers. The results show that the levels of metals measured in incinerators' workers are generally low, with some notable exceptions for Cd and Pb. These results, though, can be affected by several confounders related either to non-occupational exposure, including diet, area of residence and others, and/or by a number of methodological limitations, as we found in the reported studies. Future work should focus on an integrated approach, using ideally both biological and environmental monitoring

  15. Steel--Project Fact Sheet: Recycling Acid and Metal Salts from Pickling Liquors

    SciTech Connect

    Poole, L.; Recca, L.

    1999-01-14

    Regenerating hydrochloric acids from metal finishing pickling baths reduces costs, wastes, and produces a valuable by-product--ferrous sulfate. Order your copy of this OIT project fact sheet and learn more about how your company can benefit.

  16. Numerical assessment of residual formability in sheet metal products: towards design for sustainability

    NASA Astrophysics Data System (ADS)

    Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.

    2016-08-01

    A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.

  17. Numerical simulation of energy-absorbing capacity of metal sheet under penetration

    NASA Astrophysics Data System (ADS)

    Kaminishi, K.

    1997-07-01

    A finite element program employing a new explicit and consistent scheme for dynamic plasticity problems has been developed and deformation analysis of metal sheet under penetration has been carried out by this program. On the basis of this simulation, formulae for estimating the energy-absorbing capacity of thin metal sheet are proposed and the validity of this formulae has been shown numerically and experimentally.

  18. A new strategy for stiffness evaluation of sheet metal parts

    NASA Astrophysics Data System (ADS)

    Cai, Q.; Volk, W.; Düster, A.; Rank, E.

    2011-08-01

    In the automotive industry, surfaces of styling models are shaped very often in physical models. For example, in the styling process of a car body important design work is realized by clay models and the resulting geometry information typically comes from optical scans. The scanned data is given in the form of point clouds which is then utilized in the virtual planning process for engineering work, e.g. to evaluate the load-carrying capacity. This is an important measure for the stiffness of the car body panels. In this contribution, the following two issues are discussed: what is the suitable geometric representation of the stiffness of the car body and how it is computed if only discrete point clouds exist. In the first part, the suitable geometric representation is identified by constructing continuous CAD models with different geometric parameters, e.g. Gaussian curvature and mean curvature. The stiffness of models is then computed in LS-DYNA and the influence of different geometric parameters is presented based on the simulation result. In the second part, the point clouds from scanned data, rather than continuous CAD models, are directly utilized to estimate the Gaussian curvature, which is normally derived from continuous surfaces. The discrete Gauss-Bonnet algorithm is applied to estimate the Gaussian curvature of the point clouds and the sensitivity of the algorithm with respect to the mesh quality is analyzed. In this way, the stiffness evaluation process in an early stage can be accelerated since the transformation from discrete data to continuous CAD data is labor-intensive. The discrete Gauss-Bonnet algorithm is finally applied to a sheet metal model of the BMW 3 series.

  19. Electro-Hydraulic Forming of Sheet Metals: Free-forming vs. Conical-die Forming

    SciTech Connect

    Rohatgi, Aashish; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.; Soulami, Ayoub; Ahzi, Said

    2012-05-01

    This work builds upon our recent advances in quantifying high-rate deformation behavior of sheet metals, during electro-hydraulic forming (EHF), using high-speed imaging and digital image correlation techniques. Following recent publication of an earlier manuscript, resulting from this project, in the Journal of Materials Processing Technology, this manuscript further details our results and compares forming behavior when the process is carried out inside an open-die or a conical die. It is anticipated that quantitative information of the sheet deformation history, made possible by the experimental technique developed in this work, will improve our understanding on the roles of strain-rate and sheet-die interactions in enhancing the sheet metal formability during high-rate forming. This knowledge will be beneficial to the automotive industry and enable them to fabricate light-weight sheet parts out of Al and advanced high strength steels.

  20. Aircraft Assembly, Riveting and Surface Repair 1; Sheet Metal Work 2: 9855.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline will serve as a guide to the 11th grade student interested in sheet metal occupations. The course, 135 hours in length, covers the basic techniques of cutting and trimming, drilling and hole preparation of metals. Lecture and demonstration techniques are to be utilized, with emphasis on the use of visual aids, mock-ups,…

  1. Residual Stress In Sheet Metal Parts Made By Incremental Forming Process

    SciTech Connect

    Tanaka, Shigekazu; Nakamura, Tamotsu; Hayakawa, Kunio; Nakamura, Hideo; Motomura, Kazuo

    2007-05-17

    Incremental sheet metal forming, which uses a CNC forming stylus, is new flexible forming process not requiring the use of any expensive dies. We have applied the incremental forming process to dental prosthesis. This new process, however, posed difficult problems. After removing the outer portion of the incremental formed sheet metal part, the inner part is distorted. In this paper, the residual stress in the sheet metal part obtained by incremental forward stretch forming operations has been examined. Numerical simulations were conducted for solid elements. When small rigid ball slides on the metal sheet with a certain vertical feed, tension residual stress is produced in the upper layer of the sheet and compression stress in the lower. Then, the resultant moments throughout the sheet cause negative spring-back when the outer portion is removed. A systematic study of the behavior was conducted in this paper. Parameters considered included the tool radius and the vertical tool feed rate. The tip radius of forming stylus has a significant influence on the residual stress. The smaller radius of forming stylus, the larger bending force becomes. And new process with double forming styluses is examined to reduce the bending force.

  2. Residual Stress In Sheet Metal Parts Made By Incremental Forming Process

    NASA Astrophysics Data System (ADS)

    Tanaka, Shigekazu; Nakamura, Tamotsu; Hayakawa, Kunio; Nakamura, Hideo; Motomura, Kazuo

    2007-05-01

    Incremental sheet metal forming, which uses a CNC forming stylus, is new flexible forming process not requiring the use of any expensive dies. We have applied the incremental forming process to dental prosthesis. This new process, however, posed difficult problems. After removing the outer portion of the incremental formed sheet metal part, the inner part is distorted. In this paper, the residual stress in the sheet metal part obtained by incremental forward stretch forming operations has been examined. Numerical simulations were conducted for solid elements. When small rigid ball slides on the metal sheet with a certain vertical feed, tension residual stress is produced in the upper layer of the sheet and compression stress in the lower. Then, the resultant moments throughout the sheet cause negative spring-back when the outer portion is removed. A systematic study of the behavior was conducted in this paper. Parameters considered included the tool radius and the vertical tool feed rate. The tip radius of forming stylus has a significant influence on the residual stress. The smaller radius of forming stylus, the larger bending force becomes. And new process with double forming styluses is examined to reduce the bending force.

  3. Simulation of sheet metal forming using polycrystal plasticity

    SciTech Connect

    Kocks, U.F.; Beaudoin, A.J.; Koya, T.; Uto, H.; Dawson, P.R.; Mathur, K.K.

    1995-05-01

    Polycrystal plasticity theory provides a foundation for the introduction of anisotropy into finite element codes. The computational burden inherent in carrying a detailed microstructural description in each finite element is significant. However, recent advances in computer hardware -- as well as the development of software for massive parallel architectures -- enable the treatment of practical problems. In this work, experimental results are provided to highlight the effect of anisotropy on different strain paths developed in forming of aluminum sheet. Simulation of the experimental tests is performed for aluminum sheet with varying initial texture. The results of the simulations follow experimental trends.

  4. Tremor in workers with low exposure to metallic mercury

    SciTech Connect

    Verberk, M.M.; Salle, H.J.A.; Kemper, C.H.

    1986-09-01

    In a fluorescent lamp production factory, a newly developed lightweight balance-tremormeter was used to measure postural tremor of the finger in 21 workers (ages 28 to 61) exposed for 0.5-19 yr to metallic mercury. In addition, tremor was measured in an indirect way by means of a hole-tremormeter. The excretion of mercury in urine was 9-53 (average 20) ..mu..mol/mol creatinine. With increasing mercury excretion, the following parameters increased: the acceleration of the tremor, the contribution of the neuromuscular component (8-12 Hz) to the power spectrum of the acceleration, the width of the power-spectrum and the score on the hole-tremormeter. The study indicates that exposure to metallic mercury below the current TLV (50 ..mu..g/m/sup 3/) may increase the tremor of the finger.

  5. Study of Microstructure and Mechanical Properties Effects on Workpiece Quality in Sheet Metal Extrusion Process.

    PubMed

    Suriyapha, Chatkaew; Bubphachot, Bopit; Rittidech, Sampan

    2015-01-01

    Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material's behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material's grains' size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures.

  6. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    NASA Astrophysics Data System (ADS)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  7. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2012-12-01

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  8. Assessing the formability of metallic sheets by means of localized and diffuse necking models

    NASA Astrophysics Data System (ADS)

    Comşa, Dan-Sorin; Lǎzǎrescu, Lucian; Banabic, Dorel

    2016-10-01

    The main objective of the paper consists in elaborating a unified framework that allows the theoretical assessment of sheet metal formability. Hill's localized necking model and the Extended Maximum Force Criterion proposed by Mattiasson, Sigvant, and Larsson have been selected for this purpose. Both models are thoroughly described together with their solution procedures. A comparison of the theoretical predictions with experimental data referring to the formability of a DP600 steel sheet is also presented by the authors.

  9. Development of Multi-Scale Finite Element Analysis Codes for High Formability Sheet Metal Generation

    SciTech Connect

    Nnakamachi, Eiji; Kuramae, Hiroyuki; Ngoc Tam, Nguyen; Nakamura, Yasunori; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-05-17

    In this study, the dynamic- and static-explicit multi-scale finite element (F.E.) codes are developed by employing the homogenization method, the crystalplasticity constitutive equation and SEM-EBSD measurement based polycrystal model. These can predict the crystal morphological change and the hardening evolution at the micro level, and the macroscopic plastic anisotropy evolution. These codes are applied to analyze the asymmetrical rolling process, which is introduced to control the crystal texture of the sheet metal for generating a high formability sheet metal. These codes can predict the yield surface and the sheet formability by analyzing the strain path dependent yield, the simple sheet forming process, such as the limit dome height test and the cylindrical deep drawing problems. It shows that the shear dominant rolling process, such as the asymmetric rolling, generates ''high formability'' textures and eventually the high formability sheet. The texture evolution and the high formability of the newly generated sheet metal experimentally were confirmed by the SEM-EBSD measurement and LDH test. It is concluded that these explicit type crystallographic homogenized multi-scale F.E. code could be a comprehensive tool to predict the plastic induced texture evolution, anisotropy and formability by the rolling process and the limit dome height test analyses.

  10. Tolerance Allocation of Sheet Metal Assembly Using a Finite Element Model

    NASA Astrophysics Data System (ADS)

    Shiu, Boon Wai; Li, Bing; Fu, Xiang Yang; Liu, Yang

    A tolerance allocation scheme for automotive body assembly must consider both product tolerance requirements and manufacturing capabilities. The design/functional requirements are considered to be the dimensional requirements of the product, and the manufacturing capabilities are considered to be the tolerance allocated. However, customer demand for quality requires tight tolerance, which current sheet metal manufacturing cannot deliver. Thus, a high product cost is incurred to satisfy customers' high requirements in relation to sheet metal products. In this paper, a generic finite element tolerancing methodology is developed for sheet metal assembly. This methodology is capable of determining the maximum allowable manufacturing tolerance for components before assembly, which satisfies the product requirement as a whole. This method enables a tolerancing scheme to be used in state of the art automotive body panel design.

  11. Advances in post-necking flow curve identification of sheet metal through standard tensile testing

    NASA Astrophysics Data System (ADS)

    Coppieters, Sam; Cooreman, Steven; Debruyne, Dimitri; Kuwabara, Toshihiko

    2013-12-01

    The standard tensile test is still the most common material test to identify the hardening behavior of sheet metal. When using standard equipment and well-known analytical formulas, however, the hardening behavior can only be identified up to the point of maximum uniform elongation. Several methods which deal with the problem of extended flow curve identification of sheet metal through a tensile test have been proposed in the past. This paper gives an overview of the four classes of methods to identify post-necking hardening behavior of sheet metal through tensile testing. In addition, identification methods from the first (average values across the neck), second (Bridgeman correction, modified Siebel and Schwaigerer correction) and third class (special case of the VFM) are used to identify the post-necking hardening behavior of DC05. Finally, these results are used to assess the validity of the different methods.

  12. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    NASA Astrophysics Data System (ADS)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  13. Computer aided process planning and die design in simulation environment in sheet metal forming

    NASA Astrophysics Data System (ADS)

    Tisza, Miklós; Lukács, Zsolt

    2013-12-01

    During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modeling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Therefore, in this paper, an integrated process simulation and die design system developed at the University of Miskolc, Department of Mechanical Engineering will be analyzed. The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. The concept described in this paper may have specific value both for process planning and die design engineers.

  14. Effect of material damage on forming limits of voided anisotropic sheet metals

    NASA Astrophysics Data System (ADS)

    Kim, Young-Suk; Won, Sung-Yeun; Na, Kyoung-Hoan

    2003-06-01

    Most failures of ductile materials in metal-forming processes occur due to material damage evolution (void nucleation, growth, and coalescence). The current article examines the modified yield function of Liao et al., in conjunction with Hosford’s yield criterion, to clarify the plastic-deformation characteristic of voided anisotropic sheet metals. As such, the void growth of an anisotropic sheet under biaxial tensile loading and the damage effect of void growth on the forming limits of sheet metals are investigated. Plus, the process length defining the neck geometry is included in the Marciniak and Kuczynski (M-K) model to incorporate the effect of triaxial stress in a necked region on the forming limits. The predicted forming limits were compared with experimental data, and a satisfactory agreement was obtained.

  15. Biological monitoring of cobalt in hard metal factory workers.

    PubMed

    Princivalle, Andrea; Iavicoli, Ivo; Cerpelloni, Marzia; Franceschi, Antonia; Manno, Maurizio; Perbellini, Luigi

    2017-02-01

    The main aim of this study was to investigate the cobalt (Co) concentrations in urine along 4 months and their relationship with Co concentrations in blood and haemoglobin (adducts) in 34 workers from a hard metal manufacturing plant where metallic Co and Co oxide were used. Furthermore, the excretion kinetics of Co was investigated and the half-lives of Co in blood, plasma and urine were calculated along 18 days of non-exposure in the same workers. Co was analysed, in all biological samples, by ICP/MS. Wide fluctuations in the urinary Co concentration were observed throughout the work shift and during the work week. A highly significant linear correlation was found between Co concentration (geometrical mean) in urine samples provided each Thursday (end shift) during 16 subsequent weeks and levels of Co-haemoglobin adducts or blood Co concentrations at the end of the same period. The Co elimination kinetics in globin calculated along 18 days without Co exposure was slow, being related to the physiological metabolism of haemoglobin, while in blood, plasma and urine Co half-lives were 12.3, 9.1 and 5.3 days, respectively. Co concentrations in haemoglobin or blood are highly related to the geometrical mean concentration of urinary Co when samples are collected weekly for several subsequent weeks. The biological monitoring of occupational exposure to Co in hard metal facilities provides reliable results by using the Co concentrations in haemoglobin or in whole blood. The urinary findings, though, do not show the same reliability because of their wide daily and weekly fluctuations.

  16. On the formability, geometrical accuracy, and surface quality of sheet metal parts produced by SPIF

    NASA Astrophysics Data System (ADS)

    Alves, M. L.; Silva, M. B.; Alves, L. M.; Martins, P. A. F.

    2008-11-01

    Conventional sheet metal forming processes are not suitable for flexible small-batch production and, therefore, are not appropriate for the growing agile manufacturing trends requiring very short life-cycles, development and production lead times. In fact, the present need for flexible sheet metal forming techniques requires the development of innovative technological solutions that are capable of reducing the fixed and capital costs of sheet metal forming to a level where small-batch production becomes economically feasible. Single point incremental forming (SPIF) is a new sheet metal forming process with a high potential economic payoff for rapid prototyping applications and for small quantity production. In general terms a typical SPIF set-up makes use of a small number of low cost active tools components; (i) a blankholder, (ii) a backing plate and (iii) a single point forming tool. The tool path is generated in a CNC machining center and during the process there is no backup die supporting the back surface of the sheet. Despite the contributions of many researchers on the development of industrial applications and better characterization of the forming limits of the process, several key topics related to the mechanics of deformation, likely mode of failure, geometric accuracy and surface quality of the formed parts remain little understood and scarcely systematized. This paper attempts to provide new contributions about the abovementioned issues by means of a comprehensive experimental investigation performed under laboratory controlled conditions.

  17. A generalized quadratic flow law for sheet metals

    NASA Astrophysics Data System (ADS)

    Jones, S. E.; Gillis, P. P.

    1984-01-01

    A planar quadratic flow law is proposed for anisotropic sheet materials. This law is similar to the anisotropic strength criterion of Tsai and Wu. It has six experimentally determinable coefficients as compared to four in Hill’s flow law and, thus, allows more experimental information to be accommodated. However, the resulting strain increment vector, while unique, is not necessarily normal to the flow surface.

  18. Associations of Multiple Metals with Kidney Outcomes in Lead Workers

    PubMed Central

    Shelley, Rebecca; Kim, Nam-Soo; Parsons, Patrick J.; Lee, Byung-Kook; Jaar, Bernard G.; Fadrowski, Jeffrey; Agnew, Jacqueline; Matanoski, Genevieve; Schwartz, Brian S.; Steuerwald, Amy J.; Todd, Andrew C.; Simon, David; Weaver, Virginia M.

    2012-01-01

    Objectives Environmental exposure to multiple metals is common. A number of metals cause nephrotoxicity with acute and/or chronic exposure. However, few epidemiologic studies have examined the impact of metal co-exposure on kidney function. Therefore, we evaluated associations of antimony and thallium with kidney outcomes and assessed the impact of cadmium exposure on those associations in lead workers. Methods Multiple linear regression was used to examine associations between ln-urine thallium, antimony and cadmium levels with serum creatinine- and cystatin-C-based glomerular filtration measures, and ln-urine N-acetyl-β-D-glucosaminidase (NAG). Results In 684 participants, median urine thallium and antimony were 0.39 and 0.36 μg/g creatinine, respectively. After adjustment for lead dose, urine creatinine, and kidney risk factors, higher ln-urine thallium was associated with higher serum creatinine- and cystatin-C-based estimates of glomerular filtration rate (eGFR); associations remained significant after adjustment for antimony and cadmium (regression coefficient for serum creatinine-based eGFR = 5.2 mL/min/1.73 m2; 95% confidence interval = 2.4, 8.0). Antimony associations with kidney outcomes were attenuated by thallium and cadmium adjustment; thallium and antimony associations with NAG were attenuated by cadmium. Conclusions Urine thallium levels were significantly associated with both serum creatinine- and cystatin-C-based glomerular filtration measures in a direction opposite that expected with nephrotoxicity. Given similarities to associations recently observed with cadmium, these results suggest that interpretation of urine metal values, at exposure levels currently present in the environment, may be more complex than previously appreciated. These results also support multiple metal analysis approaches to decrease the potential for inaccurate risk conclusions. PMID:22843435

  19. [Comparative evaluation of health state in workers of metal mining industry].

    PubMed

    Saarkoppel', L M

    2007-01-01

    The article covers up-to-date state of work conditions, occupational and general morbidity in workers of metal mining enterprises situated in contrast climate regions of Russian Federation. The authors revealed peculiarities of functional state in metal mining workers of Arctic and European Russia.

  20. Laser cutting of thick sheet metals: Residual stress analysis

    NASA Astrophysics Data System (ADS)

    Arif, A. F. M.; Yilbas, B. S.; Aleem, B. J. Abdul

    2009-04-01

    Laser cutting of tailored blanks from a thick mild steel sheet is considered. Temperature and stress field in the cutting sections are modeled using the finite element method. The residual stress developed in the cutting section is determined using the X-ray diffraction (XRD) technique and is compared with the predictions. The structural and morphological changes in the cut section are examined using the optical microscopy and scanning electron microscopy (SEM). It is found that temperature and von Mises stress increase sharply in the cutting section, particularly in the direction normal to the cutting direction. The residual stress remains high in the region close to the cutting section.

  1. Magnetohydrodynamic stability in the electromagnetic levitation of horizontal molten-metal sheets

    NASA Astrophysics Data System (ADS)

    Hull, John R.; Wiencek, Tom; Rote, Donald M.

    1989-06-01

    High-frequency electromagnetic (EM) fields are investigated for the levitation of thin horizontal sheets of liquid metal. A magnetic configuration is analyzed in which inductance stabilization provides global stability and magnetic flux compression provides local stability. Stability analysis indicates that frequencies greater than about 24 kHz are desirable to stably levitate 6 mm thick steel. For stability in systems without active feedback, a conducting screen is required below the metal, with a gap between the screen and the molten metal of no more than twice the metal thickness. Experiments in which 10 kHz EM fields were used to statically levitate sheets of molten tin indicate that dominant magnetohydrodynamic instabilities are of the Rayleigh-Taylor type and correspond to theory.

  2. 48 CFR 53.301-1427 - Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Standard Form 1427, Inventory Schedule A-Construction Sheet (Metals in Mill Product Form). 53.301-1427 Section 53.301-1427... Illustrations of Forms 53.301-1427 Standard Form 1427, Inventory Schedule A—Construction Sheet (Metals in...

  3. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  4. Effect of crystallographic texture and dislocation hardening on limit strain in sheet metal forming

    NASA Astrophysics Data System (ADS)

    Wen, Xiyu

    2000-10-01

    In the metal industry, sheet metals are widely used to produce packaging materials for consumer goods, for structures such as automobilse, and for building construction and transportation. The desired shape of the products is imparted by plastic deformation in either the cold or hot state. Traditionally, the prediction of the forming limit of sheet metals is based on tensile tests, simulation tests and continuum mathematical models. Continuum models used in the prediction of the plastic behavior of sheet metals are based on average values of mechanical properties such as elongation, yield strength, work hardening and work-hardening rate, which are usually derived from tensile tests. Although attempts have been made to abandon the phenomenological description of the yield function by applying the theory of crystal plasticity to calculate the yield surface of texture polycrystals and hence the limit strains, only the average properties of the microstructure (e.g., the crystallographic texture of the bulk sheet) have been taken into account. So far, there has been no model for the prediction of the strain path and the limit strain of sheet metals that takes into account the effect of individual grain orientation and the dislocation property. In this thesis, different approaches in the study of plastic deformation are reviewed from the view-point of both macroplasticity and microplasticity. Instead of relying on a unique flow rule to describe the stress and strain relationship, the role of work hardening in the instability process of sheet metal and hence the flow localization phenomenon is explored from a study of the changes in the orientation of the constituent crystallites and from the changes in the dislocation density associated with different grain orientations during the course of large biaxial deformation. The changes in the crystallographic textures of an aluminium sheet sample deformed under various stress states from plane-strain tension to equi

  5. Simulation of sheet-bulk metal forming processes with simufact.forming using user-subroutines

    NASA Astrophysics Data System (ADS)

    Beese, Steffen; Beyer, Florian; Blum, Heribert; Isik, Kerim; Kumor, Dustin; Löhnert, Stefan; Rademacher, Andreas; Tekkaya, A. Erman; Willner, Kai; Wriggers, Peter; Zeller, Sebastian

    2016-10-01

    In this article, we consider the simulation of sheet-bulk metal forming processes, which makes high demands on the underlying models and on the simulation software. We present our approach to incorporate new modelling approaches from various fields in a commercial simulation software, in our case Simufact.forming. Here, we discuss material, damage, and friction models as well as model adaptive techniques.

  6. Sheet Metal Specialist 13-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This course, adapted from military curriculum materials for use in vocational and technical education, provides training in the theory and practice of sheet metal work. Designed for student self-instruction (such as a correspondence course), the text consists of four volumes. Volume 1 discusses shop mathematics, measurement and layout tools,…

  7. Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel

    NASA Astrophysics Data System (ADS)

    Xie, Yanmin

    2011-08-01

    Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.

  8. Methodology development for the sustainability process assessment of sheet metal forming of complex-shaped products

    NASA Astrophysics Data System (ADS)

    Pankratov, D. L.; Kashapova, L. R.

    2015-06-01

    A methodology was developed for automated assessment of the reliability of the process of sheet metal forming process to reduce the defects in complex components manufacture. The article identifies the range of allowable values of the stamp parameters to obtain defect-free punching of spars trucks.

  9. Metal worker's lung: spatial association with Mycobacterium avium.

    PubMed

    James, Phillip L; Cannon, Julie; Barber, Christopher M; Crawford, Laura; Hughes, Heather; Jones, Meinir; Szram, Joanna; Cowman, Steven; Cookson, William O C; Moffatt, Miriam F; Cullinan, Paul

    2017-08-29

    Outbreaks of hypersensitivity pneumonitis (HP) are not uncommon in workplaces where metal working fluid (MWF) is used to facilitate metal turning. Inhalation of microbe-contaminated MWF has been assumed to be the cause, but previous investigations have failed to establish a spatial relationship between a contaminated source and an outbreak. After an outbreak of five cases of HP in a UK factory, we carried out blinded, molecular-based microbiological investigation of MWF samples in order to identify potential links between specific microbial taxa and machines in the outbreak zone. Custom-quantitative PCR assays, microscopy and phylogenetic analyses were performed on blinded MWF samples to quantify microbial burden and identify potential aetiological agents of HP in metal workers. MWF from machines fed by a central sump, but not those with an isolated supply, was contaminated by mycobacteria. The factory sump and a single linked machine at the centre of the outbreak zone, known to be the workstation of the index cases, had very high levels of detectable organisms. Phylogenetic placement of mycobacterial taxonomic marker genes generated from these samples indicated that the contaminating organisms were closely related to Mycobacterium avium. We describe, for the first time, a close spatial relationship between the abundance of a mycobacterium-like organism, most probably M. avium, and a localised outbreak of MWF-associated HP. The further development of sequence-based analytic techniques should assist in the prevention of this important occupational disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Numerical simulations of biaxial experiments on damage and fracture in sheet metal forming

    NASA Astrophysics Data System (ADS)

    Gerke, Steffen; Schmidt, Marco; Brünig, Michael

    2016-08-01

    The damage and failure process of ductile metals is characterized by different mechanisms acting on the micro-scale as well as on the macro-level. These deterioration processes essentially depend on the material type and on the loading conditions. To describe these phenomena in an appropriate way a phenomenological continuum damage and fracture model has been proposed. To detect the effects of stress-state-dependent damage mechanisms, numerical simulations of tests with new biaxial specimen geometries for sheet metals have been performed. The experimental results including digital image correlation (DIC) show good agreement with the corresponding numerical analysis. The presented approach based on both experiments and numerical simulation provides several new aspects in the simulation of sheet metal forming processes.

  11. Theoretical research on general Hosford yield function of cubic orthorhombic sheets metals

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Liu, Jun; Zhou, Hui

    2017-04-01

    Most of rolled sheet metals belong to orthorhombic aggregates of cubic crystallites. The texture coefficients, characterized by the preferred orientation of the crystallites, are important to set up the yield function. Although Hosford yield function is more suitable for describing both yield and plastic deformation of orthorhombic material than Hill, it suffers from the restriction that the three principal stresses have to be coaxial with the orthotropy of materials. Hence, this paper proposes a new Hosford yield function of cubic orthorhombic metal sheet at any stress states by introducing orientation-dependent functions. As well, the new yield function which covers 3 material parameters and 3 texture coefficients is more general than Hosford yield function. The plastic anisotropy of the q-value and yield stress under any stress states is obtained from the new yield function. This yield function lay a theoretical foundation for analyzing the mechanical properties of metal materials.

  12. Interrupted pulse electromagnetic expanding ring test for sheet metal

    NASA Astrophysics Data System (ADS)

    Imbert, José; Rahmaan, Taamjeed; Worswick, Michael

    2015-09-01

    This paper describes the development of an interrupted pulse electromagnetic (EM) expanding ring experiment to study the high rate properties of AA5182 aluminum commercial sheet alloys at strain rates in excess of 5,000 s-1. Experiments are performed to compare two commonly adopted methods of driving the expanding ring: EM expansion versus an exploding wire. After studying and testing both methods, it was determined that EM expansion had the greatest potential for being developed into a test that would result in free-flight of the samples. By interrupting the current pulse in the EM expanding ring test, the ring is allowed to achieve free-flight, thus eliminating the need to determine the induced EM forces and significantly reducing the uncertainty of the stress-strain behaviour determined from the test. Once the free-flight condition is established, the stress-strain behaviour of the material is determined from the free-flight deceleration of the sample, as calculated from the velocity measured using a Photon Doppler Velocimeter (PDV). Results are presented for AA5182 at strains rates between 1,000 to 5,500 s-1 and exhibit low strain rate sensitivity, are comparable to tensile split-Hopkinson bar results at strain rates of 1,000 s-1.

  13. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    SciTech Connect

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    2011-01-17

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi body system model and its included compensation method.

  14. Development of measurement method of work hardeningbehavior in large plastic strain for sheet metal forging

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Nobuo; Yamashita, Tomohiro; Shirakami, Satoshi; kada, Osamu; Yoshida, Tohru; Hiwatashi, Shunji

    2016-08-01

    For the purpose of accuracy improvement of sheet metal forging FE analysis, we have developed a new measurement method of work hardening behavior in large plastic strain by repeatedly performing simple shear test using pre-strained steel sheet. In this method, it is possible to measure work hardening behavior more than equivalent plastic strain 2.0. In addition, it was carried out a comparison between developed method and compression test in order to verify the validity of the results by the developed method. As a result, both results were in good agreement. The validity of developed method has been verified.

  15. Prevalence of upper limb musculo skeletal disorders among brass metal workers in West Bengal, India.

    PubMed

    Gangopadhyay, Somnath; Ghosh, Tirthankar; DAS, Tamal; Ghoshal, Goutam; DAS, Bani Brata

    2007-04-01

    Brass metal work is one of the oldest cottage industries in West Bengal, India. Workers performing rigorous hand intensive jobs are likely to suffer from MSD affecting the upper limbs. The present investigation was intended to establish the prevalence of upper limb MSD among the brass metal workers and to identify the causative factors behind its development. In this study, 50 male brass metal workers (Experimental Group) and 50 male office workers (Comparison Group) were selected. For the symptom survey, a questionnaire on discomfort symptoms was performed. Repetitiveness of work and Hand Grip Strength of both the groups were measured. It was revealed that upper limb MSD was a major problem among brass metal workers, primarily involving the hand, wrist, fingers and shoulder. Among the workers reporting subjective discomfort, most of them felt pain, followed by tingling and numbness in their hands. Many complained of swelling, warmth and tenderness in their wrists. Their activities were highly repetitive and the handgrip strength of these workers was significantly less than that of the comparison group. Based on these findings, it appears that high repetitiveness, prolonged work activity (10.5 h of work per day with 8.4 h spent on hammering) and decreased handgrip strength may be causative factors in the occurrence of upper limb MSD among brass metal workers in West Bengal, India.

  16. Integrated Modelling of Damage and Fracture in Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Peerlings, R. H. J.; Mediavilla, J.; Geers, M. G. D.

    2007-05-01

    A framework for finite element simulations of ductile damage development and ductile fracture during metal forming is presented. The damage evolution is described by a phenomenological continuum damage model. Crack growth and fracture are treated as the ultimate consequences of the damage process. Computationally, the initiation and growth of cracks is traced by an adaptive remeshing strategy, thereby allowing for opening crack faces. The application of the method to the fabrication of food-can lids demonstrates its capabilities, but also some of its limitations.

  17. Sheet metal stamping die design for warm forming

    DOEpatents

    Ghosh, Amit K.

    2003-04-22

    In metal stamping dies, by taking advantage of improved material flow by selectively warming the die, flat sections of the die can contribute to the flow of material throughout the workpiece. Local surface heating can be accomplished by placing a heating block in the die. Distribution of heating at the flat lower train central regions outside of the bend region allows a softer flow at a lower stress to enable material flow into the thinner, higher strain areas at the bend/s. The heating block is inserted into the die and is powered by a power supply.

  18. Fact Sheet on Measures Required to Protect Workers from Fumigant Exposures

    EPA Pesticide Factsheets

    These safety measures increase protections for fumigant handlers and other agricultural workers and bystanders from exposure to the soil fumigant pesticides chloropicrin, dazomet, metam sodium, metam potassium, and methyl bromide.

  19. An overview of sheet metal forming simulations with enhanced assumed strain elements

    SciTech Connect

    Valente, R. A. F.; Sousa, R. J. A. de; Cardoso, R. P. R.; Simoes, F.; Gracio, J.; Jorge, R. M. N.; Yoon, J. W.

    2007-05-17

    Sheet metal forming operations are characterized by extreme shape changes in initially flat or pre-formed blanks, thus needing complex and robust simulation tools for their correct virtual analysis. Among numerical approaches, finite element procedures are one of the most common techniques in modelling and simulation of such manufacturing applications. However, reliable simulations of complex parts' sheet forming must be able to correctly reproduce the deformation patterns involved but also accurately predict the appearance of defects after or during forming stages. Among the most common defects in the forming of metallic parts, spring-back and wrinkling are of crucial importance in manufacturing viewpoint. Spring-back appearance can be traced to the onset of traction instabilities when the tools depart the blank due to a rearrangement of stress fields after forming (or forming stages) and so, the unloaded blank reaches a new equilibrium. On the other side, wrinkling defects can be seen as compressive dominated defects and, in this sense, be dealt with as buckling-type structural instabilities. In this work, a class of solid-shell finite elements, based on distinct features but relying on the enhanced assumed strain approach, are tested in the simulation of sheet metal forming operation in metallic components. Results obtained from these elements, specially designed to treat transverse shear and volumetric locking effects, are then compared with well-established references in the literature, including experimental and numerical studies, where, for the latter case, shell finite elements are dominantly used.

  20. Thermally Sprayed Coatings as Effective Tool Surfaces in Sheet Metal Forming Applications

    NASA Astrophysics Data System (ADS)

    Franzen, V.; Witulski, J.; Brosius, A.; Trompeter, M.; Tekkaya, A. E.

    2011-06-01

    Two approaches to produce wear-resistant effective surfaces for deep drawing tools by thermal arc wire spraying of hard materials are presented. Arc wire spraying is a very economic coating technique due to a high deposition rate. The coated surface is very rough compared to that of conventional sheet metal forming tools. In the first approach, the coated surface is smoothed in a subsequent CNC-based incremental roller burnishing process. In this process, the surface asperities on the surface are flattened, and the roughness is significantly reduced. In the second approach, the hard material coatings are not sprayed directly on the tool but on a negative mould. Afterward, the rough "as-sprayed" side of the coating is backfilled with a polymer. The bonded hard metal shell is removed from the negative mould and acts as the surface of the hybrid sheet metal forming tool. Sheet metal forming experiments using tools based on these two approaches demonstrate that they are suitable to form high-strength steels. Owing to a conventional body of steel or cast iron, the first approach is suitable for large batch sizes. The application of the second approach lies within the range of small up to medium batch size productions.

  1. Corrosion evaluation of coated sheet metal by means of thermography and image analysis

    NASA Astrophysics Data System (ADS)

    Jernberg, Per

    1991-03-01

    The fact that organic binders, as used in paints, are transparent in the IR range 3.5-5.5 microns is utilized to detect and measure defects under the paint film of sheet metals. However, the method demands an elevated sample temperature to suppress reflections from the surrounding and is till now resorted to laboratory investigations. The IR system used is an AGEMA Thermovision 880 SWB. The maximum thickness of the paint film allowing evaluation is mainly governed by the absorption and the refraction caused by the paint pigments, depending upon pigment size and pigment material. To be detectable the defects have to be characterized by IR emissivities considerably different from the emissivity of the bare sheet metal as is found for metallic corrosion products. A quantitative determination of a corrosion attack is obtained by evaluating the IR image at a PC based image analyzer. As a standard today, such evaluations are performed by inspecting and comparing painted sheet metals with reference photographs. This method suffers both from the subjectiveness of the observer and the opaqueness of the paint film in the visible range.

  2. Survey among agricultural workers about interpretation of plant protection product labels and safety data sheets.

    PubMed

    Rubbiani, Maristella

    2010-01-01

    The objective of this work was to examine the effectiveness of risk communication in agriculture through examination and interpretation of safety data sheets and product labels for agriculture products classified as hazardous. Labels and safety data sheets were shown to the users inviting them to report their own interpretation of hazard, risk and the need of preventive measures. One area sample was identified in a cluster of wine companies, chosen in a range of medium to large sizes throughout the country, where 100 subjects were interviewed by telephone or direct interview. Participants were surveyed through questions relating to demographic information, education and perception of risk.

  3. [Occupational risk and health disorders criteria in metal mining industry workers].

    PubMed

    Zheglova, A V

    2009-01-01

    Evaluating occupational risk of health disorders in metal mining industry workers providing various ore extraction modes enabled to reveal early clinical, laboratory and functional markers of occupational and general diseases.

  4. Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Chen, Z. H.; Zang, Y.

    2013-11-01

    In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.

  5. Friction and lubrication modeling in sheet metal forming simulations of a Volvo XC90 inner door

    NASA Astrophysics Data System (ADS)

    Sigvant, M.; Pilthammar, J.; Hol, J.; Wiebenga, J. H.; Chezan, T.; Carleer, B.; van den Boogaard, A. H.

    2016-11-01

    The quality of sheet metal formed parts is strongly dependent on the tribology, friction and lubrication conditions that are acting in the actual production process. Although friction is of key importance, it is currently not considered in detail in stamping simulations. This paper presents a selection of results considering friction and lubrication modeling in sheet metal forming simulations of the Volvo XC90 right rear door inner. For this purpose, the TriboForm software is used in combination with the AutoForm software. Validation of the simulation results is performed using door inner parts taken from the press line in a full-scale production run. The results demonstrate the improved prediction accuracy of stamping simulations by accounting for accurate friction and lubrication conditions, and the strong influence of friction conditions on both the part quality and the overall production stability.

  6. Trimming Simulation of Forming Metal Sheets Isogeometric Models by Using NURBS Surfaces

    NASA Astrophysics Data System (ADS)

    Herrero-Adan, D.; Cardoso, Rui P. R.; Adetoro, O. B.

    2016-08-01

    Some metal sheets forming processes need trimming in a final stage for achieving the net- shape specification and for removing micro-cracks and irregularities. In numerical simulation, since the exact final edge location is a priori unknown in the original metal blanket, the trimming needs to be done once the forming is finished. During the forming internal stresses are generated inside the sheet. When trimming those stresses configuration is changed to achieve equilibrium as a consequence of the material removal. In this paper a novel method for simulating the trimming is presented. The part to trim is modelled using isogeometric analysis (IGA). The new surface generated is modelled with non-uniform rational B-splines (NURBS). Due to the IGA characteristics a total geometrical accuracy and an efficient residual stresses recalculation are accomplished.

  7. Advanced finite element analysis of die wear in sheet-bulk metal forming processes

    NASA Astrophysics Data System (ADS)

    Behrens, Bernd-Arno; Bouguecha, Anas; Vucetic, Milan; Chugreev, Alexander; Rosenbusch, Daniel

    2016-10-01

    The novel sheet-bulk metal forming (SBMF) technology allows the production of solid metal components with various functional design features out of flat sheet specimens. However, due to the high working pressures arising during the forming process the efficiency of SBMF is tightly related to the tool service life, which is mainly limited by die wear. In the forming processes involving high contact pressures (e.g. SBMF) the influence of contact normal stresses on the die wear can be overestimated. In order to provide a realistic estimation of the die wear, the shear friction stress must be considered. The presented paper introduces a die wear model that intends the tangential component of contact stress and its implementation in the commercial FE code.

  8. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    NASA Astrophysics Data System (ADS)

    Teixeira, P.; Santos, Abel; César Sá, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-05-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.

  9. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOEpatents

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  10. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOEpatents

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  11. An expert system for ensuring the reliability of the technological process of cold sheet metal forming

    NASA Astrophysics Data System (ADS)

    Kashapova, L. R.; Pankratov, D. L.; Utyaganov, P. P.

    2016-06-01

    In order to exclude periodic defects in the parts manufacturing obtained by cold sheet metal forming a method of automated estimation of technological process reliability was developed. The technique is based on the analysis of reliability factors: detail construction, material, mechanical and physical requirements; hardware settings, tool characteristics, etc. In the work the expert system is presented based on a statistical accumulation of the knowledge of the operator (technologist) and decisions of control algorithms.

  12. Finite element simulation of sheet metal forming and springback using a crystal plasticity approach

    SciTech Connect

    Bertram, A.; Boehlke, T.; Krawietz, A.; Schulze, V.

    2007-05-17

    In this paper the application of a crystal plasticity model for body-centered cubic crystals in the simulation of a sheet metal forming process is discussed. The material model parameters are identified by a combination of a texture approximation procedure and a conventional parameter identification scheme. In the application of a cup drawing process the model shows an improvement of the strain and earing prediction as well as the qualitative springback results in comparison with a conventional phenomenological model.

  13. Workers' compensation, Social Security Disability Insurance, and the offset: a fact sheet.

    PubMed

    Reno, Virginia; Williams, Cecili Thompson; Sengupta, Ishita

    This article offers a brief summary of the workers' compensation and Social Security Disability Insurance programs. Information highlighted includes the differences between the two programs' types and terms of coverage. It compares the differing patterns in workers' compensation and Social Security disability benefits as a percentage of wages over the past few decades and considers the potential causes for such trends. The article also explains the offset provision included in the 1965 Social Security Amendments, the intention behind the offset, and how and when offsets are applied.

  14. Analysis of Dynamic Loads on the Dies in High Speed Sheet Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Ibrahim, R.; Golovashchenko, S.; Smith, L. M.; Mamutov, A.; Bonnen, J.; Gillard, A.

    2014-05-01

    During high-speed sheet metal forming processes, the speed at which the work piece contacts the die tooling is on the order of hundreds of meters per second. When the impact is concentrated over a small contact area, the resulting contact stress can compromise the structural integrity of the die tooling. Therefore, it is not only important to model the behavior of the workpiece during the high-speed sheet metal forming process, but also important to predict accurately the associated workpiece/tooling interface loads so that engineers can more confidently propose robust die tooling designs. The foundation to accurate predictions of contact stress on die tooling is a reliable contact model within the context of a finite element simulation. In literature, however, there exists no comprehensive guideline for establishing a contact model for high-speed sheet metal forming processes using the finite element method. In this paper, mathematically justified contact model recommendations are offered for the electrohydraulic forming (EHF) process.

  15. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    SciTech Connect

    Winklhofer, Johannes; Trattnig, Gernot; Sommitsch, Christof

    2010-06-15

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metal at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.

  16. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph; Sommitsch, Christof; Feuerhuber, Hannes

    2010-06-01

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metal at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.

  17. Research on precision control of sheet metal forming by laser shock waves with semi-die

    NASA Astrophysics Data System (ADS)

    Jiang, Yinfang; Huang, Yu; Jin, Hua; Gu, Yongyu; Ren, Aiguo; Huang, Liwei; Qian, Xiaoming

    2013-02-01

    Laser shock forming is a new technique which enables sheet metal to produce plastic deformation through shock waves induced by high energy pulsed laser. However, it is difficult to control the forming precision with such technique. This paper provided the kinetic analysis of sheet metal during the progress of laser shock forming with semi-die. It also developed the method of forming precision control with optimal laser pulse energy, method of die modification and compensation based on reverse analysis and method of characterizing the precision of laser shock forming with semi-die. The Nd:Glass pulse laser was used in the laser shock semi-die forming experiment of constant elastic alloy 3J53 sheet metal. The experiment results show that the optimal laser pulse energy of precision control in laser shock semi-die forming is 15 J; and forming error can be reduced by more than 50% with the method of contours modification and compensation. The research work also lays a foundation for the theory formation of precision control of laser shock semi-die forming and the engineering applications of the laser shock forming technique.

  18. Lower Restrictions for Sheet Metal Trimming Processes can Reduce Die Costs in The Automotive Industry

    NASA Astrophysics Data System (ADS)

    Hogg, Markus; Rohleder, Martin; Roll, Karl

    2011-05-01

    To reduce costs of trimming dies influencing parameters of the shearing process were identified, new technical approaches for a more cost efficient die design were developed, and comprehensive investigations on a sample tool were done. These approaches will be verified on a trimming die in series production. If this pilot application is successful, many sheet metal forming parts can be trimmed by less die investment in the future. In the automotive industry complex sheet metal forming parts are often trimmed by shearing. Ideally this shearing is done with a 90° angle between the cutting edge and the part surface. Because of complex part geometry different angles always occur. Often shearing angles and the effective sheet thickness increases so much that trimming in the working direction of the press machine is not possible anymore. In these cases sliding cams have to be used. That makes trimming dies expensive and maintenance intensive. For reliable trimming a good understanding of the process and its limitations is necessary. By not considering these limitations the tool can fail after a few operations or/and the resulting edge of the sheet metal part is no longer acceptable. In worst case a new tool has to be built or at least must be reworked. In operational practice so far only empirical values about limitations are known. The stability limit for trimming is not known for all shearing angles and for new high-strength materials. Therefore detailed investigations were done on a sample tool to determine these stability limits for different materials and shearing angles. The basis for starting these principle investigations was empirical values from operational practise. By using a high-quality material and a completely new shape for the trimming die elements both the reliable processable effective sheet thickness respectively the shearing angle as well as the acting forces could be optimized. In the basic investigations trimming in one direction was often still

  19. Fact Sheet: Final Rule to Reduce Toxic Air Pollutants from Surface Coating of Miscellaneous Metal Parts and Products

    EPA Pesticide Factsheets

    This page contains an August 2003 fact sheet with information regarding the National Emission Standards for Miscellaneous Metal Parts and Products Surface Coating Operations. This document provides a summary of the information for this regulation.

  20. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    EPA Pesticide Factsheets

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  1. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization.

    PubMed

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

  2. Memory deficits and industrial toxicant exposure: a comparative study of hard metal, solvent and asbestos workers.

    PubMed

    Jordan, C M; Whitman, R D; Harbut, M

    1997-06-01

    Memory functioning was examined in ex-factory workers with hard metal disease, resulting from exposure to alloys utilizing cobalt. Since these workers are also exposed to organic solvents and may suffer from chronic hypoxia as a result of their pulmonary disorder, solvent and asbestos workers, as well as an unexposed matched sample, served as controls. Results demonstrated deficits in the allocation of attentional resources and in short-term verbal memory. A pattern of findings across several tests suggested that repetition or delay is important for adequate memory performance in individuals exposed to hard metal, implicating a deficit in encoding or slowed consolidation.

  3. The association of occupational metals exposure and oxidative damage, telomere shortening in fitness equipments manufacturing workers.

    PubMed

    Ko, Jiunn-Liang; Cheng, Yu-Jung; Liu, Guan-Cen; Hsin, I-Lun; Chen, Hsiu-Ling

    2017-08-08

    The welding is the major working process in fitness equipment manufacturing industry, and International Agency for Research on Cancer has classified welding fumes as possibly carcinogenic to humans (Group 2B). The present study aimed to evaluate associations between the occupational exposure of metals and oxidative damage and telomere length shortening in workers involved in the manufacture of fitness equipment. The blood metal concentrations were monitored and malondialdehyde (MDA), alkaline Comet assay was determined as oxidative damage in 117 workers from two representative fitness equipment manufacturing plants. MDA levels varied according to workers' roles at the manufacturing plants, and showed a trend as cutting>painting>welding>administration workers. Welders had marginally shorter average telomere lengths than the administrative workers (p=0.058). Cr and Mn levels were significantly greater in welders than they were in administrative workers. There were significantly positive correlations between MDA and Cr and Mn levels, the major components of welding fume. However, the association would be eliminated if co-metals exposure were considered simultaneously. In future, telomere length and MDA might be potential biomarkers for predicting cardiovascular disease in co-metals exposed workers.

  4. CrachFEM - A Comprehensive Approach For The Prediction Of Sheet Metal Failure

    SciTech Connect

    Dell, Harry; Gese, Helmut; Oberhofer, Gernot

    2007-05-17

    A correct prediction of a possible sheet metal failure is essential to sheet metal forming simulations. The use of the conventional forming limit curve (FLC) is the standard approach on industrial level for this problem. The FLC concept is limited to the case of linear strain paths, however. The initial FLC is no longer valid in the case of nonlinear strain paths. The algorithm Crach allows for a transient prediction of the forming limit for localized necking in the case of arbitrary strain paths. For high strength steels and aluminium sheets there is also a risk of fracture without prior localized necking. This paper presents a fracture model that accounts for ductile fracture (caused by void nucleation, void growth and void coalescence) and shear fracture (caused by shear band localization). For both types of fracture, stress state parameters are introduced which can be applied for the plane stress state and for the general 3D stress state. The fracture limits are defined by the equivalent plastic strain at fracture as a function of the stress state parameter based on different experiments with nearly constant stress state parameter. These fracture limit curves are a basis for an integral damage accumulation in the sheet metal forming simulation for arbitrary nonlinear strain paths. The model Crach for the prediction of localized necking and the two fracture models for ductile and shear fracture are combined in the comprehensive failure model CrachFEM. CrachFEM can be linked via a user material model MF GenYld to different explicit FEM codes.

  5. CrachFEM — A Comprehensive Approach For The Prediction Of Sheet Metal Failure

    NASA Astrophysics Data System (ADS)

    Dell, Harry; Gese, Helmut; Oberhofer, Gernot

    2007-05-01

    A correct prediction of a possible sheet metal failure is essential to sheet metal forming simulations. The use of the conventional forming limit curve (FLC) is the standard approach on industrial level for this problem. The FLC concept is limited to the case of linear strain paths, however. The initial FLC is no longer valid in the case of nonlinear strain paths. The algorithm Crach allows for a transient prediction of the forming limit for localized necking in the case of arbitrary strain paths. For high strength steels and aluminium sheets there is also a risk of fracture without prior localized necking. This paper presents a fracture model that accounts for ductile fracture (caused by void nucleation, void growth and void coalescence) and shear fracture (caused by shear band localization). For both types of fracture, stress state parameters are introduced which can be applied for the plane stress state and for the general 3D stress state. The fracture limits are defined by the equivalent plastic strain at fracture as a function of the stress state parameter based on different experiments with nearly constant stress state parameter. These fracture limit curves are a basis for an integral damage accumulation in the sheet metal forming simulation for arbitrary nonlinear strain paths. The model Crach for the prediction of localized necking and the two fracture models for ductile and shear fracture are combined in the comprehensive failure model CrachFEM. CrachFEM can be linked via a user material model MF GenYld to different explicit FEM codes.

  6. Validation of formability of laminated sheet metal for deep drawing process using GTN damage model

    NASA Astrophysics Data System (ADS)

    Lim, Yongbin; Cha, Wan-gi; Ko, Sangjin; Kim, Naksoo

    2013-12-01

    In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.

  7. Validation of formability of laminated sheet metal for deep drawing process using GTN damage model

    SciTech Connect

    Lim, Yongbin; Cha, Wan-gi; Kim, Naksoo; Ko, Sangjin

    2013-12-16

    In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.

  8. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    PubMed Central

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-01-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin–tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis. PMID:27585984

  9. Calibration of Gurson-type models for porous sheet metals with anisotropic non-quadratic plasticity

    NASA Astrophysics Data System (ADS)

    Gologanu, M.; Kami, A.; Comsa, D. S.; Banabic, D.

    2016-08-01

    The growth and coalescence of voids in sheet metals are not only the main active mechanisms in the final stages of fracture in a necking band, but they also contribute to the forming limits via changes in the normal directions to the yield surface. A widely accepted method to include void effects is the development of a Gurson-type model for the appropriate yield criterion, based on an approximate limit analysis of a unit cell containing a single spherical, spheroidal or ellipsoidal void. We have recently [2] obtained dissipation functions and Gurson-type models for porous sheet metals with ellipsoidal voids and anisotropic non-quadratic plasticity, including yield criteria based on linear transformations (Yld91 and Yld2004-18p) and a pure plane stress yield criteria (BBC2005). These Gurson-type models contain several parameters that depend on the void and cell geometries and on the selected yield criterion. Best results are obtained when these key parameters are calibrated via numerical simulations using the same unit cell and a few representative loading conditions. The single most important such loading condition corresponds to a pure hydrostatic macroscopic stress (pure pressure) and the corresponding velocity field found during the solution of the limit analysis problem describes the expansion of the cavity. However, for the case of sheet metals, the condition of plane stress precludes macroscopic stresses with large triaxiality or ratio of mean stress to equivalent stress, including the pure hydrostatic case. Also, pure plane stress yield criteria like BBC2005 must first be extended to 3D stresses before attempting to develop a Gurson-type model and such extensions are purely phenomenological with no due account for the out- of-plane anisotropic properties of the sheet. Therefore, we propose a new calibration method for Gurson- type models that uses only boundary conditions compatible with the plane stress requirement. For each such boundary condition we use

  10. Health risk assessment of workers exposed to metals from an aluminium production plant.

    PubMed

    Buranatrevedh, Surasak

    2010-12-01

    Foundry is an industry involved various kinds of metals and chemicals. Workers who work in foundry industry are at risk of exposure to these metals and chemicals. Objective of this study was to conduct quantitative health risk assessment for workers who exposed to metals from an aluminium production industry. The U.S. National Academy of Sciences' four steps of health risk assessment were used to conduct quantitative health risk assessment in this study. This study showed that there were 6 types of metals involved in the aluminium foundry in this study. These metals could cause various health effects but not cancers. Workers were mostly exposed to these metals by inhalation. Calculated reference dose (RfD) for inhalation of aluminium used in this assessment was 0.000015 mg/kg/day. Calculated RID for inhalation of manganese used in this assessment was 0.000002 mg/kg/day. Calculated RfD for inhalation of copper used in this assessment was 0.000028 mg/kg/day. Calculated RID for inhalation of zinc used in this assessment was 0.000083 mg/ kg/day. Calculated RID for inhalation of magnesium used in this assessment was 0.949833 mg/kg/day. Calculated RID for inhalation of iron used in this assessment was 10.6219 mg/kg/day. Maximum daily doses (MDDs) for workers who exposed to metals measured in this foundry were 0, 0, 0.000463, 0.0000927, 0.000162 and 0 mg/kg/day for manganese, zinc, aluminium, iron, magnesium and copper, respectively. Finally, risk characterization for workers exposed to metals in this aluminium foundry showed that workers in this foundry had 31 times higher risk of developing diseases from aluminium than persons who were not exposed to aluminium. These workers had the same risk of developing diseases from other metals and chemicals as persons who were not exposed to those metals and chemicals. Workers who exposed to aluminium in this aluminium production plant had 31 times risk of developing non-carcinogenic effects from aluminium compared with normal

  11. Direct Imaging of Single Plasmonic Metal Nanoparticles in Capillary with Laser Light-Sheet Scattering Imaging.

    PubMed

    Cao, Xuan; Feng, Jingjing; Pan, Qi; Xiong, Bin; He, Yan; Yeung, Edward S

    2017-03-07

    Understanding the heterogeneous distribution of the physical and chemical properties of plasmonic metal nanoparticles is fundamentally important to their basic and applied research. Traditionally, they are obtained either indirectly via bulk spectroscopic measurements plus electron microscopic characterizations or through single molecule/particle imaging of nanoparticles immobilized on planar substrates. In this study, by using light-sheet scattering microscopy with a supercontinuum white laser, highly sensitive imaging of individual metal nanoparticles (MNPs) flowing inside a capillary, driven by either pressure or electric field, was achieved for the first time. We demonstrate that single plasmonic nanoparticles with different size or chemical modification could be differentiated through their electrophoretic mobility in a few minutes. This technique could potentially be applied to high throughput characterization and evaluation of single metal nanoparticles as well as their dynamic interactions with various local environments.

  12. Angular dependence of the ultrasonic SH wave velocity in rolled metal sheets

    NASA Astrophysics Data System (ADS)

    Sayers, C. M.; Proudfoot, G. G.

    THE ULTRASONIC SH wave technique is a promising method for separating out the effects of texture and stress on the ultrasonic velocity, and allows the texture and stress to be determined separately. ALEN and LANGMAN (1985) have reported measurements of the angular dependence of the SH wave velocity in several unstressed rolled metal sheets of aluminium, stainless steel, copper and brass. In this paper neutron diffraction measurements of the texture of several of these sheets are presented, and parameters entering into an expansion of the crystallite orientation distribution function are determined. These are in good agreement with the values obtained by fitting the ultrasonic results to theory. The validity of the first order expression for the effect of texture is assessed, and the contribution due to beam skewing is calculated.

  13. Simulation of cylindrical cup drawing of AZ31 sheet metal with crystal plasticity finite element method

    NASA Astrophysics Data System (ADS)

    Tang, Weiqin; Li, Dayong; Zhang, Shaorui; Peng, Yinghong

    2013-12-01

    As a light-weight structural material, magnesium alloys show good potential in improving the fuel efficiency of vehicles and reducing CO2 emissions. However, it is well known that polycrystalline Mg alloys develop pronounced crystallographic texture and plastic anisotropy during rolling, which leads to earing phenomenon during deep drawing of the rolled sheets. It is vital to predict this phenomenon accurately for application of magnesium sheet metals. In the present study, a crystal plasticity model for AZ31 magnesium alloy that incorporates both slip and twinning is established. Then the crystal plasticity model is implemented in the commercial finite element software ABAQUS/Explicit through secondary development interface (VUMAT). Finally, the stamping process of a cylindrical cup is simulated using the developed crystal plasticity finite element model, and the predicting method is verified by comparing with experimental results from both earing profile and deformation texture.

  14. Forming Limits in Sheet Metal Forming for Non-Proportional Loading Conditions - Experimental and Theoretical Approach

    SciTech Connect

    Ofenheimer, Aldo; Buchmayr, Bruno; Kolleck, Ralf

    2005-08-05

    The influence of strain paths (loading history) on material formability is well known in sheet forming processes. Sophisticated experimental methods are used to determine the entire shape of strain paths of forming limits for aluminum AA6016-T4 alloy. Forming limits for sheet metal in as-received condition as well as for different pre-deformation are presented. A theoretical approach based on Arrieux's intrinsic Forming Limit Stress Curve (FLSC) concept is employed to numerically predict the influence of loading history on forming severity. The detailed experimental strain paths are used in the theoretical study instead of any linear or bilinear simplified loading histories to demonstrate the predictive quality of forming limits in the state of stress.

  15. Oxygen-induced magnetic properties and metallic behavior of a BN sheet

    SciTech Connect

    Zhou, Yungang; Zu, Xiaotao T.; Yang, Ping; Xiao, Hai Yan; Gao, Fei

    2010-11-24

    In this paper, ab initio method has been employed to study the adsorption energies, electronic structures and magnetic properties of a BN sheet functionalized by oxygen (O) atom. The adsorption process is typically exothermic, and some unusual properties can be revealed with different adsorption sites. The energy gap of BN sheet narrows due to the strong hybridization between O and BN electronic states when O locates above a BN bond or a nitrogen atom. Upon the adsorption of O above a B3N3 ring or a boron atom, the electrons of O-adsorbed BN system are polarized, which gives rise to the magnetic moment of 2.0 μB. In this case, Fermi level crosses the valence band, resulting the O-adsorbed BN system to be metallic. Furthermore, potential energy curves analysis shows that the magnetism and matellic of BN system can be modulated by the external temperature and pressure.

  16. The association of occupational metals exposure and oxidative damage, telomere shortening in fitness equipments manufacturing workers

    PubMed Central

    KO, Jiunn-Liang; CHENG, Yu-Jung; LIU, Guan-Cen; HSIN, I-Lun; CHEN, Hsiu-Ling

    2017-01-01

    The welding is the major working process in fitness equipment manufacturing industry, and International Agency for Research on Cancer has classified welding fumes as possibly carcinogenic to humans (Group 2B). The present study aimed to evaluate associations between the occupational exposure of metals and oxidative damage and telomere length shortening in workers involved in the manufacture of fitness equipment. The blood metal concentrations were monitored and malondialdehyde (MDA), alkaline Comet assay was determined as oxidative damage in 117 workers from two representative fitness equipment manufacturing plants. MDA levels varied according to workers’ roles at the manufacturing plants, and showed a trend as cutting>painting>welding>administration workers. Welders had marginally shorter average telomere lengths than the administrative workers (p=0.058). Cr and Mn levels were significantly greater in welders than they were in administrative workers. There were significantly positive correlations between MDA and Cr and Mn levels, the major components of welding fume. However, the association would be eliminated if co-metals exposure were considered simultaneously. In future, telomere length and MDA might be potential biomarkers for predicting cardiovascular disease in co-metals exposed workers. PMID:28420806

  17. Simulation of stress in an innovative combination of composite with metal sheet

    NASA Astrophysics Data System (ADS)

    Wróbel, A.; Płaczek, M.; Buchacz, A.; Słomiany, A.

    2016-08-01

    In this article research of stress impact in multi-point connection glass epoxy composite with a metal sheet with a rivet nuts was presented. Composite materials are increasingly used because of the good mechanical properties and low price. The laminates are composites of a layer structure, characterized by very high strength in the direction of the fibers, their weakness is not good toughness in a direction perpendicular to the layers. Mainly checking of displacements and stresses generated on the sheet as a result of pneumatic actuators load for composite boards was carried out. Glass-epoxy composite consisting of four layers of glass mat with a weight of 1000 g/m2 and an epoxy resin and hardener HG700 LG700 volume ratio of 38/100 was created. Next composite was fixed with steel plate with a rivet nuts and bolts. A model of laminate samples and plate was simulate in Siemens NX 8.5 software. The simulation results will determine stresses and displacements in conjunction newly designed composite sheet. Strength analysis was performed with the use of the module NX Advanced Simulation. FEM is an advanced method for solving systems of differential equations, based on the division of the field into finite elements for which the solution is approximated by specific functions, and performing the actual calculations only for nodes of this division. Due to the complexity of the created object to simplify the elements made to reduce the calculation time. This article presents the study of stresses and displacements in the composite plates joined with sheet metal, in summary of this article, the authors compare the obtainted results with the computer simulation results in the article: " The study of fix composite panel and steel plates on testing stand".

  18. Absorption induced modulation of magnetism in two-dimensional metal-phthalocyanine porous sheets.

    PubMed

    Zhou, Jian; Sun, Qiang

    2013-05-28

    Metal-phthalocyanine porous sheets have uniformly dispersed metal sites in Pc framework, making absorption happen naturally. Here, we explore the effects of absorption of chlorine atoms on magnetism in transition metal embedded phthalocyanine (poly-TMPc) sheets with TM = Cr, Mn, and Fe. We show that when one Cl is absorbed on the TM, the strong square planar crystal field becomes weak in a square pyramidal configuration and the TM is in the +3 oxidized state, resulting in the magnetic moment of 3, 4, and 5 μB for Cr, Mn, and Fe, respectively, with weak antiferromagnetic couplings. When another Cl is introduced to the TM on the other side, it extracts one electron from the Pc framework making the substrate p-doped. The magnetic coupling is antiferromagnetic for poly-CrPc-2Cl and the poly-FePc-2Cl, while it becomes ferromagnetic for poly-MnPc-2Cl, suggesting that absorption can effectively modulate the bonding environment and tune the magnetic properties of the systems, and the controlled absorption can be used to tailor materials.

  19. Quadratic solid-shell elements for nonlinear structural analysis and sheet metal forming simulation

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid

    2017-01-01

    In this paper, two quadratic solid-shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a 20-node hexahedral solid-shell element, denoted SHB20, and its 15-node prismatic counterpart, denoted SHB15. The formulation of these elements is extended in this work to include geometric and material nonlinearities, for application to problems involving large displacements and rotations as well as plasticity. For this purpose, the SHB elements are coupled with large-strain anisotropic elasto-plastic constitutive equations for metallic materials. Although based on a purely three-dimensional approach, several modifications are introduced in the formulation of these elements to provide them with interesting shell features. In particular, a special direction is chosen to represent the thickness, along which a user-defined number of integration points are located. Furthermore, for efficiency requirements and for alleviating locking phenomena, an in-plane reduced-integration scheme is adopted. The resulting formulations are implemented into the finite element software ABAQUS/Standard and, to assess their performance, a variety of nonlinear benchmark problems are investigated. Attention is then focused on the simulation of various complex sheet metal forming processes, involving large strain, anisotropic plasticity, and double-sided contact. From all simulation results, it appears that the SHB elements represent an interesting alternative to traditional shell and solid elements, due to their versatility and capability of accurately modeling selective nonlinear benchmark problems as well as complex sheet metal forming processes.

  20. Biological monitoring of toxic metals - steel workers respiratory health survey

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Almeida, A. Bugalho de; Alves, L.; Freitas, M. C.; Moniz, D.; Alvarez, E.; Monteiro, P.; Reis, M.

    1999-04-01

    The aim of this work is to search for respiratory system aggressors to which workers are submitted in their labouring activity. Workers from one sector of a steel plant in Portugal, Siderurgia Nacional (SN), were selected according to the number of years of exposure and labouring characteristics. The work reports on blood elemental content alterations and lung function tests to determine an eventual bronchial hyper-reactivity. Aerosol samples collected permit an estimate of indoor air quality and airborne particulate matter characterisation to further check whether the elemental associations and alterations found in blood may derive from exposure. Blood and aerosol elemental composition was determined by PIXE and INAA. Respiratory affections were verified for 24% of the workers monitored. There are indications that the occurrence of affections can be associated with the total working years. The influence of long-term exposure, health status parameters, and lifestyle factors in blood elemental variations found was investigated.

  1. New Approaches on Automated Wrinkle Detection in Sheet Metal Components by Forming Simulation

    NASA Astrophysics Data System (ADS)

    Liewald, M.; Wurster, K.; Blaich, C.

    2011-05-01

    In production of passenger cars, geometry complexity of deep drawn body panels increases constantly. For that reason, sheet metal components are analyzed within finite element analysis (FEA) with regard to their feasibility in production and expected quality before production equipment, such as drawing dies, is manufactured. Main criteria for characterizing component quality are cracks and sidewall wrinkles. In particular, cracks occur due to local overload in sheet metal plane caused by inadequate process parameters such as too high friction or forming forces. In contrast, sidewall wrinkles are caused by an inadequate level of compressive stress in component areas without contact between sheet metal component and drawing die. In FEA, failure by cracks can be analyzed evaluating scalar values of thinning or strain distribution in forming limit diagram with regard to forming limit curve. In contrast, detecting sidewall wrinkles often requires a manual and visual inspection of simulation results by the user. Therefore, a procedure to detect sidewall wrinkles in an automated manner is presented in this paper. The presented method determines occurrence of sidewall wrinkles based on strain distribution in forming limit diagram. Utilization of the disclosed calculation strategy allows estimation of cracks and sidewall wrinkles simultaneously after one run of simulation code. The presented approach for automated detection of sidewall wrinkles in combination with multivariate statistics shows a tool for virtual engineering to optimize deep drawing processes. Prior to die manufacturing, optimization with regard to both sides of the process window is possible. Hence, an increase in design efficiency, design space and reduction of development time and costs can be achieved at the same time.

  2. Implementation Of The Artificial Neural Networks To Control The Springback Of Metal Sheets

    SciTech Connect

    Crina, Axinte

    2007-05-17

    Geometrical inaccuracy of sheet metal parts due to the springback phenomenon is the reason for considerable efforts in tools and process development. Prediction of springback is a key issue to design the tools and control the process parameters in order to obtain close tolerances in the formed parts. The objective of this paper is to use simulation procedure coupled with neural networks method to get the best relation between process parameters and tools geometry in order to minimize the shape deviations of the formed parts related to the target geometry.

  3. Implementation Of The Artificial Neural Networks To Control The Springback Of Metal Sheets

    NASA Astrophysics Data System (ADS)

    Crina, Axinte

    2007-05-01

    Geometrical inaccuracy of sheet metal parts due to the springback phenomenon is the reason for considerable efforts in tools and process development. Prediction of springback is a key issue to design the tools and control the process parameters in order to obtain close tolerances in the formed parts. The objective of this paper is to use simulation procedure coupled with neural networks method to get the best relation between process parameters and tools geometry in order to minimize the shape deviations of the formed parts related to the target geometry.

  4. Interaction of a high-power laser beam with metal sheets

    SciTech Connect

    Boley, C. D.; Cutter, K. P.; Fochs, S. N.; Pax, P. H.; Rotter, M. D.; Rubenchik, A. M.; Yamamoto, R. M.

    2010-02-15

    Experiments with a high-power laser beam directed onto thin aluminum sheets, with a large spot size, demonstrate that airflow produces a strong enhancement of the interaction. The enhancement is explained in terms of aerodynamic effects. As laser heating softens the material, the airflow-induced pressure difference between front and rear faces causes the metal to bulge into the beam. The resulting shear stresses rupture the material and remove it at temperatures well below the melting point. The material heating is shown to conform to an elementary model. We present an analytic model of elastic bulging. Scaling with respect to spot size, wind speed, and material parameters is determined.

  5. Control the springback of metal sheets by using an artificial neural network

    SciTech Connect

    Crina, Axinte

    2007-04-07

    One of the greatest challenges of manufacturing sheet metal parts is to obtain consistent parts dimensions. Springback is the major cause of variations and inconsistencies in the final part geometry. Obtaining a consistent and desirable amount of springback is extremely difficult due to the non-linear effects and interactions of process and material parameters. In this work, the ability of an artificial neural network model to predict optimum process parameters and tools geometry which allow to obtain minimum amount of springback is tested, in the case of a cylindrical deep-drawing process.

  6. Numerical Analysis of the Resistance to Shear Test of Clinched Assemblies of Thin Metal Sheets

    SciTech Connect

    Jomaa, Moez; Billardon, Rene

    2007-05-17

    The work presented in this paper is part of a more extensive study the aim of which is to build a complete simulation of the clinching process and subsequent resistance tests. This paper focuses on finite element analyses - that are performed with the ABAQUS code - of the resistance of clinched points to shear test. These analyses are run up to propagation of metal sheet fracture. A simplified procedure is proposed to identify the fracture initiation and propagation models that are used to simulate this failure process. This identification process is based on Lemaitre's ductile damage model. The numerical simulations of a shear test have been compared to experimental results.

  7. Assessment of nanoparticles and metal exposure of airport workers using exhaled breath condensate.

    PubMed

    Marie-Desvergne, Caroline; Dubosson, Muriel; Touri, Léa; Zimmermann, Eric; Gaude-Môme, Marcelline; Leclerc, Lara; Durand, Catherine; Klerlein, Michel; Molinari, Nicolas; Vachier, Isabelle; Chanez, Pascal; Mossuz, Véronique Chamel

    2016-07-13

    Aircraft engine exhaust increases the number concentration of nanoparticles (NP) in the surrounding environment. Health concerns related to NP raise the question of the exposure and health monitoring of airport workers. No biological monitoring study on this profession has been reported to date. The aim was to evaluate the NP and metal exposure of airport workers using exhaled breath condensate (EBC) as a non-invasive biological matrix representative of the respiratory tract. EBC was collected from 458 French airport workers working either on the apron or in the offices. NP exposure was characterized using particle number concentration (PNC) and size distribution. EBC particles were analyzed using dynamic light scattering (DLS) and scanning electron microscopy coupled to x-ray spectroscopy (SEM-EDS). Multi-elemental analysis was performed for aluminum (Al), cadmium (Cd) and chromium (Cr) EBC contents. Apron workers were exposed to higher PNC than administrative workers (p  <  0.001). Workers were exposed to very low particle sizes, the apron group being exposed to even smaller NP than the administrative group (p  <  0.001). The particulate content of EBC was brought out by DLS and confirmed with SEM-EDS, although no difference was found between the two study groups. Cd concentrations were higher in the apron workers (p  <  0.001), but still remained very low and close to the detection limit. Our study reported the particulate and metal content of airport workers airways. EBC is a potential useful tool for the non-invasive monitoring of workers exposed to NP and metals.

  8. Workers' postural conditions in the charcoal production proccess based on vertical metallic cylynders.

    PubMed

    Maia, Ivana Márcia Oliveira; Francisco, Antonio Carlos de

    2012-01-01

    Considering the importance of posture to the workers' health in the production of charcoal, this paper presents an ergonomic research based on a biomechanical focus that aims to evaluate the posture adopted by these workers on the production of charcoal in vertical metallic cylinders. Thus, it was verified the incidence of pain and/or musculoskeletal injuries to these workers. Also, it was evaluated the weight carried by them and the positions taken in their daily tasks. Applying the Ergonomic Analysis of Labor, the data collection was done by directly observing the workers, registering images, by interviews, and posture analysis based on the OWAS method. The main results of the research show that there are postures with risks in the four levels of musculoskeletal injuries classified by OWAS, concluding that the method is imperative for ergonomic recommendations for minimization or eradication of suffering injury and worker's postural constraints.

  9. Aircraft Metal Skin Repair and Honeycomb Structure Repair; Sheet Metal Work 3: 9857.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course helps students determine types of repairs, compute repair sizes, and complete the repair through surface protection. Course content includes goals, specific objectives, protection of metals, repairs to metal skin, and honeycomb structure repair. A bibliography and post-test are appended. A prerequisite for this course is mastery of the…

  10. Machine Tool Technology. Tutoring Strategies for Metal Workers.

    ERIC Educational Resources Information Center

    Anoka-Hennepin Technical Coll., Minneapolis, MN.

    This tutoring strategies course designed to prepare tutors in a machine tool technology program was developed during a project to retrain defense industry workers at risk of job loss or dislocation because of conversion of the defense industry. Course contents are as follows: why you are here; qualifications of a tutor; what's in it for tutors,…

  11. Analysis of hot forming of a sheet metal component made of advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat

    2013-05-01

    To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.

  12. Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for Water/Ethanol Separation

    SciTech Connect

    Zhang, Jian; Liu, Wei

    2011-04-01

    This paper reports preparation and separation testing results of water-selective zeolite membrane, such as NaA (or 4A-type), supported on a robust, porous metal sheet of 50um thickness. The thin sheet support is of large potential for development of a low-cost, inorganic membrane module of high surface area packing density. The porous Ni alloy sheet of micrometer or sub-micrometer mean pore size, which was prepared by a proprietary process, is used to evaluate different zeolite membrane deposition methods and conditions. The membranes are characterized by SEM, XRD and water/ethanol separation tests. Quality NaA zeolite membrane at thickness <2um is obtained with the secondary hydrothermal growth method. This membrane shows water/ethanol separation factor of >10,000 and water permeation flux of about 4 kg/(m2•h) at 75ºC with a feed of 10wt% water in ethanol. The membrane is also demonstrated with good stability in 66-hour continuous testing at 75ºC and 90ºC.

  13. Evidencing the existence of exciting half-metallicity in two-dimensional TiCl3 and VCl3 sheets

    PubMed Central

    Zhou, Yungang; Lu, Haifeng; Zu, Xiaotao; Gao, Fei

    2016-01-01

    Half-metallicity combined with wide half-metallic gap, unique ferromagnetic character and high Curie temperature has become a key driving force to develop next-generation spintronic devices. In previous studies, such half-metallicity always occurred under certain manipulation. Here, we, via examining a series of two-dimensional transition-metal trichlorides, evidenced that TiCl3 and VCl3 sheets could display exciting half-metallicity without involving any external modification. Calculated half-metallic band-gaps for TiCl3 and VCl3 sheets are about 0.60 and 1.10 eV, respectively. Magnetic coupled calculation shows that both sheets favor the ferromagnetic order with a substantial collective character. Estimated Curie temperatures can be up to 376 and 425 K for TiCl3 and VCl3 sheets, respectively. All of these results successfully disclose two new promising two-dimensional half-metallic materials toward the application of next-generation paper-like spintronic devices. PMID:26776358

  14. Evidencing the existence of exciting half-metallicity in two-dimensional TiCl3 and VCl3 sheets

    NASA Astrophysics Data System (ADS)

    Zhou, Yungang; Lu, Haifeng; Zu, Xiaotao; Gao, Fei

    2016-01-01

    Half-metallicity combined with wide half-metallic gap, unique ferromagnetic character and high Curie temperature has become a key driving force to develop next-generation spintronic devices. In previous studies, such half-metallicity always occurred under certain manipulation. Here, we, via examining a series of two-dimensional transition-metal trichlorides, evidenced that TiCl3 and VCl3 sheets could display exciting half-metallicity without involving any external modification. Calculated half-metallic band-gaps for TiCl3 and VCl3 sheets are about 0.60 and 1.10 eV, respectively. Magnetic coupled calculation shows that both sheets favor the ferromagnetic order with a substantial collective character. Estimated Curie temperatures can be up to 376 and 425 K for TiCl3 and VCl3 sheets, respectively. All of these results successfully disclose two new promising two-dimensional half-metallic materials toward the application of next-generation paper-like spintronic devices.

  15. Peptide binding to sheet silicate and metal nanoparticles: Insight from atomistic simulation

    NASA Astrophysics Data System (ADS)

    Heinz, Hendrik; Pandey, Ras B.; Drummy, Lawrence; Vaia, Richard A.; Naik, Rajesh R.; Farmer, Barry L.

    2008-03-01

    Short peptides (8 to 12 amino acids, excluding Cys) bind selectively to nanoparticles composed of Au, Pd, and montmorillonite depending on the sequence of amino acids, as evidenced by laboratory screening of several billion peptides. The molecular reasons for binding versus non-binding and the specificity toward a certain surface are analyzed by molecular dynamics simulation, using recent force field extensions for fcc metals and sheet silicates to reproduce surface and interface energies with <10% deviation compared to experiment. Polarization on even metal surfaces ranges from 3 to 5 kcal/mol and non-covalent binding energies from 0 and 80 kcal/mol per dodecapeptide. Adsorption energies, changes in chain conformation, Ramachandran plots, and orientational parameters, are analyzed in conjunction with NMR, TEM, and other experimental data. On montmorillonite, an ion exchange reaction of Lys side groups against alkali ions as well as interactions between alkali cations and polar groups in the peptide are explained.

  16. Simulation and measurement of melting effects on metal sheets caused by direct lightning strikes

    NASA Technical Reports Server (NTRS)

    Kern, Alexander

    1991-01-01

    Direct lightning strikes melt metal parts of various systems, like fuel and propellant tanks of rockets and airplanes, at the point of strike. Responsible for this melting are the impulse current and, if occurring, the long duration current, both carrying a remarkable charge Q. For studying these meltings the simulation in the laboratory has to be based on the parameters of natural lightnings. International standards exist defining certain threat levels of natural lightnings and giving possible generator circuits for the simulation. The melting caused by both types of lightning currents show different appearance. Their characteristics, their differences in melting and heating of metal sheets are investigated. Nevertheless the simulation of lightning in the laboratory is imperfect. While natural lightning is a discharge without a counter electrode, the simulation always demands a close counter electrode. The influence of this counter electrode is studied.

  17. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    SciTech Connect

    Oliva, Jorge; Desirena, Haggeo; De la Rosa, Elder; Papadimitratos, Alexios; Zakhidov, Anvar A.

    2015-11-21

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  18. Experimental Study on Tensile Properties of a Novel Porous Metal Fiber/Powder Sintered Composite Sheet

    PubMed Central

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-01-01

    A novel porous metal fiber/powder sintered composite sheet (PMFPSCS) is developed by sintering a mixture of a porous metal fiber sintered sheet (PMFSS) and copper powders with particles of a spherical shape. The characteristics of the PMFPSCS including its microstructure, sintering density and porosity are investigated. A uniaxial tensile test is carried out to study the tensile behaviors of the PMFPSCS. The deformation and failure mechanisms of the PMFSCS are discussed. Experimental results show that the PMFPSCS successively experiences an elastic stage, hardening stage, and fracture stage under tension. The tensile strength of the PMFPSCS is determined by a reticulated skeleton of fibers and reinforcement of copper powders. With the porosity of the PMFSS increasing, the tensile strength of the PMFPSCS decreases, whereas the reinforcement of copper powders increases. At the elastic stage, the structural elastic deformation is dominant, and at the hardening stage, the plastic deformation is composed of the structural deformation and the copper fibers’ plastic deformation. The fracture of the PMFPSCS is mainly caused by the breaking of sintering joints. PMID:28773833

  19. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  20. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  1. Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin.

    PubMed

    Kang, Hong Seok

    2005-07-13

    Using density functional theory, we have theoretically studied dioxin binding on a graphene sheet or carbon nanotubes (CNT), finding that they can be effective adsorbents for dioxin in the presence of calcium atoms. This is due to a cooperative formation of sandwich complexes of graphene sheet or (5,5) CNT through the interaction pi-Ca-pi with the total binding energy of more than 3 eV. This correlates with the band structure analysis, which indicates charge transfer from the carbon systems and calcium atoms to dioxin when the molecule binds to the metal-doped carbon systems. For CNT with small radii, the relative strength of CNT-dioxin interaction is dependent on their chiralities. Upon dioxin binding, a large increase in the electronic density of states near the Fermi level also suggests that they can be used for dioxin sensing. Fe-doped CNT is also found to bind dioxin strongly, revealing an important role played by remnants of metallic catalysts in the chemical properties of CNT.

  2. Adaptive scallop height tool path generation for robot-based incremental sheet metal forming

    NASA Astrophysics Data System (ADS)

    Seim, Patrick; Möllensiep, Dennis; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    Incremental sheet metal forming is an emerging process for the production of individualized products or prototypes in low batch sizes and with short times to market. In these processes, the desired shape is produced by the incremental inward motion of the workpiece-independent forming tool in depth direction and its movement along the contour in lateral direction. Based on this shape production, the tool path generation is a key factor on e.g. the resulting geometric accuracy, the resulting surface quality, and the working time. This paper presents an innovative tool path generation based on a commercial milling CAM package considering the surface quality and working time. This approach offers the ability to define a specific scallop height as an indicator of the surface quality for specific faces of a component. Moreover, it decreases the required working time for the production of the entire component compared to the use of a commercial software package without this adaptive approach. Different forming experiments have been performed to verify the newly developed tool path generation. Mainly, this approach serves to solve the existing conflict of combining the working time and the surface quality within the process of incremental sheet metal forming.

  3. A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process

    NASA Astrophysics Data System (ADS)

    Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao

    2017-05-01

    In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node ;Triprism; element is firstly proposed for transient eddy current analysis in electromagnetic field. In present ;Triprism; element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a ;Triprism; element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed ;Triprism; element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.

  4. Cruciform specimen design and validation for constitutive identification of sheet metal

    NASA Astrophysics Data System (ADS)

    Deng, Nengxiu; Korkolis, Yannis P.

    2013-12-01

    Accurate material models are imperative for successful simulations of sheet metal forming. Calibrating these models can benefit significantly from biaxial experimental data, for example by testing cruciform specimens under biaxial tension. While this technique allows for significant flexibility in the strain paths that can be investigated, a major limitation is the difficulty of accurately determining the stresses in the test section. We propose a cruciform specimen design that allows for direct and accurate determination of stresses from remote load and local strain measurements. The specimen has a test section of reduced thickness; sharp radii and step transitions between the arms and the test section; and laser-cut slots in the four arms. Using finite element analysis, we show that these features result in a uniform stress field inside the test section, with the exception of a thin boundary layer between the arms and the test section. Furthermore, we show numerically that this specimen design can very accurately recover the hardening behavior and the yield surface of the material for strains exceeding 15% for a dual-phase steel (DP590), depending on the loading path. While very accurate for constitutive identification, this design cannot be used to assess the forming limits of sheet metal as failure initiates at the thin boundary layer at the periphery of the test section.

  5. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    NASA Astrophysics Data System (ADS)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  6. Explosive Welding of Aluminum, Titanium and Zirconium to Copper Sheet Metal

    NASA Technical Reports Server (NTRS)

    Hegazy, A. A.; Mote, J. D.

    1985-01-01

    The main material properties affecting the explosive weldability of a certain metal combination are the yield strength, the ductility, the density and the sonic velocity of the two metals. Successful welding of the metal combination depends mainly on the correct choice of the explosive welding parameters; i.e., the stand off distance, the weight of the explosive charge relative to the weight of the flyer plate and the detonation velocity of the explosive. Based on the measured and the handbook values of the properties of interest, the explosive welding parameters were calculated and the arrangements for the explosive welding of the Al alloy 6061-T6, titanium and zirconium to OFHC copper were determined. The relatively small sheet metal thickness (1/8") and the fact that the thickness of the explosive layer must exceed a certain minimum value were considered during the determination of the explosive welding conditions. The results of the metallographic investigations and the measurements of the shear strength at the interface demonstrate the usefulness of these calculations to minimize the number of experimental trials.

  7. 75 FR 76037 - General Motors Corporation Grand Rapids Metal Center Metal Fabricating Division Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Employment and Training Administration General Motors Corporation Grand Rapids Metal Center Metal Fabricating..., applicable to workers of General Motors Corporation, Grand Rapids Metal Center, Metal Fabricating Division... related to the production of metal stampings and sub- assembled metal sheet components. The...

  8. Unexpected band structure and half-metal in non-metal-doped arsenene sheet

    NASA Astrophysics Data System (ADS)

    Wang, Ya-ping; Zhang, Chang-wen; Ji, Wei-xiao; Wang, Pei-ji

    2015-06-01

    We performed a first-principles study on two-dimensional (2D) arsenene doped with non-magnetic elements. It was found that dopants (groups III, V, and VII) with odd numbers of valence electrons maintained the semiconducting character of the pristine system, while those (groups IV and VI) with even numbers of valence electrons caused the metallic character to change. Remarkably, the C- and O-doped systems were spin-polarized and could be modulated into half-metals by the external electric field. Our findings reveal a potential method of engineering buckled arsenene for applications in nanoelectronics.

  9. Metal dust exposure and lung function deterioration among steel workers: an exposure-response relationship

    PubMed Central

    Hamzah, Nurul Ainun; Mohd Tamrin, Shamsul Bahri; Ismail, Noor Hassim

    2016-01-01

    Background Metallic dust is a heterogeneous substance with respiratory sensitizing properties. Its long term exposure adversely affected lung function, thus may cause acute or chronic respiratory diseases. Methods A cross-sectional study was conducted in a steel factory in Terengganu, Malaysia to assess the metal dust exposure and its relationship to lung function values among 184 workers. Metal dust concentrations values (Co, Cr, and Ni) for each worker were collected using air personal sampling. Lung function values (FEV1, FVC, and %FEV1/FVC) were determined using spirometer. Results Exposure to cobalt and chromium were 1–3 times higher than permissible exposure limit (PEL) while nickel was not exceeding the PEL. Cumulative of chromium was the predictor to all lung function values (FEV1, FVC, and %FEV1/FVC). Frequency of using mask was positively associated with FVC (Adj b = 0.263, P = 0.011) while past respiratory illnesses were negatively associated with %FEV1/FVC (Adj b = –1.452, P = 0.026). Only few workers (36.4%) were found to wear their masks all times during the working hours. Conclusions There was an exposure-response relationship of cumulative metal dust exposure with the deterioration of lung function values. Improvement of control measures as well as proper and efficient use or personal protection equipment while at work could help to protect the respiratory health of workers. PMID:27392157

  10. Adverse health effects in workers exposed to trace/toxic metals at workplace.

    PubMed

    Mehra, Rita; Juneja, Meenu

    2003-04-01

    Widespread use of metals in industrial activities has enhanced the occupational exposure to toxic metals as well as the health risks of metal hazards to humans. Elemental analysis in human tissues is the most common application of biological monitoring for screening, diagnosis and assessment of such exposures and risk. Among various biopsy materials, blood, hair, nail, teeth and body fluids may be used as bioindicators for this purpose. The present paper deals with the determination of Pb, Cr, Ni, Mn, Fe, Cu and Zn elemental concentration in workers exposed to these metals at workplace by atomic absorption spectrophotometry, with adequate quality control measures using hair as biopsy material. The study group includes the male workers such as welders, foundry man, fitter, hammer man, machine man, cupola man etc., besides office workers of locomotive workshop in Ajmer and surrounding areas exposed to different metals. Age and sex matched controls of persons working in the same area of work in offices etc. and not exposed to metal pollution were selected for valid comparison. It is proposed to validate the use of hair as a biological marker for assessing metal body burden of workers. In our study significant correlations have been found between skin disease and Cr, Mn, Fe, Cu; chest pain and Pb; hypertension and Cu, Mn; mental stress and Mn, Ni, Cu, Zn; liver problem and Ni; indigestion and Cr; Ni, diabetes and Cr, Mn, Ni; tuberculosis and Zn; breathing trouble and Cr, Mn, Fe, Ni, Zn. The advantages of choosing hair as a biopsy material are also given.

  11. Waste minimization assessment for a manufacturer of iron castings and fabricated sheet metal parts

    SciTech Connect

    Fleischman, M.; Harris, J.J.; Handmaker, A.; Looby, G.P.

    1995-08-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. That document has been superseded by the Facility Pollution Prevention Guide. The WMAC team at the University of Louisville performed an assessment at a plant that manufactures iron castings and fabricated sheet metal parts. Foundry operations include mixing and mold formation, core making, metal pouring, shakeout, finishing, and painting. Cutting, shaping, and welding are the principal metal fabrication operations. The team`s report, detailing findings and recommendations indicated that paint-related wastes are generated in large quantities, and that significant waste reduction and cost savings could be realized by installing a dry powder coating system or by replacing conventional air spray paint guns with high-volume low-pressure spray guns. This research brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  12. Sheet metal welding using a pulsed Nd: YAG laser-robot

    NASA Astrophysics Data System (ADS)

    Huang, Qi; Kullberg, Gunnar; Skoog, Hans

    This paper presents a pulsed Nd: YAG laser-robot system for spot and seam welding of mild steel sheets. The study evaluates the laser beams behaviour for welding, and then investigates pulsed Nd: YAG laser spot and seam welding processes. High pulse power intensity is needed to initiate the key-hole welding process and a threshold pulse energy to reach full penetration. In seam welding, a weld consists of successive overlapping spots. Both high pulse energy and high average power are needed to keep the key-hole welding going. A 70% overlap is used to define overlapping spot welding as seam welding and to optimize process parameters because a high tensile strength joint compatible with the strength of the base material can be obtained when the overlap is ≥ 70%; at the same time a smooth seam with full penetration is obtained. In these cases, the joints in pulsed Nd: YAG laser welding are comparable in strength to those obtained with CO 2 laser welding. Robot positioning and motion accuracies can meet the demands of Nd: YAG laser sheet metal welding, but its cornering accuracy affects the welding processes. The purpose of the study is to evaluate the YAG laser-robot system for production in the automotive industry.

  13. Numerical Determination of Sheet Metal Formability under Simultaneous Stretching and Bending

    NASA Astrophysics Data System (ADS)

    Martinezhyphen; Lopez, A.; van den Boogaard, A. H.

    2011-01-01

    The plastic behavior of AHSS is still far from being completely understood, and its prediction is of large importance in reliability of forming simulation in present automotive industry [1]. Conventional techniques have been proven to be not accurate enough, and underestimate the formability limits for AHSS materials in cases where stretching and bending are combined. In order to satisfy industrial requirements more work need to be done to understand the formability behavior of sheet metal, and special attention needs to be directed to the possible reasons of the lower predicted formability limits. In previous work [2], experimental results for different materials confirmed the positive effect of bending in terms of formability, and demonstrated the influence of curvature on the FLC is especially clear in the plane strain region. Using conventionally determined FLC could lead to not optimal material consumption during sheet forming operations. For this reason, in this study 3D Finite Element simulations were developed using the commercial code ABAQUS/Standard to investigate further the effect of the out of plane stress, and punch radii for the FLC determination. Also the investigation of the influence of different lubrication systems was accomplished.

  14. Qualitative study on texture evolution in rolled sheet metals using homogenization methods

    NASA Astrophysics Data System (ADS)

    Jöchen, Katja; Böhlke, Thomas

    2011-05-01

    The estimation of the texture in a sheet metal induced by rolling is an important issue for the accurate description of forming operations as, e.g., deep drawing. This work deals with comparing the prediction of the development of rolling textures in aluminum sheets based on different homogenization schemes. The crystallite orientation distribution function (codf) is evaluated by a class of homogenization methods based on a so-called comparison material and is compared to the widely used Taylor-type prediction. It is demonstrated that using the model based on the comparison material, the particular choice of the latter strongly influences the intensity distribution of the codf and also the location of the obtained β-fiber. The proposed homogenization method gives much better results for the reproduction of the codf than the Taylor-type model. When qualitatively comparing the computational results to experimental data, the location of the maxima in the codf generated by the rolling process are satisfactorily reproduced.

  15. Tool path influence on electric pulse aided deformation during incremental sheet metal forming

    SciTech Connect

    Asgar, J.; Lingam, R. Reddy, V. N.

    2013-12-16

    Titanium and its alloys are difficult to form at room temperature due to their high flow stress. Super plastic deformation of Ti alloys involves low strain rate forming at very high temperatures which need special tooling which can withstand high temperatures. It was observed that when high current density electric pulse is applied during deformation it reduces the flow stress through electron-dislocation interaction. This phenomenon is known as electro-plasticity. In the present work, importance of tool configuration to enhance the formability without much resistive heating is demonstrated for Incremental Sheet Metal Forming (ISMF). Tool configuration is selected to minimize the current carrying zone in DC pulse aided incremental forming to enhance the formability due to electro plasticity and the same is demonstrated by forming two pyramid shaped components of 30° and 45° wall angles using a Titanium alloy sheet of 0.6 mm thickness. Load measurement indicated that a critical current density is essential for the electro-plasticity to be effective and the same is realized with the load and temperature measurements.

  16. Validation of Finite Element Model used to Analyze Sheet Metal Punching Process in Automotive Part Manufacturing

    NASA Astrophysics Data System (ADS)

    Chantarapanich, N.; Siripanya, A.; Sucharitpwatskul, S.; Wanchat, S.

    2017-05-01

    Punching process is an operation that a scrap is separated from a metal sheet by a punch. Improper setting of punching conditions may lead to excessive of material deformation around edge region (burr), which may weakening the strength of produced part. Analysis of punching mechanics would be beneficial reducing defective part. One of effective analysing tool for this application is Finite Element (FE) method. The aim of this study is to develop reliable FE model for analysis of punching process. The FE model was developed based on 2D. FE result was validated with experimental testing result by comparing burr height. It was found that FE result is -1.79% difference compared to experimental result. Good agreement between FE and experimental result was obtained.

  17. Friction and lubrication modelling in sheet metal forming simulations of the Volvo XC90 inner door

    NASA Astrophysics Data System (ADS)

    Sigvant, M.; Pilthammar, J.; Hol, J.; Wiebenga, J. H.; Chezan, T.; Carleer, B.; van den Boogaard, A. H.

    2016-08-01

    The quality of sheet metal formed parts is strongly dependent on the friction and lubrication conditions that are acting in the actual production process. Although friction is of key importance, it is currently not considered in detail in stamping simulations. This paper presents project results considering friction and lubrication modelling in stamping simulations of the Volvo XC90 inner door. For this purpose, the TriboForm software is used in combination with the AutoForm software. Validation of the simulation results is performed based on door-inner parts taken from the press line in a full-scale production run. The project results demonstrate the improved prediction accuracy of stamping simulations.

  18. Consistent Parameters for Plastic Anisotropy of Sheet Metal (Part 1-Uniaxial and Biaxial Tests)

    SciTech Connect

    Poehlandt, K.; Schoeck, J.; Lange, K.; Banabic, D.

    2007-04-07

    The anisotropy parameters for sheet metal used hitherto are mainly determined by uniaxial tensile tests. Such tests, however, do not give sufficient information about the yield locus and the forming behaviour in that range where the two principal tensile stresses are of similar magnitude like in stretch forming. The same applies for combined tensile and compressive stress like in deep-drawing. To fill these gaps, new parameters are defined. Their experimental determination is briefly discussed.The 'equibiaxial yield stress' and 'equibiaxial anisotropy' which refer to equibiaxial tensile stress can be determined by cross tensile tests. However, these require a special apparatus. Alternatively experiments for obtaining plane strain can be applied for determining the equibiaxial parameters indirectly. This is possible using conventional tensile testing machines. In this case also anisotropy parameters for plane-strain deformation, the 'semibiaxial anisotropy' in rolling and transverse direction, can be determined.

  19. Laser cutting of holes in thick sheet metals: Development of stress field

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Arif, A. F. M.; Aleem, B. J. Abdul

    2009-09-01

    Laser cutting of hole in a mild steel thick sheet metal is investigated. Temperature and stress fields developed around the cutting section are simulated using the finite element method. An experimental is carried out accommodating the simulation parameters. The residual stress developed in the cutting section is measured using the XRD technique and findings are compared with the predictions. Optical microscopy and SEM are carried out to examine the morphological changes in the cutting sections. It is found that temperature decays sharply in the region of the laser heat source, which results in high temperature gradient in this region. This causes the development of high stress levels around the cut edges. The residual stresses predicted are in agreement with the measured results.

  20. Fatigue Behaviors of Self-Piercing Rivets Joining Similar and Dissimilar Sheet Metals

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01

    This paper summarizes the fatigue test results of self-piercing rivet (SPR) joints between similar and dissimilar sheet metals. The influences of material grades, material thickness, piercing direction and the use of structural adhesive on the rivet samples’ fatigue behaviors were investigated. Fatigue test results indicate that SPR joints have superior fatigue strength than resistance spot weld (RSW) joints for the same material combinations. The application of structure adhesive also significantly enhances the fatigue strength of the joint samples; this is particularly true for the lap shear loading configuration. In addition, different piercing directions for SPR joints have a noticeable effect on the static and fatigue strength of the joints. The joint fatigue results presented in this paper can offer design engineers with the durability data for SPR joints with these material combinations. Moreover, it will provide manufacturing engineers with some insights on the effects of different manufacturing parameters on the strength and durability of these joints.

  1. Calculation of Forming Limits for Sheet Metal using an Enhanced Continuous Damage Fracture Model

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc-Trung; Kim, Dae-Young; Kim, Heon Young

    2011-08-01

    An enhanced continuous damage fracture model was introduced in this paper to calculate forming limits of sheet metal. The fracture model is a combination of a fracture criterion and a continuum damage constitutive law. A modified McClintock void growth fracture criterion was incorporated with a coupled damage-plasticity Gurson-type constitutive law. Also, by introducing a Lode angle dependent parameter to define the loading asymmetry condition, the shear effect was phenomenologically taken into account. The proposed fracture model was implemented using user-subroutines in commercial finite element software. The model was calibrated and correlated by the uniaxial tension, shear and notched specimens tests. Application of the fracture model for the LDH tests was discussed and the simulation results were compared with the experimental data.

  2. Trace metal contamination study on scalp hair of occupationally exposed workers

    SciTech Connect

    Ashraf, W.; Jaffar, M. ); Mohammad, D. )

    1994-10-01

    Scalp hair is a metabolic end product that incorporates metals into its structure during the growth process. The levels of trace elements in the hair are considered to be influenced in particular by food, air and occupational exposure, and in general by race, age, sex, metabolism, hygienic condition and geographical location of individuals. Recently, trace metal content of human hair has been explored as a tool for monitoring the impact of environmental pollution on the inhabitants of a community. In this respect, the endogenous and exogenous contents of metals in hair are understood to play important role towards exposure assessment. The exogenous metal content of hair reflects exposure to the occupational, domestic and recreational environments, provided the donor is not suffering from heavy metal poisoning and depressed endogenous levels arising from dietary deficiencies. Keeping this in view, the exogenous and endogenous metal contents of scalp hair of occupationally exposed workers from various workshops were determined in the present study, both in unwashed and washed hair samples to assess the extent of metal contamination. All donors, within the age group of 6-45 years, were full-time workers of various autoworkshops situated in the densely populated and industrialized city of Lahore. ICP atomic emission and atomic absorption spectrophotometric methods were used for determining the levels of five non-essential and three essential elements in the scalp hair. 20 refs., 6 tabs.

  3. Respiratory diseases in hard metal workers: an occupational hygiene study in a factory.

    PubMed Central

    Kusaka, Y; Yokoyama, K; Sera, Y; Yamamoto, S; Sone, S; Kyono, H; Shirakawa, T; Goto, S

    1986-01-01

    A hygiene study of a hard metal factory was conducted from 1981 to 1984. All workers exposed to hard metal were medically examined and their exposure to cobalt measured. Eighteen employees had occupational asthma related to exposure to hard metal, a prevalence rate of 5.6%. Nine had a positive bronchial provocation test to cobalt and reactions of the immediate, late, or dual type were elicited. Exposure measurements suggest that asthma may be caused by cobalt at a mean time weighted average concentration below 0.05 mg/m3. Only two of the nine individuals with cobalt asthma had a positive patch test to cobalt. Chest radiographs of three workers showed diffuse shadows of category 1 or over. X ray microanalysis of lung biopsy specimens from two of these three workers showed the presence of tungsten, titanium, cobalt, nickel, and some minerals. One of the two was diagnosed as having pneumoconiosis due to exposure to silica in a steel industry and the other was suspected of having pulmonary fibrosis caused by dust generated from the carborundum wheels used to grind hard metal. There were no cases with interstitial pneumonitis in the factory. Images PMID:3718895

  4. Screening heavy metals levels in hair of sanitation workers by X-ray fluorescence analysis.

    PubMed

    Md Khudzari, Jauharah; Wagiran, Husin; Hossain, I; Ibrahim, Noorddin

    2013-01-01

    This work presents a study of human hair as a bio-indicator for detection of heavy metals as part of environmental health surveillance programs project to develop a subject of interest in the biomedical and environmental sciences. A total of 34 hair samples were analyzed that consisting of 29 samples from sanitation workers and five samples from students. The hair samples were prepared and treated in accordance to the International Atomic Energy Agency (IAEA) recommendations. The concentrations of heavy metals were analyzed using the energy dispersive X-ray fluorescence (EDXRF) technique by X-50 Mobile X-ray Fluorescence (XRF) at Oceanography Institute, Universiti Malaysia Terengganu. The performance of EDXRF analyzer was tested by Standard Reference Material (SRM 2711) Montana Soil which was in good agreement with certified value within 14% deviations except for Hg. While seven heavy metals: Mn, Fe, Ni, Cu, Zn, Se, and Sb were detected in both groups, three additional elements, i.e. As, Hg and Pb, were detected only in sanitation workers group. For sanitation workers group, the mean concentration of six elements, Mn, Fe, Cu, Zn, Se, and Sb, shows elevated concentration as compared to the control samples concentration. Results from both groups were compared and discussed in relation to their respective heavy metals concentrations.

  5. Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets.

    PubMed

    Okamoto, Koichi; Tanaka, Daisuke; Degawa, Ryo; Li, Xinheng; Wang, Pangpang; Ryuzaki, Sou; Tamada, Kaoru

    2016-11-08

    In this study, we observed the peak splitting of absorption spectra for two-dimensional sheets of silver nanoparticles due to the electromagnetically induced transparency (EIT) effect. This unique optical phenomenon was observed for the multilayered nanosheets up to 20 layers on a metal substrate, while this phenomenon was not observed on a transparent substrate. The wavelength and intensities of the split peaks depend on the number of layers, and the experimental results were well reproduced by the calculation of the Transfer-Matrix method by employing the effective medium approximation. The Ag nanosheets used in this study can act as a plasmonic metamaterial light absorber, which has a such large oscillator strength. This phenomenon is a fundamental optical property of a thin film on a metal substrate but has never been observed because native materials do not have a large oscillator strength. This new type of EIT effect using a plasmonic metamaterial light absorber presents the potential for the development of future optic and photonic technologies.

  6. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    SciTech Connect

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-06-15

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  7. Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets

    PubMed Central

    Okamoto, Koichi; Tanaka, Daisuke; Degawa, Ryo; Li, Xinheng; Wang, Pangpang; Ryuzaki, Sou; Tamada, Kaoru

    2016-01-01

    In this study, we observed the peak splitting of absorption spectra for two-dimensional sheets of silver nanoparticles due to the electromagnetically induced transparency (EIT) effect. This unique optical phenomenon was observed for the multilayered nanosheets up to 20 layers on a metal substrate, while this phenomenon was not observed on a transparent substrate. The wavelength and intensities of the split peaks depend on the number of layers, and the experimental results were well reproduced by the calculation of the Transfer-Matrix method by employing the effective medium approximation. The Ag nanosheets used in this study can act as a plasmonic metamaterial light absorber, which has a such large oscillator strength. This phenomenon is a fundamental optical property of a thin film on a metal substrate but has never been observed because native materials do not have a large oscillator strength. This new type of EIT effect using a plasmonic metamaterial light absorber presents the potential for the development of future optic and photonic technologies. PMID:27824071

  8. Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets

    NASA Astrophysics Data System (ADS)

    Okamoto, Koichi; Tanaka, Daisuke; Degawa, Ryo; Li, Xinheng; Wang, Pangpang; Ryuzaki, Sou; Tamada, Kaoru

    2016-11-01

    In this study, we observed the peak splitting of absorption spectra for two-dimensional sheets of silver nanoparticles due to the electromagnetically induced transparency (EIT) effect. This unique optical phenomenon was observed for the multilayered nanosheets up to 20 layers on a metal substrate, while this phenomenon was not observed on a transparent substrate. The wavelength and intensities of the split peaks depend on the number of layers, and the experimental results were well reproduced by the calculation of the Transfer-Matrix method by employing the effective medium approximation. The Ag nanosheets used in this study can act as a plasmonic metamaterial light absorber, which has a such large oscillator strength. This phenomenon is a fundamental optical property of a thin film on a metal substrate but has never been observed because native materials do not have a large oscillator strength. This new type of EIT effect using a plasmonic metamaterial light absorber presents the potential for the development of future optic and photonic technologies.

  9. Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain.

    PubMed

    Zhou, Yungang; Su, Qiulei; Wang, Zhiguo; Deng, Huiqiu; Zu, Xiaotao

    2013-11-14

    Prompted by recent experimental achievement of transition metal (TM) atoms substituted in MoS2 nanostructures during growth or saturating existing vacancies (Sun et al., ACS Nano, 2013, 7, 3506; Deepak et al., J. Am. Chem. Soc., 2007, 129, 12549), we explored, via density functional theory, the magnetic properties of a series of 3d TM atoms substituted in a MoS2 sheet, and found that Mn, Fe, Co, Ni, Cu and Zn substitutions can induce magnetism in the MoS2 sheet. The localizing unpaired 3d electrons of TM atoms respond to the introduction of a magnetic moment. Depending on the species of TM atoms, the substituted MoS2 sheet can be a metal, semiconductor or half-metal. Remarkably, the applied elastic strain can be used to control the strength of the spin-splitting of TM-3d orbitals, leading to an effective manipulation of the magnetism of the TM-substituted MoS2 sheet. We found that the magnetic moment of the Mn- and Fe-substituted MoS2 sheets can monotonously increase with the increase of tensile strain, while the magnetic moment of Co-, Ni-, Cu- and Zn-substituted MoS2 sheets initially increases and then decreases with the increase of tensile strain. An instructive mechanism was proposed to qualitatively explain the variation of magnetism with elastic strain. The finding of the magnetoelastic effect here is technologically important for the fabrication of strain-driven spin devices on MoS2 nanostructures, which allows us to go beyond the current scope limited to the spin devices within graphene and BN-based nanostructures.

  10. Orthotropic Yield Criteria for modeling the combined effects of anisotropy and strength differential effects in sheet metals

    SciTech Connect

    Plunkett, B.; Cazacu, O.

    2007-04-07

    In this paper, yield functions describing the anisotropic behavior of textured metals are proposed. These yield functions are extensions to orthotropy of the isotropic yield function proposed by Cazacu et al.. Anisotropy is introduced using linear transformations of the stress deviator. It is shown that if two linear transformations are considered, the proposed anisotropic yield function represents with great accuracy both the tensile and compressive anisotropy in yield stresses and r-values of materials with hcp crystal structure and of metal sheets with bcc crystal structure that exhibit asymmetry between tensile and compressive behavior. Furthermore, it is demonstrated that the proposed formulations can describe very accurately the anisotropic behavior of metal sheets whose tensile and compressive stresses are equal.

  11. Urinary neutrophil gelatinase-associated lipocalin is associated with heavy metal exposure in welding workers

    PubMed Central

    Chuang, Kai-Jen; Pan, Chih-Hong; Su, Chien-Ling; Lai, Ching-Huang; Lin, Wen-Yi; Ma, Chih-Ming; Ho, Shu-Chuan; Bien, Mauo-Ying; Chen, Cheng-Hsien; Chuang, Hsiao-Chi

    2015-01-01

    Metals cause nephrotoxicity with acute and/or chronic exposure; however, few epidemiological studies have examined impacts of exposure to metal fumes on renal injury in welding workers. In total, 66 welding workers and 12 office workers were recruited from a shipyard located in southern Taiwan. Urine samples from each subject were collected at the beginning (baseline) and end of the work week (1-week exposure). Personal exposure to PM2.5 was measured. The 8-h mean PM2.5 was 50.3 μg/m3 for welding workers and 27.4 μg/m3 for office workers. iTRAQs coupled with LC-MS/MS were used to discover the pathways in response to welding PM2.5 in the urine, suggesting that extracellular matrix (ECM)-receptor interactions are a critical mechanism. ECM-receptor interaction-related biomarkers for renal injury, kidney injury molecule (KIM)-1 and neutrophil gelatinase-associated lipocalin (NGAL), were significantly elevated in welding workers post-exposure, as well as were urinary Al, Cr, Mn, Fe, Co, and Ni levels. NGAL was more significantly associated with Al (r = 0.737, p < 0.001), Cr (r = 0.705, p < 0.001), Fe (r = 0.709, p < 0.001), and Ni (r = 0.657, p < 0.001) than was KIM-1, suggesting that NGAL may be a urinary biomarker for welding PM2.5 exposure. Nephrotoxicity (e.g., renal tubular injury) may be an emerging concern in occupational health. PMID:26673824

  12. Urinary neutrophil gelatinase-associated lipocalin is associated with heavy metal exposure in welding workers.

    PubMed

    Chuang, Kai-Jen; Pan, Chih-Hong; Su, Chien-Ling; Lai, Ching-Huang; Lin, Wen-Yi; Ma, Chih-Ming; Ho, Shu-Chuan; Bien, Mauo-Ying; Chen, Cheng-Hsien; Chuang, Hsiao-Chi

    2015-12-17

    Metals cause nephrotoxicity with acute and/or chronic exposure; however, few epidemiological studies have examined impacts of exposure to metal fumes on renal injury in welding workers. In total, 66 welding workers and 12 office workers were recruited from a shipyard located in southern Taiwan. Urine samples from each subject were collected at the beginning (baseline) and end of the work week (1-week exposure). Personal exposure to PM2.5 was measured. The 8-h mean PM2.5 was 50.3 μg/m(3) for welding workers and 27.4 μg/m(3) for office workers. iTRAQs coupled with LC-MS/MS were used to discover the pathways in response to welding PM2.5 in the urine, suggesting that extracellular matrix (ECM)-receptor interactions are a critical mechanism. ECM-receptor interaction-related biomarkers for renal injury, kidney injury molecule (KIM)-1 and neutrophil gelatinase-associated lipocalin (NGAL), were significantly elevated in welding workers post-exposure, as well as were urinary Al, Cr, Mn, Fe, Co, and Ni levels. NGAL was more significantly associated with Al (r = 0.737, p < 0.001), Cr (r = 0.705, p < 0.001), Fe (r = 0.709, p < 0.001), and Ni (r = 0.657, p < 0.001) than was KIM-1, suggesting that NGAL may be a urinary biomarker for welding PM2.5 exposure. Nephrotoxicity (e.g., renal tubular injury) may be an emerging concern in occupational health.

  13. Urinary neutrophil gelatinase-associated lipocalin is associated with heavy metal exposure in welding workers

    NASA Astrophysics Data System (ADS)

    Chuang, Kai-Jen; Pan, Chih-Hong; Su, Chien-Ling; Lai, Ching-Huang; Lin, Wen-Yi; Ma, Chih-Ming; Ho, Shu-Chuan; Bien, Mauo-Ying; Chen, Cheng-Hsien; Chuang, Hsiao-Chi

    2015-12-01

    Metals cause nephrotoxicity with acute and/or chronic exposure; however, few epidemiological studies have examined impacts of exposure to metal fumes on renal injury in welding workers. In total, 66 welding workers and 12 office workers were recruited from a shipyard located in southern Taiwan. Urine samples from each subject were collected at the beginning (baseline) and end of the work week (1-week exposure). Personal exposure to PM2.5 was measured. The 8-h mean PM2.5 was 50.3 μg/m3 for welding workers and 27.4 μg/m3 for office workers. iTRAQs coupled with LC-MS/MS were used to discover the pathways in response to welding PM2.5 in the urine, suggesting that extracellular matrix (ECM)-receptor interactions are a critical mechanism. ECM-receptor interaction-related biomarkers for renal injury, kidney injury molecule (KIM)-1 and neutrophil gelatinase-associated lipocalin (NGAL), were significantly elevated in welding workers post-exposure, as well as were urinary Al, Cr, Mn, Fe, Co, and Ni levels. NGAL was more significantly associated with Al (r = 0.737, p < 0.001), Cr (r = 0.705, p < 0.001), Fe (r = 0.709, p < 0.001), and Ni (r = 0.657, p < 0.001) than was KIM-1, suggesting that NGAL may be a urinary biomarker for welding PM2.5 exposure. Nephrotoxicity (e.g., renal tubular injury) may be an emerging concern in occupational health.

  14. Laser-Assisted Sheet Metal Working by the Integration of Scanner System Technology into a Progressive Die

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    Within the sheet metal working industry the demand for thinner sheet materials with very high strength is growing due to the increasing importance for saving energy and responsible usage of natural resources. High strength and low ductility restrict application of state-of-the-art technology to shear, bend or deep draw parts with the needed complexity and quality. The Fraunhofer IPT has developed a "hy-PRESS" system to combine laser-assisted preheating and conventional punching to a hybrid technology in a progressive die, which allows to shear, bend and deep draw high strength materials with a high quality and complexity in progressive dies.

  15. Studies on the finite element simulation in sheet metal stamping processes

    NASA Astrophysics Data System (ADS)

    Huang, Ying

    The sheet metal stamping process plays an important role in modern industry. With the ever-increasing demand for shape complexity, product quality and new materials, the traditional trial and error method for setting up a sheet metal stamping process is no longer efficient. As a result, the Finite Element Modeling (FEM) method has now been widely used. From a physical point of view, the formability and the quality of a product are influenced by several factors. The design of the product in the initial stage and the motion of the press during the production stage are two of these crucial factors. This thesis focuses on the numerical simulation for these two factors using FEM. Currently, there are a number of commercial FEM software systems available in the market. These software systems are based on an incremental FEM process that models the sheet metal stamping process in small incremental steps. Even though the incremental FEM is accurate, it is not suitable for the initial conceptual design for its needing of detailed design parameters and enormous calculation times. As a result, another type of FEM, called the inverse FEM method or one-step FEM method, has been proposed. While it is less accurate than that of the incremental method, this method requires much less computation and hence, has a great potential. However, it also faces a number of unsolved problems, which limits its application. This motivates the presented research. After the review of the basic theory of the inverse method, a new modified arc-length search method is proposed to find better initial solution. The methods to deal with the vertical walls are also discussed and presented. Then, a generalized multi-step inverse FEM method is proposed. It solves two key obstacles: the first one is to determine the initial solution of the intermediate three-dimensional configurations and the other is to control the movement of nodes so they could only slide on constraint surfaces during the search by

  16. Cross-sectional study of platinum salts sensitization among precious metals refinery workers.

    PubMed

    Baker, D B; Gann, P H; Brooks, S M; Gallagher, J; Bernstein, I L

    1990-01-01

    A cross-sectional medical evaluation was conducted to determine respiratory and dermatological effects of platinum salts sensitization among workers in a secondary refinery of precious metals. Fifteen of 107 current employees and eight (28%) of 29 former employees, who had been terminated from employment on average for 5 years because of respiratory symptoms, had positive skin reactivity to platinum salts. Platinum salts skin reactivity was significantly associated with average air concentrations of platinum salts in employees' present work area. Workers with positive platinum salts skin tests had significantly higher prevalences of reported rhinitis, asthma, and dermatitis than negative skin test workers. They also had increased bronchial response to cold air challenge and elevated levels of total serum IgE. Platinum salts sensitization was not associated with atopic tendency as measured by sensitivity to common aeroallergens, but was strongly associated with cigarette smoking status. The findings indicate that cigarette smoking may be a risk factor for the development of platinum salts allergy. The persistence of platinum salts sensitization and high prevalence of adverse health outcomes among former workers demonstrate the importance of regular medical monitoring so that sensitized workers can be removed from exposure before they develop long-term health problems.

  17. Lipid peroxidation and antioxidant status in workers exposed to PCDD/Fs of metal recovery plants.

    PubMed

    Chen, Hsiu-Ling; Hsu, Ching-Yi; Hung, Dong-Zong; Hu, Miao-Lin

    2006-12-15

    Secondary copper smelters, which primarily utilize the waste materials that contain organic impurities, and the zinc recovery plant, which handles mostly fly ash and slag from the iron and steel industry, are major emission sources of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in Taiwan. In this study, we compared the levels of erythrocyte glutathione (GSH), erythrocyte superoxide dismutase (SOD) and plasma malondialdehyde (MDA) in workers at a secondary copper smelting plant and a zinc recovery plant who may have been exposed to PCDD/Fs. Though the PCDD/F levels were higher in workers of zinc recovery plant than those of secondary copper smelting plant, no significant difference was found for serum PCDD/F levels between the two kinds of plants. We observed a significant difference in plasma MDA levels between workers at the zinc recovery plant (2.54 microM) and those at the copper smelting plant (1.79 microM). There was and a significant positive correlation between plasma MDA levels and the PCDD/Fs levels. In addition, we observed that the MDA levels were not affected by smoking and exercise status. Therefore, the data suggest that the MDA levels of the metal recovery workers are influenced by their PCDD/F exposure. The erythrocyte SOD activity in workers from the zinc recovery plant was marginally higher than that from the secondary copper plant (196 vs. 146 units/ml, p<0.06). In both plants, large variations in the MDA and SOD levels were found, especially in the high-PCDD/Fs-exposure group, which may be attributed, at least partially, to the differences in smoking status and the number of cigarettes smoked. Overall, our results indicate a higher oxidative stress in workers of the zinc recovery plant than in workers of the secondary copper smelting plant in Taiwan.

  18. Quantification of transition metals in biological samples and its possible impact on ferro-alloy workers.

    PubMed

    Mishra, Sandhya; Ramteke, Dilip S; Wate, Satish R

    2007-10-01

    Increased risk of ill-health and diseases has been associated with employment in the ferro-alloy factory. Since measurement of transition metals in human blood and hair along with respective exposure rates, provides a means of assessing individual risk, it has been the most important part of the study. In the study majority of the elements in the transition series, such as, vanadium (V), chromium (Cr), iron (Fe), manganese (Mn), cobalt, (Co) nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo) and cadmium (Cd) were considered which are randomly emitted from the source, that is, manganese ore (used during ferro-alloy manufacturing process). The commonly available transition, metals, observed in biological samples of ferro-alloy workers, were found to be Fe, Zn, Co, Ni, Cu, Cr, Cd, V Mn and Mo in blood, while in hair, Mn, Fe, Zn, Co, Ni, Cu, Cr, Cd, V and Mo were present in decreasing order Surveillance of bio-concentration of these metals in workers, exposed to close proximity of the coke-ovens and smelting furnaces, revealed that the workers were prone to several physical disorders.

  19. Direct measurement of sheet resistance Rsquare in cuprate systems: evidence of a fermionic scenario in a metal-insulator transition.

    PubMed

    Orgiani, P; Aruta, C; Balestrino, G; Born, D; Maritato, L; Medaglia, P G; Stornaiuolo, D; Tafuri, F; Tebano, A

    2007-01-19

    The metal-insulator transition (MIT) has been studied in Ba(0.9)Nd(0.1)CuO(2+x)/CaCuO2 ultrathin cuprate structures. Such structures allow for the direct measurement of the 2D sheet resistance R( square), eliminating ambiguity in the definition of the effective thickness of the conducting layer in high temperature superconductors. The MIT occurs at room temperature for experimental values of R(square) close to the 25.8 kOmega universal quantum resistance. All data confirm the assumption that each CaCuO2 layer forms a 2D superconducting sheet within the superconducting block, which can be described as weak-coupled equivalent sheets in parallel.

  20. A retrospective cohort mortality study among workers occupationally exposed to metallic nickel powder at the Oak Ridge Gaseous Diffusion Plant.

    PubMed

    Cragle, D L; Hollis, D R; Newport, T H; Shy, C M

    1984-01-01

    The Oak Ridge Gaseous Diffusion Plant (ORGDP) employed over 800 white male workers between 1 January 1948, and 31 December 1953, in the manufacture of "barrier" material that required metallic nickel powder in its production. A retrospective cohort study was conducted to determine whether persons working with metallic nickel powder have a higher mortality from cancers of the respiratory tract than non-nickel workers. A comparison group was defined as all white males employed at ORGDP sometime between 1 January 1948, and 31 December 1953, who had no indications of occupational involvement in barrier production. This group comprised over 7 500 workers. Vital status determination has been completed up to 31 December 1977, allowing at least 24 years of follow-up for all persons in the study. Death certificates were available for 97% of the deaths among the nickel workers and non-nickel worker groups. End-points of interest were selected site-specific cancers and the general overall pattern of disease-specific mortality. Mortality rates in the nickel workers and non-nickel worker groups were compared with those for the white male population of the United States and with each other. There was no evidence of increased mortality due to lung cancers or nasal sinus cancers in nickel workers. Increases (not statistically significant) in mortality due to cancers of the buccal cavity and pharynx, and of the digestive system were observed in the nickel worker group, compared with the non-nickel worker group.

  1. Association of urinary metals levels with type 2 diabetes risk in coke oven workers.

    PubMed

    Liu, Bing; Feng, Wei; Wang, Jing; Li, Yaru; Han, Xu; Hu, Hua; Guo, Huan; Zhang, Xiaomin; He, Meian

    2016-03-01

    Studies indicated that occupationally exposed to metals could result in oxidative damage and inflammation and increase cardiovascular diseases risk. However, epidemiological studies about the associations of metals exposure with diabetes risk among coke oven workers were limited. This study aims to investigate the potential associations of 23 metals levels with the risk of diabetes among coke oven workers. The analysis was conducted in a cross-sectional study including 1493 participants. Urinary metals and urinary polycyclic aromatic hydrocarbons (PAHs) metabolites levels were determined by inductively coupled plasma mass spectrometer and gas chromatograph-mass spectrometer respectively. Multivariate logistic regression was used to investigate the associations of urinary metal levels with diabetes risk with adjustment for potential confounding factors including gender, age, BMI, education, smoking, drinking, physical activity, hypertension, hyperlipidemia and urinary PAHs metabolites levels. Compared with the normoglycemia group, the levels of urinary copper, zinc, arsenic, selenium, molybdenum, and cadmium were significantly higher in the diabetes group (all p < 0.05). Participants with the highest tertile of urinary copper and zinc had 2.12 (95%CI: 1.12-4.01) and 5.43 (95%CI: 2.61-11.30) fold risk of diabetes. Similar results were found for hyperglycemia risk. Besides, participants with the highest tertile of manganese, barium, and lead had 1.65(1.22-2.23), 1.60(1.19-2.16) and 1.45(1.05-1.99) fold risk of hyperglycemia when compared with the lowest tertlie. The results indicated that the urinary copper and zinc levels were positively associated with the risk of diabetes and hyperglycemia among coke oven workers. Urinary manganese, barium and lead levels were also associated with increased risk of hyperglycemia independently of other traditional risk factors. These findings need further validation in prospective study with larger sample size. Copyright © 2015

  2. Technology maturation project on optimization of sheet metal forming of aluminum for use in transportation systems

    NASA Astrophysics Data System (ADS)

    Johnson, Ken I.; Smith, Mark T.; Lavender, Curt A.; Khalell, Mohammad A.

    1994-10-01

    Using aluminum instead of steel in transportation systems could dramatically reduce the weight of vehicles, an effective way of decreasing energy consumption and emissions. The current cost of sheet metal formed (SMF) aluminum alloys (about $4 per pound) and the relatively long forming times of current materials are serious drawbacks to the widespread use of SMF in industry. The interdependence of materials testing and model development is critical to optimizing SMF since the current process is conducted in a heated, pressurized die where direct measurement of critical SMF parameters is extremely difficult. Numerical models provide a means of tracking the forming process, allowing the applied gas pressure to be adjusted to maintain the optimum SMF behavior throughout the forming process. Thus, models can help produce the optimum SMF component in the least amount of time. The Pacific Northwest Laboratory is integrating SMF model development with research in improved aluminum alloys for SMF. The objectives of this research are: develop and characterize competitively priced aluminum alloys for SMF applications in industry; improve numerical models to accurately predict the optimum forming cycle for reduced forming time and improved quality; and verify alloy performance and model accuracy with forming tests conducted in PNL's Superplastic Forming User Facility. The activities performed in this technology maturation project represent a critical first step in achieving these objectives through cooperative research among industry, PNL, and universities.

  3. Springback Simulation and Tool Surface Compensation Algorithm for Sheet Metal Forming

    SciTech Connect

    Shen Guozhe; Hu Ping; Zhang Xiangkui; Chen Xiaobin; Li Xiaoda

    2005-08-05

    Springback is an unquenchable forming defect in the sheet metal forming process. How to calculate springback accurately is a big challenge for a lot of FEA software. Springback compensation makes the stamped final part accordant with the designed part shape by modifying tool surface, which depends on the accurate springback amount. How ever, the meshing data based on numerical simulation is expressed by nodes and elements, such data can not be supplied directly to tool surface CAD data. In this paper, a tool surface compensation algorithm based on numerical simulation technique of springback process is proposed in which the independently developed dynamic explicit springback algorithm (DESA) is used to simulate springback amount. When doing the tool surface compensation, the springback amount of the projected point can be obtained by interpolation of the springback amount of the projected element nodes. So the modified values of tool surface can be calculated reversely. After repeating the springback and compensation calculations for 1{approx}3 times, the reasonable tool surface mesh is gained. Finally, the FEM data on the compensated tool surface is fitted into the surface by CAD modeling software. The examination of a real industrial part shows the validity of the present method.

  4. Three-dimensional reconstruction and morphologic characteristics of porous metal fiber sintered sheet

    SciTech Connect

    Wang, Qinghui; Huang, Xiang; Zhou, Wei; Li, Jingrong

    2013-12-15

    This paper presents an approach to achieve morphological characterizing for complex porous materials based on micro X-ray tomography images, with an example of a novel porous metal fiber sheet produced through solid-state sintering method. The geometrical reconstruction was performed after selection of volume of interest and image processing of anisotropic diffusion smooth. The reconstructed gray level images were then transferred into binary images by adjusting binarization threshold according to the actual porosity. Taking into account the tubular structural feature of the fibers, skeleton extraction algorithm based on the distance transform function was applied and further improved by the scale axis transform method. The skeleton was later pruned and segmented according to the contact points to perform morphological characterizing. Compared with actual manufacturing parameters, the style, length, radius, orientation and tortuosity of fiber segments were discussed. The results show that our proposed method can well describe the actual geometrical and morphological characteristics, which will provide a promising method for the structural description of fibrous networks. - Highlights: • Micro-CT technology was used to achieve the 3D geometrical reconstruction. • Skeleton extraction algorithm was modified to get the medial skeleton. • Skeleton filter operation was adopted to deal with the segmented skeleton. • Useful morphological statistics was obtained through skeleton segments. • Relationship between structure and manufacturing processes was discussed.

  5. Audio signal analysis for tool wear monitoring in sheet metal stamping

    NASA Astrophysics Data System (ADS)

    Ubhayaratne, Indivarie; Pereira, Michael P.; Xiang, Yong; Rolfe, Bernard F.

    2017-02-01

    Stamping tool wear can significantly degrade product quality, and hence, online tool condition monitoring is a timely need in many manufacturing industries. Even though a large amount of research has been conducted employing different sensor signals, there is still an unmet demand for a low-cost easy to set up condition monitoring system. Audio signal analysis is a simple method that has the potential to meet this demand, but has not been previously used for stamping process monitoring. Hence, this paper studies the existence and the significance of the correlation between emitted sound signals and the wear state of sheet metal stamping tools. The corrupting sources generated by the tooling of the stamping press and surrounding machinery have higher amplitudes compared to that of the sound emitted by the stamping operation itself. Therefore, a newly developed semi-blind signal extraction technique was employed as a pre-processing technique to mitigate the contribution of these corrupting sources. The spectral analysis results of the raw and extracted signals demonstrate a significant qualitative relationship between wear progression and the emitted sound signature. This study lays the basis for employing low-cost audio signal analysis in the development of a real-time industrial tool condition monitoring system.

  6. A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets

    SciTech Connect

    Zhu, Siya; Wang, Qian

    2015-10-15

    Triangular nanoflake growth patterns have been commonly observed in synthesis of transition metal dichalcogenide sheets and their hybrid structures. Triangular nanoflakes not only show exceptional properties, but also can serve as building blocks for two or three dimensional structures. In this study, taking the MoS{sub 2} system as a test case, we propose a Matrix method to understand the mechanism of such unique growth pattern. Nanoflakes with different edge types are mathematically described with configuration matrices, and the total formation energy is calculated as the sum of the edge formation energies and the chemical potentials of sulfur and molybdenum. Based on energetics, we find that three triangular patterns with the different edge configurations are energetically more favorable in different ranges of the chemical potential of sulfur, which are in good agreement with experimental observations. Our algorithm has high efficiency and can deal with nanoflakes in microns which are beyond the ability of ab-initio method. This study not only elucidates the mechanism of triangular nanoflake growth patterns in experiment, but also provides a clue to control the geometric configurations in synthesis.

  7. Personal exposures to airborne metals in London taxi drivers and office workers in 1995 and 1996.

    PubMed

    Pfeifer, G D; Harrison, R M; Lynam, D R

    1999-09-01

    In 1995, a petroleum marketer introduced a diesel fuel additive in the UK containing Mn as MMT (methylcyclopentadienyl manganese tricarbonyl). A small study of personal exposures to airborne Mn in London was conducted before and after introduction of the additive to identify any major impact of the additive on exposures. In 1995, personal exposures to Mn were measured in two groups, taxi drivers and office workers (10 subjects per group) for two consecutive 7-day periods. A similar study was carried out in 1996 to determine if exposures had changed. Samples were also analyzed for Ca, Al, Mg and Pb. In 1996, exposures to aerosol mass as total suspended particulates (TSP) and PM2.5 were measured in addition to the metals. Manganese exposures in this cohort did not increase as a result of introduction of the additive. However, a significant source of Mn exposure was discovered during the conduct of these tests. The mean exposure to Mn was higher among the office workers in both years than that of the taxi drivers. This was due to the fact that approximately half of the office workers commuted via the underground railway system where airborne dust and metal concentrations are significantly elevated over those in the general environment. Similar results have been noted in other cities having underground rail systems. Exposure to Mn, Pb, Ca, and Mg were not significantly different between the 2 years. Taxi drivers had higher exposures than office workers to Mg and Pb in both years. Commuting via the underground also had a significant impact on exposures to TSP, PM2.5, Al, and Ca, but had little effect on exposures to Mg. The aerosol in the underground was particularly enriched in Mn, approximately 10-fold, when compared to the aerosol in the general environment. There are several possible sources for this Mn, including mechanical wear of the steel wheels on the steel rais, vaporization of metal from sparking of the third rail, or brake wear.

  8. Musculoskeletal problems and fluoride exposure: A cross-sectional study among metal smelting workers.

    PubMed

    Saha, A; Mukherjee, A K; Ravichandran, B

    2016-09-01

    Frequent and repetitive activities in job and awkward postures are shown as major contributors of musculoskeletal problems in most of the occupational health studies; however, efforts to explore newer risk factor are important to plan interventional measures. In this backdrop, this study examined contribution of fluoride exposure to musculoskeletal complaints. A cross-sectional interviewer-administered questionnaire survey was conducted involving 180 randomly selected subjects from a metal smelting industry. Clinical examination of the subjects was also performed to assess their health status and morbidity details. Assessment of personal exposure to particulate and gaseous fluoride at workplace was conducted. Urinary fluoride level was also examined in post-shift samples collected from study subjects. The mean age of the study subjects was 39.1 (±6.7) years. Majority of the workers (42.5%) were engaged in pot room. About 54% workers were suffering from backache and 66% subjects had joint pain. Exposure of workers to both particulate and gaseous fluoride and post-working shift urinary fluoride level was significantly higher in pot-room workers in comparison with all other workers. It was observed that age (odds ratio (OR): 1.62; 95% confidence interval (CI): 1.18-2.34), drinking untreated water (OR: 1.51; 95% CI: 1.03-2.76), working in pot room (OR: 1.44; 95% CI: 1.13-1.91) and urinary fluoride level (OR: 2.71; 95% CI: 1.81-3.75) had significant effects on musculoskeletal complaints. This study concludes that along with other predictors such as nature of work, posture at work and age of worker, exposure to fluoride also has significant role in the occurrence of musculoskeletal morbidity. © The Author(s) 2015.

  9. Evaluation of local and integral magnitudes in metal sheets inductive levitation device by FEM electromagnetic field modeling

    SciTech Connect

    Fireteanu, V.; Craiu, O.; Curiac, R.

    1996-05-01

    This paper presents a numerical computation of a device for the horizontal casting of the inductive levitated metallic sheets. Local and integral magnitudes of electromagnetic field values are computed by means of FEM, using the FLUX-2D software and the dedicated program LEVITA. The influences of the supply frequency, magnetic saturation, and device configuration on the levitation force, induced power and transverse variation of the levitation force density are studied. Some experimental proof of the calculated magnitudes is also presented.

  10. A new non-contact approach for the measurement and uniformity evaluation of coating thickness for sheet metal.

    PubMed

    Qiu, Zixue; Zheng, Tianchi; Wan, Liping; Lu, Guan; Shao, Jianxin; Yuan, Jiang

    2017-01-01

    To realize the automatic measurement and uniformity evaluation of the coating thickness for sheet metal, a new non-contact detection method for coating thickness was proposed based on a double laser probe and mechanical servo system. Non-contact measurement of coating thickness can be achieved by differential measurement principle of double laser probe, and the influences of sheet metal's Z position changes and platform's vibration on the measurement results can be removed by this method. A new coating thickness evaluation algorithm by integrating the least squares principle and cubic spline interpolation was given, which can fit the discrete thickness data into visual and accurate 3D graphics; and the measurement accuracy was evaluated based on grey theory, solving the problem of low accuracy by using limited measurement data to evaluate the thickness uniformity of an entire sheet metal. The stability and reliability of the system are verified by experiments, and the measurement results of the specimen show that the measurement uncertainty is 0.016 μm and the maximum range of the uniformity evaluation result is 1.4 μm.

  11. Design of a mechanical test to characterize sheet metals - Optimization using B-splines or cubic splines

    NASA Astrophysics Data System (ADS)

    Souto, Nelson; Thuillier, Sandrine; Andrade-Campos, A.

    2016-10-01

    Nowadays, full-field measurement methods are largely used to acquire the strain field developed by heterogeneous mechanical tests. Recent material parameters identification strategies based on a single heterogeneous test have been proposed considering that an inhomogeneous strain field can lead to a more complete mechanical characterization of the sheet metals. The purpose of this work is the design of a heterogeneous test promoting an enhanced mechanical behavior characterization of thin metallic sheets, under several strain paths and strain amplitudes. To achieve this goal, a design optimization strategy finding the appropriate specimen shape of the heterogeneous test by using either B-Splines or cubic splines was developed. The influence of using approximation or interpolation curves, respectively, was investigated in order to determine the most effective approach for achieving a better shape design. The optimization process is guided by an indicator criterion which evaluates, quantitatively, the strain field information provided by the mechanical test. Moreover, the design of the heterogeneous test is based on the resemblance with the experimental reality, since a rigid tool leading to uniaxial loading path is used for applying the displacement in a similar way as universal standard testing machines. The results obtained reveal that the optimization strategy using B-Splines curve approximation led to a heterogeneous test providing larger strain field information for characterizing the mechanical behavior of sheet metals.

  12. A new non-contact approach for the measurement and uniformity evaluation of coating thickness for sheet metal

    NASA Astrophysics Data System (ADS)

    Qiu, Zixue; Zheng, Tianchi; Wan, Liping; Lu, Guan; Shao, Jianxin; Yuan, Jiang

    2017-01-01

    To realize the automatic measurement and uniformity evaluation of the coating thickness for sheet metal, a new non-contact detection method for coating thickness was proposed based on a double laser probe and mechanical servo system. Non-contact measurement of coating thickness can be achieved by differential measurement principle of double laser probe, and the influences of sheet metal's Z position changes and platform's vibration on the measurement results can be removed by this method. A new coating thickness evaluation algorithm by integrating the least squares principle and cubic spline interpolation was given, which can fit the discrete thickness data into visual and accurate 3D graphics; and the measurement accuracy was evaluated based on grey theory, solving the problem of low accuracy by using limited measurement data to evaluate the thickness uniformity of an entire sheet metal. The stability and reliability of the system are verified by experiments, and the measurement results of the specimen show that the measurement uncertainty is 0.016 μm and the maximum range of the uniformity evaluation result is 1.4 μm.

  13. In situ growth of noble metal nanoparticles on graphene oxide sheets and direct construction of functionalized porous-layered structure on gravimetric microsensors for chemical detection.

    PubMed

    Xu, Pengcheng; Yu, Haitao; Li, Xinxin

    2012-11-11

    Noble metal nanoparticles are directly and homogeneously grown onto graphene-oxide (GO) sheets in oleylamine. After the oleylamine is removed, the GO sheets are exfoliated by the nanoparticle pillars to further form hierarchical GO nanostructures with molecule accessible nanopores. With specific sensing-groups modified, the porous-layered nanostructure can be constructed onto resonant microcantilevers for chemical sensing.

  14. Preparation and Characterization of a Hydrophobic Metal-Organic Framework Membrane Supported on Thin Porous Metal Sheet

    SciTech Connect

    Liu, Jian; Canfield, Nathan L.; Liu, Wei

    2016-02-29

    A hydrophobic metal-organic framework (MOF) UiO-66-CH3 is prepared and its solvothermal stability is investigated in comparison to UiO-66. It is confirmed that the MOF stability is enhanced by introduction of the two methyl groups, while the water adsorption is reduced. Given its hydrophobicity and stability, UiO-66-CH3 is proposed as an attractive membrane material for gas separation under moisture conditions. The UiO-66-CH3 membrane is prepared on a 50µm-thin porous Ni support sheet for the first time by use of a secondary growth method. It is found that uniform seed coating on the support is necessary to form a continuous membrane. In addition to growth time and temperature, presence of a modulator in the growth solution is found to be useful for controlling hydrothermal membrane growth on the seeded support. A dense, inter-grown membrane layer is formed by 24-h growth over a temperature range from 120 oC to 160 oC. The membrane surface comprises 500 nm octahedral crystals, which are supposed to grow out of the original 100 nm spherical seeding crystals. The separation characteristics of resulting membranes are tested with pure CO2, air, CO2/air mixture, and humid CO2/air mixture. CO2 permeance as high as 1.9E-06 mol/m2/s/Pa at 31oC is obtained. Unlike the hydrophilic zeolite membranes, CO2 permeation through this membrane is not blocked by the presence of water vapor in the feed gas. The results suggest that this MOF framework is a promising membrane material worth to be further investigated for separation of CO2 and other small molecules from humid gas mixtures.

  15. Design of stable β-sheet-based cyclic peptide assemblies assisted by metal coordination: selective homo- and heterodimer formation.

    PubMed

    Panciera, Michele; Amorín, Manuel; Castedo, Luis; Granja, Juan R

    2013-04-08

    Metal-directed supramolecular construction represents one of the most powerful tools to prepare a large variety of structures and functions. The ability of metals to organize different numbers and types of ligands with a variety of geometries (linear, trigonal, octahedral, etc.) expands the supramolecular synthetic architecture. We describe here the precise construction of homo- and heterodimeric cyclic peptide entities through coordination of a metal (Pd, Au) and to β-sheet-type hydrogen-bonding interactions. The selective coordination properties of the appropriate metal allow control over the cross-strand interaction between the two-peptide strands. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Increased levels of oxidative stress biomarkers in metal oxides nanomaterial-handling workers.

    PubMed

    Liou, Saou-Hsing; Chen, Yu-Cheng; Liao, Hui-Yi; Wang, Chien-Jen; Chen, Jhih-Sheng; Lee, Hui-Ling

    2016-11-01

    This study assessed oxidatively damaged DNA and antioxidant enzyme activity in workers occupational exposure to metal oxides nanomaterials. Exposure to TiO2, SiO2, and ITO resulted in significant lower antioxidant enzymes (glutathione peroxidase and superoxide dismutase) and higher oxidative biomarkers 8-hydroxydeoxyguanosine (8-oxodG) than comparison workers. Statistically significant correlations were noted between plasma and urine 8-oxodG, between white blood cells (WBC) and urine 8-oxodG, and between WBC and plasma 8-oxodG. In addition, there were significant negative correlations between WBC 8-oxodG and SOD and between urinary 8-oxodG and GPx levels. The results showed that urinary 8-oxodG may be considered to be better biomarker.

  17. Heavy Metals Exposure and Hygienic Behaviors of Workers in Sanitary Landfill Areas in Southern Thailand

    PubMed Central

    Decharat, Somsiri

    2016-01-01

    Objectives. The main objective of this study was to assess the cadmium and lead exposure levels in subject workers that work in sanitary landfill areas in southern Thailand. The study evaluated the blood cadmium and lead levels in terms of their possible role in worker contamination and transfer of cadmium and lead to the body. Materials and Methods. A cross-sectional study was conducted with 114 subjects. Whole blood samples were collected to determine cadmium and lead levels by graphite furnaces atomic absorption spectrometer chromium analyzer. Results and Discussion. The mean blood cadmium levels and blood lead levels of subjects workers were 2.95 ± 0.58 μg/L (range 1.58–7.03 μg/L) and 8.58 ± 2.58 μg/dL (range 1.98–11.12 μg/dL), respectively. Gender, income, smoked cigarettes, work position, duration of work, personal protective equipment (PPE), and personal hygiene were significantly associated with blood cadmium level and blood lead levels (p < 0.001 and p < 0.001). A multiple regression model was constructed. Significant predictors of blood cadmium levels and blood lead levels included smoked cigarettes, hours worked per day, days worked per week, duration of work (years), work position, use of PPE (mask and gloves), and personal hygiene behavior (ate snacks or drank water at work and washed hands before lunch). Conclusion. The elevated body burden of toxic metals in the solid waste exposure of subject workers is an indication of occupational metal toxicity associated with personal hygiene practices. PMID:27313961

  18. Experimental Studies on Flexible Forming of Sheet Metals Assisted by Magnetic Force Transfer Medium

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhou, Fu Jian; Wang, Mo Nan; Xu, Peng; Jin, Cheng Chuang

    2016-08-01

    To improve the thickness uniformity and increase the forming limit of sheets to enhance their overall quality, a magnetorheological fluid (MRF) was injected into the punch cavity to act as the force transfer medium and fulfill the function of flexible pressing during the sheet bulging process. The rheological properties of the MRF were changed under the influence of a magnetic field produced by loading different currents, which allowed variation of stress states and deformation modes in the 0.75-mm-thick 304 stainless steel sheets. With increasing current (up to 3.5 A), the sheet-forming limit increased by 16.13% at most, and the fracture morphology experienced a certain change. Additionally, both the bulge height and the wall thickness distribution had obvious changes with a punch stroke of 10 mm. According to the experimental analysis, the MRF can be used successfully as a pressure-carrying medium in the sheet forming process.

  19. Endoscopic fringe projection for in-situ inspection of a sheet-bulk metal forming process

    NASA Astrophysics Data System (ADS)

    Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard

    2015-05-01

    Sheet-bulk metal forming is a new production process capable of performing deep-drawing and massive forming steps in a single operation. However, due to the high forming forces of the forming process, continuous process control is required in order to detect wear on the forming tool before production quality is impacted. To be able to measure the geometry of the forming tool in the limited space of forming presses, a new inspection system is being developed within the SFB/TR 73 collaborative research center. In addition to the limited space, the process restricts the amount of time available for inspection. Existing areal optical measurement systems suffer from shadowing when measuring the tool's inner elements, as they cannot be placed in the limited space next to the tool, while tactile measurement systems cannot meet the time restrictions for measuring the areal geometries. The new inspection system uses the fringe projection optical measurement principle to capture areal geometry data from relevant parts of the forming tool in short time. Highresolution image fibers are used to connect the system's compact sensor head to a base unit containing both camera and projector of the fringe projection system, which can be positioned outside of the moving parts of the press. To enable short measurement times, a high intensity laser source is used in the projector in combination with a digital micro-mirror device. Gradient index lenses are featured in the sensor head to allow for a very compact design that can be used in the narrow space above the forming tool inside the press. The sensor head is attached to an extended arm, which also guides the image fibers to the base unit. A rotation stage offers the possibility to capture measurements of different functional elements on the circular forming tool by changing the orientation of the sensor head next to the forming tool. During operation of the press, the arm can be travelled out of the moving parts of the forming press

  20. Possibilities And Influencing Parameters For The Early Detection Of Sheet Metal Failure In Press Shop Operations

    NASA Astrophysics Data System (ADS)

    Gerlach, Jörg; Kessler, Lutz; Paul, Udo; Rösen, Hartwig

    2007-05-01

    The concept of forming limit curves (FLC) is widely used in industrial practice. The required data should be delivered for typical material properties (measured on coils with properties in a range of +/- of the standard deviation from the mean production values) by the material suppliers. In particular it should be noted that its use for the validation of forming robustness providing forming limit curves for the variety of scattering in the mechanical properties is impossible. Therefore a forecast of the expected limit strains without expensive cost and time-consuming experiments is necessary. In the paper the quality of a regression analysis for determining forming limit curves based on tensile test results is presented and discussed. Owing to the specific definition of limit strains with FLCs following linear strain paths, the significance of this failure definition is limited. To consider nonlinear strain path effects, different methods are given in literature. One simple method is the concept of limit stresses. It should be noted that the determined value of the critical stress is dependent on the extrapolation of the tensile test curve. When the yield curve extrapolation is very similar to an exponential function, the definition of the critical stress value is very complicated due to the low slope of the hardening function at large strains. A new method to determine general failure behavior in sheet metal forming is the common use and interpretation of three criteria: onset on material instability (comparable with FLC concept), value of critical shear fracture and the value of ductile fracture. This method seems to be particularly successful for newly developed high strength steel grades in connection with more complex strain paths for some specific material elements. Nevertheless the identification of the different failure material parameters or functions will increase and the user has to learn with the interpretation of the numerical results.

  1. Respiratory health of workers exposed to metal dusts and foundry fumes in a copper refinery.

    PubMed Central

    Ostiguy, G; Vaillancourt, C; Bégin, R

    1995-01-01

    OBJECTIVES--To assess airflow limitation in workers exposed long term to metal dust, the prevalence of pleural plaques in those workers exposed in the past to asbestos, the influence of pleural plaques on lung function, and the possible association with airway disease caused by asbestos. METHODS--A cross sectional and longitudinal (seven year) survey of 494 long term (mean (SEM) 21(1) years) workers in a copper refinery was carried out from medical questionnaires, chest radiographs, and forced spirometry. RESULTS--The prevalence of lifetime non-smokers was 19%, current smokers 39%, and ex-smokers 42%. The prevalence of chronic obstructive pulmonary diseases (COPD) (forced expiratory volume in one second (FEV1) < 80% predicted) was 5%, small airway dysfunction (SAD) (maximal mid-expiratory flow (MMEF) < 60% predicted) was 7%, and this did not differ from the control population. The COPD and SAD were associated with cumulative smoking index but not with the cumulative work years at the plant or with any type of work at the plant. The mean (SEM) reduction of FEV1 was 20(7) ml in non-smokers, 26(4) ml in smokers, and 26(5) ml in ex-smokers (P > 0.05). In the smokers and ex-smokers with COPD, the loss of FEV1 was 53(10) (P < 0.02). The prevalence of pleural plaques was 11% (P < 0.0001); pleural plaques were found in older workers with known exposure to asbestos. The pleural plaques were circumscribed and associated with a non-significant 196 ml reduction in forced vital capacity (FVC) and non-significant reduction of FVC over time. The pleural plaques were not associated with COPD or SAD. The cumulative smoking index obtained by a technician did not differ from that by a chest physician. CONCLUSIONS--Despite exposures to asbestos that produced pleural plaques and exposures to metal dusts and foundry fumes the long term workers of this plant did not have excessive prevalence of COPD or SAD. The data suggest that low level long term exposure to metal dusts, gases, and

  2. A comparative theoretical study of metal functionalized carbon nanocones and carbon nanocone sheets as potential hydrogen storage materials.

    PubMed

    Shalabi, A S; Soliman, K A; Taha, H O

    2014-09-28

    The hydrogen storage of Ti functionalized carbon nanocones and carbon nanocone sheets is investigated by using the state-of-the-art density functional theory calculations. The Ti atom prefers to bind at the hollow site of the hexagonal ring. The average adsorption energies corrected for dispersion forces are -0.54 and -0.39 eV per hydrogen molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 9.31 and 11.01 wt%. The hydrogen storage reactions are characterized in terms of simulated infrared spectra, projected densities of states, kinetics, and statistical thermodynamics. The free energies and enthalpies of the Ti functionalized carbon nanocone meet the ultimate targets of the Department of Energy for all temperatures and pressures. The closest reactions to zero free energy occur at 378.15 K/2.961 atm for carbon nanocones and 233.15 K/2.961 atm for carbon nanocone sheets. The translational component is found to exert a dominant effect on the total entropy change with temperature. More promising thermodynamics are assigned to the hydrogenation of Ti functionalized carbon nanocone sheets at 233.15 K. As the temperature is increased, the lifetimes of the hydrogen molecules adsorbed at the surface drop and the rate constants increase. At fixed pressure, the rate constants of hydrogenation of Ti functionalized carbon nanocones are smaller than those of Ti functionalized carbon nanocone sheets, while the lifetimes are greater.

  3. A quantitative assessment of risks of heavy metal residues in laundered shop towels and their use by workers.

    PubMed

    Connor, Kevin; Magee, Brian

    2014-10-01

    This paper presents a risk assessment of exposure to metal residues in laundered shop towels by workers. The concentrations of 27 metals measured in a synthetic sweat leachate were used to estimate the releasable quantity of metals which could be transferred to workers' skin. Worker exposure was evaluated quantitatively with an exposure model that focused on towel-to-hand transfer and subsequent hand-to-food or -mouth transfers. The exposure model was based on conservative, but reasonable assumptions regarding towel use and default exposure factor values from the published literature or regulatory guidance. Transfer coefficients were derived from studies representative of the exposures to towel users. Contact frequencies were based on assumed high-end use of shop towels, but constrained by a theoretical maximum dermal loading. The risk estimates for workers developed for all metals were below applicable regulatory risk benchmarks. The risk assessment for lead utilized the Adult Lead Model and concluded that predicted lead intakes do not constitute a significant health hazard based on potential worker exposures. Uncertainties are discussed in relation to the overall confidence in the exposure estimates developed for each exposure pathway and the likelihood that the exposure model is under- or overestimating worker exposures and risk. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effect of Individual Layer Shape on the Mechanical Properties of Dissimilar Al Alloys Laminated Metal Composite Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Zejun; Wu, Xia; Hu, Hongbo; Chen, Quanzhong; Liu, Qing

    2014-03-01

    For the dissimilar laminated metal composite sheets (LMCS) fabricated by roll bonding technology, the great differences of mechanical properties between the constituent metals lead to the non-uniform deformation and individual layer necking. The individual layer shape affects the mechanical properties and microstructure of dissimilar LMCS. The Al/Al alloy (1100/7075) LMCS with the same thickness and ratio of dissimilar metals, but different individual layer shapes, have been successfully fabricated by hot accumulative roll bonding in conjunction with cold rolling technology. Some effective methods (such as sheet crown, warp degree, and slant angle) were presented to quantitatively evaluate the individual layer shape and necking of constituent metals. The microstructure and mechanical properties of 1100/7075 LMCS with different individual layer shapes were investigated. The effects of bonding interface on the mechanical properties were obtained based on the assessment of individual layer shapes and necking. The strength and elongation of LMCS decrease with the increase of variation of individual layer shapes and necking when the number of layers keeps constant. The research results offer some theoretical guides and references for adjusting the control measures of compatibility deformation, optimizing the hot roll bonding technologies, and designing the novel high-performance dissimilar LMCS.

  5. Metal release from stainless steel powders and massive sheets--comparison and implication for risk assessment of alloys.

    PubMed

    Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger

    2013-02-01

    Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated.

  6. On the increase of geometric accuracy with the help of stiffening elements for robot-based incremental sheet metal forming

    NASA Astrophysics Data System (ADS)

    Thyssen, Lars; Seim, Patrick; Störkle, Denis D.; Kuhlenkötter, Bernd

    2016-10-01

    This paper describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The incremental sheet forming (ISF) offers high geometrical form flexibility without the need of any part-dependent tools. To transfer the ISF to industrial applications, it is necessary to respond to the still existing constraints, e.g. the low geometrical accuracy. Especially the subsequent deformation resulting from the interaction of differently shaped elements causes geometrical deviations, which are limiting the scope of formable parts. The impact of the resulting forming forces will vary according to the shape of the individual elements. For this, the paper proposes and examines a new approach to stabilize the geometrical accuracy without losing the universal approach of Roboforming by inserting stiffening elements. Those elements with varying cross-sections at the initial area of various orientations must be examined on their stabilizing or subsequent distorting impact. Especially the different impacts of the subsequent forming of stiffness features in contrast to the direct forming are studied precisely.

  7. First-principles study of half-metallicity in semi-hydrogenated BC3, BC5, BC7, and B-doped graphone sheets

    PubMed Central

    2011-01-01

    Using first principles calculations, we investigate the electronic structures of semi-hydrogenated BC3, BC5, BC7, and B-doped graphone sheets. We find that all the semi-hydrogenated boron-carbon sheets exhibit half-metallic behaviors. The magnetism originates from the non-bonding pz orbitals of carbon atoms, which cause the flat bands to satisfy the Stoner criterion. On the other hand, boron atoms weaken the magnetic moments of nearby carbon atoms and act as holes doped in the sheets. It induces the down shift of the Fermi level and the half-metallicity in semi-hydrogenated sheets. Our studies demonstrate that the semi-hydrogenation is an effective route to achieve half-metallicity in the boron-carbon systems. PMID:21711690

  8. A long-term mortality study of workers occupationally exposed to metallic nickel at the Oak Ridge Gaseous Diffusion Plant.

    PubMed

    Godbold, J H; Tompkins, E A

    1979-12-01

    This study was undertaken to determine whether mortality from respiratory cancer among workers occupationally exposed to metallic nickel at the Oak Ridge Gaseous Diffusion Plant (ORGDP) differed from that of workers at the same plant with no record of occupational exposure to metallic nickel or any nickel compound. A cohort of ,14 nickel-exposed workers and one of 1600' controls were identified. The members of both cohorts had a minimum follow-up period of 19 years. Mortality from respiratory cancer and from other causes was examined in both groups. The data showed no evidence of an increased risk of mortality due to respiratory cancer among the nickel-exposed workers. The exposed cohort experienced lower mortality than the controls, both in deaths due to respiratory cancer and in deaths due to all causes, although neither of these differences was statistically significant.

  9. A Triaxial Failure Diagram to predict the forming limit of 3D sheet metal parts subjected to multiaxial stresses

    NASA Astrophysics Data System (ADS)

    Rastellini, F.; Socorro, G.; Forgas, A.; Onate, E.

    2016-08-01

    Accurate prediction of failure and forming limits is essential when modelling sheet metal forming processes. Since traditional Forming Limit Curves (FLCs) are not valid for materials subjected to triaxial loading, a new failure criterion is proposed in this paper based on the stress triaxility and the effective plastic strain accumulated during the history of material loading. Formability zones are identified inside the proposed Triaxial Failure Diagram (TFD). FLCs may be mapped into the TFD defining a new Triaxial Failure Curve, or it can be defined by triaxial failure experiments. Several TFD examples are validated and constrasted showing acceptable accuracy in the numerical prediction of forming failure/limit of 3D thick sheet parts.

  10. Measurement of lung-retained contaminants in vivo among workers exposed to metal aerosols.

    PubMed

    Kalliomäki, K; Aittoniemi, K; Kalliomäki, P L; Moilanen, M

    1981-03-01

    In Finland the amount of lung-retained contaminants has been measured among welders, foundry workers, and iron and steel factory workers. About 300 subjects have so far been measured since 1976. The method of measuring is based on the magnetic properties of metal aerosols. At the very beginning the method resembled the one suggested by D. Cohen. The original method was too slow, and data processing was not suitable for clinical or hygienic work. Therefore, the automatic and computerized instrument for measuring lung-retained contaminants was developed in cooperation with Outokumpu Oy. The resolution of the magnetic measurement is better than 0.05 nT corresponding to a sensitivity of 0.5 mg of magnetic contaminants in the lung in the form of magnetite. These figures mean that, in practice, a shipyard welder has enough contamination for measurement after one month's exposure. In addition, the present paper reviews the magnetic properties of metal aerosols briefly and summarizes the results of measuring different occupational groups.

  11. Behavior of heavy metals in human urine and blood following calcium disodium ethylenediamine tetraacetate injection: observations in metal workers.

    PubMed

    Sata, F; Araki, S; Murata, K; Aono, H

    1998-06-12

    To evaluate the effects of calcium disodium ethylenediamine tetraacetate (CaEDTA) on the behavior of 8 heavy metals in human urine and blood, CaEDTA was administered for 1 h by intravenous injection to 18 male metal foundry workers, whose blood lead concentrations (PbB) were between 16 and 59 (mean 34) microg/dl. Significant increases were found in urinary excretion of manganese, chromium, lead, zinc, and copper after the start of CaEDTA injection. Urinary chromium excretion reached a maximal level within 1 h after the start of injection, while urinary manganese, lead, and zinc excretion reached their highest concentrations between 1 and 2 h. Urinary copper excretion reached the highest level between 2 and 4 h. The rapid increases in urinary excretion of five metals were different from the "circadian rhythms," which are the normal, daily variations in renal glomerular filtration, reabsorption, and excretory mechanisms. Plasma lead concentrations were highest 1.5 h after the start of the 1-h injection, while plasma zinc concentration became lowest 5 h after the start of CaEDTA injection. Data suggest that manganese and chromium absorbed in human tissues might be mobilized by CaEDTA.

  12. The health of workers in a metal autoparts factory in eastern Thailand.

    PubMed

    Poosanthanasarn, Nitaya; Lohachit, Chantima

    2005-05-01

    One hundred and seventy-two male employees working in the pressing and store sections of a metal autoparts factory in eastern Thailand participated in the study. The aim of this study was to survey the health and well-being condition of Thai workers prior to corporation initiatives in applied ergonomics with the workers of the company. A retrospective study of official accident information, and questionnaires regarding general information, health, muscular discomfort, accidents, posture disorders, and subjective feelings of fatigue or discomfort were filled out for the survey. The results of the study provided 48 categories of important information on the health and wellness of the employees in their workplace. Regression analysis revealed that, based on the working history of the employees, the small and large pressing sections of the workplace had a greater impact on the muscular discomfort of the employees (0.322) (p = 0.001). Based on the health information, the independent factors influencing the employee's muscular discomfort were frequency of muscular discomfort (0.240) (p = 0.004), no disease of muscle and bone (0.165) (p = 0.025), and finally, regularly taking medicine for muscular pain (0.163) (p = 0.024). The factors influencing accidents in the employees were working where they could be cut by sharp material or metal (0.257) (p = 0.008), muscular discomfort (0.169) (p = 0.059), and not using protective equipment (0.146) (p = 0.076). Thus the applied ergonomics intervention program for preventing worker injuries in the sections studied should be implemented, in order to promote the health and well-being of the employees.

  13. Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Mozumder, Chandan K.

    The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety

  14. Polymorphism of Metallothionein 2A Modifies Lead Body Burden in Workers Chronically Exposed to the Metal.

    PubMed

    Fernandes, Kelly Christine Marques; Martins, Airton Cunha; Oliveira, Andréia Ávila Soares de; Antunes, Lusânia Maria Greggi; Cólus, Ilce Mara de Syllos; Barbosa, Fernando; Barcelos, Gustavo Rafael Mazzaron

    2016-01-01

    Lead (Pb) is a metal that accumulates in the human body, inducing several adverse health effects. One of the proteins responsible for the distribution of metal in the body is metallothionein (MT), which is expressed by different genes, and it is supposed that genetic variation in the genes that encode MTs may affect the Pb body burden. The present study aimed to evaluate the genetic effects of the polymorphism of MT2A (single nucleotide polymorphism rs10636; Cx2192;G) on blood Pb levels (BLL) of workers from car battery factories who are chronically exposed to the metal. In total, 221 men participated in the study; genomic DNA from whole blood was extracted, and genotyping of MT2A was performed by TaqMan assays; BLL were quantified by inductively coupled plasma mass spectrometry (ICP-MS). BLL were 25 ± 14 µg/dl (range 1.9-68); BLL were positively correlated with duration of work and smoking status. Individuals who carried at least one C allele had higher BLL than those with the GG genotype (β = -0.45; p = 0.025, multivariable linear regression analyses). Taken together, our data support the hypothesis that polymorphisms in genes related to the transport of Pb, such as MTs, may modulate the concentrations of the metal in the body and, consequently, adverse health effects induced by Pb exposure.

  15. Are safety data sheets for cleaning products used in Norway a factor contributing to the risk of workers exposure to chemicals?

    PubMed

    Suleiman, Abdulqadir M; Svendsen, Kristin V H

    2014-10-01

    Cleaning products are considered less hazardous than those used in other sectors. Suppliers and distributors are less conscientious when it comes to informing users on health risks. The aim of the study was to elaborate on the usefulness and clarity of information in the safety data sheets (SDS) for cleaning products, and considering if the use of these SDSs can be seen as a risk factor towards occupational exposure to hazardous chemicals in the sector. Safety data sheets were selected based on the risk level of the product assigned in an industrial sector scheme. 320 SDSs for cleaning products were reviewed. Constituent components found in the products over a given threshold were listed and available information thereof used to assess the perceived non-hazard consideration of the chemicals. The contents of the SDSs was generic and mostly incomplete. Safety measures and health information lacked sufficient specificity despite varying compositions and concentrations of components. There is generally incompatibility between mentioned sections on the suggested non-hazardous nature of the products and health effects. Not all substances used in these products have harmonized classifications, which makes them open to various classification of the products and the suggested safety measures. This results in different companies classifying similar products differently. Risk management measures and suggested personal protective equipment (PPEs) are given haphazardly. Physical properties relevant to risk assessment are not included. The safety data sheets are ambiguous, and they lack relevant and important information. Inadequate information and risk assessment concerning the products can lead to workers being exposed to hazardous chemicals. Underestimation of the hazard contribution of the components of the products and the insufficient, non-objective mention of appropriate control and protective measures are the major contributing elements. There is a need to test the

  16. Oxidative damage of workers in secondary metal recovery plants affected by smoking status and joining the smelting work.

    PubMed

    Chia, Taipau; Hsu, Ching Yi; Chen, Hsiu Ling

    2008-04-01

    In Taiwan, secondary copper smelters and zinc recovery plants primarily utilize recovering metal from scrap and dross, and handles mostly fly ash and slag with high temperature to produce ZnO from the iron and steel industry. The materials may contain organic impurities, such as plastic and organic chloride chemicals, and amounts of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are produced during the smelting process. Therefore, secondary metal recovery industries are major emission sources of PCDD/Fs, which may have been demonstrated to elicit oxidative stress and to involve the production of plasma malondialdehyde (MDA). Many studies have also indicated that the intake of antioxidants, smoking, age and exposure to environmental pollutants may be implicated to DNA damage or lipid peroxidation. This study therefore aims to elucidate the roles of occupational exposure like joining the smelting work, age, smoking and alcohol status, and antioxidant intake on oxidative damage in secondary metal recovery workers in Taiwan. 73 workers were recruited from 2 secondary metal recovery plants. The analysis of 8-hydroxydeoxyguanosine (8-OH-dG) in urine, DNA strand breakage (comet assay) and lipid peroxidation (MDA) in blood samples were completed for all of the workers. The results showed that the older subjects exhibited significantly lower levels of 8-OH-dG and MDA than younger subjects. Our investigation also showed that working departments were in related to plasma MDA and DNA strand breakage levels of nonsmokers, however, the observation become negligible in smokers. And it is implicated that cigarette type might affect 8-OH-dG levels in secondary metal recovery workers. Since, adding to results above, the MDA level in production workers was significantly higher than those in managerial departments, it is important for the employers to make efforts on improving occupational environments or serving protective equipments to protect workers

  17. Effect of metal nanoparticles decoration on electron field emission property of graphene sheets.

    PubMed

    Baby, Tessy Theres; Ramaprabhu, Sundara

    2011-10-05

    The electron field emission from metal nanoparticle decorated hydrogen exfoliated graphene (metal/HEG) occurs at low turn on and threshold fields due to its low work function and high field enhancement factor.

  18. A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals

    NASA Astrophysics Data System (ADS)

    Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.

    2017-03-01

    Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.

  19. A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals

    NASA Astrophysics Data System (ADS)

    Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.

    2017-01-01

    Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.

  20. Sheet resistance characterization of locally anisotropic transparent conductive films made of aligned metal-enriched single-walled carbon nanotubes.

    PubMed

    Kang, Hosung; Kim, Duckjong; Baik, Seunghyun

    2014-09-21

    One-dimensional conductive fillers such as single-walled carbon nanotubes (SWNTs) can be aggregated and aligned during transparent conductive film (TCF) formation by the vacuum filtration method. The potential error of analysing the average sheet resistance of these anisotropic films, using the four-point probe in-line method and the conversion formula developed assuming uniform isotropic material properties, was systematically investigated by finite element analysis and experiments. The finite element analysis of anisotropic stripe-patterned TCFs with alternating low (ρ1) and high (ρ2) resistivities revealed that the estimated average sheet resistance approached ρ1/t when the probes were parallel to the aligned nanotubes. The thickness of the film is t. It was more close to ρ2/t when the probes were perpendicular to the aligned tubes. Indeed, TCFs fabricated by the vacuum filtration method using metal-enriched SWNTs exhibited highly anisotropic local regions where tubes were aggregated and aligned. The local sheet resistances of randomly oriented, aligned, and perpendicular tube regions of the TCF at a transmittance of 89.9% were 5000, 2.4, and 12 300 Ω □(-1), respectively. Resistivities of the aggregated and aligned tube region (ρ1 = 1.2 × 10(-5) Ω cm) and the region between tubes (ρ2 = 6.2 × 10(-2) Ω cm) could be approximated with the aid of finite element analysis. This work demonstrates the potential error of characterizing the average sheet resistance of anisotropic TCFs using the four-point probe in-line method since surprisingly high or low values could be obtained depending on the measurement angle. On the other hand, a better control of aggregation and alignment of nanotubes would realize TCFs with a very small anisotropic resistivity and a high transparency.

  1. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  2. In-situ stress analysis with X-Ray diffraction for yield locus characterization of sheet metals

    SciTech Connect

    Güner, A.; Tekkaya, A. E.; Zillmann, B.; Lampke, T.

    2013-12-16

    A main problem in the field of sheet metal characterization is the inhomogeneous plastic deformation in the gauge regions of specimens which causes the analytically calculated stresses to differ from the sought state of stress acting in the middle of the gauge region. To overcome this problem, application of X-Ray diffraction is analyzed. For that purpose a mobile X-ray diffractometer and an optical strain measurement system are mounted on a universal tensile testing machine. This enables the recording of the whole strain and stress history of a material point. The method is applied to uniaxial tension tests, plane strain tension tests and shear tests to characterize the interstitial free steel alloy DC06. The applicability of the concepts of stress factors is verified by uniaxial tension tests. The experimentally obtained values are compared with the theoretical values calculated with crystal elasticity models utilizing the orientation distribution functions (ODF). The relaxation problem is addressed which shows itself as drops in the stress values with the strain kept at a constant level. This drop is analyzed with elasto-viscoplastic material models to correct the measured stresses. Results show that the XRD is applicable to measure the stresses in sheet metals with preferred orientation. The obtained yield locus is expressed with the Yld2000–2D material model and an industry oriented workpiece is analyzed numerically. The comparison of the strain distribution on the workpiece verifies the identified material parameters.

  3. Effects of customized foot orthoses on manufacturing workers in the metal industry.

    PubMed

    García-Hernández, César; Huertas-Talón, José-Luis; Sánchez-Álvarez, Eduardo J; Marín-Zurdo, Javier

    2016-01-01

    This 8-week study evaluates the effects of customized foot orthoses on work-related musculoskeletal disorders (WMSDs) of metal industry workers. These WMSDs were evaluated applying the Nordic musculoskeletal questionnaire (NMQ) at three different times (start, 4th week and 8th week) and additional questions were also formulated to obtain information about adaptation, fatigue, comfort and possible improvements. According to the NMQ results, statistical significance was found in the improvements after 4 weeks (p < 0.05 in two areas, p < 0.01 in three areas, p < 0.001 in two areas and no significance in the other two) and after 8 weeks (p < 0.01 in three areas, p < 0.001 in four areas and no significance in the other two). The additional questions indicated fatigue reduction (both in general and in lower extremity), comfort level increase (after the adaptation period) and good acceptance, according to workers' answers, suggesting customized orthoses can be effective in reducing and preventing WMSDs in several body regions.

  4. First-principles studies of BN sheets with absorbed transition metal single atoms or dimers: stabilities, electronic structures, and magnetic properties.

    PubMed

    Ma, Dongwei; Lu, Zhansheng; Ju, Weiwei; Tang, Yanan

    2012-04-11

    BN sheets with absorbed transition metal (TM) single atoms, including Fe, Co, and Ni, and their dimers have been investigated by using a first-principles method within the generalized gradient approximation. All of the TM atoms studied are found to be chemically adsorbed on BN sheets. Upon adsorption, the binding energies of the Fe and Co single atoms are modest and almost independent of the adsorption sites, indicating the high mobility of the adatoms and isolated particles to be easily formed on the surface. However, Ni atoms are found to bind tightly to BN sheets and may adopt a layer-by-layer growth mode. The Fe, Co, and Ni dimers tend to lie (nearly) perpendicular to the BN plane. Due to the wide band gap of the pure BN sheet, the electronic structures of the BN sheets with TM adatoms are determined primarily by the distribution of TM electronic states around the Fermi level. Very interesting spin gapless semiconductors or half-metals can be obtained in the studied systems. The magnetism of the TM atoms is preserved well on the BN sheet, very close to that of the corresponding free atoms and often weakly dependent on the adsorption sites. The present results indicate that BN sheets with adsorbed TM atoms have potential applications in fields such as spintronics and magnetic data storage due to the special spin-polarized electronic structures and magnetic properties they possess.

  5. Exposures to inhalable and "total" oil mist aerosol by metal machining shop workers.

    PubMed

    Wilsey, P W; Vincent, J H; Bishop, M J; Brosseau, L M; Greaves, I A

    1996-12-01

    Several recent studies have compared worker personal aerosol exposures as measured by the current method with those obtained by a new approach based on collecting the inhalable fraction, intended to represent all the particles that are capable of entering through the nose and/or mouth during breathing. The present study investigated this relationship for a metal machining facility where aerosols were generated from severely refined, nonaqueous ("straight") cutting oils used during the lathe working of metal rod stock. Workers (n = 23) wore two personal aerosol samplers simulataneously, one of the 37-mm type (for "total" aerosol exposure, E37) and the other of the Institute of Occupational Medicine (IOM) type (for inhalable aerosol exposure, EIOM). The data were analyzed by weighted least squares linear regression to determine the coefficient S in the relation EIOM = S.E37. It was found that S = 2.96 +/- 0.60. This ratio-in which exposure to inhalable aerosol was greater than to "total" aerosol-is consistent with previous observations in other industries. The relative coarsenss of the oil mist aerosol, as estimated by cascade impactor measurements, probably explains the difference between the sampling methods. The collection of large "splash" droplets, may also contribute. Future occupational aerosol standards for metalworking fluids will be based on the new, health-related criteria, and exposures will be assessed on the basis of the inhalable fraction. Results of studies like that described here will enable assessment of the impact on future workplace aerosol exposure assessments of introducing new standards.

  6. A Study on the Welding Characteristics of Tailor Welded Blank Metal Sheets Using GTAW and Laser Welding

    NASA Astrophysics Data System (ADS)

    Thasanaraphan, Pornsak

    In this study, a computational and experimental effort was carried out to qualitatively understand the weld pool shape, distortion and residual stress for continuous laser welding and manual pulsed gas metal arc welding. For all the welding simulations given in this dissertation, a welding specific finite element package, SYSWELD, is used. This research focuses on the welding behavior observed in light-weight metal structures known as the tailor-welded blanks, TWBs. They are a combination of two or more metal sheets with different thickness and/or different materials that are welded together in a single plane prior to forming, e.g., stamping. They made from the low carbon steel. As laser welding experiment results show, the weld pool shape at the top and bottom surface, is strongly influenced by surface tension, giving it a characteristic hourglass shape. In order to simulate the hourglass shape, a new volumetric heat source model was developed to predict the transient temperature profile and weld pool shape, including the effect of surface tension. Tailor welded blanks with different thicknesses were examined in the laser welding process. All major physical phenomena such as thermal conduction, heat radiation and convection heat losses are taken into account in the model development as well as temperature-dependant thermal and mechanical material properties. The model is validated for the case of butt joint welding of cold rolled steel sheets. The results of the numerical simulations provide temperature distributions representing the shape of the molten pool, distortion and residual stress with varying laser beam power and welding speed. It is demonstrated that the finite element simulation results are in good agreement with the experiment results. This includes the weld pool shape and sheet metal distortion. While there is no experimental data to compare directly with residual stress results, the distorted shape provides an indirect measure of the welding

  7. An exact derivation of contact resistance to planar devices. [metal surface on semiconductor sheet

    NASA Technical Reports Server (NTRS)

    Schuldt, S. B.

    1978-01-01

    A mixed boundary-value problem is formulated for an imperfect rectangular contact to a semiconducting sheet (layer). An exact model for derivation of contact resistance is developed and its solution by conformal mapping and eigenfunction expansion is presented. The expression for contact resistance is similar to that for a perfect (lossless) contact but includes an additional term containing the lowest-order coefficient in the infinite series expansion of the complex potential function. The calculated contact resistances are compared with those obtained from three approximate models: lossless contact, transmission line, and extended transmission line models. The extended transmission line model appears to be a very satisfactory approximation provided the ratio of contact length to sheet thickness is no less than 0.5.

  8. Systematic investigation of geometrical parameters’ influence on the appearance of surface deflections in sheet metal forming

    NASA Astrophysics Data System (ADS)

    Weinschenk, A.; Volk, W.

    2016-08-01

    Surface deflections occur during springback, which follows deep drawing. They highly affect the visual appearance of outer skin components and are, therefore, undesirable. In this work, the influence of the part geometry on the shaping of surface deflections is investigated. The geometrical parameters of an exemplary component are varied and existing surface deflections are detected. For this, a component consisting of a multiple curved surface with an inserted door handle hollow is used, and AA6016, with a sheet thickness of 1.0 mm, as well as DC06, with a sheet thickness of 0.7 mm, are chosen. After the simulations are performed in AutoForm plus R6 TM , a virtual stone, Three-Point Gauging and the analysis of curvatures of the part before and after springback are used to detect surface deflections.

  9. Battery with a microcorrugated, microthin sheet of highly porous corroded metal

    DOEpatents

    LaFollette, Rodney M.

    2005-09-27

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  10. dc-Sheet resistance as sensitive monitoring tool of protein immobilization on thin metal films.

    PubMed

    Neff, H; Beeby, T; Lima, A M N; Borre, M; Thirstrup, C; Zong, W; de Almeida, L A L

    2006-03-15

    The suitability of high resolution, in situ dc-sheet resistance monitoring (SRM) as a simplified and reliable sensing technique towards detection and tracking of protein immobilization has been explored. Non-specific adsorption of bovine serum albumin (BSA) onto a very thin gold film, acting as the sensing resistor, has been employed as a model system. For comparison, the novel sensing method was combined with surface plasmon resonance (SPR) spectroscopy, using the same flow cell and sensing surface. Two different, well known adsorption states, involving a composite layer of irreversibly and reversibly bound BSA, were clearly resolved by both methods. Clearly structured, pronounced and fully reproducible film resistance modulations have been resolved in the associated SRM data. The transition from reversibly bound BSA to the diluted protein phase is associated with an unusually large decrease in the dc-sheet resistance. The observed resistance modulation magnitude for an adsorbed BSA monolayer corresponds to approximately 1%, and up to 100 mOmega at a 10 Omega sensing resistor. The sheet resistance of irreversibly bound BSA was determined to 0.24 kOmega/cm2, and the associated specific resistivity estimated to 1-2x10(4) Omega cm.

  11. Numerical Modeling of Magnesium Alloy Sheet Metal Forming at Elevated Temperature

    SciTech Connect

    Lee, Myeong-Han; Oh, Soo-Ik; Kim, Heon-Young; Kim, Hyung-Jong; Choi, Yi-Chun

    2007-05-17

    The development of light-weight vehicle is in great demand for enhancement of fuel efficiency and dynamic performance. The vehicle weight can be reduced effectively by using lightweight materials such as magnesium alloys. However, the use of magnesium alloys in sheet forming processes is still limited because of their low formability at room temperature and the lack of understanding of the forming process of magnesium alloys at elevated temperatures. In this study, uniaxial tensile tests of the magnesium alloy AZ31B-O at various temperatures were performed to evaluate the mechanical properties of this alloy relevant for forming of magnesium sheets. To construct a FLD (forming limit diagram), a forming limit test were conducted at temperature of 100 and 200 deg. C. For the evaluation of the effects of the punch temperature on the formability of a rectangular cup drawing with AZ31B-O, numerical modelling was conducted. The experiment results indicate that the stresses and possible strains of AZ31B-O sheets largely depend on the temperature. The stress decreases with temperature increase. Also, the strain increase with temperature increase. The numerical modelling results indicate that formability increases with the decrease in the punch temperature at the constant temperature of the die and holder.

  12. Filterable plasma concentration, glomerular filtration, tubular balance, and renal clearance of heavy metals and organic substances in metal workers

    SciTech Connect

    Araki, S.; Aono, H.; Yokoyama, K.; Murata, K.

    1986-07-01

    To estimate filterable plasma concentration (FPx), glomerular filtration, tubular balance, and renal clearance of heavy metals and organic substances, the authors examined the regressions of the 24-hr urinary excretion on glomerular filtration rate (GFR, 24-hr endogenous creatinine (Cn) clearance) in 19 gun-metal foundry workers with blood lead (Pb) concentrations of 25-59 micrograms/dl. It was estimated that the proportion of FPx to total plasma concentration was on average 15, 7, 3, 0.6, 0.06, and 0.008% for Pb, cadmium (Cd), manganese (Mn), zinc (Zn), chromium (Cr), and copper (Cu), respectively. The estimated FPx value was 2.8 X 10(2), 4, 0.08, and 2.8 X 10(4) micrograms/dl for hippuric acid (HA), delta-aminolevulinic acid (ALA), coproporphyrin (CP), and total urinary solutes (TUS), respectively. The estimated glomerular filtration was significantly greater than the zero level for all substances but inorganic mercury (Hg). Similarly, the estimated net tubular secretion was significantly greater than the zero level for Cr, Cu, and TUS; the net tubular reabsorption was significantly greater than the zero level for Pb, ALA, and CP. The renal clearance of ''filterable'' plasma substance was significantly greater than GFR for Cr, Cu, and TUS and was significantly smaller for Pb, ALA, and CP. Thus the renal excretory mechanisms of substances were classified into four major categories: glomerular filtration for Cd, Mn, Zn, HA, and Cn; glomerular filtration and net tubular secretion for Cr, Cu, and TUS; glomerular filtration and net tubular reabsorption for Pb, ALA, and CP; and no glomerular filtration, i.e., suspected tubular secretion, for Hg.

  13. Influence of surface processing on the fracture strength of structurally integrated PZT fibers in shaped sheet metal parts

    NASA Astrophysics Data System (ADS)

    Schmidt, Marek; Wittstock, Volker; Müller, Michael

    2015-03-01

    In the present state of the art, the function integration into lightweight metal structures is generally based upon adhesive bonding of sensors or actuators to the surface. A new technology enables a direct structural integration of lead-zirconatetitanate (PZT) fibers into local microstructures of metal sheets and subsequent joining by forming. This provides a complete functional integration of the piezoelectric ceramic in the metal for sensors and actuators purposes. In a further process step, the composite is shaped by deep drawing with a cup with double curvature radii of 100 mm into a complex 3D surface. During the shaping process it is expected that the PZT- fibers get damaged with the result of degradation of the piezoelectric function. This paper describes the application of various surface processing methods to improve the shaping behavior of the piezoceramic fibers. The production of interconnected parallel fibers is based on piezoceramic plates. The plates are treated by different surface processing. One experimental series is lapped and another series is extra polished by chemical mechanical polishing (CMP). The resulting plates were examined with regard to the fracture strength and the degradation of the piezoelectric properties during manufacturing and operation. It has been shown that the lapped and polished plates have a clearly better persistence with regard to the shaping processes compared to the unprocessed plates. The best results in this process were achieved by the polished plates, which is also transferable to the fibers. Furthermore, the piezoelectric characteristics were better preserved by the lapped and polished plates and fibers.

  14. [Study on lifting-related musculoskeletal disorders among workers in metal processing].

    PubMed

    Xiao, Guo-bing; Lei, Ling; Dempsey, Patrick; Ma, Zao-hua; Liang, You-xin

    2004-04-01

    To investigate lifting-related musculoskeletal disorders in metal processing, to analyze the risk factors, and to study the validity and feasibility of using NIOSH lifting equation in China. The questionnaires of semi-structured interview, the Ovako Working Posture Analysing System (OWAS) postural analysis and variables of the NIOSH equation were applied to the study. The study population consisted of 69 workers mainly involved in manual materials handling (MMH), categorized as Job A; and 51 machinery workers, served as controls, that were less MMH task involved, as Job B. The prevalence of low back pain (LBP), which was defined at least one episode lasting for more than 24 hours in the past 12 months, were 63.8% and 37.3% for Job A and Job B, respectively. However, the prevalence of LBP lasting for more than a week due to lifting were 26.09% and 5.88% for Job A and B, respectively. The proportion of awkward back postures were found higher in Job A than that of Job B (66% vs 63%, P < 0.05). The NIOSH Lifting Index (LI) was estimated to be 2.4 for Job A, and 0 < LI < 1 for Job B. The analysis of multiple regressions revealed that the repetitiveness of lifting and length of service had greatly attributed to the occurrence of LBP. The "composite load" (object weight x activity repetitiveness) had a significant adverse effect on lower back meaning that the objective weight remains an ingredient part of the risk. The occurrence of LBP is not only related to the force load, but the repetitiveness of lifting and awkward postures. The method of OWAS observation and US-NIOSH equation are important tools in assessing characteristics and risk factors of LBP for MMH tasks. Further study aimed at developing an integral scheme for the assessment system is needed.

  15. Pulmonary effects in workers exposed to indium metal: A cross-sectional study.

    PubMed

    Nakano, Makiko; Tanaka, Akiyo; Hirata, Miyuki; Iwasawa, Satoko; Omae, Kazuyuki

    2015-01-01

    Indium was added to the list of substances regulated by the Ordinance on Prevention of Hazards due to Specified Chemical Substances (OPHSCS) in 2013. Indium metal (IM), however, is not regulated by the OPHSCS due to insufficient information on pulmonary effects following exposure. From 2011 to 2013, a cross-sectional study was conducted on 141 IM-exposed workers at 11 factories. Subjective symptoms were assessed, including levels of serum biomarkers, spirometry readings and total and diffuse lung capacity. Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D) were selected as biomarkers of interstitial pneumonia. Indium serum concentration (In-S) and personal air sampling data were used to estimate exposure. Subjects were categorized into 5 groups based on occupation and type of exposure: smelting, soldering, dental technician, bonding and other. The highest level of In-S was 25.4 µg/l, and the mean In-S level was significantly higher in the smelting group than in other groups. In the smelting group, the prevalence of increased In-S levels was 9.1%, while that of abnormal KL-6 was 15.2%. A significant dose-effect relationship was observed between the In-S and KL-6 levels. No marked differences were observed between any of the groups in SP-D values, pulmonary symptoms, or pulmonary function test results. A total of 31% of the subjects worked in an environment with IM levels exceeding 0.3 µg/m(3), which requires a protective mask to be worn. For workers exposed to IM, work environments should be monitored, appropriate protective masks should be worn, and medical monitoring should be conducted according to the OPHSCS.

  16. Combined crystal plasticity and phase-field method for recrystallization in a process chain of sheet metal production

    NASA Astrophysics Data System (ADS)

    Vondrous, Alexander; Bienger, Pierre; Schreijäg, Simone; Selzer, Michael; Schneider, Daniel; Nestler, Britta; Helm, Dirk; Mönig, Reiner

    2015-02-01

    In sheet metal production, a typical process chain contains hot rolling, cold rolling and annealing as a sequence of consecutive processing steps. We investigate the grain structure evolution of body centered cubic low carbon steel and focus on recrystallization, by employing different computational methods which operate across the process chain and across length scales. In particular, we combine finite element crystal plasticity with phase-field simulations to study the effect of deformation of the grain structure by hot and cold rolling on recrystallization during annealing. The overall goal is to represent the most important technological quantities such as texture evolution and the fraction of recrystallization. The results of grain quantities are validated by a comparison of the orientation distribution functions with experimental electron backscatter measurements. The coupling of the simulation methods has shown that the effects of recrystallization can be recovered well, depending on the preceding processing conditions.

  17. Rigid-plastic and elastic-plastic finite element analysis on the clinching joint process of thin metal sheets

    NASA Astrophysics Data System (ADS)

    Jayasekara, Vishara; Min, Kyung Ho; Noh, Jeong Hoon; Kim, Min Tae; Seo, Jeong Min; Lee, Ho Yong; Hwang, Beong Bok

    2010-04-01

    This article describes the joining of thin metal sheets by a single stroke clinching process. Elastic-plastic and rigid-plastic finite element analysis were applied by employing Coulomb friction and constant shear friction in order to investigate the behavior of the clinch joint formation process. Four process variables, such as die diameter, die depth, groove width, and groove corner radius were selected to investigate the parametric effect on the clinch joint. The strength of clinch joints were evaluated by examining the separation strengths, such as peel strength and tensile shear strength, respectively. A failure diagram was constructed that summarizes the analysis results. The simulation results showed that die diameter and depth were the most decisive parameters for controlling the quality of the clinch joint, while the bottom's thickness was the most important evaluation parameter to determine the separation strengths.

  18. On the use of solid-shell elements for thin structures: Application to impact and sheet metal forming simulations

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid

    2016-10-01

    A family of linear and quadratic assumed-strain based solid-shell elements (SHB) is presented in this paper to simulate 3D thin structural problems including both quasi-static and dynamic analyses. The SHB solid-shell elements are based on a three-dimensional formulation, with only displacements as degrees of freedom, and a reduced integration technique with an arbitrary number of integration points along the thickness direction, which enables them to model 3D thin structures with only one layer of elements through the thickness. All SHB elements have been successfully implemented into ABAQUS dynamic/explicit and static/implicit codes. Several static and dynamic benchmark tests as well as sheet metal forming process simulations, involving large strain, material nonlinearity and contact, have been conducted to assess the performance of the SHB elements.

  19. Prevalence of musculoskeletal symptoms and associated factors: A cross-sectional study of metal workers in Bangladesh.

    PubMed

    Akter, Shamima; Maruf, Md Zia Uddin; Chowdhury, Suman Kanti

    2015-01-01

    There is a scarcity of evidence regarding musculoskeletal symptoms prevalence among metal workers at different worksites in Bangladesh. To determine the prevalence of musculoskeletal symptoms and associated factors among metal workers in Dhaka, Bangladesh. This cross-sectional study was performed in 5 out of 12 randomly selected metal tools manufacturing factories in Dhaka, Bangladesh. A total of 60 eligible participants (45 male and 15 female) were asked to complete the short Bengali version of the Dutch Musculoskeletal Questionnaire. In addition, observations within the workplace were performed using a predesigned checklist for identifying ergonomic risk factors. Prevalence of musculoskeletal symptoms during the last 12 months preceding data collection was reportedly 85%. Body regions reported to be most affected were upper back and lower back, then the wrist. Socio-demographic factors were not found to be significantly associated with musculoskeletal symptoms. In contrast, awkward posture and repetitive movement were significantly related to reports of musculoskeletal symptoms for the last 12 months preceding data collection. Results conclude that there is a high reported prevalence of musculoskeletal symptoms among metal workers, calling for an action on prevention and promotion in the work environment.

  20. Distribution of 24 elements in the internal organs of normal males and the metallic workers in Japan.

    PubMed

    Teraoka, H

    1981-01-01

    Concentrations of 24 elements in the internal organs from 12 healthy males and from 7 metallic workers in Japan were recorded. Markedly high concentrations of chromium were found in the respiratory organs (e.g., hilar lymph node and lung) of chromium plating and chromate refining workers, as well as in spleen, liver, kidney, and heart. High chromium concentrations were also found in one male who had terminated his employment 30 years prior to his death. In addition, high concentrations of nickel and tin were also found in the above-mentioned workers. Marked accumulations of titanium, the main element of paints, were found in the respiratory organs, spleen, liver, kidney, and heart of an airplane painter. The painter also had high concentrations of chromium, nickel, and cobalt in some of his organs. It was also noted that high concentrations of silicon, aluminum, and titanium-elements of rock-occurred in a stone mason.

  1. Distribution of 24 elements in the internal organs of normal males and the metallic workers in Japan

    SciTech Connect

    Teraoka, H.

    1981-07-01

    Concentrations of 24 elements in the internal organs from 12 health males and from 7 metallic workers in Japan were recorded. Markedly high concentrations of chromium were found in the respiratory organs (e.g., hilar lymph node and lung) of chromium plating and chromate refining workers, as well as in spleen, liver, kidney, and heart. High chromium concentrations were also found in one male who had terminated his employment 30 years prior to his death. In addition, high concentrations of nickel and tin were also found in the above-mentioned workers. Marked accumulations of titanium, the main element of paints, were found in the respiratory organs, spleen, liver, kidney, and heart of an airplane painter. The painter also had high concentrations of chromium, nickel, and cobalt in some of his organs. It was also noted that high concentrations of silicon, aluminum, and titanium--elements of rock--occurred in a stone mason.

  2. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    NASA Astrophysics Data System (ADS)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  3. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2.

    PubMed

    Couto, W R M; Miwa, R H; Fazzio, A

    2017-10-11

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  4. Contact Modelling in Isogeometric Analysis: Application to Sheet Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Cardoso, Rui P. R.; Adetoro, O. B.; Adan, D.

    2016-08-01

    Isogeometric Analysis (IGA) has been growing in popularity in the past few years essentially due to the extra flexibility it introduces with the use of higher degrees in the basis functions leading to higher convergence rates. IGA also offers the capability of easily reproducing discontinuous displacement and/or strain fields by just manipulating the multiplicity of the knot parametric coordinates. Another advantage of IGA is that it uses the Non-Uniform Rational B-Splines (NURBS) basis functions, that are very common in CAD solid modelling, and consequently it makes easier the transition from CAD models to numerical analysis. In this work it is explored the contact analysis in IGA for both implicit and explicit time integration schemes. Special focus will be given on contact search and contact detection techniques under NURBS patches for both the rigid tools and the deformed sheet blank.

  5. Multi criteria anisotropic adaptive remeshing for sheet metal forming in FORGE®

    NASA Astrophysics Data System (ADS)

    Perchat, Etienne; François, Guillaume; Coupez, Thierry

    2013-12-01

    In this paper we present an innovative automatic adaptive anisotropic remeshing technique that has been introduced in the commercial FEM software FORGE®. It enables the full 3D simulation of industrial applications of parts with a high aspect ratio such as sheets. An anisotropic mesh is generated in order to adapt to the part and tools geometries, and in order to minimize interpolation error on the velocity field and/or on any other user defined function (eg. temperature, strain …). By minimizing the estimated error, the anisotropic adapted meshes provide a highly accurate solution, often better than those obtained on globally-refined isotropic meshes and at a much lower cost due to the small total number of nodes..

  6. Exposure to wood dust and heavy metals in workers using CCA pressure-treated wood.

    PubMed

    Decker, Paul; Cohen, Beverly; Butala, John H; Gordon, Terry

    2002-01-01

    Chemical pesticide treatment enables relatively nonresistant woods to be used in outdoor construction projects. The most prevalent procedure used to protect these woods is pressure treatment with chromium, copper, and arsenic (CCA). This pilot study examined the airborne concentration and particle size distribution of wood particles, chromium, copper, and arsenic at both outdoor (measured over the whole work day) and indoor (measured during the performance of specific tasks) work sites. At the outdoor residential deck construction sites, the arithmetic mean total dust concentration, measured using personal filter cassette samplers, was 0.57 mg/m3. The mass median aerodynamic diameter (da) of the outdoor wood dust was greater than 20 microm. Indoor wood dust concentrations were significantly greater than those measured outdoor and were job category-dependent. The highest mean breathing zone dust concentration, 49.0 mg/m3, was measured at the indoor sanding operation. Personal impactor sampling demonstrated that the mean total airborne concentration of arsenic, but not chromium or copper, was consistently above recommended occupational exposure levels at the indoor work site, and occasionally at the outdoor work sites. At the indoor sanding operation, the mean total chromium, copper, and arsenic concentrations were 345, 170, and 342 microg/m3, respectively. Thus, significant exposure to airborne heavy metals can occur as a result of indoor and outdoor exposure to CCA pressure-treated wood dust. Therefore, current standards for wood dust may not adequately protect workers from the heavy metals commonly used in CCA pressure-treated wood.

  7. Investigating the Pulse Mode Laser Joining of Overlapped Plastic and Metal Sheets

    NASA Astrophysics Data System (ADS)

    Bauernhuber, Andor; Markovits, Tamás; Takács, János

    The growing utilization of plastic materials in our devices calls for joining them with traditional, often applied structural materials, like metals. Laser assisted metal plastic joining can be used to solve the problem mentioned above, however, relatively few materials have been investigated which could be used to create this special joint. In the course of this research, authors used pulse mode Nd:YAG laser source, structural steel and poly(methyl methacrylate) to create joining between rarely examined material pairs so far, and to explore the effects of technological settings like laser pulse shape, laser spot size, welding speed and joint strength. Material surfaces were also modified (sand blasting,) to enhance joint properties. In plastic material during joining and torn surfaces were investigated. Joints with good strength results were prepared to enable further research on transparent-absorbent metal plastic joining.

  8. Continuous process for forming sheet metal from an alloy containing non-dendritic primary solid

    DOEpatents

    Flemings, Merton C.; Matsuniya, Tooru

    1983-01-01

    A homogeneous mixture of liquid-solid metal is shaped by passing the composition from an agitation zone onto a surface moving relative to the exit of the agitation zone. A portion of the composition contacting the moving surface is solidified and the entire composition then is formed.

  9. Aircraft Assembly, Riveting and Surface Repair 2; Sheet Metal Work 2: 9855.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This course provides experience in assembly techniques, including repairs on aircraft structures, utilizing all methods from basic layout to surface protection of finished parts. Course content includes goals, specific objectives, metal fasteners, general structural repairs, and aircraft assembly. A bibliography and post-test are appended. Prior…

  10. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    NASA Astrophysics Data System (ADS)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  11. Numerical Method to Analyze Local Stiffness of the Workpiece to avoid Rebound During Electromagnetic Sheet Metal Forming

    SciTech Connect

    Risch, Desiree; Brosius, Alexander; Psyk, Verena; Kleiner, Matthias

    2007-04-07

    Electromagnetic sheet metal forming is a high speed forming process using pulsed magnetic fields to form metals with high electrical conductivity such as aluminum. Thereby, workpiece velocities of more than 300 m/s are achievable, which can cause difficulties when forming into a die: the kinetic energy, which is related to the workpiece velocity, must dissipate in a short time slot when the workpiece hits the die; otherwise undesired effects, for example rebound, can occur. One possibility to handle this shortcoming is to locally increase the stiffness of the workpiece. In order to be able to estimate the local stiffness a method is presented which is based on a modal analysis by means of the Finite-Element-Method. For this reason, it is necessary to fractionize the considered geometries into a part-dependent number of segments. These are subsequently analyzed separately to determine regions of low geometrical stiffness. Combined with the process knowledge concerning the velocity distribution within the workpiece over the time, a prediction of the feasibility of the forming process and a target-oriented design of the workpiece geometry will be possible. Numerical results are compared with experimental investigations.

  12. Evaluating levels and health risk of heavy metals in exposed workers from surgical instrument manufacturing industries of Sialkot, Pakistan.

    PubMed

    Junaid, Muhammad; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem

    2016-09-01

    The study aimed to monitor heavy metal (chromium, Cr; cadmium, Cd; nickel, Ni; copper, Cu; lead, Pb; iron, Fe; manganese, Mn; and zinc, Zn) footprints in biological matrices (urine, whole blood, saliva, and hair), as well as in indoor industrial dust samples, and their toxic effects on oxidative stress and health risks in exposed workers. Overall, blood, urine, and saliva samples exhibited significantly higher concentrations of toxic metals in exposed workers (Cr; blood 16.30 μg/L, urine 58.15 μg/L, saliva 5.28 μg/L) than the control samples (Cr; blood 5.48 μg/L, urine 4.47 μg/L, saliva 2.46 μg/L). Indoor industrial dust samples also reported to have elevated heavy metal concentrations, as an example, Cr quantified with concentration of 299 mg/kg of dust, i.e., more than twice the level of Cr in household dust (136 mg/kg). Superoxide dismutase (SOD) level presented significant positive correlation (p ≤ 0.01) with Cr, Zn, and Cd (Cr > Zn > Cd) which is an indication of heavy metal's associated raised oxidative stress in exposed workers. Elevated average daily intake (ADI) of heavy metals resulted in cumulative hazard quotient (HQ) range of 2.97-18.88 in workers of different surgical units; this is an alarming situation of health risk implications. Principal component analysis-multiple linear regression (PCA-MLR)-based pie charts represent that polishing and cutting sections exhibited highest metal inputs to the biological and environmental matrices than other sources. Heavy metal concentrations in biological matrices and dust samples showed a significant positive correlation between Cr in dust, urine, and saliva samples. Current study will help to generate comprehensive base line data of heavy metal status in biomatrices and dust from scientifically ignored industrial sector. Our findings can play vital role for health departments and industrial environmental management system (EMS) authorities in policy making and implementation.

  13. Density functional analysis of gaseous molecules adsorbed on metal ion/defective nano-sheet graphene

    NASA Astrophysics Data System (ADS)

    Deng, Jin-Pei; Chuang, Wen-Hua; Tai, Chin-Kuen; Kao, Hsien-Chang; Pan, Jiunn-Hung; Wang, Bo-Cheng

    2016-11-01

    Density functional theory was applied to calculate the adsorption property of metal/hexa-vacancy defective graphene (denoted as HDG-M, M: Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) with O- and N-dopants. We investigate the adsorption properties of these complexes between gaseous molecules and HDG-M. Our results show that HDG-Cu has a high selectivity for O2, but HDG-Fe has a good ability to capture many gases such as CO, NO and O2. Our calculations could provide useful information for designing new graphene-based adsorbents to remove undesired gases, which may poison the metal catalysts in reaction processes.

  14. Orthotropic Yield Criteria for Description of the Anistropy in Tension and Compression of Sheet Metals

    DTIC Science & Technology

    2007-08-07

    yielding is observed. To account for both strength differential (SD) effects and the anisotropy displayed by hcp metals, Hosford (1966) pro- posed the...twinning ( Hosford and Allen, 1973), which typically leads to lower initial yield stresses in compression than in tension for in-plane loadings of...applied shear stress, i.e., yield in tension and compression should be different. Hosford and Allen (1973) used a modified Taylor polycrystal model to

  15. A DFT investigation of CO adsorption on VIIIB transition metal-doped graphene sheets

    NASA Astrophysics Data System (ADS)

    Wanno, Banchob; Tabtimsai, Chanukorn

    2014-03-01

    Adsorptions of CO on pristine, Fe-, Ru-, Os-, Co-, Rh-, Ir-, Ni-, Pd-, and Pt-doped graphene were investigated, using density functional theory calculation at B3LYP/LanL2DZ theoretical level. This work revealed that the transition metal doped graphenes were more highly sensitive to CO adsorption than that of pristine graphene. The Os- and Fe-doped graphenes displayed the strongest interaction with C and O atoms of CO molecule, respectively.

  16. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  17. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    NASA Astrophysics Data System (ADS)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  18. Cyclic Bending and Stationary Drawing Deformation of Metal Sheets : Experiments and Associated Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Moreira, L. P.; Romão, E. C.; Ferron, G.; Vieira, L. C. A.; Sampaio, A. P.

    2005-08-01

    A simple bend-draw experimental device is employed to analyze the behavior of narrow strips submitted to a nearly cyclic bending deformation mode followed by a steady state drawing. In this bending-drawing experiment, the strip is firstly bent over a central bead and two lateral beads by applying a controlled holding load and then is pulled out of device throughout the bead radii by a drawing load. The apparatus is mounted in a standard tensile test machine where the holding and drawing loads are recorded with an acquisition data system. The specimen is a rectangular strip cut with 320 mm long and 7 mm wide. The longitudinal (1) and width (w) strip plastic strains are determined from two hardness marks 120 mm spaced whereas the corresponding thickness (t) strain is obtained by volume conservation. Previous experiments showed a correlation between the plastic strain (ɛw/ɛt)BD resulting from the bending-drawing and the Lankford R-values obtained from the uniaxial tensile test. However, previous 3D numerical simulations based upon Hill's quadratic and Ferron's yield criteria revealed a better correlation between the (ɛw/ɛt)BD and the stress ratio σPS/σ(α), where σPS stands for the plane-strain tension yield stress and σ(α) for the uniaxial yield stress in uniaxial tension along the drawing direction making an angle α with the rolling direction. In the present work, the behavior of an IF steel sheet is firstly evaluated by means of uniaxial tensile and drawing-bending experiments conducted at every 15 degrees with respect to the rolling direction. Afterwards, the bending-drawing experiment is investigated with the commercial finite element (FE) code ABAQUS/Standard in an attempt to assess the influence of cyclic loadings upon the bending-drawing strain-ratios.

  19. Prediction of Forming Limit Diagrams in Sheet Metals Using Different Yield Criteria

    NASA Astrophysics Data System (ADS)

    Noori, H.; Mahmudi, R.

    2007-09-01

    Based on the analysis proposed by Jones and Gillis (JG), forming limit diagrams (FLDs) are calculated from idealization of the sheet deformation into three stages: (I) homogenous deformation up to maximum load, (II) deformation localization under constant load, and (III) local necking with a precipitous drop in load. A constant cross-head speed is assumed in the deformation program for the first time. This means that the logarithmic strain rate varies during deformation, while in all previous works, the strain rate is assumed to be constant. In the calculation, three yield criteria including Hill’s 1948 quadratic criterion, Hill’s 1979 nonquadratic criterion, and Hosford’s 1979 criterion are used. Using these yield criteria and the JG model, the effects of material parameters such as strain hardening, strain-rate sensitivity, and plastic anisotropy on the shape and level of the forming limit curves are studied. In addition, the capability of the JG model to predict the limit strains is demonstrated through comparison of calculated results with experimental data for interstitial-free (IF) steel and aluminum alloys 2036-T4, 3003-O, 5052-O, and 8014-O. It is observed that while the model predicts the FLDs of 2036-T4 and 5052-O more closely, it overestimates the forming limit strains for IF steel, 3003-O, and 8014-O aluminum alloys. It is concluded that the accuracy of the prediction depends on the measured mechanical properties of the material, the applied yield criterion, and the method of strain measurement, which determines how the FLDs are passed through different points. For those cases in which the predicted FLD is above the experimental one, care must be taken not to use the models for industrial purposes.

  20. Paradigm Change: Alternate Approaches to Constitutive and Necking Models for Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Stoughton, Thomas B.; Yoon, Jeong Whan

    2011-08-01

    This paper reviews recent work proposing paradigm changes for the currently popular approach to constitutive and failure modeling, focusing on the use of non-associated flow rules to enable greater flexibility to capture the anisotropic yield and flow behavior of metals using less complex functions than those needed under associated flow to achieve that same level of fidelity to experiment, and on the use of stress-based metrics to more reliably predict necking limits under complex conditions of non-linear forming. The paper discusses motivating factors and benefits in favor of both associated and non-associated flow models for metal forming, including experimental, theoretical, and practical aspects. This review is followed by a discussion of the topic of the forming limits, the limitations of strain analysis, the evidence in favor of stress analysis, the effects of curvature, bending/unbending cycles, triaxial stress conditions, and the motivation for the development of a new type of forming limit diagram based on the effective plastic strain or equivalent plastic work in combination with a directional parameter that accounts for the current stress condition.

  1. Half-metallic and magnetic properties in nonmagnetic element embedded graphitic carbon nitride sheets.

    PubMed

    Meng, Bo; Xiao, Wen-zhi; Wang, Ling-ling; Yue, Li; Zhang, Song; Zhang, Hong-yun

    2015-09-14

    We have investigated the structures, electronic structures and magnetic properties of the triazine-based g-C3N4 (gt-C3N4) monolayer doped with B, Al, and Cu atoms based on density functional theory using ab initio calculations. The B atom prefers to be situated at the center of the triazine ring, whereas the Al and Cu atoms tend to be located above the center of the triazine ring. The doping at the interstitial sites results in nonplanar structures which are thermodynamically stable. Each dopant atom induces a total magnetic moment of 1.0 μB which mainly arises from the pz orbitals because the n-type doping injects unpaired electrons into anti-π orbitals. The results obtained from the GGA-PBE and HSE06 schemes show that all the doped systems exhibit half-metallic behaviors. B- and Al-doped systems are at a ferromagnetic ground state, while the Cu-doped case is at an anti-ferromagnetic ground state. The long-range half-metallic ferromagnetic order is attributed to the p-p interactions. In particular, the estimated Curie temperature implies that the systems doped with B are potential candidates for spintronics applications in future.

  2. Paradigm Change: Alternate Approaches to Constitutive and Necking Models for Sheet Metal Forming

    SciTech Connect

    Stoughton, Thomas B.; Yoon, Jeong Whan

    2011-08-22

    This paper reviews recent work proposing paradigm changes for the currently popular approach to constitutive and failure modeling, focusing on the use of non-associated flow rules to enable greater flexibility to capture the anisotropic yield and flow behavior of metals using less complex functions than those needed under associated flow to achieve that same level of fidelity to experiment, and on the use of stress-based metrics to more reliably predict necking limits under complex conditions of non-linear forming. The paper discusses motivating factors and benefits in favor of both associated and non-associated flow models for metal forming, including experimental, theoretical, and practical aspects. This review is followed by a discussion of the topic of the forming limits, the limitations of strain analysis, the evidence in favor of stress analysis, the effects of curvature, bending/unbending cycles, triaxial stress conditions, and the motivation for the development of a new type of forming limit diagram based on the effective plastic strain or equivalent plastic work in combination with a directional parameter that accounts for the current stress condition.

  3. Springback Control of Sheet Metal Forming Based on High Dimension Model Representation and Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Long, Tang; Hu, Wang; Yong, Cai; Lichen, Mao; Guangyao, Li

    2011-08-01

    Springback is related to multi-factors in the process of metal forming. In order to construct an accurate metamodel between technical parameters and springback, a general set of quantitative model assessment and analysis tool, termed high dimension model representations (HDMR), is applied to building metamodel. Genetic algorithm is also integrated for optimization based on metamodel. Compared with widely used metamodeling techniques, the most remarkable advantage of this method is its capacity to dramatically reduce sampling effort for learning the input-output behavior from exponential growth to polynomial level. In this work, the blank holding forces (BHFs) and corresponding key time are design variables. The final springback is well controlled by the HDMR-based metamodeling technique.

  4. Prediction of inhomogeneous texture in clad sheet metals by hot roll bond method

    NASA Astrophysics Data System (ADS)

    Choi, Shi-Hoon; Kwon, Jae Wook; Oh, Kyu Hwan

    1996-06-01

    A finite element analysis was applied to analyze the evolution of an inhomogeneity of rolling texture in hot rolled clad metal with Taylor-Bishop-Hill model and Renourd-Winterberger method. The shear texture has been developed in the surface layer of the aluminum and plane strain texture has been developed in the center layer. The calculated texture variations through thickness direction could simulate experimental texture using deformation gradient from FEM. The ratio of shear strain to rolling strain, x, which represents the degree of rotation about transverse direction could give the degree of development of shear texture. The larger value of x gives the larger crystal rotation about transverse direction and subsequently the development of shear texture. The calculated (111) pole figures were in good agreement with experimentally measured pole figures.

  5. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  6. On the modelling of complex kinematic hardening and nonquadratic anisotropic yield criteria at finite strains: application to sheet metal forming

    NASA Astrophysics Data System (ADS)

    Grilo, Tiago J.; Vladimirov, Ivaylo N.; Valente, Robertt A. F.; Reese, Stefanie

    2016-06-01

    In the present paper, a finite strain model for complex combined isotropic-kinematic hardening is presented. It accounts for finite elastic and finite plastic strains and is suitable for any anisotropic yield criterion. In order to model complex cyclic hardening phenomena, the kinematic hardening is described by several back stress components. To that end, a new procedure is proposed in which several multiplicative decompositions of the plastic part of the deformation gradient are considered. The formulation incorporates a completely general format of the yield function, which means that any yield function can by employed by following a procedure that ensures the principle of material frame indifference. The constitutive equations are derived in a thermodynamically consistent way and numerically integrated by means of a backward-Euler algorithm based on the exponential map. The performance of the constitutive model is assessed via numerical simulations of industry-relevant sheet metal forming processes (U-channel forming and draw/re-draw of a panel benchmarks), the results of which are compared to experimental data. The comparison between numerical and experimental results shows that the use of multiple back stress components is very advantageous in the description of springback. This holds in particular if one carries out a comparison with the results of using only one component. Moreover, the numerically obtained results are in excellent agreement with the experimental data.

  7. High load-bearing multi-material-joints of metal sheets and composites by incremental in-situ forming processes

    NASA Astrophysics Data System (ADS)

    Seidlitz, Holger; Fritzsche, Sebastian; Bambach, Markus; Gerstenberger, Colin

    2016-10-01

    Thermo-mechanically flow-formed joints (FDJ) are an appropriate joining technology to realize high load-bearing multi-material-joints between fiber reinforced thermoplastics and sheet metals, without additional joining components. As in the automotive industry new vehicle and lightweight designs with one-sided accessibility joints are required, the technology which so far requires a two-sided accessibility of the joint, is examined for the ability to be performed with one-sided accessibility. The main part of the paper are therefore experimental studies on the one-sided manufacturing of FDJ-joints without an additional forming tool and their examination with head pull test and tension shear test according to DIN EN ISO 14272 and DIN EN ISO 14273. In this context, a tool and an experimental setup were designed to provide a corresponding joint production of a material combination of continuous glass fiber reinforced polypropylene (Plytron) and an aluminum alloy (EN AW-6082 T6). In the experiment, the novel joints bear maximum forces of 291 N in the head pull test and 708 N in the tension shear test.

  8. Noise-Induced Hearing Loss in Korean Workers: Co-Exposure to Organic Solvents and Heavy Metals in Nationwide Industries

    PubMed Central

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Background Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. Methods We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. Results In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. Conclusion This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks. PMID:24870407

  9. Forming of a super plastic sheet metal made of MgAZ31 alloy

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan I. O.; Al-Matari, Mustafa A. A.; Nazzal, M. A. H.

    2016-08-01

    Metal forming industries are constantly looking for advanced innovation, economical and energy efficient techniques. Superplastic forming has a great potential to be one of those advanced forming methods. It is a near net shape forming process which uses a unique type of materials where elongation exceeds 200% during a controlled forming conditions, e.g. temperature, pressure, and strain rate. Most of superplastic materials are formed by gas technique at elevated temperature. The main objectives of the research work in this paper were: to study the effects of the forming schemes on the forming time and thickness distribution of the formed and device a method to improve the forming part thickness and its uniformity distribution and the forming time. In this paper, a hydraulic and heating system were designed and manufactured to facilitate the experimental investigation. The superplastic magnesium alloy AZ31, Mg AZ31, was formed at 350°C with different strain rates to investigate the effect of the forming pressure profiles on the thickness uniformity of the superplastic formed part. The pressure profiles were generated based on Dutta and Mukherjee analytical approach. Finally, a variable strain rate method is modified to improve the uniformity of the thickness distribution of the formed part and reduce the forming time; which is a major limitation of superplastic forming.

  10. Noise emission zones in an automobile sheet-metal pressing plant, a 25-year follow-up study at three locations in the plant.

    PubMed

    Brühl, P; Davidsson, C; Ivarsson, A

    1996-01-01

    The Volvo plant at Olofström, Sweden is engaged in the pressing and assembling of sheet-metal components for automobiles. During the past 25 years, determined efforts have been made to introduce less noisy methods of production and to limit the levels of noise emission in three large workshops at the plant. Noise levels were mapped with the aid of stationary noise measurements. The results are expressed in terms of noise emission zones and presented as noise contour maps. The investigations were made on four occasions between 1967 and 1991. Following the comparative area calculations of the noise emission zones, it was deduced that the noise levels had been significantly reduced, despite an increased production. The results show that noise reduction measures applied to the presses. An increase in automation in sheet-metal handling, improved quality in the pressing of components and changes in the range of products have contributed to the reduction of noise levels at the plant.

  11. Formability of Al 5xxx Sheet Metals Using Pulsed Current for Various Heat Treatments

    SciTech Connect

    Salandro, Wesley A.; Jones, Joshua J.; McNeal, Timothy A.; Roth, John T.; Hong, Sung Tae; Smith, Mark T.

    2010-10-01

    Previous studies have shown that the presence of a pulsed electrical current, applied during the deformation process of an aluminum specimen, can significantly improve the formability of the aluminum without heating the metal above its maximum operating temperature range. The research herein extends these findings by examining the effect of electrical pulsing on 5052 and 5083 Aluminum Alloys. Two different parameter sets were used while pulsing three different heat treatments (As Is, 398°C, and 510°C) for each of the two aluminum alloys. For this research, the electrical pulsing is applied to the aluminum while the specimens are deformed, without halting the deformation process (a manufacturing technique known as Electrically-Assisted Manufacturing). The analysis focuses on establishing the effect the electrical pulsing has on the aluminum alloy’s various heat treatments by examining the displacement of the material throughout the testing region of dogbone-shaped specimens. The results from this research show that pulsing significantly increases the maximum achievable elongation of the aluminum (when compared to baseline tests conducted without electrical pulsing). Another beneficial effect produced by electrical pulsing is that the engineering flow stress within the material is considerably reduced. The electrical pulses also cause the aluminum to deform non-uniformly, such that the material exhibits a diffuse neck where the minimum deformation occurs near the ends of the specimen (near the clamps) and the maximum deformation occurs near the center of the specimen (where fracture ultimately occurs). This diffuse necking effect is similar to what can be experienced during superplastic deformation. However, when comparing the presence of a diffuse neck in this research, electrical pulsing does not create as significant of a diffuse neck as superplastic deformation. Electrical pulsing has the potential to be more efficient than traditional methods of incremental

  12. Municipal waste incinerators: air and biological monitoring of workers for exposure to particles, metals, and organic compounds

    PubMed Central

    Maitre, A; Collot-Fertey, D; Anzivino, L; Marques, M; Hours, M; Stoklov, M

    2003-01-01

    Aims: To evaluate occupational exposure to toxic pollutants at municipal waste incinerators (MWIs). Methods: Twenty nine male subjects working near the furnaces in two MWIs, and 17 subjects not occupationally exposed to combustion generated pollutants were studied. Individual air samples were taken throughout the shift; urine samples were collected before and after. Stationary air samples were taken near potential sources of emission. Results: Occupational exposure did not result in the infringement of any occupational threshold limit value. Atmospheric exposure levels to particles and metals were 10–100 times higher in MWIs than at the control site. The main sources were cleaning operations for particles, and residue transfer and disposal operations for metals. MWI workers were not exposed to higher levels of polycyclic aromatic hydrocarbons than workers who are routinely in contact with vehicle exhaust. The air concentrations of volatile organic compounds and aldehydes were low and did not appear to pose any significant threat to human health. Only the measurement of chlorinated hydrocarbon levels would seem to be a reliable marker for the combustion of plastics. Urine metal levels were significantly higher at plant 1 than at plant 2 because of high levels of pollutants emanating from one old furnace. Conclusion: While biological monitoring is an easy way of acquiring data on long term personal exposure, air monitoring remains the only method that makes it possible to identify the primary sources of pollutant emission which need to be controlled if occupational exposure and environmental pollution are to be reduced. PMID:12883016

  13. An ergonomics intervention program to prevent worker injuries in a metal autoparts factory.

    PubMed

    Poosanthanasarn, Nitaya; Lohachit, Chantima; Fungladda, Wijitr; Sriboorapa, Sooth; Pulkate, Chompusakdi

    2005-03-01

    An ergonomics intervention program (EIP) was conducted with male employees working in the pressing and storage sections of a metal autoparts factory in Samut Prakan Province, Thailand. The objectives of this study were to assess the causes of injuries in the pressing and storage sections of that factory, and to improve working conditions by reducing worker injuries from accidents and low back muscular discomfort, using an EIR The study design used a participatory research approach which was quasi-experimental with pretest-posttest evaluations, with a non-equivalent control group. A total of 172 male participants working in Building A were the target group for assessing causes of injury. A retrospective study of official accident information, and questionnaires for general information, health and muscular discomfort, injury frequency rate (IFR), injury severity rate (ISR), medical expenses, and EIP design. Two groups of employees volunteered for the study on muscular back discomfort. The first group of 35 persons volunteered to participate in the EIP (EIP group), and the second 17 persons from Building B did not (non-EIP group). The EIP was composed of 4 major categories: (1) engineering improvement, (2) change in personal protective equipment, (3) environmental improvement, (4) administrative intervention, training, and health education. Low back muscular discomfort was measured through questionnaires on subjective feelings of muscular discomfort, and by surface electromyography (sEMG). Muscle activities were measured by sEMG of the left and right erector spinae and multifidus muscles, and evaluated by multivariate test for dependent samples (paired observation), and multivariate test for two independent samples. After EIP, IFR decreased 65.46%, ISR decreased 41.02%, and medical expenses decreased 42.79%. The low back muscular loads of the EIP group were significantly reduced, with a 95% confidence level (p < 0.05) while those of the non-EIP group were not

  14. Study of cancer incidence among 8530 male workers in eight Norwegian plants producing ferrosilicon and silicon metal

    PubMed Central

    Hobbesland, A.; Kjuus, H.; Thelle, D. S.

    1999-01-01

    OBJECTIVES: To examine the association between cancer incidence, in particular incidence of lung cancer, and duration of work among employees in eight Norwegian plants producing ferrosilicon and silicon metal. METHODS: Among men first employed during 1933-91 and with at least 6 months in these plants, the incident cases of cancer during 1953-91 were obtained from The Cancer Registry of Norway. The numbers of various cancers were compared with expected figures calculated from age and calendar time specific rates for Norwegian men during the same period. Internal comparisons of rates were performed with Poisson regression analysis. The final cohort comprised 8530 men. RESULTS: A total of 832 cases of cancer were observed against 786 expected (standardised incidence ratio (SIR) 1.06). Among the furnace workers an increased incidence of lung cancer (SIR 1.57) and testicular cancer (SIR 2.30) was found. Internal comparisons of rates by Poisson regression analysis among the rural furnace workers showed a positive trend between incidence of lung cancer and duration of work of 1.05 (95% confidence interval (95% CI) 1.00 to 1.10)/work-year. Excess cases of prostate and kidney cancer were found among blue collar non-furnace workers, in particular among the mechanics. CONCLUSION: The results suggest associations between furnace work and lung and testicular cancer, and between non-furnace work and prostate cancer.   PMID:10615296

  15. Massachusetts Beryllium Screening Program for Former Workers of Wyman-Gordon, Norton Abrasives, and MIT/Nuclear Metals

    SciTech Connect

    Pepper, L. D.

    2008-05-21

    The overall objective of this project was to provide medical screening to former workers of Wyman-Gordon Company, Norton Abrasives, and MIT/Nuclear Metals (NMI) in order to prevent and minimize the health impact of diseases caused by site related workplace exposures to beryllium. The program was developed in response to a request by the U.S. Department of Energy (DOE) that had been authorized by Congress in Section 3162 of the 1993 Defense Authorization Act, urging the DOE to carry out a program for the identification and ongoing evaluation of current and former DOE employees who are subjected to significant health risks during such employment." This program, funded by the DOE, was an amendment to the medical surveillance program for former DOE workers at the Nevada Test Site (NTS). This program's scope included workers who had worked for organizations that provided beryllium products or materials to the DOE as part of their nuclear weapons program. These organizations have been identified as Beryllium Vendors.

  16. [Influence of work intensity on development of arterial hypertension in metal-mining workers].

    PubMed

    Ustinova, O Iu; Alekseev, V B; Rumiantseva, A N; Orehova, Ia V

    2013-01-01

    The article covers data on influence of working shifts duration and shift work intensity on cardiovascular system functioning in operators of mining excavators. Findings are that 8 hours shift with regular shift schedule (40 working hours per week) gives significant load on cardiovascular system of workers engaged into underground activities. 50% of mining excavator operators following this working schedule develop transitory arterial hypertension within 10 years. Longer work shift over 8 hours and more intensive shifting schedule over 40 hours per week causes stable arterial hypertension within 3 months in 60% of workers, in 10% of cases associated with lower functioning of sinus node.

  17. Triggers for β-sheet formation at the hydrophobic-hydrophilic interface: high concentration, in-plane orientational order, and metal ion complexation.

    PubMed

    Hoernke, Maria; Falenski, Jessica A; Schwieger, Christian; Koksch, Beate; Brezesinski, Gerald

    2011-12-06

    Amyloid formation plays a causative role in neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Soluble peptides form β-sheets that subsequently rearrange into fibrils and deposit as amyloid plaques. Many parameters trigger and influence the onset of the β-sheet formation. Early stages are recently discussed to be cell-toxic. Aiming at understanding various triggers such as interactions with hydrophobic-hydrophilic interfaces and metal ion complexation and their interplay, we investigated a set of model peptides at the air-water interface. We are using a general approach to a variety of diseases such as Alzheimer's disease, Parkinson's disease, and type II diabetes that are connected to amyloid formation. Surface sensitive techniques combined with film balance measurements have been used to assess the conformation of the peptides and their orientation at the air-water interface (IR reflection-absorption spectroscopy). Additionally, the structures of the peptide layers were characterized by grazing incidence X-ray diffraction and X-ray reflectivity. The peptides adsorb to the air-water interface and immediately adopt an α-helical conformation. This helical intermediate transforms into β-sheets upon further triggering. The factors that result in β-sheet formation are dependent on the peptide sequence. In general, the interface has the strongest effect on peptide conformation compared to high concentrations or metal ions. Metal ions are able to prevent aggregation in bulk but not at the interface. At the interface, metal ion complexation has only minor effects on the peptide secondary structure, influencing the in-plane structure that is formed in two dimensions. At the air-water interface, increased concentrations or a parallel arrangement of the α-helical intermediates are the most effective triggers. This study reveals the role of various triggers for β-sheet formation and their complex interplay. Our main finding is that the

  18. [Cardiovascular diseases in workers engaged into metal mining industry and mechanical engineering].

    PubMed

    Korzeneva, E V; Sineva, E L

    2007-01-01

    Peculiarities of cardiovascular diseases among workers exposed to noise and vibration include hyperkinetic hemodynamic type supporting early terms of cardiovascular functions disorder. Veloergometry and echocardiography are highly informative and diagnostic value, so helpful in early diagnosis of circulatory disorders. The authors specified objective criteria of risk associated with occupationally related cardiovascular diseases.

  19. A Fenton-like oxidation process using corrosion of iron metal sheet surfaces in the presence of hydrogen peroxide: a batch process study using model pollutants.

    PubMed

    Namkung, K C; Burgess, A E; Bremner, D H

    2005-03-01

    This study evaluates a new method for chemically destroying organic pollutants in wastewater using spontaneous corrosion of iron metal sheet surfaces in the presence of hydrogen peroxide. Model pollutants (phenol and benzoic acid) were degraded in batch experiments to investigate which parameters affected the process performance. Iron metal sheet surfaces spontaneously corrode under acidic conditions producing iron species (mainly ferrous ions) dissolved in aqueous solution, which react with hydrogen peroxide via the Fenton reaction. In order to optimise the oxidation system, several factors (pH, H2O2 dosage, initial concentration of organic substances) affecting corrosion of the iron metal sheet surface were investigated. Total iron concentration in solution was investigated with different dosages of H2O2 (100 mg l(-1), 1000 mg l(-1) and 1900 mg l(-1)) at different pH values (1.5, 2.5 and 3.0). Iron corrosion increased with the decrease of pH. The addition of H2O2 resulted in a significant increase of iron corrosion. Organic substances also had a marked effect with, for instance, the presence of phenol or benzoic acid resulting in a considerable increase of iron corrosion. In contrast, the absence of either hydrogen peroxide or iron metal brought no change in total organic carbon (TOC). In order to obtain the most effective combination of parameters for TOC removal of phenol solution, experiments were conducted under varied conditions. The experimental results showed that there is an optimum pH requirement (in this work, 2.5). The factors affecting the TOC removal are discussed and the oxidation mechanisms leading to mineralization of organic substances are proposed.

  20. A novel approach to estimating potential maximum heavy metal exposure to ship recycling yard workers in Alang, India.

    PubMed

    Deshpande, Paritosh C; Tilwankar, Atit K; Asolekar, Shyam R

    2012-11-01

    The 180 ship recycling yards located on Alang-Sosiya beach in the State of Gujarat on the west coast of India is the world's largest cluster engaged in dismantling. Yearly 350 ships have been dismantled (avg. 10,000 ton steel/ship) with the involvement of about 60,000 workers. Cutting and scrapping of plates or scraping of painted metal surfaces happens to be the commonly performed operation during ship breaking. The pollutants released from a typical plate-cutting operation can potentially either affect workers directly by contaminating the breathing zone (air pollution) or can potentially add pollution load into the intertidal zone and contaminate sediments when pollutants get emitted in the secondary working zone and gets subjected to tidal forces. There was a two-pronged purpose behind the mathematical modeling exercise performed in this study. First, to estimate the zone of influence up to which the effect of plume would extend. Second, to estimate the cumulative maximum concentration of heavy metals that can potentially occur in ambient atmosphere of a given yard. The cumulative maximum heavy metal concentration was predicted by the model to be between 113 μg/Nm(3) and 428 μg/Nm(3) (at 4m/s and 1m/s near-ground wind speeds, respectively). For example, centerline concentrations of lead (Pb) in the yard could be placed between 8 and 30 μg/Nm(3). These estimates are much higher than the Indian National Ambient Air Quality Standards (NAAQS) for Pb (0.5 μg/Nm(3)). This research has already become the critical science and technology inputs for formulation of policies for eco-friendly dismantling of ships, formulation of ideal procedure and corresponding health, safety, and environment provisions. The insights obtained from this research are also being used in developing appropriate technologies for minimizing exposure to workers and minimizing possibilities of causing heavy metal pollution in the intertidal zone of ship recycling yards in India. Copyright

  1. Metals Fact Sheet: Neodymium

    SciTech Connect

    1992-11-01

    Neodymium was discovered in 1898 when it was separated from {open_quotes}dydimium,{close_quotes} a praseodymium-neodymium compound that was thought to be only one element. {open_quotes}Neodymium{close_quotes} is derived from the Greek words {open_quotes}neos{close_quotes} and {open_quotes}didymos,{close_quotes} which translates to {open_quotes}new twin.{close_quotes} This article discusses sources and applications of the element, and reviews world reserves and demands. Price trends in the commodity are also noted.

  2. Metals fact sheet - Dysprosium

    SciTech Connect

    1997-01-01

    The article contains a summary of factors pertinent to dysprosium use. Geology and exploitation, mineral sources, production processes, global production,applications, and the dysprosium market are reviewed. Applications very briefly described include use as a cooling agent in nuclear control rods, magnets, magnetostrictive devices, phosphors, photoelectric devices, and glass. Current and historical market prices are given.

  3. NIOSH field studies team assessment: Worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Eastlake, Adrienne C; Beaucham, Catherine C; Geraci, Charles L

    2016-11-01

    The ubiquitous use of engineered nanomaterials-particulate materials measuring approximately 1-100 nanometers (nm) on their smallest axis, intentionally engineered to express novel properties-in semiconductor fabrication poses unique issues for protecting worker health and safety. Use of new substances or substances in a new form may present hazards that have yet to be characterized for their acute or chronic health effects. Uncharacterized or emerging occupational health hazards may exist when there is insufficient validated hazard data available to make a decision on potential hazard and risk to exposed workers under condition of use. To advance the knowledge of potential worker exposure to engineered nanomaterials, the National Institute for Occupational Safety and Health Nanotechnology Field Studies Team conducted an on-site field evaluation in collaboration with on-site researchers at a semiconductor research and development facility on April 18-21, 2011. The Nanomaterial Exposure Assessment Technique (2.0) was used to perform a complete exposure assessment. A combination of filter-based sampling and direct-reading instruments was used to identify, characterize, and quantify the potential for worker inhalation exposure to airborne alumina and amorphous silica nanoparticles associated with th e chemical mechanical planarization wafer polishing process. Engineering controls and work practices were evaluated to characterize tasks that might contribute to potential exposures and to assess existing engineering controls. Metal oxide structures were identified in all sampling areas, as individual nanoparticles and agglomerates ranging in size from 60 nm to >1,000 nm, with varying structure morphology, from long and narrow to compact. Filter-based samples indicated very little aerosolized material in task areas or worker breathing zone. Direct-reading instrument data indicated increased particle counts relative to background in the wastewater treatment area; however

  4. NIOSH Field Studies Team Assessment: Worker Exposure to Aerosolized Metal Oxide Nanoparticles in a Semiconductor Fabrication Facility

    PubMed Central

    Brenner, Sara A.; Neu-Baker, Nicole M.; Eastlake, Adrienne C.; Beaucham, Catherine C.; Geraci, Charles L.

    2016-01-01

    The ubiquitous use of engineered nanomaterials – particulate materials measuring approximately 1–100 nanometers (nm) on their smallest axis, intentionally engineered to express novel properties – in semiconductor fabrication poses unique issues for protecting worker health and safety. Use of new substances or substances in a new form may present hazards that have yet to be characterized for their acute or chronic health effects. Uncharacterized or emerging occupational health hazards may exist when there is insufficient validated hazard data available to make a decision on potential hazard and risk to exposed workers under condition of use. To advance the knowledge of potential worker exposure to engineered nanomaterials, the National Institute for Occupational Safety and Health Nanotechnology Field Studies Team conducted an on-site field evaluation in collaboration with on-site researchers at a semiconductor research and development facility on April 18–21, 2011. The Nanomaterial Exposure Assessment Technique (2.0) was used to perform a complete exposure assessment. A combination of filter-based sampling and direct-reading instruments was used to identify, characterize, and quantify the potential for worker inhalation exposure to airborne alumina and amorphous silica nanoparticles associated with the chemical mechanical planarization wafer polishing process. Engineering controls and work practices were evaluated to characterize tasks that might contribute to potential exposures and to assess existing engineering controls. Metal oxide structures were identified in all sampling areas, as individual nanoparticles and agglomerates ranging in size from 60nm to >1,000nm, with varying structure morphology, from long and narrow to compact. Filter-based samples indicated very little aerosolized material in task areas or worker breathing zone. Direct-reading instrument data indicated increased particle counts relative to background in the wastewater treatment area

  5. Milk and Dairy Products Intake Is Associated with Low Levels of Lead (Pb) in Workers highly Exposed to the Metal.

    PubMed

    Gomes, Willian Robert; Devóz, Paula Pícoli; Araújo, Marília Ladeira; Batista, Bruno Lemos; Barbosa, Fernando; Barcelos, Gustavo Rafael Mazzaron

    2016-12-17

    Lead (Pb) is a toxic metal, frequently associated with occupational exposure, due to its widespread use in industry and several studies have shown high Pb levels in workers occupationally exposed to the metal. The aim of this study was to evaluate the influence of milk and dairy products (MDP) on Pb levels in blood (B-Pb), plasma (P-Pb), and urine (U-Pb), in workers from automotive battery industries in Brazil. The study included 237 male workers; information concerning diet and lifestyle were gathered through a questionnaire, and B-Pb, P-Pb, and U-Pb were determined by ICP-MS. Mean B-Pb, P-Pb, and U-Pb were 21 ± 12, 0.62 ± 0.73 μg/dL, and 39 ± 47 μg/g creatinine, respectively. Forty three percent of participants declared consuming ≤3 portions/week of MDP (classified as low-MDP intake), while 57% of individuals had >3portions/week of MDP (high-MDP intake). B-Pb and P-Pb were correlated with working time (r s  = 0.21; r s  = 0.20; p < 0.010). Multivariable linear regressions showed a significant influence of MDP intake on B-Pb (β = -0.10; p = 0.012) and P-Pb (β = -0.16; p < 0.010), while no significance was seen on U-Pb. Our results suggest that MDP consumption may modulate Pb levels in individuals highly exposed to the metal; these findings may be due to the Pb-Ca interactions, since the adverse effects of Pb are partially based on its interference with Ca metabolism and proper Ca supplementation may help to reduce the adverse health effects induced by Pb exposure.

  6. Experimental investigation of the effect of the material damage induced in sheet metal forming process on the service performance of 22MnB5 steel

    NASA Astrophysics Data System (ADS)

    Zhuang, Weimin; Xie, Dongxuan; Chen, Yanhong

    2016-07-01

    The use of ultra-high strength steels through sheet metal forming process offers a practical solution to the lightweight design of vehicles. However, sheet metal forming process not only produces desirable changes in material properties but also causes material damage that may adversely influence the service performance of the material formed. Thus, an investigation is conducted to experimentally quantify such influence for a commonly used steel (the 22MnB5 steel) based on the hot and cold forming processes. For each process, a number of samples are used to conduct a uniaxial tensile test to simulate the forming process. After that, some of the samples are trimmed into a standard shape and then uniaxially extended until fracture to simulate the service stage. Finally, a microstructure test is conducted to analyze the microdefects of the remaining samples. Based on the results of the first two tests, the effect of material damage on the service performance of 22MnB5 steel is analyzed. It is found that the material damages of both the hot and cold forming processes cause reductions in the service performance, such as the failure strain, the ultimate stress, the capacity of energy absorption and the ratio of residual strain. The reductions are generally lower and non-linear in the former process but higher and linear in the latter process. Additionally, it is found from the microstructure analysis that the difference in the reductions of the service performance of 22MnB5 by the two forming processes is driven by the difference in the micro damage mechanisms of the two processes. The findings of this research provide a useful reference in terms of the selection of sheet metal forming processes and the determination of forming parameters for 22MnB5.

  7. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    NASA Astrophysics Data System (ADS)

    Wolcott, Paul J.

    Ultrasonic additive manufacturing (UAM) is a low temperature, solid-state manufacturing process that enables the creation of layered, solid metal structures with designed anisotropies and embedded materials. As a low temperature process, UAM enables the creation of active composites containing smart materials, components with embedded sensors, thermal management devices, and many others. The focus of this work is on the improvement and characterization of UAM aluminum structures, advancing the capabilities of ultrasonic joining into sheet geometries, and examination of dissimilar material joints using the technology. Optimized process parameters for Al 6061 were identified via a design of experiments study indicating a weld amplitude of 32.8 synum and a weld speed of 200 in/min as optimal. Weld force and temperature were not significant within the levels studied. A methodology of creating large scale builds is proposed, including a prescribed random stacking sequence and overlap of 0.0035 in. (0.0889 mm) for foils to minimize voids and maximize mechanical strength. Utilization of heat treatments is shown to significantly increase mechanical properties of UAM builds, within 90% of bulk material. The applied loads during the UAM process were investigated to determine the stress fields and plastic deformation induced during the process. Modeling of the contact mechanics via Hertzian contact equations shows that significant stress is applied via sonotrode contact in the process. Contact modeling using finite element analysis (FEA), including plasticity, indicates that 5000 N normal loads result in plastic deformation in bulk aluminum foil, while at 3000 N no plastic deformation occurs. FEA studies on the applied loads during the process, specifically a 3000 N normal force and 2000 N shear force, show that high stresses and plastic deformation occur at the edges of a welded foil, and base of the UAM build. Microstructural investigations of heat treated foils confirms

  8. Behavior of Ti-5Al-2.5Sn ELI titanium alloy sheet parent and weld metal in the presence of cracks at 20 K

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1971-01-01

    Through- and surface-cracked specimens of two thicknesses were tested in uniaxial tension. Surface-cracked specimens were generally found to be stronger than through-cracked specimens with the same crack length. Apparent surface-crack fracture toughness calculated using the Anderson modified Irwin equation remained relatively constant for cracks as deep as 90 percent of the sheet thickness. Subcritical growth of surface cracks was investigated. Comparison of chamber and open air welds showed chamber welds to be slightly tougher. Both methods produced welds with toughness that compared favorably with that of the parent metal. Weld efficiencies were above 94 percent.

  9. Nanoporous PtFe Nanoparticles Supported on N-Doped Porous Carbon Sheets Derived from Metal-Organic Frameworks as Highly Efficient and Durable Oxygen Reduction Reaction Catalysts.

    PubMed

    Yang, Kang; Jiang, Peng; Chen, Jitang; Chen, Qianwang

    2017-09-05

    Designing and exploring catalysts with high activity and stability for oxygen reduction reaction (ORR) at the cathode in acidic environments is imperative for the industrialization of proton exchange membrane fuel cells (PEMFCs). Theoretical calculations and experiments have demonstrated that alloying Pt with a transition metal can not only cut down the usage of scarce Pt metal but also improve performance of mass activity compared with pure Pt. Herein, we exhibit the preparation of nanoporous PtFe nanoparticles (np-PtFe NPs) supported on N-doped porous carbon sheets (NPCS) via facile in situ thermolysis of a Pt-modified Fe-based metal-organic framework (MOF). The np-PtFe/NPCS exhibit a more positive half-wave potential (0.92 V) compared with commercial Pt/C catalyst (0.883 V). The nanoporous structure allows our catalyst to possess high mass activity, which is found to be 0.533 A·mgPt(-1) and 3.04 times better than that of Pt/C (0.175 A·mgPt(-1)). Moreover, the conversion of PtFe NPs from porous to hollow structure can maintain the activity of electrocatalyst. Our strategy provides a facile design and synthesis process of noble-transition metal alloy electrocatalysts via noble metal modified MOFs as precursors.

  10. Pilot study on the internal exposure to heavy metals of informal-level electronic waste workers in Agbogbloshie, Accra, Ghana.

    PubMed

    Wittsiepe, Jürgen; Feldt, Torsten; Till, Holger; Burchard, Gerd; Wilhelm, Michael; Fobil, Julius N

    2017-01-01

    Informal-level electronic waste (e-waste)-processing activities are performed at hotspots in developing countries such as India, China, and Ghana. These activities increase the ambient burden of heavy metals and contribute to the toxic exposure of the general population. However, few data exist on the internal exposure of populations involved in these informal activities and in close contact with fumes from the direct combustion of electronic waste products in these countries. Therefore, in a cross-sectional study design, we analyzed blood, urine, and hair samples from 75 e-waste workers residing in and/or working on a large e-waste recycling site in Agbogbloshie, Accra, Ghana, and compared the results against those of 40 individuals living in a suburb of Accra without direct exposure to e-waste recycling activities. A comparative analysis using the Mann-Whitney U test showed significantly higher median concentrations of blood lead (88.5 vs. 41.0 μg/l, p < 0.001), cadmium (0.12 vs. 0.10 μg/gcrea, p = 0.023), chromium (0.34 vs. 0.23 μg/gcrea, p < 0.001), and nickel (3.18 vs. 2.03 μg/gcrea, p < 0.001) in the urine of e-waste workers than those of controls. There was no difference in blood cadmium concentrations between the groups (0.51 vs. 0.57 μg/l, p = 0.215) or in urine mercury levels (0.18 vs. 0.18 μg/gcrea, p = 0.820). Hair mercury levels were higher in the controls than in the e-waste workers (0.43 vs. 0.72, p < 0.001). We compared our data with those from European populations, specifically using the German reference values, and found that the internal concentrations of the participants exceeded the German reference values in 59.3 vs. 3.1% (e-waste workers vs. controls) for blood lead, 56.9 vs. 52.5% for urine nickel, 22.2 vs. 20.0% for urine chromium, and 17.8 vs. 62.2% for hair mercury. In particular, the high blood lead levels of up to several hundred micrograms per liter are a cause for concern because many of the workers in

  11. Think regionally, act locally: metals in honeybee workers in the Netherlands (surveillance study 2008).

    PubMed

    van der Steen, J J M; Cornelissen, B; Blacquière, T; Pijnenburg, J E M L; Severijnen, M

    2016-08-01

    In June 2008, a surveillance study for metals in honeybees was performed in the Netherlands. Randomly, 150 apiaries were selected. In each apiary, five colonies were sampled. Per apiary, the hive samples were pooled. The apiary sample was analysed for Al, As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Sb, Se, Sn, Sr, Ti, V and Zn. All metals could be detected in all apiaries. As, Li, Sb, Sn and V were detected in part of the apiaries. The overall picture showed a regional pattern. In apiaries in the east of the Netherlands, Al, Ba, Cr, Mn, Mo, Ni, Se and Ti are found in higher concentrations compared to the west. In-region variation was demonstrated, indicating local effects. The vicinity of the apiaries was mapped afterwards and characterised as land uses of >50 % agricultural area, >50 % wooded area, >50 % urban area and mixed land use within a circle of 28 km(2) around the apiary. The results indicated that in apiaries located in >50 % wooded areas, significantly higher concentrations of Al, Ba, Cd, Cr, Cu, Li, Mn, Mo, Ni, Sb, Sr, Ti and Zn were found compared to agricultural, urban and mixed land use areas. We conclude that (1) the ratio between metal concentrations varies per region, demonstrating spatial differences, and (2) there is in-region local variation per metal. The results indicate the impact of land use on metal concentrations in honeybees. For qualitative bioindication studies, regional, local and land use effects should be taken into account.

  12. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers.

    PubMed

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei; Zhang, Wangzhen; Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun; Guo, Huan

    2015-07-01

    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P(interaction)≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies.

  13. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  14. Laminated sheet composites reinforced with modular filament sheet

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1968-01-01

    Aluminum and magnesium composite sheet laminates reinforced with low density, high strength modular filament sheets are produced by diffusion bonding and explosive bonding. Both processes are accomplished in normal atmosphere and require no special tooling or cleaning other than wire brushing the metal surfaces just prior to laminating.

  15. Mortality of nickel workers: experience of men working with metallic nickel.

    PubMed Central

    Cox, J E; Doll, R; Scott, W A; Smith, S

    1981-01-01

    The mortality of men employed in a plant manufacturing nickel alloys from metallic nickel and other metals has been examined. The plant has operated since May 1953, and 1925 men were identified who had been employed in the operating areas at the plant, other than as members of the staff, for a total of five or more years, excluding breaks. Analysis of samples of air obtained from personal samplers showed that since 1975 most of the men are likely to have been exposed to average concentrations of nickel of between 0.5 and 0.9 mg Ni/m3. All but 22 (1.1%) of the men were successfully traced to 1 April 1978 or until they died or emigrated. One hundred and seventeen had died. The numbers of deaths observed from cancers of respiratory and other sites, other respiratory disease, ischaemic heart disease, and other causes of death were compared with the numbers expected from national and local mortality rates. No evidence of the existence of any occupational hazard was obtained. The number of deaths from lung cancer (15) in men employed for five years or more is small. At 98% of the number expected at local rates it is statistically compatible with risks of between 0.5 and 2.2 times "normal." PMID:7272235

  16. Physicochemistry and cardiovascular toxicity of metal fume PM2.5: a study of human coronary artery endothelial cells and welding workers

    PubMed Central

    Lai, Chane-Yu; Lai, Ching-Huang; Chuang, Hsiao-Chi; Pan, Chih-Hong; Yen, Cheng-Chieh; Lin, Wen-Yi; Chen, Jen-Kun; Lin, Lian-Yu; Chuang, Kai-Jen

    2016-01-01

    Occupational exposure to welding fumes causes a higher incidence of cardiovascular disease; however, the association remains unclear. To clarify the possible association, exposure assessment of metal fumes with an aerodynamic diameter of <2.5 μm (PM2.5) in welding and office areas was characterized in a shipyard in Taiwan. Cardiovascular toxicity caused by PM2.5 was determined in workers (in both the welding and office areas). Significant amounts of bimodal metal fume particles with count median diameters (CMDs) of 14.1~15.1 and 126.3~135.8 nm were produced in the shipyard. Metal fume PM2.5 resulted in decreased cell viability and increased levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), interleukin (IL)-6, and nitric oxide (NO) in human coronary artery epithelial cells (HCAECs). We recruited 118 welding workers and 45 office workers for a personal PM2.5 exposure assessment and determination of urinary levels of 8-OHdG, 8-iso-prostaglandin F2α (8-iso-PGF2α), and various metals. We observed that a 10-μg/m3 increase in the mean PM2.5 concentration was associated with a 2.15% increase in 8-OHdG and an 8.43% increase in 8-iso-PGF2α in welding workers. Both 8-OHdG and 8-iso-PGF2α were associated with Fe and Zn in the urine. In conclusion, metal fume PM2.5 could increase the risk of cardiovascular toxicity after inhalation. PMID:27641436

  17. Physicochemistry and cardiovascular toxicity of metal fume PM2.5: a study of human coronary artery endothelial cells and welding workers

    NASA Astrophysics Data System (ADS)

    Lai, Chane-Yu; Lai, Ching-Huang; Chuang, Hsiao-Chi; Pan, Chih-Hong; Yen, Cheng-Chieh; Lin, Wen-Yi; Chen, Jen-Kun; Lin, Lian-Yu; Chuang, Kai-Jen

    2016-09-01

    Occupational exposure to welding fumes causes a higher incidence of cardiovascular disease; however, the association remains unclear. To clarify the possible association, exposure assessment of metal fumes with an aerodynamic diameter of <2.5 μm (PM2.5) in welding and office areas was characterized in a shipyard in Taiwan. Cardiovascular toxicity caused by PM2.5 was determined in workers (in both the welding and office areas). Significant amounts of bimodal metal fume particles with count median diameters (CMDs) of 14.1~15.1 and 126.3~135.8 nm were produced in the shipyard. Metal fume PM2.5 resulted in decreased cell viability and increased levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), interleukin (IL)-6, and nitric oxide (NO) in human coronary artery epithelial cells (HCAECs). We recruited 118 welding workers and 45 office workers for a personal PM2.5 exposure assessment and determination of urinary levels of 8-OHdG, 8-iso-prostaglandin F2α (8-iso-PGF2α), and various metals. We observed that a 10-μg/m3 increase in the mean PM2.5 concentration was associated with a 2.15% increase in 8-OHdG and an 8.43% increase in 8-iso-PGF2α in welding workers. Both 8-OHdG and 8-iso-PGF2α were associated with Fe and Zn in the urine. In conclusion, metal fume PM2.5 could increase the risk of cardiovascular toxicity after inhalation.

  18. Leptospirosis Seroprevalence Among Blue Metal Mine Workers of Tamil Nadu, India.

    PubMed

    Parveen, Sakkarai Mohamed Asha; Suganyaa, Baskar; Sathya, Muthu Sri; Margreat, Alphonse Asirvatham Princy; Sivasankari, Karikalacholan; Shanmughapriya, Santhanam; Hoffman, Nicholas E; Natarajaseenivasan, Kalimuthusamy

    2016-07-06

    Leptospirosis is mainly considered an occupational disease, prevalent among agriculture, sewage works, forestry, and animal slaughtering populations. However, putative risk to miners and their inclusion in the high-risk leptospirosis group remain in need of rigorous analysis. Therefore, a study was conducted with the objective to assess the leptospirosis seroprevalence among miners of two districts of Tamil Nadu, India. A total of 244 sera samples from Pudukkottai miners (124) and Karur miners (120) were analyzed by microscopic agglutination test. Antibodies to leptospires were detected in 94 samples giving an overall seroprevalence of 38.5%. The seroprevalence was higher among Pudukkottai miners (65.3%) when compared with Karur miners (10.8%). Seroprevalence among control population (13%) was significantly less than that of the Pudukkottai miners marking a possible high-risk population group distinction. Subject sera most commonly reacted with organisms of the serogroup Autumnalis, and the pattern was similar in carrier animals of the study areas. Two leptospires were isolated from kidney samples of rats. The prevalence of Autumnalis among rodents and humans source tracked human leptospirosis among the miners. The study also determined that Pudukkottai miners are subjected to high-risk challenges such as exposure to water bodies on the way to the mines (odds ratio [OR] = 10.6), wet mine areas (OR = 10.6), rat infestation (OR = 4.6), and cattle rearing (OR = 10.4) and are thus frequently exposed to leptospirosis compared with Karur miners. Hence, control strategies targeting these populations will likely to prove to be effective remediation strategies benefiting Pudukkottai miners and workers in similar environments across occupations. © The American Society of Tropical Medicine and Hygiene.

  19. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes.

    PubMed

    Naguib, Michael; Mashtalir, Olha; Lukatskaya, Maria R; Dyatkin, Boris; Zhang, Chuanfang; Presser, Volker; Gogotsi, Yury; Barsoum, Michel W

    2014-07-18

    Herein we show that heating 2D Ti3C2 in air results in TiO2 nanocrystals enmeshed in thin sheets of disordered graphitic carbon structures that can handle extremely high cycling rates when tested as anodes in lithium ion batteries. Oxidation of 2D Ti3C2 in either CO2 or pressurized water also resulted in TiO2-C hybrid structures. Similarly, other hybrids can be produced, as we show here for Nb2O5/C from 2D Nb2C.

  20. On the material modelling of anisotropy, hardening and failure of sheet metals in the finite strain regime

    SciTech Connect

    Vladimirov, I. N.; Tini, V.; Kiliclar, Y.; Reese, S.

    2011-05-04

    In this paper, we discuss the application of a newly developed coupled material model of finite anisotropic multiplicative plasticity and continuum damage to the numerical prediction of the forming limit diagram at fracture (FLDF). The model incorporates Hill-type plastic anisotropy, nonlinear Armstrong-Frederick kinematic hardening and nonlinear isotropic hardening. The numerical examples examine the simulation of forming limit diagrams at fracture by means of the so-called Nakajima stretching test. Comparisons with experimental data for aluminium sheets show a good agreement with the finite element results.

  1. The effect of exposure to aluminium on concentrations of essential metals in serum of foundry workers.

    PubMed Central

    Röllin, H B; Theodorou, P; Kilroe-Smith, T A

    1991-01-01

    The concentrations of aluminium (Al) in serum and urine of 33 volunteers exposed to inhalation of Al2O3 dust at a concentration in the air of less than 1 mg Al/m3 were measured. These were compared with results from 20 normal subjects not exposed. The concentrations of copper (Cu), zinc (Zn), and total iron (Fe) in serum were also measured. The Al concentration in serum was significantly raised in the subjects exposed to dust, but Al concentrations in urine showed no significant difference from controls. This suggests a possible change in distribution of metals in the body tissues due to the presence of Al, with incomplete excretion of Al in the urine. This redistribution was selective, as the serum concentrations of Cu were conclusively decreased whereas the serum concentrations of Zn were conclusively increased. The serum concentration of Fe did not change significantly. PMID:2025590

  2. [Nickel risk in metal processing workers. Highlights on toxic and allergic effects].

    PubMed

    Cirla, A M; Cirla, P E; Martinotti, I

    2011-01-01

    Nowadays nickel is a global problem, related to occupations (mainly metalworkers) and to life habits. The dietary intake, more than environments, is the source of a basic immune identification and also of possible complications after occupational inhalation or contact. Nickel insoluble compounds are proved to be cancerogenic. Nickel ions are very reactive with proteins and oxidant, then also potential irritant for the airways. Metallic nickel and soluble compounds are sensitizers, causing dermatitis, rhinitis and asthma. Recently a Systemic Nickel Allergy Syndrome (SNAS) has been identified in allergic subjects, with a clinical picture of urticaria, general hitching, headache, gastrointestinal troubles. SNAS may affect allergic occupational or non-occupational ones. Studies are in progress aimed to an oral treatment inducing immunotolerance. Nickel in urine seems to be the best tool for monitoring nickel absorption.

  3. Deposition of atmospheric heavy metals to the Greenland ice sheet from the 1783-1784 volcanic eruption of Laki, Iceland

    NASA Astrophysics Data System (ADS)

    Hong, Sungmin; Candelone, Jean-Pierre; Boutron, Claude F.

    1996-11-01

    In order to assess better the influence of major volcanic events on the large scale atmospheric cycles of heavy metals, Greenland ice dated from the time of the fallouts from the great 1783-1784 eruption of Laki volcano in Iceland has been analysed for Pb, Cd, Cu, Zn and sulphate. The concentrations of the four heavy metals investigated are found to be greatly enhanced in the ice layers which correspond to the fallouts from the eruption, confirming that such events do modify the atmospheric cycles of heavy metals. Cumulative fallout of heavy metals to the whole Greenland ice cap from the 1783-1784 Laki eruption ranges from 1 t for Pb and Cd to 40 t for Zn. For Cd, Cu and Zn, it represents a few percent of the cumulative anthropogenic fallout to the ice cap from the Industrial Revolution to the present.

  4. Modelling of fracture effects in the sheet metal forming based on an extended FLC evaluation method in combination with fracture criterions

    NASA Astrophysics Data System (ADS)

    Hora, P.; Gorji, M.; Berisha, B.

    2016-11-01

    The industrial based prediction in sheet metal forming bases still on the Forming Limit Diagrams (FLD) as formally proposed by Goodwin [1]. The FLD are commonly specified by the Nakajima tests and evaluated with the so called cross section method. Although widely used, the FLC concept has numerous serious limitations. In the paper the possibilities for a specific prediction of crack limits based on an extended FLC concept (X-FLC) will be discussed. The new concept demonstrates that the Nakajima tests are not only appropriate for the evaluation of the necking instability but for the detection of the real crack strains too. For the evaluation of the crack strains a local thinning method as proposed by Gorji et al. [3] is applied and tested for special 6xxx and 5xxx Al-alloys as well as for the corresponding multilayer FUSION material.

  5. Some investigations of the general instability of stiffened metal cylinders III : continuation of tests of wire-braced specimens and preliminary tests of sheet-covered specimens

    NASA Technical Reports Server (NTRS)

    1943-01-01

    This is the third of a series of reports covering an investigation of the general instability problem by the California Institute of Technology. The first five reports of this series cover investigations of the general instability problem under the loading conditions of pure bending and were prepared under the sponsorship of the Civil Aeronautics Administration. The succeeding reports of this series cover the work done on other loading conditions under the sponsorship of the National Advisory Committee for Aeronautics. This report is concerned primarily with the continuation of the tests of wire-braced specimens, and preliminary tests of sheet-covered specimens that had been made in the experimental investigation on the problem of the general instability of stiffened metal cylinders at the C.I.T.

  6. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers

    SciTech Connect

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei; Zhang, Wangzhen; Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun; Guo, Huan

    2015-07-15

    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P{sub interaction}≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies. - Highlights: • Heavy metals and PAHs are predominate toxic constituents of particulate matters. • Urinary As and Ni showed linear dose-dependent effects on 8-OHdG and 8-iso-PGF2α. • PAHs significant interact with toxic metal in increasing 8

  7. Neuropsychological function and past exposure to metallic mercury in female dental workers

    PubMed Central

    Sletvold, Helge; Svendsen, Kristin; Aas, Oddfrid; Syversen, Tore; Hilt, Bjørn

    2012-01-01

    The aim of this study was to see if dental personnel with previous exposure to metallic mercury have later developed disturbances in cognitive function. Ninety-one female participants who had been selected from a previous health survey of dental personnel were investigated neuropsychologically within the following domains: motor function, short-term memory, working memory, executive function, mental flexibility, and visual and verbal long-term memory. The scores were mainly within normal ranges. Relationships between an exposure score, the duration of employment before 1990, and previously measured mercury in urine as independent variables and the neuropsychological findings as dependent variables, were analyzed by multiple linear regression controlling for age, general ability, length of education, alcohol consumption, and previous head injuries. The only relationship that was statistically significant in the hypothesized direction was between the previously measured urine mercury values and visual long-term memory, where the urine values explained 30% of the variability. As the study had a low statistical power and also some other methodological limitations, the results have to be interpreted with caution. Even so, we think it is right to conclude that neuropsychological findings indicative of subsequent cognitive injuries are difficult to find in groups of otherwise healthy dental personnel with previous occupational exposure to mercury. PMID:22092046

  8. Cadmium exposure and nephropathy in a 28-year-old female metals worker.

    PubMed Central

    Wittman, Richard; Hu, Howard

    2002-01-01

    A 28-year-old female presented for evaluation of left flank pain and polyuria after having been exposed to cadmium in the jewelry manufacturing industry for approximately 3 years. This patient possessed both elevated 24-hr urinary ss2-microglobulin and elevated blood cadmium levels. Approximately 6 months after initial presentation, the patient resigned from her job due to shortness of breath, chest pain, and anxiety. Exposure to cadmium in the jewelry industry is a significant source of occupational cadmium exposure. Other occupational sources include the manufacture of nickel-cadmium batteries, metal plating, zinc and lead refining, smelting of cadmium and lead, and production of plastics. Cadmium is also an environmental pollutant that accumulates in leafy vegetables and plants, including tobacco. Major toxicities anticipated from cadmium exposure involve the renal, pulmonary, and, to a lesser extent, gastrointestinal systems. These include the development of renal proximal tubular dysfunction, glomerular damage with progressive renal disease, and respiratory symptoms including pneumonitis and emphysema. Low-level cadmium exposure has also been associated with increased urinary calcium excretion and direct bone toxicity, effects that recent research suggests may result in the development of osteoporosis. The body burden of cadmium, over half of which may reside in the kidneys, is most often measured through the use of urinary cadmium levels. Blood cadmium measurements generally reflect current or recent exposure and are especially useful in cases with a short exposure period and only minimal accumulation of cadmium in the kidneys. Both ss2-microglobulin and alpha1-microglobulin serve as organ-specific, early-effect biomarkers of tubular proteinuria and thus play a role in identifying early signs of cadmium-induced renal damage in those with potential exposures. In addition to ensuring workplace compliance with Occupational Safety and Health Administration

  9. Comparative Study of Remote Fiber Laser and Water-Jet Guided Laser Cutting of Thin Metal Sheets

    NASA Astrophysics Data System (ADS)

    Hock, Klaus; Adelmann, Benedikt; Hellmann, Ralf

    This article presents a comparison between remote laser cutting with a fiber laser and water-jet guided laser cutting using a 532 nm solid state laser. Complex contours are processed in stainless steel and brass sheets (thickness ≤ 100 μm), respectively. Results for achievable quality and productivity as well as possible applications for both systems are shown and discussed. We sustained dross free cuts with almost no heat affected zone and small kerf width for the water-jet guided process, whereas small dross, notable heat affected zone and varying kerf width where observed for remote cutting. However, process times for the water-jet guided process where considerably higher than those for remote cutting.

  10. Water as an agent for the morphology modification of metal oxalate materials on the nanoscale: from sheets to rods

    PubMed Central

    Kim, Minog; Kim, YooJin; Kwon, WonJong; Yoon, Sungho

    2016-01-01

    A number of approaches have been used to control the shape of metal oxalates, which often used as precursors for metal oxide nanomaterials. However, attempts to use water as a regulator have not been reported. Here in we report systematic studies on related topics: nanosheets, composed of 1-dimensional [M(C2O4)(EG)] (M = Zn or Co) polymeric structure, could be transformed into nanorods by using water as a shape-shifting agent because water can readily substitute EG ligand, leading alternation of inter-chain hydrogen bonding interactions. In addition, heat-treatment of these nanomaterials with diverse morphologies resulted in porous metal oxides with high degrees of shape retention. PMID:26763973

  11. Prediction of thinning of the sheet metal in the program AutoForm and its experimental verification

    NASA Astrophysics Data System (ADS)

    Fedorko, M.; Urbánek, M.; Rund, M.

    2017-02-01

    The manufacture of press-formed parts often involves deep-drawing operations. Deep drawing, however, can be deemed an industrial branch in its own right. Today, many experimental as well as numerical methods are available for designing and optimizing deep drawing operations. The best option, however, is to combine both approaches. The present paper describes one such investigation. Here, measurements and numerical simulation were used for mapping the impact of anisotropy on thickness variation in a spherical-shaped drawn part of DC01 steel. Variation in sheet thickness was measured on spherical-shaped drawn parts of various geometries by means of two cameras, and evaluated with digital image correlation using the ARAMIS software from the company GOM. The forming experiment was carried out on an INOVA 200 kN servohydraulic testing machine in which the force vs. piston displacement curve was recorded. The same experiment was then numerically simulated and analyzed using the AUTOFORM software. Various parameters were monitored, such as thinning, strain magnitude, formability, and others. For the purpose of this simulation, a series of mechanical tests was conducted to obtain descriptions of the experimental material of 1.5 mm thickness. A material model was constructed from the tests data involving the work-hardening curve, the impact of anisotropy, and the forming limit diagram. Specifically, these tests included tensile tests, the Nakajima test, and the stacked test, which were carried out to determine materials data for the model. The actual sheet thickness was measured on a sectioned spherical-shaped drawn part using a NIKON optical microscope. The variations in thickness along defined lines on the sectioned drawn part were compared with the numerical simulations data using digital image correlation. The above-described experimental programme is suitable for calibrating a material model for any computational software and can correctly solve deep-drawing problems.

  12. Atmospheric metallic and arsenic pollution at an offshore drilling platform in the Bo Sea: A health risk assessment for the workers.

    PubMed

    Xu, Hong; Han, Suqin; Bi, Xiaohui; Zhao, Zhijing; Zhang, Lei; Yang, Wenjie; Zhang, Min; Chen, Jing; Wu, Jianhui; Zhang, Yufen; Feng, Yinchang

    2016-03-05

    To investigate the ambient metal pollution at the offshore drilling platform in the Bo Sea, which few studies have focused on, PM2.5 samples were collected and ten heavy metals, as well as As, were analyzed. High concentration levels of metals were observed, and the heavy metal pollution was quite serious compared to air quality standards and other marine areas. Back trajectories and wind dependent and PCA analyses showed that the marine sources included ship traffic emissions and corrosive stainless steels from the equipment at the platform as well as industrial emissions from stainless steel production and coal combustion sources, which were transported from the surrounding mainland. Both contributed greatly to the ambient metallic particles at the offshore platform. The Hazard Index values of the metals, which were much less than 1, the Carcinogenic Risk data, which were lower than the EPA's acceptable range, and the fact that the metal concentrations did not the exceed the permissible exposure limits of OSHA, indicated that the health risks from the ambient metallic particles for the oil-drilling workers were not significant.

  13. Aligned magnetic field effects on water based metallic nanoparticles over a stretching sheet with PST and thermal radiation effects

    NASA Astrophysics Data System (ADS)

    Rashid, Irfan; Ul Haq, Rizwan; Al-Mdallal, Qasem M.

    2017-05-01

    This study deals the simultaneous effects of inclined magnetic field and prescribed surface temperature (PST) on boundary layer flow of nanofluid over a stretching sheet. In order to make this mechanism more feasible, we have further considered the velocity slip and thermal radiation effects. Moreover, this perusal is made to consider the two kinds of nanofluid namely: Cu -water and A l2O3-water. Inclined magnetic field is utilized to accompanying an aligned angle that varies from 0 to π / 2 . The exact solutions are acquired from the transformed non-dimensional momentum and energy equations in the form of confluent hypergeometric function. Lorentz forces and aligned magnetic field depicts the significant effects on nanofluid. We found that, due to the increase in the aligned angle provides the enhancement in local skin friction coefficient and a reduction in the local Nusselt number. The combined impacts of inclined magnetic field with other emerging parameters such as velocity slip, thermal radiation and nanoparticles volume fraction on velocity, temperature, local Nusselt number and skin friction coefficient are examined. Flow behavior of nanofluid is also determined via stream lines pattern.

  14. Calcium disodium ethylenediaminetetraacetate-chelated lead as a predictor for subclinical lead neurotoxicity: follow-up study on gun-metal foundry workers.

    PubMed

    Yokoyama, K; Araki, S; Aono, H; Murata, K

    1998-10-01

    To examine if chelated lead was a more predictive indicator of the subclinical effect of lead on conduction velocities of faster or slower nerve fibers as compared with blood lead (BPb). Distribution of conduction velocities (DCV) in large myelinated fibers of the sensory median nerve was measured twice at a 1-year interval in 17 male gun-metal foundry workers with BPb concentrations of 22-59 (mean 40.2) microg/dl and a mobilization yield of lead into urine (MPb) by calcium disodium ethylenediaminetetraacetate of 0.15-2.09 (mean 1.19) mg/24 h for the 1st year and in 20 healthy males (controls). Yearly changes in the conduction velocities of faster fibers were significantly correlated with the corresponding change in MPb (P < 0.05) but not with that in BPb (P > 0.05). In ten workers showing an increase in MPb during the 1-year period (0.44 mg/24 h on average) the conduction velocities of faster fibers were decreased significantly, resulting in the values being significantly lower in all the workers combined than in the controls (P < 0.05). On the other hand, in the remaining workers, who showed a lesser extent of reduction in MPb (0.08 mg/24 h on average), the DCV did not change (P > 0.05). Chelated lead might be a more predictive indicator of the effect of lead on the conduction velocities of faster fibers than blood lead.

  15. Evaluation of toxic metals in biological samples (scalp hair, blood and urine) of steel mill workers by electrothermal atomic absorption spectrometry.

    PubMed

    Afridi, Hassan I; Kazi, Tasneem G; Jamali, Mohammad K; Kazi, Gul H; Arain, Mohammad B; Jalbani, Nusrat; Shar, Ghulam Q; Sarfaraz, Raja A

    2006-10-01

    The determination of toxic metals in the biological samples of human beings is an important clinical screening procedure. This study aimed to assess the possible influence of environmental exposure on production workers (PW) and quality control workers (QCW) of a steel mill, all male subjects aged 25-55 years. In this investigation, the concentrations of Pb, Cd, Ni and Cr were determined in biological samples (blood, urine and scalp hair samples) from these steel mill workers in relation to controlled unexposed healthy subjects of the same age group. After pre-treatment with nitric acid-hydrogen peroxide, the samples were digested via a microwave oven, and for comparison purposes, the same samples were digested by the conventional wet acid digestion method. The samples digested were subjected to graphite furnace atomic absorption spectrometry (GFAAS). To assess the reliability of these methods, critical factors, such as detection limit(s), calibration range(s), accuracy and precision, were studied. Quality control for these procedures was established with certified sample of human hair, urine and whole blood. The results indicate that the level of lead, cadmium and nickel in scalp hair, blood and urine samples were significantly higher in both groups of exposed workers (QW and PW) than those of the controls. The possible connection of these elements with the etiology of disease is discussed. The results also show the need for immediate improvements in workplace ventilation and industrial hygiene practices.

  16. Metallic-mineral assessment of the Aban Al Ahmar quadrangle, sheet 25F, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Kamilli, Robert J.; Arnold, Mark A.; Cole, James C.; Kleinkopf, M. Dean; Lee, Keenan; Miller, William R.; Raines, Gary L.; ,; ,

    1990-01-01

    Comprehensive detailed interdisciplinary study assesses the metallic-mineral-resource potential in the Aban Al Ahmar Quadrangle of the Kingdom of Saudi Arabia, located in the eastern margin of the northeastern Arabian Shield, utilizing techniques of geophysics, geologic mapping, remote sensing and geochemistry. The landscape of the study area is characterized by isolated mountain groups, inselbergs, and local tracts of dissected hills separated by broad, low-relief peneplain. Topics covered include mining and exploration history; geological setting; interpretation of geophysical anomalies; limonitic hydrothermally altered and mineralized rocks; geochemical interpretation; mineral resource potential; skarn deposiits associated with intermediate igneous rocks; gold deposits; tin/tungsten skarn deposits; etc. 

  17. [Health surveillance of workers with prior exposure to asbestos. Application in the metallurgy/metal mechanical field].

    PubMed

    Rivolta, G; Della Foglia, M; Donelli, S; Riboldi, L

    2006-01-01

    To improve the health surveillance program for workers with a known previous exposure to asbestos in a big metallurgic-mechanical industry from Lombardy, the sources of risk and the different exposure levels hare been reconstructed based on specific jobs. The eligibility criteria and a specific work program including information and organization supports hare been established by a work group composed by health physicians, workers and industrial hygienists. The major goals of the program were: to listen and support each worker who perceives worries about his health status; to prevent, if possible, diseases, especially cancer, resulting from exposure; to document the existing injuries for legal compensation. The resulting actions consist of counselling; indication to follow an adequate life and work style; indication, based on specific request of worker, of sanitary checks of first or eventually second level.

  18. HRTEM/AEM study of trace metal behavior, sheet silicate reactions, and fluid/solid mass balances in porphyry copper hydrothermal systems

    SciTech Connect

    Veblen, D.R.; Ilton, E.S.

    1989-04-01

    Transmission electron microscopy has been used to investigate copper (Cu) incorporation into silicates and alteration reactions in porphyry copper deposits. High Cu in biotites results from submicroscopic inclusions of native Cu. The incorporation of Cu in low-temperature alteration lamellae suggests that Cu enrichment occurs during weathering, rather than during the hydrothermal event. Drill core from Cyprus Casa Grande, Arizona, shows systematic variation of Cu in sheet silicates as a function of depth in the weathering column. The aims of the present project are to apply the powerful techniques of transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and analytical electron microscopy (AEM) to understanding the geochemical processes in porphyry copper systems at the near-atomic scale. Our primary goals are to characterize the structural state of anomalously high Cu in silicates, determine the timing and conditions of Cu enrichment in silicates such as biotite, and use these data to suggest how base metals are released and subsequently immobilized under hydrothermal or weathering conditions; and to determine the submicroscopic, atomic-level reaction mechanisms responsible for silicate alteration in porphyry-copper hydrothermal systems, which will allow us to determine reaction stoichiometries and hence mass balances between minerals and hydrothermal fluid. 19 refs., 7 figs., 3 tabs.

  19. Finite element analysis regarding the forming behaviour of symmetric hybrid structures consisting of two sheet metal outer layers and a thermoplastic core

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Schulze, H.

    2017-02-01

    To face challenges like damping effects or weight reduction in the automotive sector, new hybrid material combinations are developed. One possibility is the combination of several symmetric material layers with varying material characteristics to achieve in the component production less weight and appropriate stiffness in comparison to components produced with sheet metal. This article deals with the characterization of deep drawing behaviour of layered sandwich structures. The behaviour of the several layers and the layer interaction have been taken into account for the technical design of a deep drawing process. A material layer characterization is performed. Instabilities as interlaminar failures, ruptures or wrinkling of the structure have been investigated as part of additional experimental characterization tests on the basis of various deep drawing process parameters. Finally, the experimental data is used as input for the numerical modelling and simulation of layered structures. The FE simulation includes the material behaviour of the layers and layer interactions with cohesive zone modelling. Based on the results an important contribution for prediction accuracy in the numerical simulation has been provided.

  20. Multi-dimensional transition-metal coordination polymers of 4,4'-bipyridine-N,N'-dioxide: 1D chains and 2D sheets.

    PubMed

    Jia, Junhua; Blake, Alexander J; Champness, Neil R; Hubberstey, Peter; Wilson, Claire; Schröder, Martin

    2008-10-06

    Reaction of 4,4'-bipyridine -N, N' -dioxide (L) with a variety of transition-metal salts in MeOH affords a range of coordination polymer products. For the complexes [FeCl 3(mu-L)] infinity, 1, and ([Cu(L) 2(OHMe) 2(mu-L)].2PF 6. n(solv)) infinity, 2, 1D chain structures are observed, whereas ([Mn(mu-L) 3].2ClO 4) infinity, 3, and ([Cu(mu-L) 3].2BF 4) infinity, 4, both show 2D sheet architectures incorporating an unusual 3 (6)- hxl topology. The more common 4 (4)- sql topology is observed in [Cd(ONO 2) 2(mu-L) 2] infinity, 5, ([Cu(OHMe) 2(mu-L) 2].2ZrF 5) infinity, 6, ([Cu(L) 2(mu-L) 2].2EF 6) infinity ( 7 E = P; 8 E = Sb), and ([Et 4N][Cu(OHMe) 0.5(mu-L) 2(mu-FSiF 4F) 0.5].2SbF 6. n(solv)) infinity, 9. In 6, the [ZrF 5] (-) anion, formed in situ from [ZrF 6] (2-), forms 1D anionic chains ([ZrF 5] (-)) infinity of vertex-linked octahedra, and these chains thread through a pair of inclined polycatenated ([Cu(OHMe) 2(mu-L) 2] (2+)) infinity 4 (4)- sql grids to give a rare example of a triply intertwined coordination polymer. 9 also shows a 3D matrix structure with 4 (4)- sql sheets of stoichiometry ([Cu(L) 2] (2+)) infinity coordinatively linked by bridging [SiF 6] (2-) anions to give a structure of 5-c 4 (4).6 (6)- sqp topology. The mononuclear [Cu(L) 6].2BF 4 ( 10) and [Cd(L) 6].2NO 3 ( 11) and binuclear complexes [(Cu(L)(OH 2)) 2(mu-L) 2)].2SiF 6. n(solv), 12, are also reported. The majority of the coordination polymers are free of solvent and are nonporous. Thermal treatment of materials that do contain solvent results in structural disintegration of the complex structures giving no permanent porosity.

  1. Risk of pancreatic cancer in female textile workers in Shanghai, China exposed to metals, solvents, chemicals, and endotoxin: follow-up to a nested case-cohort study

    PubMed Central

    Reul, Nicholas K.; Li, Wenjin; Gallagher, Lisa G.; Ray, Roberta M.; Romano, Megan E.; Gao, Daoli; Thomas, David B.; Vedal, Sverre; Checkoway, Harvey

    2015-01-01

    Objective We studied associations between pancreatic cancer and occupational exposures to metals, solvents, chemicals and endotoxin in a cohort of female textile workers in Shanghai, China. To assess the longer-term influences of these agents on pancreatic cancer we extended follow-up of this previously-studied cohort. Methods We utilized a job exposure matrix to assess occupational exposures for 481 pancreatic cancer cases and a randomly-selected subcohort of 3191 non-cases. We calculated hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards modeling adapted for the case-cohort design. Results We observed a statistically significant trend of increasing hazard ratios associated with solvent exposure, but no associations with any of the remaining occupational exposures, including endotoxin and metals. Conclusions Our findings of increasing risk of pancreatic cancer with solvent exposures are consistent with published literature. PMID:26849264

  2. Women Private Household Workers Fact Sheet.

    ERIC Educational Resources Information Center

    Women's Bureau (DOL), Washington, DC.

    This pamphlet summarizes the present status of domestics in the United States. Statistical data on the problems of low income, lack of education, and poor coverage under labor laws are presented. (BH)

  3. sEcad and EGF Levels Increased in Urine of Non-ferrous Metal Workers and Medium of Uroepithelial Cell Line Treated by Arsenic.

    PubMed

    Liu, Jieyu; Jin, Peiyu; Liu, Shengnan; Wang, Fei; Wang, Xiaoyan; Yang, Li; Xi, Shuhua

    2017-08-17

    Inorganic arsenic (iAs) is a carcinogen and could increase the risks of bladder, lung, and skin cancer. Mining and smelting of non-ferrous metals are common occupational arsenic exposures. In this study, 125 individuals working in non-ferrous metal smelting plants were separated into two groups according to urinary total arsenic (TAs) levels: group 1, TAs < 100 μg/g Cr; group 2, TAs ≥ 100 μg/g Cr. Demographic characteristics of participants were obtained by questionnaire interview. Levels of E-cadherin soluble ectodomain fragment (sEcad) and epidermal growth factor (EGF) in workers urine were determined by ELISA test. We found that concentrations of sEcad and EGF present in urine were significantly elevated in the high urinary arsenic group 2 compared with the low urinary arsenic group 1. Urinary levels of the shedding of E-cadherin soluble ectodomain fragment (sEcad) and epidermal growth factor (EGF) were positively related to the concentrations of iAs in urine after adjusting for the confounding effects. A positive correlation between sEcad and EGF concentrations in urine was also observed. In order to verify the effects of iAs on sEcad and EGF, the human uroepithelial cell line (SV-HUC-1) was treated with NaAsO2 for 24 h in vitro. sEcad and EGF levels in the 4 μM NaAsO2-treated SV-HUC-1 cell medium significantly increased compared to the control group. In conclusion, urinary levels of sEcad and EGF increased in higher urinary arsenic workers of non-ferrous metal plants and are closely associated with urinary iAs concentration. The results suggested that sEcad and EGF may potentially be preclinical prognostic factors of bladder injury and early detection in arsenic exposure individuals.

  4. [Health risk assessment of exposure to metals in the workers of the steel foundry and in the general population of Taranto (Italy)].

    PubMed

    Soleo, Leonardo; Lovreglio, Piero; Panuzzo, Laura; D'Errico, Maria Nicolà; Basso, Antonella; Gilberti, Maria Enrica; Drago, Ignazio; Tomasi, Cesare; Apostoli, Pietro

    2012-01-01

    To study the urinary excretion of As, Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Ba, Hg, Pb, Sb in workers at the Taranto integrated-cycle steel foundry and in subjects from the general population of Taranto, to assess the health risk posed by occupational exposure and environmental exposure, respectively, to these metals. The study included 49 steel foundry workers (exposed), working in the minerals and agglomerates pools, steel processing plants 1 and 2 and maritime plants, and 50 subjects belonging to the general population of Taranto resident at various distances from the factory (controls), randomly selected from the exposed subjects and controls enrolled in previous research conducted in 2005. A questionnaire was administered to all participants, enquiring into general characteristics, lifestyle, diet, and any medical conditions. Informed written consent to take part in the study was obtained from all subjects before enrolment. The results of environmental monitoring performed in 2005 in the workers' sectors, consisting of determining As, Cr, Mn, Ni, Cu, Zn, Cd and Pb in the respirable dust, revealed by both samplers applied in fixed positions and personal samplers, were considered. Urine samples were obtained from all participants on a Friday, to determine As and Cr by AAS and all the other metal elements by a multielement technique with ICP-MS. Urinary creatinine was also determined to make any necessary adjustments. All urine analyses were performed in 2005 within one month of urine collection. In the respirable dust, As and Cd were always within the LOD, whereas Cr, Mn, Ni, Cu and Pb were 1-2 orders of magnitude below the respective TLV-TWA of the ACGIH. Mn was the only metal element that presented significantly higher urinary concentrations in exposed subjects as compared to controls, although the values in both groups were in any case within the Italian reference range. Co, Cu, Zn, Sn and Sb showed significantly higher urinary concentrations in controls than in

  5. Occupational Exposure to Airborne Nanomaterials: An Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in Semiconductor Wastewater Treatment.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Caglayan, Cihan; Zurbenko, Igor G

    2015-01-01

    This study characterized potential inhalation exposures of workers to nanometal oxides associated with industrial wastewater treatment processes in a semiconductor research and development facility. Exposure assessment methodology was designed to capture aerosolized engineered nanomaterials associated with the chemical mechanical planarization wafer polishing process that were accessible for worker contact via inhalation in the on-site wastewater treatment facility. The research team conducted air sampling using a combination of filter-based capture methods for particle identification and characterization and real-time direct-reading instruments for semi-quantitation of particle number concentration. Filter-based samples were analyzed using electron microscopy and energy-dispersive x-ray spectroscopy while real-time particle counting data underwent statistical analysis. Sampling conducted over 14 months included 5 discrete sampling series events for 7 job tasks in coordination with on-site employees. The number of filter-based samples captured for analysis by electron microscopy was: 5 from personal breathing zone, 4 from task areas, and 3 from the background. Direct-reading instruments collected data for 5 sample collection periods in the task area and the background, and 2 extended background collection periods. Engineered nanomaterials of interest (Si, Al, Ce) were identified by electron microscopy in filter-based samples from all areas of collection, existing as agglomerates (>500 nm) and nanoparticles (100 nm-500 nm). Particle counts showed an increase in number concentration during and after selected tasks above background. While additional data is needed to support further statistical analysis and determine trends, this initial investigation suggests that nanoparticles used or generated by chemical mechanical planarization become aerosolized and may be accessible for inhalation exposures by workers in wastewater treatment facilities. Additional research is

  6. A numerical evaluation of SAR distribution and temperature changes around a metallic plate in the head of a RF exposed worker.

    PubMed

    McIntosh, Robert L; Anderson, Vitas; McKenzie, Raymond J

    2005-07-01

    The 1998 International Commission for Non-Ionising Radiation (ICNIRP) Guidelines for human exposure to radiofrequency (RF) fields contain a recommendation to assess the potential impact of metallic implants in workers exposed up to the allowable occupational field limits. This study provides an example of how numerical electromagnetic (EM) and thermal modelling can be used to determine whether scattered RF fields around metallic implants in workers exposed to allowable occupational ambient field limits will comply with the recommendations of relevant standards and guidelines. A case study is performed for plane wave exposures of a 50 mm diameter titanium cranioplasty plate, implanted around 5-6 mm under the surface of the forehead. The level of exposures was set to the ambient power flux density limits for occupational exposures specified in the 1998 ICNIRP guidelines and the current 1999 IEEE C95.1 standard over the frequency range 100-3000 MHz. Two distinct peak responses were observed. There was a resonant response for the whole implant at 200-300 MHz where the maximum dimension of the implant is around a third of the wavelength of the RF exposure. This, however, resulted in relatively low peak specific energy absorption rate (SAR) levels around the implant at the exposure limits. Between 2100-2800 MHz, a second SAR concentrating mechanism of constructive interference of the wave reflected back and forth between the air-scalp interface and the scalp-plate interface resulted in higher peak SARs that were within the allowable limits for the ICNIRP exposures, but not for the IEEE C95.1 exposures. Moreover, the IEEE peak SAR limits were also exceeded, to a lesser degree, even when the implant was not present. However, thermal modelling indicated that the peak SAR concentrations around the implant did not result in any peak temperature rise above 1 degrees C for occupational exposures recommended in the ICNIRP guidelines, and hence would not pose any significant

  7. Preparation of creep data sheet: Material strength data sheet

    NASA Astrophysics Data System (ADS)

    Tanaka, Chiaki; Yagi, Koichi; Ikeda, Sadao; Ito, Hiroshi; Baba, Eiji; Shimizu, Masaru; Tanaka, Hideo; Yokokawa, Kenji; Nagai, Hideo; Kanamaru, Osamu

    1993-01-01

    Continuing from the first and the second term, creep rupture data sheet on metals for high temperatures was continued targeting for 100,000 hours. Creep strain data sheet for elastic analysis, conceived in the second term was carried out this term. Additionally, research was planned into the Cr group steel, which is increasingly in demand for high temperature equipment, and material sampling and testing commenced accordingly. In 1986, the creep data sheet (B Version) was published for the first time, including the creep rupture data exceeding final target of 100,000 hours. Since then, B versions were published on 12 different materials this term. There has been much research using the data from creep data sheets and test samples, including creep strain characteristics, stress relaxation characteristics, creep rupture characteristics and life estimate, with substantial results. In the creep test technology aiming for highly reliable data, deterioration factors of thermocouples were investigated. The results from creep data sheets and related research contributed to improvement in strength reliability of metals at high temperatures.

  8. Occupational exposure to airborne nanomaterials: An assessment of worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fab and subfab.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Caglayan, Cihan; Zurbenko, Igor G

    2016-09-01

    This occupational exposure assessment study characterized potential inhalation exposures of workers to engineered nanomaterials associated with chemical mechanical planarization wafer polishing processes in a semiconductor research and development facility. Air sampling methodology was designed to capture airborne metal oxide nanoparticles for characterization. The research team obtained air samples in the fab and subfab areas using a combination of filter-based capture methods to determine particle morphology and elemental composition and real-time direct-reading instruments to determine airborne particle counts. Filter-based samples were analyzed by electron microscopy and energy-dispersive x-ray spectroscopy while real-time particle counting data underwent statistical analysis. Sampling was conducted during worker tasks associated with preventive maintenance and quality control that were identified as having medium to high potential for inhalation exposure based on qualitative assessments. For each sampling event, data was collected for comparison between the background, task area, and personal breathing zone. Sampling conducted over nine months included five discrete sampling series events in coordination with on-site employees under real working conditions. The number of filter-based samples captured was: eight from worker personal breathing zones; seven from task areas; and five from backgrounds. A complementary suite of direct-reading instruments collected data for seven sample collection periods in the task area and six in the background. Engineered nanomaterials of interest (Si, Al, Ce) were identified in filter-based samples from all areas of collection, existing as agglomerates (>500 nm) and nanoparticles (100-500 nm). Particle counts showed an increase in number concentration above background during a subset of the job tasks, but particle counts in the task areas were otherwise not significantly higher than background. Additional data is needed to

  9. Mortality from infectious pneumonia in metal workers: a comparison with deaths from asthma in occupations exposed to respiratory sensitizers

    PubMed Central

    Palmer, Keith T; Cullinan, Paul; Rice, Simon; Brown, Terry; Coggon, David

    2012-01-01

    Introduction National analyses of mortality in England and Wales have repeatedly shown excess deaths from pneumonia in welders. During 1979-1990 the excess was attributable largely to deaths from lobar pneumonia and pneumonias other than bronchopneumonia, limited to working-aged men, and apparent in other metal fume-exposed occupations. We assessed findings for 1991-2000 and compared the mortality pattern with that from asthma in occupations exposed to known respiratory sensitizers. Methods The Office of National Statistics supplied data on deaths by underlying cause among men aged 16-74 years in England and Wales during 1991-2000, including age and last held occupation. We abstracted data on pneumonia for occupations with exposure to metal fume and on asthma for occupations commonly reported to surveillance schemes as at risk of occupational asthma. We estimated expected numbers of deaths by applying age-specific proportions of deaths by cause in the population to the total deaths by age in each occupational group. Observed and expected numbers were compared for each cause of death. Results Among working-aged men in metal fume-exposed occupations we found excesses of mortality from pneumococcal and lobar pneumonia (54 deaths vs. 27.3 expected) and from pneumonias other than bronchopneumonia (71 vs. 52.4), but no excess from these causes at older ages, or from bronchopneumonia at any age. The attributable mortality from metal fume (45.3 excess deaths) compared with an estimated 62.6 deaths from occupational asthma. Conclusion Exposure to metal fume is a material cause of occupational mortality. The hazard deserves far more attention than it presently receives. PMID:19703831

  10. What do the trace metal contents of urine and toenail samples from Qatar׳s farm workers bioindicate?

    PubMed

    Kuiper, Nora; Rowell, Candace; Nriagu, Jerome; Shomar, Basem

    2014-05-01

    Qatar׳s farm workers provide a unique population for exposure study: they are young, healthy males. This study combined trace element profiles in urine and toenail with survey information from 239 farm workers to assess the extent to which the biomarkers provide complementary exposure information. Urinary Mo levels (average=114 µg/L) were elevated; average urinary values (µg/L) for all other elements were: V (1.02), Cr (0.55), Mn (2.15), Fe (34.1), Co (0.47), Ni (2.95), Cu (15.0), As (47.8), Se (25.7), Cd (1.09), Ba (22.5), Pb (2.50) and U (0.15). Average toenail concentrations (mg/kg) were: Mn (2.48), Cu (4.43), As (0.26), Se (0.58), Mo (0.07), Cd (0.03), Ba (1.00), Pb (0.51) and U (0.02). No significant association was found between corresponding elements in urine and toenails. Elemental profiles suggest groundwater (with the exception of Mo) and soil-dust-crop exposure pathways cannot account for elemental variations. The main factors moderating trace element contents are related to depuration processes involving participants׳ trace element body burden prior to work in Qatar, and interactions of trace element metabolic cycles which over-ride the exposure footprint. Toenail and urine need to be carefully validated before reliable use as biomarkers of exposure in general populations for most elements in the study.

  11. Pay Equity--A Fact Sheet.

    ERIC Educational Resources Information Center

    National Commission on Working Women, Washington, DC.

    This fact sheet addresses pay equity, that is, the goal of a fair wage-setting process that eliminates sex and race discrimination. It begins by setting forth the problem through statistics on men's and women's median annual earnings, the occupational categories represented by women workers, and median annual earnings by occupation. A glossary is…

  12. Comparison of manufacturing of lightweight corrugated sheet sandwiches by hydroforming and incremental sheet forming

    NASA Astrophysics Data System (ADS)

    Maqbool, Fawad; Elze, Lars; Seidlitz, Holger; Bambach, Markus

    2016-10-01

    Sandwich materials made from corrugated sheet metal provide excellent mechanical properties for lightweight design without using filler material. The increased mechanical properties of these sandwich materials are achieved by the 3-D geometry of the corrugated sheet and the hardening due to pre-forming. In the present study, manufacturing of corrugated sheet metal consisting of hexagonal bulge patterns through hydroforming and incremental forming is analyzed. Double layered corrugated sheet metal sandwiches with hexagonal patterns of free-form bulge geometries are investigated through finite element analysis for the maximum increase in stiffness over the normal flat sheets. The analysis shows that a bending stiffness increase of up to 13 times over flat sheet of the same mass is attainable by corrugated sandwiches. Further, it is proved for these types of corrugation sandwiches that stiffness increases by increasing the height of the corrugation bulge but that hydroforming poses restrictions with respect to bulge height, since it is limited by forming force and formability of the material. Incremental sheet metal forming can be used to produce sheets with a hexagonal bulge pattern with increased height. Hence, a higher increase in stiffness as compared to hydroforming is possible but at the expense of process speed.

  13. Migrant Workers.

    ERIC Educational Resources Information Center

    Social and Labour Bulletin, 1983

    1983-01-01

    Discusses a new German law to encourage foreign workers to return to their home countries, employment exchanges for young foreigners in Germany, and a training program for migrant workers in India. (SK)

  14. Migrant Workers.

    ERIC Educational Resources Information Center

    Social and Labour Bulletin, 1983

    1983-01-01

    Discusses a new German law to encourage foreign workers to return to their home countries, employment exchanges for young foreigners in Germany, and a training program for migrant workers in India. (SK)

  15. 49 CFR 224.103 - Characteristics of retroreflective sheeting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of a smooth, flat, transparent exterior film with microprismatic retroreflective elements embedded in... pursuant to this part shall meet the requirements of ASTM D 4956-04, for Type V Sheeting if metalized or Type VII Sheeting if non-metalized, except for the initial minimum values of the coefficient...

  16. 49 CFR 224.103 - Characteristics of retroreflective sheeting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of a smooth, flat, transparent exterior film with microprismatic retroreflective elements embedded in... pursuant to this part shall meet the requirements of ASTM D 4956-04, for Type V Sheeting if metalized or Type VII Sheeting if non-metalized, except for the initial minimum values of the coefficient...

  17. Giant cell interstitial pneumonia in a hard-metal worker. Cytologic, histologic and analytical electron microscopic investigation

    SciTech Connect

    Tabatowski, K.; Roggli, V.L.; Fulkerson, W.J.; Langley, R.L.; Benning, T.; Johnston, W.W.

    1988-03-01

    A case of biopsy-proven giant cell interstitial pneumonia in a patient with occupational exposure to hard-metal dust is reported. Bronchial washings performed several days prior to open-lung biopsy yielded an almost exclusive population of nonpigmented alveolar macrophages and pleomorphic, phagocytic multinucleated giant cells. Microorganisms, viral inclusions in the giant cells, epithelioid histiocytes and well-formed granulomas were not seen. This cytologic picture strongly suggests the presence of giant cell interstitial pneumonia in a patient with restrictive lung disease, particularly when exposure to hard-metal dust is known or suspected. A specific diagnosis early in the course of the disease may facilitate removal of the individual from the workplace and forestall the development of end-stage interstitial fibrosis. Additionally, the working environment may be modified to minimize inhalational exposure. Recognition of this entity by the cytopathologist may direct diagnostic efforts toward accurate histologic evaluation and the identification of particulates by microprobe analysis of either cellular or biopsy material.

  18. Sheet Bending using Soft Tools

    NASA Astrophysics Data System (ADS)

    Sinke, J.

    2011-05-01

    Sheet bending is usually performed by air bending and V-die bending processes. Both processes apply rigid tools. These solid tools facilitate the generation of software for the numerical control of those processes. When the lower rigid die is replaced with a soft or rubber tool, the numerical control becomes much more difficult, since the soft tool deforms too. Compared to other bending processes the rubber backed bending process has some distinct advantages, like large radius-to-thickness ratios, applicability to materials with topcoats, well defined radii, and the feasibility of forming details (ridges, beads). These advantages may give the process exclusive benefits over conventional bending processes, not only for industries related to mechanical engineering and sheet metal forming, but also for other disciplines like Architecture and Industrial Design The largest disadvantage is that also the soft (rubber) tool deforms. Although the tool deformation is elastic and recovers after each process cycle, the applied force during bending is related to the deformation of the metal sheet and the deformation of the rubber. The deformation of the rubber interacts with the process but also with sheet parameters. This makes the numerical control of the process much more complicated. This paper presents a model for the bending of sheet materials using a rubber lower die. This model can be implemented in software in order to control the bending process numerically. The model itself is based on numerical and experimental research. In this research a number of variables related to the tooling and the material have been evaluated. The numerical part of the research was used to investigate the influence of the features of the soft lower tool, like the hardness and dimensions, and the influence of the sheet thickness, which also interacts with the soft tool deformation. The experimental research was focused on the relation between the machine control parameters and the most

  19. A Modified Johnson-Cook Model for Sheet Metal Forming at Elevated Temperatures and Its Application for Cooled Stress-Strain Curve and Spring-Back Prediction

    SciTech Connect

    Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung

    2011-08-22

    In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.

  20. A Modified Johnson-Cook Model for Sheet Metal Forming at Elevated Temperatures and Its Application for Cooled Stress-Strain Curve and Spring-Back Prediction

    NASA Astrophysics Data System (ADS)

    Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung

    2011-08-01

    In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.

  1. Work-related musculoskeletal disorders among construction workers in the United States from 1992 to 2014.

    PubMed

    Wang, Xuanwen; Dong, Xiuwen Sue; Choi, Sang D; Dement, John

    2017-05-01

    Examine trends and patterns of work-related musculoskeletal disorders (WMSDs) among construction workers in the USA, with an emphasis on older workers. WMSDs were identified from the 1992-2014 Survey of Occupational Injuries and Illnesses (SOII), and employment was estimated from the Current Population Survey (CPS). Risk of WMSDs was measured by number of WMSDs per 10 000 full-time equivalent workers and stratified by major demographic and employment subgroups. Time series analysis was performed to examine the trend of WMSDs in construction. The number of WMSDs significantly dropped in the US construction industry, following the overall injury trends. However, the rate of WMSDs in construction remained higher than in all industries combined; the median days away from work increased from 8 days in 1992 to 13 days in 2014, and the proportion of WMSDs for construction workers aged 55 to 64 years almost doubled. By occupation, construction labourers had the largest number of WMSD cases, while helpers, heating and air-conditioning mechanics, cement masons and sheet metal workers had the highest rates of WMSDs. The major cause of WMSDs in construction was overexertion, and back injuries accounted for more than 40% of WMSDs among construction workers. The estimated wage loss for private wage-and-salary construction workers was $46 million in 2014. Construction workers continue to face a higher risk of WMSDs. Ergonomic solutions that reduce overexertion-the primary exposure for WMSDs-should be adopted extensively at construction sites, particularly for workers with a higher risk of WMSDs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Variation of apparent mechanical anisotropy of cold-formed embossed sheet by annealing

    NASA Astrophysics Data System (ADS)

    Liu, Wuyang; Iizuka, Takashi

    2016-10-01

    Recently, with the demand of car lightweight, more and more high rigidity and formability material are required. So in order to achieve the lightweight, a good method is essential. [1] Although the thin sheet metal has light weight, the performance is changed to be lower with the sheet metal become thinner. In generally, the sheet metal has an anisotropy which depends on the aggregate structure. It have been investigated that by the embossing process the sheet metal is given new properties and the anisotropy. It's also investigated that the embossing process can improve the formability of the sheet metal. In this study, we used aluminum embossed sheet, and annealed the embossed sheet with different temperature. From the result, the variations of apparent mechanical properties of the embossed sheet by tensile test is confirmed. Furthermore, because annealing process can remove the work hardening, anisotropy derived from the embossing sub-macro structure was more obviously investigated.

  3. Subject groups high and low in urinary selenium levels: workers exposed to heavy metals and patients with cancer and epilepsy

    SciTech Connect

    Hojo, Y.

    1981-04-01

    Selenium was first recognized for its toxicity; its essential nature in animals was discovered and established later. That Se is essential to human nutrition has yet to be confirmed. Recently the selenoenzyme glutathione peroxidase (GSH-Px) was isolated from human erythrocyte and placenta. In order to discover the role Se plays in human health and disease, Thomson and Robinson emphasized a need for continuing studies of special needs of certain groups such as those exposed to heavy metals and those with certain disease and illness for example, cancer and cardiovascular disease. It is amongst these groups that Se deficiency or Se-responsive conditions may be found. Urinary Se excretion has been mainly used to assess the nutritional Se status. Recently estimation of urinary Se level in the form of its content per creatinine (abbreviated as CT) content using 24-h or random urine samples was shown to be more precise in reducing dilution and variation effects than that per urinary volume using 24-h urines (HOJO). The purpose of this study is to search the subject groups high or low in Se status by employing urinary Se content per CT content or per urine volume.

  4. Spot welding of steel and aluminum using insert sheet

    SciTech Connect

    Oikawa, H.; Saito, T.; Yoshimura, T.

    1994-12-31

    Automobile industries have been increasingly interested in the use of aluminum and thus joining of steel and aluminum becomes of importance. The joining of the two types of metal raises a problem of brittle welds caused by the formation of intermetallic compounds. The authors solved the problem by using an insert sheet. This paper deals with the resistance spot welding of steel and aluminum sheets using insert sheets. The insert sheet used in the present development was a steel/aluminum clad sheet of the 0.8 mm thickness with 50% steel and 50% aluminum. The clad sheet was produced by warm rolling of steel and aluminum with a direct resistance heating process. Steel to be warm rolled was of EDDQ of the 0.4 mm thickness and aluminum was of JIS A1050 of 0.6 mm thickness. The mechanical properties of the insert clad sheets were in between those of the steel sheets and the aluminum sheets, while the clad sheets showed much better formability than the aluminum sheets. Resistance spot welding was conducted for 0.8 mm thick EDDQ steel sheets and 1.0 mm thick aluminum alloy (AL-5.5%Mg) sheets under the welding force of 1.96 kN, welding current ranging between 4.2 and 20.1 kA, and welding time from 0.5 to 10 cycles. The steel was spot welded to the steel side of the insert sheet while the aluminum was welded to the aluminum side. What the authors investigated were the applicable welding current range, nugget diameter, tensile shear strength, U-tension strength, and macro- and microstructures. In conclusion, steel sheets can be spot welded to aluminum sheets without difficulty by using clad sheets as insert materials while the strength level of the dissimilar metal spot welds is close to that of aluminum joints.

  5. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  6. Effects of grain anisotropy on limit strains in biaxial stretching: part ii. sheets of cubic metals and alloys with well-developed preferred orientations

    NASA Astrophysics Data System (ADS)

    Wilson, D. V.; Roberts, W. T.; Rodrigues, P. M. B.

    1981-09-01

    Influences of preferred orientation on the processes of strain localization which lead to necking failure in biaxial stretching have been investigated in sheets of copper, aluminium and low-carbon steels. With copper having a 0.94 volume fraction of {100}(001) oriented grains, groove formation appeared to be essentially in accord with the predictions of bifurcation theory. However, with more usual sheet textures the effects of preferred orientation on biaxial limit strains depended on the distribution and intensity of plastic inhomogeneities in the microstructure. For copper with a strong {110}(112) textural component, it was shown that crystallographically directed groove formation in biaxial stretching was associated with the large difference in Taylor M factors for plane strain with extension in a (100) direction and for biaxial extension in directions perpendicular to (110). More generally, it was found that the distribution of different components of a texture in the microstructure, and the relative Taylor M factors of segregated components, can have important effects on the rate at which strain localization develops. It was concluded that statistical averages of the distribution of orientations do not provide a sufficient basis for prediction of the effects of preferred orientation on limit strains in biaxial stretching.

  7. Contingent workers.

    PubMed

    Guerrina, Ryan T; Burns, Candace M; Conlon, Helen

    2011-03-01

    Contingent workers compose a large portion of the U.S. work force. Contingent workers include temporary employees, contracted employees, day laborers, and freelancers. The skill level and educational requirements for their jobs vary from basic to highly advanced. Construction, housekeeping, engineering, and nursing have such positions. U.S. contingent workers are more likely to engage in occupations associated with increased risk of injury, and a variety of factors increase their risk of work injuries, particularly those leading to death. This article focuses on select occupational health and safety issues affecting contingent workers and their implications for occupational health nurses.

  8. Inpatient hospital admission rates for nonmalignant respiratory disease among workers exposed to metal removal fluids at a U.S. automobile manufacturer.

    PubMed

    Reeve, Gordon R; Stout, Allen W; Hands, David; Curry, Emmanuel

    2003-11-01

    This study was undertaken to determine the impact of exposure to metal removal fluids (MRFs) on the respiratory health of exposed workers. The outcome measure selected was the rate of hospital admissions for nonmalignant respiratory disease episodes as determined from healthcare insurance claims data. A cohort of MRF-exposed employees was assembled from 11 manufacturing facilities where MRFs were extensively used in the manufacture of automotive engines, transmissions, and other machined parts. The MRF-exposed cohort included 20,434 employees of such facilities who worked at any time from 1993 through 1997. A non-MRF-exposed cohort was assembled from other employees of the same company during the same time period, but working in warehouse operations and other manufacturing facilities that did not use MRFs or any known respiratory sensitizing agents. The non-exposed cohort included 8681 employees. The crude hospital admission rate for the MRF-exposed cohort was 44 percent higher than that of the non-exposed cohort over the 5-year study period (6.67 vs. 4.62 per 1000 person years at risk, p < 0.05). With age adjustment, the MRF population's rate was still 35 percent higher, and still statistically significant. A nested case-control study was also conducted to determine whether the risk of hospital admission increased with the level of MRF exposure in the population working in MRF plants. The industrial hygiene reconstruction found the levels of exposures of both cases and controls to be very low, with the vast majority of study subjects (more than 90%) having exposures of less than 0.5 mg/m(3). The case-control study did not find any association between increased levels of MRF exposure and risk of hospitalization. The study did document an elevated risk of hospitalization among a sizable population employed in manufacturing operations where MRFs are used.

  9. 3D display and image processing system for metal bellows welding

    NASA Astrophysics Data System (ADS)

    Park, Min-Chul; Son, Jung-Young

    2010-04-01

    Industrial welded metal Bellows is in shape of flexible pipeline. The most common form of bellows is as pairs of washer-shaped discs of thin sheet metal stamped from strip stock. Performing arc welding operation may cause dangerous accidents and bad smells. Furthermore, in the process of welding operation, workers have to observe the object directly through microscope adjusting the vertical and horizontal positions of welding rod tip and the bellows fixed on the jig, respectively. Welding looking through microscope makes workers feel tired. To improve working environment that workers sit in an uncomfortable position and productivity we introduced 3D display and image processing. Main purpose of the system is not only to maximize the efficiency of industrial productivity with accuracy but also to keep the safety standards with the full automation of work by distant remote controlling.

  10. Beryllium disease among construction trade workers at Department of Energy nuclear sites.

    PubMed

    Welch, Laura S; Ringen, Knut; Dement, John; Bingham, Eula; Quinn, Patricia; Shorter, Janet; Fisher, Miles

    2013-10-01

    A medical surveillance program was developed to identify current and former construction workers at significant risk for beryllium related disease from work at the DOE nuclear weapons facilities, and to improve surveillance among beryllium exposed workers. Medical examinations included a medical history and a beryllium blood lymphocyte proliferation test (BeLPT). Stratified and multivariate logistic regression analyses were used to explore the risk of disease by age, race, trade, and reported work in buildings where beryllium was used. After adjusting for covariates, the risk of BeS was significantly higher among boilermakers, roofers, and sheet metal workers, as suggested in the stratified analyses. Workers identified as sensitized to beryllium were interviewed to determine whether they had been subsequently diagnosed with chronic beryllium disease. Between 1998 and December 31, 2010 13,810 workers received a BeLPT through the BTMed program; 189 (1.4%) were sensitized to beryllium, and 28 reported that they had had a compensation claim accepted for CBD. These data on former construction workers gives us additional information about the predictive value of the blood BeLPT test for detection of CBD in populations with lower total lifetime exposures and more remote exposures than that experienced by current workers in beryllium machining operations. Through this surveillance program we have identified routes of exposures to beryllium and worked with DOE site personnel to identity and mitigate those exposures which still exist, as well as helping to focus attention on the risk for beryllium exposure among current demolition workers at these facilities. Copyright © 2013 Wiley Periodicals, Inc.

  11. Structural Biology Fact Sheet

    MedlinePlus

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  12. Cerebral Aneurysms Fact Sheet

    MedlinePlus

    ... Caregiver Education » Fact Sheets Cerebral Aneurysms Fact Sheet Table of Contents (click to jump to sections) What ... Information Page NINDS Epilepsy Information Page NINDS Familial Periodic Paralyses Information Page NINDS Farber's Disease Information Page ...

  13. Uterine Fibroids Fact Sheet

    MedlinePlus

    ... Topics Uterine fibroids fact sheet (PDF, 950 KB) FDA warning on power morcellators in treatment for uterine ... Topics Uterine fibroids fact sheet (PDF, 950 KB) FDA warning on power morcellators in treatment for uterine ...

  14. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    NASA Astrophysics Data System (ADS)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-12-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  15. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    SciTech Connect

    Choudhary, Shashank E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Tejesh, Chiruvolu Mohan E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Regalla, Srinivasa Prakash E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Suresh, Kurra E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in

    2013-12-16

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  16. Clinching for sheet materials

    PubMed Central

    He, Xiaocong

    2017-01-01

    Abstract Latest developments in the clinching of sheet materials are reviewed in this article. Important issues are discussed, such as tool design, process parameters and joinability of some new lightweight sheet materials. Hybrid and modified clinching processes are introduced to a general reader. Several unaddressed issues in the clinching of sheet materials are identified. PMID:28656065

  17. Clinching for sheet materials.

    PubMed

    He, Xiaocong

    2017-01-01

    Latest developments in the clinching of sheet materials are reviewed in this article. Important issues are discussed, such as tool design, process parameters and joinability of some new lightweight sheet materials. Hybrid and modified clinching processes are introduced to a general reader. Several unaddressed issues in the clinching of sheet materials are identified.

  18. 14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING PREPARED TO BE ROLLED INTO SHEETS OF SPECIFIC THICKNESS. COMPONENT PARTS WERE FABRICATED FROM THE METAL SHEETS. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  19. Synthesis of graphene sheets from single walled carbon nanohorns: novel conversion from cone to sheet morphology

    NASA Astrophysics Data System (ADS)

    Ranjan Sahu, Sumit; Rao Rikka, Vallabha; Jagannatham, M.; Haridoss, Prathap; Chatterjee, Abhijit; Gopalan, Raghavan; Prakash, Raju

    2017-03-01

    Graphene sheets have been synthesized from single walled carbon nanohorns by one-step reaction with hydrogen peroxide. The obtained graphene sheets are in pure form and shows good electrical properties. As-synthesized graphene acts as dual function of support as well as reducing agent to prepare graphene-silver nanoparticle composite having uniform particle size of 6 nm. This method can easily be scalable to prepare graphene or graphene supported metal nanoparticle composites for versatile applications.

  20. Forming of fiber reinforced thermoplastic sheets

    SciTech Connect

    Bhattacharyya, D.; Burt, C.R.; Martin, T.A.

    1993-12-31

    The development of fiber reinforced thermoplastic (FRTP) sheets has added a new dimension to the manufacturing industry. The ability of the thermoplastic matrix to soften and melt with the application of heat allows secondary processing of these composites. The material can be formed into components using conventional sheet metal forming processes with necessary modification. Ideally this opens the way for low cycle-time, non-labor intensive manufacturing processes. However, before there can be any wide scale application of the fiber reinforced sheet material, a better understanding is required regarding the formability of these reinforced sheets and the parameters influencing their forming characteristics. In sheet metal industry the term formability is described as the ease of forming and can be judged by various factors which may vary with the needs of a particular manufacturer. It is not always easy to prejudge formability as in many instances the actual sheet forming mechanism is quite complex. However, often a reasonable understanding of the process characteristics can be obtained through some relatively simple laboratory experiments. The present paper describes the results of a series of such tests namely hemispherical dome forming, cup drawing and vee bending using mainly polypropylene/glass fiber composite sheets with various fiber architecture, forming temperature and speed. Grid strain analysis has been applied to measure the magnitudes and directions of the principal strains and how they are influenced by fiber orientation. A kinematic approach has been shown to theoretically predict the deformation pattern with reasonable accuracy. Some salient features such as fiber buckling, sheet wrinkling, springback have been discussed in the context of forming process variables.

  1. 25. VIEW TO NORTHWEST, ENGINE PUMP EXTENSION, DETAIL OF SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW TO NORTHWEST, ENGINE PUMP EXTENSION, DETAIL OF SHEET METAL MOLDING TO OPENING BETWEEN ENGINE/PUMP HOUSE AND ENGINE/PUMP HOUSE EXTENSION - Deer Island Pumping Station, Boston, Suffolk County, MA

  2. Use of acrylic sheet molds for elastomeric products

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Koerner, A. E.; Messineo, S. M.

    1970-01-01

    Molds constructed of acrylic sheet are more easily machined than metal, are transparent to ensure complete filling during injection, and have smooth surfaces free of contamination. Technique eliminates flashing on molded parts and mold release agents.

  3. Competency-Based Horticulture: Turfgrass Maintenance Worker.

    ERIC Educational Resources Information Center

    College of DuPage, Glen Ellyn, IL.

    This competency-based horticulture curriculum guide is designed to provide secondary and postsecondary horticulture teachers with a task-oriented program for training turfgrass maintenance workers. It contains a master resource list, a listing of turfgrass maintenance resources available from various states, and 59 competency task sheets organized…

  4. Competency-Based Horticulture: Turfgrass Maintenance Worker.

    ERIC Educational Resources Information Center

    College of DuPage, Glen Ellyn, IL.

    This competency-based horticulture curriculum guide is designed to provide secondary and postsecondary horticulture teachers with a task-oriented program for training turfgrass maintenance workers. It contains a master resource list, a listing of turfgrass maintenance resources available from various states, and 59 competency task sheets organized…

  5. Neurotoxicity of metals.

    PubMed

    Caito, Samuel; Aschner, Michael

    2015-01-01

    Metals are frequently used in industry and represent a major source of toxin exposure for workers. For this reason governmental agencies regulate the amount of metal exposure permissible for worker safety. While essential metals serve physiologic roles, metals pose significant health risks upon acute and chronic exposure to high levels. The central nervous system is particularly vulnerable to metals. The brain readily accumulates metals, which under physiologic conditions are incorporated into essential metalloproteins required for neuronal health and energy homeostasis. Severe consequences can arise from circumstances of excess essential metals or exposure to toxic nonessential metal. Herein, we discuss sources of occupational metal exposure, metal homeostasis in the human body, susceptibility of the nervous system to metals, detoxification, detection of metals in biologic samples, and chelation therapeutic strategies. The neurologic pathology and physiology following aluminum, arsenic, lead, manganese, mercury, and trimethyltin exposures are highlighted as classic examples of metal-induced neurotoxicity.

  6. 78 FR 48467 - Wausau Paper, Brainerd Converting Operation, Including On-Site Leased Workers From Employment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Workers From Employment Resource Center, Securitas and Marsden, Brainerd, Minnesota; Amended Certification... of uncoated free sheet paper. The state reports that workers leased from Securitas and Marsden were... workers leased from Securitas and Marsden working on-site at the Brainerd, Minnesota location of...

  7. Urinary N-acetyl-beta-D-glucosaminidase and beta-aminoisobutyric acid in workers occupationally exposed to metals such as chromium, nickel, and iron.

    PubMed

    Tomokuni, K; Ichiba, M; Hirai, Y

    1993-01-01

    To examine the relationships between the urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG) and beta-aminoisobutyric acid (AIBA) as a metabolite of thymine, and exposure to chromium, nickel, and iron, we determined these parameters in 58 workers engaged in the cutting and grinding of stainless steel or iron-steel plates. A significant increase in urinary NAG activity or urinary AIBA excretion was found in some of these workers. However, we could not find a significant positive correlation between the urinary excretion of NAG or AIBA and the urinary concentration of chromium, nickel, or iron as an indicator of internal dose.

  8. Rheumatism in Foundry Workers

    PubMed Central

    Lawrence, J. S.; Molyneux, M. K.; Dingwall-Fordyce, Ianthe

    1966-01-01

    In order to investigate loss of work from rheumatic diseases in the metal trades, employees in 10 foundries were questioned. Of 325 foundry workers aged 35 to 74 years, who had worked for at least 10 years on the foundry floor, 299 were examined clinically and radiologically for evidence of rheumatic disease. Radiographs of the hands, knees, and dorsal and lumbar spine were taken as a routine, and the pelvis was included in those aged 45 and over. A comparison was made with a control series of radiographs, from men, matched for age, in a random population sample examined earlier in the town of Leigh. Rheumatic complaints in general were less frequent in the foundry workers than in the random sample, and the foundry workers less often gave a history of prolonged incapacity (three months or more) due to this cause. Radiological evidence of disc degeneration in the lumbar spine, however, was more frequent in the foundry workers than in the controls and was of greater severity. Further, the foundry workers more commonly had symptoms and signs of lumbar disc prolapse. On the other hand, the controls had more osteo-arthrosis of the hips and knees and lost more work from pain at these sites. This was associated with a difference of body habitus, obesity being less frequent in the foundry workers. Foundry workers directly exposed to hot conditions did not have less back or leg pain than those not so exposed despite a greater prevalence of disc degeneration. Measurements of air temperature, humidity, and radiant heat were made in a foundry while pouring was in progress. The air temperature rose from 18°C. to 26°C. and the humidity ranged from 70% to 54%. The mean intensity of radiation incident on the clothed surface of a foundry worker was 0·12 watt/cm.2. This was compared with conditions during therapeutic exposure to radiant heat. The radiant heat under conditions of `heat therapy' varied between 0·16 and 0·37 watt/cm.2. The possible influence of radiant heat on the

  9. Ferromagnetism in semihydrogenated graphene sheet.

    PubMed

    Zhou, J; Wang, Q; Sun, Q; Chen, X S; Kawazoe, Y; Jena, P

    2009-11-01

    Single layer of graphite (graphene) was predicted and later experimentally confirmed to undergo metal-semiconductor transition when fully hydrogenated (graphane). Using density functional theory we show that when half of the hydrogen in this graphane sheet is removed, the resulting semihydrogenated graphene (which we refer to as graphone) becomes a ferromagnetic semiconductor with a small indirect gap. Half-hydrogenation breaks the delocalized pi bonding network of graphene, leaving the electrons in the unhydrogenated carbon atoms localized and unpaired. The magnetic moments at these sites couple ferromagnetically with an estimated Curie temperature between 278 and 417 K, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. This is very different from the widely studied finite graphene nanostrucures such as one-dimensional nanoribbons and two-dimensional nanoholes, where zigzag edges are necessary for magnetism. From graphene to graphane and to graphone, the system evolves from metallic to semiconducting and from nonmagnetic to magnetic. Hydrogenation provides a novel way to tune the properties with unprecedented potentials for applications.

  10. Mechanics of Sheeting Joints

    NASA Astrophysics Data System (ADS)

    Martel, S. J.

    2015-12-01

    Physical breakdown of rock across a broad scale spectrum involves fracturing. In many areas large fractures develop near the topographic surface, with sheeting joints being among the most impressive. Sheeting joints share many geometric, textural, and kinematic features with other joints (opening-mode fractures) but differ in that they are (a) discernibly curved, (b) open near the topographic surface, and (c) form subparallel to the topographic surface. Where sheeting joints are geologically young, the surface-parallel compressive stresses are typically several MPa or greater. Sheeting joints are best developed beneath domes, ridges, and saddles; they also are reported, albeit rarely, beneath valleys or bowls. A mechanism that accounts for all these associations has been sought for more than a century: neither erosion of overburden nor high lateral compressive stresses alone suffices. Sheeting joints are not accounted for by Mohr-Coulomb shear failure criteria. Principles of linear elastic fracture mechanics, together with the mechanical effect of a curved topographic surface, do provide a basis for understanding sheeting joint growth and the pattern sheeting joints form. Compressive stresses parallel to a singly or doubly convex topographic surface induce a tensile stress perpendicular to the surface at shallow depths; in some cases this alone could overcome the weight of overburden to open sheeting joints. If regional horizontal compressive stresses, augmented by thermal stresses, are an order of magnitude or so greater than a characteristic vertical stress that scales with topographic amplitude, then topographic stress perturbations can cause sheeting joints to open near the top of a ridge. This topographic effect can be augmented by pressure within sheeting joints arising from water, ice, or salt. Water pressure could be particularly important in helping drive sheeting joints downslope beneath valleys. Once sheeting joints have formed, the rock sheets between

  11. Emittance Measurements for a Thin Liquid Sheet Flow

    NASA Technical Reports Server (NTRS)

    Englehart, Amy N.; McConley, Marc W.; Chubb, Donald L.

    1996-01-01

    The Liquid Sheet Radiator (LSR) is an external flow radiator that uses a triangular-shaped flowing liquid sheet as the radiating surface. It has potentially much lower mass than solid wall radiators such as pumped loop and heat pipe radiators, along with being nearly immune to micrometeoroid penetration. The LSR has an added advantage of simplicity. Surface tension causes a thin (100-300 microns) liquid sheet to coalesce to a point, causing the sheet flow to have a triangular shape. Such a triangular sheet is desirable since it allows for simple collection of the flow at a single point. A major problem for all external flow radiators is the requirement that the working fluid be of very low (approx. 10(sup -8) torr) vapor pressure to keep evaporative losses low. As a result, working fluids are limited to certain oils (such as used in diffusion pumps) for low temperatures (300-400 K) and liquid metals for higher temperatures. Previous research on the LSR has been directed at understanding the fluid mechanics of thin sheet flows and assessing the stability of such flows, especially with regard to the formation of holes in the sheet. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. The latest research has been directed at determining the emittance of thin sheet flows. The emittance was calculated from spectral transmittance data for the Dow Corning 705 silicone oil. By experimentally setting up a sheet flow, the emittance was also determined as a function of measurable quantities, most importantly, the temperature drop between the top of the sheet and the temperature at the coalescence point of the sheet. Temperature fluctuations upstream of the liquid sheet were a potential problem in the analysis and were investigated.

  12. Stochastic models of surface limited electronic and heat transport in metal and semiconductor contacts, wires, and sheets---micro to nano

    NASA Astrophysics Data System (ADS)

    Martin, Pierre Nicolas

    2010-03-01

    We introduce novel statistical simulation approaches to include the effect of surface roughness in coupled mechanical, electronic and thermal processes in N/MEMS and semiconductor devices in the 10 nm - 1 mum range. A model is presented to estimate roughness rms Delta and autocorrelation L from experimental surfaces and edges, and subsequently generate statistical series of rough geometrical devices from these observable parameters. Using such series of rough electrodes under Holm's theory, we present a novel simulation framework which predicts a contact resistance of 80 mO in MEMS gold-gold micro-contacts, for applied pressures above 0.3 mN on 1 mum x 1 mum surfaces. The non-contacting state of such devices is simulated through statistical Monte Carlo iterations on percolative networks to derive a time to electro-thermal failure through electrical discharges in the gas insulating metal electrodes. The observable parameters L and Delta are further integrated in semi-classical solutions to the electronic and thermal Boltzman transport equation (BTE), and we show roughness limited heat and electronic transport in rough semiconductor nanowires and nano-ribbons. In this scope, we model for the first time electrostatically confined nanowires, where a reduction of electron - surface scattering leads to enhanced mobility in comparison to geometrical nanowires. In addition, we show extremely low thermal conductivity in Si, GaAs, and Ge nanowires down to 0.1 W/m/K for thin Ge wires with 56 nm width and Delta = 3 nm. The dependency of thermal conductivity in (D/Delta)2 leads to possible application in the field of thermoelectric devices. For rough channels of width below 10 nm, electronic transport is additionally modeled using a novel non-parabolic 3D recursive Green function scheme, leading to an estimation of reduced electronic transmission in rough semiconductor wires based on the quantum nature of charge carriers. Electronic and thermal simulation schemes are finally

  13. Case-control study of male germ cell tumors nested in a cohort of car-manufacturing workers: Findings from the occupational history.

    PubMed

    Langner, Ingo; Schmeisser, Nils; Mester, Birte; Behrens, Thomas; Gottlieb, Andrea; Ahrens, Wolfgang

    2010-10-01

    To examine whether the previously observed excess risk of male germ cell cancer in a cohort of car-manufacturing workers can be attributed to occupational activities inside and/or outside the car industry. A nested case-control study among workers in six plants included 205 cases of germ cell cancer and 1,105 controls, individually matched by year of birth (±2 years). Job periods of the individual occupational histories were coded based on the International Standard Classification of Occupations (ISCO) and the industrial classification of economic activities (NACE). Odds ratios (ORs) and corresponding 95%-confidence intervals (CI) for ever-never and cumulative employment were calculated by conditional multivariate logistic regression adjusted for cryptorchidism. Significantly increased risks were observed for machinery fitters and assemblers (A) (OR = 1.8, 95% CI 1.25-2.53) and "workers not elsewhere classified" (OR = 2.10, 95% CI 1.27-3.54), but no trend was observed for employment duration in either occupational group. Stratification of job group A by metal-cutting and non-cutting jobs yielded ORs of 1.87 (95% CI 1.31-2.67) and of 1.24 (95% CI 0.68-2.28), respectively. Among "plumbers, welders, sheet & structural metal workers" (adjusted OR 1.4, 95% CI 0.99-1.95) only "structural metal preparers and erectors" showed a substantially increased risk (OR = 2.30; 95% CI 1.27-4.27). Our results do not fully explain the increased incidence of germ cell cancer in the cohort, but support previous findings showing increased risks among metal workers. These risks were most strongly pronounced in metal-cutting activities. © 2010 Wiley-Liss, Inc.

  14. Metal phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1984-01-01

    Metal 4, 4', 4", 4"'=tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A.

  15. Silicon sheet technologies

    SciTech Connect

    Ciszek, T.F.

    1982-09-01

    A classification of silicon sheet growth methods by meniscus geometry permits them to be discussed in three groups: short meniscus techniques, high meniscus techniques, and extended meniscus or large solid/liquid interface area techniques. A second parameter, meniscus shaper interaction with the liquid silicon, is also instrumental in determining the characteristics of the various sheet processes. The current status of each process is discussed in the context of meniscus geometry and shaper/melt interaction. One aspect of sheet growth, surface area generation rate, is quantitatively compared with combined ingot growth and wafering surface area generation rates.

  16. Microcomponent sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K..; McDonald, C.E.

    1997-03-18

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.

  17. Microcomponent sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.

    1997-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  18. Liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; White, K. Alan, III

    1987-01-01

    A new external flow radiator concept, the liquid sheet radiator (LSR), is introduced. The LSR sheet flow is described and an expression for the length/width (l/w), ratio is presented. A linear dependence of l/w on velocity is predicted that agrees with experimental results. Specific power for the LSR is calculated and is found to be nearly the same as the specific power of a liquid droplet radiator, (LDR). Several sheet thicknesses and widths were experimentally investigated. In no case was the flow found to be unstable.

  19. The effect of physical and psychosocial occupational factors on the chronicity of low back pain in the workers of Iranian metal industry: a cohort study

    PubMed Central

    Aghilinejad, Mashallah; Tavakolifard, Negah; Mortazavi, Sayed Aliakbar; Kabir Mokamelkhah, Elahe; Sotudehmanesh, Akbar; Mortazavi, Seyed Alireza

    2015-01-01

    Background: Low back pain (LBP) is one of the most common problems among the workers of different industries. The role of occupational factors in causing the LBP has been indicated previously. LBP has great socio-economic costs and most of its costs are related to the chronic LBP. The aim of this study was to identify the occupational risk factors that are related to the progression of the LBP from acute to chronic phase. Methods: This cohort study has been conducted on 185 workers with acute LBP. Information related to their occupational exposure at baseline has been measured with a valid questionnaire using the self-report approach. Patients follow up was done monthly for three months after the start of the pain. Those workers whose occupational exposure had not changed during the follow up were divided into two groups of chronic LBP (n = 49) and cured (n = 136) according to the duration of the pain period (more or less than 3 months), and their job exposures were compared. Results: Among the physical and psychosocial risk factors, social support (OR= 0.466, CI= 0.231- 0.940) and job satisfaction (OR= 0.455, CI= 0.232-0.891), and lifting weights more than 15kg (OR=2.482, CI= 1.274-4.834) indicated a significant relationship with the chronicity of the LBP. After putting the variables into the regression model, only lifting>15kg remained statistically significant. Conclusion: According to the observed relationship between these occupational risk factors (social support, job satisfaction, lifting>15kg) and the chronicity of the LBP, there is hope that eliminating these factors in the workers with acute LBP will prevent its progression to the chronic phase. PMID:26793633

  20. Casimir interactions between graphene sheets and metamaterials

    SciTech Connect

    Drosdoff, D.; Woods, Lilia M.

    2011-12-15

    The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.

  1. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  2. CMAQ Fact Sheet

    EPA Pesticide Factsheets

    For more than a decade, EPA and states have used EPA’s Community Multiscale Air Quality (CMAQ) Modeling System, a powerful computational tool for air quality management. Learn more about CMAQv5.2 by browsing our fact sheet.

  3. Avian Fact Sheet

    SciTech Connect

    NWCC Wildlife Work Group

    2004-12-01

    OAK-B135 After conducting four national research meetings, producing a document guiding research: Metrics and Methods for Determining or Monitoring Potential Impacts on Birds at Existing and Proposed Wind Energy Sites, 1999, and another paper, Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States, 2001, the subcommittee recognized a need to summarize in a short fact sheet what is known about avian-wind interaction and what questions remain. This fact sheet attempts to summarize in lay terms the result of extensive discussion about avian-wind interaction on land. This fact sheet does not address research conducted on offshore development. This fact sheet is not intended as a conclusion on the subject; rather, it is a summary as of Fall/Winter 2002.

  4. Biodiesel Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  5. Energy information sheets

    SciTech Connect

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  6. Diamond Sheet: A new diamond tool material

    NASA Technical Reports Server (NTRS)

    Mackey, C. R.

    1982-01-01

    Diamond sheet is termed a diamond tool material because it is not a cutting tool, but rather a new material from which a variety of different tools may be fabricated. In appearance and properties, it resembles a sheet of copper alloy with diamond abrasive dispersed throughout it. It is capable of being cut, formed, and joined by conventional methods, and subsequently used for cutting as a metal bonded diamond tool. Diamond sheet is normally made with industrial diamond as the abrasive material. The metal matrix in diamond sheet is a medium hard copper alloy which has performed well in most applications. This alloy has the capability of being made harder or softer if specific cutting conditions require it. Other alloys have also been used including a precipitation hardened aluminum alloy with very free cutting characteristics. The material is suitable for use in a variety of cutting, surfacing, and ring type tools, as well as in such mundane items as files and sandpaper. It can also be used as a bearing surface (diamond to diamond) and in wear resistant surfaces.

  7. Analysis of large sheet metal tailored tubes

    NASA Astrophysics Data System (ADS)

    Pomazan, V. M.

    2015-11-01

    The present study was triggered by the need to verify and optimize the primary constructive solution, for custom large tubes (section lengths larger than 1000 mm), under the gravity and pressure loads. The cases presented needed to be checked for the reinforcement design. Given the complex tridimensional geometry of the axisymmetric shell structures, the basic shape of the tubes was modelled, with its actual thickness. FEA was used to check the model under static loads and buckling. In order to optimize the weight, an alternative welded reinforcement's grid design was developed and checked for stability. Optimal welding sections along ribs in longitudinal and transversal directions were identified for easier design and further costs reduction.

  8. Warm Hydroforming of Lightweight Metal Sheets

    SciTech Connect

    Aginagalde, A.; Orus, A.; Esnaola, J. A.; Torca, I.; Galdos, L.; Garcia, C.

    2007-05-17

    Hydroforming is well known in steel applications for automotive industry, where complicated shapes can be get with high strength to weight ratios. Nevertheless, the poor formability of light alloys at room temperature has limited the application of hydroforming technology for aluminum and magnesium parts. Increasing the temperature of these materials allows substantially greater elongation without fracture. Warm forming strategy is applied in conventional processes, such as rolling and forging, in order to get complex shapes, but still rare in hydroforming technology. This is the technical base of this research project: the development of the hydroforming process at warm working temperatures. The main tasks of the initial phases of the research were the material characterization, and the heated fluid and tooling system design and set up for warm hydroforming of lightweight alloys. Once these goals were accomplished the present paper shows the obtained results. The uniaxial tensile deformation of 5754H111, 6082-T6, 6082-O and AZ31B at the temperature range of 25 deg. C - 250 deg. C is presented as the output of the material characterization task. Both the system features and the results obtained for a bulge test geometry carried out with a warm hydroforming system are also presented. The selected alloys show an improvement in formability at the studied temperature range under both uniaxial and biaxial state of stress.

  9. Metals fact sheet: Holmium/thulium

    SciTech Connect

    1996-02-01

    This article discusses the geology, exploitation, market, and applications of holmium and thulium. Holmium and thulium are important part in the development of specific laser technologies, x-ray film and high-temperature superconductors.

  10. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  11. Buffer Zone Fact Sheets

    EPA Pesticide Factsheets

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  12. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    PubMed

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  13. Quantitative measurement of sheet resistance by evanescent microwave probe

    SciTech Connect

    Wang Zhengyu; Kelly, Michael A.; Shen Zhixun; Shao Lin; Chu, W.-K.; Edwards, Hal

    2005-04-11

    Quantitative measurement of microwave sheet resistance by a novel type of near-field microwave microscope -Evanescent Microwave Probe (EMP) - has been demonstrated. The data cover a wide range of sheet resistance from the metal limit to the insulator limit. Both finite element analysis (FEA) and a simple coaxial ring model have been shown to fit the data well. The demonstration of sheet resistance measurement with high spatial resolution in the GHz range shows the potential of EMP for semiconductor metrology applications. The data also reveal issues related to the large penetration depth, allowing substrate properties to affect the signal.

  14. Metal nanodisks using bicellar templates

    SciTech Connect

    Song, Yujiang; Shelnutt, John A

    2013-12-03

    Metallic nanodisks and a method of making them. The metallic nanodisks are wheel-shaped structures that that provide large surface areas for catalytic applications. The metallic nanodisks are grown within bicelles (disk-like micelles) that template the growth of the metal in the form of approximately circular dendritic sheets. The zero-valent metal forming the nanodisks is formed by reduction of a metal ion using a suitable electron donor species.

  15. Measurement of natural radioactive nuclide concentrations in various metal ores used as industrial raw materials in Japan and estimation of dose received by workers handling them.

    PubMed

    Iwaoka, Kazuki; Tagami, Keiko; Yonehara, Hidenori

    2009-11-01

    Natural resources such as ores and rocks contain natural radioactive nuclides at various concentrations. If these resources contain high concentrations of natural radioactive nuclides, workers handling them might be exposed to significant levels of radiation. Therefore, it is important to investigate the radioactive activity in these resources. In this study, concentrations of radioactive nuclides in Th, Zr, Ti, Mo, Mn, Al, W, Zn, V, and Cr ores used as industrial raw materials in Japan were investigated. The concentrations of (238)U and (232)Th were determined by inductively coupled plasma mass spectrometry (ICP-MS), while those of (226)Ra, (228)Ra, and (40)K were determined by gamma-ray spectrum. We found the concentrations of (238)U series, (232)Th series, and (40)K in Ti, Mo, Mn, Al, W, Zn, V, and Cr ores to be lower than the critical values defined by regulatory requirements as described in the International Atomic Energy Agency (IAEA) Safety Guide. The doses received by workers handling these materials were estimated by using methods for dose assessment given in a report by the European Commission. In transport, indoor storage, and outdoor storage scenarios, an effective dose due to the use of Th ore was above 4.3 x 10(-2)Sv y(-1), which was higher than that of the other ores. The maximum value of effective doses for other ores was estimated to be about 4.5 x 10(-4)Sv y(-1), which was lower than intervention exemption levels (1.0 x 10(-3)Sv y(-1)) given in International Commission of Radiological Protection (ICRP) Publication 82.

  16. Energy information sheets

    SciTech Connect

    Not Available

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  17. Light sheet microscopy.

    PubMed

    Weber, Michael; Mickoleit, Michaela; Huisken, Jan

    2014-01-01

    This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail.

  18. 71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLEARCHED DAM: STRESS SHEET, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLE-ARCHED DAM: STRESS SHEET, SHEET 3; DECEMBER 20, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  19. 39. SUPERSTRUCTUREAPPROACH SPANS, EXPANSION DETAILS (Sheet 4 of 28 sheets), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. SUPERSTRUCTURE-APPROACH SPANS, EXPANSION DETAILS (Sheet 4 of 28 sheets), September 8, 1930 - West End-North Side Bridge, Spanning Ohio River, approximately 1 mile downstream from confluence of Monongahela & Allegheny rivers, Pittsburgh, Allegheny County, PA

  20. 46. HANDRAILING, DETAILS TYPE 'B' (Sheet 12 of 14 sheets), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. HANDRAILING, DETAILS TYPE 'B' (Sheet 12 of 14 sheets), April 5, 1932 - West End-North Side Bridge, Spanning Ohio River, approximately 1 mile downstream from confluence of Monongahela & Allegheny rivers, Pittsburgh, Allegheny County, PA

  1. 5. Historic American Buildings Survey Taken from drawing sheet, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Taken from drawing sheet, SHEET #21, Showing the house as restored since Survey. (Dormer windows omitted as not authentic) - Samuel des Marest House, River Road, New Milford, Bergen County, NJ

  2. Ethanol Myths Fact Sheet

    SciTech Connect

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  3. Insulation Fact Sheet.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Heating and cooling account for 50-70% of the energy consumed in the average American home. Heating water accounts for another 20%. A poorly insulated home loses much of this energy, causing drafty rooms and high energy bills. This fact sheet discusses how to determine if your home needs more insulation, the additional thermal resistance (called…

  4. GED Testing Fact Sheet

    ERIC Educational Resources Information Center

    GED Testing Service, 2009

    2009-01-01

    This GED Testing fact sheet provides information on: (1) GED[R] Tests; (2) Versions and Editions of the GED Tests; (3) Earning a Credential; (4) GED Testing Service[R]; (5) History of the GED Tests; (6) Who Accepts the GED Credential; (7) Public/Private Partnership of GEDTS; (8) Renowned GED Credential Recipients; (9) GED Testing Numbers for 2008;…

  5. Quick Information Sheets.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    This compilation of "Trace Quick Sheets" provides descriptions, prices, and ordering information for products and services that assist with communication, control, and computer access for disabled individuals. Product descriptions or product sources are included for: adaptive toys and toy modifications; head pointers, light pointers, and…

  6. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  7. Quick Information Sheets. 1988.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    The Trace Center gathers and organizes information on communication, control, and computer access for handicapped individuals. The information is disseminated in the form of brief sheets describing print, nonprint, and organizational resources and listing addresses and telephone numbers for ordering or for additional information. This compilation…

  8. Quick Information Sheets.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    This compilation of "Trace Quick Sheets" provides descriptions, prices, and ordering information for products and services that assist with communication, control, and computer access for disabled individuals. Product descriptions or product sources are included for: adaptive toys and toy modifications; head pointers, light pointers, and…

  9. SILICON CARBIDE DATA SHEETS

    DTIC Science & Technology

    These data sheets present a compilation of a wide range of electrical, optical and energy values for alpha and beta- silicon carbide in bulk and film...spectrum. Energy data include energy bands, energy gap and energy levels for variously-doped silicon carbide , as well as effective mass tables, work

  10. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  11. Youth Demographics. Fact Sheet

    ERIC Educational Resources Information Center

    Lopez, Mark Hugo; Marcelo, Karlo Barrios

    2006-01-01

    This fact sheet compares the numbers of 18-25 year-old residents and citizens by gender, race, ethnicity, geographic distribution, marital status, military status, unemployment, educational attainment, and assesses population trends from 1968-2006. It explores such demographic characteristics of young people using data from the March Annual…

  12. Rubella - Fact Sheet for Parents

    MedlinePlus

    ... this page: About CDC.gov . Redirect for the Rubella fact sheet page. The current fact sheet can ... http://www.cdc.gov/vaccines/parents/diseases/child/rubella.html Print page Share Compartir File Formats Help: ...

  13. Workers Welding on ML

    NASA Image and Video Library

    2014-02-24

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A construction worker prepares a metal beam that will be attached to the ML. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission 1, in 2017. Photo credit: NASA/Dimitri Gerondidakis

  14. Metallized Products

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Since the early 1960's, virtually all NASA spacecraft have used metallized films for a variety of purposes, principally thermal radiation insulation. King Seeley manufactures a broad line of industrial and consumer oriented metallized film, fabric, paper and foam in single layer sheets and multi-layer laminates. A few examples, commercialized by MPI Outdoor Safety Products, are the three ounce Thermos Emergency Blanket which reflects and retains up to 80 percent of the user's body heat helping prevent post accident shock or keeping a person warm for hours under emergency cold weather conditions.

  15. Fast Light-Sheet Scanner

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Humphreys, William M., Jr.; Bartram, Scott M.

    1995-01-01

    Optomechanical apparatus maintains sheet of pulsed laser light perpendicular to reference axis while causing sheet of light to translate in oscillatory fashion along reference axis. Produces illumination for laser velocimeter in which submicrometer particles entrained in flow illuminated and imaged in parallel planes displaced from each other in rapid succession. Selected frequency of oscillation range upward from tens of hertz. Rotating window continuously shifts sheet of light laterally while maintaining sheet parallel to same plane.

  16. Fast Light-Sheet Scanner

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Humphreys, William M., Jr.; Bartram, Scott M.

    1995-01-01

    Optomechanical apparatus maintains sheet of pulsed laser light perpendicular to reference axis while causing sheet of light to translate in oscillatory fashion along reference axis. Produces illumination for laser velocimeter in which submicrometer particles entrained in flow illuminated and imaged in parallel planes displaced from each other in rapid succession. Selected frequency of oscillation range upward from tens of hertz. Rotating window continuously shifts sheet of light laterally while maintaining sheet parallel to same plane.

  17. Constitutive Modeling of Magnesium Alloy Sheets

    SciTech Connect

    Lee, M. G.; Piao, K.; Wagoner, R. H.; Lee, J. K.; Chung, K.; Kim, H. Y.

    2007-05-17

    Magnesium alloy sheets have unique mechanical properties: high in-plane anisotropy/asymmetry of yield stress and hardening response, which have not been thoroughly studied. The unusual mechanical behavior of magnesium alloys has been understood by the limited symmetry crystal structure of h.c.p metals and thus by deformation twinning. In this paper, the phenomenological continuum plasticity models considering the unusual plastic behavior of magnesium alloy sheet were developed for a finite element analysis. A new hardening law based on two-surface model was developed to consider the general stress-strain response of metal sheets such as Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. In terms of the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified to include the anisotropy of magnesium alloys. Also, characterization procedures of material parameters for the constitutive equations were presented and finally the correlation of simulation with measurements was performed to validate the proposed theory.

  18. Forming limit strains of interstitial free-IF steel sheet

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Moreira, Luciano Pessanha; Freitas, Maria Carolina dos Santos

    2016-10-01

    Present work examines mathematical models to predict the onset of localized necking in sheet metal forming of interstitial free steel, such as biaxial stretching and deep drawing. Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulation by FEM, of IF steel sheet was assessed experimentally by Nakajima testing and ASAME software. The "Map of Principal Surface Limit Strains - MPLS", shows the experimental FLC which is the plot of principal true strains in the sheet metal surface (ɛ1, ɛ2), occurring at critical points obtained in laboratory formability tests or in the fabrication process of parts. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and rupture by induced shear stress. Therefore, two kinds of limit strain curves can be plotted in the forming map: the local necking limit curve FLC-N and the shear stress rupture limit curve FLC-S. Localized necking is theoretically anticipated to occur by two mathematical models: Marciniak-Kuczynski modeling, hereafter named M-K approach, and D-Bressan modeling. In the M-K approach, local necking originates at an initial sheet thickness heterogeneity or defect fo = tob/toa. The strain state inside the evolving groove moves to plane strain and the limit strain ɛ1* is attained when the strain ɛ1a outside the groove or neck stop to increase. In the D-Bressan model, local necking is proposed to initiate at the instability point of maximum load, at a thickness defect (λ/μ)diffuse inside the grooved sheet thickness. The inception of visible grooving on the sheet surface evolves from instability point to localized (λ/μ)crit and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain-rate material by the effective current stress. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming normal anisotropy, was used to analyze the plasticity

  19. Beginning Child Care Fact Sheets.

    ERIC Educational Resources Information Center

    Tweedie, Pat

    These six fact sheets from Child Care Aware are designed to help parents ease their children's transition to child care. The first fact sheet, "Before Your Child's First Day," discusses tips such as: (1) "prepare your child"; (2) read and look at picture books about child care; and (3) "prepare yourself." The second fact sheet, "First Day Tips,"…

  20. The Physics of Ice Sheets

    ERIC Educational Resources Information Center

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…