Sample records for sheet pic simulation

  1. Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, Michael

    2014-01-01

    Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.

  2. Energy release and transfer in guide field reconnection

    NASA Astrophysics Data System (ADS)

    Birn, J.; Hesse, M.

    2010-01-01

    Properties of energy release and transfer by magnetic reconnection in the presence of a guide field are investigated on the basis of 2.5-dimensional magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations. Two initial configurations are considered: a plane current sheet with a uniform guide field of 80% of the reconnecting magnetic field component and a force-free current sheet in which the magnetic field strength is constant but the field direction rotates by 180° through the current sheet. The onset of reconnection is stimulated by localized, temporally limited compression. Both MHD and PIC simulations consistently show that the outgoing energy fluxes are dominated by (redirected) Poynting flux and enthalpy flux, whereas bulk kinetic energy flux and heat flux (in the PIC simulation) are small. The Poynting flux is mainly associated with the magnetic energy of the guide field which is carried from inflow to outflow without much alteration. The conversion of annihilated magnetic energy to enthalpy flux (that is, thermal energy) stems mainly from the fact that the outflow occurs into a closed field region governed by approximate force balance between Lorentz and pressure gradient forces. Therefore, the energy converted from magnetic to kinetic energy by Lorentz force acceleration becomes immediately transferred to thermal energy by the work done by the pressure gradient force. Strong similarities between late stages of MHD and PIC simulations result from the fact that conservation of mass and entropy content and footpoint displacement of magnetic flux tubes, imposed in MHD, are also approximately satisfied in the PIC simulations.

  3. Plasma sheet low-entropy flow channels and dipolarization fronts from macro to micro scales: Global MHD and PIC simulations

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Wiltberger, M. J.; Sitnov, M. I.; Lyon, J.

    2016-12-01

    Observations show that much of plasma and magnetic flux transport in the magnetotail occurs in the form of discrete activations such as bursty bulk flows (BBFs). These flow structures are typically associated with strong peaks of the Z-component of the magnetic field normal to the magnetotail current sheet (dipolarization fronts, DFs), as well as density and flux tube entropy depletions also called plasma bubbles. Extensive observational analysis of these structures has been carried out using data from Geotail spacecraft and more recently from Cluster, THEMIS, and MMS multi-probe missions. Global magnetohydrodynamic (MHD) simulations of the magnetosphere reveal similar plasma sheet flow bursts, in agreement with regional MHD and particle-in-cell (PIC) models. We present results of high-resolution simulations using the Lyon-Fedder-Mobarry (LFM) global MHD model and analyze the properties of the bursty flows including their structure and evolution as they propagate from the mid-tail region into the inner magnetosphere. We highlight similarities and differences with the corresponding observations and discuss comparative properties of plasma bubbles and DFs in our global MHD simulations with their counterparts in 3D PIC simulations.

  4. Energized Oxygen : Speiser Current Sheet Bifurcation

    NASA Astrophysics Data System (ADS)

    George, D. E.; Jahn, J. M.

    2017-12-01

    A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs significantly from previous investigations involving heavy ions in that they are energized as opposed to being simply thermal. This is a variation based firmly on published in-situ measurements. It also differs in that a complete population is used as opposed to simply test particles in a magnetic field model.

  5. Kinetic Simulations of Current-Sheet Formation and Reconnection at a Magnetic X Line

    NASA Technical Reports Server (NTRS)

    Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; DeVore, C. R.; Kuznetsova, M. M.; Zenitani, S.

    2011-01-01

    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the plasma physics community, particularly in the context of magnetic reconnection. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high resolution particle-in-cell (PIC) simulations. The initial potential magnetic field is perturbed by thermal pressure introduced into the particle distribution far from the X line. The relaxation of this added stress leads to the development of a current sheet, which reconnects for imposed stress of sufficient strength. We compare the evolution and final state of our PIC simulations with magnetohydrodynamic simulations assuming both uniform and localized resistivities, and with force-free magnetic-field equilibria in which the amount of reconnect ion across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the terrestrial magnetotail and solar corona.

  6. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio m i/m e. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic m i/m e. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying m i/m e, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  7. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE PAGES

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; ...

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio m i/m e. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic m i/m e. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying m i/m e, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  8. Electron acceleration in the Solar corona - 3D PiC code simulations of guide field reconnection

    NASA Astrophysics Data System (ADS)

    Alejandro Munoz Sepulveda, Patricio

    2017-04-01

    The efficient electron acceleration in the solar corona detected by means of hard X-ray emission is still not well understood. Magnetic reconnection through current sheets is one of the proposed production mechanisms of non-thermal electrons in solar flares. Previous works in this direction were based mostly on test particle calculations or 2D fully-kinetic PiC simulations. We have now studied the consequences of self-generated current-aligned instabilities on the electron acceleration mechanisms by 3D magnetic reconnection. For this sake, we carried out 3D Particle-in-Cell (PiC) code numerical simulations of force free reconnecting current sheets, appropriate for the description of the solar coronal plasmas. We find an efficient electron energization, evidenced by the formation of a non-thermal power-law tail with a hard spectral index smaller than -2 in the electron energy distribution function. We discuss and compare the influence of the parallel electric field versus the curvature and gradient drifts in the guiding-center approximation on the overall acceleration, and their dependence on different plasma parameters.

  9. Statistics of Magnetic Reconnection X-Lines in Kinetic Turbulence

    NASA Astrophysics Data System (ADS)

    Haggerty, C. C.; Parashar, T.; Matthaeus, W. H.; Shay, M. A.; Wan, M.; Servidio, S.; Wu, P.

    2016-12-01

    In this work we examine the statistics of magnetic reconnection (x-lines) and their associated reconnection rates in intermittent current sheets generated in turbulent plasmas. Although such statistics have been studied previously for fluid simulations (e.g. [1]), they have not yet been generalized to fully kinetic particle-in-cell (PIC) simulations. A significant problem with PIC simulations, however, is electrostatic fluctuations generated due to numerical particle counting statistics. We find that analyzing gradients of the magnetic vector potential from the raw PIC field data identifies numerous artificial (or non-physical) x-points. Using small Orszag-Tang vortex PIC simulations, we analyze x-line identification and show that these artificial x-lines can be removed using sub-Debye length filtering of the data. We examine how turbulent properties such as the magnetic spectrum and scale dependent kurtosis are affected by particle noise and sub-Debye length filtering. We subsequently apply these analysis methods to a large scale kinetic PIC turbulent simulation. Consistent with previous fluid models, we find a range of normalized reconnection rates as large as ½ but with the bulk of the rates being approximately less than to 0.1. [1] Servidio, S., W. H. Matthaeus, M. A. Shay, P. A. Cassak, and P. Dmitruk (2009), Magnetic reconnection and two-dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett., 102, 115003.

  10. Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations

    NASA Technical Reports Server (NTRS)

    Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.

    2011-01-01

    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.

  11. Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations

    NASA Astrophysics Data System (ADS)

    Makwana, Kirit; Li, Hui; Guo, Fan; Li, Xiaocan

    2017-05-01

    We simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope between {k}\\perp -1.3 and {k}\\perp -1.1, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. Heating by the parallel E∥ · J∥ term dominates the perpendicular E⊥ · J⊥ term. Regions of strong E∥ · J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.

  12. Electron Heating and Acceleration in a Reconnecting Magnetotail

    NASA Astrophysics Data System (ADS)

    El-Alaoui, M.; Zhou, M.; Lapenta, G.; Berchem, J.; Richard, R. L.; Schriver, D.; Walker, R. J.

    2017-12-01

    Electron heating and acceleration in the magnetotail have been investigated intensively. A major site for this process is the reconnection region. However, where and how the electrons are accelerated in a realistic three-dimensional X-line geometry is not fully understood. In this study, we employed a three-dimensional implicit particle-in-cell (iPIC3D) simulation and large-scale kinetic (LSK) simulation to address these problems. We modeled a magnetotail reconnection event observed by THEMIS in an iPIC3D simulation with initial and boundary conditions given by a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere. The iPIC3D simulation system includes the region of fast outflow emanating from the reconnection site that drives dipolarization fronts. We found that current sheet electrons exhibit elongated (cigar-shaped) velocity distributions with a higher parallel temperature. Using LSK we then followed millions of test electrons using the electromagnetic fields from iPIC3D. We found that magnetotail reconnection can generate power law spectra around the near-Earth X-line. A significant number of electrons with energies higher than 50 keV are produced. We identified several acceleration mechanisms at different locations that were responsible for energizing these electrons: non-adiabatic cross-tail drift, betatron and Fermi acceleration. Relative contributions to the energy gain of these high energy electrons from the different mechanisms will be discussed.

  13. Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations

    DOE PAGES

    Makwana, Kirit; Li, Hui; Guo, Fan; ...

    2017-05-30

    Here, we simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope betweenmore » $${k}_{\\perp }^{-1.3}$$ and $${k}_{\\perp }^{-1.1}$$, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. By heating the parallel E∥ centerdot J∥ term dominates the perpendicular E⊥ centerdot J⊥ term. Regions of strong E∥ centerdot J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.« less

  14. Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makwana, Kirit; Li, Hui; Guo, Fan

    Here, we simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope betweenmore » $${k}_{\\perp }^{-1.3}$$ and $${k}_{\\perp }^{-1.1}$$, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. By heating the parallel E∥ centerdot J∥ term dominates the perpendicular E⊥ centerdot J⊥ term. Regions of strong E∥ centerdot J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.« less

  15. The firehose instability during multiple reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Alexandrova, Alexandra; Divin, Andrey; Retino, Alessandro; Deca, Jan; Catapano, Filomena; Cozzani, Giulia

    2017-04-01

    We found unique events in the Cluster spacecraft observations of the Earth's magnetotail which correspond to the case of multiple reconnection sites. The ion temperature anisotropy of more energized ions in the direction parallel to the magnetic field, rather than in the perpendicular direction, is observed in the region of dynamical interaction between two active X-lines. The magnetic field and plasma parameters associated with the anisotropy correspond to the firehose instability conditions. We discuss possible scenarios of development of the firehose instability in multiple reconnection by comparing the observations with numerical simulations. Conventional Particle-in-Cell simulations of 2D magnetic reconnection starting from Harris equilibria are performed using implicit PIC code iPIC3D [Markidis, 2010]. At earlier stages the evolution creates fronts which push the weakly magnetized current sheet plasma away from the X-line. Fronts accelerate and reflect particles, producing parallel ion beams and increasing parallel ion temperature ahead of the front. If multiple X-lines are present, then the counterstreaming ion beams appear inside the original current sheet between colliding reconnection jet fronts. For large enough parallel ion pressure anisotropy, the firehose-like mode is excited inside the original current sheet with a flapping-like appearance along the X GSM direction but not Y GSM (current) direction. One should note that our simulations do not include the Bz magnetic field component (normal to the current sheet), hence ion beams cannot escape into the lobes and the whole region between two colliding fronts is unstable to firehose-like instability. In the Earth's magnetotail such configuration likely occurs when two active X-lines are close enough to each other, similar to a few cases we found in the Cluster observations.

  16. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz, P. A., E-mail: munozp@mps.mpg.de; Kilian, P.; Büchner, J.

    In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (b{sub g}). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (β{sub i} = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficientlymore » high guide field (b{sub g} ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (b{sub g} ≳ 5). Kinetic PIC simulations using guide fields b{sub g} ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (β{sub i} = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (b{sub g} ≲ 3)« less

  17. Turbulence dissipation challenge: particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Roytershteyn, V.; Karimabadi, H.; Omelchenko, Y.; Germaschewski, K.

    2015-12-01

    We discuss application of three particle in cell (PIC) codes to the problems relevant to turbulence dissipation challenge. VPIC is a fully kinetic code extensively used to study a variety of diverse problems ranging from laboratory plasmas to astrophysics. PSC is a flexible fully kinetic code offering a variety of algorithms that can be advantageous to turbulence simulations, including high order particle shapes, dynamic load balancing, and ability to efficiently run on Graphics Processing Units (GPUs). Finally, HYPERS is a novel hybrid (kinetic ions+fluid electrons) code, which utilizes asynchronous time advance and a number of other advanced algorithms. We present examples drawn both from large-scale turbulence simulations and from the test problems outlined by the turbulence dissipation challenge. Special attention is paid to such issues as the small-scale intermittency of inertial range turbulence, mode content of the sub-proton range of scales, the formation of electron-scale current sheets and the role of magnetic reconnection, as well as numerical challenges of applying PIC codes to simulations of astrophysical turbulence.

  18. Conformation-Directed Formation of Self-Healing Diblock Copolypeptide Hydrogels via Polyion Complexation.

    PubMed

    Sun, Yintao; Wollenberg, Alexander L; O'Shea, Timothy Mark; Cui, Yanxiang; Zhou, Z Hong; Sofroniew, Michael V; Deming, Timothy J

    2017-10-25

    Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form β-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the β-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.

  19. Comparison between Magnetopause and Magnetotail Reconnection Processes

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Lapenta, G.; Berchem, J.; El-Alaoui, M.

    2017-12-01

    For the past two years the Magnetosphere Multiscale (MMS) mission has returned detailed observations of reconnection at Earth's dayside magnetopause and now apogee has moved into the magnetotail to enable investigations of reconnection in the plasma sheet. We have been using a combination of global magnetohydrodynamic (MHD) simulation and particle-in-cell (PIC) simulation to model the physics of the reconnection process in both regions. In these calculations, we first use the MHD simulation to model the overall magnetospheric configuration and then carry out a large implicit PIC simulation by using the resulting MHD state to set the initial and boundary conditions. In this presentation, we review the similarities and differences found between the physical processes involved in reconnection occurring in the two different regions. For instance, similar crescent shaped distribution functions have been both observed and found in simulations of reconnection at the magnetopause and in the tail current sheet. Likewise, kinetic simulations have shown that the agyrotropy (non-gyrotropy) of the electron distribution function is the cleanest indicator of the location of the electron diffusion region (EDR) of both regions. There are also significant differences between the two regions. These are mostly related to the fact that separatrices are different because the plasma density is asymmetric across the dayside magnetopause and that smaller electric and guide fields are present in the night side. For instance, the jetting plasmas from reconnection in the tail form dipolarization fronts where energy exchange occurs while flux transfer events (flux ropes) form on the magnetopause and then move away from the reconnection site without forming dipolarization fronts. However, many uncertainties remain. For example, strong waves associated with the reconnection are found in the EDR at both places but it is not understood whether the kinetic mechanisms leading to the waves are the same or different.

  20. Link between von-Karman energy decay and reconnection heating in turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Parashar, T.; Haggerty, C. C.; Matthaeus, W. H.; Phan, T.; Drake, J. F.; Cassak, P.; Wu, P.

    2016-12-01

    Coherent structures such as current sheets are prevalent in many turbulent plasmas and have been shown to be correlated with dissipation and heating in observations of solar wind turbulence and dissipation in kinetic particle-in-cell (PIC) simulations. However, the role that they play in the dissipation of turbulent energy and ultimately the heating of the plasma are still not well understood. A recent study [1] using kinetic PIC simulations of turbulence found that the total heating in the plasma is consistent with a von-Karman scaling of the cascade rate, and that the proton to electron heating ratio was proportional to the total heating rate and linked to the ratio of gyroperiod to nonlinear turnover time at the ion kinetic scales. We review recent findings regarding the rate of heating in outflow jets during laminar reconnection and apply it to kinetic PIC simulations of turbulence, employing some reasonable assumptions to connect the two theories. The goal is to determine if reconnection is a primary heating mechanism or plays less of a role. Conversely, we also apply the new understanding of the von-Karman cascade to isolated reconnection events to determine if a cascade-like process is controlling the heating rate. [1] W. Matthaeus et al., ApJ Letters, 827, L7, 2016, doi:10.3847/2041-8205/827/1/L7

  1. 3D Hall MHD-EPIC Simulations of Ganymede's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Toth, G.; Jia, X.

    2017-12-01

    Fully kinetic modeling of a complete 3D magnetosphere is still computationally expensive and not feasible on current computers. While magnetohydrodynamic (MHD) models have been successfully applied to a wide range of plasma simulation, they cannot capture some important kinetic effects. We have recently developed a new modeling tool to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) magnetohydrodynamic model. This results in a kinetic model of the regions where kinetic effects are important. In addition to the MHD-EPIC modeling of the magnetosphere, the improved model presented here is now able to represent the moon as a resistive body. We use a stretched spherical grid with adaptive mesh refinement (AMR) to capture the resistive body and its boundary. A semi-implicit scheme is employed for solving the magnetic induction equation to allow time steps that are not limited by the resistivity. We have applied the model to Ganymede, the only moon in the solar system known to possess a strong intrinsic magnetic field, and included finite resistivity beneath the moon`s surface to model the electrical properties of the interior in a self-consistent manner. The kinetic effects of electrons and ions on the dayside magnetopause and tail current sheet are captured with iPIC3D. Magnetic reconnections under different upstream background conditions of several Galileo flybys are simulated to study the global reconnection rate and the magnetospheric dynamics

  2. The Effect of a Guide Field on the Structures of Magnetic Islands: 2D PIC Simulations

    NASA Astrophysics Data System (ADS)

    Huang, C.; Lu, Q.; Lu, S.; Wang, P.; Wang, S.

    2014-12-01

    Magnetic island plays an important role in magnetic reconnection. Using a series of 2D PIC simulations, we investigate the magnetic structures of a magnetic island formed during multiple X-line magnetic reconnection, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the direction forms a tripolar structure inside a magnetic island during anti-parallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhance the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flows toward the X lines along the separatrices from the side with a higher density, and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island, and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.

  3. Particle-in-cell simulations of asymmetric guide-field reconnection: quadrupolar structure of Hall magnetic field

    NASA Astrophysics Data System (ADS)

    Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.

    2017-12-01

    One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our knowledge, this is the first time PIC simulations show this kind of results, since previous simulations have predicted bipolar pattern in the asymmetric guide-field reconnection.

  4. Magnetospheric Reconnection in Modified Current-Sheet Equilibria

    NASA Astrophysics Data System (ADS)

    Newman, D. L.; Goldman, M. V.; Lapenta, G.; Markidis, S.

    2012-10-01

    Particle simulations of magnetic reconnection in Earth's magnetosphere are frequently initialized with a current-carrying Harris equilibrium superposed on a current-free uniform background plasma. The Harris equilibrium satisfies local charge neutrality, but requires that the sheet current be dominated by the hotter species -- often the ions in Earth's magnetosphere. This constraint is not necessarily consistent with observations. A modified kinetic equilibrium that relaxes this constraint on the currents was proposed by Yamada et al. [Phys. Plasmas., 7, 1781 (2000)] with no background population. These modified equilibria were characterized by an asymptotic converging or diverging electrostatic field normal to the current sheet. By reintroducing the background plasma, we have developed new families of equilibria where the asymptotic fields are suppressed by Debye shielding. Because the electrostatic potential profiles of these new equilibria contain wells and/or barriers capable of spatially isolating different populations of electrons and/or ions, these solutions can be further generalized to include classes of asymmetric kinetic equilibria. Examples of both symmetric and asymmetric equilibria will be presented. The dynamical evolution of these equilibria, when perturbed, will be further explored by means of implicit 2D PIC reconnection simulations, including comparisons with simulations employing standard Harris-equilibrium initializations.

  5. Speed-limited particle-in-cell (SLPIC) simulation

    NASA Astrophysics Data System (ADS)

    Werner, Gregory; Cary, John; Jenkins, Thomas

    2016-10-01

    Speed-limited particle-in-cell (SLPIC) simulation is a new method for particle-based plasma simulation that allows increased timesteps in cases where the timestep is determined (e.g., in standard PIC) not by the smallest timescale of interest, but rather by an even smaller physical timescale that affects numerical stability. For example, SLPIC need not resolve the plasma frequency if plasma oscillations do not play a significant role in the simulation; in contrast, standard PIC must usually resolve the plasma frequency to avoid instability. Unlike fluid approaches, SLPIC retains a fully-kinetic description of plasma particles and includes all the same physical phenomena as PIC; in fact, if SLPIC is run with a PIC-compatible timestep, it is identical to PIC. However, unlike PIC, SLPIC can run stably with larger timesteps. SLPIC has been shown to be effective for finding steady-state solutions for 1D collisionless sheath problems, greatly speeding up computation despite a large ion/electron mass ratio. SLPIC is a relatively small modification of standard PIC, with no complexities that might degrade parallel efficiency (compared to PIC), and is similarly compatible with PIC field solvers and boundary conditions.

  6. Electron–Positron Pair Flow and Current Composition in the Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantinos; Timokhin, Andrey N.; Harding, Alice K.; Kazanas, Demosthenes

    2018-05-01

    We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron–positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.

  7. Exploring the role of turbulent acceleration and heating in fractal current sheet of solar flares­ from hybrid particle in cell and lattice Boltzmann virtual test

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Lin, J.; Yuan, X.; Li, Y.; Shen, C.

    2016-12-01

    The role of turbulent acceleration and heating in the fractal magnetic reconnection of solar flares is still not clear, especially at the X-point in the diffusion region. At virtual test aspect, it is hardly to quantitatively analyze the vortex generation, turbulence evolution, particle acceleration and heating in the magnetic islands coalesce in fractal manner, formatting into largest plasmid and ejection process in diffusion region through classical magnetohydrodynamics numerical method. With the development of physical particle numerical method (particle in cell method [PIC], Lattice Boltzmann method [LBM]) and high performance computing technology in recently two decades. Kinetic simulation has developed into an effectively manner to exploring the role of magnetic field and electric field turbulence in charged particles acceleration and heating process, since all the physical aspects relating to turbulent reconnection are taken into account. In this paper, the LBM based lattice DxQy grid and extended distribution are added into charged-particles-to-grid-interpolation of PIC based finite difference time domain scheme and Yee Grid, the hybrid PIC-LBM simulation tool is developed to investigating turbulence acceleration on TIANHE-2. The actual solar coronal condition (L≈105Km,B≈50-500G,T≈5×106K, n≈108-109, mi/me≈500-1836) is applied to study the turbulent acceleration and heating in solar flare fractal current sheet. At stage I, magnetic islands shrink due to magnetic tension forces, the process of island shrinking halts when the kinetic energy of the accelerated particles is sufficient to halt the further collapse due to magnetic tension forces, the particle energy gain is naturally a large fraction of the released magnetic energy. At stage II and III, the particles from the energized group come in to the center of the diffusion region and stay longer in the area. In contract, the particles from non energized group only skim the outer part of the diffusion regions. At stage IV, the magnetic reconnection type nanoplasmid (200km) stop expanding and carrying enough energy to eject particles as constant velocity. Last, the role of magnetic field turbulence and electric field turbulence in electron and ion acceleration at the diffusion regions in solar flare fractural current sheet is given.

  8. Accelerating a Particle-in-Cell Simulation Using a Hybrid Counting Sort

    NASA Astrophysics Data System (ADS)

    Bowers, K. J.

    2001-11-01

    In this article, performance limitations of the particle advance in a particle-in-cell (PIC) simulation are discussed. It is shown that the memory subsystem and cache-thrashing severely limit the speed of such simulations. Methods to implement a PIC simulation under such conditions are explored. An algorithm based on a counting sort is developed which effectively eliminates PIC simulation cache thrashing. Sustained performance gains of 40 to 70 percent are measured on commodity workstations for a minimal 2d2v electrostatic PIC simulation. More complete simulations are expected to have even better results as larger simulations are usually even more memory subsystem limited.

  9. Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Makwana, K. D.; Keppens, R.; Lapenta, G.

    2017-12-01

    We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.

  10. Status and future plans for open source QuickPIC

    NASA Astrophysics Data System (ADS)

    An, Weiming; Decyk, Viktor; Mori, Warren

    2017-10-01

    QuickPIC is a three dimensional (3D) quasi-static particle-in-cell (PIC) code developed based on the UPIC framework. It can be used for efficiently modeling plasma based accelerator (PBA) problems. With quasi-static approximation, QuickPIC can use different time scales for calculating the beam (or laser) evolution and the plasma response, and a 3D plasma wake field can be simulated using a two-dimensional (2D) PIC code where the time variable is ξ = ct - z and z is the beam propagation direction. QuickPIC can be thousand times faster than the normal PIC code when simulating the PBA. It uses an MPI/OpenMP hybrid parallel algorithm, which can be run on either a laptop or the largest supercomputer. The open source QuickPIC is an object-oriented program with high level classes written in Fortran 2003. It can be found at https://github.com/UCLA-Plasma-Simulation-Group/QuickPIC-OpenSource.git

  11. Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas

    NASA Astrophysics Data System (ADS)

    Partial Contents are as follows: Numerical Simulations of the Vlasov-Maxwell Equations by Coupled Particle-Finite Element Methods on Unstructured Meshes; Electromagnetic PIC Simulations Using Finite Elements on Unstructured Grids; Modelling Travelling Wave Output Structures with the Particle-in-Cell Code CONDOR; SST--A Single-Slice Particle Simulation Code; Graphical Display and Animation of Data Produced by Electromagnetic, Particle-in-Cell Codes; A Post-Processor for the PEST Code; Gray Scale Rendering of Beam Profile Data; A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers; 3-D Electromagnetic PIC Simulation on the NRL Connection Machine; Plasma PIC Simulations on MIMD Computers; Vlasov-Maxwell Algorithm for Electromagnetic Plasma Simulation on Distributed Architectures; MHD Boundary Layer Calculation Using the Vortex Method; and Eulerian Codes for Plasma Simulations.

  12. Numerical heating in Particle-In-Cell simulations with Monte Carlo binary collisions

    NASA Astrophysics Data System (ADS)

    Alves, E. Paulo; Mori, Warren; Fiuza, Frederico

    2017-10-01

    The binary Monte Carlo collision (BMCC) algorithm is a robust and popular method to include Coulomb collision effects in Particle-in-Cell (PIC) simulations of plasmas. While a number of works have focused on extending the validity of the model to different physical regimes of temperature and density, little attention has been given to the fundamental coupling between PIC and BMCC algorithms. Here, we show that the coupling between PIC and BMCC algorithms can give rise to (nonphysical) numerical heating of the system, that can be far greater than that observed when these algorithms operate independently. This deleterious numerical heating effect can significantly impact the evolution of the simulated system particularly for long simulation times. In this work, we describe the source of this numerical heating, and derive scaling laws for the numerical heating rates based on the numerical parameters of PIC-BMCC simulations. We compare our theoretical scalings with PIC-BMCC numerical experiments, and discuss strategies to minimize this parasitic effect. This work is supported by DOE FES under FWP 100237 and 100182.

  13. Electron Acceleration in the Magnetotail during Substorms in Semi-Global PIC Simulations

    NASA Astrophysics Data System (ADS)

    Richard, R. L.; Schriver, D.; Ashour-Abdalla, M.; El-Alaoui, M.; Lapenta, G.; Walker, R. J.

    2015-12-01

    To understand the acceleration of electrons during a substorm reconnection event we have applied a semi-global particle in cell (PIC) simulation box embedded within a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere for an event on February 15, 2008. The MHD results were used to populate the PIC simulation and to set the boundary conditions. In the magnetotail we found that a series of dipolarizations formed due to unsteady reconnection. We also found that the most energetic electrons were in the separatrices far from the x-point. We attributed the acceleration to a streaming instability in the separatrices. To further understand electron acceleration we have applied the large scale kinetic (LSK) technique in which tens- to hundreds- of thousands of electrons are followed within the electric and magnetic fields from the PIC simulations., Electrons are already included in the PIC simulation, but the LSK simulations will allow selected individual particles to be followed and analyzed. Initially we performed electron LSK calculations in a two dimensional version of the PIC simulation in which electrons were allowed to move in the ignorable cross tail direction. These LSK calculations showed that electrons gained energy primarily for two reasons: (1) acceleration by the average dawn to dusk electric field and (2) acceleration by intense but localized electric field structures. The overall electron transport was more dawnward than duskward due to the average electric field. At the same time electrons typically moved away from the reconnection region in both the earthward and tailward directions. Superimposed on this large-scale transport was motion in both the dusk and dawn directions across the tail because of the electric field structures, which were particularly intense in the separatrices. LSK calculations are now being carried out by using the full three-dimensional magnetic and electric fields from the PIC simulation and these results will be compared with the two-dimensional results for the same substorm event.

  14. Fully Kinetic 3D Simulations of the Interaction of the Solar Wind with Mercury

    NASA Astrophysics Data System (ADS)

    Amaya, J.; Deca, J.; Lembege, B.; Lapenta, G.

    2015-12-01

    The planet Mercury has been studied by the space mission Mariner 10, in the 1970's, and by the MESSENGER mission launched in 2004. Interest in the first planet of the Solar System has now been renewed by the launch in 2017 of the BepiColombo mission. MESSENGER and BepiColombo give access to information about the local conditions of the magnetosphere of Mercury. This data must be evaluated in the context of the global interaction between the solar wind and the planet's magnetosphere. Global scale simulations of the planet's environment are necessary to fully understand the data gathered from in-situ measurements. We use three-dimensional simulations to support the scientific goals of the two missions. In contrast with the results based on MHD (Kabin et al., 2000) and hybrid codes (Kallio et Janhumen, 2003; Travnicek et al., 2007, 2010; Richer et al., 2012), the present work is based on the implicit moment Particle-in-Cell (PiC) method, which allows to use large time and space steps, while granting access to the dynamics of the smaller electron scales in the plasma. The purpose of these preliminary PIC simulations is to retrieve the top-level features of Mercury's magnetosphere and its frontiers. We compare the results obtained with the implicit moment PiC method against 3D hybrid simulations. We perform simulations of the global plasma environment of Mercury using the solar wind conditions measured by MESSENGER. We show that complex flows form around the planet, including the development of Kelvin-Helmoltz instabilities at the flanks. We evaluate the dynamics of the shock, magnetosheath, magnetopause, the reconnection areas, the formation of plasma sheet and magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. The simulations also give access to detailed information about the particle dynamics and their velocity distribution at locations that can be used for comparison with data from MESSENGER and later on with the forthcoming BepiColombo. A particular emphasis is given on the new information gathered from the electron dynamics, which is unaccessible with any other kind of simulations. The research reported here received support by the European Commission via the DEEP and DEEP-ER projects and by the computational infrastructure of the VSC (Belgium).

  15. Particle-In-Cell simulations of high pressure plasmas using graphics processing units

    NASA Astrophysics Data System (ADS)

    Gebhardt, Markus; Atteln, Frank; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Mertmann, Philipp; Awakowicz, Peter

    2009-10-01

    Particle-In-Cell (PIC) simulations are widely used to understand the fundamental phenomena in low-temperature plasmas. Particularly plasmas at very low gas pressures are studied using PIC methods. The inherent drawback of these methods is that they are very time consuming -- certain stability conditions has to be satisfied. This holds even more for the PIC simulation of high pressure plasmas due to the very high collision rates. The simulations take up to very much time to run on standard computers and require the help of computer clusters or super computers. Recent advances in the field of graphics processing units (GPUs) provides every personal computer with a highly parallel multi processor architecture for very little money. This architecture is freely programmable and can be used to implement a wide class of problems. In this paper we present the concepts of a fully parallel PIC simulation of high pressure plasmas using the benefits of GPU programming.

  16. iVPIC: A low-­dispersion, energy-­conserving relativistic PIC solver for LPI simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Luis

    We have developed a novel low-­dispersion, exactly energy-­conserving PIC algorithm for the relativistic Vlasov-­Maxwell system. The approach features an exact energy conservation theorem while preserving the favorable performance and numerical dispersion properties of explicit PIC. The new algorithm has the potential to enable much longer laser-­plasma-­interaction (LPI) simulations than are currently possible.

  17. Particle-In-Cell simulations of electron beam microbunching instability in three dimensions

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Zeng, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.; Kwan, T. J. T.

    2013-10-01

    Microbunching instability due to Coherent Synchrotron Radiation (CSR) in a magnetic chicane is one of the major effects that can degrade the electron beam quality in an X-ray Free Electron Laser. Self-consistent simulation using the Particle-In-Cell (PIC) method for the CSR fields of the beam and their effects on beam dynamics have been elusive due to the excessive dispersion error on the grid. We have implemented a high-order finite-volume PIC scheme that models the propagation of the CSR fields accurately. This new scheme is characterized and optimized through a detailed dispersion analysis. The CSR fields from our improved PIC calculation are compared to the extended CSR numerical model based on the Lienard-Wiechert formula in 2D/3D. We also conduct beam dynamics simulation of the microbunching instability using our new PIC capability. Detailed self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.

  18. Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang, E-mail: liang.wang@unh.edu; Germaschewski, K.; Hakim, Ammar H.

    2015-01-15

    We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically andmore » numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.« less

  19. Development of the micro pixel chamber based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Takada, A.; Kishimoto, T.; Komura, S.; Kubo, H.; Matsuoka, Y.; Miuchi, K.; Miyamoto, S.; Mizumoto, T.; Mizumura, Y.; Motomura, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Ohta, K.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2018-02-01

    Micro pixel chambers (μ-PIC) are gaseous two-dimensional imaging detectors originally manufactured using printed circuit board (PCB) technology. They are used in MeV gamma-ray astronomy, medicalimaging, neutron imaging, the search for dark matter, and dose monitoring. The position resolution of the present μ-PIC is approximately 120 μm (RMS), however some applications require a fine position resolution of less than 100 μm. To this end, we have started to develop a μ-PIC based on micro electro mechanical system (MEMS) technology, which provides better manufacturing accuracy than PCB technology. Our simulation predicted the gains of MEMS μ-PICs to be twice those of PCB μ-PICs at the same anode voltage. We manufactured two MEMS μ-PICs and tested them to study their behavior. In these experiments, we successfully operated the fabricatedMEMS μ-PICs and we achieved a maximum gain of approximately 7×103 and collected their energy spectra under irradiation of X-rays from 55Fe. However, the measured gains of the MEMS μ-PICs were less than half of the values predicted in the simulations. We postulated that the gains of the MEMS μ-PICs are diminished by the effect of the silicon used as a semiconducting substrate.

  20. Electron-beam-ion-source (EBIS) modeling progress at FAR-TECH, Inc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J. S., E-mail: kim@far-tech.com; Zhao, L., E-mail: kim@far-tech.com; Spencer, J. A., E-mail: kim@far-tech.com

    FAR-TECH, Inc. has been developing a numerical modeling tool for Electron-Beam-Ion-Sources (EBISs). The tool consists of two codes. One is the Particle-Beam-Gun-Simulation (PBGUNS) code to simulate a steady state electron beam and the other is the EBIS-Particle-In-Cell (EBIS-PIC) code to simulate ion charge breeding with the electron beam. PBGUNS, a 2D (r,z) electron gun and ion source simulation code, has been extended for efficient modeling of EBISs and the work was presented previously. EBIS-PIC is a space charge self-consistent PIC code and is written to simulate charge breeding in an axisymmetric 2D (r,z) device allowing for full three-dimensional ion dynamics.more » This 2D code has been successfully benchmarked with Test-EBIS measurements at Brookhaven National Laboratory. For long timescale (< tens of ms) ion charge breeding, the 2D EBIS-PIC simulations take a long computational time making the simulation less practical. Most of the EBIS charge breeding, however, may be modeled in 1D (r) as the axial dependence of the ion dynamics may be ignored in the trap. Where 1D approximations are valid, simulations of charge breeding in an EBIS over long time scales become possible, using EBIS-PIC together with PBGUNS. Initial 1D results are presented. The significance of the magnetic field to ion dynamics, ion cooling effects due to collisions with neutral gas, and the role of Coulomb collisions are presented.« less

  1. Comparison of HELIX TWT Simulation Using 2-D PIC (Magic), 2-D Modal (Gator), and 1-D Modal (Christine) Methods

    DTIC Science & Technology

    1998-05-01

    Mission Research Corporation MRC/WDC-R-424 COMPARISON OF HELIX TWT SIMULATION USING 2-D PIC ( MAGIC ), 2-D MODAL (GATOR), AND 1-D MODAL (CHRISTINE...BRILLOUIN RUN 9 3.4 OUTLIER ELECTRON EFFECT IN GATOR 12 3.5 EMISSION CONDITION AND NONLAMINAR FLOW IN MAGIC 12 3.6 RADIAL SHEAR 13 SECTION 4. PPM B...Simulation using 2-D PIC ( MAGIC ), 2-D Modal (GATOR) and 1-D Modal (CHRISTINE) methods * D.N. Smithe(a), H. Freund(b), T. M. Antonsen Jr.,(b)’(c), E

  2. Enhanced quasi-static particle-in-cell simulation of electron cloud instabilities in circular accelerators

    NASA Astrophysics Data System (ADS)

    Feng, Bing

    Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac (ERL) due to extremely small emittance and high peak currents anticipated in the machine. A tune shift is discovered from the simulation; however, emittance growth of the electron beam in electron cloud is not observed for ERL parameters.

  3. Temporal Evolution of the Plasma Sheath Surrounding Solar Cells in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2017-01-01

    Initial results from the PIC simulation and the LEM simulation have been presented. The PIC simulation results show that more detailed study is required to refine the ISS solar array current collection model and to understand the development of the current collection in time. The initial results from the LEM demonstrate that is it possible the transients are caused by solar array interaction with the environment, but there are presently too many assumptions in the model to be certain. Continued work on the PIC simulation will provide valuable information on the development of the barrier potential, which will allow refinement the LEM simulation and a better understanding of the causes and effects of the transients.

  4. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9.more » We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.« less

  5. High-Speed Particle-in-Cell Simulation Parallelized with Graphic Processing Units for Low Temperature Plasmas for Material Processing

    NASA Astrophysics Data System (ADS)

    Hur, Min Young; Verboncoeur, John; Lee, Hae June

    2014-10-01

    Particle-in-cell (PIC) simulations have high fidelity in the plasma device requiring transient kinetic modeling compared with fluid simulations. It uses less approximation on the plasma kinetics but requires many particles and grids to observe the semantic results. It means that the simulation spends lots of simulation time in proportion to the number of particles. Therefore, PIC simulation needs high performance computing. In this research, a graphic processing unit (GPU) is adopted for high performance computing of PIC simulation for low temperature discharge plasmas. GPUs have many-core processors and high memory bandwidth compared with a central processing unit (CPU). NVIDIA GeForce GPUs were used for the test with hundreds of cores which show cost-effective performance. PIC code algorithm is divided into two modules which are a field solver and a particle mover. The particle mover module is divided into four routines which are named move, boundary, Monte Carlo collision (MCC), and deposit. Overall, the GPU code solves particle motions as well as electrostatic potential in two-dimensional geometry almost 30 times faster than a single CPU code. This work was supported by the Korea Institute of Science Technology Information.

  6. Pseudospectral Model for Hybrid PIC Hall-effect Thruster Simulation

    DTIC Science & Technology

    2015-07-01

    and Fernandez6 (hybrid- PIC ). This work follows the example of Lam and Fernandez but substitutes a spectral description in the azimuthal direction to...Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Pseudospectral model for hybrid PIC Hall-effect thruster simulationect...of a pseudospectral azimuthal-axial hybrid- PIC HET code which is designed to explicitly resolve and filter azimuthal fluctuations in the

  7. Observation of 1-D time dependent non-propagating laser plasma structures using fluid and PIC codes

    NASA Astrophysics Data System (ADS)

    Verma, Deepa; Bera, Ratan Kumar; Kumar, Atul; Patel, Bhavesh; Das, Amita

    2017-12-01

    The manuscript reports the observation of time dependent localized and non-propagating structures in the coupled laser plasma system through 1-D fluid and Particle-In-Cell (PIC) simulations. It is reported that such structures form spontaneously as a result of collision amongst certain exact solitonic solutions. They are seen to survive as coherent entities for a long time up to several hundreds of plasma periods. Furthermore, it is shown that such time dependence can also be artificially recreated by significantly disturbing the delicate balance between the radiation and the density fields required for the exact non-propagating solution obtained by Esirkepov et al., JETP 68(1), 36-41 (1998). The ensuing time evolution is an interesting interplay between kinetic and field energies of the system. The electrostatic plasma oscillations are coupled with oscillations in the electromagnetic field. The inhomogeneity of the background and the relativistic nature, however, invariably produces large amplitude density perturbations leading to its wave breaking. In the fluid simulations, the signature of wave breaking can be discerned by a drop in the total energy which evidently gets lost to the grid. The PIC simulations are observed to closely follow the fluid simulations till the point of wave breaking. However, the total energy in the case of PIC simulations is seen to remain conserved throughout the simulations. At the wave breaking, the particles are observed to acquire thermal kinetic energy in the case of PIC. Interestingly, even after wave breaking, compact coherent structures with trapped radiation inside high-density peaks continue to exist both in PIC and fluid simulations. Although the time evolution does not exactly match in the two simulations as it does prior to the process of wave breaking, the time-dependent features exhibited by the remnant structures are characteristically similar.

  8. TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments

    NASA Astrophysics Data System (ADS)

    Braunmueller, F.; Tran, T. M.; Vuillemin, Q.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.

    2015-06-01

    A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.

  9. TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braunmueller, F., E-mail: falk.braunmueller@epfl.ch; Tran, T. M.; Alberti, S.

    A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is themore » case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.« less

  10. Simulation of stimulated Brillouin scattering and stimulated Raman scattering in shock ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, L.; Li, J.; Liu, W. D.

    2016-04-15

    We study stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) in shock ignition by comparing fluid and particle-in-cell (PIC) simulations. Under typical parameters for the OMEGA experiments [Theobald et al., Phys. Plasmas 19, 102706 (2012)], a series of 1D fluid simulations with laser intensities ranging between 2 × 10{sup 15} and 2 × 10{sup 16 }W/cm{sup 2} finds that SBS is the dominant instability, which increases significantly with the incident intensity. Strong pump depletion caused by SBS and SRS limits the transmitted intensity at the 0.17n{sub c} to be less than 3.5 × 10{sup 15 }W/cm{sup 2}. The PIC simulations show similar physics but with higher saturationmore » levels for SBS and SRS convective modes and stronger pump depletion due to higher seed levels for the electromagnetic fields in PIC codes. Plasma flow profiles are found to be important in proper modeling of SBS and limiting its reflectivity in both the fluid and PIC simulations.« less

  11. Multirate Particle-in-Cell Time Integration Techniques of Vlasov-Maxwell Equations for Collisionless Kinetic Plasma Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guangye; Chacon, Luis; Knoll, Dana Alan

    2015-07-31

    A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ω peΔt >>1, and Δx >> λ D), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylovmore » (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.« less

  12. Understanding Sgr A* with PIC Simulations of Particle Acceleration in Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ozel, Feryal

    2017-09-01

    Sgr A* has been the subject of intense observational studies with Chandra. In the proposed work, we will investigate magnetic reconnection and particle acceleration in low-luminosity black hole accretion flows using a combination of GRMHD and particle-in-cell (PIC) simulations. We will use the PIC simulations to understand how particles are accelerated when magnetic energy is dissipated and quantify the resulting electron energy distributions. Incorporating the results of the microphysical studies into the global simulations of Sgr A*, we will investigate the origin of the intense X-ray flares observed with Chandra. We will also study how these processes affect the 1.3 mm image size in preparation for the upcoming simultaneous Chandra and EHT observations of Sgr A*.

  13. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Babaei, J.; Gizzi, L. A.; Londrillo, P.; Mirzanejad, S.; Rovelli, T.; Sinigardi, S.; Turchetti, G.

    2017-04-01

    The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uniform foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse configuration, are comparable. This suggests that parametric scans can be performed with 2D simulations since 3D ones are computationally very expensive, delegating their role only to a correspondence check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the target thickness L and the incidence angle α, with a fixed a0 = 3. A monotonic dependence, on L for normal incidence and on α for fixed L, is found, as in the experimental results for high temporal contrast pulses.

  14. Apar-T: code, validation, and physical interpretation of particle-in-cell results

    NASA Astrophysics Data System (ADS)

    Melzani, Mickaël; Winisdoerffer, Christophe; Walder, Rolf; Folini, Doris; Favre, Jean M.; Krastanov, Stefan; Messmer, Peter

    2013-10-01

    We present the parallel particle-in-cell (PIC) code Apar-T and, more importantly, address the fundamental question of the relations between the PIC model, the Vlasov-Maxwell theory, and real plasmas. First, we present four validation tests: spectra from simulations of thermal plasmas, linear growth rates of the relativistic tearing instability and of the filamentation instability, and nonlinear filamentation merging phase. For the filamentation instability we show that the effective growth rates measured on the total energy can differ by more than 50% from the linear cold predictions and from the fastest modes of the simulation. We link these discrepancies to the superparticle number per cell and to the level of field fluctuations. Second, we detail a new method for initial loading of Maxwell-Jüttner particle distributions with relativistic bulk velocity and relativistic temperature, and explain why the traditional method with individual particle boosting fails. The formulation of the relativistic Harris equilibrium is generalized to arbitrary temperature and mass ratios. Both are required for the tearing instability setup. Third, we turn to the key point of this paper and scrutinize the question of what description of (weakly coupled) physical plasmas is obtained by PIC models. These models rely on two building blocks: coarse-graining, i.e., grouping of the order of p ~ 1010 real particles into a single computer superparticle, and field storage on a grid with its subsequent finite superparticle size. We introduce the notion of coarse-graining dependent quantities, i.e., quantities depending on p. They derive from the PIC plasma parameter ΛPIC, which we show to behave as ΛPIC ∝ 1/p. We explore two important implications. One is that PIC collision- and fluctuation-induced thermalization times are expected to scale with the number of superparticles per grid cell, and thus to be a factor p ~ 1010 smaller than in real plasmas, a fact that we confirm with simulations. The other is that the level of electric field fluctuations scales as 1/ΛPIC ∝ p. We provide a corresponding exact expression, taking into account the finite superparticle size. We confirm both expectations with simulations. Fourth, we compare the Vlasov-Maxwell theory, often used for code benchmarking, to the PIC model. The former describes a phase-space fluid with Λ = + ∞ and no correlations, while the PIC plasma features a small Λ and a high level of correlations when compared to a real plasma. These differences have to be kept in mind when interpreting and validating PIC results against the Vlasov-Maxwell theory and when modeling real physical plasmas.

  15. Oxygen Ions in Magnetotail Reconnection

    NASA Astrophysics Data System (ADS)

    Liang, H.; Walker, R. J.; Lapenta, G.; Schriver, D.; El-Alaoui, M.; Berchem, J.

    2016-12-01

    Spacecraft have observed a significant fraction of oxygen ions (O+) in Earth's magnetotail X-line during the periods of enhanced geomagnetic activity. It is important to understand how such O+ influences the reconnection process and how the O+ ions are heated due to reconnection. To this end we have used a 2.5D implicit Particle-in-Cell simulation (iPic3D) in a 2D Harris current sheet in the presence of H+ and O+. By comparing the simulation runs for oxygen concentrations of 50%, 5% and 0% (i.e. latter run only H+ ions), we found that (1) the dipolarization front (DF) propagation is encumbered by the current sheet O+ inertia, which reduces the DF speed and delays the fast reconnection phase; (2) the reconnection rate in the 50% O+ Run is much less than the 0% O+ Run, which can be attributed to the O+ drag on the convective magnetic flux via an ambipolar electric field in the O+ diffusion region; (3) without entering the exhaust, the lobe O+ can be accelerated near the separatrices away from the X-point by the Hall electric field and form the hot population downstream of the DFs; (4) the pre-existing current sheet O+ ions are reflected by the DFs and form a hook-shaped distribution in phase space, from which the DF speed history can be deduced; (5) the DF thickness is proportional to the O+ concentration in the pre-existing current sheet. These results illustrate the differences between storm-time and non-storm substorms due to a significant concentration of oxygen ions. The oxygen heating results are expected to be observable by the Magnetospheric Multiscale (MMS) mission in the magnetotail.

  16. Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.

    2018-06-01

    Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.

  17. OSIRIS - an object-oriented parallel 3D PIC code for modeling laser and particle beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Hemker, Roy

    1999-11-01

    The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.

  18. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell)more » approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.« less

  19. Dipolarization Fronts from Reconnection Onset

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.

    2012-12-01

    Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.

  20. Numerical simulation of ion charge breeding in electron beam ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, Jin-Soo

    2014-02-15

    The Electron Beam Ion Source particle-in-cell code (EBIS-PIC) tracks ions in an EBIS electron beam while updating electric potential self-consistently and atomic processes by the Monte Carlo method. Recent improvements to the code are reported in this paper. The ionization module has been improved by using experimental ionization energies and shell effects. The acceptance of injected ions and the emittance of extracted ion beam are calculated by extending EBIS-PIC to the beam line transport region. An EBIS-PIC simulation is performed for a Cs charge-breeding experiment at BNL. The charge state distribution agrees well with experiments, and additional simulation results ofmore » radial profiles and velocity space distributions of the trapped ions are presented.« less

  1. Effects of laser-plasma instabilities on hydro evolution in an OMEGA-EP long-scale-length experiment

    DOE PAGES

    Li, J.; Hu, S. X.; Ren, C.

    2017-02-28

    Laser-plasma instabilities and hydro evolution of the coronal plasma in an OMEGA EP long-scale-length experiment with planar targets were studied with particle-in-cell (PIC) and hydrodynamic simulations. Plasma and laser conditions were first obtained in a two-dimensional DRACO hydro simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS PIC simulation was performed to study laser absorption and hot-electron generation caused by laser-plasma instabilities (LPIs) near the quarter-critical region. The obtained PIC information was subsequently coupled to another DRACO simulation to examine how the LPIs affect the overall hydrodynamics. Lastly, the results showed that the LPI-induced laser absorption increased the electronmore » temperature but did not significantly change the density scale length in the corona.« less

  2. Effects of laser-plasma instabilities on hydro evolution in an OMEGA-EP long-scale-length experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Hu, S. X.; Ren, C.

    Laser-plasma instabilities and hydro evolution of the coronal plasma in an OMEGA EP long-scale-length experiment with planar targets were studied with particle-in-cell (PIC) and hydrodynamic simulations. Plasma and laser conditions were first obtained in a two-dimensional DRACO hydro simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS PIC simulation was performed to study laser absorption and hot-electron generation caused by laser-plasma instabilities (LPIs) near the quarter-critical region. The obtained PIC information was subsequently coupled to another DRACO simulation to examine how the LPIs affect the overall hydrodynamics. Lastly, the results showed that the LPI-induced laser absorption increased the electronmore » temperature but did not significantly change the density scale length in the corona.« less

  3. Interplay between protons and electrons in a firehose-unstable plasma: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe-A.; Maneva, Yana

    2017-04-01

    Kinetic plasma instabilities originating from unstable, non-Maxwellian shapes of the velocity distribution functions serve as internal degrees of freedom in plasma dynamics, and play an important role near solar current sheets and in solar wind plasmas. In the presence of strong temperature anisotropy (different thermal spreads in the velocity space with respect to the mean magnetic field), plasmas are unstable either to the firehose mode or to the mirror mode in the case of predominant parallel and perpendicular temperatures, respectively. The growth rates of these instabilities and their thresholds depend on plasma properties, such as the temperature anisotropy and the plasma beta. The physics of the temperature anisotropy-driven instabilities becomes even more diverse for various shapes of velocity distribution functions and the particle species of interest. Recent studies based on a linear instability analysis show an interplay in the firehose instability between protons and electrons when the both types of particle species are prone to unstable velocity distribution functions and their instability thresholds. In this work we perform for the first time 3D nonlinear PIC (particle-in-cell) numerical simulations to test for the linear-theory prediction of the simultaneous proton-electron firehose instability. The simulation setup allows us not only to evaluate the growth rate of each firehose instability, but also to track its nonlinear evolution and the related wave-particle interactions such as the pitch-angle scattering or saturation effects. The specialty of our simulation is that the magnetic and electric fields have a low numerical noise level by setting a sufficiently large number of super-particles into the simulation box and enhancing the statistical significance of the velocity distribution functions. We use the iPIC3D code with fully periodic boundaries under various conditions of the electron-to-proton mass ratio, which gives insight into the instability interplay at the intermediate electron-proton and on the scaling of our results towards more realistic particle settings.

  4. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  5. Developing Chemistry and Kinetic Modeling Tools for Low-Temperature Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Beckwith, Kris; Davidson, Bradley; Kruger, Scott; Pankin, Alexei; Roark, Christine; Stoltz, Peter

    2015-09-01

    We discuss the use of proper orthogonal decomposition (POD) methods in VSim, a FDTD plasma simulation code capable of both PIC/MCC and fluid modeling. POD methods efficiently generate smooth representations of noisy self-consistent or test-particle PIC data, and are thus advantageous in computing macroscopic fluid quantities from large PIC datasets (e.g. for particle-based closure computations) and in constructing optimal visual representations of the underlying physics. They may also confer performance advantages for massively parallel simulations, due to the significant reduction in dataset sizes conferred by truncated singular-value decompositions of the PIC data. We also demonstrate how complex LTP chemistry scenarios can be modeled in VSim via an interface with MUNCHKIN, a developing standalone python/C++/SQL code that identifies reaction paths for given input species, solves 1D rate equations for the time-dependent chemical evolution of the system, and generates corresponding VSim input blocks with appropriate cross-sections/reaction rates. MUNCHKIN also computes reaction rates from user-specified distribution functions, and conducts principal path analyses to reduce the number of simulated chemical reactions. Supported by U.S. Department of Energy SBIR program, Award DE-SC0009501.

  6. Multi-scale simulations of space problems with iPIC3D

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano

    The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038

  7. Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; hide

    2016-01-01

    We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHO-EPIC) algorithm Is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the Interaction between Jupiter's magnetospherlc plasma and Ganymede's magnetosphere. We compare the MHO-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the Importance of kinetic effects In controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHO-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular. the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHO-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-0 structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHO-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.

  8. A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface

    NASA Astrophysics Data System (ADS)

    Cao, Huijun; Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao

    2018-06-01

    Surface evolution is an unavoidable issue in engineering plasma applications. In this article an iterative method for modeling plasma-surface interactions with moving interface is proposed and validated. In this method, the plasma dynamics is simulated by an immersed finite element particle-in-cell (IFE-PIC) method, and the surface evolution is modeled by the Huygens wavelet method which is coupled with the iteration of the IFE-PIC method. Numerical experiments, including prototypical engineering applications, such as the erosion of Hall thruster channel wall, are presented to demonstrate features of this Huygens IFE-PIC method for simulating the dynamic plasma-surface interactions.

  9. Design and simulation of a gyroklystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, M. S., E-mail: mschauhan.rs.ece@iitbhu.ac.in; Swati, M. V.; Jain, P. K.

    2015-03-15

    In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code “MAGIC” has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practicalmore » problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ∼218 kW for 0% velocity spread at 35 GHz, with ∼45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ∼5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.« less

  10. Progress on the Development of the hPIC Particle-in-Cell Code

    NASA Astrophysics Data System (ADS)

    Dart, Cameron; Hayes, Alyssa; Khaziev, Rinat; Marcinko, Stephen; Curreli, Davide; Laboratory of Computational Plasma Physics Team

    2017-10-01

    Advancements were made in the development of the kinetic-kinetic electrostatic Particle-in-Cell code, hPIC, designed for large-scale simulation of the Plasma-Material Interface. hPIC achieved a weak scaling efficiency of 87% using the Algebraic Multigrid Solver BoomerAMG from the PETSc library on more than 64,000 cores of the Blue Waters supercomputer at the University of Illinois at Urbana-Champaign. The code successfully simulates two-stream instability and a volume of plasma over several square centimeters of surface extending out to the presheath in kinetic-kinetic mode. Results from a parametric study of the plasma sheath in strongly magnetized conditions will be presented, as well as a detailed analysis of the plasma sheath structure at grazing magnetic angles. The distribution function and its moments will be reported for plasma species in the simulation domain and at the material surface for plasma sheath simulations. Membership Pending.

  11. A 2D electrostatic PIC code for the Mark III Hypercube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, R.D.; Liewer, P.C.; Decyk, V.K.

    We have implemented a 2D electrostastic plasma particle in cell (PIC) simulation code on the Caltech/JPL Mark IIIfp Hypercube. The code simulates plasma effects by evolving in time the trajectories of thousands to millions of charged particles subject to their self-consistent fields. Each particle`s position and velocity is advanced in time using a leap frog method for integrating Newton`s equations of motion in electric and magnetic fields. The electric field due to these moving charged particles is calculated on a spatial grid at each time by solving Poisson`s equation in Fourier space. These two tasks represent the largest part ofmore » the computation. To obtain efficient operation on a distributed memory parallel computer, we are using the General Concurrent PIC (GCPIC) algorithm previously developed for a 1D parallel PIC code.« less

  12. Particle-in-cell simulations of bounded plasma discharges applied to low pressure high density sources and positive columns

    NASA Astrophysics Data System (ADS)

    Kawamura, Emi

    Particle-in-cell (PIC) simulations of bounded plasma discharges are attractive because the fields and the particle motion can be obtained self-consistently from first principles. Thus, we can accurately model a wide range of nonlocal and kinetic behavior. The only disadvantage is that PIC may be computationally expensive compared to other methods. Fluid codes, for example, may run faster but make assumptions about the bulk plasma velocity distributions and ignore kinetic effects. In Chapter 1, we demonstrate methods of accelerating PIC simulations of bounded plasma discharges. We find that a combination of physical and numerical methods makes run-times for PIC codes much more competitive with other types of codes. In processing plasmas, the ion energy distributions (IEDs) arriving at the wafer target are crucial in determining ion anisotropy and etch rates. The current trend for plasma reactors is towards lower gas pressure and higher plasma density. In Chapter 2, we review and analyze IEDs arriving at the target of low pressure high density rf plasma reactors. In these reactors, the sheath is typically collisionless. We then perform PIC simulations of collisionless rf sheaths and find that the key parameter governing the shape of the TED at the wafer is the ratio of the ion transit time across the sheath over the rf period. Positive columns are the source of illumination in fluorescent mercury-argon lamps. The efficiency of light production increases with decreasing gas pressure and decreasing discharge radius. Most current lamp software is based on the local concept even though low pressure lighting discharges tend to be nonlocal. In Chapter 3, we demonstrate a 1d3v radial PIC model to conduct nonlocal kinetic simulations of low pressure, small radius positive columns. When compared to other available codes, we find that our PIC code makes the least approximations and assumptions and is accurate and stable over a wider parameter range. We analyze the PIC simulation results in detail and find that the radial electron heat flow, which is neglected in local models, plays a major role in maintaining the global power balance. In Chapter 2, we focused on the sheaths of low pressure high density plasma reactors. In Chapter 4, we extend our study to the bulk and presheaths. Typical industrial plasma reactors often use gases with complex chemistries which tend to generate discharges containing negative ions. For high density electronegative plasmas with low gas pressure, we expect Coulomb collisions between positive and negative ions to dominate over collisions between ions and neutrals. We incorporate a Coulomb collision model into our PIC code to study the effect of this ion-ion Coulomb scattering. We find that the Coulomb collisions between the positive and negative ions significantly modify the negative ion flux, density and kinetic energy profiles.

  13. Boltzmann Transport in Hybrid PIC HET Modeling

    DTIC Science & Technology

    2015-07-01

    Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Boltzmann transport in hybrid PIC HET modeling 5a. CONTRACT NUMBER In...reproduce experimentally observed mobility trends derived from HPHall, a workhorse hybrid- PIC HET simulation code. 15. SUBJECT TERMS 16. SECURITY...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Justin Koo a. REPORT Unclassified b. ABSTRACT

  14. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  15. 0.22 THz wideband sheet electron beam traveling wave tube amplifier: Cold test measurements and beam wave interaction analysis

    NASA Astrophysics Data System (ADS)

    Baig, Anisullah; Gamzina, Diana; Barchfeld, Robert; Domier, Calvin; Barnett, Larry R.; Luhmann, Neville C.

    2012-09-01

    In this paper, we describe micro-fabrication, RF measurements, and particle-in-cell (PIC) simulation modeling analysis of the 0.22 THz double-vane half period staggered traveling wave tube amplifier (TWTA) circuit. The TWTA slow wave structure comprised of two sections separated by two sever ports loaded by loss material, with integrated broadband input/output couplers. The micro-metallic structures were fabricated using nano-CNC milling and diffusion bonded in a three layer process. The 3D optical microscopy and SEM analysis showed that the fabrication error was within 2-3 μm and surface roughness was measured within 30-50 nm. The RF measurements were conducted with an Agilent PNA-X network analyzer employing WR5.1 T/R modules with a frequency range of 178-228 GHz. The in-band insertion loss (S21) for both the short section and long section (separated by a sever) was measured as ˜-5 dB while the return loss was generally around ˜-15 dB or better. The measurements matched well with the S-matrix simulation analysis that predicted a 3 dB bandwidth of ˜45 GHz with an operating frequency at 220 GHz. However, the measured S21 was ˜3 dB less than the design values, and is attributed to surface roughness and alignment issues. The confirmation measurements were conducted over the full frequency band up to 270 GHz employing a backward wave oscillator (BWO) scalar network analyzer setup employing a BWO in the frequency range 190 GHz-270 GHz. PIC simulations were conducted for the realistic TWT output power performance analysis with incorporation of corner radius of 127 μm, which is inevitably induced by nano-machining. Furthermore, the S21 value in both sections of the TWT structure was reduced to correspond to the measurements by using a degraded conductivity of 10% International Annealed Copper Standard. At 220 GHz, for an elliptic sheet electron beam of 20 kV and 0.25 A, the average output power of the tube was predicted to be reduced from 90 W (for ideal conductivity/design S-parameters) to 70 W (for the measured S-parameters/inferred conductivity) for an average input power of 50 mW. The gain of the tube remains reasonable: ˜31.4 dB with an electronic efficiency of ˜1.4%. The same analysis was also conducted for several frequencies between 190 GHz-260 GHz. This detailed realistic PIC analysis demonstrated that this nano-machined TWT circuit has slightly reduced S-parameters and output power from design, but within an acceptable range and still have promising output power, gain, and band width as required. Thus, we expect to meet the specifications of 1000 W-GHz for the darpa program goals.

  16. Output power fluctuations due to different weights of macro particles used in particle-in-cell simulations of Cerenkov devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Rong; Li, Yongdong; Liu, Chunliang

    2016-07-15

    The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified bymore » comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.« less

  17. MP-Pic simulation of CFB riser with EMMS-based drag model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, F.; Song, F.; Benyahia, S.

    2012-01-01

    MP-PIC (multi-phase particle in cell) method combined with the EMMS (energy minimization multi- scale) drag force model was implemented with the open source program MFIX to simulate the gas–solid flows in CFB (circulatingfluidizedbed) risers. Calculated solid flux by the EMMS drag agrees well with the experimental value; while the traditional homogeneous drag over-predicts this value. EMMS drag force model can also predict the macro-and meso-scale structures. Quantitative comparison of the results by the EMMS drag force model and the experimental measurements show high accuracy of the model. The effects of the number of particles per parcel and wall conditions onmore » the simulation results have also been investigated in the paper. This work proved that MP-PIC combined with the EMMS drag model can successfully simulate the fluidized flows in CFB risers and it serves as a candidate to realize real-time simulation of industrial processes in the future.« less

  18. Formation of electrostatic structures by wakefield acceleration in ultrarelativistic plasma flows: Electron acceleration to cosmic ray energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, M.E.; Shukla, P.K.; Eliasson, B.

    2006-06-15

    The ever increasing performance of supercomputers is now enabling kinetic simulations of extreme astrophysical and laser produced plasmas. Three-dimensional particle-in-cell (PIC) simulations of relativistic shocks have revealed highly filamented spatial structures and their ability to accelerate particles to ultrarelativistic speeds. However, these PIC simulations have not yet revealed mechanisms that could produce particles with tera-electron volt energies and beyond. In this work, PIC simulations in one dimension (1D) of the foreshock region of an internal shock in a gamma ray burst are performed to address this issue. The large spatiotemporal range accessible to a 1D simulation enables the self-consistent evolutionmore » of proton phase space structures that can accelerate particles to giga-electron volt energies in the jet frame of reference, and to tens of tera-electron volt in the Earth's frame of reference. One potential source of ultrahigh energy cosmic rays may thus be the thermalization of relativistically moving plasma.« less

  19. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.

    2010-06-01

    The numerical modeling code INF&RNO (INtegrated Fluid& paRticle simulatioN cOde, pronounced"inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The codemore » has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.« less

  20. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.

    2010-11-01

    The numerical modeling code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde, pronounced "inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.

  1. UCLA Final Technical Report for the "Community Petascale Project for Accelerator Science and Simulation”.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Warren

    The UCLA Plasma Simulation Group is a major partner of the “Community Petascale Project for Accelerator Science and Simulation”. This is the final technical report. We include an overall summary, a list of publications, progress for the most recent year, and individual progress reports for each year. We have made tremendous progress during the three years. SciDAC funds have contributed to the development of a large number of skeleton codes that illustrate how to write PIC codes with a hierarchy of parallelism. These codes cover 2D and 3D as well as electrostatic solvers (which are used in beam dynamics codesmore » and quasi-static codes) and electromagnetic solvers (which are used in plasma based accelerator codes). We also used these ideas to develop a GPU enabled version of OSIRIS. SciDAC funds were also contributed to the development of strategies to eliminate the Numerical Cerenkov Instability (NCI) which is an issue when carrying laser wakefield accelerator (LWFA) simulations in a boosted frame and when quantifying the emittance and energy spread of self-injected electron beams. This work included the development of a new code called UPIC-EMMA which is an FFT based electromagnetic PIC code and to new hybrid algorithms in OSIRIS. A new hybrid (PIC in r-z and gridless in φ) algorithm was implemented into OSIRIS. In this algorithm the fields and current are expanded into azimuthal harmonics and the complex amplitude for each harmonic is calculated separately. The contributions from each harmonic are summed and then used to push the particles. This algorithm permits modeling plasma based acceleration with some 3D effects but with the computational load of an 2D r-z PIC code. We developed a rigorously charge conserving current deposit for this algorithm. Very recently, we made progress in combining the speed up from the quasi-3D algorithm with that from the Lorentz boosted frame. SciDAC funds also contributed to the improvement and speed up of the quasi-static PIC code QuickPIC. We have also used our suite of PIC codes to make scientific discovery. Highlights include supporting FACET experiments which achieved the milestones of showing high beam loading and energy transfer efficiency from a drive electron beam to a witness electron beam and the discovery of a self-loading regime a for high gradient acceleration of a positron beam. Both of these experimental milestones were published in Nature together with supporting QuickPIC simulation results. Simulation results from QuickPIC were used on the cover of Nature in one case. We are also making progress on using highly resolved QuickPIC simulations to show that ion motion may not lead to catastrophic emittance growth for tightly focused electron bunches loaded into nonlinear wakefields. This could mean that fully self-consistent beam loading scenarios are possible. This work remains in progress. OSIRIS simulations were used to discover how 200 MeV electron rings are formed in LWFA experiments, on how to generate electrons that have a series of bunches on nanometer scale, and how to transport electron beams from (into) plasma sections into (from) conventional beam optic sections.« less

  2. Coupling MHD and PIC models in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Daldorff, L.; Toth, G.; Sokolov, I.; Gombosi, T. I.; Lapenta, G.; Brackbill, J. U.; Markidis, S.; Amaya, J.

    2013-12-01

    Even for extended fluid plasma models, like Hall, anisotropic ion pressure and multi fluid MHD, there are still many plasma phenomena that are not well captured. For this reason, we have coupled the Implicit Particle-In-Cell (iPIC3D) code with the BATSRUS global MHD code. The PIC solver is applied in a part of the computational domain, for example, in the vicinity of reconnection sites, and overwrites the MHD solution. On the other hand, the fluid solver provides the boundary conditions for the PIC code. To demonstrate the use of the coupled codes for magnetospheric applications, we perform a 2D magnetosphere simulation, where BATSRUS solves for Hall MHD in the whole domain except for the tail reconnection region, which is handled by iPIC3D.

  3. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    NASA Astrophysics Data System (ADS)

    Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.

    2015-09-01

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  4. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, M.D., E-mail: mdmeyers@physics.ucla.edu; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095; Huang, C.-K., E-mail: huangck@lanl.gov

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTDmore » scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.« less

  5. Three dimensional particle-in-cell simulations of electron beams created via reflection of intense laser light from a water target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngirmang, Gregory K., E-mail: ngirmang.1@osu.edu; Orban, Chris; Feister, Scott

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory using the Large Scale Plasma (LSP) PIC code. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. The laser-energy-to-ejected-electron-energy conversion efficiency observed in 2D(3v) simulations were comparable to the conversion efficiencies seen in the 3D simulations, but the angular distribution of ejected electrons in the 2D(3v) simulations displayed interesting differences with the 3D simulations' angular distribution;more » the observed differences between the 2D(3v) and 3D simulations were more noticeable for the simulations with higher intensity laser pulses. An analytic plane-wave model is discussed which provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3v) simulations. We also performed a 3D simulation with circularly polarized light and found a significantly higher conversion efficiency and peak electron energy, which is promising for future experiments.« less

  6. Efficient Modeling of Laser-Plasma Accelerators with INF and RNO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.

    2010-11-04

    The numerical modeling code INF and RNO (INtegrated Fluid and paRticle simulatioN cOde, pronounced 'inferno') is presented. INF and RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations whilemore » still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.« less

  7. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp; Nishioka, S.; Goto, I.

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with thosemore » for the 2D PIC simulation result.« less

  8. Fully implicit Particle-in-cell algorithms for multiscale plasma simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Luis

    The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PICmore » only, reduced dimensionality). The approach is free of numerical instabilities: ω peΔt >> 1, and Δx >> λ D. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing N FE, leading to an optimal algorithm.« less

  9. Fast 2D Fluid-Analytical Simulation of IEDs and Plasma Uniformity in Multi-frequency CCPs

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-10-01

    A fast 2D axisymmetric fluid-analytical model using the finite elements tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency argon capacitively coupled plasmas (CCPs). A bulk fluid plasma model which solves the time-dependent plasma fluid equations is coupled with an analytical sheath model which solves for the sheath parameters. The fluid-analytical results are used as input to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the wafer electrode. Each fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 minutes. The 2D multi-frequency fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel plate discharge, showing good agreement. Fluid-analytical simulations of a 2/60/162 MHz argon CCP with a typical asymmetric reactor geometry were also conducted. The low 2 MHz frequency controlled the sheath width and voltage while the higher frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. Adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge enhanced the plasma uniformity. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC000193, and in part by gifts from Lam Research Corporation and Micron Corporation.

  10. A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    NASA Astrophysics Data System (ADS)

    Hariri, F.; Tran, T. M.; Jocksch, A.; Lanti, E.; Progsch, J.; Messmer, P.; Brunner, S.; Gheller, C.; Villard, L.

    2016-10-01

    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandy bridge 8-core CPU by a factor of 3.4.

  11. Convergence of the Ponderomotive Guiding Center approximation in the LWFA

    NASA Astrophysics Data System (ADS)

    Silva, Thales; Vieira, Jorge; Helm, Anton; Fonseca, Ricardo; Silva, Luis

    2017-10-01

    Plasma accelerators arose as potential candidates for future accelerator technology in the last few decades because of its predicted compactness and low cost. One of the proposed designs for plasma accelerators is based on Laser Wakefield Acceleration (LWFA). However, simulations performed for such systems have to solve the laser wavelength which is orders of magnitude lower than the plasma wavelength. In this context, the Ponderomotive Guiding Center (PGC) algorithm for particle-in-cell (PIC) simulations is a potent tool. The laser is approximated by its envelope which leads to a speed-up of around 100 times because the laser wavelength is not solved. The plasma response is well understood, and comparison with the full PIC code show an excellent agreement. However, for LWFA, the convergence of the self-injected beam parameters, such as energy and charge, was not studied before and has vital importance for the use of the algorithm in predicting the beam parameters. Our goal is to do a thorough investigation of the stability and convergence of the algorithm in situations of experimental relevance for LWFA. To this end, we perform simulations using the PGC algorithm implemented in the PIC code OSIRIS. To verify the PGC predictions, we compare the results with full PIC simulations. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No 653782.

  12. Resolving the Kinetic Reconnection Length Scale in Global Magnetospheric Simulations with MHD-EPIC

    NASA Astrophysics Data System (ADS)

    Toth, G.; Chen, Y.; Cassak, P.; Jordanova, V.; Peng, B.; Markidis, S.; Gombosi, T. I.

    2016-12-01

    We have recently developed a new modeling capability: the Magnetohydrodynamics with Embedded Particle-in-Cell (MHD-EPIC) algorithm with support from Los Alamos SHIELDS and NSF INSPIRE grants. We have implemented MHD-EPIC into the Space Weather Modeling Framework (SWMF) using the implicit Particle-in-Cell (iPIC3D) and the BATS-R-US extended magnetohydrodynamic codes. The MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. Both BATS-R-US and iPIC3D are massively parallel codes. The MHD-EPIC approach allows global magnetosphere simulations with embedded kinetic simulations. For small magnetospheres, like Ganymede or Mercury, we can easily resolve the ion scales around the reconnection sites. Modeling the Earth magnetosphere is very challenging even with our efficient MHD-EPIC model due to the large separation between the global and ion scales. On the other hand the large separation of scales may be exploited: the solution may not be sensitive to the ion inertial length as long as it is small relative to the global scales. The ion inertial length can be varied by changing the ion mass while keeping the MHD mass density, the velocity, and pressure the same for the initial and boundary conditions. Our two-dimensional MHD-EPIC simulations for the dayside reconnection region show in fact, that the overall solution is not sensitive to ion inertial length. The shape, size and frequency of flux transfer events are very similar for a wide range of ion masses. Our results mean that 3D MHD-EPIC simulations for the Earth and other large magnetospheres can be made computationally affordable by artificially increasing the ion mass: the required grid resolution and time step in the PIC model are proportional to the ion inertial length. Changing the ion mass by a factor of 4, for example, speeds up the PIC code by a factor of 256. In fact, this approach allowed us to perform an hour-long 3D MHD-EPIC simulations for the Earth magnetosphere.

  13. Fluctuations, noise, and numerical methods in gyrokinetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas Grant

    In this thesis, the role of the "marker weight" (or "particle weight") used in gyrokinetic particle-in-cell (PIC) simulations is explored. Following a review of the foundations and major developments of gyrokinetic theory, key concepts of the Monte Carlo methods which form the basis for PIC simulations are set forth. Consistent with these methods, a Klimontovich representation for the set of simulation markers is developed in the extended phase space {R, v||, v ⊥, W, P} (with the additional coordinates representing weight fields); clear distinctions are consequently established between the marker distribution function and various physical distribution functions (arising from diverse moments of the marker distribution). Equations describing transport in the simulation are shown to be easily derivable using the formalism. The necessity of a two-weight model for nonequilibrium simulations is demonstrated, and a simple method for calculating the second (background-related) weight is presented. Procedures for arbitrary marker loading schemes in gyrokinetic PIC simulations are outlined; various initialization methods for simulations are compared. Possible effects of inadequate velocity-space resolution in gyrokinetic continuum simulations are explored. The "partial-f" simulation method is developed and its limitations indicated. A quasilinear treatment of electrostatic drift waves is shown to correctly predict nonlinear saturation amplitudes, and the relevance of the gyrokinetic fluctuation-dissipation theorem in assessing the effects of discrete-marker-induced statistical noise on the resulting marginally stable states is demonstrated.

  14. Theory of relativistic radiation reflection from plasmas

    NASA Astrophysics Data System (ADS)

    Gonoskov, Arkady

    2018-01-01

    We consider the reflection of relativistically strong radiation from plasma and identify the physical origin of the electrons' tendency to form a thin sheet, which maintains its localisation throughout its motion. Thereby, we justify the principle of relativistic electronic spring (RES) proposed in [Gonoskov et al., Phys. Rev. E 84, 046403 (2011)]. Using the RES principle, we derive a closed set of differential equations that describe the reflection of radiation with arbitrary variation of polarization and intensity from plasma with an arbitrary density profile for an arbitrary angle of incidence. We confirm with ab initio PIC simulations that the developed theory accurately describes laser-plasma interactions in the regime where the reflection of relativistically strong radiation is accompanied by significant, repeated relocation of plasma electrons. In particular, the theory can be applied for the studies of plasma heating and coherent and incoherent emissions in the RES regime of high-intensity laser-plasma interaction.

  15. Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2015-09-01

    We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.

  16. Beam-dynamics codes used at DARHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Jr., Carl August

    Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.

  17. Polarization-dependent imaging contrast in abalone shells

    NASA Astrophysics Data System (ADS)

    Metzler, Rebecca A.; Zhou, Dong; Abrecht, Mike; Chiou, Jau-Wern; Guo, Jinghua; Ariosa, Daniel; Coppersmith, Susan N.; Gilbert, P. U. P. A.

    2008-02-01

    Many biominerals contain micro- or nanocrystalline mineral components, organized accurately into architectures that confer the material with improved mechanical performance at the macroscopic scale. We present here an effect which enables us to observe the relative orientation of individual crystals at the submicron scale. We call it polarization-dependent imaging contrast (PIC), as it is an imaging development of the well-known x-ray linear dichroism. Most importantly, PIC is obtained in situ, in biominerals. We present here PIC in the prismatic and nacreous layers of Haliotis rufescens (red abalone), confirm it in geologic calcite and aragonite, and corroborate the experimental data with theoretical simulated spectra. PIC reveals different and unexpected aspects of nacre architecture that have inspired theoretical models for nacre formation.

  18. Visuospatial skills and computer game experience influence the performance of virtual endoscopy.

    PubMed

    Enochsson, Lars; Isaksson, Bengt; Tour, René; Kjellin, Ann; Hedman, Leif; Wredmark, Torsten; Tsai-Felländer, Li

    2004-11-01

    Advanced medical simulators have been introduced to facilitate surgical and endoscopic training and thereby improve patient safety. Residents trained in the Procedicus Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) laparoscopic simulator perform laparoscopic cholecystectomy safer and faster than a control group. Little has been reported regarding whether factors like gender, computer experience, and visuospatial tests can predict the performance with a medical simulator. Our aim was to investigate whether such factors influence the performance of simulated gastroscopy. Seventeen medical students were asked about computer gaming experiences. Before virtual endoscopy, they performed the visuospatial test PicCOr, which discriminates the ability of the tested person to create a three-dimensional image from a two-dimensional presentation. Each student performed one gastroscopy (level 1, case 1) in the GI Mentor II, Simbionix, and several variables related to performance were registered. Percentage of time spent with a clear view in the endoscope correlated well with the performance on the PicSOr test (r = 0.56, P < 0.001). Efficiency of screening also correlated with PicSOr (r = 0.23, P < 0.05). In students with computer gaming experience, the efficiency of screening increased (33.6% +/- 3.1% versus 22.6% +/- 2.8%, P < 0.05) and the duration of the examination decreased by 1.5 minutes (P < 0.05). A similar trend was seen in men compared with women. The visuospatial test PicSOr predicts the results with the endoscopic simulator GI Mentor II. Two-dimensional image experience, as in computer games, also seems to affect the outcome.

  19. Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.

  20. Plasmoid statistics in relativistic magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Christie, I. M.; Sironi, L.; Giannios, D.

    2018-04-01

    Plasmoids, overdense blobs of plasma containing magnetic fields and high-energy particles, are a self-consistent outcome of the reconnection process in the relativistic regime. Recent two-dimensional particle-in-cell (PIC) simulations have shown that plasmoids can undergo a variety of processes (e.g. mergers, bulk acceleration, growth, and advection) within the reconnection layer. We developed a Monte Carlo code, benchmarked with the recent PIC simulations, to examine the effects of these processes on the steady-state size and momentum distributions of the plasmoid chain. The differential plasmoid size distribution is shown to be a power law, ranging from a few plasma skin depths to ˜0.1 of the reconnection layer's length. The power-law slope is shown to be linearly dependent upon the ratio of the plasmoid acceleration and growth rates, which slightly decreases with increasing plasma magnetization. We perform a detailed comparison of our results with those of recent PIC simulations and briefly discuss the astrophysical implications of our findings through the representative case of flaring events from blazar jets.

  1. Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-12-01

    A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.

  2. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  3. Magnetic islands produced by reconnection in large current layers: A statistical approach to modeling at global scales

    NASA Astrophysics Data System (ADS)

    Fermo, Raymond Luis Lachica

    2011-12-01

    Magnetic reconnection is a process responsible for the conversion of magnetic energy into plasma flows in laboratory, space, and astrophysical plasmas. A product of reconnection, magnetic islands have been observed in long current layers for various space plasmas, including the magnetopause, the magnetotail, and the solar corona. In this thesis, a statistical model is developed for the dynamics of magnetic islands in very large current layers, for which conventional plasma simulations prove inadequate. An island distribution function f characterizes islands by the flux they contain psi and the area they enclose A. An integro-differential evolution equation for f describes their creation at small scales, growth due to quasi-steady reconnection, convection along the current sheet, and their coalescence with one another. The steady-state solution of the evolution equation predicts a distribution of islands in which the signature of island merging is an asymmetry in psi-- r phase space. A Hall MHD (magnetohydrodynamic) simulation of a very long current sheet with large numbers of magnetic islands is used to explore their dynamics, specifically their growth via two distinct mechanisms: quasi-steady reconnection and merging. The results of the simulation enable validation of the statistical model and benchmarking of its parameters. A PIC (particle-in-cell) simulation investigates how secondary islands form in guide field reconnection, revealing that they are born at electron skin depth scales not as islands from the tearing instability but as vortices from a flow instability. A database of 1,098 flux transfer events (FTEs) observed by Cluster between 2001 and 2003 compares favorably with the model's predictions, and also suggests island merging plays a significant role in the magnetopause. Consequently, the magnetopause is likely populated by many FTEs too small to be recognized by spacecraft instrumentation. The results of this research suggest that a complete theory of reconnection in large current sheets should account for the disparate separation of scales---from the kinetic scales at which islands are produced to the macroscale objects observed in the systems in question.

  4. SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip

    Numerical heating in particle-in-cell (PIC) codes currently precludes the accurate simulation of cold, relativistic plasma over long periods, severely limiting their applications in astrophysical environments. We present a spatially higher-order accurate relativistic PIC algorithm in one spatial dimension, which conserves charge and momentum exactly. We utilize the smoothness implied by the usage of higher-order interpolation functions to achieve a spatially higher-order accurate algorithm (up to the fifth order). We validate our algorithm against several test problems—thermal stability of stationary plasma, stability of linear plasma waves, and two-stream instability in the relativistic and non-relativistic regimes. Comparing our simulations to exact solutionsmore » of the dispersion relations, we demonstrate that SHARP can quantitatively reproduce important kinetic features of the linear regime. Our simulations have a superior ability to control energy non-conservation and avoid numerical heating in comparison to common second-order schemes. We provide a natural definition for convergence of a general PIC algorithm: the complement of physical modes captured by the simulation, i.e., those that lie above the Poisson noise, must grow commensurately with the resolution. This implies that it is necessary to simultaneously increase the number of particles per cell and decrease the cell size. We demonstrate that traditional ways for testing for convergence fail, leading to plateauing of the energy error. This new PIC code enables us to faithfully study the long-term evolution of plasma problems that require absolute control of the energy and momentum conservation.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, R.; Dickerson, M.A.; Peterson, K.R.

    Two numerical models for the calculation of air concentration and ground deposition of airborne effluent releases are compared. The Particle-in-Cell (PIC) model and the Straight-Line Airflow Gaussian model were used for the simulation. Two sites were selected for comparison: the Hudson River Valley, New York, and the area around the Savannah River Plant, South Carolina. Input for the models was synthesized from meteorological data gathered in previous studies by various investigators. It was found that the PIC model more closely simulated the three-dimensional effects of the meteorology and topography. Overall, the Gaussian model calculated higher concentrations under stable conditions withmore » better agreement between the two methods during neutral to unstable conditions. In addition, because of its consideration of exposure from the returning plume after flow reversal, the PIC model calculated air concentrations over larger areas than did the Gaussian model.« less

  6. Continuously differentiable PIC shape functions for triangular meshes

    DOE PAGES

    Barnes, D. C.

    2018-03-21

    In this study, a new class of continuously-differentiable shape functions is developed and applied to two-dimensional electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome aliasing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative, have compact support, and partition unity. They are given explicitly by cubic expressions in the usual triangle logical (areal) coordinates. The shape functions are not finite elements because their structure depends on the topology of themore » mesh, in particular, the number of triangles neighboring each mesh vertex. Nevertheless, they may be useful as approximations to solution of other problems in which continuity of derivatives is required or desired.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinearmore » Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.« less

  8. Continuously differentiable PIC shape functions for triangular meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, D. C.

    In this study, a new class of continuously-differentiable shape functions is developed and applied to two-dimensional electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome aliasing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative, have compact support, and partition unity. They are given explicitly by cubic expressions in the usual triangle logical (areal) coordinates. The shape functions are not finite elements because their structure depends on the topology of themore » mesh, in particular, the number of triangles neighboring each mesh vertex. Nevertheless, they may be useful as approximations to solution of other problems in which continuity of derivatives is required or desired.« less

  9. Three-dimensional kinetic simulations of whistler turbulence in solar wind on parallel supercomputers

    NASA Astrophysics Data System (ADS)

    Chang, Ouliang

    The objective of this dissertation is to study the physics of whistler turbulence evolution and its role in energy transport and dissipation in the solar wind plasmas through computational and theoretical investigations. This dissertation presents the first fully three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence forward cascade in a homogeneous, collisionless plasma with a uniform background magnetic field B o, and the first 3D PIC simulation of whistler turbulence with both forward and inverse cascades. Such computationally demanding research is made possible through the use of massively parallel, high performance electromagnetic PIC simulations on state-of-the-art supercomputers. Simulations are carried out to study characteristic properties of whistler turbulence under variable solar wind fluctuation amplitude (epsilon e) and electron beta (betae), relative contributions to energy dissipation and electron heating in whistler turbulence from the quasilinear scenario and the intermittency scenario, and whistler turbulence preferential cascading direction and wavevector anisotropy. The 3D simulations of whistler turbulence exhibit a forward cascade of fluctuations into broadband, anisotropic, turbulent spectrum at shorter wavelengths with wavevectors preferentially quasi-perpendicular to B o. The overall electron heating yields T ∥ > T⊥ for all epsilone and betae values, indicating the primary linear wave-particle interaction is Landau damping. But linear wave-particle interactions play a minor role in shaping the wavevector spectrum, whereas nonlinear wave-wave interactions are overall stronger and faster processes, and ultimately determine the wavevector anisotropy. Simulated magnetic energy spectra as function of wavenumber show a spectral break to steeper slopes, which scales as k⊥lambda e ≃ 1 independent of betae values, where lambdae is electron inertial length, qualitatively similar to solar wind observations. Specific spectral indices from simulated wavevector energy spectra do not match the frequency spectral indices from observations due to the inapplicability of Taylor's hypothesis. In contrast, the direct comparison of simulated frequency energy spectra and solar wind observations shows a closer similarity. Electron density fluctuations power spectra also exhibit a close similarity to solar wind observations and MHD predications, both qualitatively and quantitatively. Linear damping represents an intermediate fraction of the total dissipation of whistler turbulence over a wide range of betae and epsilone. The relative importance of linear damping by comparison to nonlinear dissipation increases with increasing beta e but decreases with increasing epsilone. Correlation coefficient calculations imply that the nonlinear dissipation processes in our simulation are primarily associated with dissipation in regions of intermittent current sheet structures. The simulation results suggest that whistler fluctuations could be the substantial constituent of solar wind turbulence at higher frequencies and short wavelengths, and support the magnetosonic-whistler interpretation of the quasilinear scenario. An even larger scale 3D whistler turbulence simulation exhibits both a forward cascade to shorter wavelengths with wavevectors preferentially k⊥ > k∥, and an inverse cascade to longer wavelengths with wavevectors k ≳ k⊥. The inverse cascade process is primarily driven by the nonlinear wave-wave interaction. It is shown that the energy inverse cascade rate is similar to the energy forward cascade rate at early times although the overall energy in the two cascades is very different. The presence of inverse cascade process does not affect qualitative conclusions established from the whistler turbulence forward cascade simulations.

  10. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For simulation of corona discharges from nanostructures, a one-dimensional (1-D) multiscale model is used due to the prohibitive computational expense associated with two-dimensional (2-D) modeling. Near the nanoscale discharge electrode surface, a kinetic model based on PIC-MCC is used due to a relatively large Knudsen number in this region. Far away from the nanoscale discharge electrode, a continuum model is used since the Knudsen number is very small there. The multiscale modeling results are compared with experimental data. The quantitative agreement in positive discharges and qualitative agreement in negative discharges validate the modeling approach. The mechanism of sustaining the discharge process from nanostructures is revealed and is found to be different from that of discharge from micro- or macro-sized electrodes. Finally, the corona plasma model is combined with a plasma chemistry model and a transport model to predict the ozone production from the nanoscale corona. The dependence of ozone production on the applied potential and air velocity is studied. The electric field distribution in a 2-D multiscale domain (from nanoscale to microscale) is predicted by solving the Poisson's equation using a finite difference scheme. The discretized linear equations are solved using a multigrid method under the framework of PETSc on a paralleled supercomputer. Although the Poisson solver is able to resolve the multiscale field, the prohibitively long computation time limits the use of a 2-D solver in the current PIC-MCC scheme.

  11. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE PAGES

    Huang, C. -K.; Zeng, Y.; Wang, Y.; ...

    2016-10-01

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  12. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C. -K.; Zeng, Y.; Wang, Y.

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  13. Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Cerutti, Benoît

    We discuss the role of PIC simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.

  14. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    NASA Astrophysics Data System (ADS)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  15. Particle-in-cell simulations of collisionless shock formation via head-on merging of two laboratory supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoma, C.; Welch, D. R.; Hsu, S. C.

    2013-08-15

    We describe numerical simulations, using the particle-in-cell (PIC) and hybrid-PIC code lsp[T. P. Hughes et al., Phys. Rev. ST Accel. Beams 2, 110401 (1999)], of the head-on merging of two laboratory supersonic plasma jets. The goals of these experiments are to form and study astrophysically relevant collisionless shocks in the laboratory. Using the plasma jet initial conditions (density ∼10{sup 14}–10{sup 16} cm{sup −3}, temperature ∼ few eV, and propagation speed ∼20–150 km/s), large-scale simulations of jet propagation demonstrate that interactions between the two jets are essentially collisionless at the merge region. In highly resolved one- and two-dimensional simulations, we showmore » that collisionless shocks are generated by the merging jets when immersed in applied magnetic fields (B∼0.1–1 T). At expected plasma jet speeds of up to 150 km/s, our simulations do not give rise to unmagnetized collisionless shocks, which require much higher velocities. The orientation of the magnetic field and the axial and transverse density gradients of the jets have a strong effect on the nature of the interaction. We compare some of our simulation results with those of previously published PIC simulation studies of collisionless shock formation.« less

  16. Relativistic Laser Absorption and Magnetic Field Channel Formation in 3D PIC Simulation

    NASA Astrophysics Data System (ADS)

    Sentoku, Yasuhiko; Mima, Kunioki; Sheng, Zheng-Ming; Kaw, Predhiman; Nishihara, Katsunobu; Nishikawa, Kyoji

    2000-10-01

    We carried out 3D PIC simulations on overdense plasmas. On the surface of the plasmas, relativistic electrons are generated and transported into overdense plasmas. In the transport, it is found that energy is transferred to dense plasmas by convective cells. Namely, hot electron and cold electron return flows form convective cells through the magnetic instabilities (e.g. Weibel Instability). The heat flux associating with the convective cells and the anomalous stoppings in 3D simulations are compared with these in 2D simulations by Meyer-ter-Vehn etal. and Taguchi etal. [1] M. Honda, J. Meyer-ter-Vehn, and A. Pukhov, Phys. Plasmas 7, 1302, (2000). [2] ``Relativistic Electron Transport Simulation by 2D hybrid Simulation with Darwin Approximation." by T. Taguchi etal. (to be present in the poster of this conference)

  17. An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System

    NASA Astrophysics Data System (ADS)

    Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed

    PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.

  18. Current structure and flow pattern on the electron separatrix in reconnection region

    NASA Astrophysics Data System (ADS)

    Guo, Ruilong; Pu, Zuyin; Wei, Yong

    2017-12-01

    Results from 2.5D Particle-in-cell (PIC) simulations of symmetric reconnection with negligible guide field reveal that the accessible boundary of the electrons accelerated in the magnetic reconnection region is displayed by enhanced electron nongyrotropy downstream from the X-line. The boundary, hereafter termed the electron separatrix, occurs at a few d e (electron inertial length) away from the exhaust side of the magnetic separatrix. On the inflow side of the electron separatrix, the current is mainly carried by parallel accelerated electrons, served as the inflow region patch of the Hall current. The out-of-plane current density enhances at the electron separatrix. The dominating current carriers are the electrons, nongyrotropic distribution functions of which contribute significantly to the perpendicular electron velocity by increasing the electron diamagnetic drift velocity. When crossing the separatrix region where the Hall electric field is enhanced, electron velocity orientation is changed dramatically, which could be a diagnostic indicator to detect the electron separatrix. In the exhaust region, ions are the main carriers for the out-of-plane current, while the parallel current is still mainly carried by electrons. The current density peak in the separatrix region implies that a thin current sheet is formed apart from the neutral line, which can evolve to the bifurcated current sheet.

  19. The Particle-in-Cell and Kinetic Simulation Software Center

    NASA Astrophysics Data System (ADS)

    Mori, W. B.; Decyk, V. K.; Tableman, A.; Fonseca, R. A.; Tsung, F. S.; Hu, Q.; Winjum, B. J.; An, W.; Dalichaouch, T. N.; Davidson, A.; Hildebrand, L.; Joglekar, A.; May, J.; Miller, K.; Touati, M.; Xu, X. L.

    2017-10-01

    The UCLA Particle-in-Cell and Kinetic Simulation Software Center (PICKSC) aims to support an international community of PIC and plasma kinetic software developers, users, and educators; to increase the use of this software for accelerating the rate of scientific discovery; and to be a repository of knowledge and history for PIC. We discuss progress towards making available and documenting illustrative open-source software programs and distinct production programs; developing and comparing different PIC algorithms; coordinating the development of resources for the educational use of kinetic software; and the outcomes of our first sponsored OSIRIS users workshop. We also welcome input and discussion from anyone interested in using or developing kinetic software, in obtaining access to our codes, in collaborating, in sharing their own software, or in commenting on how PICKSC can better serve the DPP community. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.

  20. Development of a fully implicit particle-in-cell scheme for gyrokinetic electromagnetic turbulence simulation in XGC1

    NASA Astrophysics Data System (ADS)

    Ku, Seung-Hoe; Hager, R.; Chang, C. S.; Chacon, L.; Chen, G.; EPSI Team

    2016-10-01

    The cancelation problem has been a long-standing issue for long wavelengths modes in electromagnetic gyrokinetic PIC simulations in toroidal geometry. As an attempt of resolving this issue, we implemented a fully implicit time integration scheme in the full-f, gyrokinetic PIC code XGC1. The new scheme - based on the implicit Vlasov-Darwin PIC algorithm by G. Chen and L. Chacon - can potentially resolve cancelation problem. The time advance for the field and the particle equations is space-time-centered, with particle sub-cycling. The resulting system of equations is solved by a Picard iteration solver with fixed-point accelerator. The algorithm is implemented in the parallel velocity formalism instead of the canonical parallel momentum formalism. XGC1 specializes in simulating the tokamak edge plasma with magnetic separatrix geometry. A fully implicit scheme could be a way to accurate and efficient gyrokinetic simulations. We will test if this numerical scheme overcomes the cancelation problem, and reproduces the dispersion relation of Alfven waves and tearing modes in cylindrical geometry. Funded by US DOE FES and ASCR, and computing resources provided by OLCF through ALCC.

  1. PIC Simulations of Hypersonic Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Decyk, V.; Schriver, D.; Clark, E.

    2013-12-01

    The plasma sheaths formed around hypersonic aircraft (Mach number, M > 10) are relatively unexplored and of interest today to both further the development of new technologies and solve long-standing engineering problems. Both laboratory experiments and analytical/numerical modeling are required to advance the understanding of these systems; it is advantageous to perform these tasks in tandem. There has already been some work done to study these plasmas by experiments that create a rapidly expanding plasma through ablation of a target with a laser. In combination with a preformed magnetic field, this configuration leads to a magnetic "bubble" formed behind the front as particles travel at about Mach 30 away from the target. Furthermore, the experiment was able to show the generation of fast electrons which could be due to instabilities on electron scales. To explore this, future experiments will have more accurate diagnostics capable of observing time- and length-scales below typical ion scales, but simulations are a useful tool to explore these plasma conditions theoretically. Particle in Cell (PIC) simulations are necessary when phenomena are expected to be observed at these scales, and also have the advantage of being fully kinetic with no fluid approximations. However, if the scales of the problem are not significantly below the ion scales, then the initialization of the PIC simulation must be very carefully engineered to avoid unnecessary computation and to select the minimum window where structures of interest can be studied. One method of doing this is to seed the simulation with either experiment or ion-scale simulation results. Previous experiments suggest that a useful configuration for studying hypersonic plasma configurations is a ring of particles rapidly expanding transverse to an external magnetic field, which has been simulated on the ion scale with an ion-hybrid code. This suggests that the PIC simulation should have an equivalent configuration; however, modeling a plasma expanding radially in every direction is computationally expensive. In order to reduce the computational expense, we use a radial density profile from the hybrid simulation results to seed a self-consistent PIC simulation in one direction (x), while creating a current in the direction (y) transverse to both the drift velocity and the magnetic field (z) to create the magnetic bubble observed in experiment. The simulation will be run in two spatial dimensions but retain three velocity dimensions, and the results will be used to explore the growth of micro-instabilities present in hypersonic plasmas in the high-density region as it moves through the simulation box. This will still require a significantly large box in order to compare with experiment, as the experiments are being performed over distances of 104 λDe and durations of 105 ωpe-1.

  2. Reduced 3d modeling on injection schemes for laser wakefield acceleration at plasma scale lengths

    NASA Astrophysics Data System (ADS)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2017-10-01

    Current modelling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) codes which are computationally demanding. In PIC simulations the laser wavelength λ0, in μm-range, has to be resolved over the acceleration lengths in meter-range. A promising approach is the ponderomotive guiding center solver (PGC) by only considering the laser envelope for laser pulse propagation. Therefore only the plasma skin depth λp has to be resolved, leading to speedups of (λp /λ0) 2. This allows to perform a wide-range of parameter studies and use it for λ0 <<λp studies. We present the 3d version of a PGC solver in the massively parallel, fully relativistic PIC code OSIRIS. Further, a discussion and characterization of the validity of the PGC solver for injection schemes on the plasma scale lengths, such as down-ramp injection, magnetic injection and ionization injection, through parametric studies, full PIC simulations and theoretical scaling, is presented. This work was partially supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014 and PD/BD/105882/2014.

  3. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov–Darwin particle-in-cell algorithm

    DOE PAGES

    Chen, G.; Chacón, L.

    2015-08-11

    For decades, the Vlasov–Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. We explore a fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space–time-centered, employing particle sub-cycling and orbit-averaging. This algorithm conserves total energy, local charge,more » canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. Finally, we demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D–3V.« less

  4. Hall-MHD and PIC Modeling of the Conduction-to-Opening Transition in a Plasma Opening Switch

    NASA Astrophysics Data System (ADS)

    Schumer, J. W.; SwanekampDdagger, S. B.; Ottinger, P. F.; Commisso, R. J.; Weber, B. V.

    1998-11-01

    Utilizing the fast opening characteristics of a plasma opening switch (POS), inductive energy storage devices can generate short-duration high-power pulses (<0.1 μ s, >1 TW) with current rise-times on the order of 10 ns. Plasma redistribution and thinning during the POS conduction phase can be modeled adequately with MHD methods. By including the Hall term in Ohm's Law, MHD methods can simulate plasmas with density gradient scale lengths between c/ω_pe < Ln < c/ω_pi. However, the neglect of electron inertia (c/ω_pe) and space-charge separation (λ_De) by single-fluid theory eventually becomes invalid in small gap regions that form during POS opening. PIC methods are well-suited for low-density plasmas, but are numerically taxed by high-density POS regions. An interface converts MHD (Mach2) output into PIC (Magic) input suitable for validating various transition criteria through comparison of current and density distributions from both methods. We will discuss recent progress in interfacing Hall-MHD and PIC simulations. Work supported by Defense Special Weapons Agency. ^ NRL-NRC Research Associate. hspace0.25in ^ JAYCOR, Vienna, VA 22102.

  5. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  6. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit.

    PubMed

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Scarcella, Carmelo; Cardile, Paolo; Daly, Aidan; Ortsiefer, Markus; Carroll, Lee; O'Brien, Peter

    2016-07-25

    In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.8 dB, indicating an excess coupling penalty of -5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler.

  7. Disposal of Chemical Agent Identification Sets at Rocky Mountain Arsenal, Colorado. Volume 2. Appendices A-D

    DTIC Science & Technology

    1983-08-01

    N ENTER UNIT NURSER YOU ARE USING FOR THE DATA TAPE 11 FIGURE A-20 A-15 PMOMR TO P"IN? PROCES: DATA SHEET - DECOMED PIC CONTRL INSERT DATA TAPE IN...EXCHANGE/COOLER 70 CONTROL PANEL1 ACTUATORPFEELER 71 TV MONITOR 2 MOTOR 72 CART TOP3 PUMP 73 CIRCUIT BREAKER 4 VALVE 74 5 BELT 75 LIGHT6 SEAL 76 MIRAN 807

  8. Theoretical analysis and Vsim simulation of a low-voltage high-efficiency 250 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    An, Chenxiang; Zhang, Dian; Zhang, Jun; Zhong, Huihuang

    2018-02-01

    Low-voltage, high-frequency gyrotrons with hundreds of watts of power are useful in radar, magnetic resonance spectroscopy and plasma diagnostic applications. In this paper, a 10 kV, 478 W, 250 GHz gyrotron with an efficiency of nearly 40% and a pitch ratio of 1.5 was designed through linear and nonlinear numerical analyses and Vsim particle-in-cell (PIC) simulation. Vsim is a highly efficient parallel PIC code, but it has seldom been used to carry out electron beam wave interaction simulations of gyro-devices. The setting up of the parameters required for the Vsim simulations of the gyrotron is presented. The results of Vsim simulations agree well with that of nonlinear numerical calculation. The commercial software Vsim7.2 completed the 3D gyrotron simulation in 80 h using a 20 core, 2.2 GHz personal computer with 256 GBytes of memory.

  9. Energization and Transport in 3D Kinetic Simulations of MMS Magnetopause Reconnection Site Encounters with Varying Guide Fields

    NASA Astrophysics Data System (ADS)

    Le, A.; Daughton, W. S.; Ohia, O.; Chen, L. J.; Liu, Y. H.

    2017-12-01

    We present 3D fully kinetic simulations of asymmetric reconnection with plasma parameters matching MMS magnetopause diffusion region crossings with varying guide fields of 0.1 [Burch et al., Science (2016)], 0.4 [Chen et al. JGR (2017)], and 1 [Burch and Phan, GRL (2016] of the reconnecting sheath field. Strong diamagnetic drifts across the magnetopause current sheet drive lower-hybrid drift instabilities (LHDI) over a range of wavelengths [Daughton, PoP (2003); Roytershteyn et al., PRL (2012)] that develop into a turbulent state. Magnetic field tracing diagnostics are employed to characterize the turbulent magnetic geometry and to evaluate the global reconnection rate. The contributions to Ohm's law are evaluated field line by field line, including time-averaged diagnostics that allow the quantification of anomalous resistivity and viscosity. We examine how fluctuating electric fields and chaotic magnetic field lines contribute to particle mixing across the separatrix, and we characterize the accelerated electron distributions that form under varying magnetic shear or guide field. The LHDI turbulence is found to strongly enhance transport and parallel electron heating in 3D compared to 2D, particularly along the magnetospheric separatrix [Le et al., GRL (2017)]. The PIC simulation results are compared to MMS observations.

  10. Laser-plasma interactions with a Fourier-Bessel particle-in-cell method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriyash, Igor A., E-mail: igor.andriyash@gmail.com; LOA, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex; Lehe, Remi

    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas.more » The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.« less

  11. Epicyclic helical channels for parametric resonance ionization cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johson, Rolland Paul; Derbenev, Yaroslav

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parametermore » range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.« less

  12. PIC simulations of conical magnetically insulated transmission line with LTD generator: Transition from self-limited to load-limited flow

    NASA Astrophysics Data System (ADS)

    Liu, Laqun; Wang, Huihui; Guo, Fan; Zou, Wenkang; Liu, Dagang

    2017-04-01

    Based on the 3-dimensional Particle-In-Cell (PIC) code CHIPIC3D, with a new circuit boundary algorithm we developed, a conical magnetically insulated transmission line (MITL) with a 1.0-MV linear transformer driver (LTD) is explored numerically. The values of switch jitter time of LTD are critical parameters for the system, which are difficult to be measured experimentally. In this paper, these values are obtained by comparing the PIC results with experimental data of large diode-gap MITL. By decreasing the diode gap, we find that all PIC results agree well with experimental data only if MITL works on self-limited flow no matter how large the diode gap is. However, when the diode gap decreases to a threshold, the self-limited flow would transfer to a load-limited flow. In this situation, PIC results no longer agree with experimental data anymore due to the anode plasma expansion in the diode load. This disagreement is used to estimate the plasma expansion speed.

  13. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.

    PubMed

    Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick

    2009-08-01

    Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.

  14. Comparison of Hall Thruster Plume Expansion Model with Experimental Data

    DTIC Science & Technology

    2006-05-23

    focus of this study, is a hybrid particle- in-cell ( PIC ) model that tracks particles along an unstructured tetrahedral mesh. * Research Engineer...measurements of the ion current density profile, ion energy distributions, and ion species fraction distributions using a nude Faraday probe, retarding...Vol.37 No.1. 6 Oh, D. and Hastings, D., “Three Dimensional PIC -DSMC Simulations of Hall Thruster Plumes and Analysis for Realistic Spacecraft

  15. First PIC simulations modeling the interaction of ultra-intense lasers with sub-micron, liquid crystal targets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Poole, Patrick; Willis, Christopher; Andereck, David; Schumacher, Douglass

    2014-10-01

    We recently introduced liquid crystal films as on-demand, variable thickness (50-5000 nanometers), low cost targets for intense laser experiments. Here we present the first particle-in-cell (PIC) simulations of short pulse laser excitation of liquid crystal targets treating Scarlet (OSU) class lasers using the PIC code LSP. In order to accurately model the target evolution, a low starting temperature and field ionization model are employed. This is essential as large starting temperatures, often used to achieve large Debye lengths, lead to expansion of the target causing significant reduction of the target density before the laser pulse can interact. We also present an investigation of the modification of laser pulses by very thin targets. This work was supported by the DARPA PULSE program through a grant from ARMDEC, by the US Department of Energy under Contract No. DE-NA0001976, and allocations of computing time from the Ohio Supercomputing Center.

  16. Fourier-Bessel Particle-In-Cell (FBPIC) v0.1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehe, Remi; Kirchen, Manuel; Jalas, Soeren

    The Fourier-Bessel Particle-In-Cell code is a scientific simulation software for relativistic plasma physics. It is a Particle-In-Cell code whose distinctive feature is to use a spectral decomposition in cylindrical geometry. This decomposition allows to combine the advantages of spectral 3D Cartesian PIC codes (high accuracy and stability) and those of finite-difference cylindrical PIC codes with azimuthal decomposition (orders-of-magnitude speedup when compared to 3D simulations). The code is built on Python and can run both on CPU and GPU (the GPU runs being typically 1 or 2 orders of magnitude faster than the corresponding CPU runs.) The code has the exactmore » same output format as the open-source PIC codes Warp and PIConGPU (openPMD format: openpmd.org) and has a very similar input format as Warp (Python script with many similarities). There is therefore tight interoperability between Warp and FBPIC, and this interoperability will increase even more in the future.« less

  17. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    PubMed

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-04

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10.

  18. Generation of Rising-tone Chorus in a Two-dimensional Mirror Field by Using the General Curvilinear PIC Code

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Gao, X.; Lu, Q.; Wang, X.; Wang, S.

    2017-12-01

    Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. We have developed a two-dimensional(2-D) general curvilinear PIC simulation code, and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator, and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are formed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the finite wave normal angle. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves are found to be larger along a field line more close to the middle field line in the mirror field.

  19. Generation of rising-tone chorus in a two-dimensional mirror field by using the general curvilinear PIC code

    NASA Astrophysics Data System (ADS)

    Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Wang, Shui

    2017-08-01

    Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. In this paper, we have developed a two-dimensional (2-D) general curvilinear PIC simulation code and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are observed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the wave normal angle smaller than 25°. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves is found to be larger along a field line with a smaller curvature.

  20. On the Electrons Dynamics during Rapid Island Coalescence in Asymmetric Magnetic Reconnection: Case With and With No Guide Field

    NASA Astrophysics Data System (ADS)

    Cazzola, E.; Innocenti, M. E.; Markidis, S.; Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2015-12-01

    We present a set of fully kinetic 2.5D simulations of electron dynamics during rapid magnetic islands coalescence in asymmetric conditions. Simulations are performed using the massively parallel fully kinetic implicit moment method code iPIC3D (Markidis et al. 2010). The domain is a double periodic box with two current sheets initially representing two different reconnection conditions with the same asymmetric ratio. In the upper sheet the conventional hyperbolic continuous functions for magnetic field and density are initialised across the layer (e.g. Pritchett 2008). In the lower layer the same asymmetric conditions are used the presence of an extremely steep gradient describing a pure tangential discontinuity.Cases with and without guide field are compared. While the upper layer shows the typical reconnection evolution of an asymmetric configuration, the lower layer very soon develops not-uniformly distributed multiple reconnection points which rapidly evolve in a series of magnetic islands. Quick islands coalescence follows. Even though the electrons dynamics during island merging has been studied in both symmetric and asymmetric conditions (e.g. Pritchett 2007, 2008b, Drake et al. 2006, Oka et al. 2010, Huang et al. 2014), these simulations show new interesting features such as the presence of three distinct regions, here named X, M and D, with very different properties. Regions X and M manifest typical signatures of ongoing reconnection, distinguishable thanks to the direct comparison with the outcomes of the upper layer. In particular, M-type regions are different because reconnection occurs between two merging islands in a vertical fashion with respect to the direction of the current sheets initially set. In contrast, regions D present a quite diverse features, not showing the typical signatures of a occurring reconnection. The present work is supported by the NASA MMS Grant NNX08AO84G. Additional support for the KULeuven team is provided by the European Commission DEEP-ER project, by the Onderzoekfonds KU Leuven (Research Fund KU Leuven) and by the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office (IAP P7/08 CHARM). The simulations were conducted on the computational resources provided by the PRACE Tier-0 2013091928 (SuperMUC supercomputer).

  1. PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model

    DOE PAGES

    Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania Koleva; ...

    2017-07-15

    Whistler wave-particle interactions play an important role in the Earth inner magnetospheric dynamics and have been the subject of numerous investigations. By running a global kinetic ring current model (RAM-SCB) in a storm event occurred on Oct 23–24 2002, we obtain the ring current electron distribution at a selected location at MLT of 9 and L of 6 where the electron distribution is composed of a warm population in the form of a partial ring in the velocity space (with energy around 15 keV) in addition to a cool population with a Maxwellian-like distribution. The warm population is likely frommore » the injected plasma sheet electrons during substorm injections that supply fresh source to the inner magnetosphere. These electron distributions are then used as input in an implicit particle-in-cell code (iPIC3D) to study whistler-wave generation and the subsequent wave-particle interactions. Here, we find that whistler waves are excited and propagate in the quasi-parallel direction along the background magnetic field. Several different wave modes are instantaneously generated with different growth rates and frequencies. The wave mode at the maximum growth rate has a frequency around 0.62ω ce, which corresponds to a parallel resonant energy of 2.5 keV. Linear theory analysis of wave growth is in excellent agreement with the simulation results. These waves grow initially due to the injected warm electrons and are later damped due to cyclotron absorption by electrons whose energy is close to the resonant energy and can effectively attenuate waves. The warm electron population overall experiences net energy loss and anisotropy drop while moving along the diffusion surfaces towards regions of lower phase space density, while the cool electron population undergoes heating when the waves grow, suggesting the cross-population interactions.« less

  2. Magnetic Reconnection Dynamics in the Presence of Low-energy Ion Component: PIC Simulations of Hidden Particle Population

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Y. V.; Divin, A. V.; Toledo Redondo, S.; Andre, M.; Vaivads, A.; Markidis, S.; Lapenta, G.

    2015-12-01

    Magnetospheric and astrophysical plasmas are rarely in the state of thermal equilibrium. Plasma distribution functions may contain beams, supra-thermal tails, multiple ion and electron populations which are not thermalized over long time scales due to the lack of collisions between particles. In particular, the equatorial region of the dayside Earth's magnetosphere is often populated by plasma containing hot and cold ion components of comparable densities [Andre and Cully, 2012], and such ion distribution alters properties of the magnetic reconnection regions at the magnetopause [Toledo-Redondo et. al., 2015]. Motivated by these recent findings and also by fact that this region is one of the targets of the recently launched MMS mission, we performed 2D PIC simulations of magnetic reconnection in collisionless plasma with hot and cold ion components. We used a standard Harris current sheet, to which a uniform cold ion background is added. We found that introduction of the cold component modifies the structure of reconnection diffusion region. Diffusion region displays three-scale structure, with the cold Ion Diffusion Region (cIDR) scale appearing in-between the Electron Diffusion Region (EDR) and Ion Diffusion Region (IDR) scales. Structure and strength of the Hall magnetic field depends weakly on cold ion temperature or density, and is rather controlled by the conditions (B, n) upstream the reconnection region. The cold ions are accelerated predominantly transverse to the magnetic field by the Hall electric fields inside the IDR, leading to a large ion pressure anisotropy, which is unstable to ion Weibel-type or mirror-type mode. On the opposite, acceleration of cold ions is mostly field-aligned at the reconnection jet fronts downstream the X-line, producing intense ion phase-space holes there. Despite comparable reconnection rates produced , we find that the overall evolution of reconnection in presence of cold ion population is more dynamic compared to the case with a single hot ion component.

  3. PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania Koleva

    Whistler wave-particle interactions play an important role in the Earth inner magnetospheric dynamics and have been the subject of numerous investigations. By running a global kinetic ring current model (RAM-SCB) in a storm event occurred on Oct 23–24 2002, we obtain the ring current electron distribution at a selected location at MLT of 9 and L of 6 where the electron distribution is composed of a warm population in the form of a partial ring in the velocity space (with energy around 15 keV) in addition to a cool population with a Maxwellian-like distribution. The warm population is likely frommore » the injected plasma sheet electrons during substorm injections that supply fresh source to the inner magnetosphere. These electron distributions are then used as input in an implicit particle-in-cell code (iPIC3D) to study whistler-wave generation and the subsequent wave-particle interactions. Here, we find that whistler waves are excited and propagate in the quasi-parallel direction along the background magnetic field. Several different wave modes are instantaneously generated with different growth rates and frequencies. The wave mode at the maximum growth rate has a frequency around 0.62ω ce, which corresponds to a parallel resonant energy of 2.5 keV. Linear theory analysis of wave growth is in excellent agreement with the simulation results. These waves grow initially due to the injected warm electrons and are later damped due to cyclotron absorption by electrons whose energy is close to the resonant energy and can effectively attenuate waves. The warm electron population overall experiences net energy loss and anisotropy drop while moving along the diffusion surfaces towards regions of lower phase space density, while the cool electron population undergoes heating when the waves grow, suggesting the cross-population interactions.« less

  4. Optical simulations of laser focusing for optimization of laser betatron

    NASA Astrophysics Data System (ADS)

    Stanke, L.; Thakur, A.; Šmíd, M.; Gu, Y. J.; Falk, K.

    2017-05-01

    This work presents optical simulations that are used to design a betatron driven by a short-pulse laser based on the Laser Wakefield Acceleration (LWFA) concept. These simulations explore how the optical setup and its components influence the performance of the betatron. The impact of phase irregularities induced by optical elements is investigated. In order to obtain a good estimate of the future performance of this design a combination of two distinct techniques are used - Field Tracing for optical simulations employing a combination of the Zemax and VirtualLab computational platforms for the laser beam propagation and focusing with the given optical system and particle-in-cell simulation (PIC) for simulating the short-pulse laser interaction with a gas target. The result of the optical simulations serves as an input for the PIC simulations. Application of Field Tracing in combination with the PIC for the purposes of high power laser facility introduces the new application for VirtualLab Fusion. Based on the result of these simulations an alternative design with a hole in the final folding mirror coupled with a spherical focusing mirror is considered in favour of more commonly used off-axis parabola focusing setup. Results are demonstrating, that the decrease of the irradiance due to the presence of the central hole in the folding mirror is negligible (9.69× 1019 W/cm2 for the case without the hole vs. 9.73× 1019 W/cm2 for the case with hole). However, decrease caused by the surface irregularities (surface RMS λ/4 , λ/20 and λ/40 ) is more significant and leads to the poor performance of particle production.

  5. Design and Control of Omnidirectional Unmanned Ground Vehicles for Rough Terrain

    DTIC Science & Technology

    2012-08-29

    company, Quantum Signal. This rigid body dynamics simulation, housed within the Autonomous Navigation and Virtual Environment Laboratory (ANVEL) software...72 Figure 22: PIC main code. Page 24 of 72 Figure 23: PIC interrupt code. 3.3 Central Body Embedded Electronics As described above...located on the main body of the vehicle. This section describes how the on-board electronics works. The outline of the code is presented as is how

  6. Comparison of Hall Thruster Plume Expansion Model with Experimental Data (Preprint)

    DTIC Science & Technology

    2006-07-01

    Cartesian mesh. AQUILA, the focus of this study, is a hybrid PIC model that tracks particles along an unstructured tetrahedral mesh. COLISEUM is capable...measurements of the ion current density profile, ion energy distributions, and ion species fraction distributions using a nude Faraday probe...Spacecraft and Rockets, Vol.37 No.1. 6 Oh, D. and Hastings, D., “Three Dimensional PIC -DSMC Simulations of Hall Thruster Plumes and Analysis for

  7. Conformal Electromagnetic Particle in Cell: A Review

    DOE PAGES

    Meierbachtol, Collin S.; Greenwood, Andrew D.; Verboncoeur, John P.; ...

    2015-10-26

    We review conformal (or body-fitted) electromagnetic particle-in-cell (EM-PIC) numerical solution schemes. Included is a chronological history of relevant particle physics algorithms often employed in these conformal simulations. We also provide brief mathematical descriptions of particle-tracking algorithms and current weighting schemes, along with a brief summary of major time-dependent electromagnetic solution methods. Several research areas are also highlighted for recommended future development of new conformal EM-PIC methods.

  8. ACTIVATION OF COMMON ANTIVIRAL PATHWAYS CAN POTENTIATE INFLAMMATORY RESPONSES TO SEPTIC SHOCK

    PubMed Central

    Doughty, Lesley A.; Carlton, Stacey; Galen, Benjamin; Cooma-Ramberan, Indranie; Chung, Chung-Shiang; Ayala, Alfred

    2006-01-01

    Induction of the antiviral cytokine interferon α/β (IFN-α/β) is common in many viral infections. The impact of ongoing antiviral responses on subsequent bacterial infection is not well understood. In human disease, bacterial superinfection complicating a viral infection can result in significant morbidity and mortality. We injected mice with polyinosinic-polycytidylic (PIC) acid, a TLR3 ligand and known IFN-α/β inducer as well as nuclear factor κB (NF-κB) activator to simulate very early antiviral pathways. We then challenged mice with an in vivo septic shock model characterized by slowly evolving bacterial infection to simulate bacterial superinfection early during a viral infection. Our data demonstrated robust induction of IFN-α in serum within 24 h of PIC injection with IFN-α/β–dependent major histocompatibility antigen class II up-regulation on peritoneal macrophages. PIC pretreatment before septic shock resulted in augmented tumor necrosis factor alpha and interleukins 6 and 10 and heightened lethality compared with septic shock alone. Intact IFN-α/β signaling was necessary for augmentation of the inflammatory response to in vivo septic shock and to both TLR2 and TLR4 agonists in vitro. To assess the NF-κB contribution to PIC-modulated inflammatory responses to septic shock, we treated with parthenolide an NF-κB inhibitor before PIC and septic shock. Parthenolide did not inhibit IFN-α induction by PIC. Inhibition of NF-κB by parthenolide did reduce IFN-α–mediated potentiation of the cytokine response and lethality from septic shock. Our data demonstrate that pathways activated early during many viral infections can have a detrimental impact on the outcome of subsequent bacterial infection. These pathways may be critical to understanding the heightened morbidity and mortality from bacterial superinfection after viral infection in human disease. PMID:16878028

  9. Enhancement of 3D guide field magnetic reconnection by self-generated kinetic turbulence

    NASA Astrophysics Data System (ADS)

    Alejandro Munoz Sepulveda, Patricio; Buechner, Joerg

    2017-04-01

    Kinetic plasma turbulence is ubiquitous in magnetic reconnection in laboratory, space and astrophysical plasmas. Most of previous investigations focused on the role of low-frequency/Alfvénic turbulence in homogeneous plasmas. High-frequency/electron-scale turbulence in the reconnecting current sheets, however, have been rarely addressed. Our aim is to investigate the role of this self-generated turbulence via kinetic instabilities in 3D magnetic reconnection. For this sake, we carried out 3D fully-kinetic Particle-in-Cell (PiC) code numerical simulations of force free current sheets with a guide magnetic field, a common situation in the plasmas of interest. We show that the dynamically evolving kinetic turbulence spectra is broadband, with a power-law spectrum between the lower hybrid and up to the electron frequencies with a spectral index near 2.7 at the reconnection site. This result is directly in the frequency-domain, without change of frame of reference assuming Taylor's hypothesis. The evolution of the turbulence correlates with the growth and rate of magnetic reconnection and can be explained by unstable waves caused by (kinetic) streaming instabilities driven by electron current. This provides a plausible explanation for the enhancement of magnetic reconnection due to turbulence observed in laboratory experiments like MRX, VTF and VINETA-II, as well as of in-situ measurements in the Earth's magnetosphere by the MMS spacecraft.

  10. Coupled particle-in-cell and Monte Carlo transport modeling of intense radiographic sources

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Welch, D. R.; Oliver, B. V.; Clark, R. E.; Johnson, D. L.; Maenchen, J. E.; Menge, P. R.; Olson, C. L.; Rovang, D. C.

    2002-03-01

    Dose-rate calculations for intense electron-beam diodes using particle-in-cell (PIC) simulations along with Monte Carlo electron/photon transport calculations are presented. The electromagnetic PIC simulations are used to model the dynamic operation of the rod-pinch and immersed-B diodes. These simulations include algorithms for tracking electron scattering and energy loss in dense materials. The positions and momenta of photons created in these materials are recorded and separate Monte Carlo calculations are used to transport the photons to determine the dose in far-field detectors. These combined calculations are used to determine radiographer equations (dose scaling as a function of diode current and voltage) that are compared directly with measured dose rates obtained on the SABRE generator at Sandia National Laboratories.

  11. Monte Carlo simulation of ion-neutral charge exchange collisions and grid erosion in an ion thruster

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1991-01-01

    A combined particle-in-cell (PIC)/Monte Carlo simulation model has been developed in which the PIC method is used to simulate the charge exchange collisions. It is noted that a number of features were reproduced correctly by this code, but that its assumption of two-dimensional axisymmetry for a single set of grid apertures precluded the reproduction of the most characteristic feature of actual test data; namely, the concentrated grid erosion at the geometric center of the hexagonal aperture array. The first results of a three-dimensional code, which takes into account the hexagonal symmetry of the grid, are presented. It is shown that, with this code, the experimentally observed erosion patterns are reproduced correctly, demonstrating explicitly the concentration of sputtering between apertures.

  12. Comparisons of angularly and spectrally resolved Bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C. D.; Kemp, A. J.; Pérez, F.

    2013-05-15

    A 2-D multi-stage simulation model incorporating realistic laser conditions and a fully resolved electron distribution handoff has been developed and compared to angularly and spectrally resolved Bremsstrahlung measurements from high-Z planar targets. For near-normal incidence and 0.5-1 × 10{sup 20} W/cm{sup 2} intensity, particle-in-cell (PIC) simulations predict the existence of a high energy electron component consistently directed away from the laser axis, in contrast with previous expectations for oblique irradiation. Measurements of the angular distribution are consistent with a high energy component when directed along the PIC predicted direction, as opposed to between the target normal and laser axis asmore » previously measured.« less

  13. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  14. Fully kinetic 3D simulations of the Hermean magnetosphere under realistic conditions: a new approach

    NASA Astrophysics Data System (ADS)

    Amaya, Jorge; Gonzalez-Herrero, Diego; Lembège, Bertrand; Lapenta, Giovanni

    2017-04-01

    Simulations of the magnetosphere of planets are usually performed using the MHD and the hybrid approaches. However, these two methods still rely on approximations for the computation of the pressure tensor, and require the neutrality of the plasma at every point of the domain by construction. These approximations undermine the role of electrons on the emergence of plasma features in the magnetosphere of planets. The high mobility of electrons, their characteristic time and space scales, and the lack of perfect neutrality, are the source of many observed phenomena in the magnetospheres, including the turbulence energy cascade, the magnetic reconnection, the particle acceleration in the shock front and the formation of current systems around the magnetosphere. Fully kinetic codes are extremely demanding of computing time, and have been unable to perform simulations of the full magnetosphere at the real scales of a planet with realistic plasma conditions. This is caused by two main reasons: 1) explicit codes must resolve the electron scales limiting the time and space discretisation, and 2) current versions of semi-implicit codes are unstable for cell sizes larger than a few Debye lengths. In this work we present new simulations performed with ECsim, an Energy Conserving semi-implicit method [1], that can overcome these two barriers. We compare the solutions obtained with ECsim with the solutions obtained by the classic semi-implicit code iPic3D [2]. The new simulations with ECsim demand a larger computational effort, but the time and space discretisations are larger than those in iPic3D allowing for a faster simulation time of the full planetary environment. The new code, ECsim, can reach a resolution allowing the capture of significant large scale physics without loosing kinetic electron information, such as wave-electron interaction and non-Maxwellian electron velocity distributions [3]. The code is able to better capture the thickness of the different boundary layers of the magnetosphere of Mercury. Electron kinetics are consistent with the spatial and temporal scale resolutions. Simulations are compared with measurements from the MESSENGER spacecraft showing a better fit when compared against the classic fully kinetic code iPic3D. These results show that the new generation of Energy Conserving semi-implicit codes can be used for an accurate analysis and interpretation of particle data from magnetospheric missions like BepiColombo and MMS, including electron velocity distributions and electron temperature anisotropies. [1] Lapenta, G. (2016). Exactly Energy Conserving Implicit Moment Particle in Cell Formulation. arXiv preprint arXiv:1602.06326. [2] Markidis, S., & Lapenta, G. (2010). Multi-scale simulations of plasma with iPIC3D. Mathematics and Computers in Simulation, 80(7), 1509-1519. [3] Lapenta, G., Gonzalez-Herrero, D., & Boella, E. (2016). Multiple scale kinetic simulations with the energy conserving semi implicit particle in cell (PIC) method. arXiv preprint arXiv:1612.08289.

  15. Prediction impact curve is a new measure integrating intervention effects in the evaluation of risk models.

    PubMed

    Campbell, William; Ganna, Andrea; Ingelsson, Erik; Janssens, A Cecile J W

    2016-01-01

    We propose a new measure of assessing the performance of risk models, the area under the prediction impact curve (auPIC), which quantifies the performance of risk models in terms of their average health impact in the population. Using simulated data, we explain how the prediction impact curve (PIC) estimates the percentage of events prevented when a risk model is used to assign high-risk individuals to an intervention. We apply the PIC to the Atherosclerosis Risk in Communities (ARIC) Study to illustrate its application toward prevention of coronary heart disease. We estimated that if the ARIC cohort received statins at baseline, 5% of events would be prevented when the risk model was evaluated at a cutoff threshold of 20% predicted risk compared to 1% when individuals were assigned to the intervention without the use of a model. By calculating the auPIC, we estimated that an average of 15% of events would be prevented when considering performance across the entire interval. We conclude that the PIC is a clinically meaningful measure for quantifying the expected health impact of risk models that supplements existing measures of model performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Model and particle-in-cell simulation of ion energy distribution in collisionless sheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhuwen, E-mail: zzwwdxy@gznc.edu.cn; Key Laboratory of Photoelectron Materials Design and Simulation in Guizhou Province, Guiyang 550018; Scientific Research Innovation Team in Plasma and Functional Thin Film Materials in Guizhou Province, Guiyang 550018

    2015-06-15

    In this paper, we propose a self-consistent theoretical model, which is described by the ion energy distributions (IEDs) in collisionless sheaths, and the analytical results for different combined dc/radio frequency (rf) capacitive coupled plasma discharge cases, including sheath voltage errors analysis, are compared with the results of numerical simulations using a one-dimensional plane-parallel particle-in-cell (PIC) simulation. The IEDs in collisionless sheaths are performed on combination of dc/rf voltage sources electrodes discharge using argon as the process gas. The incident ions on the grounded electrode are separated, according to their different radio frequencies, and dc voltages on a separated electrode, themore » IEDs, and widths of energy in sheath and the plasma sheath thickness are discussed. The IEDs, the IED widths, and sheath voltages by the theoretical model are investigated and show good agreement with PIC simulations.« less

  17. Particle-in-cell simulations of the plasma interaction with poloidal gaps in the ITER divertor outer vertical target

    NASA Astrophysics Data System (ADS)

    Komm, M.; Gunn, J. P.; Dejarnac, R.; Pánek, R.; Pitts, R. A.; Podolník, A.

    2017-12-01

    Predictive modelling of the heat flux distribution on ITER tungsten divertor monoblocks is a critical input to the design choice for component front surface shaping and for the understanding of power loading in the case of small-scale exposed edges. This paper presents results of particle-in-cell (PIC) simulations of plasma interaction in the vicinity of poloidal gaps between monoblocks in the high heat flux areas of the ITER outer vertical target. The main objective of the simulations is to assess the role of local electric fields which are accounted for in a related study using the ion orbit approach including only the Lorentz force (Gunn et al 2017 Nucl. Fusion 57 046025). Results of the PIC simulations demonstrate that even if in some cases the electric field plays a distinct role in determining the precise heat flux distribution, when heat diffusion into the bulk material is taken into account, the thermal responses calculated using the PIC or ion orbit approaches are very similar. This is a consequence of the small spatial scales over which the ion orbits distribute the power. The key result of this study is that the computationally much less intensive ion orbit approximation can be used with confidence in monoblock shaping design studies, thus validating the approach used in Gunn et al (2017 Nucl. Fusion 57 046025).

  18. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    DOE PAGES

    Chacon, L.; Chen, G.

    2016-04-19

    Here, we extend a recently proposed fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (Φ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ • A = 0 exactly. Anmore » asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.« less

  19. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Chen, G.

    2016-07-01

    We extend a recently proposed fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (ϕ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ ṡ A = 0 exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.

  20. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, L.; Chen, G.

    Here, we extend a recently proposed fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (Φ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ • A = 0 exactly. Anmore » asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.« less

  1. Fiches pratiques: Si on jouait a la famille Dubois...; Pic et pic...et phonetique; Les rendez-vous des souvenirs; A l'ami (Practical Ideas: Let's Play House; Tick and Tick...and Phonetic; Rendezvous with Memories; To My Friend).

    ERIC Educational Resources Information Center

    Bravo, Maria Antonia Lavandera; And Others

    1991-01-01

    Four activities for French language classroom use are presented, including a simulation of the relationships and communication within a family; pronunciation instruction through phonetic transcription; cultural awareness through students' analysis of their own and their parents' specific memories; and analysis and comparison of a literary text and…

  2. Multi-dimensional PIC-simulations of parametric instabilities for shock-ignition conditions

    NASA Astrophysics Data System (ADS)

    Riconda, C.; Weber, S.; Klimo, O.; Héron, A.; Tikhonchuk, V. T.

    2013-11-01

    Laser-plasma interaction is investigated for conditions relevant for the shock-ignition (SI) scheme of inertial confinement fusion using two-dimensional particle-in-cell (PIC) simulations of an intense laser beam propagating in a hot, large-scale, non-uniform plasma. The temporal evolution and interdependence of Raman- (SRS), and Brillouin- (SBS), side/backscattering as well as Two-Plasmon-Decay (TPD) are studied. TPD is developing in concomitance with SRS creating a broad spectrum of plasma waves near the quarter-critical density. They are rapidly saturated due to plasma cavitation within a few picoseconds. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below one hundred keV.

  3. Secure web-based invocation of large-scale plasma simulation codes

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Busby, R.; Exby, J.; Bruhwiler, D. L.; Cary, J. R.

    2004-12-01

    We present our design and initial implementation of a web-based system for running, both in parallel and serial, Particle-In-Cell (PIC) codes for plasma simulations with automatic post processing and generation of visual diagnostics.

  4. Particle distributions in collisionless magnetic reconnection: An implicit Particle-In-Cell (PIC) description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, D.W.; Francis, G.E.; Max, C.E.

    1990-06-29

    Evidence from magnetospheric and solar flare research supports the belief that collisionless magnetic reconnection can proceed on the Alfven-wave crossing timescale. Reconnection behavior that occurs this rapidly in collisionless plasmas is not well understood because underlying mechanisms depend on the details of the ion and electron distributions in the vicinity of the emerging X-points. We use the direct implicit Particle-In-Cell (PIC) code AVANTI to study the details of these distributions as they evolve in the self-consistent E and B fields of magnetic reconnection. We first consider a simple neutral sheet model. We observe rapid movement of the current-carrying electrons awaymore » from the emerging X-point. Later in time an oscillation of the trapped magnetic flux is found, superimposed upon continued linear growth due to plasma inflow at the ion sound speed. The addition of a current-aligned and a normal B field widen the scope of our studies.« less

  5. Simulation services and analysis tools at the CCMC to study multi-scale structure and dynamics of Earth's magnetopause

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Liu, Y. H.; Rastaetter, L.; Pembroke, A. D.; Chen, L. J.; Hesse, M.; Glocer, A.; Komar, C. M.; Dorelli, J.; Roytershteyn, V.

    2016-12-01

    The presentation will provide overview of new tools, services and models implemented at the Community Coordinated Modeling Center (CCMC) to facilitate MMS dayside results analysis. We will provide updates on implementation of Particle-in-Cell (PIC) simulations at the CCMC and opportunities for on-line visualization and analysis of results of PIC simulations of asymmetric magnetic reconnection for different guide fields and boundary conditions. Fields, plasma parameters, particle distribution moments as well as particle distribution functions calculated in selected regions of the vicinity of reconnection sites can be analyzed through the web-based interactive visualization system. In addition there are options to request distribution functions in user selected regions of interest and to fly through simulated magnetic reconnection configurations and a map of distributions to facilitate comparisons with observations. A broad collection of global magnetosphere models hosted at the CCMC provide opportunity to put MMS observations and local PIC simulations into global context. We recently implemented the RECON-X post processing tool (Glocer et al, 2016) which allows users to determine the location of separator surface around closed field lines and between open field lines and solar wind field lines. The tool also finds the separatrix line where the two surfaces touch and positions of magnetic nulls. The surfaces and the separatrix line can be visualized relative to satellite positions in the dayside magnetosphere using an interactive HTML-5 visualization for each time step processed. To validate global magnetosphere models' capability to simulate locations of dayside magnetosphere boundaries we will analyze the proximity of MMS to simulated separatrix locations for a set of MMS diffusion region crossing events.

  6. Implementation of a 3D version of ponderomotive guiding center solver in particle-in-cell code OSIRIS

    NASA Astrophysics Data System (ADS)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2016-10-01

    Laser-driven accelerators gained an increased attention over the past decades. Typical modeling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) simulations. PIC simulations, however, are very computationally expensive due to the disparity of the relevant scales ranging from the laser wavelength, in the micrometer range, to the acceleration length, currently beyond the ten centimeter range. To minimize the gap between these despair scales the ponderomotive guiding center (PGC) algorithm is a promising approach. By describing the evolution of the laser pulse envelope separately, only the scales larger than the plasma wavelength are required to be resolved in the PGC algorithm, leading to speedups in several orders of magnitude. Previous work was limited to two dimensions. Here we present the implementation of the 3D version of a PGC solver into the massively parallel, fully relativistic PIC code OSIRIS. We extended the solver to include periodic boundary conditions and parallelization in all spatial dimensions. We present benchmarks for distributed and shared memory parallelization. We also discuss the stability of the PGC solver.

  7. Theoretical and computational studies of the sheath of a planar wall

    NASA Astrophysics Data System (ADS)

    Giraudo, Martina; Camporeale, Enrico; Delzanno, Gian Luca; Lapenta, Giovanni

    2012-03-01

    We present an investigation of the stability and nonlinear evolution of the sheath of a planar wall. We focus on the electrostatic limit. The stability analysis is conducted with a fluid model where continuity and momentum equations for the electrons and ions are coupled through Poisson's equation. The effect of electron emission from the wall is studied parametrically. Our results show that a sheath instability associated with the emitted electrons can exist. Following Ref. [1], it is interpreted as a Rayleigh-Taylor instability driven by the favorable combination of the sheath electron density gradient and electric field. Fully kinetic Particle-In-Cell (PIC) simulations will also be presented to investigate whether this instability indeed exists and to study the nonlinear effect of electron emission on the sheath profiles. The simulations will be conducted with CPIC, a new electrostatic PIC code that couples the standard PIC algorithm with strategies for generation and adaptation of the computational grid. [4pt] [1] G.L. Delzanno, ``A paradigm for the stability of the plasma sheath against fluid perturbations,'' Phys. Plasmas 18, 103508 (2011).

  8. Program Package for 3d PIC Model of Plasma Fiber

    NASA Astrophysics Data System (ADS)

    Kulhánek, Petr; Břeň, David

    2007-08-01

    A fully three dimensional Particle in Cell model of the plasma fiber had been developed. The code is written in FORTRAN 95, implementation CVF (Compaq Visual Fortran) under Microsoft Visual Studio user interface. Five particle solvers and two field solvers are included in the model. The solvers have relativistic and non-relativistic variants. The model can deal both with periodical and non-periodical boundary conditions. The mechanism of the surface turbulences generation in the plasma fiber was successfully simulated with the PIC program package.

  9. Time-domain simulation of nonlinear radiofrequency phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Thomas G.; Austin, Travis M.; Smithe, David N.

    Nonlinear effects associated with the physics of radiofrequency wave propagation through a plasma are investigated numerically in the time domain, using both fluid and particle-in-cell (PIC) methods. We find favorable comparisons between parametric decay instability scenarios observed on the Alcator C-MOD experiment [J. C. Rost, M. Porkolab, and R. L. Boivin, Phys. Plasmas 9, 1262 (2002)] and PIC models. The capability of fluid models to capture important nonlinear effects characteristic of wave-plasma interaction (frequency doubling, cyclotron resonant absorption) is also demonstrated.

  10. Time-domain simulation of nonlinear radiofrequency phenomena

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Austin, Travis M.; Smithe, David N.; Loverich, John; Hakim, Ammar H.

    2013-01-01

    Nonlinear effects associated with the physics of radiofrequency wave propagation through a plasma are investigated numerically in the time domain, using both fluid and particle-in-cell (PIC) methods. We find favorable comparisons between parametric decay instability scenarios observed on the Alcator C-MOD experiment [J. C. Rost, M. Porkolab, and R. L. Boivin, Phys. Plasmas 9, 1262 (2002)] and PIC models. The capability of fluid models to capture important nonlinear effects characteristic of wave-plasma interaction (frequency doubling, cyclotron resonant absorption) is also demonstrated.

  11. Antimicrobial activities, DNA interactions, spectroscopic (FT-IR and UV-Vis) characterizations, and DFT calculations for pyridine-2-carboxylic acid and its derivates

    NASA Astrophysics Data System (ADS)

    Tamer, Ömer; Tamer, Sevil Arabacı; İdil, Önder; Avcı, Davut; Vural, Hatice; Atalay, Yusuf

    2018-01-01

    In this paper, pyridine- 2- carboxylic acid, also known as picolinic acid (pic), and its two derivate, 4- methoxy-pyridine- 2- carboxylic acid (4-Mpic) and 4- chloro-pyridine- 2- carboxylic acid (4-Clpic) have been characterized by FT-IR and UV-Vis spectroscopy techniques as well as DFT calculations. B3LYP level of Density Functional Theory (DFT) method was used to obtain ground state geometries, vibration wavenumbers, first order hyperpolarizabilities and molecular electrostatic potential (MEP) surfaces for pic, 4Clpic and 4Mpic. The electronic absorption wavelengths and HOMO-LUMO energies were investigated by time dependent B3LYP (TD-B3LYP) level with the conductor-like polarizable continuum model (CPCM). The effects of Cl atom and OCH3 group on HOMO-LUMO energy gaps and first order hyperpolarizability parameters of pic, 4Clpic and 4Mpic molecules were examined. All molecules were screened for their antibacterial activities against Gram-positive and Gram-negative bacteria and for their antifungal activities against yeast strains by using minimal inhibitory concentration method (MIC). All compounds (pic, 4Mpic and 4Clpic) have been found to be very active against to the Gram (+) and Gram (-) bacteria. The DNA interactions of pic, 4Clpic and 4Mpic were analyzed by molecular docking simulations, and the interaction of the 4Mpic molecule with DNA is found to be higher than 4Clpic and pic.

  12. Issues and opportunities: beam simulations for heavy ion fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A

    1999-07-15

    UCRL- JC- 134975 PREPRINT code offering 3- D, axisymmetric, and ''transverse slice'' (steady flow) geometries, with a hierarchy of models for the ''lattice'' of focusing, bending, and accelerating elements. Interactive and script- driven code steering is afforded through an interpreter interface. The code runs with good parallel scaling on the T3E. Detailed simulations of machine segments and of complete small experiments, as well as simplified full- system runs, have been carried out, partially benchmarking the code. A magnetoinductive model, with module impedance and multi- beam effects, is under study. experiments, including an injector scalable to multi- beam arrays, a high-more » current beam transport and acceleration experiment, and a scaled final- focusing experiment. These ''phase I'' projects are laying the groundwork for the next major step in HIF development, the Integrated Research Experiment (IRE). Simulations aimed directly at the IRE must enable us to: design a facility with maximum power on target at minimal cost; set requirements for hardware tolerances, beam steering, etc.; and evaluate proposed chamber propagation modes. Finally, simulations must enable us to study all issues which arise in the context of a fusion driver, and must facilitate the assessment of driver options. In all of this, maximum advantage must be taken of emerging terascale computer architectures, requiring an aggressive code development effort. An organizing principle should be pursuit of the goal of integrated and detailed source- to- target simulation. methods for analysis of the beam dynamics in the various machine concepts, using moment- based methods for purposes of design, waveform synthesis, steering algorithm synthesis, etc. Three classes of discrete- particle models should be coupled: (1) electrostatic/ magnetoinductive PIC simulations should track the beams from the source through the final- focusing optics, passing details of the time- dependent distribution function to (2) electromagnetic or magnetoinductive PIC or hybrid PIG/ fluid simulations in the fusion chamber (which would finally pass their particle trajectory information to the radiation- hydrodynamics codes used for target design); in parallel, (3) detailed PIC, delta- f, core/ test- particle, and perhaps continuum Vlasov codes should be used to study individual sections of the driver and chamber very carefully; consistency may be assured by linking data from the PIC sequence, and knowledge gained may feed back into that sequence.« less

  13. Mode control in a high gain relativistic klystron amplifier with 3 GW output power

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Xie, Hong-Quan; Xu, Zhou

    2014-01-01

    Higher mode excitation is very serious in the relativistic klystron amplifier, especially for the high gain relativistic amplifier working at tens of kilo-amperes. The mechanism of higher mode excitation is explored in the PIC simulation and it is shown that insufficient separation of adjacent cavities is the main cause of higher mode excitation. So RF lossy material mounted on the drift tube wall is adopted to suppress higher mode excitation. A high gain S-band relativistic klystron amplifier is designed for the beam current of 13 kA and the voltage of 1 MV. PIC simulation shows that the output power is 3.2 GW when the input power is only 2.8 kW.

  14. Combining electromagnetic gyro-kinetic particle-in-cell simulations with collisions

    NASA Astrophysics Data System (ADS)

    Slaby, Christoph; Kleiber, Ralf; Könies, Axel

    2017-09-01

    It has been an open question whether for electromagnetic gyro-kinetic particle-in-cell (PIC) simulations pitch-angle collisions and the recently introduced pullback transformation scheme (Mishchenko et al., 2014; Kleiber et al., 2016) are consistent. This question is positively answered by comparing the PIC code EUTERPE with an approach based on an expansion of the perturbed distribution function in eigenfunctions of the pitch-angle collision operator (Legendre polynomials) to solve the electromagnetic drift-kinetic equation with collisions in slab geometry. It is shown how both approaches yield the same results for the frequency and damping rate of a kinetic Alfvén wave and how the perturbed distribution function is substantially changed by the presence of pitch-angle collisions.

  15. Electron scale magnetic reconnection in the turbulent magnetosheath: Kinetic PIC simulation study

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Shay, M. A.; Drake, J. F.; Phan, T.; Haggerty, C. C.; TenBarge, J. M.; Cassak, P.; Swisdak, M.

    2017-12-01

    Recent MMS observations have revealed electron scale reconnection in the turbulent magnetosheath. Surprisingly, although one of the reconnection events is associated with a very strong guide field, the ions show no coupling to the reconnection dynamics. We first review the MMS observations. Then, using kinetic PIC simulations with similar plasma conditions, we study reconnection at electron scales and show that the reconnection exhibits whistler-like dynamics similar to the case of anti-parallel reconnection rather than the kinetic Alfven wave dynamics that is often associated with reconnection with a strong guide field. We study the factors controlling this behavior and discuss the implications for reconnection and turbulence at electron scales in both the magnetosheath and solar wind.

  16. Feasibility study for using an extended three-wave model to simulate plasma-based backward Raman amplification in one spatial dimension

    NASA Astrophysics Data System (ADS)

    Wang, T.-L.; Michta, D.; Lindberg, R. R.; Charman, A. E.; Martins, S. F.; Wurtele, J. S.

    2009-12-01

    Results are reported of a one-dimensional simulation study comparing the modeling capability of a recently formulated extended three-wave model [R. R. Lindberg, A. E. Charman, and J. S. Wurtele, Phys. Plasmas 14, 122103 (2007); Phys. Plasmas 15, 055911 (2008)] to that of a particle-in-cell (PIC) code, as well as to a more conventional three-wave model, in the context of the plasma-based backward Raman amplification (PBRA) [G. Shvets, N. J. Fisch, A. Pukhov et al., Phys. Rev. Lett. 81, 4879 (1998); V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999); Phys. Rev. Lett. 84, 1208 (2000)]. The extended three-wave model performs essentially as well as or better than a conventional three-wave description in all temperature regimes tested, and significantly better at the higher temperatures studied, while the computational savings afforded by the extended three-wave model make it a potentially attractive tool that can be used prior to or in conjunction with PIC simulations to model the kinetic effects of PBRA for nonrelativistic laser pulses interacting with underdense thermal plasmas. Very fast but reasonably accurate at moderate plasma temperatures, this model may be used to perform wide-ranging parameter scans or other exploratory analyses quickly and efficiently, in order to guide subsequent simulation via more accurate if intensive PIC techniques or other algorithms approximating the full Vlasov-Maxwell equations.

  17. Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape

    NASA Astrophysics Data System (ADS)

    Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.

    2014-10-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  18. Magnetosphere Modeling: From Cartoons to Simulations

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.

    2017-12-01

    Over the last half a century physics-based global computer simulations became a bridge between experiment and basic theory and now it represents the "third pillar" of geospace research. Today, many of our scientific publications utilize large-scale simulations to interpret observations, test new ideas, plan campaigns, or design new instruments. Realistic simulations of the complex Sun-Earth system have been made possible by the dramatically increased power of both computing hardware and numerical algorithms. Early magnetosphere models were based on simple E&M concepts (like the Chapman-Ferraro cavity) and hydrodynamic analogies (bow shock). At the beginning of the space age current system models were developed culminating in the sophisticated Tsyganenko-type description of the magnetic configuration. The first 3D MHD simulations of the magnetosphere were published in the early 1980s. A decade later there were several competing global models that were able to reproduce many fundamental properties of the magnetosphere. The leading models included the impact of the ionosphere by using a height-integrated electric potential description. Dynamic coupling of global and regional models started in the early 2000s by integrating a ring current and a global magnetosphere model. It has been recognized for quite some time that plasma kinetic effects play an important role. Presently, global hybrid simulations of the dynamic magnetosphere are expected to be possible on exascale supercomputers, while fully kinetic simulations with realistic mass ratios are still decades away. In the 2010s several groups started to experiment with PIC simulations embedded in large-scale 3D MHD models. Presently this integrated MHD-PIC approach is at the forefront of magnetosphere simulations and this technique is expected to lead to some important advances in our understanding of magnetosheric physics. This talk will review the evolution of magnetosphere modeling from cartoons to current systems, to global MHD to MHD-PIC and discuss the role of state-of-the-art models in forecasting space weather.

  19. Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package

    NASA Astrophysics Data System (ADS)

    Blandón, J. S.; Grisales, J. P.; Riascos, H.

    2017-06-01

    Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed.

  20. Double-ring structure formation of intense ion beams with finite radius in a pre-formed plasma

    NASA Astrophysics Data System (ADS)

    Hu, Zhang-Hu; Wang, Xiao-Juan; Zhao, Yong-Tao; Wang, You-Nian

    2017-12-01

    The dynamic structure evolution of intense ion beams with a large edge density gradient is investigated in detail with an analytical model and two-dimensional particle-in-cell (PIC) simulations, with special attention paid to the influence of beam radius. At the initial stage of beam-plasma interactions, the ring structure is formed due to the transverse focusing magnetic field induced by the unneutralized beam current in the beam edge region. As the beam-plasma system evolves self-consistently, a second ring structure appears in the case of ion beams with a radius much larger than the plasma skin depth, due to the polarity change in the transverse magnetic field in the central regions compared with the outer, focusing field. Influences of the current-filamentation and two-stream instability on the ring structure can be clearly observed in PIC simulations by constructing two different simulation planes.

  1. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    NASA Astrophysics Data System (ADS)

    Beck, A.; Frederiksen, J. T.; Dérouillat, J.

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  2. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases

    NASA Astrophysics Data System (ADS)

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  3. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases.

    PubMed

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  4. Scaled-down particle-in-cell simulation of cathode plasma expansion in magnetically insulated coaxial diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Danni; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang

    2016-03-15

    The expansion of cathode plasma in magnetically insulated coaxial diode (MICD) is investigated in theory and particle-in-cell (PIC) simulation. The temperature and density of the cathode plasma are about several eV and 10{sup 13}–10{sup 16 }cm{sup −3}, respectively, and its expansion velocity is of the level of few cm/μs. Through hydrodynamic theory analysis, expressions of expansion velocities in axial and radial directions are obtained. The characteristics of cathode plasma expansion have been simulated through scaled-down PIC models. Simulation results indicate that the expansion velocity is dominated by the ratio of plasma density other than the static electric field. The electric fieldmore » counteracts the plasma expansion reverse of it. The axial guiding magnetic field only reduces the radial transport coefficients by a correction factor, but not the axial ones. Both the outward and inward radial expansions of a MICD are suppressed by the much stronger guiding magnetic field and even cease.« less

  5. Study of discrete-particle effects in a one-dimensional plasma simulation with the Krook type collision model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Po-Yen; Chen, Liu; Institute for Fusion Theory and Simulation, Zhejiang University, 310027 Hangzhou

    2015-09-15

    The thermal relaxation time of a one-dimensional plasma has been demonstrated to scale with N{sub D}{sup 2} due to discrete particle effects by collisionless particle-in-cell (PIC) simulations, where N{sub D} is the particle number in a Debye length. The N{sub D}{sup 2} scaling is consistent with the theoretical analysis based on the Balescu-Lenard-Landau kinetic equation. However, it was found that the thermal relaxation time is anomalously shortened to scale with N{sub D} while externally introducing the Krook type collision model in the one-dimensional electrostatic PIC simulation. In order to understand the discrete particle effects enhanced by the Krook type collisionmore » model, the superposition principle of dressed test particles was applied to derive the modified Balescu-Lenard-Landau kinetic equation. The theoretical results are shown to be in good agreement with the simulation results when the collisional effects dominate the plasma system.« less

  6. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  7. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioka, S.; Goto, I.; Hatayama, A.

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep intomore » the source plasma region when the effective confinement time is short.« less

  8. The Interaction of Intense Laser Pulses with Preformed Plasmas for Fast Ignitor Studies

    NASA Astrophysics Data System (ADS)

    MacKinnon, A. J.

    1998-11-01

    The understanding of the interaction of intense picosecond laser pulses with preformed plasmas is essential for the fast ignitor concept. One of the major issues for this scheme concerns the propagation of ultra intense laser pulses through near critical density plasmas. Measurements of self-channelling of picosecond pulses due to relativistic and ponderomotive expulsion effects have recently been obtained in preformed plasmas at laser irradiances between 5-9x10^18 Wcm-2 footnote M. Borghesi et al, Phys. Rev Lett 78, 879 (1997).. The channel expansion after the laser pulse has been measured and an expansion velocity up to 1x10^9cms-1. was observed, implying ion energies around 1MeV. In addition, it was observed via Faraday rotation of an optical probe that the self focused channel is surrounded by a multi-megagauss magnetic field as predicted by 3D PIC simulations footnote A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev Lett 76, 3975 (1996); M. Borghesi et al, Phys. Rev. Lett. 80, 5137 (1998).. The existence of this magnetic field is important for magnetic self-channelling of the relativistic electrons to high plasma densities. Good agreement was observed between the measurements and the 3D PIC simulations. The experimental results and PIC simulations will be presented and their relevance to the fast ignitor concept will be discussed.

  9. Contribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study

    PubMed Central

    ElBasiouny, Sherif M.; Rymer, W. Zev; Heckman, C. J.

    2012-01-01

    Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of PICs by excitatory synaptic inputs; these features include rate saturation and de-recruitment at a lower level of net excitation than that required for recruitment. However, PIC activation is also influenced by the pattern and spatial distribution of inhibitory inputs that are activated concurrently with excitatory inputs. To estimate the potential contributions of PIC activation and synaptic input patterns to motor unit discharge patterns, we examined the responses of a set of cable motoneuron models to different patterns of excitatory and inhibitory inputs. The models were first tuned to approximate the current- and voltage-clamp responses of low- and medium-threshold spinal motoneurons studied in decerebrate cats and then driven with different patterns of excitatory and inhibitory inputs. The responses of the models to excitatory inputs reproduced a number of features of human motor unit discharge. However, the pattern of rate modulation was strongly influenced by the temporal and spatial pattern of concurrent inhibitory inputs. Thus, even though PIC activation is likely to exert a strong influence on firing rate modulation, PIC activation in combination with different patterns of excitatory and inhibitory synaptic inputs can produce a wide variety of motor unit discharge patterns. PMID:22031773

  10. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Ebert, Ute

    2016-08-01

    We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.

  11. Exact charge and energy conservation in implicit PIC with mapped computational meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guangye; Barnes, D. C.

    This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov Poisson formulation), ours is based on a nonlinearly converged Vlasov Amp re (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant Friedrichs Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicitmore » time steps (unlike the earlier energy-conserving explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.« less

  12. Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence

    NASA Astrophysics Data System (ADS)

    Haggerty, C. C.; Parashar, T. N.; Matthaeus, W. H.; Shay, M. A.; Yang, Y.; Wan, M.; Wu, P.; Servidio, S.

    2017-10-01

    Magnetic reconnection is a ubiquitous phenomenon in turbulent plasmas. It is an important part of the turbulent dynamics and heating of space and astrophysical plasmas. We examine the statistics of magnetic reconnection using a quantitative local analysis of the magnetic vector potential, previously used in magnetohydrodynamics simulations, and now employed to fully kinetic particle-in-cell (PIC) simulations. Different ways of reducing the particle noise for analysis purposes, including multiple smoothing techniques, are explored. We find that a Fourier filter applied at the Debye scale is an optimal choice for analyzing PIC data. Finally, we find a broader distribution of normalized reconnection rates compared to the MHD limit with rates as large as 0.5 but with an average of approximately 0.1.

  13. Simulation of multipactor on the rectangular grooved dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Libing; Wang, Jianguo, E-mail: wanguiuc@mail.xjtu.edu.cn; Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024

    2015-11-15

    Multipactor discharge on the rectangular grooved dielectric surface is simulated self-consistently by using a two-and-a-half dimensional (2.5 D) electrostatic particle-in-cell (PIC) code. Compared with the electromagnetic PIC code, the former can give much more accurate solution for the space charge field caused by the multipactor electrons and the deposited surface charge. According to the rectangular groove width and height, the multipactor can be divided into four models, the spatial distributions of the multipactor electrons and the space charge fields are presented for these models. It shows that the rectangular groove in different models gives very different suppression effect on themore » multipactor, effective and efficient suppression on the multipactor can only be reached with a proper groove size.« less

  14. Efficient modeling of laser-plasma accelerator staging experiments using INF&RNO

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2017-03-01

    The computational framework INF&RNO (INtegrated Fluid & paRticle simulatioN cOde) allows for fast and accurate modeling, in 2D cylindrical geometry, of several aspects of laser-plasma accelerator physics. In this paper, we present some of the new features of the code, including the quasistatic Particle-In-Cell (PIC)/fluid modality, and describe using different computational grids and time steps for the laser envelope and the plasma wake. These and other features allow for a speedup of several orders of magnitude compared to standard full 3D PIC simulations while still retaining physical fidelity. INF&RNO is used to support the experimental activity at the BELLA Center, and we will present an example of the application of the code to the laser-plasma accelerator staging experiment.

  15. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  16. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, A., E-mail: link6@llnl.gov; Halvorson, C., E-mail: link6@llnl.gov; Schmidt, A.

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off throughmore » the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.« less

  17. Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors.

    PubMed

    Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔG bind and experimental pIC 50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC 50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC 50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.

  18. Variability of western Amazon dry-season precipitation extremes: importance of decadal fluctuations and implications for predictability

    NASA Astrophysics Data System (ADS)

    Fernandes, K.; Baethgen, W.; Verchot, L. V.; Giannini, A.; Pinedo-Vasquez, M.

    2014-12-01

    A complete assessment of climate change projections requires understanding the combined effects of decadal variability and long-term trends and evaluating the ability of models to simulate them. The western Amazon severe droughts of the 2000s were the result of a modest drying trend enhanced by reduced moisture transport from the tropical Atlantic. Most of the WA dry-season precipitation decadal variability is attributable to decadal fluctuations of the north-south gradient (NSG) in Atlantic sea surface temperature (SST). The observed WA and NSG decadal co-variability is well reproduced in Global Climate Models (GCMs) pre-industrial control (PIC) and historical (HIST) experiments that were part of the Intergovernmental Panel on Climate Change fifth assessment report (IPCC-AR5). This suggests that unforced or natural climate variability, characteristic of the PIC simulations, determines the nature of this coupling, as the results from HIST simulations (forced with greenhouse gases (GHG) and natural and anthropogenic aerosols) are comparable in magnitude and spatial distribution. Decadal fluctuation in the NSG also determines shifts in the probability of repeated droughts and pluvials in WA, as there is a 65% chance of 3 or more years of droughts per decade when NSG>0 compared to 18% when NSG<0. The HIST and PIC model simulations also reproduce the observed shifts in probability distribution of droughts and pluvials as a function of the NSG decadal phase, suggesting there is great potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase may lead to continuing above normal frequencies of western Amazon dry-season droughts.

  19. Experimental verification of layout physical verification of silicon photonics

    NASA Astrophysics Data System (ADS)

    El Shamy, Raghi S.; Swillam, Mohamed A.

    2018-02-01

    Silicon photonics have been approved as one of the best platforms for dense integration of photonic integrated circuits (PICs) due to the high refractive index contrast among its materials. Silicon on insulator (SOI) is a widespread photonics technology, which support a variety of devices for lots of applications. As the photonics market is growing, the number of components in the PICs increases which increase the need for an automated physical verification (PV) process. This PV process will assure reliable fabrication of the PICs as it will check both the manufacturability and the reliability of the circuit. However, PV process is challenging in the case of PICs as it requires running an exhaustive electromagnetic (EM) simulations. Our group have recently proposed an empirical closed form models for the directional coupler and the waveguide bends based on the SOI technology. The models have shown a very good agreement with both finite element method (FEM) and finite difference time domain (FDTD) solvers. These models save the huge time of the 3D EM simulations and can be easily included in any electronic design automation (EDA) flow as the equations parameters can be easily extracted from the layout. In this paper we present experimental verification for our previously proposed models. SOI directional couplers with different dimensions have been fabricated using electron beam lithography and measured. The results from the measurements of the fabricate devices have been compared to the derived models and show a very good agreement. Also the matching can reach 100% by calibrating certain parameter in the model.

  20. A New Kinetic Simulation Model with Self-Consistent Calculation of Regolith Layer Charging for Moon-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Han, D.; Wang, J.

    2015-12-01

    The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.

  1. Effects of the reconnection electric field on crescent electron distribution functions in asymmetric guide field reconnection

    NASA Astrophysics Data System (ADS)

    Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.

    2017-12-01

    In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the velocity space. We compare theory and PIC simulation results of the velocity shift of crescent distribution functions based on the derived time period of bounce motion in a guide field. Theoretical predictions are applied to electron distributions observed by MMS in magnetopause reconnection to estimate the reconnection electric field.

  2. MITHRA 1.0: A full-wave simulation tool for free electron lasers

    NASA Astrophysics Data System (ADS)

    Fallahi, Arya; Yahaghi, Alireza; Kärtner, Franz X.

    2018-07-01

    Free Electron Lasers (FELs) are a solution for providing intense, coherent and bright radiation in the hard X-ray regime. Due to the low wall-plug efficiency of FEL facilities, it is crucial and additionally very useful to develop complete and accurate simulation tools for better optimizing a FEL interaction. The highly sophisticated dynamics involved in a FEL process was the main obstacle hindering the development of general simulation tools for this problem. We present a numerical algorithm based on finite difference time domain/Particle in cell (FDTD/PIC) in a Lorentz boosted coordinate system which is able to fulfill a full-wave simulation of a FEL process. The developed software offers a suitable tool for the analysis of FEL interactions without considering any of the usual approximations. A coordinate transformation to bunch rest frame makes the very different length scales of bunch size, optical wavelengths and the undulator period transform to values with the same order. Consequently, FDTD/PIC simulations in conjunction with efficient parallelization techniques make the full-wave simulation feasible using the available computational resources. Several examples of free electron lasers are analyzed using the developed software, the results are benchmarked based on standard FEL codes and discussed in detail.

  3. Temperature micro-mapping and redox conditions of a chlorite zoning pattern in green-schist facies fault zone

    NASA Astrophysics Data System (ADS)

    Trincal, Vincent; Lanari, Pierre; Lacroix, Brice; Buatier, Martine D.; Charpentier, Delphine; Labaume, Pierre; Muñoz, Manuel

    2014-05-01

    Faults are major discontinuities driving fluid flows and playing a major role in precipitation of ore deposits. Mineral paragenesis and crystal chemistry depend on Temperature (T) condition, fluid composition but also on the redox environment of precipitation. The studied samples come from the Pic de Port Vieux thrust sheet, a minor thrust sheet associated to Gavarnie thrust fault zone (Central Pyrenees). The Pic de Port Vieux Thrust sheet comprises a 1-20 meter thick layer of Triassic red beds and mylonitized Cretaceous limestone. The thrust sheet is affected by faults and cleavage; the other important deformation product is a set of veins filled by quartz and chlorite. Microstructural and mineralogical investigations were performed based on the previous work of Grant (1992). The crystallization of chlorite is syn-tectonic and strongly controlled by the fluid circulation during the Gavarnie thrust sheet emplacement. Chlorite precipitated in extension veins, crack-seal shear veins or in open cavities. The chlorite filling the open cavities occurs as pseudo-uniaxial plates arranged in rosette-shaped aggregates. These aggregates appear to have developed as a result of radial growth of the chlorite platelets. According to point and microprobe X-ray images, these chlorites display oscillatory chemical zoning patterns with alternating iron rich and magnesium rich bands. The chlorite composition ranges from Fe rich pole (Si2.62Al1.38O10(Al1.47Fe1.87Mg2.61)6(OH)8) to Mg rich pole (Si2.68Al1.31O10(Al1.45Fe1.41Mg3.06)6(OH)8). In metamorphic rocks, zoning pattern or rimmed minerals results for varying P or T conditions and can be used to unravel the P-T history of the sample. In the present study, temperature maps are derived from standardized microprobe X-ray images using the program XMapTools (Lanari et al 2014). The (Fe3+/Fetot) value in chlorite was directly measured using μXANES spot analyses collected at the Fe-K edge. The results indicate a homogeneous temperature of 300-350° C throughout the crystallization. This result excludes the T as the main parameter to explain the Fe and Mg zoning patterns. Several other origins can be proposed and discussed in order to understand zoning patterns such as fluid chemistry, pressure, pH or redox variations of the fluid. Grant, N.T., 1992. Post-emplacement extension within a thrust sheet from the central Pyrenees. Journal of the Geological Society 149, 775-792. Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E.G., Schwartz, S., 2014. XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Computers & Geosciences 62, 227-240.

  4. A multi-dimensional nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell (PIC) algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacón, Luis; CoCoMans Team

    2014-10-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.

  5. Anomalous photo-ionization of 4d shell in medium-Z ionized atoms

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Busquet, M.

    2013-09-01

    Photoionization (PI) cross sections (PICS) are necessary for the simulation of astrophysical and ICF plasmas. In order to be used in plasma modeling, the PICS are usually fit to simple analytical formulas. We observed an unusual spectral shape of the PICS of the 4d shell of ionized Xe and other elements, computed with different codes: a local minimum occurs around twice the threshold energy. We explain this phenomenon as interference between the bound 4d wavefunction and the free electron wavefunction, which is similar to the Cooper minima for neutral atoms. Consequently, the usual fitting formulas, which consist of a combination of inverse powers of the frequency beyond threshold, may yield rates for PI and radiative recombination (RR) that are incorrect by orders of magnitude. A new fitting algorithm is proposed and is included in the latest version of HULLAC.v9.5.

  6. Exploring Ultrahigh-Intensity Laser-Plasma Interaction Physics with QED Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Luedtke, S. V.; Yin, L.; Labun, L. A.; Albright, B. J.; Stark, D. J.; Bird, R. F.; Nystrom, W. D.; Hegelich, B. M.

    2017-10-01

    Next generation high-intensity lasers are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. Modeling laser-plasma interactions in these extreme settings presents a challenge to traditional particle-in-cell (PIC) codes, which either do not have radiation reaction or include only classical radiation reaction. We discuss a semi-classical approach to adding quantum radiation reaction and photon production to the PIC code VPIC. We explore these intensity regimes with VPIC, compare with results from the PIC code PSC, and report on ongoing work to expand the capability of VPIC in these regimes. This work was supported by the U.S. DOE, Los Alamos National Laboratory Science program, LDRD program, NNSA (DE-NA0002008), and AFOSR (FA9550-14-1-0045). HPC resources provided by TACC, XSEDE, and LANL Institutional Computing.

  7. Recent advances in the modeling of plasmas with the Particle-In-Cell methods

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Lehe, Remi; Vincenti, Henri; Godfrey, Brendan; Lee, Patrick; Haber, Irv

    2015-11-01

    The Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations of plasmas from first principles. The fundamentals of the PIC method were established decades ago but improvements or variations are continuously being proposed. We report on several recent advances in PIC related algorithms, including: (a) detailed analysis of the numerical Cherenkov instability and its remediation, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, (c) arbitrary-order finite-difference and generalized pseudo-spectral Maxwell solvers, (d) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of Perfectly Matched Layers in high-order and pseudo-spectral solvers. Work supported by US-DOE Contracts DE-AC02-05CH11231 and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.

  8. Cost-effective treatment of low-risk carcinoma not invading bladder muscle.

    PubMed

    Green, David A; Rink, Michael; Cha, Eugene K; Xylinas, Evanguelos; Chughtai, Bilal; Scherr, Douglas S; Shariat, Shahrokh F; Lee, Richard K

    2013-03-01

    Study Type - Therapy (cost effectiveness analysis) Level of Evidence 2a What's known on the subject? and What does the study add? Bladder cancer is one of the costliest malignancies to treat throughout the life of a patient. The most cost-effective management for low-risk non-muscle-invasive bladder cancer is not known. The current study shows that employing cystoscopic office fulguration for low-risk appearing bladder cancer recurrences can materially impact the cost-effectiveness of therapy. In a follow-up protocol where office fulguration is routinely employed for low-risk bladder cancers, peri-operative intravesical chemotherapy may not provide any additional cost-effectiveness benefit. To examine the cost-effectiveness of fulguration vs transurethral resection of bladder tumour (TURBT) with and without perioperative intravesical chemotherapy (PIC) for managing low-risk carcinoma not invading bladder muscle (NMIBC). Low-risk NMIBC carries a low progression rate, lending support to the use of office-based fulguration for small recurrences rather than traditional TURBT. A Markov state transition model was created to simulate treatment of NMIBC with vs without PIC, with recurrence treated by formal TURBT vs treatment with fulguration. Costing data were obtained from the Medicare Resource Based Relative Value Scale. Data regarding the success of PIC were obtained from the peer-reviewed literature, as were corresponding utilities for bladder cancer-related procedures. Sensitivity analyses were performed. At 5-year follow-up, a strategy of fulguration without PIC was the most cost-effective (mean cost-effectiveness = US $654.8/quality-adjusted life year), despite a lower recurrence rate with PIC. Both fulguration strategies dominated each TURBT strategy. Sensitivity analysis showed that fulguration without PIC dominated all other strategies when the recurrence rate after PIC was increased to ≥14.2% per year. Similarly, the cost-effectiveness of TURBT becomes more competitive with fulguration when the total cost of TURBT declines < US $1175. The present study shows that fulguration without PIC was the most cost-effective strategy for treating low-risk NMIBC. The effectiveness of PIC and the cost of TURBT can materially impact the cost-effectiveness of the different management strategies. These results should be considered in treatment decisions in the context of preserving oncological control. © 2012 BJU INTERNATIONAL.

  9. AP-Cloud: Adaptive particle-in-cloud method for optimal solutions to Vlasov–Poisson equation

    DOE PAGES

    Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin; ...

    2016-04-19

    We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Here, simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less

  10. Conductor backed and shielded multi-layer coplanar waveguide designs on LTCC for RF carrier boards for packaging PICs

    NASA Astrophysics Data System (ADS)

    Marraccini, Philip J.; Jezzini, Moises A.; Peters, Frank H.

    2016-05-01

    Designing photonic integrated circuits (PICs) with packaging in mind is important since this impacts the performance of the final product. In coherent optical communication applications there are a large number of DC and RF lines that need routed to connect the PIC to the outer packaging. These RF lines should be impedance matched to the devices, isolated from each other, low loss and protected against electromagnetic interference (EMI) over the frequency range of interest to achieve the performance required for the application. Multilevel low temperature co-fired ceramic (LTCC) boards can be used as a carrier board connecting the PIC to the packaging due to its good RF performance, machinability, compatibility with hermetic sealing, and ability to integrate drivers into the board. Flexibility with layer numbers enables additional layers for shielding against electromagnetic interference or increased space for routing electrical connections. In this paper the design, simulations, and measured results for a set of 4 phase matched transmission lines in LTCC that would be used with an IQ MZM are presented. The measured 3dB bandwidth for a set of four phase matched transmission lines for an IQ MZM was measured to be 19.8 GHz.

  11. Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimo, F., E-mail: francesco.massimo@ensta-paristech.fr; Dipartimento SBAI, Università di Roma “La Sapienza“, Via A. Scarpa 14, 00161 Roma; Atzeni, S.

    Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for themore » solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.« less

  12. AP-Cloud: Adaptive Particle-in-Cloud method for optimal solutions to Vlasov–Poisson equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xingyu; Samulyak, Roman, E-mail: roman.samulyak@stonybrook.edu; Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973

    We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less

  13. AP-Cloud: Adaptive particle-in-cloud method for optimal solutions to Vlasov–Poisson equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin

    We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Here, simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less

  14. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deca, J.; Lapenta, G.; Marchand, R.

    2013-10-15

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation resultsmore » with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.« less

  15. Effect of electron Monte Carlo collisions on a hybrid simulation of a low-pressure capacitively coupled plasma

    NASA Astrophysics Data System (ADS)

    Hwang, Seok Won; Lee, Ho-Jun; Lee, Hae June

    2014-12-01

    Fluid models have been widely used and conducted successfully in high pressure plasma simulations where the drift-diffusion and the local-field approximation are valid. However, fluid models are not able to demonstrate non-local effects related to large electron energy relaxation mean free path in low pressure plasmas. To overcome this weakness, a hybrid model coupling electron Monte Carlo collision (EMCC) method with the fluid model is introduced to obtain precise electron energy distribution functions using pseudo-particles. Steady state simulation results by a one-dimensional hybrid model which includes EMCC method for the collisional reactions but uses drift-diffusion approximation for electron transport in a fluid model are compared with those of a conventional particle-in-cell (PIC) and a fluid model for low pressure capacitively coupled plasmas. At a wide range of pressure, the hybrid model agrees well with the PIC simulation with a reduced calculation time while the fluid model shows discrepancy in the results of the plasma density and the electron temperature.

  16. Multi-dimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis

    2015-11-01

    We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).

  17. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.

    Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover,more » it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.« less

  18. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates

    DOE PAGES

    Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.; ...

    2016-11-14

    Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover,more » it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.« less

  19. Particle-In-Cell (PIC) simulation of long-anode magnetron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Rajendra Kumar, E-mail: rajendra.verma89@gmail.com; Maurya, Shivendra; Singh, Vindhyavasini Prasad

    Long Anode Magnetron (LAM) is a design scheme adopted to attain greater thermal stability and higher power levels for the conventional magnetrons. So a LAM for 5MW Power level at 2.858 GHz was ‘Virtual Prototyped’ using Admittance Matching field theory (AMT) andthen a PIC Study (Beam-wave interaction) was conducted using CST Particle Studio (CST-PS) which is explained in this paper. The convincing results thus obtained were – hot resonant frequency of 2.834 GHz. Output power of 5 MW at beam voltage of 58kV and applied magnetic field of 2200 Gauss with an overall efficiency of 45%. The simulated parameters values on comparisonmore » with the E2V LAM tube (M5028) were in good agreement which validates the feasibility of the design approach.« less

  20. Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.

    2015-12-01

    Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.

  1. Charged aerodynamics of a Low Earth Orbit cylinder

    NASA Astrophysics Data System (ADS)

    Capon, C. J.; Brown, M.; Boyce, R. R.

    2016-11-01

    This work investigates the charged aerodynamic interaction of a Low Earth Orbiting (LEO) cylinder with the ionosphere. The ratio of charge to neutral drag force on a 2D LEO cylinder with diffusely reflecting cool walls is derived analytically and compared against self-consistent electrostatic Particle-in-Cell (PIC) simulations. Analytical calculations predict that neglecting charged drag in an O+ dominated LEO plasma with a neutral to ion number density ratio of 102 will cause a 10% over-prediction of O density based on body accelerations when body potential (ɸB) is ≤ -390 V. Above 900 km altitude in LEO, where H+ becomes the dominant ion species, analytical predictions suggest charge drag becomes equivalent to neutral drag for ɸB ≤ -0.75 V. Comparing analytical predictions against PIC simulations in the range of 0 < - ɸB < 50 V found that analytical charged drag was under-estimated for all body potentials; the degree of under-estimation increasing with ɸB. Based on the -50 V PIC simulations, our in-house 6 degree of freedom orbital propagator saw a reduction in the semi-major axis of a 10 kg satellite at 700 km of 6.9 m/day and 0.98 m/day at 900 km compared that caused purely by neutral drag - 0.67 m/day and 0.056 m/day respectively. Hence, this work provides initial evidence that charged aerodynamics may become significant compared to neutral aerodynamics for high voltage LEO bodies.

  2. Particle-in-cell and global simulations of α to γ transition in atmospheric pressure Penning-dominated capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Chabert, P.; Lazzaroni, C.

    2014-06-01

    Atmospheric pressure radio-frequency (rf) capacitive micro-discharges are of interest due to emerging applications, especially in the bio-medical field. A previous global model did not consider high-power phenomena such as sheath multiplication, thus limiting its applicability to the lower power range. To overcome this, we use one-dimensional particle-in-cell (PIC) simulations of atmospheric He/0.1% N2 capacitive discharges over a wide range of currents and frequencies to guide the development of a more general global model which is also valid at higher powers. The new model includes sheath multiplication and two classes of electrons: the higher temperature ‘hot’ electrons associated with the sheaths, and the cooler ‘warm’ electrons associated with the bulk. The electric field and the electron power balance are solved analytically to determine the time-varying hot and warm temperatures and the effective rate coefficients. The particle balance equations are integrated numerically to determine the species densities. The model and PIC results are compared, showing reasonable agreement over the range of currents and frequencies studied. They indicate a transition from an α mode at low power characterized by relatively high electron temperature Te with a near uniform profile to a γ mode at high power with a Te profile strongly depressed in the bulk plasma. The transition is accompanied by an increase in density and a decrease in sheath widths. The current and frequency scalings of the model are confirmed by the PIC simulations.

  3. On specular reflectivity measurements in high and low-contrast relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Link, A.; Ping, Y.; McLean, H. S.; Patel, P. K.; Freeman, R. R.; Schumacher, D. W.; Tiedje, H. F.; Tsui, Y. Y.; Ramis, R.; Fedosejevs, R.

    2015-01-01

    Using both experiment and 2D3V particle-in-cell (PIC) simulations, we describe the use of specular reflectivity measurements to study relativistic (Iλ2 > 1018 W/cm2ṡμm2) laser-plasma interactions for both high and low-contrast 527 nm laser pulses on initially solid density aluminum targets. In the context of hot-electron generation, studies typically rely on diagnostics which, more-often-than-not, represent indirect processes driven by fast electrons transiting through solid density materials. Specular reflectivity measurements, however, can provide a direct measure of the interaction that is highly sensitive to how the EM fields and plasma profiles, critical input parameters for modeling of hot-electron generation, evolve near the interaction region. While the fields of interest occur near the relativistic critical electron density, experimental reflectivity measurements are obtained centimeters away from the interaction region, well after diffraction has fully manifested itself. Using a combination of PIC simulations with experimentally inspired conditions and an analytic, non-paraxial, pulse propagation algorithm, we calculate reflected pulse properties, both near and far from the interaction region, and compare with specular reflectivity measurements. The experiment results and PIC simulations demonstrate that specular reflectivity measurements are an extremely sensitive qualitative, and partially quantitative, indicator of initial laser/target conditions, ionization effects, and other details of intense laser-matter interactions. The techniques described can provide strong constraints on many systems of importance in ultra-intense laser interactions with matter.

  4. Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability.

    PubMed

    Lu, Zeqin; Jhoja, Jaspreet; Klein, Jackson; Wang, Xu; Liu, Amy; Flueckiger, Jonas; Pond, James; Chrostowski, Lukas

    2017-05-01

    This work develops an enhanced Monte Carlo (MC) simulation methodology to predict the impacts of layout-dependent correlated manufacturing variations on the performance of photonics integrated circuits (PICs). First, to enable such performance prediction, we demonstrate a simple method with sub-nanometer accuracy to characterize photonics manufacturing variations, where the width and height for a fabricated waveguide can be extracted from the spectral response of a racetrack resonator. By measuring the spectral responses for a large number of identical resonators spread over a wafer, statistical results for the variations of waveguide width and height can be obtained. Second, we develop models for the layout-dependent enhanced MC simulation. Our models use netlist extraction to transfer physical layouts into circuit simulators. Spatially correlated physical variations across the PICs are simulated on a discrete grid and are mapped to each circuit component, so that the performance for each component can be updated according to its obtained variations, and therefore, circuit simulations take the correlated variations between components into account. The simulation flow and theoretical models for our layout-dependent enhanced MC simulation are detailed in this paper. As examples, several ring-resonator filter circuits are studied using the developed enhanced MC simulation, and statistical results from the simulations can predict both common-mode and differential-mode variations of the circuit performance.

  5. Theory of the electron sheath and presheath

    DOE PAGES

    Scheiner, Brett; Baalrud, Scott D.; Yee, Benjamin T.; ...

    2015-12-30

    Here, electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the electron velocity distribution function (EVDF). This work provides a dedicated theory of electron sheaths, which suggests that they are not so simple. Motivated by EVDFs observed in particle-in-cell(PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the model, under low temperaturemore » plasma conditions (T e >> T i), an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. It is found that in many situations, under common plasma conditions, the electron presheath extends much further into the plasma than an analogous ion presheath. PIC simulations reveal that the ion density in the electron presheath is determined by a flow around the electron sheath and that this flow is due to 2D aspects of the sheath geometry. Simulations also indicate the presence of ion acoustic instabilities excited by the differential flow between electrons and ions in the presheath, which result in sheath edge fluctuations. The 1D model and time averaged PIC simulations are compared and it is shown that the model provides a good description of the electron sheath and presheath.« less

  6. Phase locked multiple rings in the radiation pressure ion acceleration process

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Hua, J. F.; Pai, C.-H.; Li, F.; Wu, Y. P.; Lu, W.; Zhang, C. J.; Xu, X. L.; Joshi, C.; Mori, W. B.

    2018-04-01

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. the interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. A theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.

  7. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE PAGES

    Wan, Y.; Hua, J. F.; Pai, C. -H.; ...

    2018-03-05

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  8. Electromagnetic Particle-In-Cell simulation on the impedance of a dipole antenna surrounded by an ion sheath

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Kojima, H.; Omura, Y.; Matsumoto, H.

    2008-06-01

    We have newly developed a numerical tool for the analysis of antenna impedance in plasma environment by making use of electromagnetic Particle-In-Cell (PIC) plasma simulations. To validate the developed tool, we first examined the antenna impedance in a homogeneous kinetic plasma and confirmed that the obtained results basically agree with the conventional theories. We next applied the tool to examine an ion-sheathed dipole antenna. The results confirmed that the inclusion of the ion-sheath effects reduces the capacitance below the electron plasma frequency. The results also revealed that the signature of impedance resonance observed at the plasma frequency is modified by the presence of the sheath. Since the sheath dynamics can be solved by the PIC scheme throughout the antenna analysis in a self-consistent manner, the developed tool has feasibility to perform more practical and complicated antenna analyses that will be necessary in real space missions.

  9. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Y.; Hua, J. F.; Pai, C. -H.

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  10. Sparse grid techniques for particle-in-cell schemes

    NASA Astrophysics Data System (ADS)

    Ricketson, L. F.; Cerfon, A. J.

    2017-02-01

    We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.

  11. Particle-in-cell simulations with charge-conserving current deposition on graphic processing units

    NASA Astrophysics Data System (ADS)

    Ren, Chuang; Kong, Xianglong; Huang, Michael; Decyk, Viktor; Mori, Warren

    2011-10-01

    Recently using CUDA, we have developed an electromagnetic Particle-in-Cell (PIC) code with charge-conserving current deposition for Nvidia graphic processing units (GPU's) (Kong et al., Journal of Computational Physics 230, 1676 (2011). On a Tesla M2050 (Fermi) card, the GPU PIC code can achieve a one-particle-step process time of 1.2 - 3.2 ns in 2D and 2.3 - 7.2 ns in 3D, depending on plasma temperatures. In this talk we will discuss novel algorithms for GPU-PIC including charge-conserving current deposition scheme with few branching and parallel particle sorting. These algorithms have made efficient use of the GPU shared memory. We will also discuss how to replace the computation kernels of existing parallel CPU codes while keeping their parallel structures. This work was supported by U.S. Department of Energy under Grant Nos. DE-FG02-06ER54879 and DE-FC02-04ER54789 and by NSF under Grant Nos. PHY-0903797 and CCF-0747324.

  12. GPU acceleration of particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Cowan, Benjamin; Cary, John; Meiser, Dominic

    2015-11-01

    Graphics processing units (GPUs) have become key components in many supercomputing systems, as they can provide more computations relative to their cost and power consumption than conventional processors. However, to take full advantage of this capability, they require a strict programming model which involves single-instruction multiple-data execution as well as significant constraints on memory accesses. To bring the full power of GPUs to bear on plasma physics problems, we must adapt the computational methods to this new programming model. We have developed a GPU implementation of the particle-in-cell (PIC) method, one of the mainstays of plasma physics simulation. This framework is highly general and enables advanced PIC features such as high order particles and absorbing boundary conditions. The main elements of the PIC loop, including field interpolation and particle deposition, are designed to optimize memory access. We describe the performance of these algorithms and discuss some of the methods used. Work supported by DARPA contract W31P4Q-15-C-0061 (SBIR).

  13. Muscle length-dependent contribution of motoneuron Cav1.3 channels to force production in model slow motor unit.

    PubMed

    Kim, Hojeong

    2017-07-01

    Persistent inward current (PIC)-generating Ca v 1.3 channels in spinal motoneuron dendrites are thought to be actively recruited during normal behaviors. However, whether and how the activation of PIC channels influences force output of motor unit remains elusive. Here, building a physiologically realistic model of slow motor unit I demonstrated that force production induced by the PIC activation is much smaller for short than lengthened muscles during the regular firing of the motoneuron that transitions from the quiescent state by either a brief current pulse at the soma or a brief synaptic excitation at the dendrites. By contrast, the PIC-induced force potentiation was maximal for short muscles when the motoneuron switched from a stable low-frequency firing state to a stable high-frequency firing state by the current pulse at the soma. Under the synaptic excitation at the dendrites, however, the force could not be potentiated by the transitioning of the motoneuron from a low- to a high-frequency firing state due to the simultaneous onset of PIC at the dendrites and firing at the soma. The strong dependency of the input-output relationship of the motor unit on the neuromodulation and Ia afferent inputs for the PIC channels was further shown under static variations in muscle length. Taken together, these findings suggest that the PIC activation in the motoneuron dendrites may differentially affect the force production of the motor unit, depending not only on the firing state history of the motoneuron and the variation in muscle length but also on the mode of motor activity. NEW & NOTEWORTHY Ca v 1.3 channels in motoneuron dendrites are actively involved during normal motor activities. To investigate the effects of the activation of motoneuron Ca v 1.3 channels on force production, a model motor unit was built based on best-available data. The simulation results suggest that force potentiation induced by Ca v 1.3 channel activation is strongly modulated not only by firing history of the motoneuron but also by length variation of the muscle as well as neuromodulation inputs from the brainstem. Copyright © 2017 the American Physiological Society.

  14. Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study.

    PubMed

    Grande, Giovanbattista; Bui, Tuan V; Rose, P Ken

    2007-06-01

    In the presence of monoamines, L-type Ca(2+) channels on the dendrites of motoneurons contribute to persistent inward currents (PICs) that can amplify synaptic inputs two- to sixfold. However, the exact location of the L-type Ca(2+) channels is controversial, and the importance of the location as a means of regulating the input-output properties of motoneurons is unknown. In this study, we used a computational strategy developed previously to estimate the dendritic location of the L-type Ca(2+) channels and test the hypothesis that the location of L-type Ca(2+) channels varies as a function of motoneuron size. Compartmental models were constructed based on dendritic trees of five motoneurons that ranged in size from small to large. These models were constrained by known differences in PIC activation reported for low- and high-conductance motoneurons and the relationship between somatic PIC threshold and the presence or absence of tonic excitatory or inhibitory synaptic activity. Our simulations suggest that L-type Ca(2+) channels are concentrated in hotspots whose distance from the soma increases with the size of the dendritic tree. Moving the hotspots away from these sites (e.g., using the hotspot locations from large motoneurons on intermediate-sized motoneurons) fails to replicate the shifts in PIC threshold that occur experimentally during tonic excitatory or inhibitory synaptic activity. In models equipped with a size-dependent distribution of L-type Ca(2+) channels, the amplification of synaptic current by PICs depends on motoneuron size and the location of the synaptic input on the dendritic tree.

  15. Noiseless Vlasov-Poisson simulations with linearly transformed particles

    DOE PAGES

    Pinto, Martin C.; Sonnendrucker, Eric; Friedman, Alex; ...

    2014-06-25

    We introduce a deterministic discrete-particle simulation approach, the Linearly-Transformed Particle-In-Cell (LTPIC) method, that employs linear deformations of the particles to reduce the noise traditionally associated with particle schemes. Formally, transforming the particles is justified by local first order expansions of the characteristic flow in phase space. In practice the method amounts of using deformation matrices within the particle shape functions; these matrices are updated via local evaluations of the forward numerical flow. Because it is necessary to periodically remap the particles on a regular grid to avoid excessively deforming their shapes, the method can be seen as a development ofmore » Denavit's Forward Semi-Lagrangian (FSL) scheme (Denavit, 1972 [8]). However, it has recently been established (Campos Pinto, 2012 [20]) that the underlying Linearly-Transformed Particle scheme converges for abstract transport problems, with no need to remap the particles; deforming the particles can thus be seen as a way to significantly lower the remapping frequency needed in the FSL schemes, and hence the associated numerical diffusion. To couple the method with electrostatic field solvers, two specific charge deposition schemes are examined, and their performance compared with that of the standard deposition method. Finally, numerical 1d1v simulations involving benchmark test cases and halo formation in an initially mismatched thermal sheet beam demonstrate some advantages of our LTPIC scheme over the classical PIC and FSL methods. Lastly, benchmarked test cases also indicate that, for numerical choices involving similar computational effort, the LTPIC method is capable of accuracy comparable to or exceeding that of state-of-the-art, high-resolution Vlasov schemes.« less

  16. SPIDER: Next Generation Chip Scale Imaging Sensor

    NASA Astrophysics Data System (ADS)

    Duncan, Alan; Kendrick, Rick; Thurman, Sam; Wuchenich, Danielle; Scott, Ryan P.; Yoo, S. J. B.; Su, Tiehui; Yu, Runxiang; Ogden, Chad; Proiett, Roberto

    The LM Advanced Technology Center and UC Davis are developing an Electro-Optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that provides a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger aperture imager in a constrained volume. The SPIDER concept consists of thousands of direct detection white-light interferometers densely packed onto Photonic Integrated Circuits (PICs) to measure the amplitude and phase of the visibility function at spatial frequencies that span the full synthetic aperture. In other words, SPIDER would sample the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then digitally reconstruct an image. The conventional approach for imaging interferometers requires complex mechanical delay lines to form the interference fringes. This results in designs that are not traceable to more than a few simultaneous spatial frequency measurements. SPIDER seeks to achieve this traceability by employing micron-=scale optical waveguides and nanophotonic structures fabricated on a PIC with micron-scale packing density to form the necessary interferometers. Prior LM IRAD and DARPA/NASA CRAD-funded SPIDER risk reduction experiments, design trades, and simulations have matured the SPIDER imager concept to a TRL 3 level. Current funding under the DARPA SPIDER Zoom program is maturing the underlying PIC technology for SPIDER to the TRL 4 level. This is done by developing and fabricating a second-generation PIC that is fully traceable to the multiple layers and low-power phase modulators required for higher-dimension waveguide arrays that are needed for higher field-of-view sensors. Our project also seeks to extend the SPIDER concept to add a zoom capability that would provide simultaneous low-resolution, large field-of-view and steerable high-resolution, narrow field-of-view imaging modes. A proof of concept demo is being designed to validate this capability. Finally, data collected by this project would be used to benchmark and increase the fidelity of our SPIDER image simulations and enhance our ability to predict the performance of existing and future SPIDER sensor design variations. These designs and their associated performance characteristics could then be evaluated as candidates for future mission opportunities to identify specific transition paths. This paper provides an overview of performance data on the first-generation PIC for SPIDER developed under DARPA SeeMe program funding. We provide a design description of the SPICER Zoom imaging sensor and the second-generation PIC (high- and low-resolution versions) currently under development on the DARPA SPIDER Zoom effort. Results of performance simulations and design trades are presented. Unique low-cost payload applications for future SSA missions are also discussed.

  17. Global fully kinetic models of planetary magnetospheres with iPic3D

    NASA Astrophysics Data System (ADS)

    Gonzalez, D.; Sanna, L.; Amaya, J.; Zitz, A.; Lembege, B.; Markidis, S.; Schriver, D.; Walker, R. J.; Berchem, J.; Peng, I. B.; Travnicek, P. M.; Lapenta, G.

    2016-12-01

    We report on the latest developments of our approach to model planetary magnetospheres, mini magnetospheres and the Earth's magnetosphere with the fully kinetic, electromagnetic particle in cell code iPic3D. The code treats electrons and multiple species of ions as full kinetic particles. We review: 1) Why a fully kinetic model and in particular why kinetic electrons are needed for capturing some of the most important aspects of the physics processes of planetary magnetospheres. 2) Why the energy conserving implicit method (ECIM) in its newest implementation [1] is the right approach to reach this goal. We consider the different electron scales and study how the new IECIM can be tuned to resolve only the electron scales of interest while averaging over the unresolved scales preserving their contribution to the evolution. 3) How with modern computing planetary magnetospheres, mini magnetosphere and eventually Earth's magnetosphere can be modeled with fully kinetic electrons. The path from petascale to exascale for iPiC3D is outlined based on the DEEP-ER project [2], using dynamic allocation of different processor architectures (Xeon and Xeon Phi) and innovative I/O technologies.Specifically results from models of Mercury are presented and compared with MESSENGER observations and with previous hybrid (fluid electrons and kinetic ions) simulations. The plasma convection around the planets includes the development of hydrodynamic instabilities at the flanks, the presence of the collisionless shocks, the magnetosheath, the magnetopause, reconnection zones, the formation of the plasma sheet and the magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. Given the full kinetic nature of our approach we focus on detailed particle dynamics and distribution at locations that can be used for comparison with satellite data. [1] Lapenta, G. (2016). Exactly Energy Conserving Implicit Moment Particle in Cell Formulation. arXiv preprint arXiv:1602.06326.[2] www.deep-er.eu

  18. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  19. Isochoric heating of solid gold targets with the PW-laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim

    2016-10-01

    We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  20. A novel method for the fabrication of microfluidic devices by photopolymerization of polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Forstater, Jacob; Augustine, Brian; Hughes, Chris

    2006-11-01

    We have developed a new technique for the rapid fabrication of structures useful for microfluidic devices called micromolding by photopolymerization in capillaries (μ-PIC). The technique involves the replication of features from a silicon master in which features on the order of tens to hundreds of microns have been formed by crystallographic etching. The negative of the features is then transferred to a sheet of polymethylmethacrylate (PMMA) by placing the PMMA sheet over the silicon master and injecting a solution of methylmethacrylate monomer with a benzoin methyl ether photoinitiator. This solution is drawn between the PMMA and the silicon by capillary action forming a liquid layer that is no more than a few hundred microns thick. This liquid is then polymerized by exposure to ultraviolet light for less than a half hour. The features transferred in this manner have nearly identical surface structure and roughness. Analysis of these surfaces and structures by atomic force microscopy and scanning electron microscopy will be presented.

  1. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

    DOE PAGES

    Zastrau, U.; Sperling, P.; Fortmann-Grote, C.; ...

    2015-09-25

    Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities ofmore » $${10}^{15}-{10}^{16}\\;$$ W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $$40\\;\\mathrm{eV}$$ for simulated delay times up to $$+70\\;\\mathrm{fs}$$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $$30\\;$$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. In conclusion, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.« less

  2. Effect of plasma distribution on propulsion performance in electrodeless plasma thrusters

    NASA Astrophysics Data System (ADS)

    Takao, Yoshinori; Takase, Kazuki; Takahashi, Kazunori

    2016-09-01

    A helicon plasma thruster consisting of a helicon plasma source and a magnetic nozzle is one of the candidates for long-lifetime thrusters because no electrodes are employed to generate or accelerate plasma. A recent experiment, however, detected the non-negligible axial momentum lost to the lateral wall boundary, which degrades thruster performance, when the source was operated with highly ionized gases. To investigate this mechanism, we have conducted two-dimensional axisymmetric particle-in-cell (PIC) simulations with the neutral distribution obtained by Direct Simulation Monte Carlo (DSMC) method. The numerical results have indicated that the axially asymmetric profiles of the plasma density and potential are obtained when the strong decay of neutrals occurs at the source downstream. This asymmetric potential profile leads to the accelerated ion towards the lateral wall, leading to the non-negligible net axial force in the opposite direction of the thrust. Hence, to reduce this asymmetric profile by increasing the neutral density at downstream and/or by confining plasma with external magnetic field would result in improvement of the propulsion performance. These effects are also analyzed by PIC/DSMC simulations.

  3. Collaborative Research: Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsouleas, Thomas; Decyk, Viktor

    Final Report for grant DE-FG02-06ER54888, "Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models" Viktor K. Decyk, University of California, Los Angeles Los Angeles, CA 90095-1547 The primary goal of this collaborative proposal was to modify the code QuickPIC and apply it to study the long-time stability of beam propagation in low density electron clouds present in circular accelerators. The UCLA contribution to this collaborative proposal was in supporting the development of the pipelining scheme for the QuickPIC code, which extended the parallel scaling of this code by two orders of magnitude. The USC work was as describedmore » here the PhD research for Ms. Bing Feng, lead author in reference 2 below, who performed the research at USC under the guidance of the PI Tom Katsouleas and the collaboration of Dr. Decyk The QuickPIC code [1] is a multi-scale Particle-in-Cell (PIC) code. The outer 3D code contains a beam which propagates through a long region of plasma and evolves slowly. The plasma response to this beam is modeled by slices of a 2D plasma code. This plasma response then is fed back to the beam code, and the process repeats. The pipelining is based on the observation that once the beam has passed a 2D slice, its response can be fed back to the beam immediately without waiting for the beam to pass all the other slices. Thus independent blocks of 2D slices from different time steps can be running simultaneously. The major difficulty was when particles at the edges needed to communicate with other blocks. Two versions of the pipelining scheme were developed, for the the full quasi-static code and the other for the basic quasi-static code used by this e-cloud proposal. Details of the pipelining scheme were published in [2]. The new version of QuickPIC was able to run with more than 1,000 processors, and was successfully applied in modeling e-clouds by our collaborators in this proposal [3-8]. Jean-Luc Vay at Lawrence Berkeley National Lab later implemented a similar basic quasistatic scheme including pipelining in the code WARP [9] and found good to very good quantitative agreement between the two codes in modeling e-clouds. References [1] C. Huang, V. K. Decyk, C. Ren, M. Zhou, W. Lu, W. B. Mori, J. H. Cooley, T. M. Antonsen, Jr., and T. Katsouleas, "QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas," J. Computational Phys. 217, 658 (2006). [2] B. Feng, C. Huang, V. K. Decyk, W. B. Mori, P. Muggli, and T. Katsouleas, "Enhancing parallel quasi-static particle-in-cell simulations with a pipelining algorithm," J. Computational Phys, 228, 5430 (2009). [3] C. Huang, V. K. Decyk, M. Zhou, W. Lu, W. B. Mori, J. H. Cooley, T. M. Antonsen, Jr., and B. Feng, T. Katsouleas, J. Vieira, and L. O. Silva, "QUICKPIC: A highly efficient fully parallelized PIC code for plasma-based acceleration," Proc. of the SciDAC 2006 Conf., Denver, Colorado, June, 2006 [Journal of Physics: Conference Series, W. M. Tang, Editor, vol. 46, Institute of Physics, Bristol and Philadelphia, 2006], p. 190. [4] B. Feng, C. Huang, V. Decyk, W. B. Mori, T. Katsouleas, P. Muggli, "Enhancing Plasma Wakefield and E-cloud Simulation Performance Using a Pipelining Algorithm," Proc. 12th Workshop on Advanced Accelerator Concepts, Lake Geneva, WI, July, 2006, p. 201 [AIP Conf. Proceedings, vol. 877, Melville, NY, 2006]. [5] B. Feng, P. Muggli, T. Katsouleas, V. Decyk, C. Huang, and W. Mori, "Long Time Electron Cloud Instability Simulation Using QuickPIC with Pipelining Algorithm," Proc. of the 2007 Particle Accelerator Conference, Albuquerque, NM, June, 2007, p. 3615. [6] B. Feng, C. Huang, V. Decyk, W. B. Mori, G. H. Hoffstaetter, P. Muggli, T. Katsouleas, "Simulation of Electron Cloud Effects on Electron Beam at ERL with Pipelined QuickPIC," Proc. 13th Workshop on Advanced Accelerator Concepts, Santa Cruz, CA, July-August, 2008, p. 340 [AIP Conf. Proceedings, vol. 1086, Melville, NY, 2008]. [7] B. Feng, C. Huang, V. K. Decyk, W. B. Mori, P. Muggli, and T. Katsouleas, "Enhancing parallel quasi-static particle-in-cell simulations with a pipelining algorithm," J. Computational Phys, 228, 5430 (2009). [8] C. Huang, W. An, V. K. Decyk, W. Lu, W. B. Mori, F. S. Tsung, M. Tzoufras, S. Morshed, T. Antonsen, B. Feng, T. Katsouleas, R., A. Fonseca, S. F. Martins, J. Vieira, L. O. Silva, E. Esarey, C. G. R. Geddes, W. P. Leemans, E. Cormier-Michel, J.-L. Vay, D. L. Bruhwiler, B. Cowan, J. R. Cary, and K. Paul, "Recent results and future challenges for large scale particleion- cell simulations of plasma-based accelerator concepts," Proc. of the SciDAC 2009 Conf., San Diego, CA, June, 2009 [Journal of Physics: Conference Series, vol. 180, Institute of Physics, Bristol and Philadelphia, 2009], p. 012005. [9] J.-L. Vay, C. M. Celata, M. A. Furman, G. Penn, M. Venturini, D. P. Grote, and K. G. Sonnad, ?Update on Electron-Cloud Simulations Using the Package WARP-POSINST.? Proc. of the 2009 Particle Accelerator Conference PAC09, Vancouver, Canada, June, 2009, paper FR5RFP078.« less

  4. FAST TRACK COMMUNICATION: The origin of Bohm diffusion, investigated by a comparison of different modelling methods

    NASA Astrophysics Data System (ADS)

    Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.

    2010-07-01

    'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.

  5. ASC Weekly News Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Womble, David E.

    Unified collision operator demonstrated for both radiation transport and PIC-DSMC. A side-by-side comparison between the DSMC method and the radiation transport method was conducted for photon attenuation in the atmosphere over 2 kilometers in physical distance with a reduction of photon density of six orders of magnitude. Both DSMC and traditional radiation transport agreed with theory to two digits. This indicates that PIC-DSMC operators can be unified with the radiation transport collision operators into a single code base and that physics kernels can remain unique to the actual collision pairs. This simulation example provides an initial validation of the unifiedmore » collision theory approach that will later be implemented into EMPIRE.« less

  6. [Accession to the PIC/S and pharmaceutical quality system in Japan].

    PubMed

    Katori, Noriko

    2014-01-01

    In March, 2012, Japan made the application for membership of the Pharmaceutical Inspection convention and Pharmaceutical Inspection Co-operation scheme (PIC/S) which is an international body of a GMP inspection. The globalization of pharmaceutical manufacturing and sales has been a driving force behind the decision to become a PIC/S member. For the application for membership, Japan's GMP inspectorate needs to fulfill PIC/S requirements, for example, the inspection organization has to have a quality system as a global standard. One of the other requirements is that the GMP inspectorate can access Official Medicines Control Laboratories (OMCL) having high analytical skills and also have a quality system based on ISO 17025. I would like to describe the process to make up a quality system in the National Institute of Health Sciences and also the circumstances around the PIC/S application in Japan.

  7. Finite time step and spatial grid effects in δf simulation of warm plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturdevant, Benjamin J., E-mail: benjamin.j.sturdevant@gmail.com; Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309; Parker, Scott E.

    2016-01-15

    This paper introduces a technique for analyzing time integration methods used with the particle weight equations in δf method particle-in-cell (PIC) schemes. The analysis applies to the simulation of warm, uniform, periodic or infinite plasmas in the linear regime and considers the collective behavior similar to the analysis performed by Langdon for full-f PIC schemes [1,2]. We perform both a time integration analysis and spatial grid analysis for a kinetic ion, adiabatic electron model of ion acoustic waves. An implicit time integration scheme is studied in detail for δf simulations using our weight equation analysis and for full-f simulations usingmore » the method of Langdon. It is found that the δf method exhibits a CFL-like stability condition for low temperature ions, which is independent of the parameter characterizing the implicitness of the scheme. The accuracy of the real frequency and damping rate due to the discrete time and spatial schemes is also derived using a perturbative method. The theoretical analysis of numerical error presented here may be useful for the verification of simulations and for providing intuition for the design of new implicit time integration schemes for the δf method, as well as understanding differences between δf and full-f approaches to plasma simulation.« less

  8. Electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and graphical user interface platform for aviation industries training purposes

    NASA Astrophysics Data System (ADS)

    Burhan, I.; Azman, A. A.; Othman, R.

    2016-10-01

    An electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and Visual Basic (VB) platform is fabricated as a supporting tool to existing teaching and learning process, and to achieve the objectives and learning outcomes towards enhancing the student's knowledge and hands-on skill, especially in electro pneumatic devices. The existing learning process for electro pneumatic courses conducted in the classroom does not emphasize on simulation and complex practical aspects. VB is used as the platform for graphical user interface (GUI) while PIC as the interface circuit between the GUI and hardware of electro pneumatic apparatus. Fabrication of electro pneumatic trainer interfacing between PIC and VB has been designed and improved by involving multiple types of electro pneumatic apparatus such as linear drive, air motor, semi rotary motor, double acting cylinder and single acting cylinder. Newly fabricated electro pneumatic trainer microcontroller interface can be programmed and re-programmed for numerous combination of tasks. Based on the survey to 175 student participants, 97% of the respondents agreed that the newly fabricated trainer is user friendly, safe and attractive, and 96.8% of the respondents strongly agreed that there is improvement in knowledge development and also hands-on skill in their learning process. Furthermore, the Lab Practical Evaluation record has indicated that the respondents have improved their academic performance (hands-on skills) by an average of 23.5%.

  9. A Particle Module for the PLUTO Code. I. An Implementation of the MHD–PIC Equations

    NASA Astrophysics Data System (ADS)

    Mignone, A.; Bodo, G.; Vaidya, B.; Mattia, G.

    2018-05-01

    We describe an implementation of a particle physics module available for the PLUTO code appropriate for the dynamical evolution of a plasma consisting of a thermal fluid and a nonthermal component represented by relativistic charged particles or cosmic rays (CRs). While the fluid is approached using standard numerical schemes for magnetohydrodynamics, CR particles are treated kinetically using conventional Particle-In-Cell (PIC) techniques. The module can be used either to describe test-particle motion in the fluid electromagnetic field or to solve the fully coupled magnetohydrodynamics (MHD)–PIC system of equations with particle backreaction on the fluid as originally introduced by Bai et al. Particle backreaction on the fluid is included in the form of momentum–energy feedback and by introducing the CR-induced Hall term in Ohm’s law. The hybrid MHD–PIC module can be employed to study CR kinetic effects on scales larger than the (ion) skin depth provided that the Larmor gyration scale is properly resolved. When applicable, this formulation avoids resolving microscopic scales, offering substantial computational savings with respect to PIC simulations. We present a fully conservative formulation that is second-order accurate in time and space, and extends to either the Runge–Kutta (RK) or the corner transport upwind time-stepping schemes (for the fluid), while a standard Boris integrator is employed for the particles. For highly energetic relativistic CRs and in order to overcome the time-step restriction, a novel subcycling strategy that retains second-order accuracy in time is presented. Numerical benchmarks and applications including Bell instability, diffusive shock acceleration, and test-particle acceleration in reconnecting layers are discussed.

  10. PIC codes for plasma accelerators on emerging computer architectures (GPUS, Multicore/Manycore CPUS)

    NASA Astrophysics Data System (ADS)

    Vincenti, Henri

    2016-03-01

    The advent of exascale computers will enable 3D simulations of a new laser-plasma interaction regimes that were previously out of reach of current Petasale computers. However, the paradigm used to write current PIC codes will have to change in order to fully exploit the potentialities of these new computing architectures. Indeed, achieving Exascale computing facilities in the next decade will be a great challenge in terms of energy consumption and will imply hardware developments directly impacting our way of implementing PIC codes. As data movement (from die to network) is by far the most energy consuming part of an algorithm future computers will tend to increase memory locality at the hardware level and reduce energy consumption related to data movement by using more and more cores on each compute nodes (''fat nodes'') that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, CPU machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. GPU's also have a reduced clock speed per core and can process Multiple Instructions on Multiple Datas (MIMD). At the software level Particle-In-Cell (PIC) codes will thus have to achieve both good memory locality and vectorization (for Multicore/Manycore CPU) to fully take advantage of these upcoming architectures. In this talk, we present the portable solutions we implemented in our high performance skeleton PIC code PICSAR to both achieve good memory locality and cache reuse as well as good vectorization on SIMD architectures. We also present the portable solutions used to parallelize the Pseudo-sepctral quasi-cylindrical code FBPIC on GPUs using the Numba python compiler.

  11. A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua) spleen transcriptome response to intraperitoneal viral mimic injection

    PubMed Central

    2012-01-01

    Background Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). Results The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. Conclusions The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen’s transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16°C at 6HPI. These results substantially increase our understanding of the genes and molecular pathways involved in the negative impacts of elevated ambient temperature on fish health, and may also be valuable to our understanding of how accelerated global climate change could impact cold-water marine finfish species. PMID:22928584

  12. A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua) spleen transcriptome response to intraperitoneal viral mimic injection.

    PubMed

    Hori, Tiago S; Gamperl, A Kurt; Booman, Marije; Nash, Gordon W; Rise, Matthew L

    2012-08-28

    Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen's transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16°C at 6HPI. These results substantially increase our understanding of the genes and molecular pathways involved in the negative impacts of elevated ambient temperature on fish health, and may also be valuable to our understanding of how accelerated global climate change could impact cold-water marine finfish species.

  13. Assessment of Different Discrete Particle Methods Ability To Predict Gas-Particle Flow in a Small-Scale Fluidized Bed

    DOE PAGES

    Lu, Liqiang; Gopalan, Balaji; Benyahia, Sofiane

    2017-06-21

    Several discrete particle methods exist in the open literature to simulate fluidized bed systems, such as discrete element method (DEM), time driven hard sphere (TDHS), coarse-grained particle method (CGPM), coarse grained hard sphere (CGHS), and multi-phase particle-in-cell (MP-PIC). These different approaches usually solve the fluid phase in a Eulerian fixed frame of reference and the particle phase using the Lagrangian method. The first difference between these models lies in tracking either real particles or lumped parcels. The second difference is in the treatment of particle-particle interactions: by calculating collision forces (DEM and CGPM), using momentum conservation laws (TDHS and CGHS),more » or based on particle stress model (MP-PIC). These major model differences lead to a wide range of results accuracy and computation speed. However, these models have never been compared directly using the same experimental dataset. In this research, a small-scale fluidized bed is simulated with these methods using the same open-source code MFIX. The results indicate that modeling the particle-particle collision by TDHS increases the computation speed while maintaining good accuracy. Also, lumping few particles in a parcel increases the computation speed with little loss in accuracy. However, modeling particle-particle interactions with solids stress leads to a big loss in accuracy with a little increase in computation speed. The MP-PIC method predicts an unphysical particle-particle overlap, which results in incorrect voidage distribution and incorrect overall bed hydrodynamics. Based on this study, we recommend using the CGHS method for fluidized bed simulations due to its computational speed that rivals that of MPPIC while maintaining a much better accuracy.« less

  14. PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Gladders, Michael D.; Florian, Michael K.

    2016-09-01

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less

  15. PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Gladders, Michael D.; Rangel, Esteban M.

    2016-08-29

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less

  16. A Variational Formulation of Macro-Particle Algorithms for Kinetic Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Shadwick, B. A.

    2013-10-01

    Macro-particle based simulations methods are in widespread use in plasma physics; their computational efficiency and intuitive nature are largely responsible for their longevity. In the main, these algorithms are formulated by approximating the continuous equations of motion. For systems governed by a variational principle (such as collisionless plasmas), approximations of the equations of motion is known to introduce anomalous behavior, especially in system invariants. We present a variational formulation of particle algorithms for plasma simulation based on a reduction of the distribution function onto a finite collection of macro-particles. As in the usual Particle-In-Cell (PIC) formulation, these macro-particles have a definite momentum and are spatially extended. The primary advantage of this approach is the preservation of the link between symmetries and conservation laws. For example, nothing in the reduction introduces explicit time dependence to the system and, therefore, the continuous-time equations of motion exactly conserve energy; thus, these models are free of grid-heating. In addition, the variational formulation allows for constructing models of arbitrary spatial and temporal order. In contrast, the overall accuracy of the usual PIC algorithm is at most second due to the nature of the force interpolation between the gridded field quantities and the (continuous) particle position. Again in contrast to the usual PIC algorithm, here the macro-particle shape is arbitrary; the spatial extent is completely decoupled from both the grid-size and the ``smoothness'' of the shape; smoother particle shapes are not necessarily larger. For simplicity, we restrict our discussion to one-dimensional, non-relativistic, un-magnetized, electrostatic plasmas. We comment on the extension to the electromagnetic case. Supported by the US DoE under contract numbers DE-FG02-08ER55000 and DE-SC0008382.

  17. Assessment of Different Discrete Particle Methods Ability To Predict Gas-Particle Flow in a Small-Scale Fluidized Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Liqiang; Gopalan, Balaji; Benyahia, Sofiane

    Several discrete particle methods exist in the open literature to simulate fluidized bed systems, such as discrete element method (DEM), time driven hard sphere (TDHS), coarse-grained particle method (CGPM), coarse grained hard sphere (CGHS), and multi-phase particle-in-cell (MP-PIC). These different approaches usually solve the fluid phase in a Eulerian fixed frame of reference and the particle phase using the Lagrangian method. The first difference between these models lies in tracking either real particles or lumped parcels. The second difference is in the treatment of particle-particle interactions: by calculating collision forces (DEM and CGPM), using momentum conservation laws (TDHS and CGHS),more » or based on particle stress model (MP-PIC). These major model differences lead to a wide range of results accuracy and computation speed. However, these models have never been compared directly using the same experimental dataset. In this research, a small-scale fluidized bed is simulated with these methods using the same open-source code MFIX. The results indicate that modeling the particle-particle collision by TDHS increases the computation speed while maintaining good accuracy. Also, lumping few particles in a parcel increases the computation speed with little loss in accuracy. However, modeling particle-particle interactions with solids stress leads to a big loss in accuracy with a little increase in computation speed. The MP-PIC method predicts an unphysical particle-particle overlap, which results in incorrect voidage distribution and incorrect overall bed hydrodynamics. Based on this study, we recommend using the CGHS method for fluidized bed simulations due to its computational speed that rivals that of MPPIC while maintaining a much better accuracy.« less

  18. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.; Barnes, D. C.

    2011-08-01

    This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov-Poisson formulation), ours is based on a nonlinearly converged Vlasov-Ampére (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant-Friedrichs-Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicit time steps (unlike the earlier "energy-conserving" explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton-Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.

  19. An Ultra-faint Galaxy Candidate Discovered in Early Data from the Magellanic Satellites Survey

    NASA Astrophysics Data System (ADS)

    Drlica-Wagner, A.; Bechtol, K.; Allam, S.; Tucker, D. L.; Gruendl, R. A.; Johnson, M. D.; Walker, A. R.; James, D. J.; Nidever, D. L.; Olsen, K. A. G.; Wechsler, R. H.; Cioni, M. R. L.; Conn, B. C.; Kuehn, K.; Li, T. S.; Mao, Y.-Y.; Martin, N. F.; Neilsen, E.; Noel, N. E. D.; Pieres, A.; Simon, J. D.; Stringfellow, G. S.; van der Marel, R. P.; Yanny, B.

    2016-12-01

    We report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644-5953 (Pictor II or Pic II) is a low surface brightness (μ ={28.5}-1+1 {mag} {arcsec}{}-2 within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of {45}-4+5 {kpc}. The physical size ({r}1/2={46}-11+15 {pc} ) and low luminosity ({M}V=-{3.2}-0.5+0.4 {mag} ) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644-5953 (Pic II) is located {11.3}-0.9+3.1 {kpc} from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644-5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.

  20. Particle in cell/Monte Carlo collision analysis of the problem of identification of impurities in the gas by the plasma electron spectroscopy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusoglu Sarikaya, C.; Rafatov, I., E-mail: rafatov@metu.edu.tr; Kudryavtsev, A. A.

    2016-06-15

    The work deals with the Particle in Cell/Monte Carlo Collision (PIC/MCC) analysis of the problem of detection and identification of impurities in the nonlocal plasma of gas discharge using the Plasma Electron Spectroscopy (PLES) method. For this purpose, 1d3v PIC/MCC code for numerical simulation of glow discharge with nonlocal electron energy distribution function is developed. The elastic, excitation, and ionization collisions between electron-neutral pairs and isotropic scattering and charge exchange collisions between ion-neutral pairs and Penning ionizations are taken into account. Applicability of the numerical code is verified under the Radio-Frequency capacitively coupled discharge conditions. The efficiency of the codemore » is increased by its parallelization using Open Message Passing Interface. As a demonstration of the PLES method, parallel PIC/MCC code is applied to the direct current glow discharge in helium doped with a small amount of argon. Numerical results are consistent with the theoretical analysis of formation of nonlocal EEDF and existing experimental data.« less

  1. Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-02-01

    A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected) pressure gradient term becomes significant.

  2. ENHANCED FORMATION OF CHLORINATED PICS BY THE ADDITION OF BROMINE

    EPA Science Inventory

    A systematic series of experiments were performed on a pilot-scale rotary kiln incinerator simulator in which liquid surrogate wastes containing varied levels of chlorine and bromine were burned. The surrogate wastes used were a series of mixtures of methylene chloride and methyl...

  3. Particle Acceleration and Heating Processes at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Lapenta, G.; Richard, R. L.; El-Alaoui, M.; Walker, R. J.; Schriver, D.

    2017-12-01

    It is well established that electrons and ions are accelerated and heated during magnetic reconnection at the dayside magnetopause. However, a detailed description of the actual physical mechanisms driving these processes and where they are operating is still incomplete. Many basic mechanisms are known to accelerate particles, including resonant wave-particle interactions as well as stochastic, Fermi, and betatron acceleration. In addition, acceleration and heating processes can occur over different scales. We have carried out kinetic simulations to investigate the mechanisms by which electrons and ions are accelerated and heated at the dayside magnetopause. The simulation model uses the results of global magnetohydrodynamic (MHD) simulations to set the initial state and the evolving boundary conditions of fully kinetic implicit particle-in-cell (iPic3D) simulations for different solar wind and interplanetary magnetic field conditions. This approach allows us to include large domains both in space and energy. In particular, some of these regional simulations include both the magnetopause and bow shock in the kinetic domain, encompassing range of particle energies from a few eV in the solar wind to keV in the magnetospheric boundary layer. We analyze the results of the iPic3D simulations by discussing wave spectra and particle velocity distribution functions observed in the different regions of the simulation domain, as well as using large-scale kinetic (LSK) computations to follow particles' time histories. We discuss the relevance of our results by comparing them with local observations by the MMS spacecraft.

  4. Particle-In-Cell simulation concerning heat-flux mitigation using electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lüskow, Karl Felix; Duras, Julia; Kemnitz, Stefan; Kahnfeld, Daniel; Matthias, Paul; Bandelow, Gunnas; Schneider, Ralf; Konigorski, Detlev

    2016-10-01

    In space missions enormous amount of money is spent for the thermal protection system for re-entry. To avoid complex materials and save money one idea is to reduce the heat-flux towards the spacecraft. The partially-ionized gas can be controlled by electromagnetic fields. For first-principle tests partially ionized argon flow from an arc-jet was used to measure the heat-flux mitigation created by an external magnetic field. In the successful experiment a reduction of 85% was measured. In this work the Particle-in-Cell (PIC) method was used to simulate this experiment. PIC is able to reproduce the heat flux mitigation qualitatively. The main mechanism is identified as a changed electron transport and by this, modified electron density due to the reaction to the applied magnetic field. Ions follow due to quasi-neutrality and influence then strongly by charge exchange collisions the neutrals dynamics and heat deposition. This work was supported by the German Space Agency DLR through Project 50RS1508.

  5. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  6. Ultrahigh-order Maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas

    NASA Astrophysics Data System (ADS)

    Vincenti, Henri; Vay, Jean-Luc

    2018-07-01

    The advent of massively parallel supercomputers, with their distributed-memory technology using many processing units, has favored the development of highly-scalable local low-order solvers at the expense of harder-to-scale global very high-order spectral methods. Indeed, FFT-based methods, which were very popular on shared memory computers, have been largely replaced by finite-difference (FD) methods for the solution of many problems, including plasmas simulations with electromagnetic Particle-In-Cell methods. For some problems, such as the modeling of so-called "plasma mirrors" for the generation of high-energy particles and ultra-short radiations, we have shown that the inaccuracies of standard FD-based PIC methods prevent the modeling on present supercomputers at sufficient accuracy. We demonstrate here that a new method, based on the use of local FFTs, enables ultrahigh-order accuracy with unprecedented scalability, and thus for the first time the accurate modeling of plasma mirrors in 3D.

  7. Constructing a short form of the hierarchical personality inventory for children (HiPIC): the HiPIC-30.

    PubMed

    Vollrath, Margarete E; Hampson, Sarah E; Torgersen, Svenn

    2016-05-01

    Children's personality traits are invaluable predictors of concurrent and later mental and physical health. Several validated longer inventories for assessing the widely recognized Five-Factor Model of personality in children are available, but short forms are scarce. This study aimed at constructing a 30-item form of the 144-item Hierarchical Personality Inventory for Children (HiPIC) (Mervielde & De Fruyt, ). Participants were 1543 children aged 6-12 years (sample 1) and 3895 children aged 8 years (sample 2). Sample 1 completed the full HiPIC, from which we constructed the HiPIC-30, and the Child Behaviour Checklist (Achenbach, ). Sample 2 completed the HiPIC-30. The HiPIC-30 personality domains correlated over r = .90 with the full HiPIC domains, had good Cronbach's alphas and correlated similarly with CBCL behaviour problems and gender as the full HiPIC. The factor structures of the HiPIC-30 were convergent across samples, but the imagination factor was not clear-cut. We conclude that the HiPIC-30 is a reliable and valid questionnaire for the Five-Factor personality traits in children. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Magnetic Field Generation During the Collision of Narrow Plasma Clouds

    NASA Astrophysics Data System (ADS)

    Sakai, Jun-ichi; Kazimura, Yoshihiro; Haruki, Takayuki

    1999-06-01

    We investigate the dynamics of the collision of narrow plasma clouds,whose transverse dimension is on the order of the electron skin depth.A 2D3V (two dimensions in space and three dimensions in velocity space)particle-in-cell (PIC) collisionless relativistic code is used toshow the generation of a quasi-staticmagnetic field during the collision of narrow plasma clouds both inelectron-ion and electron-positron (pair) plasmas. The localizedstrong magnetic fluxes result in the generation of the charge separationwith complicated structures, which may be sources of electromagneticas well as Langmuir waves. We also present one applicationof this process, which occurs during coalescence of magnetic islandsin a current sheet of pair plasmas.

  9. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji

    2015-04-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50 % for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  10. Implementation of non-axisymmetric mesh system in the gyrokinetic PIC code (XGC) for Stellarators

    NASA Astrophysics Data System (ADS)

    Moritaka, Toseo; Hager, Robert; Cole, Micheal; Chang, Choong-Seock; Lazerson, Samuel; Ku, Seung-Hoe; Ishiguro, Seiji

    2017-10-01

    Gyrokinetic simulation is a powerful tool to investigate turbulent and neoclassical transports based on the first-principles of plasma kinetics. The gyrokinetic PIC code XGC has been developed for integrated simulations that cover the entire region of Tokamaks. Complicated field line and boundary structures should be taken into account to demonstrate edge plasma dynamics under the influence of X-point and vessel components. XGC employs gyrokinetic Poisson solver on unstructured triangle mesh to deal with this difficulty. We introduce numerical schemes newly developed for XGC simulation in non-axisymmetric Stellarator geometry. Triangle meshes in each poloidal plane are defined by PEST poloidal angle in the VMEC equilibrium so that they have the same regular structure in the straight field line coordinate. Electric charge of marker particle is distributed to the triangles specified by the field-following projection to the neighbor poloidal planes. 3D spline interpolation in a cylindrical mesh is also used to obtain equilibrium magnetic field at the particle position. These schemes capture the anisotropic plasma dynamics and resulting potential structure with high accuracy. The triangle meshes can smoothly connect to unstructured meshes in the edge region. We will present the validation test in the core region of Large Helical Device and discuss about future challenges toward edge simulations.

  11. Efficient particle-in-cell simulation of auroral plasma phenomena using a CUDA enabled graphics processing unit

    NASA Astrophysics Data System (ADS)

    Sewell, Stephen

    This thesis introduces a software framework that effectively utilizes low-cost commercially available Graphic Processing Units (GPUs) to simulate complex scientific plasma phenomena that are modeled using the Particle-In-Cell (PIC) paradigm. The software framework that was developed conforms to the Compute Unified Device Architecture (CUDA), a standard for general purpose graphic processing that was introduced by NVIDIA Corporation. This framework has been verified for correctness and applied to advance the state of understanding of the electromagnetic aspects of the development of the Aurora Borealis and Aurora Australis. For each phase of the PIC methodology, this research has identified one or more methods to exploit the problem's natural parallelism and effectively map it for execution on the graphic processing unit and its host processor. The sources of overhead that can reduce the effectiveness of parallelization for each of these methods have also been identified. One of the novel aspects of this research was the utilization of particle sorting during the grid interpolation phase. The final representation resulted in simulations that executed about 38 times faster than simulations that were run on a single-core general-purpose processing system. The scalability of this framework to larger problem sizes and future generation systems has also been investigated.

  12. Isochoric heating of solid gold targets with the PW-laser-driven ion beams (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan S.; Barnard, John; Vincenti, Henri; Schenkel, Thomas; Esarey, Eric H.; Leemans, Wim P.

    2017-05-01

    We present first results on ion acceleration with the BELLA PW laser as well as end-to-end simulation for isochoric heating of solid gold targets using PW-laser generated ion beams: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/65) beamline at laser intensities of ˜[5×10]^19 Wcm-2 at spot size of 0=53 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled [1] by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes taking the source parameters obtained from the PIC simulation. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. Reference: J. van Tilborg et al, Phys. Rev. Lett. 115, 184802 (2015). This work was supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  13. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  14. Chromium picolinate modulates serotonergic properties and carbohydrate metabolism in a rat model of diabetes.

    PubMed

    Komorowski, James R; Tuzcu, Mehmet; Sahin, Nurhan; Juturu, Vijaya; Orhan, Cemal; Ulas, Mustafa; Sahin, Kazim

    2012-10-01

    Chromium picolinate (CrPic) has shown both antidepressant and antidiabetic properties. In this study, the effects of CrPic on serotonergic properties and carbohydrate metabolism in diabetic rats were evaluated. Sixty male Sprague-Dawley rats were divided into four groups. (1) The control group received only standard diet (8 % fat). (2) The CrPic group was fed standard diet and CrPic (80 μg CrPic per kilogram body mass (b.m.)/day), for 10 weeks (microgram/kilogram b.m./day). (3) The HFD/STZ group fed a high-fat diet (HFD, 40 % fat) for 2 weeks and then received streptozotocin (STZ, 40 mg/kg, i.p.) (i.v.) HFD-STZ-CrPic group treated as the previous group and then were administered CrPic. CrPic administration to HFD/STZ-treated rats increased brain chromium levels and improved all measurements of carbohydrate metabolism and serotonergic properties (P<0.001). CrPic also significantly increased levels of insulin, tryptophan, and serotonin (P<0.001) in the serum and brain, and decreased cortisol levels in the serum (P<0.01). Except chromium levels, no significant effect of CrPic supplementation was detected on the overall measured parameters in the control group. CrPic administration was well tolerated without any adverse events. The results support the use of CrPic supplementation which improves serotonergic properties of brain in diabetes.

  15. Transverse oscillations in plasma wakefield experiments at FACET

    NASA Astrophysics Data System (ADS)

    Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; White, G. R.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.

    2016-09-01

    We study transverse effects in a plasma wakefield accelerator. Experimental data from FACET with asymmetry in the beam-plasma system is presented. Energy dependent centroid oscillations are observed on the accelerated part of the charge. The experimental results are compared to PIC simulations and theoretical estimates.

  16. TRANSITION FROM KINETIC TO MHD BEHAVIOR IN A COLLISIONLESS PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.

    The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag–Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the questionmore » of interest by examining several different indicators of MHD-like behavior.« less

  17. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.

    PubMed

    Li, Hui; Zeng, Xiao Cheng

    2012-03-27

    Born-Oppenheim quantum molecular dynamics (QMD) simulations are performed to investigate wetting, diffusive, and interfacial properties of water nanodroplets in contact with a graphene sheet or a monolayer boron-nitride (BN) sheet. Contact angles of the water nanodroplets on the two sheets are computed for the first time using QMD simulations. Structural and dynamic properties of the water droplets near the graphene or BN sheet are also studied to gain insights into the interfacial interaction between the water droplet and the substrate. QMD simulation results are compared with those from previous classic MD simulations and with the experimental measurements. The QMD simulations show that the graphene sheet yields a contact angle of 87°, while the monolayer BN sheet gives rise to a contact angle of 86°. Hence, like graphene, the monolayer BN sheet is also weakly hydrophobic, even though the BN bonds entail a large local dipole moment. QMD simulations also show that the interfacial water can induce net positive charges on the contacting surface of the graphene and monolayer BN sheets, and such charge induction may affect electronic structure of the contacting graphene in view that graphene is a semimetal. Contact angles of nanodroplets of water in a supercooled state on the graphene are also computed. It is found that under the supercooled condition, water nanodroplets exhibit an appreciably larger contact angle than under the ambient condition. © 2012 American Chemical Society

  18. Full PIC simulations of solar radio emission

    NASA Astrophysics Data System (ADS)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  19. A one-dimensional with three-dimensional velocity space hybrid-PIC model of the discharge plasma in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Shashkov, Andrey; Lovtsov, Alexander; Tomilin, Dmitry

    2017-04-01

    According to present knowledge, countless numerical simulations of the discharge plasma in Hall thrusters were conducted. However, on the one hand, adequate two-dimensional (2D) models require a lot of time to carry out numerical research of the breathing mode oscillations or the discharge structure. On the other hand, existing one-dimensional (1D) models are usually too simplistic and do not take into consideration such important phenomena as neutral-wall collisions, magnetic field induced by Hall current and double, secondary, and stepwise ionizations together. In this paper a one-dimensional with three-dimensional velocity space (1D3V) hybrid-PIC model is presented. The model is able to incorporate all the phenomena mentioned above. A new method of neutral-wall collisions simulation in described space was developed and validated. Simulation results obtained for KM-88 and KM-60 thrusters are in a good agreement with experimental data. The Bohm collision coefficient was the same for both thrusters. Neutral-wall collisions, doubly charged ions, and induced magnetic field were proved to stabilize the breathing mode oscillations in a Hall thruster under some circumstances.

  20. UNIPIC code for simulations of high power microwave devices

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Zhang, Dianhui; Liu, Chunliang; Li, Yongdong; Wang, Yue; Wang, Hongguang; Qiao, Hailiang; Li, Xiaoze

    2009-03-01

    In this paper, UNIPIC code, a new member in the family of fully electromagnetic particle-in-cell (PIC) codes for simulations of high power microwave (HPM) generation, is introduced. In the UNIPIC code, the electromagnetic fields are updated using the second-order, finite-difference time-domain (FDTD) method, and the particles are moved using the relativistic Newton-Lorentz force equation. The convolutional perfectly matched layer method is used to truncate the open boundaries of HPM devices. To model curved surfaces and avoid the time step reduction in the conformal-path FDTD method, CP weakly conditional-stable FDTD (WCS FDTD) method which combines the WCS FDTD and CP-FDTD methods, is implemented. UNIPIC is two-and-a-half dimensional, is written in the object-oriented C++ language, and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the geometric structures of the simulated HPM devices, or input the old structures created before. Numerical experiments on some typical HPM devices by using the UNIPIC code are given. The results are compared to those obtained from some well-known PIC codes, which agree well with each other.

  1. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    PubMed

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  2. Surface effect investigation on multipactor in microwave components using the EM-PIC method

    NASA Astrophysics Data System (ADS)

    Li, Yun; Ye, Ming; He, Yong-Ning; Cui, Wan-Zhao; Wang, Dan

    2017-11-01

    Multipactor poses a great risk to microwave components in space and its accurate controllable suppression is still lacking. To evaluate the secondary electron emission (SEE) of arbitrary surface states on multipactor, metal samples fabricated with ideal smoothness, random roughness, and micro-structures on the surface are investigated through SEE experiments and multipactor simulations. An accurate quantitative relationship between the SEE parameters and the multipactor discharge threshold in practical components has been established through Electromagnetic Particle-In-Cell (EM-PIC) simulation. Simulation results of microwave components, including the impedance transformer and the coaxial filter, exhibit an intuitive correlation between the critical SEE parameters, varied due to different surface states, and multipactor thresholds. It is demonstrated that it is the surface micro-structures with certain depth and morphology that determine the average yield of secondaries, other than the random surface relieves. Both the random surface relieves and micro-structures have a scattering effect on SEE, and the yield is prone to be identical upon different elevation angles of incident electrons. It possesses a great potential in the optimization and improvement of suppression technology without the exhaustion of the technological parameter.

  3. An ice sheet model validation framework for the Greenland ice sheet.

    PubMed

    Price, Stephen F; Hoffman, Matthew J; Bonin, Jennifer A; Howat, Ian M; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P; Evans, Katherine J; Kennedy, Joseph H; Lenaerts, Jan; Lipscomb, William H; Perego, Mauro; Salinger, Andrew G; Tuminaro, Raymond S; van den Broeke, Michiel R; Nowicki, Sophie M J

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  4. The Effect of a Guide Field on Local Energy Conversion During Asymmetric Magnetic Reconnection: Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Cassak, P. A.; Genestreti, K. J.; Burch, J. L.; Phan, T.-D.; Shay, M. A.; Swisdak, M.; Drake, J. F.; Price, L.; Eriksson, S.; Ergun, R. E.; Anderson, B. J.; Merkin, V. G.; Komar, C. M.

    2017-11-01

    We use theory and simulations to study how the out-of-plane (guide) magnetic field strength modifies the location where the energy conversion rate between the electric field and the plasma is appreciable during asymmetric magnetic reconnection, motivated by observations (Genestreti et al., 2017). For weak guide fields, energy conversion is maximum on the magnetospheric side of the X line, midway between the X line and electron stagnation point. As the guide field increases, the electron stagnation point gets closer to the X line, and energy conversion occurs closer to the electron stagnation point. We motivate one possible nonrigorous approach to extend the theory of the stagnation point location to include a guide field. The predictions are compared to two-dimensional particle-in-cell (PIC) simulations with vastly different guide fields. The simulations have upstream parameters corresponding to three events observed with Magnetospheric Multiscale (MMS). The predictions agree reasonably well with the simulation results, capturing trends with the guide field. The theory correctly predicts that the X line and stagnation points approach each other as the guide field increases. The results are compared to MMS observations, Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations of each event, and a global resistive-magnetohydrodynamics simulation of the 16 October 2015 event. The PIC simulation results agree well with the global observations and simulation but differ in the strong electric fields and energy conversion rates found in MMS observations. The observational, theoretical, and numerical results suggest that the strong electric fields observed by MMS do not represent a steady global reconnection rate.

  5. Characteristics of Ion Distribution Functions in Dipolarizing FluxBundles: THEMIS Event Studies

    NASA Astrophysics Data System (ADS)

    Runov, A.; Artemyev, A.; Birn, J.; Pritchett, P. L.; Zhou, X.

    2016-12-01

    Taking advantage of multi-point observations from repeating configuration of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) fleet with probe separation of 1 to 2 Earth radii (RE) along X, Y, and Z in the geocentric solar magnetospheric system (GSM), we study ion distribution functions observed by the probes during three transient dipolarization events. Comparing observations by the multiple probes, we characterize changes in the ion distribution functions with respect to geocentric distance (X), cross-tail probe separation (Y), and levels of |Bx|, which characterize the distance from the neutral sheet. We examined 2-D and 1-D cuts of the 3-D velocity distribution functions by the {Vb,Vbxv} plane. The results indicate that the velocity distribution functions observed inside the dipolarizing flux bundles (DFB) close to the magnetic equator are often perpendicularly anisotropic for velocities Vth≤v≤2Vth, where Vth is the ion thermal velocity. Ions of higher energies (v>2Vth) are isotropic. Hence, interaction of DFBs and ambient ions may result in the perpendicular anisotropy of the injecting energetic ions, which is an important factor for plasma waves and instabilities excitation and further particle acceleration in the inner magnetosphere. We also compare the observations with the results of test-particles and PIC simulations.

  6. Design and simulation of a sub-terahertz folded-waveguide extended interaction oscillator

    NASA Astrophysics Data System (ADS)

    Liu, Wenxin; Zhang, Zhaochuan; Zhao, Chao; Guo, Xin; Liao, Suying

    2017-06-01

    In this paper, an interesting type of a two-section folded wave-guide (TSFW) slow wave structure (SWS) for the development of sub-Terahertz (sub-THz) extended interaction oscillator (EIO) is proposed. In this sub-THz device, the prebunching electron beam is produced by the TSFW SWS, which results in the enhancement of the output power. To verify this concept, the TSFW for sub-THz EIO is developed, which includes the design, simulation, and some fabrications. A small size of electron optics system (EOS), the TSFW SWS for beam-wave interactions, and the output structure are studied with simulations. Through the codes Egun and Superfish, the EOS is designed and optimized. With a help of CST studio and 3D particle-in-cell (PIC) simulation CHIPIC, the characteristics of beam-wave interaction generated by the TSFW are studied. The results of PIC simulation show that the output power is remarkably enhanced by a factor of 3, which exceeds 200 W at the frequency of 108 GHz. Based on the optimum parameters, the TSFW is manufactured with a high speed numerical mill, and the test transmission characteristic |S21| is 13 dB. At last, the output structure with a pill-box window is optimized, fabricated, integrated, and tested, and the result shows that the voltage standing-wave ratio of the window is about 2.2 at an operating frequency of 108 GHz. This design and simulation can provide an effective method to develop high power THz sources.

  7. Spacecraft-environment interaction model cross comparison applied to Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Deca, J.; Markidis, S.; Marchand, R.; Guillemant, S.; Matéo Vélez, J.; Miyake, Y.; Usui, H.; Ergun, R.; Sturner, A. P.

    2013-12-01

    Given that our society becomes increasingly dependent on space technology, it is imperative to develop a good understanding of spacecraft-plasma interactions. Two main issues are important. First, one needs to be able to design a reliable spacecraft that can survive in the harsh solar wind conditions, and second a very good knowledge of the behaviour and plasma structure around the spacecraft is required to be able to interpret and correct measurements from onboard instruments and science experiments. In this work we present the results of a cross-comparison study between five spacecraft-plasma models (EMSES, iPic3D, LASP, PTetra, SPIS) used to simulate the interaction of the Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. The purpose of this cross-comparison is to assess the consistency and validity of the different numerical approaches from the similarities and differences of their predictions under well defined conditions, with attention to the implicit PIC code iPic3D, which has never been used for spacecraft-environment interaction studies before. The physical effects considered are spacecraft charging, photoelectron and secondary electron emission, the presence of a background magnetic field and density variations. The latter of which can cause the floating potential of SPP to go from negative to positive or visa versa, depending on the solar wind conditions, and spacecraft material properties. Simulation results are presented and compared with increasing levels of complexity in the physics to evaluate the sensitivity of the model predictions to certain physical effects. The comparisons focus particularly on spacecraft floating potential, detailed contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. Model predictions obtained with our different computational approaches are found to be in good agreement when the physical processes are treated similarly. The comparisons considered here indicate that, with the correct parameterization of important physical effects such as photoemission and secondary electron emission, our simulation models should have the required skill to predict details of satellite-plasma interaction physics with a high level of confidence. This work was supported by the International Space Science Institute in Bern Switzerland. The potential profile around the Solar Probe Plus spacecraft in orbital flow, from the iPic3D code. The physical model includes photo- and secondary electrons and a static magnetic field.

  8. EMISSIONS OF TRACE PRODUCTS OF INCOMPLETE COMBUSTION FROM A PILOT-SCALE INCINERATOR SECONDARY COMBUSTION CHAMBER

    EPA Science Inventory

    Experiments were performed on a 73 kW rotary kiln incinerator simulator equipped with a 73 kW secondary combustion chamber (SCC) to examine emissions of products of incomplete combustion (PICs) resulting from incineration of carbon tetrachloride (CCl4) and dichlorometh...

  9. ON THE RELATIONSHIP BETWEEN CO, POHC, AND PIC EMISSIONS FROM A SIMULATED HAZARDOUS WASTE INCINERATOR

    EPA Science Inventory

    Measurements conducted on full-scale hazardous waste incinerators have occasionally shown a relationship between carbon monoxide (CO) emissions and emissions of toxic organic compounds. In this study, four mixtures of chlorinated C1 and C2 hydrocarbons were diluted in commercial...

  10. Testing COBOL Programs by Mutation. Volume I. Introduction to the CMS.1 System.

    DTIC Science & Technology

    1980-02-01

    ALTER-OCCURS><SYMBOL TABLE location><code><x> where code = 0 means "add 1 to occurs", = 1 means "subtract 1 from occurs". 4 Insert a filler ( PIC X) in...REC. 31 01 OLD-REC. 32 03 FILLER PIC X. 33 03 OLD-KEY PIC X(12). 34 03 FILLER PIC X(67). 35S to NEdETF 36 RECORD CONTATS 90 CHARACTERS 37 LABEL RECORDS...ARE STANDARD 3S DATA RECORD IS NEd-REC. 39 01 NEd-REC. AO 03 FILLER PIC 1. Al 03 NEW-(FY PIC X(12). A2 03 FILLER PIC 1(6?). 43 ED PMTHR 44 RECORD

  11. Molecular analysis of hprt mutations induced by chromium picolinate in CHO AA8 cells.

    PubMed

    Coryell, Virginia H; Stearns, Diane M

    2006-11-07

    Chromium picolinate (CrPic) is a popular dietary supplement, marketed to the public for weight loss, bodybuilding, and control of blood sugar. Recommendations for long-term use at high dosages have led to questions regarding its safety. Previous studies have reported that CrPic can cause chromosomal aberrations and mutations. The purpose of the current work was to compare the mutagenicity of CrPic as a suspension in acetone versus a solution in DMSO, and to characterize the hprt mutations induced by CrPic in CHO AA8 cells. Treatments of 2% acetone or 2% DMSO alone produced no significant increase in 6-thioguanine (6-TG)-resistant mutants after 48 h exposures. Mutants resistant to 6-TG were generated by exposing cells for 48 h to 80 microg/cm(2) CrPic in acetone or to 1.0mM CrPic in DMSO. CrPic in acetone produced an average induced mutation frequency (MF) of 56 per 10(6) surviving cells relative to acetone solvent. CrPic in acetone was 3.5-fold more mutagenic than CrPic in DMSO, which produced an MF of 16.2. Characterization of 61 total mutations in 48 mutants generated from exposure to CrPic in acetone showed that base substitutions comprised 33% of the mutations, with transversions being predominant; deletions made up 62% of the mutations, with one-exon deletions predominating; and 1-4 bp insertions made up 5% of the characterized mutations. CrPic induced a statistically greater number of deletions and a statistically smaller number of base substitutions than have been measured in spontaneously generated mutants. These data confirm previous studies showing that CrPic is mutagenic, and support the contention that further study is needed to verify the safety of CrPic for human consumption.

  12. Simulating Thin Sheets: Buckling, Wrinkling, Folding and Growth

    NASA Astrophysics Data System (ADS)

    Vetter, Roman; Stoop, Norbert; Wittel, Falk K.; Herrmann, Hans J.

    2014-03-01

    Numerical simulations of thin sheets undergoing large deformations are computationally challenging. Depending on the scenario, they may spontaneously buckle, wrinkle, fold, or crumple. Nature's thin tissues often experience significant anisotropic growth, which can act as the driving force for such instabilities. We use a recently developed finite element model to simulate the rich variety of nonlinear responses of Kirchhoff-Love sheets. The model uses subdivision surface shape functions in order to guarantee convergence of the method, and to allow a finite element description of anisotropically growing sheets in the classical Rayleigh-Ritz formalism. We illustrate the great potential in this approach by simulating the inflation of airbags, the buckling of a stretched cylinder, as well as the formation and scaling of wrinkles at free boundaries of growing sheets. Finally, we compare the folding of spatially confined sheets subject to growth and shrinking confinement to find that the two processes are equivalent.

  13. Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy

    PubMed Central

    Weigert, Martin; Bundschuh, Sebastian T.

    2018-01-01

    Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879

  14. Simulation of transient effects in the heavy ion fusion injectors

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jiuan; Hewett, D. W.

    1993-05-01

    We have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced.

  15. The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation

    NASA Astrophysics Data System (ADS)

    Lofverstrom, Marcus; Liakka, Johan

    2018-04-01

    Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.

  16. The effect of a guide field on local energy conversion during asymmetric magnetic reconnection: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Cassak, P.; Genestreti, K.; Burch, J. L.; Shay, M.; Swisdak, M.; Drake, J. F.; Price, L.; Eriksson, S.; Anderson, B. J.; Merkin, V. G.; Komar, C. M.; Phan, T.; Ergun, R.

    2017-12-01

    We use theoretical and computational techniques to study how the out-of-plane (guide) magnetic field strength modifies the location where the energy conversion rate between the electric field and the plasma is appreciable during asymmetric magnetic reconnection, motivated by observations by Genestreti et al. (J. Geophys. Res, submitted). For weak guide fields, the energy conversion rate is maximum midway between the X-line and electron stagnation point. As the guide field increases, it moves towards the electron stagnation point. We motivate how to extend the theory of the location of the stagnation points to include the effect of a guide field. The predictions are compared to two-dimensional (2D) particle-in-cell (PIC) simulations with vastly different guide fields. The simulations have upstream parameters corresponding to three reconnection events observed with MMS. The predictions agree reasonably well with the simulation results, having captured trends with the guide field. The theory correctly predicts that the energy conversion is closer to the X-line in the absolute sense as the guide field increases. The results are then compared to MMS observations, Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations of each event, and global resistive magnetohydrodynamics simulations of the 2015 Oct 16 event. The PIC simulation results agree well with the global observations and simulations, but differ in the strong electric fields and energy conversion rates found in the MMS observations. The results suggest that the strong electric fields observed by MMS do not represent a steady global rate.

  17. Global linear gyrokinetic simulations for LHD including collisions

    NASA Astrophysics Data System (ADS)

    Kauffmann, K.; Kleiber, R.; Hatzky, R.; Borchardt, M.

    2010-11-01

    The code EUTERPE uses a Particle-In-Cell (PIC) method to solve the gyrokinetic equation globally (full radius, full flux surface) for three-dimensional equilibria calculated with VMEC. Recently this code has been extended to include multiple kinetic species and electromagnetic effects. Additionally, a pitch-angle scattering operator has been implemented in order to include collisional effects in the simulation of instabilities and to be able to simulate neoclassical transport. As a first application of this extended code we study the effects of collisions on electrostatic ion-temperature-gradient (ITG) instabilities in LHD.

  18. Simulations of the plasma dynamics in high-current ion diodes

    NASA Astrophysics Data System (ADS)

    Boine-Frankenheim, O.; Pointon, T. D.; Mehlhorn, T. A.

    Our time-implicit fluid/Particle-In-Cell (PIC) code DYNAID [1]is applied to problems relevant for applied- B ion diode operation. We present simulations of the laser ion source, which will soon be employed on the SABRE accelerator at SNL, and of the dynamics of the anode source plasma in the applied electric and magnetic fields. DYNAID is still a test-bed for a higher-dimensional simulation code. Nevertheless, the code can already give new theoretical insight into the dynamics of plasmas in pulsed power devices.

  19. SPECT3D - A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output

    NASA Astrophysics Data System (ADS)

    MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A.

    2007-05-01

    SPECT3D is a multi-dimensional collisional-radiative code used to post-process the output from radiation-hydrodynamics (RH) and particle-in-cell (PIC) codes to generate diagnostic signatures (e.g. images, spectra) that can be compared directly with experimental measurements. This ability to post-process simulation code output plays a pivotal role in assessing the reliability of RH and PIC simulation codes and their physics models. SPECT3D has the capability to operate on plasmas in 1D, 2D, and 3D geometries. It computes a variety of diagnostic signatures that can be compared with experimental measurements, including: time-resolved and time-integrated spectra, space-resolved spectra and streaked spectra; filtered and monochromatic images; and X-ray diode signals. Simulated images and spectra can include the effects of backlighters, as well as the effects of instrumental broadening and time-gating. SPECT3D also includes a drilldown capability that shows where frequency-dependent radiation is emitted and absorbed as it propagates through the plasma towards the detector, thereby providing insights on where the radiation seen by a detector originates within the plasma. SPECT3D has the capability to model a variety of complex atomic and radiative processes that affect the radiation seen by imaging and spectral detectors in high energy density physics (HEDP) experiments. LTE (local thermodynamic equilibrium) or non-LTE atomic level populations can be computed for plasmas. Photoabsorption rates can be computed using either escape probability models or, for selected 1D and 2D geometries, multi-angle radiative transfer models. The effects of non-thermal (i.e. non-Maxwellian) electron distributions can also be included. To study the influence of energetic particles on spectra and images recorded in intense short-pulse laser experiments, the effects of both relativistic electrons and energetic proton beams can be simulated. SPECT3D is a user-friendly software package that runs on Windows, Linux, and Mac platforms. A parallel version of SPECT3D is supported for Linux clusters for large-scale calculations. We will discuss the major features of SPECT3D, and present example results from simulations and comparisons with experimental data.

  20. Numerical validation of axial plasma momentum lost to a lateral wall induced by neutral depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Yoshinori, E-mail: takao@ynu.ac.jp; Takahashi, Kazunori

    2015-11-15

    Momentum imparted to a lateral wall of a compact inductively coupled plasma thruster is numerically investigated for argon and xenon gases by a particle-in-cell simulation with Monte Carlo collisions (PIC-MCC). Axial plasma momentum lost to a lateral wall is clearly shown when axial depletion of the neutrals is enhanced, which is in qualitative agreement with the result in a recent experiment using a helicon plasma source [Takahashi et al., Phys. Rev. Lett. 114, 195001 (2015)]. The PIC-MCC calculations demonstrate that the neutral depletion causes an axially asymmetric profile of the plasma density and potential, leading to axial ion acceleration andmore » the non-negligible net axial force exerted to the lateral wall in the opposite direction of the thrust.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalas, S.; Dornmair, I.; Lehe, R.

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less

  2. An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey

    DOE PAGES

    Drlica-Wagner, A.; Bechtol, Keith; Allam, S.; ...

    2016-11-30

    Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness (more » $$\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of $${45}_{-4}^{+5}\\,\\mathrm{kpc}$$. The physical size ($${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$$) and low luminosity ($${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located $${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.« less

  3. An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drlica-Wagner, A.; Bechtol, Keith; Allam, S.

    Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness (more » $$\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of $${45}_{-4}^{+5}\\,\\mathrm{kpc}$$. The physical size ($${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$$) and low luminosity ($${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located $${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.« less

  4. Psychophysical experiments on the PicHunter image retrieval system

    NASA Astrophysics Data System (ADS)

    Papathomas, Thomas V.; Cox, Ingemar J.; Yianilos, Peter N.; Miller, Matt L.; Minka, Thomas P.; Conway, Tiffany E.; Ghosn, Joumana

    2001-01-01

    Psychophysical experiments were conducted on PicHunter, a content-based image retrieval (CBIR) experimental prototype with the following properties: (1) Based on a model of how users respond, it uses Bayes's rule to predict what target users want, given their actions. (2) It possesses an extremely simple user interface. (3) It employs an entropy- based scheme to improve convergence. (4) It introduces a paradigm for assessing the performance of CBIR systems. Experiments 1-3 studied human judgment of image similarity to obtain data for the model. Experiment 4 studied the importance of using: (a) semantic information, (b) memory of earlier input, and (c) relative and absolute judgments of similarity. Experiment 5 tested an approach that we propose for comparing performances of CBIR systems objectively. Finally, experiment 6 evaluated the most informative display-updating scheme that is based on entropy minimization, and confirmed earlier simulation results. These experiments represent one of the first attempts to quantify CBIR performance based on psychophysical studies, and they provide valuable data for improving CBIR algorithms. Even though they were designed with PicHunter in mind, their results can be applied to any CBIR system and, more generally, to any system that involves judgment of image similarity by humans.

  5. Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks

    PubMed Central

    Wang, Haiyan; He, Ke

    2018-01-01

    The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay. PMID:29690621

  6. Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks.

    PubMed

    Bai, Weigang; Wang, Haiyan; He, Ke; Zhao, Ruiqin

    2018-04-23

    The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay.

  7. An ice sheet model validation framework for the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of < 1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  8. An ice sheet model validation framework for the Greenland ice sheet

    PubMed Central

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2018-01-01

    We propose a new ice sheet model validation framework – the Cryospheric Model Comparison Tool (CmCt) – that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation. PMID:29697704

  9. An Ice Sheet Model Validation Framework for the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas A.; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey R.; Chambers, Don P.; Evans, Katherine J.; hide

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of less than 1 meter). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  10. Study on the Before Cavity Interaction in a Second Harmonic Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on before cavity interaction (BCI) in a 28 GHz second harmonic (SH) gryotron for industrial applications has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. On the contrary to the after cavity interaction (ACI), i.e. beam wave interaction in the non-linear uptaper after the cavity, which has been widely investigated, the BCI, i.e. beam wave interaction in the non-linear downtaper before the cavity connected to the beam tunnel with an entrance, is less noticed and discussed. Usually the BCI might be considered easy to be eliminated. However, this is not always the case. As the SH gyrotron had been designed for SH TE12 mode operation, the first harmonic (FH) plays the main competition. In the 3-D CFDTD PIC simulations, a port boundary has been employed for the gyro-beam entrance of the gyrotron cavity instead of a metallic short one which is not reflecting a realistic situation as an FH backward wave oscillation (BWO) is competing with the desired SH generation. A numerical instability has been found and identified as a failure of the entrance port boundary caused by an evanescent wave or mode conversion. This indicates the entrance and downtaper are not fully cut-off for some oscillations. A further study shows that the undesired oscillation is the FH TE11 BWO mode concentrated around the beam tunnel entrance and downtaper. A mitigation strategy has been found to suppress this undesired BCI and avoid possible damage to the gun region.

  11. Plasmon-induced charge separation: chemistry and wide applications.

    PubMed

    Tatsuma, Tetsu; Nishi, Hiroyasu; Ishida, Takuya

    2017-05-01

    Recent development of nanoplasmonics has stimulated chemists to utilize plasmonic nanomaterials for efficient and distinctive photochemical applications, and physicists to boldly go inside the "wet" chemistry world. The discovery of plasmon-induced charge separation (PICS) has even accelerated these trends. On the other hand, some confusion is found in discussions about PICS. In this perspective, we focus on differences between PICS and some other phenomena such as co-catalysis effect and plasmonic nanoantenna effect. In addition, materials and nanostructures suitable for PICS are shown, and characteristics and features unique to PICS are documented. Although it is well known that PICS has been applied to photovoltaics and photocatalysis, here light is shed on other applications that take better advantage of PICS, such as chemical sensing and biosensing, various photochromisms, photoswitchable functionalities and nanoscale photofabrication.

  12. 2-dimensional simulations of electrically asymmetric capacitively coupled RF-discharges

    NASA Astrophysics Data System (ADS)

    Mohr, Sebastian; Schulze, Julian; Schuengel, Edmund; Czarnetzki, Uwe

    2011-10-01

    Capactively coupled RF-discharges are widely used for surface treatment like the deposition of thin films. For industrial applications, the independent control of the ion flux to and the mean energy of the electrons impinging on the surfaces is desired. Experiments and 1D3v-PIC/MCC-simulations have shown that this independent control is possible by applying a fundamental frequency and its second harmonic to the powered electrode. This way, even in geometrically symmetric discharges, as they are often used in industrial reactors, a discharge asymmetry can be induced electrically, hence the name Electrical Asymmetry Effect (EAE). We performed 2D-simulations of electrically asymmetric discharges using HPEM by the group of Mark Kushner, a simulation tool suitable for simulating industrial reactors. First results are presented and compared to previously obtained experimental and simulation data. The comparison shows that for the first time, we succeeded in simulating electrically asymmetric discharges with a 2-dimensional simulation. Capactively coupled RF-discharges are widely used for surface treatment like the deposition of thin films. For industrial applications, the independent control of the ion flux to and the mean energy of the electrons impinging on the surfaces is desired. Experiments and 1D3v-PIC/MCC-simulations have shown that this independent control is possible by applying a fundamental frequency and its second harmonic to the powered electrode. This way, even in geometrically symmetric discharges, as they are often used in industrial reactors, a discharge asymmetry can be induced electrically, hence the name Electrical Asymmetry Effect (EAE). We performed 2D-simulations of electrically asymmetric discharges using HPEM by the group of Mark Kushner, a simulation tool suitable for simulating industrial reactors. First results are presented and compared to previously obtained experimental and simulation data. The comparison shows that for the first time, we succeeded in simulating electrically asymmetric discharges with a 2-dimensional simulation. Funding: German Ministry for the Environment (0325210B).

  13. The use of polyion complex micelles to enhance the oral delivery of salmon calcitonin and transport mechanism across the intestinal epithelial barrier.

    PubMed

    Li, Na; Li, Xin-Ru; Zhou, Yan-Xia; Li, Wen-Jing; Zhao, Yong; Ma, Shu-Jin; Li, Jin-Wen; Gao, Ya-Jie; Liu, Yan; Wang, Xing-Lin; Yin, Dong-Dong

    2012-12-01

    The objective of the present study was to demonstrate the effect of polyanionic copolymer mPEG-grafted-alginic acid (mPEG-g-AA)-based polyion complex (PIC) micelles on enhancing the oral absorption of salmon calcitonin (sCT) in vivo and in vitro and identify the transepithelial transport mechanism of PIC micelles across the intestinal barrier. mPEG-g-AA was first successfully synthesized and characterized in cytotoxicity. The PIC micelles were approximately of 72 nm in diameter with a narrow distribution. The extremely significant enhancement of hypocalcemia efficacy of sCT-loaded PIC micelles in rats was evidenced by intraduodenal administration in comparison with sCT solution. The presence of mPEG-grafted-chitosan in PIC micelles had no favorable effect on this action in the referred content. In the Caco-2 transport studies, PIC micelles could significantly increase the permeability of sCT across Caco-2 monolayers without significantly affecting transepithelial electrical resistance values during the transport study. No evident alterations in the F-actin cytoskeleton were detected by confocal microscope observation following treatment of the cell monolayers with PIC micelles, which further certified the incapacity of PIC micelles to open the intercellular tight junctions. In addition, TEM observations showed that the intact PIC micelles were transported across the everted gut sac. These suggested that the transport of PIC micelles across Caco-2 cell monolayers involve a predominant transcytosis mechanism via endocytosis rather than paracellular pathway. Furthermore, PIC micelles were localized in both the cytoplasm and the nuclei observed by CLSM. Therefore, PIC micelles might be a potentially applicable tool for enhancing the oral absorption of cationic peptide and protein drugs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system

    NASA Astrophysics Data System (ADS)

    Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin

    2018-03-01

    In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.

  15. Revisiting linear plasma waves for finite value of the plasma parameter

    NASA Astrophysics Data System (ADS)

    Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren

    2010-11-01

    We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.

  16. ESCAP/POPIN Expert Working Group on Development of Population Information Centres and Networks, 20-23 June 1984, Bangkok, Thailand.

    PubMed

    1984-07-01

    An overview of current population information programs at the regional, national, and global level was presented at a meeting of the Expert Working Group on Development of Population Information Centres and Networks. On the global level, the decentralized Population Information Network (POPIN) was established, consisting of population libraries, clearinghouses, information systems, and documentation centers. The Economic and Social Commission for Asia and the Pacific (ESCAP) Regional Population Information Centre (PIC) has actively promoted the standardization of methodologies for the collection and processing of data, the use of compatible terminology, adoption of classification systems, computer-assisted data and information handling, and improved programs of publication and infomration dissemination, within and among national centers. Among the national PICs, 83% are attached to the primary national family planning/fertility control unit and 17% are attached to demographic data, research, and analysis units. Lack of access to specialized information handling equipment such as microcomputers, word processors, and computer terminals remains a problem for PICs. Recommendations were made by the Expert Working Group to improve the functions of PICs: 1) the mandate and resoponsibilities of the PIC should be explicilty stated; 2) PICs should collect, process, and disseminate population information in the most effective format to workers in the population feild; 3) PICs should be given flexibility in the performance of activitites by their governing bodies; 4) short-term training should be provided in computerization and dissemination of information; 5) research and evaluation mechanisms for PIC activities should be developed; 6) PIC staff should prepare policy briefs for decision makers; 7) access to parent organizations should be given to nongovernment PICs; 8) study tours to foreign PICs should be organized for PIC staff; and 9) on-the-job training in indexing and abstracting should be provided. Networking among PICs can be further facilitated by written acquisition policies, automation of bibliographic information, common classification systems, and exchange of ideas and experience between various systems.

  17. Comparison of Children With and Without ADHD on a New Pictorial Self-Assessment of Executive Functions.

    PubMed

    Bar-Ilan, Ruthie Traub; Cohen, Noa; Maeir, Adina

    We examined the Pictorial Interview of Children's Metacognition and Executive Functions' (PIC-ME's) reliability and validity, targeting children's appraisal of their executive function (EF) in daily life. One hundred children with attention deficit hyperactivity disorder (ADHD) and 44 typically developing children (ages 5-10 yr) completed the PIC-ME. Parents completed the PIC-ME and Behavior Rating Inventory of Executive Function (BRIEF). Cronbach's α for the child PIC-ME was .914. A high correlation was found between the parent PIC-ME total and the BRIEF (r = .724). Comparisons between groups revealed significant differences on the parent PIC-ME (p < .0001) but none on the child PIC-ME. Children with ADHD identified a median of eight EF challenges they wanted to set as treatment goals. Results support the PIC-ME's initial reliability and validity among children with ADHD. Children were able to identify several EF challenges and engage in goal setting. Copyright © 2018 by the American Occupational Therapy Association, Inc.

  18. Anharmonic resonance absorption of short laser pulses in clusters: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Mahalik, S. S.; Kundu, M.

    2016-12-01

    Linear resonance (LR) absorption of an intense 800 nm laser light in a nano-cluster requires a long laser pulse >100 fs when Mie-plasma frequency ( ω M ) of electrons in the expanding cluster matches the laser frequency (ω). For a short duration of the pulse, the condition for LR is not satisfied. In this case, it was shown by a model and particle-in-cell (PIC) simulations [Phys. Rev. Lett. 96, 123401 (2006)] that electrons absorb laser energy by anharmonic resonance (AHR) when the position-dependent frequency Ω [ r ( t ) ] of an electron in the self-consistent anharmonic potential of the cluster satisfies Ω [ r ( t ) ] = ω . However, AHR remains to be a debate and still obscure in multi-particle plasma simulations. Here, we identify AHR mechanism in a laser driven cluster using molecular dynamics (MD) simulations. By analyzing the trajectory of each MD electron and extracting its Ω [ r ( t ) ] in the self-generated anharmonic plasma potential, it is found that electron is outer ionized only when AHR is met. An anharmonic oscillator model, introduced here, brings out most of the features of MD electrons while passing the AHR. Thus, we not only bridge the gap between PIC simulations, analytical models, and MD calculations for the first time but also unequivocally prove that AHR process is a universal dominant collisionless mechanism of absorption in the short pulse regime or in the early time of longer pulses in clusters.

  19. Comparisons of Spectra from 3D Kinetic Meteor PIC Simulations with Theory and Observations

    NASA Astrophysics Data System (ADS)

    Oppenheim, M. M.; Tarnecki, L. K.

    2017-12-01

    Meteoroids smaller than a grain of sand have significant impacts on the composition, chemistry, and dynamics of the atmosphere. The processes by which they turbulently diffuse can be studied using collisional kinetic particle-in-cell (PIC) simulations. Spectral analysis is a valuable tool for comparing such simulations of turbulent, non-specular meteor trails with observations. We present three types of spectral information: full spectra along the trail in k-ω space, spectral widths at common radar frequencies, and power as a function of angle with respect to B. These properties can be compared to previously published data. Zhou et al. (2004) use radar theory to predict the power observed by a radar as a function of the angle between the meteor trail and the radar beam and the size of field-aligned irregularities (FAI) within the trail. Close et al. (2008) present observations of meteor trails from the ALTAIR radar, including power returned as a function of angle off B for a small sample of meteors. Close et al. (2008) and Zhou et al. (2004) both suggest a power drop off of 2-3 dB per degree off perpendicular to B. We compare results from our simulations with both theory and observations for a range of conditions, including trail altitude and incident neutral wind speed. For 1m waves, power fell off by 1-3 dB per degree off perpendicular to B. These comparisons help determine if small-scale simulations accurately capture the behavior of real meteors.

  20. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haakonsen, Christian Bernt, E-mail: chaako@mit.edu; Hutchinson, Ian H., E-mail: ihutch@mit.edu; Zhou, Chuteng, E-mail: ctzhou@mit.edu

    2015-03-15

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effectsmore » can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.« less

  1. Low-temperature plasma simulations with the LSP PIC code

    NASA Astrophysics Data System (ADS)

    Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy

    2014-10-01

    The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  2. Particle in cell simulation of peaking switch for breakdown evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (withoutmore » peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)« less

  3. Moment Preserving Adaptive Particle Weights using Octree Velocity Distributions for PIC Simulations

    DTIC Science & Technology

    2012-07-01

    with prevention of runaway computational costs. The standard approach of merging of particles[1] using pair-wise coalescence (2:1 ratio), cannot...approximately 2:1. This is lower than 5.5:1 because, in each of the eight children cells, the number of particles ranges between 0- 11 rather than being

  4. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles.

    PubMed

    Kim, Hyun Jin; Takemoto, Hiroyasu; Yi, Yu; Zheng, Meng; Maeda, Yoshinori; Chaya, Hiroyuki; Hayashi, Kotaro; Mi, Peng; Pittella, Frederico; Christie, R James; Toh, Kazuko; Matsumoto, Yu; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2014-09-23

    For systemic delivery of siRNA to solid tumors, a size-regulated and reversibly stabilized nanoarchitecture was constructed by using a 20 kDa siRNA-loaded unimer polyion complex (uPIC) and 20 nm gold nanoparticle (AuNP). The uPIC was selectively prepared by charge-matched polyionic complexation of a poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) copolymer bearing ∼40 positive charges (and thiol group at the ω-end) with a single siRNA bearing 40 negative charges. The thiol group at the ω-end of PEG-PLL further enabled successful conjugation of the uPICs onto the single AuNP through coordinate bonding, generating a nanoarchitecture (uPIC-AuNP) with a size of 38 nm and a narrow size distribution. In contrast, mixing thiolated PEG-PLLs and AuNPs produced a large aggregate in the absence of siRNA, suggesting the essential role of the preformed uPIC in the formation of nanoarchitecture. The smart uPIC-AuNPs were stable in serum-containing media and more resistant against heparin-induced counter polyanion exchange, compared to uPICs alone. On the other hand, the treatment of uPIC-AuNPs with an intracellular concentration of glutathione substantially compromised their stability and triggered the release of siRNA, demonstrating the reversible stability of these nanoarchitectures relative to thiol exchange and negatively charged AuNP surface. The uPIC-AuNPs efficiently delivered siRNA into cultured cancer cells, facilitating significant sequence-specific gene silencing without cytotoxicity. Systemically administered uPIC-AuNPs showed appreciably longer blood circulation time compared to controls, i.e., bare AuNPs and uPICs, indicating that the conjugation of uPICs onto AuNP was crucial for enhancing blood circulation time. Finally, the uPIC-AuNPs efficiently accumulated in a subcutaneously inoculated luciferase-expressing cervical cancer (HeLa-Luc) model and achieved significant luciferase gene silencing in the tumor tissue. These results demonstrate the strong potential of uPIC-AuNP nanoarchitectures for systemic siRNA delivery to solid tumors.

  5. Flying mirror model for interaction of a super-intense laser pulse with a thin plasma layer: Transparency and shaping of linearly polarized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulagin, Victor V.; Cherepenin, Vladimir A.; Hur, Min Sup

    2007-11-15

    A self-consistent one-dimensional (1D) flying mirror model is developed for description of an interaction of an ultra-intense laser pulse with a thin plasma layer (foil). In this model, electrons of the foil can have large longitudinal displacements and relativistic longitudinal momenta. An approximate analytical solution for a transmitted field is derived. Transmittance of the foil shows not only a nonlinear dependence on the amplitude of the incident laser pulse, but also time dependence and shape dependence in the high-transparency regime. The results are compared with particle-in-cell (PIC) simulations and a good agreement is ascertained. Shaping of incident laser pulses usingmore » the flying mirror model is also considered. It can be used either for removing a prepulse or for reducing the length of a short laser pulse. The parameters of the system for effective shaping are specified. Predictions of the flying mirror model for shaping are compared with the 1D PIC simulations, showing good agreement.« less

  6. Front surface structured targets for enhancing laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  7. Influence of wall plasma on microwave frequency and power in relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jun; Cao, Yibing; Teng, Yan

    2015-07-15

    The RF breakdown of the slow wave structure (SWS), which will lead to the generation of the wall plasma, is an important cause for pulse shortening in relativistic backward wave oscillators. Although many researchers have performed profitable studies about this issue, the influence mechanism of this factor on the microwave generation still remains not-so-clear. This paper simplifies the wall plasma with an “effective” permittivity and researches its influence on the microwave frequency and power. The dispersion relation of the SWS demonstrates that the introduction of the wall plasma will move the dispersion curves upward to some extent, which is confirmedmore » by particle-in-cell (PIC) simulations and experiments. The plasma density and volume mainly affect the dispersion relation at the upper and lower frequency limits of each mode, respectively. Meanwhile, PIC simulations show that even though no direct power absorption exists since the wall plasma is assumed to be static, the introduction of the wall plasma may also lead to the decrease in microwave power by changing the electrodynamic property of the SWS.« less

  8. Transport Simulations for Fast Ignition on NIF

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Tabak, M.; Grote, D. P.; Town, R. P. J.; Kemp, A. J.

    2009-11-01

    Calculations of the transport and deposition of a relativistic electron beam into fast-ignition fuel configurations are presented. The hybrid PIC code LSP is used, run in implicit mode and with fluid background particles. The electron beam distribution is chosen based on explicit PIC simulations of the short-pulse LPI. These generally display two hot-electron temperatures, one close to the ponderomotive scaling and one that is much lower. Fast-electron collisions utilize the formulae of J. R. Davies [S. Atzeni et al., Plasma Phys. Controlled Fusion 51 (2009)], and are done with a conservative, relativistic grid-based method similar to Lemons et al., J. Comput. Phys. 228 (2009). We include energy loss off both bound and free electrons in partially-ionized media (such as a gold cone), and have started to use realistic ionization and non-ideal EOS models. We have found the fractional energy coupling into the dense fuel is higher for CD than DT targets, due to the enhanced resistivity and resulting magnetic fields. The coupling enhancement due to magnetic fields and beam characteristics (such as angular spectrum) will be quantified.

  9. Cross-verification of the GENE and XGC codes in preparation for their coupling

    NASA Astrophysics Data System (ADS)

    Jenko, Frank; Merlo, Gabriele; Bhattacharjee, Amitava; Chang, Cs; Dominski, Julien; Ku, Seunghoe; Parker, Scott; Lanti, Emmanuel

    2017-10-01

    A high-fidelity Whole Device Model (WDM) of a magnetically confined plasma is a crucial tool for planning and optimizing the design of future fusion reactors, including ITER. Aiming at building such a tool, in the framework of the Exascale Computing Project (ECP) the two existing gyrokinetic codes GENE (Eulerian delta-f) and XGC (PIC full-f) will be coupled, thus enabling to carry out first principle kinetic WDM simulations. In preparation for this ultimate goal, a benchmark between the two codes is carried out looking at ITG modes in the adiabatic electron limit. This verification exercise is also joined by the global Lagrangian PIC code ORB5. Linear and nonlinear comparisons have been carried out, neglecting for simplicity collisions and sources. A very good agreement is recovered on frequency, growth rate and mode structure of linear modes. A similarly excellent agreement is also observed comparing the evolution of the heat flux and of the background temperature profile during nonlinear simulations. Work supported by the US DOE under the Exascale Computing Project (17-SC-20-SC).

  10. Hybrid-PIC simulation of sputtering product distribution in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Cao, Xifeng; Hang, Guanrong; Liu, Hui; Meng, Yingchao; Luo, Xiaoming; Yu, Daren

    2017-10-01

    Hall thrusters have been widely used in orbit correction and the station-keeping of geostationary satellites due to their high specific impulse, long life, and high reliability. During the operating life of a Hall thruster, high-energy ions will bombard the discharge channel and cause serious erosion. As time passes, this sputtering process will change the macroscopic surface morphology of the discharge channel, especially near the exit, thus affecting the performance of the thruster. Therefore, it is necessary to carry out research on the motion of the sputtering products and erosion process of the discharge wall. To better understand the moving characteristics of sputtering products, based on the hybrid particle-in-cell (PIC) numerical method, this paper simulates the different erosion states of the thruster discharge channel in different moments and analyzes the moving process of different particles, such as B atoms and B+ ions. In this paper, the main conclusion is that B atoms are mainly produced on both sides of the channel exit, and B+ ions are mainly produced in the middle of the channel exit. The ionization rate of B atoms is approximately 1%.

  11. Effects of chromium(III) picolinate on cortisol and DHEAs secretion in H295R human adrenocortical cells.

    PubMed

    Kim, Beob G; Adams, Julye M; Jackson, Brian A; Lindemann, Merlin D

    2010-02-01

    Dietary chromium(III) picolinate (CrPic) effects on circulating steroid hormones have been reported in various experimental animals. However, direct effects of CrPic on adrenocortical steroidogenesis are uncertain. Therefore, the objective was to determine the effects of CrPic on cortisol and dehydroepiandrosterone sulfate (DHEAs) secretion from H295R cells. In experiment 1, a 24-h exposure to CrPic (0 to 200 microM) had both linear (p < 0.001) and quadratic (p < 0.001) effects on cortisol secretion from forskolin-stimulated cells with the highest cortisol secretion at 0.1 microM of CrPic and the lowest at 200 microM of CrPic. In experiment 2, a 48-h exposure to CrPic (200 microM) decreased cortisol (p < 0.07) release from forskolin-stimulated cells during a 24-h collection period. In experiment 3, a 48-h exposure to CrPic (100 microM) decreased cortisol (p < 0.05) and DHEAs (p < 0.01) from forskolin-stimulated cells during a 24-h sampling period. In experiment 4, a 24-h exposure to forskolin followed by a 24-h exposure to both forskolin and CrPic (100 and 200 microM) decreased both cortisol and DHEAs secretion (p < 0.01). This study suggests that at high concentrations, CrPic inhibits aspects of steroidogenesis in agonist-stimulated adrenocortical cells.

  12. PIC Activation through Functional Interplay between Mediator and TFIIH.

    PubMed

    Malik, Sohail; Molina, Henrik; Xue, Zhu

    2017-01-06

    The multiprotein Mediator coactivator complex functions in large part by controlling the formation and function of the promoter-bound preinitiation complex (PIC), which consists of RNA polymerase II and general transcription factors. However, precisely how Mediator impacts the PIC, especially post-recruitment, has remained unclear. Here, we have studied Mediator effects on basal transcription in an in vitro transcription system reconstituted from purified components. Our results reveal a close functional interplay between Mediator and TFIIH in the early stages of PIC development. We find that under conditions when TFIIH is not normally required for transcription, Mediator actually represses transcription. TFIIH, whose recruitment to the PIC is known to be facilitated by the Mediator, then acts to relieve Mediator-induced repression to generate an active form of the PIC. Gel mobility shift analyses of PICs and characterization of TFIIH preparations carrying mutant XPB translocase subunit further indicate that this relief of repression is achieved through expending energy via ATP hydrolysis, suggesting that it is coupled to TFIIH's established promoter melting activity. Our interpretation of these results is that Mediator functions as an assembly factor that facilitates PIC maturation through its various stages. Whereas the overall effect of the Mediator is to stimulate basal transcription, its initial engagement with the PIC generates a transcriptionally inert PIC intermediate, which necessitates energy expenditure to complete the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Prevalence and characteristics of plateau iris configuration among American Caucasian, American Chinese and mainland Chinese subjects.

    PubMed

    Li, Yingjie; Wang, Ye Elaine; Huang, Guofu; Wang, Dandan; He, Mingguang; Qiu, Mary; Lin, Shan

    2014-04-01

    To investigate the prevalence, risk factors and characteristics of plateau iris configuration (PIC) among American Caucasian, American Chinese and mainland Chinese. This multicentre, cross-sectional study of non-glaucomatous subjects (40-80 years) included 111 American Caucasian, 116 American Chinese and 110 mainland Chinese. Prevalence of PIC based on ultrasound biomicroscopy imaging was compared among the different ethnic groups. Risk factors and anterior segment optical coherence tomography-measured iris and angle parameters in eyes with PIC were compared. The prevalence of PIC was 25.2% in American Caucasian, 24.1% in American Chinese and 20.9% in mainland Chinese (p=0.73). The presence of PIC was associated with more positive spherical equivalence (OR=1.31, p=0.002) and shorter axial length (OR=0.75, p=0.04). There were significant differences in angle recess area (ARA) (p=0.04), IT750 (p=0.007) and IT2000 (p<0.001) between Chinese and Caucasians who have PIC. The prevalence of PIC did not differ among American Caucasian, American Chinese and mainland Chinese. PIC was associated with non-myopia and shorter axial length. Chinese eyes with PIC had smaller ARA and thicker irides than Caucasian ones. PIC might be a physiological variation of the iris and ciliary body that exists in normal eyes, both in Chinese and Caucasians.

  14. Plasmon-induced charge separation: chemistry and wide applications

    PubMed Central

    Nishi, Hiroyasu; Ishida, Takuya

    2017-01-01

    Recent development of nanoplasmonics has stimulated chemists to utilize plasmonic nanomaterials for efficient and distinctive photochemical applications, and physicists to boldly go inside the “wet” chemistry world. The discovery of plasmon-induced charge separation (PICS) has even accelerated these trends. On the other hand, some confusion is found in discussions about PICS. In this perspective, we focus on differences between PICS and some other phenomena such as co-catalysis effect and plasmonic nanoantenna effect. In addition, materials and nanostructures suitable for PICS are shown, and characteristics and features unique to PICS are documented. Although it is well known that PICS has been applied to photovoltaics and photocatalysis, here light is shed on other applications that take better advantage of PICS, such as chemical sensing and biosensing, various photochromisms, photoswitchable functionalities and nanoscale photofabrication. PMID:28507702

  15. Multi-millennia simulation of Greenland deglaciation from the Max-Plank-Institute Model (MPI-ISM) 2xCO2 simulation

    NASA Astrophysics Data System (ADS)

    Cabot, Vincent; Vizcaino, Miren; Mikolajewicz, Uwe

    2016-04-01

    Long-term ice sheet and climate coupled simulations are of great interest since they assess how the Greenland Ice Sheet (GrIS) will respond to global warming and how GrIS changes will impact on the climate system. We have run the Max-Plank-Institute Earth System Model coupled with an Ice Sheet Model (SICOPOLIS) over a time period of 10500 years under two times CO2 forcing. This is a coupled atmosphere (ECHAM5T31), ocean (MPI-OM), dynamic vegetation (LPJ), and ice sheet (SICOPOLIS, 10 km horizontal resolution) model. Given the multi-millennia simulation, the horizontal spatial resolution of the atmospheric component is relatively coarse (3.75°). A time-saving technique (asynchronous coupling) is used once the global climate reaches quasi-equilibrium. In our doubling-CO2 simulation, the GrIS is expected to break up into two pieces (one ice cap in the far north on one ice sheet in the south and east) after 3000 years. During the first 500 simulation years, the GrIS climate and surface mass balance (SMB) are mainly affected by the greenhouse effect-forced climate change. After the simulated year 500, the global climate reaches quasi-equilibrium. Henceforth Greenland climate change is mainly due to ice sheet decay. GrIS albedo reduction enhances melt and acts as a powerful feedback for deglaciation. Due to increased cloudiness in the Arctic region as a result of global climate change, summer incoming shortwave radiation is substantially reduced over Greenland, reducing deglaciation rates. At the end of the simulation, Greenland becomes green with forest growing over the newly deglaciated regions. References: Helsen, M. M., van de Berg, W. J., van de Wal, R. S. W., van den Broeke, M. R., and Oerlemans, J. (2013), Coupled regional climate-ice-sheet simulation shows limited Greenland ice loss during the Eemian, Climate of the Past, 9, 1773-1788, doi: 10.5194/cp-9-1773-2013 Helsen, M. M., van de Wal, R. S. W., van den Broeke, M. R., van de Berg, W. J., and Oerlemans, J. (2015), Coupling of climate models and ice sheet models by the surface mass balance gradients: application to the Greenland Ice Sheet, The Cryosphere, 6, 255-272, doi: 10.5194/tc-6-255-2012 Robinson, A., Calov, R., and Ganopolski, A. (2011), Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial, Climate of the Past, 7, 381-396, doi: 10.5194/cp-7-381-2011 Vizcaino, M., Mikolajewicz, U., Ziemen, F., Rodehacke, C. B., Greve, R., and van den Broeke, M. R. (2015), Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300, Geophysical Research Letters, 42, doi: 10.1002/2014GL061142

  16. Analysis and optimization of chlorocarbon incineration through use of a detailed reaction mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, W.; Booty, M.R.; Magee, R.S.

    1995-12-01

    Chemical species profiles are calculated by using a detailed reaction mechanism and a reactor code that simulates a well-mixed, three-zone incineration process. The chemical systems include CH{sub 3}Cl/CH{sub 4} and CH{sub 2}Cl{sub 2}/CH{sub 4} oxidation in air at fuel equivalence ratios {phi} from 0.8 to 1.1, with additives injected at downstream positions. Combustion is characterized for temperature, principal organic hazardous constituent (POHC), and product of incomplete combustion (PIC) levels. Major PICs comprise Cl, CL{sub 2}, CO, HOCl, and COCl{sub 2} and are calculated versus time, temperature, fuel equivalence ratio, and feed conditions. Steam, H{sub 2}O{sub 2}, O{sub 2}, air, andmore » other species are injected as additives in the burnout region to discern changes i the combustion chemistry. Steam addition improves or decreases the CO/CO{sub 2} ratio at an additive mole fraction of 0.1. Atomic Cl is the active radical species of highest concentration in the initial high-temperature reaction zone when CH{sub 3}Cl is the POHC at a feed concentration above 1,200 ppm and {phi} {le} 1. Cl{sub 2} is found to be a major PIC under fuel-lean and stoichiometric conditions, while CO is a major PIC under fuel-rich conditions. Reduction of combined CO and Cl{sub 2} levels in the incinerator stack effluent is achieved by operation at stoichiometric conditions or slightly fuel-lean with the controlled addition of high-temperature steam.« less

  17. The effect of realistic heavy particle induced secondary electron emission coefficients on the electron power absorption dynamics in single- and dual-frequency capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Daksha, M.; Derzsi, A.; Wilczek, S.; Trieschmann, J.; Mussenbrock, T.; Awakowicz, P.; Donkó, Z.; Schulze, J.

    2017-08-01

    In particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations of capacitively coupled plasmas (CCPs), the plasma-surface interaction is generally described by a simple model in which a constant secondary electron emission coefficient (SEEC) is assumed for ions bombarding the electrodes. In most PIC/MCC studies of CCPs, this coefficient is set to γ = 0.1, independent of the energy of the incident particle, the electrode material, and the surface conditions. Here, the effects of implementing energy-dependent secondary electron yields for ions, fast neutrals, and taking surface conditions into account in PIC/MCC simulations is investigated. Simulations are performed using self-consistently calculated effective SEECs, {γ }* , for ‘clean’ (e.g., heavily sputtered) and ‘dirty’ (e.g., oxidized) metal surfaces in single- and dual-frequency discharges in argon and the results are compared to those obtained by assuming a constant secondary electron yield of γ =0.1 for ions. In single-frequency (13.56 MHz) discharges operated under conditions of low heavy particle energies at the electrodes, the pressure and voltage at which the transition between the α- and γ-mode electron power absorption occurs are found to strongly depend on the surface conditions. For ‘dirty’ surfaces, the discharge operates in α-mode for all conditions investigated due to a low effective SEEC. In classical dual-frequency (1.937 MHz + 27.12 MHz) discharges {γ }* significantly increases with increasing low-frequency voltage amplitude, {V}{LF}, for dirty surfaces. This is due to the effect of {V}{LF} on the heavy particle energies at the electrodes, which negatively influences the quality of the separate control of ion properties at the electrodes. The new results on the separate control of ion properties in such discharges indicate significant differences compared to previous results obtained with different constant values of γ.

  18. Variables that influence energy partition in asymmetric reconnection

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Yamada, M.; Yoo, J.

    2017-12-01

    The energy conversion in the diffusion region during asymmetric reconnection is studied using particle-in-cell (PIC) simulations and measurements from the Magnetospheric Multiscale (MMS) spacecraft. The simulation analysis shows that the energy partition is highly region-dependent and varies with the guide field strength. Without a guide field, within the central electron diffusion region, the input magnetic energy is mostly converted to the electron thermal energies; half of the magnetic energy input to the region extending from the X-line to a few ion inertial lengths downstream where the ion outflow peaks is converted to the plasma energy gain, with approximately equal partition between ions and electrons, similar to the laboratory results from the Magnetic Reconnection Experiment (MRX); over the entire ion diffusion region, about half of the energy goes to ions, and 20% goes to electrons. Electrons obtain energies mainly from the reconnection electric field (Er). For the ion total energy gain in the diffusion region, about 2/3 comes from the in-plane electrostatic field Ein and 1/3 comes from Er. Adding a guide field tends to reduce the plasma energy gain through reducing the contribution from Ein, even though the reconnection rates are similar. The energy partition in the diffusion region observed by MMS is estimated and compared with the results from PIC simulations and MRX experiments.

  19. PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Sarri, G.; Murphy, G. C.; Bret, A.; Romagnani, L.; Kourakis, I.; Borghesi, M.; Ynnerman, A.; O'C Drury, L.

    2012-02-01

    The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.

  20. PIC simulations of the trapped electron filamentation instability in finite-width electron plasma waves

    NASA Astrophysics Data System (ADS)

    Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.

    2012-10-01

    We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.

  1. A numerical analysis of plasma non-uniformity in the parallel plate VHF-CCP and the comparison among various model

    NASA Astrophysics Data System (ADS)

    Sawada, Ikuo

    2012-10-01

    We measured the radial distribution of electron density in a 200 mm parallel plate CCP and compared it with results from numerical simulations. The experiments were conducted with pure Ar gas with pressures ranging from 15 to 100 mTorr and 60 MHz applied at the top electrode with powers from 500 to 2000W. The measured electron profile is peaked in the center, and the relative non-uniformity is higher at 100 mTorr than at 15 mTorr. We compare the experimental results with simulations with both HPEM and Monte-Carlo/PIC codes. In HPEM simulations, we used either fluid or electron Monte-Carlo module, and the Poisson or the Electromagnetic solver. None of the models were able to duplicate the experimental results quantitatively. However, HPEM with the electron Monte-Carlo module and PIC qualitatively matched the experimental results. We will discuss the results from these models and how they illuminate the mechanism of enhanced electron central peak.[4pt] [1] T. Oshita, M. Matsukuma, S.Y. Kang, I. Sawada: The effect of non-uniform RF voltage in a CCP discharge, The 57^th JSAP Spring Meeting 2010[4pt] [2] I. Sawada, K. Matsuzaki, S.Y. Kang, T. Ohshita, M. Kawakami, S. Segawa: 1-st IC-PLANTS, 2008

  2. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  3. Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations

    NASA Astrophysics Data System (ADS)

    Hubert, G.; Pazianotto, M. T.; Federico, C. A.

    2016-12-01

    This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En < 0.5 eV) and lesser degree in epithermal and evaporation domains (i.e., 0.5 eV < En < 0.1 MeV and 0.1 MeV < En < 20 MeV, respectively). Cascade neutron (En > 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.

  4. An ice sheet model validation framework for the Greenland ice sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few decades. An extensible design will allow for continued use of the CMCT as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.« less

  5. An ice sheet model validation framework for the Greenland ice sheet

    DOE PAGES

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; ...

    2017-01-17

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few decades. An extensible design will allow for continued use of the CMCT as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.« less

  6. Tuning the Size of Nanoassembles: A Hierarchical Transfer of Information from Dendrimers to Polyion Complexes.

    PubMed

    Amaral, Sandra P; Tawara, Maun H; Fernandez-Villamarin, Marcos; Borrajo, Erea; Martínez-Costas, José; Vidal, Anxo; Riguera, Ricardo; Fernandez-Megia, Eduardo

    2018-05-04

    The generation of dendrimers is a powerful tool in the control of the size and biodistribution of polyion complexes (PIC). Using a combinatorial screening of six dendrimers (18-243 terminal groups) and five oppositely charged PEGylated copolymers, a dendrimer-to-PIC hierarchical transfer of structural information was revealed with PIC diameters that increased from 80 to 500 nm on decreasing the dendrimer generation. This rise in size, which was also accompanied by a micelle-to-vesicle transition, is interpreted according to a cone- to rod-shaped progression in the architecture of the unit PIC (uPIC). This precise size tuning enabled dendritic PICs to act as nanorulers for controlled biodistribution. Overall, a domino-like control of the size and biological properties of PIC that is not attainable with linear polymers is feasible through dendrimer generation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Inter-annual Variability in Global Suspended Particulate Inorganic Carbon Inventory Using Space-based Measurements

    NASA Astrophysics Data System (ADS)

    Hopkins, J.; Balch, W. M.; Henson, S.; Poulton, A. J.; Drapeau, D.; Bowler, B.; Lubelczyk, L.

    2016-02-01

    Coccolithophores, the single celled phytoplankton that produce an outer covering of calcium carbonate coccoliths, are considered to be the greatest contributors to the global oceanic particulate inorganic carbon (PIC) pool. The reflective coccoliths scatter light back out from the ocean surface, enabling PIC concentration to be quantitatively estimated from ocean color satellites. Here we use datasets of AQUA MODIS PIC concentration from 2003-2014 (using the recently-revised PIC algorithm), as well as statistics on coccolithophore vertical distribution derived from cruises throughout the world ocean, to estimate the average global (surface and integrated) PIC standing stock and its associated inter-annual variability. In addition, we divide the global ocean into Longhurst biogeochemical provinces, update the PIC biomass statistics and identify those regions that have the greatest inter-annual variability and thus may exert the greatest influence on global PIC standing stock and the alkalinity pump.

  8. β-Sheet Containment by Flanking Prolines: Molecular Dynamic Simulations of the Inhibition of β-Sheet Elongation by Proline Residues in Human Prion Protein

    PubMed Central

    Shamsir, Mohd S.; Dalby, Andrew R.

    2007-01-01

    Previous molecular dynamic simulations have reported elongation of the existing β-sheet in prion proteins. Detailed examination has shown that these elongations do not extend beyond the proline residues flanking these β-sheets. In addition, proline has also been suggested to possess a possible structural role in preserving protein interaction sites by preventing invasion of neighboring secondary structures. In this work, we have studied the possible structural role of the flanking proline residues by simulating mutant structures with alternate substitution of the proline residues with valine. Simulations showed a directional inhibition of elongation, with the elongation progressing in the direction of valine including evident inhibition of elongation by existing proline residues. This suggests that the flanking proline residues in prion proteins may have a containment role and would confine the β-sheet within a specific length. PMID:17172295

  9. 46 CFR 13.301 - Original application for “Tankerman-PIC (Barge)” endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Original application for âTankerman-PIC (Barge)â endorsement. 13.301 Section 13.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE....301 Original application for “Tankerman-PIC (Barge)” endorsement. Each applicant for a “Tankerman-PIC...

  10. Peroxydisulfate activation by [RuII(tpy)(pic)(H2O)]+. Kinetic, mechanistic and anti-microbial activity studies.

    PubMed

    Chatterjee, Debabrata; Banerjee, Priyabrata; Bose, Jagadeesh C K; Mukhopadhyay, Sudit

    2012-03-07

    The oxidation of [Ru(II)(tpy)(pic)H(2)O](+) (tpy = 2,2',6',2''-terpyridine; pic(-) = picolinate) by peroxidisulfate (S(2)O(8)(2-)) as precursor oxidant has been investigated kinetically by UV-VIS, IR and EPR spectroscopy. The overall oxidation of Ru(II)- to Ru(IV)-species takes place in a consecutive manner involving oxidation of [Ru(II)(tpy)(pic)H(2)O](+) to [Ru(III)(tpy)(pic)(OH)](+), and its further oxidation of to the ultimate product [Ru(IV)(tpy)(pic)(O)](+) complex. The time course of the reaction was followed as a function of [S(2)O(8)(2-)], ionic strength (I) and temperature. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. Anti-microbial activity of Ru(II)(tpy)(pic)H(2)O](+) complex by inhibiting the growth of Escherichia coli DH5α in presence of peroxydisulfate has been explored, and the results of the biological studies have been discussed in terms of the [Ru(IV)(tpy)(pic)(O)](+) mediated cleavage of chromosomal DNA of the bacteria.

  11. Storage of Maize in Purdue Improved Crop Storage (PICS) Bags

    PubMed Central

    2017-01-01

    Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality. PMID:28072835

  12. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  13. Smart Power: New power integrated circuit technologies and their applications

    NASA Astrophysics Data System (ADS)

    Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko

    1992-05-01

    Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.

  14. Seagrass meadows as a globally significant carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Mazarrasa, I.; Marbà, N.; Lovelock, C. E.; Serrano, O.; Lavery, P. S.; Fourqurean, J. W.; Kennedy, H.; Mateo, M. A.; Krause-Jensen, D.; Steven, A. D. L.; Duarte, C. M.

    2015-03-01

    There has been a growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the organic carbon (POC) stocks and accumulation rates and ignored the inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 402 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m sediments ranged between 3 and 1660 Mg PIC ha-1, with an average of 654 ± 24 Mg PIC ha-1, exceeding about 5 fold those of POC reported in previous studies. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of -8 ± 2 Mg PIC ha-1 degree-1 of latitude (GLM, p < 0.0003). Using PIC concentration and estimates of sediment accretion in seagrass meadows, mean PIC accumulation rates in seagrass sediments is 126.3 ± 0.7 g PIC m-2 y-1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top meter of sediment and accumulate between 22 and 76 Tg PIC y-1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite that these high rates of carbonate accumulation imply CO2 emissions from precipitation, seagrass meadows are still strong CO2 sinks as demonstrates the comparison of carbon (POC and POC) stocks between vegetated and adjacent un-vegetated sediments.

  15. Seagrass meadows as a globally significant carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Mazarrasa, I.; Marbà, N.; Lovelock, C. E.; Serrano, O.; Lavery, P. S.; Fourqurean, J. W.; Kennedy, H.; Mateo, M. A.; Krause-Jensen, D.; Steven, A. D. L.; Duarte, C. M.

    2015-08-01

    There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 403 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m of sediment ranged between 3 and 1660 Mg PIC ha-1, with an average of 654 ± 24 Mg PIC ha-1, exceeding those of POC reported in previous studies by about a factor of 5. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of -8 ± 2 Mg PIC ha-1 per degree of latitude (general linear model, GLM; p < 0.0003). Using PIC concentrations and estimates of sediment accretion in seagrass meadows, the mean PIC accumulation rate in seagrass sediments is found to be 126.3 ± 31.05 g PIC m-2 yr-1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top metre of sediment and accumulate between 22 and 75 Tg PIC yr-1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite the fact that these high rates of carbonate accumulation imply CO2 emissions from precipitation, seagrass meadows are still strong CO2 sinks as demonstrated by the comparison of carbon (PIC and POC) stocks between vegetated and adjacent un-vegetated sediments.

  16. Anatomy of an amyloidogenic intermediate: conversion of beta-sheet to alpha-sheet structure in transthyretin at acidic pH.

    PubMed

    Armen, Roger S; Alonso, Darwin O V; Daggett, Valerie

    2004-10-01

    The homotetramer of transthyretin (TTR) dissociates into a monomeric amyloidogenic intermediate that self-assembles into amyloid fibrils at low pH. We have performed molecular dynamics simulations of monomeric TTR at neutral and low pH at physiological (310 K) and very elevated temperature (498 K). In the low-pH simulations at both temperatures, one of the two beta-sheets (strands CBEF) becomes disrupted, and alpha-sheet structure forms in the other sheet (strands DAGH). alpha-sheet is formed by alternating alphaL and alphaR residues, and it was first proposed by Pauling and Corey. Overall, the simulations are in agreement with the available experimental observations, including solid-state NMR results for a TTR-peptide amyloid. In addition, they provide a unique explanation for the results of hydrogen exchange experiments of the amyloidogenic intermediate-results that are difficult to explain with beta-structure. We propose that alpha-sheet may represent a key pathological conformation during amyloidogenesis. Copyright 2004 Elsevier Ltd.

  17. Two-and-one-half-dimensional magnetohydrodynamic simulations of the plasma sheet in the presence of oxygen ions: The plasma sheet oscillation and compressional Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Lu, Li; Liu, Zhen-Xing; Cao, Jin-Bin

    2002-02-01

    Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere.

  18. The Pliocene-Pleistocene transition and the onset of the Northern Hemisphere glacial inception

    NASA Astrophysics Data System (ADS)

    Robinson, A.; Calov, R.; Ganopolski, A.

    2011-12-01

    The Pliocene-Pleistocene transition (PPT, ca. 3.3-2.4 Ma BP) marks a shift in the Earth's climate and is believed to coincide with the inception of the Northern Hemisphere (NH) ice sheets. This transition is not only characterized by a gradual reduction in atmospheric CO2 concentration, paleo records also show a strengthening in the amplitude of δ18O data and intensified ice rafted debris deposition in the North Atlantic. Previous modeling studies have demonstrated that the drop in atmospheric CO2 plays an important role in the glaciation of the NH ice sheets, and more specifically, it is considered to be the primary cause of the glaciation of Greenland. Here we apply a novel approach to produce transient simulations of the entire PPT, in order to study the glaciation of Greenland and the NH ice sheets and additionally, to investigate which conditions are necessary for full-scale glaciation. The fully-coupled Earth system model of intermediate complexity CLIMBER-2 is used to explore the effects of a suite of orbital and CO2 forcing scenarios on total NH glaciation. CLIMBER-2 includes low-resolution sub-models of the atmosphere, vegetation, ocean and ice sheets - the latter is designed to simulate the big NH ice sheets with a rather low resolution (and high computational efficiency). As a refinement, the results of the global simulations are then used to force regional simulations of the Greenland Ice Sheet (GIS) using the higher resolution (20 km) regional climate-ice sheet model, REMBO-SICOPOLIS. We present results of transient simulations driven by orbital forcing and several CO2 reduction scenarios that are consistent with best estimates from data for this time period. We discuss the growth and persistence of the NH ice sheets in terms of the forcing and feedbacks involved. Additionally, we present a set of simulations with the growth of the NH ice sheets disabled, in order to quantify the effect the large ice sheets have on global and regional temperature anomalies. By simulating the Greenland Ice Sheet (GIS) in our high resolution coupled global-regional approach, we identify with greater precision, the conditions neccesary for inception of the GIS and link these to global climatic changes.

  19. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods

    DOE PAGES

    Jalas, S.; Dornmair, I.; Lehe, R.; ...

    2017-03-20

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less

  20. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp; Nishioka, S.; Goto, I.

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beammore » halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.« less

  1. Australian Validation of the Hierarchical Personality Inventory for Children (HiPIC)

    ERIC Educational Resources Information Center

    Hopkinson, Laura; Watt, Dianne; Roodenburg, John

    2014-01-01

    The Hierarchical Personality Inventory for Children (HiPIC) is a developmentally appropriate parent-report measure of the Five Factor Model (FFM) that has been validated in several European languages but only recently in English. The English translation of the HiPIC was evaluated in an Australian context. Parent-rated HiPIC scores were obtained…

  2. Simulating PACE Global Ocean Radiances

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2017-01-01

    The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P < 0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and a CDOC (r =0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250-800 nm. These unassimilated radiances were within 0.074 mW/sq cm/micron/sr of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of 10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These results suggest skill in the global assimilated model and resulting radiances. The reported error characterization suggests that the global dynamical simulation can support some aspects of mission design and analysis. For example, the high spectral resolution of the simulation supports investigations of band selection. The global nature of the radiance representations supports investigations of satellite observing scenarios. Global radiances at bands not available in current and past missions support investigations of mission capability. PACE, ocean color, water-leaving radiances, biogeochemical model, radiative transfer model

  3. Simulating PACE Global Ocean Radiances

    PubMed Central

    Gregg, Watson W.; Rousseaux, Cécile S.

    2017-01-01

    The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P <0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and aCDOC (r = 0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250–800 nm. These unassimilated radiances were within −0.074 mW cm−2 μm1 sr−1 of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of −10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These results suggest skill in the global assimilated model and resulting radiances. The reported error characterization suggests that the global dynamical simulation can support some aspects of mission design and analysis. For example, the high spectral resolution of the simulation supports investigations of band selection. The global nature of the radiance representations supports investigations of satellite observing scenarios. Global radiances at bands not available in current and past missions support investigations of mission capability. PMID:29292403

  4. Simulation of High-Beta Plasma Confinement

    NASA Astrophysics Data System (ADS)

    Font, Gabriel; Welch, Dale; Mitchell, Robert; McGuire, Thomas

    2017-10-01

    The Lockheed Martin Compact Fusion Reactor concept utilizes magnetic cusps to confine the plasma. In order to minimize losses through the axial and ring cusps, the plasma is pushed to a high-beta state. Simulations were made of the plasma and magnetic field system in an effort to quantify particle confinement times and plasma behavior characteristics. Computations are carried out with LSP using implicit PIC methods. Simulations of different sub-scale geometries at high-Beta fusion conditions are used to determine particle loss scaling with reactor size, plasma conditions, and gyro radii. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  5. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    NASA Astrophysics Data System (ADS)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  6. Magnetic Dissipation in Asymmetric Strong Guide 3D Simulations: Examples of Magnetic Diffusion and Reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Karimabadi, H.; Daughton, W. S.

    2013-12-01

    Interpretations of 2D simulations of magnetic reconnection are greatly simplified by using the flux function, usually the out of plane component of the vector potential. This theoretical device is no longer available when simulations are analyzed in 3-D. We illustrate the results of determining the locale rates of flux slippage in simulations by a technique based on Maxwell's equations. The technique recovers the usual results obtained for the flux function in 2D simulations, but remains viable in 3D simulations where there is no flux function. The method has also been successfully tested for full PIC simulations where reconnection is geometrically forbiddden. While such layers possess measurable flux slippages (diffusion) their level is not as strong as recorded in known 2D PIC reconnection sites using the same methodology. This approach will be used to explore the spatial incidence and strength of flux slippages across a 3D, asymmetric, strong guide field run discussed previously in the literature. Regions of diffusive behavior are illustrated where LHDI has been previously identified out on the separatrices, while much stronger flux slippages, typical of the X-regions of 2D simulations, are shown to occur elsewhere throughout the simulation. These results suggest that reconnection requires sufficiently vigorous flux slippage to be self sustaining, while non-zero flux slippage can and does occur without being at the reconnection site. A cross check of this approach is provided by the mixing ratio of tagged simulation particles of known spatial origin discussed by Daughton et al., 2013 (this meeting); they provide an integral measure of flux slippage up to the present point in the simulation. We will discuss the correlations between our Maxwell based flux slippage rates and the inferred rates of change of this mixing ratio (as recorded in the local fluid frame).

  7. Plasma Sheet Circulation Pathways

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.; Damiano, P.; Lotko, W.

    2008-01-01

    Global simulations of Earth's magnetosphere in the solar wind compute the pathways of plasma circulation through the plasma sheet. We address the pathways that supply and drain the plasma sheet, by coupling single fluid simulations with Global Ion Kinetic simulations of the outer magnetosphere and the Comprehensive Ring Current Model of the inner magnetosphere, including plasmaspheric plasmas. We find that the plasma sheet is supplied with solar wind plasmas via the magnetospheric flanks, and that this supply is most effective for northward IMF. For southward IMF, the innermost plasma sheet and ring current region are directly supplied from the flanks, with an asymmetry of single particle entry favoring the dawn flank. The central plasma sheet (near midnight) is supplied, as expected, from the lobes and polar cusps, but the near-Earth supply consists mainly of slowly moving ionospheric outflows for typical conditions. Work with the recently developed multi-fluid LFM simulation shows transport via plasma "fingers" extending Earthward from the flanks, suggestive of an interchange instability. We investigate this with solar wind ion trajectories, seeking to understand the fingering mechanisms and effects on transport rates.

  8. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    DOE PAGES

    Li, Fei; Yu, Peicheng; Xu, Xinlu; ...

    2017-01-12

    In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less

  9. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    NASA Astrophysics Data System (ADS)

    Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.; Dalichaouch, Thamine; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Mori, Warren B.

    2017-05-01

    In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 ˆ direction). We show that this eliminates the main NCI modes with moderate |k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher |k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1 ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.

  10. Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers

    DOE PAGES

    Wang, Bei; Ethier, Stephane; Tang, William; ...

    2017-06-29

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability ofmore » the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-capable domain application code provide valuable insights on optimization techniques across one of the broadest sets of current high-end computing platforms worldwide.« less

  11. Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bei; Ethier, Stephane; Tang, William

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability ofmore » the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-capable domain application code provide valuable insights on optimization techniques across one of the broadest sets of current high-end computing platforms worldwide.« less

  12. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fei; Yu, Peicheng; Xu, Xinlu

    In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less

  13. Neuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite

    PubMed Central

    Kim, Hojeong; Heckman, C. J.

    2014-01-01

    Neuromodulatory inputs from brainstem systems modulate the normal function of spinal motoneurons by altering the activation properties of persistent inward currents (PICs) in their dendrites. However, the effect of the PIC on firing outputs also depends on its location in the dendritic tree. To investigate the interaction between PIC neuromodulation and PIC location dependence, we used a two-compartment model that was biologically realistic in that it retains directional and frequency-dependent electrical coupling between the soma and the dendrites, as seen in multi-compartment models based on full anatomical reconstructions of motoneurons. Our two-compartment approach allowed us to systematically vary the coupling parameters between the soma and the dendrite to accurately reproduce the effect of location of the dendritic PIC on the generation of nonlinear (hysteretic) motoneuron firing patterns. Our results show that as a single parameter value for PIC activation was either increased or decreased by 20% from its default value, the solution space of the coupling parameter values for nonlinear firing outputs was drastically reduced by approximately 80%. As a result, the model tended to fire only in a linear mode at the majority of dendritic PIC sites. The same results were obtained when all parameters for the PIC activation simultaneously changed only by approximately ±10%. Our results suggest the democratization effect of neuromodulation: the neuromodulation by the brainstem systems may play a role in switching the motoneurons with PICs at different dendritic locations to a similar mode of firing by reducing the effect of the dendritic location of PICs on the firing behavior. PMID:25309410

  14. Response of the Antarctic ice sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Price, S. F.; Cornford, S. L.; Maltrud, M. E.; Ng, E. G.; Collins, W.

    2014-12-01

    We present the response of the continental Antarctic ice sheet to sub-shelf-melt forcing derived from POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1 degree (~5 km) ocean resolution and ice sheet resolution as fine as 500 m using adaptive mesh refinement. A comparison of fully-coupled and comparable standalone ice-sheet model results demonstrates the importance of two-way coupling between the ice sheet and the ocean. The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). A companion presentation, "Present-day circum-Antarctic simulations using the POPSICLES coupled land ice-ocean model" in session C027 describes the ocean-model perspective of this work, while we focus on the response of the ice sheet and on details of the model. The figure shows the BISICLES-computed vertically-integrated ice velocity field about 1 month into a 20-year coupled Antarctic run. Groundling lines are shown in green.

  15. The long-term quality of life in patients with persistent inflammation-immunosuppression and catabolism syndrome after severe acute pancreatitis: A retrospective cohort study.

    PubMed

    Yang, Na; Li, Baiqiang; Ye, Bo; Ke, Lu; Chen, Faxi; Lu, Guotao; Jiang, Fangfang; Tong, Zhihui; Li, Jieshou; Li, Weiqin

    2017-12-01

    To explore clinical characteristics and long-term quality of life (QOL) in severe acute pancreatitis (SAP) patients with persistent inflammation-immunosuppression and catabolism syndrome (PICS). SAP patients admitted to ICU were eligible for the retrospective cohort study if they needed prolonged intensive care (>14days). Post-ICU QOL was assessed by a questionnaire, including 36-item Short Form Health Survey (SF-36) and record of re-work in a long-term follow-up. 214 SAP patients were enrolled, in which 149 (69.6%) patients met the criteria of PICS. PICS patients had more complications and ICU days compared to non-PICS patients (P<0.001), and their post-ICU mortality was higher (P=0.046). When adjusted for confounders, PICS was independently associated with higher post-ICU mortality (hazard ratio 4.5; 95% CI, 1.2 to 16.3; P=0.024). The 36-item Short Form Health Survey (SF-36) score was lower for PICS group in six subscales (P<0.001). Only 28.8% patients in the PICS group returned to work compared to 60% patients in the non-PICS group (P=0.001) CONCLUSIONS: SAP patients with prolonged ICU stay had a high morbidity of PICS, which was a risk factor for the post-ICU mortality and poor long-term QOL. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Sheet, ligament and droplet formation in swirling primary atomization

    NASA Astrophysics Data System (ADS)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  17. Introducing a distributed unstructured mesh into gyrokinetic particle-in-cell code, XGC

    NASA Astrophysics Data System (ADS)

    Yoon, Eisung; Shephard, Mark; Seol, E. Seegyoung; Kalyanaraman, Kaushik

    2017-10-01

    XGC has shown good scalability for large leadership supercomputers. The current production version uses a copy of the entire unstructured finite element mesh on every MPI rank. Although an obvious scalability issue if the mesh sizes are to be dramatically increased, the current approach is also not optimal with respect to data locality of particles and mesh information. To address these issues we have initiated the development of a distributed mesh PIC method. This approach directly addresses the base scalability issue with respect to mesh size and, through the use of a mesh entity centric view of the particle mesh relationship, provides opportunities to address data locality needs of many core and GPU supported heterogeneous systems. The parallel mesh PIC capabilities are being built on the Parallel Unstructured Mesh Infrastructure (PUMI). The presentation will first overview the form of mesh distribution used and indicate the structures and functions used to support the mesh, the particles and their interaction. Attention will then focus on the node-level optimizations being carried out to ensure performant operation of all PIC operations on the distributed mesh. Partnership for Edge Physics Simulation (EPSI) Grant No. DE-SC0008449 and Center for Extended Magnetohydrodynamic Modeling (CEMM) Grant No. DE-SC0006618.

  18. The ZPIC educational code suite

    NASA Astrophysics Data System (ADS)

    Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.

    2017-10-01

    Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.

  19. Polygonal Impact Craters on selected Minor Bodies: Rhea, Dione, Tethys, Ceres, and Vesta

    NASA Astrophysics Data System (ADS)

    Neidhart, Tanja; Leitner, Johannes; Firneis, Maria

    2017-04-01

    A polygonal impact crater (PIC) is a crater that does not have a full circular shape in plane view but consists of straight crater rim segments. PICs are common on all objects in our solar system that show a cratered surface. Previous studies showed that PICs make up about 10-25% of craters on Mercury, Venus, Mars, and the Moon [1, 2, 3, 4]. Although there have been several studies on PICs on the terrestrial planets, and the Moon there are only very few investigations on PICs on minor bodies, even though there exist surface maps of Rhea, Tethys, Dione, Ceres, and Vesta that have an appropriate resolution. The aim of this study is to get more information about the abundance and characteristics of PICs on these objects. We analysed all approved craters on Rhea, Dione, Tethys, Ceres, and Vesta using images provided by the IAU/NASA/USGS Planetary Database [5]. For the classification of PICs the definition by [2] was used which states that a crater is polygonal if it consists of at least two straight crater rim segments having a discernable angle. In total 417 impact craters were examined and 227 of them were classified as polygonal. On Rhea about 48% of the approved craters are PICs, on Dione 59%, on Tethys 34%, on Ceres 74%, and on Vesta 56%. The comparison with studies on PICs on terrestrial planets, and the Moon conducted by [1, 2, 3, 4] showed that the percentage of PICs found in this study is much higher. Most of the PICs have two or three straight rim segments and only few PICs are hexagonal or pentagonal. The mean angle between the straight rims yields 121° for Rhea, 124° for Dione, 123° for Tethys, 133° for Ceres, and 134° for Vesta. These angles are well in accordance to an average angle of 112° on Mercury [1]. Also the size distribution of PICs is in accordance to results by [4] who proved that PICs seem to favor small to middle size diameters. The largest diameters of non-polygonal craters on Vesta range from 0.6 km to 450 km while the diameters of PICs only range from 3.1 km to 53.2 km [5]. The study proves that a large number of polygonal impact craters on Rhea, Dione, Tethys, Ceres, and Vesta exist but it is still unclear why the fraction of PICs on these bodies is much higher than for terrestrial planets and the Moon. One possible solution could be the different composition of the surfaces of these bodies in comparison to the terrestrial planets but for definite answers to this question further understanding of the formation process of PICs, which is still unclear, is necessary. References: [1] Weihs G. T. et al. (2015) Planet. Space Sci., 111, 77-82. [2] Aittola M. et al. (2010) Icarus, 205, 356-363. [3] Öhman et al. (2008) Meteoritics & Planet. Sci., 43, 1605-1628. [4] Öhman et al. (2010) Geol. Soc. Spec. Pap., 465, 51-65. [5] IAU/NASA/USGS Planetary Database. (2016), http://planetarynames.wr.usgs.gov/.

  20. Simulation investigation of multipactor in metal components for space application with an improved secondary emission model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yun, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Cui, Wan-Zhao, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Wang, Hong-Guang

    2015-05-15

    Effects of the secondary electron emission (SEE) phenomenon of metal surface on the multipactor analysis of microwave components are investigated numerically and experimentally in this paper. Both the secondary electron yield (SEY) and the emitted energy spectrum measurements are performed on silver plated samples for accurate description of the SEE phenomenon. A phenomenological probabilistic model based on SEE physics is utilized and fitted accurately to the measured SEY and emitted energy spectrum of the conditioned surface material of microwave components. Specially, the phenomenological probabilistic model is extended to the low primary energy end lower than 20 eV mathematically, since no accuratemore » measurement data can be obtained. Embedding the phenomenological probabilistic model into the Electromagnetic Particle-In-Cell (EM-PIC) method, the electronic resonant multipacting in microwave components can be tracked and hence the multipactor threshold can be predicted. The threshold prediction error of the transformer and the coaxial filter is 0.12 dB and 1.5 dB, respectively. Simulation results demonstrate that the discharge threshold is strongly dependent on the SEYs and its energy spectrum in the low energy end (lower than 50 eV). Multipacting simulation results agree quite well with experiments in practical components, while the phenomenological probabilistic model fit both the SEY and the emission energy spectrum better than the traditionally used model and distribution. The EM-PIC simulation method with the phenomenological probabilistic model for the surface collision simulation has been demonstrated for predicting the multipactor threshold in metal components for space application.« less

  1. The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Rafighi, I.; Pohl, M.; Niemiec, J.

    2018-04-01

    This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2–4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.

  2. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Jason, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Link, Anthony, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Schmidt, Andrea, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation duringmore » the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.« less

  3. A Database Design for the Brazilian Air Force Military Personnel Control System.

    DTIC Science & Technology

    1987-06-01

    GIVEN A RECNum GET MOVING HISTORICAL". 77 SEL4 PlC X(70) VALUE ". 4. GIVEN A RECNUM GET NOMINATION HISTORICAL". 77 SEL5 PIC X(70) VALUE it 5. GIVEN A...WHERE - "°RECNUM = :RECNUM". 77 SQL-SEL3-LENGTH PIC S9999 VALUE 150 COMP. 77 SQL- SEL4 PIC X(150) VALUE "SELECT ABBREV,DTNOM,DTEXO,SITN FROM...NOMINATION WHERE RECNUM 77 SQL- SEL4 -LENGTH PIC S9999 VALUE 150 COMP. 77 SQL-SEL5 PIC X(150) VALUE "SELECT ABBREVDTDES,DTWAIVER,SITD FROM DESIG WHERE RECNUM It

  4. Electrical Conductivity in Transparent Silver Nanowire Networks: Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Sherrott, Michelle; Mutiso, Rose; Rathmell, Aaron; Wiley, Benjamin; Winey, Karen

    2012-02-01

    We model and experimentally measure the electrical conductivity of two-dimensional networks containing finite, conductive cylinders with aspect ratio ranging from 33 to 333. We have previously used our simulations to explore the effects of cylinder orientation and aspect ratio in three-dimensional composites, and now extend the simulation to consider two-dimensional silver nanowire networks. Preliminary results suggest that increasing the aspect ratio and area fraction of these rods significantly decreases the sheet resistance of the film. For all simulated aspect ratios, this sheet resistance approaches a constant value for high area fractions of rods. This implies that regardless of aspect ratio, there is a limiting minimum sheet resistance that is characteristic of the properties of the nanowires. Experimental data from silver nanowire networks will be incorporated into the simulations to define the contact resistance and corroborate experimentally measured sheet resistances of transparent thin films.

  5. p-( sup 125 I)iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhardt, M.A.; Wade, S.M.; Neubig, R.R.

    1990-08-01

    The binding properties of p-(125I)iodoclonidine (( 125I)PIC) to human platelet membranes and the functional characteristics of PIC are reported. (125I)PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific (125I)PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. (125I)PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist (3H) bromoxidine (UK14,304), which representedmore » approximately 40% of the sites bound by the antagonist (3H)yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of (125I)PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for (125I)PIC binding was stereoselective. Competition for (3H)bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for (3H)yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. (125I)PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM.« less

  6. A panel method study of vortex sheets with special emphasis on sheets of axisymmetric geometry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sugioka, I.; Widnall, S. E.

    1985-01-01

    The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report.

  7. Laurentide Ice-Sheet Meltwater Sources to the Gulf of Mexico During the Last Deglaciation: Assessing Data Reconstructions Using Water Isotope Enabled Simulations

    NASA Astrophysics Data System (ADS)

    Vetter, L.; LeGrande, A. N.; Ullman, D. J.; Carlson, A. E.

    2017-12-01

    Sediment cores from the Gulf of Mexico show evidence of meltwater derived from the Laurentide Ice Sheet during the last deglaciation. Recent studies using geochemical measurements of individual foraminifera suggest changes in the oxygen isotopic composition of the meltwater as deglaciation proceeded. Here we use the water isotope enabled climate model simulations (NASA GISS ModelE-R) to investigate potential sources of meltwater within the ice sheet. We find that initial melting of the ice sheet from the southern margin contributed an oxygen isotope value reflecting a low-elevation, local precipitation source. As deglacial melting proceeded, meltwater delivered to the Gulf of Mexico had a more negative oxygen isotopic value, which the climate model simulates as being sourced from the high-elevation, high-latitude interior of the ice sheet. This study demonstrates the utility of combining stable isotope analyses with climate model simulations to investigate past changes in the hydrologic cycle.

  8. Effects of supplemental nanoparticle trivalent chromium on the nutrient utilization, growth performance and serum traits of broilers.

    PubMed

    Lin, Y C; Huang, J T; Li, M Z; Cheng, C Y; Lien, T F

    2015-02-01

    The aim of this study was to investigate the effect of dietary supplementation of nanoparticle trivalent chromium on nutrient utilization, growth performance and serum traits of broilers. This study included two trials. In trial 1, 32 three-week-old broilers were divided into four groups: the control, chromium chloride (CrCl3), chromium picolinate (CrPic) and nanoparticle chromium picolinate (NanoCrPic). Chromium was added at a 1200 μg/kg level to evaluate the nutrient and chromium utilization. In trial 2, 160 one-day-old broilers were randomly divided into four groups as in trial 1, with four replicates. The results of trial 1 indicated that the chromium utilization is as follows: NanoCrPic > CrPic > CrCl3 and control groups, with significant differences between groups (p < 0.05). Crude fat utilization in CrCl3 group was lower than in that the control group (p < 0.05). The results of trial 2 indicated that feed intake of 4-5 weeks showed better result in the CrCl3 group than that in the CrPic group (p < 0.05). The results of serum traits indicated that the LDL-cholesterol in the NanoCrPic groups was lower than that in the CrPic group (p < 0.05). The NanoCrpic and CrPic groups showed significantly increased serum chromium concentration when compared with the control and CrCl3 groups; the triglyceride level in the CrCl3 group was lower than that in the CrPic group (p < 0.05). This study concluded that compared with CrPic, NanoCrpic supplementation could increase chromium utilization and lower the serum LDL-cholesterol of broilers. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  9. Positioning irrigation of contrast cystography for diagnosis of occult vesicoureteric reflux: association with technetium-99m dimercaptosuccinic acid scans.

    PubMed

    Berger, Christoph; Becker, Tanja; Koen, Mark; Zeino, Mazen; Fitz, Friedrich; Beheshti, Mohsen; Wolf-Kohlmeier, Iris; Haim, Silke; Riccabona, Marcus

    2013-12-01

    Positioning irrigation of contrast (PIC) cystography identifies occult or PIC vesicoureteral reflux (PIC-VUR) in children with recurrent febrile urinary tract infections (UTI) but no vesicoureteric reflux (VUR) on standard voiding cystourethrogram (VCUG). We sought to identify the relationship between PIC-VUR and renal scarring in technetium-99m dimercaptosuccinic acid (DMSA) scans. We retrospectively analysed PIC cystograms and DMSA scans for 154 kidneys in 81 children (65 girls; 16 boys; median age, 4.7 years; range, 0.9-15.2). Renal scarring was graded on a scale of 0-3. DMSA scans were pathologic in 66 patients (81%). Children had experienced mean 3.8 febrile UTI (range 1-25). Forty-seven (58%) children had a history of reflux, including 15 (19%) with previous anti-reflux operations. Indications for PIC cystography were recurrence of febrile UTI after either bilateral negative VCUG (66 children) or unilateral VUR (15 children) with contralateral/bilateral scarring or reflux that had changed sides in subsequent VCUGs. PIC-VUR was bilateral in 63, unilateral in 12, and absent in 6 children. Statistically significant associations between PIC-VUR grade and severity of renal scarring were identified in inter-individual (n = 77, p = 0.017) and intra-individual (refluxing vs. nonrefluxing kidney; n = 12, p = 0.008) analyses. After excluding patients with history of VUR, statistical significance was maintained in inter-individual analysis (n = 49; p = 0.018). The data suggest an association between PIC-VUR and severity of renal scarring, and legitimise the use of PIC cystography in children with renal scarring due to recurrent febrile UTI but negative findings on VCUG. Copyright © 2012 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  10. Quantification of Poly(I:C)-Mediated Protection against Genital Herpes Simplex Virus Type 2 Infection

    PubMed Central

    Herbst-Kralovetz, Melissa M.; Pyles, Richard B.

    2006-01-01

    Alternative strategies for controlling the growing herpes simplex virus type 2 (HSV-2) epidemic are needed. A novel class of immunomodulatory microbicides has shown promise as antiherpetics, including intravaginally applied CpG-containing oligodeoxynucleotides that stimulate toll-like receptor 9 (TLR9). In the current study, we quantified protection against experimental genital HSV-2 infection provided by an alternative nucleic acid-based TLR agonist, polyinosine-poly(C) (PIC) (TLR3 agonist). Using a protection quantification paradigm, groups of mice were PIC treated and then subdivided into groups challenged with escalating doses of HSV-2. Using this paradigm, a temporal window of PIC efficacy for single applications was defined as 1 day prior to (prophylactic) through 4 h after (therapeutic) viral challenge. PIC treatment within this window protected against 10-fold-higher HSV-2 challenges, as indicated by increased 50% infectious dose values relative to those for vehicle-treated controls. Disease resolution and survival were significantly enhanced by repetitive PIC doses. Using optimal PIC regimens, cytokine induction was evaluated in murine vaginal lavages and in human vaginal epithelial cells. Similar induction patterns were observed, with kinetics that explained the limited durability of PIC-afforded protection. Daily PIC delivery courses did not generate sustained cytokine levels in murine vaginal fluids that would be indicative of local immunotoxicity. No evidence of immunotoxicity was observed in selected organs that were analyzed following repetitive vaginal PIC doses. Animal and in vitro data indicate that PIC may prove to be a valuable preventative microbicide and/or therapeutic agent against genital herpes by increasing resistance to HSV-2 and enhancing disease resolution following a failure of prevention. PMID:17005677

  11. Critical Nucleus Structure and Aggregation Mechanism of the C-terminal Fragment of Copper-Zinc Superoxide Dismutase Protein.

    PubMed

    Zou, Yu; Sun, Yunxiang; Zhu, Yuzhen; Ma, Buyong; Nussinov, Ruth; Zhang, Qingwen

    2016-03-16

    The aggregation of the copper-zinc superoxide dismutase (SOD1) protein is linked to familial amyotrophic lateral sclerosis, a progressive neurodegenerative disease. A recent experimental study has shown that the (147)GVIGIAQ(153) SOD1 C-terminal segment not only forms amyloid fibrils in isolation but also accelerates the aggregation of full-length SOD1, while substitution of isoleucine at site 149 by proline blocks its fibril formation. Amyloid formation is a nucleation-polymerization process. In this study, we investigated the oligomerization and the nucleus structure of this heptapeptide. By performing extensive replica-exchange molecular dynamics (REMD) simulations and conventional MD simulations, we found that the GVIGIAQ hexamers can adopt highly ordered bilayer β-sheets and β-barrels. In contrast, substitution of I149 by proline significantly reduces the β-sheet probability and results in the disappearance of bilayer β-sheet structures and the increase of disordered hexamers. We identified mixed parallel-antiparallel bilayer β-sheets in both REMD and conventional MD simulations and provided the conformational transition from the experimentally observed parallel bilayer sheets to the mixed parallel-antiparallel bilayer β-sheets. Our simulations suggest that the critical nucleus consists of six peptide chains and two additional peptide chains strongly stabilize this critical nucleus. The stabilized octamer is able to recruit additional random peptides into the β-sheet. Therefore, our simulations provide insights into the critical nucleus formation and the smallest stable nucleus of the (147)GVIGIAQ(153) peptide.

  12. The Danish version of the questionnaire on pain communication: preliminary validation in cancer patients.

    PubMed

    Jacobsen, R; Møldrup, C; Christrup, L; Sjøgren, P; Hansen, O B

    2009-07-01

    The modified version of the patients' Perceived Involvement in Care Scale (M-PICS) is a tool designed to assess cancer patients' perceptions of patient-health care provider pain communication process. The objective of this study was to examine the psychometric properties of the shortened Danish version of the M-PICS (SDM-PICS). The validated English version of the M-PICS was translated into Danish following the repeated back-translation procedure. Cancer patients were recruited for the study from specialized pain management facilities. Thirty-three patients responded to the SDM-PICS, Danish Barriers Questionnaire II, Hospital Anxiety and Depression Scale, and Brief Pain Inventory Pain Severity Scale. A factor analysis of the SDM-PICS resulted in two factors: Factor one, patient information, consisted of four items assessing the extent to which the patient shared information with his/her health care provider, and Factor two, health care provider information, consisted of four items measuring the degree to which a health care provider was perceived as the one who shares information. Two separate items addressed the perceived level of information exchange between the patient and the health care provider. The SDM-PICS total had an internal consistency of 0.88. The SDM-PICS scores were positively related to pain relief and inversely related to the measures of cognitive pain management barriers, anxiety, and reported pain levels. The SDM-PICS seems to be a reliable and valid measure of perceived patient-health care provider communication in the context of cancer pain.

  13. Numerical analysis of thermal drilling technique on titanium sheet metal

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Thermal drilling is a technique used in drilling of sheet metal for various applications. It involves rotating conical tool with high speed in order to drill the sheet metal and formed a hole with bush below the surface of sheet metal. This article investigates the finite element analysis of thermal drilling on Ti6Al4Valloy sheet metal. This analysis was carried out by means of DEFORM-3D simulation software to simulate the performance characteristics of thermal drilling technique. Due to the contribution of high temperature deformation in this technique, the output performances which are difficult to measure by the experimental approach, can be successfully achieved by finite element method. Therefore, the modeling and simulation of thermal drilling is an essential tool to predict the strain rate, stress distribution and temperature of the workpiece.

  14. Massive parallel 3D PIC simulation of negative ion extraction

    NASA Astrophysics Data System (ADS)

    Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-09-01

    The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.

  15. Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard E.

    2018-01-01

    Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to have larger ∂fp/∂v⊥ under the assumption that the observed distribution corresponds to a marginally stable state when the distribution has already been scattered by the excited waves. The results show that the positive slope is the source of the proton cyclotron harmonic waves at propagation quasi-perpendicular to the background magnetic field, and as a result of interactions with the excited waves the evolving proton distribution progresses approximately toward the observed distribution.

  16. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    NASA Astrophysics Data System (ADS)

    Bai, Xianchen; Yang, Jianhua; Zhang, Jiande

    2012-08-01

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  17. Direct Laser Acceleration in Laser Wakefield Accelerators

    NASA Astrophysics Data System (ADS)

    Shaw, J. L.; Froula, D. H.; Marsh, K. A.; Joshi, C.; Lemos, N.

    2017-10-01

    The direct laser acceleration (DLA) of electrons in a laser wakefield accelerator (LWFA) has been investigated. We show that when there is a significant overlap between the drive laser and the trapped electrons in a LWFA cavity, the accelerating electrons can gain energy from the DLA mechanism in addition to LWFA. The properties of the electron beams produced in a LWFA, where the electrons are injected by ionization injection, have been investigated using particle-in-cell (PIC) code simulations. Particle tracking was used to demonstrate the presence of DLA in LWFA. Further PIC simulations comparing LWFA with and without DLA show that the presence of DLA can lead to electron beams that have maximum energies that exceed the estimates given by the theory for the ideal blowout regime. The magnitude of the contribution of DLA to the energy gained by the electron was found to be on the order of the LWFA contribution. The presence of DLA in a LWFA can also lead to enhanced betatron oscillation amplitudes and increased divergence in the direction of the laser polarization. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Influence of RNA Strand Rigidity on Polyion Complex Formation with Block Catiomers.

    PubMed

    Hayashi, Kotaro; Chaya, Hiroyuki; Fukushima, Shigeto; Watanabe, Sumiyo; Takemoto, Hiroyasu; Osada, Kensuke; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2016-03-01

    Polyion complexes (b-PICs) are prepared by mixing single- or double-stranded oligo RNA (aniomer) with poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) (block catiomer) to clarify the effect of aniomer chain rigidity on association behaviors at varying concentrations. Here, a 21-mer single-stranded RNA (ssRNA) (persistence length: 1.0 nm) and a 21-mer double-stranded RNA (small interfering RNA, siRNA) (persistence length: 62 nm) are compared. Both oligo RNAs form a minimal charge-neutralized ionomer pair with a single PEG-PLL chain, termed unit b-PIC (uPIC), at low concentrations (<≈ 0.01 mg mL(-1)). Above the critical association concentration (≈ 0.01 mg mL(-1)), ssRNA b-PICs form secondary associates, PIC micelles, with sizes up to 30-70 nm, while no such multimolecular assembly is observed for siRNA b-PICs. The entropy gain associated with the formation of a segregated PIC phase in the multimolecular PIC micelles may not be large enough for rigid siRNA strands to compensate with appreciably high steric repulsion derived from PEG chains. Chain rigidity appears to be a critical parameter in polyion complex association. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On newly and recently recorded species of the genus Lema Fabricius (Coleoptera, Chrysomelidae, Criocerinae) from Taiwan

    PubMed Central

    Lee, Chi-Feng; Matsumura, Yoko

    2013-01-01

    Abstract New records of four species (Lema lacertosa Lacordaire, 1845, Lema diversipes Pic, 1921, Lema cyanella (Linnaeus, 1758), Lema trivittata trivittata Say, 1824 and additional information on one recently recorded species (Lema solani Fabricius, 1798) are reported for Taiwan. Lema diversipes Pic, 1921 is removed from synonymy with Lema lacertosa Lacordaire, 1845; both species are redescribed. A lectotype is designated for Lema phungi Pic, 1924. The synonymies of Lema phungi Pic, 1924 and Lema jeanvoinei Pic, 1932 with Lema lacertosa Lacordaire, 1845 are supported. A revised key to the known species in Taiwan is provided. PMID:23653513

  20. Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality

    NASA Astrophysics Data System (ADS)

    Hol, J.; Wiebenga, J. H.; Carleer, B.

    2017-09-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. This paper presents a selection of results considering friction and lubrication modelling in sheet metal forming simulations of a front fender product. For varying lubrication conditions, the front fender can either show wrinkling or fractures. The front fender is modelled using different lubrication amounts, tool roughness’s and sheet coatings to show the strong influence of friction on both part quality and the overall production stability. For this purpose, the TriboForm software is used in combination with the AutoForm software. The results demonstrate that the TriboForm software enables the simulation of friction behaviour for varying lubrication conditions, i.e. resulting in a generally applicable approach for friction characterization under industrial sheet metal forming process conditions.

  1. Simulating a Dynamic Antarctic Ice Sheet in the Early to Middle Miocene

    NASA Astrophysics Data System (ADS)

    Gasson, E.; DeConto, R.; Pollard, D.; Levy, R. H.

    2015-12-01

    There are a variety of sources of geological data that suggest major variations in the volume and extent of the Antarctic ice sheet during the early to middle Miocene. Simulating such variability using coupled climate-ice sheet models is problematic due to a strong hysteresis effect caused by height-mass balance feedback and albedo feedback. This results in limited retreat of the ice sheet once it has reached the continental size, as likely occurred prior to the Miocene. Proxy records suggest a relatively narrow range of atmospheric CO2 during the early to middle Miocene, which exacerbates this problem. We use a new climate forcing which accounts for ice sheet-climate feedbacks through an asynchronous GCM-RCM coupling, which is able to better resolve the narrow Antarctic ablation zone in warm climate simulations. When combined with recently suggested mechanisms for retreat into subglacial basins due to ice shelf hydrofracture and ice cliff failure, we are able to simulate large-scale variability of the Antarctic ice sheet in the Miocene. This variability is equivalent to a seawater oxygen isotope signal of ~0.5 ‰, or a sea level equivalent change of ~35 m, for a range of atmospheric CO2 between 280 - 500 ppm.

  2. Paradigms and strategies for scientific computing on distributed memory concurrent computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, I.T.; Walker, D.W.

    1994-06-01

    In this work we examine recent advances in parallel languages and abstractions that have the potential for improving the programmability and maintainability of large-scale, parallel, scientific applications running on high performance architectures and networks. This paper focuses on Fortran M, a set of extensions to Fortran 77 that supports the modular design of message-passing programs. We describe the Fortran M implementation of a particle-in-cell (PIC) plasma simulation application, and discuss issues in the optimization of the code. The use of two other methodologies for parallelizing the PIC application are considered. The first is based on the shared object abstraction asmore » embodied in the Orca language. The second approach is the Split-C language. In Fortran M, Orca, and Split-C the ability of the programmer to control the granularity of communication is important is designing an efficient implementation.« less

  3. Fluid preconditioning for Newton–Krylov-based, fully implicit, electrostatic particle-in-cell simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G., E-mail: gchen@lanl.gov; Chacón, L.; Leibs, C.A.

    2014-02-01

    A recent proof-of-principle study proposes an energy- and charge-conserving, nonlinearly implicit electrostatic particle-in-cell (PIC) algorithm in one dimension [9]. The algorithm in the reference employs an unpreconditioned Jacobian-free Newton–Krylov method, which ensures nonlinear convergence at every timestep (resolving the dynamical timescale of interest). Kinetic enslavement, which is one key component of the algorithm, not only enables fully implicit PIC as a practical approach, but also allows preconditioning the kinetic solver with a fluid approximation. This study proposes such a preconditioner, in which the linearized moment equations are closed with moments computed from particles. Effective acceleration of the linear GMRES solvemore » is demonstrated, on both uniform and non-uniform meshes. The algorithm performance is largely insensitive to the electron–ion mass ratio. Numerical experiments are performed on a 1D multi-scale ion acoustic wave test problem.« less

  4. Laser propagation and soliton generation in strongly magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, W.; Li, J. Q.; Kishimoto, Y.

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Mostmore » interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.« less

  5. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  6. Hydraulic properties for interrill erosion on steep slopes using a portable rainfall simulator

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Hwang, Yoonhee; Deog Park, Sang; Yun, Minu; Park, Sangyeon

    2017-04-01

    The hydraulic parameters for sheet flow on steep slopes have been not frequently measured because the shallow flow depth and slow flow velocity are difficult to measure. In this study hydraulic values of sheet flow were analyzed to evaluate interrill erosion on steep slopes. A portable rainfall simulator was used to conduct interrill erosion test. The kinetic energy of rainfall simulator was obtained by disdrometer being capable of measuring the drop size distribution and velocity of falling raindrops. The sheet flow velocity was determined by the taken time for a dye transferring fixed points using video images. Surface runoff discharge and sediment yield increased with increase of rainfall intensity and kinetic energy and slope steepness. Especially sediment yield was strongly correlated with sheet flow velocity. The maximum velocity of sheet flow was 2.3cm/s under rainfall intensity of 126.8mm/h and slope steepness of 53.2%. The sheet flow was laminar and subcritical flow as the flow Reynolds number and Froude number are respectively the ranges of 10 22 and 0.05 0.25. The roughness coefficient (Manning's n) for sheet flow on steep slopes was relatively large compared to them on the gentle slope. Keywords: Sheet flow velocity; Rainfall simulator; Interrill erosion; Steep slope This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1C1A2A01055469).

  7. Measuring Stability and Security in Iraq

    DTIC Science & Technology

    2008-12-01

    majority of the country. On September 1, 2008, Anbar Province, once an AQI stronghold, transferred to Provincial Iraqi Control ( PIC ). With the...transfer of Babil and Wasit Provinces to PIC in October 2008, the ISF is now in charge of security operations in the majority of Iraq’s 18 provinces... PIC ). Security responsibility for Babil Province was handed over to the GoI on October 23, 2008, and Wasit Province transitioned to PIC on October

  8. Intracellular pressure is a motive force for cell motion in Amoeba proteus.

    PubMed

    Yanai, M; Kenyon, C M; Butler, J P; Macklem, P T; Kelly, S M

    1996-01-01

    The cortical filament layer of free-living amoebae contains concentrated actomyosin, suggesting that it can contract and produce an internal hydrostatic pressure. We report here on direct and dynamic intracellular pressure (P(ic)) measurements in Amoeba proteus made using the servo-null technique. In resting apolar A. proteus, P(ic) increased while the cells remained immobile and at apparently constant volume. P(ic) then decreased approximately coincident with pseudopod formation. There was a positive correlation between P(ic) at the onset of movement and the rate of pseudopod formation. These results are the first direct evidence that hydrostatic pressure may be a motive force for cell motion. We postulate that contractile elements in the amoeba's cortical layer contract and increase P(ic) and that this P(ic) is utilized to overcome the viscous flow resistance of the intracellular contents during pseudopod formation.

  9. A sheet metal forming simulation of automotive outer panels considering the behavior of air in die cavity

    NASA Astrophysics Data System (ADS)

    Choi, Kwang Yong; Kim, Yun Chang; Choi, Hee Kwan; Kang, Chul Ho; Kim, Heon Young

    2013-12-01

    During a sheet metal forming process of automotive outer panels, the air trapped between a blank sheet and a die tool can become highly compressed, ultimately influencing the blank deformation and the press force. To prevent this problem, vent holes are drilled into die tools and needs several tens to hundreds according to the model size. The design and the drilling of vent holes are based on expert's experience and try-out result and thus the process can be one of reasons increasing development cycle. Therefore the study on the size, the number, and the position of vent holes is demanded for reducing development cycle, but there is no simulation technology for analyzing forming defects, making numerical sheet metal forming process simulations that incorporate the fluid dynamics of air. This study presents a sheet metal forming simulation of automotive outer panels (a roof and a body side outer) that simultaneously simulates the behavior of air in a die cavity. Through CAE results, the effect of air behavior and vent holes to blank deformation was analyzed. For this study, the commercial software PAM-STAMP{trade mark, serif} and PAM-SAFE{trade mark, serif} was used.

  10. Influence of picolinic acid on seizure susceptibility in mice.

    PubMed

    Cioczek-Czuczwar, Anna; Czuczwar, Piotr; Turski, Waldemar Andrzej; Parada-Turska, Jolanta

    2017-02-01

    The mechanism of drug resistance in epilepsy remains unknown. Picolinic acid (PIC) is an endogenous metabolite of the kynurenine pathway and a chelating agent added to dietary supplements. Both inhibitory and excitatory properties of PIC were reported. The aim of this study was to determine the influence of exogenously applied PIC upon the electroconvulsive threshold and the activity of chemical convulsants in eight models of epilepsy in mice. All experiments were performed on adult male Swiss albino mice. Electroconvulsions were induced through ear clip electrodes. The electroconvulsive threshold (current strength necessary to induce tonic seizures in 50% of the tested group - CS 50 ) was estimated for control animals and animals pretreated with PIC. To determine the possible convulsant activity of PIC, it was administered subcutaneously or intracerebroventricularly in increasing doses to calculate the CD 50 values (doses of convulsants necessary to produce seizures in 50% of the animals). Chemical convulsions were induced by challenging the animals with increasing doses of convulsant to calculate the CD 50 values. The following convulsants were used: 4-aminopyridine, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, bicuculline, N-methyl-d-aspartate, nicotine, pentylenetrazole, pilocarpine hydrochloride and strychnine nitrate. PIC significantly decreased the electroconvulsive threshold and, after intracerebroventricular injection, but not subcutaneous, produced convulsions. Of the studied convulsants, only the activity of pilocarpine hydrochloride was significantly enhanced by PIC. PIC enhances seizure activity and potentially may play a role in the pathogenesis of drug resistant epilepsy. Future studies should focus on the interactions between PIC and antiepileptic drugs. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  11. Integrated Work Management: PIC, Course 31884

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    The person-in-charge (PIC) plays a key role in the integrated work management (IWM) process at Los Alamos National Laboratory (LANL, or the Laboratory) because the PIC is assigned responsibility and authority by the responsible line manager (RLM) for the overall validation, coordination, release, execution, and closeout of a work activity in accordance with IWM. This course, Integrated Work Management: PIC (Course 31884), describes the PIC’s IWM roles and responsibilities. This course also discusses IWM requirements that the PIC must meet. For a general overview of the IWM process, see self-study Course 31881, Integrated Work Management: Overview. For instruction on themore » preparer’s role, see self-study Course 31883, Integrated Work Management: Preparer.« less

  12. Three-Dimensional Simulations of Electron Beams Focused by Periodic Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    A fully three-dimensional (3D) model of an electron beam focused by a periodic permanent magnet (PPM) stack has been developed. First, the simulation code MAFIA was used to model a PPM stack using the magnetostatic solver. The exact geometry of the magnetic focusing structure was modeled; thus, no approximations were made regarding the off-axis fields. The fields from the static solver were loaded into the 3D particle-in-cell (PIC) solver of MAFIA where fully 3D behavior of the beam was simulated in the magnetic focusing field. The PIC solver computes the time-integration of electromagnetic fields simultaneously with the time integration of the equations of motion of charged particles that move under the influence of those fields. Fields caused by those moving charges are also taken into account; thus, effects like space charge and magnetic forces between particles are fully simulated. The electron beam is simulated by a number of macro-particles. These macro-particles represent a given charge Q amounting to that of several million electrons in order to conserve computational time and memory. Particle motion is unrestricted, so particle trajectories can cross paths and move in three dimensions under the influence of 3D electric and magnetic fields. Correspondingly, there is no limit on the initial current density distribution of the electron beam, nor its density distribution at any time during the simulation. Simulation results including beam current density, percent ripple and percent transmission will be presented, and the effects current, magnetic focusing strength and thermal velocities have on beam behavior will be demonstrated using 3D movies showing the evolution of beam characteristics in time and space. Unlike typical beam optics models, this 3D model allows simulation of asymmetric designs such as non- circularly symmetric electrostatic or magnetic focusing as well as the inclusion of input/output couplers.

  13. Greenland-Wide Seasonal Temperatures During the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Buizert, C.; Keisling, B. A.; Box, J. E.; He, F.; Carlson, A. E.; Sinclair, G.; DeConto, R. M.

    2018-02-01

    The sensitivity of the Greenland ice sheet to climate forcing is of key importance in assessing its contribution to past and future sea level rise. Surface mass loss occurs during summer, and accounting for temperature seasonality is critical in simulating ice sheet evolution and in interpreting glacial landforms and chronologies. Ice core records constrain the timing and magnitude of climate change but are largely limited to annual mean estimates from the ice sheet interior. Here we merge ice core reconstructions with transient climate model simulations to generate Greenland-wide and seasonally resolved surface air temperature fields during the last deglaciation. Greenland summer temperatures peak in the early Holocene, consistent with records of ice core melt layers. We perform deglacial Greenland ice sheet model simulations to demonstrate that accounting for realistic temperature seasonality decreases simulated glacial ice volume, expedites the deglacial margin retreat, mutes the impact of abrupt climate warming, and gives rise to a clear Holocene ice volume minimum.

  14. Electro-thermo-mechanical coupling analysis of deep drawing with resistance heating for aluminum matrix composites sheet

    NASA Astrophysics Data System (ADS)

    Zhang, Kaifeng; Zhang, Tuoda; Wang, Bo

    2013-05-01

    Recently, electro-plastic forming to be a focus of attention in materials hot processing research area, because it is a sort of energy-saving, high efficient and green manufacturing technology. An electro-thermo-mechanical model can be adopted to carry out the sequence simulation of aluminum matrix composites sheet deep drawing via electro-thermal coupling and thermal-mechanical coupling method. The first step of process is resistance heating of sheet, then turn off the power, and the second step is deep drawing. Temperature distribution of SiCp/2024Al composite sheet by resistance heating and sheet deep drawing deformation were analyzed. During the simulation, effect of contact resistances, temperature coefficient of resistance for electrode material and SiCp/2024Al composite on temperature distribution were integrally considered. The simulation results demonstrate that Sicp/2024Al composite sheet can be rapidly heated to 400° in 30s using resistances heating and the sheet temperature can be controlled by adjusting the current density. Physical properties of the electrode materials can significantly affect the composite sheet temperature distribution. The temperature difference between the center and the side of the sheet is proportional to the thermal conductivity of the electrode, the principal cause of which is that the heat transfers from the sheet to the electrode. SiCp/2024Al thin-wall part can be intactly manufactured at strain rate of 0.08s-1 and the sheet thickness thinning rate is limited within 20%, which corresponds well to the experimental result.

  15. 3D Electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.

    2013-12-01

    Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons typically have gyroradii larger than the magnetic anomaly scale size) and magnetic field strength. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement SWIFF (project 2633430, swiff.eu). Cut along the dipole axis of the lunar anomaly, showing the electron density structure.

  16. Buckling Behavior of Substrate Supported Graphene Sheets

    PubMed Central

    Yang, Kuijian; Chen, Yuli; Pan, Fei; Wang, Shengtao; Ma, Yong; Liu, Qijun

    2016-01-01

    The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm), both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems. PMID:28787831

  17. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.

    PubMed

    Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I

    2004-01-29

    Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.

  18. Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK.

    PubMed

    Wang, Yi-qun; Yao, Ming-hui

    2009-12-01

    Chromium picolinate (CrPic) has been discovered as a supplemental or alternative medication for type 2 diabetes, but its mechanism of action is not well understood. The purpose of this study was to explore the possible anti-diabetic mechanisms of CrPic in insulin-resistant 3T3-L1 adipocytes; the insulin resistance was induced by treatment with high glucose and insulin for 24 h. The effects of CrPic on glucose metabolism and the glucose uptake-inducing activity of CrPic were investigated. Meanwhile, the effects of CrPic on glucose transporter 4 (GLUT4) translocation were visualized by immonofluorescence microscopy. In addition, its effects on insulin signaling pathways and mitogen-activated protein kinase (MAPK) signaling cascades were assessed by immunoblotting analysis and real-time PCR. The results showed that CrPic induced glucose metabolism and uptake, as well as GLUT4 translocation to plasma membrane (PM) in both control and insulin-resistant 3T3-L1 adipocytes without any changes in insulin receptor beta (IR-beta), protein kinase B (AKt), c-Cbl, extracellular signal-regulated kinase (ERK), c-Jun phosphorylation and c-Cbl-associated protein (CAP) mRNA levels. Interestingly, CrPic was able to increase the basal and insulin-stimulated levels of p38 MAPK activation in the control and insulin-resistant cells. Pretreatment with the specific p38 MAPK inhibitor SB203580 partially inhibited the CrPic-induced glucose transport, but CrPic-activated translocation of GLUT4 was not inhibited by SB203580. This study provides an experimental evidence of the effects of CrPic on glucose uptake through the activation of p38 MAPK and it is independent of the effect on GLUT4 translocation. The findings also suggest exciting new insights into the role of p38 MAPK in glucose uptake and GLUT4 translocation.

  19. Assessment of the anticonvulsant potency of various benzylamide derivatives in the mouse maximal electroshock-induced seizure threshold model.

    PubMed

    Świąder, Mariusz J; Paruszewski, Ryszard; Łuszczki, Jarogniew J

    2016-04-01

    The aim of this study was to assess the anticonvulsant potency of 6 various benzylamide derivatives [i.e., nicotinic acid benzylamide (Nic-BZA), picolinic acid 2-fluoro-benzylamide (2F-Pic-BZA), picolinic acid benzylamide (Pic-BZA), (RS)-methyl-alanine-benzylamide (Me-Ala-BZA), isonicotinic acid benzylamide (Iso-Nic-BZA), and (R)-N-methyl-proline-benzylamide (Me-Pro-BZA)] in the threshold for maximal electroshock (MEST)-induced seizures in mice. Electroconvulsions (seizure activity) were produced in mice by means of a current (sine-wave, 50Hz, 500V, strength from 4 to 18mA, ear-clip electrodes, 0.2-s stimulus duration, tonic hindlimb extension taken as the endpoint). Nic-BZA, 2F-Pic-BZA, Pic-BZA, Me-Ala-BZA, Iso-Nic-BZA, and Me-Pro-BZA administered systemically (ip) in a dose-dependent manner increase the threshold for maximal electroconvulsions in mice. Linear regression analysis of Nic-BZA, 2F-Pic-BZA, Pic-BZA, MeAla-BZA, IsoNic-BZA, and Me-Pro-BZA doses and their corresponding threshold increases allowed determining threshold increasing doses by 20% (TID20 values) that elevate the threshold in drug-treated animals over the threshold in control animals. The experimentally derived TID20 values in the MEST test for Nic-BZA, 2F-Pic-BZA, Pic-BZA, Me-Ala-BZA, Iso-Nic-BZA, and Me-Pro-BZA were 7.45mg/kg, 7.72mg/kg, 8.74mg/kg, 15.11mg/kg, 21.95mg/kg and 28.06mg/kg, respectively. The studied benzylamide derivatives can be arranged with respect to their anticonvulsant potency in the MEST test as follows: Nic-BZA>2F-Pic-BZA>Pic-BZA>Me-Ala-BZA>Iso-Nic-BZA>Me-Pro-BZA. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. Clinical studies on chromium picolinate supplementation in diabetes mellitus--a review.

    PubMed

    Broadhurst, C Leigh; Domenico, Philip

    2006-12-01

    Chromium (Cr) picolinate (CrPic) is a widely used nutritional supplement for optimal insulin function. A relationship among Cr status, diabetes, and associated pathologies has been established. Virtually all trials using CrPic supplementation for subjects with diabetes have demonstrated beneficial effects. Thirteen of 15 clinical studies (including 11 randomized, controlled studies) involving a total of 1,690 subjects (1,505 in CrPic group) reported significant improvement in at least one outcome of glycemic control. All 15 studies showed salutary effects in at least one parameter of diabetes management, including dyslipidemia. Positive outcomes from CrPic supplementation included reduced blood glucose, insulin, cholesterol, and triglyceride levels and reduced requirements for hypoglycemic medication. The greater bioavailability of CrPic compared with other forms of Cr (e.g., niacin-bound Cr or CrCl(3)) may explain its comparatively superior efficacy in glycemic and lipidemic control. The pooled data from studies using CrPic supplementation for type 2 diabetes mellitus subjects show substantial reductions in hyperglycemia and hyperinsulinemia, which equate to a reduced risk for disease complications. Collectively, the data support the safety and therapeutic value of CrPic for the management of cholesterolemia and hyperglycemia in subjects with diabetes.

  1. The Spectrum of Scalar Indices of Agyrotropy

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Daughton, W. S.

    2017-12-01

    Quantitative scalar measures of departures from gyrotropy will be contrasted using 3D-PIC guide field simulations of a reconnection layer. Of interest are the sensitivity of 4 different proposed methods for inventorying the occurrence of needed signatures of demagnetization for identification of reconnection sites. Visual maps will be presented using the originally formulated diagnostic A0e for agyrotropy and three relatively recent attempts to generalize it. These visuals highlight the essentially common information contained in these approaches. The ``flavor'' distinctions between these techniques will be organized in terms of the types of deformations of the eVDF required for their distinctions to be present/significant. The first class of disturbances are those that explicitly cause the eVDF to depend on gyro phase in addition to pitch angle, while the second class requires a strong coordinated deformation of the eVDF in both polar angles. In the first class the magnetic field remains as an eigenvector of the deformed pressure tensor as in the originally proposed diagnostic A0e; in the second class NO eigenvector is aligned with the magnetic field and accompanies a more violent disruption of magnetization than the first class. The 3D VPIC guide simulation will be used as a data base to show the relative frequency of occurrence of these two types of disruptions in regions with non-zero agyrotropy. As far as identifying whether a region has demagnetization or not all techniques are virtually interchangeable and are shown to be statistically strongly correlated using billions of estimates. Accordingly, extensive early surveys using A0e to survey PIC reconnection geometries for signatures of demagnetization are not supplanted by the existence of alternate recipes for quantifying the geometry of the pressure tensor that get slightly larger values in relatively esoteric circumstances. Of the two types of deformation of the eVDF required to produce different ``flavors'' of agyrotropy, the gyro phase only modulations resolved completely by A0e are statistically the more common instances of demagnetization in 3D-PIC simulations.

  2. Alfvénic wave packets collision in a kinetic plasma

    NASA Astrophysics Data System (ADS)

    Pezzi, Oreste; Parashar, Tulasi N.; Servidio, Sergio; Valentini, Francesco; Malara, Francesco; Matthaeus, William H.; Veltri, Pierluigi

    2016-04-01

    The problem of two colliding and counter-propagating Alfvénic wave packets has been investigated in detail since the late Seventies. In particular Moffatt [1] and Parker [2] showed that, in the framework of the incompressible magnetohydrodynamics (MHD), nonlinear interactions can develop only during the overlapping of the two packets. Here we describe a similar problem in the framework of the kinetic physics. The collision of two quasi-Alfvénic packets has been analyzed by means of MHD, Hall-MHD and kinetic simulations performed with two different hybrid codes: a PIC code [3] and a Vlasov-Maxwell code [4]. Due to the huge computational cost, only a 2D-3V phase space is allowed (two dimensions in the physical space, three dimensions in the velocity space). Preliminary results suggest that, as well as in the MHD case, the most relevant nonlinear effects occur during the overlapping of the two packets. For both the PIC and Vlasov cases, strong temperature anisotropies are present during the evolution of the wave packets. Moreover, due to the absence of numerical noise, Vlasov simulations show that the collision of the counter-propagating solitary waves produces a significant beam in the velocity distribution functions [5], which, instead, cannot be appreciated in PIC simulations. We remark that, beyond the interest of studying a well-known MHD problem in the realm of the kinetic physics, our results allows also to compare different numerical codes. [1] H.K. Moffatt, Field generation in electrically conducting fluids (Cambridge University Press, 1978). [2] E.N. Parker, Cosmical magnetic fields: their origin and their activity (Oxford University Press, 1979). [3] T.N. Parashar, M.A. Shay, P.A. Cassak and W.H. Matthaeus, Physics of Plasmas 16, 032310 (2009). [4] F. Valentini, P. Trávníček, F. Califano, P. Hellinger & A. Mangeney, Journal of Computational Physics 225, 753-770 (2007). [5] J. He, C. Tu, E. Marsch, C.H. Chen, L. Wang, Z. Pei, L. Zhang, C.S. Salem and S.D. Bale, The Astrophysical Journal Letters 813, L30 (2015).

  3. Collisions of two Alfvénic wave packets in a kinetic plasma

    NASA Astrophysics Data System (ADS)

    Pezzi, O.; Servidio, S.; Valentini, F.; Parashar, T.; Malara, F.; Matthaeus, W. H.; Veltri, P.

    2016-12-01

    The problem of two colliding and counter-propagating Alfvénic wave packets has been investigated in detail since the late Seventies. In particular Moffatt [1] and Parker [2] showed that, in the framework of the incompressible magnetohydrodynamics (MHD), nonlinear interactions can develop only during the overlapping of the two packets. Here we describe a similar problem in the framework of the kinetic physics. The collision of two quasi-Alfvénic packets has been analyzed by means of MHD, Hall-MHD and kinetic simulations performed with two different hybrid codes: a PIC code [3] and a Vlasov-Maxwell code [4]. Due to the huge computational cost, only a 2D-3V phase space is allowed (two dimensions in the physical space, three dimensions in the velocity space). Preliminary results suggest that, as well as in the MHD case, the most relevant nonlinear effects occur during the overlapping of the two packets. For both the PIC and Vlasov cases, strong temperature anisotropies are present during the evolution of the wave packets. Moreover, due to the absence of numerical noise, Vlasov simulations show that the collision of the counter-propagating solitary waves produces a significant beam in the velocity distribution functions [5], which, instead, cannot be appreciated in PIC simulations. We remark that, beyond the interest of studying a well-known MHD problem in the realm of the kinetic physics, our results allows also to compare different numerical codes. [1] H.K. Moffatt, Field generation in electrically conducting fluids (Cambridge University Press, 1978). [2] E.N. Parker, Cosmical magnetic fields: their origin and their activity (Oxford University Press, 1979). [3] T.N. Parashar, M.A. Shay, P.A. Cassak and W.H. Matthaeus, Physics of Plasmas 16, 032310 (2009). [4] F. Valentini, P. Trávníček, F. Califano, P. Hellinger & A. Mangeney, Journal of Computational Physics 225, 753-770 (2007). [5] J. He, C. Tu, E. Marsch, C.H. Chen, L. Wang, Z. Pei, L. Zhang, C.S. Salem and S.D. Bale, The Astrophysical Journal Letters 813, L30 (2015).

  4. Modelling of plasma-wall interaction and impurity transport in fusion devices and prompt deposition of tungsten as application

    NASA Astrophysics Data System (ADS)

    Kirschner, A.; Tskhakaya, D.; Brezinsek, S.; Borodin, D.; Romazanov, J.; Ding, R.; Eksaeva, A.; Linsmeier, Ch

    2018-01-01

    Main processes of plasma-wall interaction and impurity transport in fusion devices and their impact on the availability of the devices are presented and modelling tools, in particular the three-dimensional Monte-Carlo code ERO, are introduced. The capability of ERO is demonstrated on the example of tungsten erosion and deposition modelling. The dependence of tungsten deposition on plasma temperature and density is studied by simulations with a simplified geometry assuming (almost) constant plasma parameters. The amount of deposition increases with increasing electron temperature and density. Up to 100% of eroded tungsten can be promptly deposited near to the location of erosion at very high densities (˜1 × 1014 cm-3 expected e.g. in the divertor of ITER). The effect of the sheath characteristics on tungsten prompt deposition is investigated by using particle-in-cell (PIC) simulations to spatially resolve the plasma parameters inside the sheath. Applying PIC data instead of non-resolved sheath leads in general to smaller tungsten deposition, which is mainly due to a density and temperature decrease towards the surface within the sheath. Two-dimensional tungsten erosion/deposition simulations, assuming symmetry in toroidal direction but poloidally spatially varying plasma parameter profiles, have been carried out for the JET divertor. The simulations reveal, similar to experimental findings, that tungsten gross erosion is dominated in H-mode plasmas by the intra-ELM phases. However, due to deposition, the net tungsten erosion can be similar within intra- and inter-ELM phases if the inter-ELM electron temperature is high enough. Also, the simulated deposition fraction of about 84% in between ELMs is in line with spectroscopic observations from which a lower limit of 50% has been estimated.

  5. Fully kinetic simulations of magnetic reconnection in partially ionised gases

    NASA Astrophysics Data System (ADS)

    Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.

    2016-12-01

    Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.

  6. The formation of relativistic plasma structures and their potential role in the generation of cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.

    2008-11-01

    Recent particle-in-cell (PIC) simulation studies have addressed particle acceleration and magnetic field generation in relativistic astrophysical flows by plasma phase space structures. We discuss the astrophysical environments such as the jets of compact objects, and we give an overview of the global PIC simulations of shocks. These reveal several types of phase space structures, which are relevant for the energy dissipation. These structures are typically coupled in shocks, but we choose to consider them here in an isolated form. Three structures are reviewed. (1) Simulations of interpenetrating or colliding plasma clouds can trigger filamentation instabilities, while simulations of thermally anisotropic plasmas observe the Weibel instability. Both transform a spatially uniform plasma into current filaments. These filament structures cause the growth of the magnetic fields. (2) The development of a modified two-stream instability is discussed. It saturates first by the formation of electron phase space holes. The relativistic electron clouds modulate the ion beam and a secondary, spatially localized electrostatic instability grows, which saturates by forming a relativistic ion phase space hole. It accelerates electrons to ultra-relativistic speeds. (3) A simulation is also revised, in which two clouds of an electron-ion plasma collide at the speed 0.9c. The inequal densities of both clouds and a magnetic field that is oblique to the collision velocity vector result in waves with a mixed electrostatic and electromagnetic polarity. The waves give rise to growing corkscrew distributions in the electrons and ions that establish an equipartition between the electron, the ion and the magnetic energy. The filament-, phase space hole- and corkscrew structures are discussed with respect to electron acceleration and magnetic field generation.

  7. Effects of dietary chromium picolinate and peppermint essential oil on growth performance and blood biochemical parameters of broiler chicks reared under heat stress conditions

    NASA Astrophysics Data System (ADS)

    Akbari, Mohsen; Torki, Mehran

    2014-08-01

    A study was conducted using 240 female day-old broiler chicks to evaluate the effects of dietary chromium picolinate (CrPic), peppermint essential oil (P.mint), or their combination on growth performance and blood biochemical parameters of female broiler chicks raised under heat stress conditions (HS, 23.9 to 38 °C cycling). Average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) were obtained from 1 to 42 days of age. Furthermore, at the end of the experiment (day 42), birds were bled to determine some blood biochemical parameters and weighed for final body weight (BW). ADFI, ADG, and BW were not influenced significantly by dietary CrPic and P.mint ( P > 0.05). A significant interaction between dietary CrPic and P.mint on FCR ( P = 0.012) was detected. FCR significantly decreased in chicks fed the diet including both CrPic and P.mint compared with the CrPic group. Significant interaction between dietary P.mint and CrPic on serum concentrations of triglycerides, glucose, and albumin were observed ( P < 0.05), but the other measured blood biochemical parameters were not statistically affected by dietary treatments ( P > 0.05). The serum concentrations of glucose, triglycerides were decreased ( P < 0.05) in broilers fed the diet including both CrPic and P.mint. Plasma chromium (Cr) content increased significantly ( P < 0.05) in birds fed the CrPic-included diet compared with the control group ( P < 0.05). From the results of the present experiment it can be concluded that dietary supplementation with combined P.mint and CrPic could have beneficial effects on some blood biochemical parameters of female chicks reared under heat stress conditions.

  8. Effects of dietary chromium picolinate and peppermint essential oil on growth performance and blood biochemical parameters of broiler chicks reared under heat stress conditions.

    PubMed

    Akbari, Mohsen; Torki, Mehran

    2014-08-01

    A study was conducted using 240 female day-old broiler chicks to evaluate the effects of dietary chromium picolinate (CrPic), peppermint essential oil (P.mint), or their combination on growth performance and blood biochemical parameters of female broiler chicks raised under heat stress conditions (HS, 23.9 to 38 °C cycling). Average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) were obtained from 1 to 42 days of age. Furthermore, at the end of the experiment (day 42), birds were bled to determine some blood biochemical parameters and weighed for final body weight (BW). ADFI, ADG, and BW were not influenced significantly by dietary CrPic and P.mint (P>0.05). A significant interaction between dietary CrPic and P.mint on FCR (P=0.012) was detected. FCR significantly decreased in chicks fed the diet including both CrPic and P.mint compared with the CrPic group. Significant interaction between dietary P.mint and CrPic on serum concentrations of triglycerides, glucose, and albumin were observed (P<0.05), but the other measured blood biochemical parameters were not statistically affected by dietary treatments (P>0.05). The serum concentrations of glucose, triglycerides were decreased (P<0.05) in broilers fed the diet including both CrPic and P.mint. Plasma chromium (Cr) content increased significantly (P<0.05) in birds fed the CrPic-included diet compared with the control group (P<0.05). From the results of the present experiment it can be concluded that dietary supplementation with combined P.mint and CrPic could have beneficial effects on some blood biochemical parameters of female chicks reared under heat stress conditions.

  9. Proposal and verification numerical simulation for a microwave forward scattering technique at upper hybrid resonance for the measurement of electron gyroscale density fluctuations in the electron cyclotron frequency range in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Kawamori, E.; Igami, H.

    2017-11-01

    A diagnostic technique for detecting the wave numbers of electron density fluctuations at electron gyro-scales in an electron cyclotron frequency range is proposed, and the validity of the idea is checked by means of a particle-in-cell (PIC) numerical simulation. The technique is a modified version of the scattering technique invented by Novik et al. [Plasma Phys. Controlled Fusion 36, 357-381 (1994)] and Gusakov et al., [Plasma Phys. Controlled Fusion 41, 899-912 (1999)]. The novel method adopts forward scattering of injected extraordinary probe waves at the upper hybrid resonance layer instead of the backward-scattering adopted by the original method, enabling the measurement of the wave-numbers of the fine scale density fluctuations in the electron-cyclotron frequency band by means of phase measurement of the scattered waves. The verification numerical simulation with the PIC method shows that the technique has a potential to be applicable to the detection of electron gyro-scale fluctuations in laboratory plasmas if the upper-hybrid resonance layer is accessible to the probe wave. The technique is a suitable means to detect electron Bernstein waves excited via linear mode conversion from electromagnetic waves in torus plasma experiments. Through the numerical simulations, some problems that remain to be resolved are revealed, which include the influence of nonlinear processes such as the parametric decay instability of the probe wave in the scattering process, and so on.

  10. Hybrid Global Model Simulations of He/N2 and He/H2O Atmospheric Pressure Capacitive Discharges

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.; Kawamura, E.; Ke, Ding; Lichtenberg, A. J.; Chabert, P.; Lazzaroni, C.

    2014-10-01

    We used 1D particle-in-cell (PIC) simulations of an atmospheric He/0.1%N2 discharge with simplified chemistry to guide the development of a hybrid analytical/numerical global model that includes electron multiplication and two classes of electrons: ``hot'' electrons associated with the sheaths, and ``warm'' electrons associated with the bulk. The model and PIC results show reasonable agreement and indicate a transition from a low power α-mode with a relatively high bulk electron temperature Te to a high power γ-mode with a low Te. The transition is accompanied by an increase in density and a decrease in sheath widths. Water is a trace gas of bio-medical interest since it may arise from contact with skin. We use the hybrid global model to simulate a chemically complex, bounded He/H2O atmospheric pressure discharge, including 148 volume reactions among 43 species, and including clusters up to H19O9+.For a planar discharge with a 1 cm electrode radius and a 0.5 mm gap driven at 13.56 MHz, we determine the depletion and diffusion effects and the α to γ transition for secondary emission γse = 0.25 over a range of rf currents and external H2O concentrations. Each simulation takes about 2 minutes on a moderate laptop. This work was partially supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC000193 and by the Natural Science Foundation of China Contract 11375042.

  11. Neolinoptes gen. n., a replacement name for the net-winged beetle genus Linoptes Gorham, 1884 and a new species of Lycomorphon from Guyana (Coleoptera: Lycidae).

    PubMed

    Nascimento, Elynton Alves DO; Bocakova, Milada

    2017-01-09

    Neolinoptes gen. n. is erected to replace Linoptes Gorham, 1884, preoccupied by Linoptes Menge, 1854 (Arachnida: Araneae). Consequently, Neolinoptes imbrex (Gorham, 1884) comb. n., N. amazonicus (Pic, 1923) comb. n., N. atronotatus (Pic, 1922) comb. n., N. atripennis (Pic, 1932) comb. n. are proposed. Calocladon rubidum Gorham, 1884 is transferred to Neolinoptes. Lycomorphon iwokrama sp. n. is proposed as new to science and the genus is recorded from Guyana for the first time. Additionally, Falsocaenia irregularis var. germaini Pic, 1931 is elevated to species rank and past confusion on F. irregularis discussed. New data on geographical distribution of Falsocaenia paranana (Pic, 1922) are presented.

  12. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.

  13. Present-day Circum-Antarctic Simulations using the POPSICLES Coupled Ice Sheet-Ocean Model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X.; Martin, D. F.; Price, S. F.; Maltrud, M. E.; Collins, W.

    2014-12-01

    We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1o (~5 km) ocean resolution and with adaptive ice-sheet model resolution as fine as 500 m. We compare time-averaged melt rates below a number of major ice shelves with those reported by Rignot et al. (2013) as well as other recent studies. We also present seasonal variability and decadal trends in submarine melting from several Antarctic regions. Finally, we explore the influence on basal melting and system dynamics resulting from two different choices of climate forcing: a "normal-year" climatology and the CORE v. 2 forcing data (Large and Yeager 2008).POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh (2009) to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3D; Pattyn et al., 2013) and realistic configurations (Favier et al. 2014).A companion presentation, "Response of the Antarctic Ice Sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model" in session C024 covers the ice-sheet response to these melt rates in the coupled simulation. The figure shows eddy activity in the vertically integrated (barotropic) velocity nearly six years into a POPSICLES simulation of the Antarctic region.

  14. Searching for Short GRBs in Soft Gamma Rays with INTEGRAL/PICsIT

    NASA Astrophysics Data System (ADS)

    Rodi, James; Bazzano, Angela; Ubertini, Pietro; Natalucci, Lorenzo; Savchenko, V.; Kuulkers, E.; Ferrigno, Carlo; Bozzo, Enrico; Brandt, Soren; Chenevez, Jerome; Courvoisier, T. J.-L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; von Kienlin, A.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.; Mereghetti, S.; Roques, J.-P.; Sunyaev, R.

    2018-01-01

    With gravitational wave (GW) detections by the LIGO/Virgo collaboration over the past several years, there is heightened interest in gamma-ray bursts (GRBs), especially “short” GRBs (T90 <2s). The high-energy PICsIT detector (~0.2 – 10 MeV) on-board the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) is able to observe sources out to approximately 70° off-axis, making it essentially a soft gamma-ray, all-sky monitor for impulsive events, such as SGRBs. Because SGRBs typically have hard spectra with peak energies of a few hundred keV, PICsIT with its ~ 3000 cm2 collecting area is able to provide spectral information about these sources at soft gamma-ray energies.We have begun a study of PICsIT data for faint SGRBs similar to the one associated with the binary neutron star (BNS) merger GW 170817, and also are preparing for future GW triggers by developing a real-time burst analysis for PICsIT. Searching the PICsIT data for significant excesses during ~30 min-long pointings containing times of SGRBs, we have been able to differentiate between SGRBs and spurious events. Also, this work allows us to assess what fraction of reported SGRBs have been detected by PICsIT, which can be used to provide an estimate of the number of GW BNS events seen by PICsIT during the next LIGO/Virgo observing run starting in Fall 2018.

  15. Particle-in-cell simulations of Earth-like magnetosphere during a magnetic field reversal

    NASA Astrophysics Data System (ADS)

    Barbosa, M. V. G.; Alves, M. V.; Vieira, L. E. A.; Schmitz, R. G.

    2017-12-01

    The geologic record shows that hundreds of pole reversals have occurred throughout Earth's history. The mean interval between the poles reversals is roughly 200 to 300 thousand years and the last reversal occurred around 780 thousand years ago. Pole reversal is a slow process, during which the strength of the magnetic field decreases, become more complex, with the appearance of more than two poles for some time and then the field strength increases, changing polarity. Along the process, the magnetic field configuration changes, leaving the Earth-like planet vulnerable to the harmful effects of the Sun. Understanding what happens with the magnetosphere during these pole reversals is an open topic of investigation. Only recently PIC codes are used to modeling magnetospheres. Here we use the particle code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] to simulate an Earth-like magnetosphere at three different times along the pole reversal process. The code was modified, so the Earth-like magnetic field is generated using an expansion in spherical harmonics with the Gauss coefficients given by a MHD simulation of the Earth's core [Glatzmaier et al, Nature, 1995; 1999; private communication to L.E.A.V.]. Simulations show the qualitative behavior of the magnetosphere, such as the current structures. Only the planet magnetic field was changed in the runs. The solar wind is the same for all runs. Preliminary results show the formation of the Chapman-Ferraro current in the front of the magnetosphere in all the cases. Run for the middle of the reversal process, the low intensity magnetic field and its asymmetrical configuration the current structure changes and the presence of multiple poles can be observed. In all simulations, a structure similar to the radiation belts was found. Simulations of more severe solar wind conditions are necessary to determine the real impact of the reversal in the magnetosphere.

  16. Assessing the Impact of Laurentide Ice-sheet Topography on Glacial Climate

    NASA Technical Reports Server (NTRS)

    Ullman, D. J.; LeGrande, A. N.; Carlson, A. E.; Anslow, F. S.; Licciardi, J. M.

    2014-01-01

    Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotopeenabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition.We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates, with implications for estimating climate sensitivity to greenhouse gas forcing utilizing past climate states.

  17. Leveraging social media in the stem cell sector: exploring Twitter's potential as a vehicle for public information campaigns.

    PubMed

    McNutt, Kathleen; Zarzeczny, Amy

    2017-10-01

    Our aim in this project was to explore Twitter's potential as a vehicle for an online public information campaign (PIC) focused on providing evidence-based information about stem cell therapies and the market for unproven stem cell-based interventions. We designed an online, Twitter-based PIC using classic design principles and identified a set of target intermediaries (organizations with online influence) using a network governance approach. We tracked the PIC's dissemination over a 2-month period, and evaluated it using metrics from the #SMMStandards Conclave. Participation was limited but the PIC achieved some reach and engagement. Social media based online PICs appear to have potential but also face challenges. Future research is required to better understand how to most effectively maximize their strengths.

  18. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers

    PubMed Central

    Lim, Chaemin; Youn, Yu Seok; Lee, Kyung Soo; Hoang, Ngoc Ha; Sim, Taehoon; Lee, Eun Seong; Oh, Kyung Taek

    2016-01-01

    A polyelectrolyte ionomer complex (PIC) composed of cationic and anionic polymers was developed for nanomedical applications. Here, a poly(ethylene glycol)–poly(lactic acid)–poly(ethylene imine) triblock copolymer (PEG–PLA–PEI) and a poly(aspartic acid) (P[Asp]) homopolymer were synthesized. These polyelectrolytes formed stable aggregates through electrostatic interactions between the cationic PEI and the anionic P(Asp) blocks. In particular, the addition of a hydrophobic PLA and a hydrophilic PEG to triblock copolyelectrolytes provided colloidal aggregation stability by forming a tight hydrophobic core and steric hindrance on the surface of PIC, respectively. The PIC showed different particle sizes and zeta potentials depending on the ratio of cationic PEI and anionic P(Asp) blocks (C/A ratio). The doxorubicin (dox)-loaded PIC, prepared with a C/A ratio of 8, demonstrated pH-dependent behavior by the deprotonation/protonation of polyelectrolyte blocks. The drug release and the cytotoxicity of the dox-loaded PIC (C/A ratio: 8) increased under acidic conditions compared with physiological pH, due to the destabilization of the formation of the electrostatic core. In vivo animal imaging revealed that the prepared PIC accumulated at the targeted tumor site for 24 hours. Therefore, the prepared pH-sensitive PIC could have considerable potential as a nanomedicinal platform for anticancer therapy. PMID:26955270

  19. The effects of strain and stress state in hot forming of mg AZ31 sheet

    NASA Astrophysics Data System (ADS)

    Sherek, Paul A.; Carpenter, Alexander J.; Hector, Louis G.; Krajewski, Paul E.; Carter, Jon T.; Lasceski, Joshua; Taleff, Eric M.

    Wrought magnesium alloys, such as AZ31 sheet, are of considerable interest for light-weighting of vehicle structural components. The poor room-temperature ductility of AZ31 sheet has been a hindrance to forming the complex part shapes necessary for practical applications. However, the outstanding formability of AZ31 sheet at elevated temperature provides an opportunity to overcome that problem. Complex demonstration components have already been produced at 450°C using gas-pressure forming. Accurate simulations of such hot, gas-pressure forming will be required for the design and optimization exercises necessary if this technology is to be implemented commercially. We report on experiments and simulations used to construct the accurate material constitutive models necessary for finite-element-method simulations. In particular, the effects of strain and stress state on plastic deformation of AZ31 sheet at 450°C are considered in material constitutive model development. Material models are validated against data from simple forming experiments.

  20. Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.

    2018-05-01

    Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations, controlled by the sub-ice-shelf melting which was dictated by the RSL forcing and the glacial history of the IIS and LIS. In contrast, the southwestern part of the ice sheet was insensitive to these forcings, with a uniform response in all simulations controlled by the surface air temperature, derived from ice cores.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Gennady

    Typically the RFQs are designed using the Parmteq, DesRFQ and other similar specialized codes, which produces the files containing the field and geometrical parameters for every cell. The beam dynamic simulations with these analytical fields a re, of course, ideal realizations of the designed RFQs. The new advanced computing capabilities made it possible to simulate beam and even dark current in the realistic 3D electromagnetic fields in the RFQs that may reflect cavity tuning, presence of tune rs and couplers, RFQ segmentation etc. The paper describes the utilization of full 3D field distribution obtained with CST Studio Suite for beammore » dynamic simulations using both PIC solver of CST Particle Studio and the beam dynamic code TRACK.« less

  2. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  3. Discrete particle noise in a nonlinearly saturated plasma

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Lee, W. W.

    2006-04-01

    Understanding discrete particle noise in an equilibrium plasma has been an important topic since the early days of particle-in- cell (PIC) simulation [1]. In this paper, particle noise in a nonlinearly saturated system is investigated. We investigate the usefulness of the fluctuation-dissipation theorem (FDT) in a regime where drift instabilities are nonlinearly saturated. We obtain excellent agreement between the simulation results and our theoretical predictions of the noise properties. It is found that discrete particle noise always enhances the particle and thermal transport in the plasma, in agreement with the second law of thermodynamics. [1] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York (1985).

  4. End-to-end plasma bubble PIC simulations on GPUs

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Fox, William; Matteucci, Jackson; Bhattacharjee, Amitava

    2017-10-01

    Accelerator technologies play a crucial role in eventually achieving exascale computing capabilities. The current and upcoming leadership machines at ORNL (Titan and Summit) employ Nvidia GPUs, which provide vast computational power but also need specifically adapted computational kernels to fully exploit them. In this work, we will show end-to-end particle-in-cell simulations of the formation, evolution and coalescence of laser-generated plasma bubbles. This work showcases the GPU capabilities of the PSC particle-in-cell code, which has been adapted for this problem to support particle injection, a heating operator and a collision operator on GPUs.

  5. Modeling of negative ion extraction from a magnetized plasma source: Derivation of scaling laws and description of the origins of aberrations in the ion beam

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Garrigues, L.; Boeuf, J. P.

    2018-02-01

    We model the extraction of negative ions from a high brightness high power magnetized negative ion source. The model is a Particle-In-Cell (PIC) algorithm with Monte-Carlo Collisions. The negative ions are generated only on the plasma grid surface (which separates the plasma from the electrostatic accelerator downstream). The scope of this work is to derive scaling laws for the negative ion beam properties versus the extraction voltage (potential of the first grid of the accelerator) and plasma density and investigate the origins of aberrations on the ion beam. We show that a given value of the negative ion beam perveance correlates rather well with the beam profile on the extraction grid independent of the simulated plasma density. Furthermore, the extracted beam current may be scaled to any value of the plasma density. The scaling factor must be derived numerically but the overall gain of computational cost compared to performing a PIC simulation at the real plasma density is significant. Aberrations appear for a meniscus curvature radius of the order of the radius of the grid aperture. These aberrations cannot be cancelled out by switching to a chamfered grid aperture (as in the case of positive ions).

  6. Edge-to-center plasma density ratios in two-dimensional plasma discharges

    NASA Astrophysics Data System (ADS)

    Lucken, R.; Croes, V.; Lafleur, T.; Raimbault, J.-L.; Bourdon, A.; Chabert, P.

    2018-03-01

    Edge-to-center plasma density ratios—so-called h factors—are important parameters for global models of plasma discharges as they are used to calculate the plasma losses at the reactor walls. There are well-established theories for h factors in the one-dimensional (1D) case. The purpose of this paper is to establish h factors in two-dimensional (2D) systems, with guidance from a 2D particle-in-cell (PIC) simulation. We derive analytical solutions of a 2D fluid theory that includes the effect of ion inertia, but assumes a constant (independent of space) ion collision frequency (using an average ion velocity) across the discharge. Predicted h factors from this 2D fluid theory have the same order of magnitude and the same trends as the PIC simulations when the average ion velocity used in the collision frequency is set equal to the ion thermal velocity. The best agreement is obtained when the average ion velocity varies with pressure (but remains independent of space), going from half the Bohm velocity at low pressure, to the thermal velocity at high pressure. The analysis also shows that a simple correction of the widely-used 1D heuristic formula may be proposed to accurately incorporate 2D effects.

  7. Monoenergetic ion acceleration and Rayleigh-Taylor instability of the composite target irradiated by the laser pulse

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Yi, S. Austin; Shvets, Gennady

    2012-10-01

    Acceleration of ions in the two-specie composite target irradiated by a circularly polarized laser pulse is studied analytically and via particle-in-cell (PIC) simulations. A self-consistent analytical model of the composite target is developed. In this model, target parameters are stationary in the center of mass of the system: heavy and light ions are completely separated from each other and form two layers, while electrons are bouncing in the potential well formed by the laser ponderomotive and electrostatic potentials. They are distributed in the direction of acceleration by the Boltzmann law and over velocities by the Maxwell-Juttner law. The laser pulse interacts directly only with electrons in a thin sheath layer, and these electrons transfer the laser pressure to the target ions. In the fluid approximation it is shown, the composite target is still susceptible to the Rayleigh-Taylor instability [1]. Using PIC simulations we found the growth rate of initially seeded perturbations as a function of their wavenumber for different composite target parameters and compare it with analytical results. Useful scaling laws between this rate and laser pulse pressure and target parameters are discussed.[4pt] [1] T.P. Yu, A. Pukhov, G. Shvets, M. Chen, T. H. Ratliff, S. A. Yi, and V. Khudik, Phys. Plasmas, 18, 043110 (2011).

  8. Towards robust algorithms for current deposition and dynamic load-balancing in a GPU particle in cell code

    NASA Astrophysics Data System (ADS)

    Rossi, Francesco; Londrillo, Pasquale; Sgattoni, Andrea; Sinigardi, Stefano; Turchetti, Giorgio

    2012-12-01

    We present `jasmine', an implementation of a fully relativistic, 3D, electromagnetic Particle-In-Cell (PIC) code, capable of running simulations in various laser plasma acceleration regimes on Graphics-Processing-Units (GPUs) HPC clusters. Standard energy/charge preserving FDTD-based algorithms have been implemented using double precision and quadratic (or arbitrary sized) shape functions for the particle weighting. When porting a PIC scheme to the GPU architecture (or, in general, a shared memory environment), the particle-to-grid operations (e.g. the evaluation of the current density) require special care to avoid memory inconsistencies and conflicts. Here we present a robust implementation of this operation that is efficient for any number of particles per cell and particle shape function order. Our algorithm exploits the exposed GPU memory hierarchy and avoids the use of atomic operations, which can hurt performance especially when many particles lay on the same cell. We show the code multi-GPU scalability results and present a dynamic load-balancing algorithm. The code is written using a python-based C++ meta-programming technique which translates in a high level of modularity and allows for easy performance tuning and simple extension of the core algorithms to various simulation schemes.

  9. Modeling of second order space charge driven coherent sum and difference instabilities

    NASA Astrophysics Data System (ADS)

    Yuan, Yao-Shuo; Boine-Frankenheim, Oliver; Hofmann, Ingo

    2017-10-01

    Second order coherent oscillation modes in intense particle beams play an important role for beam stability in linear or circular accelerators. In addition to the well-known second order even envelope modes and their instability, coupled even envelope modes and odd (skew) modes have recently been shown in [Phys. Plasmas 23, 090705 (2016), 10.1063/1.4963851] to lead to parametric instabilities in periodic focusing lattices with sufficiently different tunes. While this work was partly using the usual envelope equations, partly also particle-in-cell (PIC) simulation, we revisit these modes here and show that the complete set of second order even and odd mode phenomena can be obtained in a unifying approach by using a single set of linearized rms moment equations based on "Chernin's equations." This has the advantage that accurate information on growth rates can be obtained and gathered in a "tune diagram." In periodic focusing we retrieve the parametric sum instabilities of coupled even and of odd modes. The stop bands obtained from these equations are compared with results from PIC simulations for waterbag beams and found to show very good agreement. The "tilting instability" obtained in constant focusing confirms the equivalence of this method with the linearized Vlasov-Poisson system evaluated in second order.

  10. Effects of neutral distribution and external magnetic field on plasma momentum in electrodeless plasma thrusters

    NASA Astrophysics Data System (ADS)

    Takase, Kazuki; Takahashi, Kazunori; Takao, Yoshinori

    2018-02-01

    The effects of neutral distribution and an external magnetic field on plasma distribution and thruster performance are numerically investigated using a particle-in-cell simulation with Monte Carlo collisions (PIC-MCC) and the direct simulation Monte Carlo (DSMC) method. The modeled thruster consists of a quartz tube 1 cm in diameter and 3 cm in length, where a double-turn rf loop antenna is wound at the center of the tube and a solenoid is placed between the loop antenna and the downstream tube exit. A xenon propellant is introduced from both the upstream and downstream sides of the thruster, and the flow rates are varied while maintaining the total gas flow rate of 30 μg/s. The PIC-MCC calculations have been conducted using the neutral distribution obtained from the DSMC calculations, which were applied with different strengths of the magnetic field. The numerical results show that both the downstream gas injection and the external magnetic field with a maximum strength near the thruster exit lead to a shift of the plasma density peak from the upstream to the downstream side. Consequently, a larger total thrust is obtained when increasing the downstream gas injection and the magnetic field strength, which qualitatively agrees with a previous experiment using a helicon plasma source.

  11. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    DOE PAGES

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; ...

    2016-07-11

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of themore » wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. As a result, the capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.« less

  12. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2017-10-01

    Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.

  13. Coding Instructions, Worksheets, and Keypunch Sheets for M.E.T.R.O.-APEX Simulation.

    ERIC Educational Resources Information Center

    Michigan Univ., Ann Arbor. Environmental Simulation Lab.

    Compiled in this resource are coding instructions, worksheets, and keypunch sheets for use in the M.E.T.R.O.-APEX simulation, described in detail in documents ED 064 530 through ED 064 550. Air Pollution Exercise (APEX) is a computerized college and professional level "real world" simulation of a community with urban and rural problems, industrial…

  14. Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dargent, J.; Aunai, N.; Belmont, G.; Dorville, N.; Lavraud, B.; Hesse, M.

    2016-06-01

    > Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.

  15. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    NASA Astrophysics Data System (ADS)

    Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2004-06-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.

  16. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere under enhanced convection: RCM simulations combined with force-balance magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.

    2010-12-01

    Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated plasma sheet properties by comparing them with statistical results obtained from Geotail and THEMIS observations.

  17. Hot DA white dwarf model atmosphere calculations: including improved Ni PI cross-sections

    NASA Astrophysics Data System (ADS)

    Preval, S. P.; Barstow, M. A.; Badnell, N. R.; Hubeny, I.; Holberg, J. B.

    2017-02-01

    To calculate realistic models of objects with Ni in their atmospheres, accurate atomic data for the relevant ionization stages need to be included in model atmosphere calculations. In the context of white dwarf stars, we investigate the effect of changing the Ni IV-VI bound-bound and bound-free atomic data on model atmosphere calculations. Models including photoionization cross-section (PICS) calculated with AUTOSTRUCTURE show significant flux attenuation of up to ˜80 per cent shortward of 180 Å in the extreme ultraviolet (EUV) region compared to a model using hydrogenic PICS. Comparatively, models including a larger set of Ni transitions left the EUV, UV, and optical continua unaffected. We use models calculated with permutations of these atomic data to test for potential changes to measured metal abundances of the hot DA white dwarf G191-B2B. Models including AUTOSTRUCTURE PICS were found to change the abundances of N and O by as much as ˜22 per cent compared to models using hydrogenic PICS, but heavier species were relatively unaffected. Models including AUTOSTRUCTURE PICS caused the abundances of N/O IV and V to diverge. This is because the increased opacity in the AUTOSTRUCTURE PICS model causes these charge states to form higher in the atmosphere, more so for N/O V. Models using an extended line list caused significant changes to the Ni IV-V abundances. While both PICS and an extended line list cause changes in both synthetic spectra and measured abundances, the biggest changes are caused by using AUTOSTRUCTURE PICS for Ni.

  18. Estimating Particulate Inorganic Carbon Concentrations of the Global Ocean From Ocean Color Measurements Using a Reflectance Difference Approach

    NASA Astrophysics Data System (ADS)

    Mitchell, C.; Hu, C.; Bowler, B.; Drapeau, D.; Balch, W. M.

    2017-11-01

    A new algorithm for estimating particulate inorganic carbon (PIC) concentrations from ocean color measurements is presented. PIC plays an important role in the global carbon cycle through the oceanic carbonate pump, therefore accurate estimations of PIC concentrations from satellite remote sensing are crucial for observing changes on a global scale. An extensive global data set was created from field and satellite observations for investigating the relationship between PIC concentrations and differences in the remote sensing reflectance (Rrs) at green, red, and near-infrared (NIR) wavebands. Three color indices were defined: two as the relative height of Rrs(667) above a baseline running between Rrs(547) and an Rrs in the NIR (either 748 or 869 nm), and one as the difference between Rrs(547) and Rrs(667). All three color indices were found to explain over 90% of the variance in field-measured PIC. But, due to the lack of availability of Rrs(NIR) in the standard ocean color data products, most of the further analysis presented here was done using the color index determined from only two bands. The new two-band color index algorithm was found to retrieve PIC concentrations more accurately than the current standard algorithm used in generating global PIC data products. Application of the new algorithm to satellite imagery showed patterns on the global scale as revealed from field measurements. The new algorithm was more resistant to atmospheric correction errors and residual errors in sun glint corrections, as seen by a reduction in the speckling and patchiness in the satellite-derived PIC images.

  19. Effects of Chromium Picolinate on Food Intake and Satiety

    PubMed Central

    Morrison, Christopher D.; Cefalu, William T.; Martin, Corby K.; Coulon, Sandra; Geiselman, Paula; Han, Hongmei; White, Christy L.; Williamson, Donald A.

    2008-01-01

    Abstract Background Chromium picolinate (CrPic) has been shown to attenuate weight gain, but the mechanism underlying this effect is unknown. Methods We assessed the effect of CrPic in modulating food intake in healthy, overweight, adult women who reported craving carbohydrates (Study 1) and performed confirmatory studies in Sprague-Dawley rats (Study 2). Study 1 utilized a double-blind placebo-controlled design and randomly assigned 42 overweight adult women with carbohydrate cravings to receive 1,000 μg of chromium as CrPic or placebo for 8 weeks. Food intake at breakfast, lunch, and dinner was directly measured at baseline, week 1, and week 8. For Study 2, Sprague-Dawley rats were fasted for 24 h and subsequently injected intraperitoneally with 0, 1, 10, or 50 μg/kg CrPic. Subsequently, rats were implanted with an indwelling third ventricular cannula. Following recovery, 0, 0.4, 4, or 40 ng of CrPic was injected directly into the brain via the intracerebroventricular cannula, and spontaneous 24-h food intake was measured. Results Study 1 demonstrated that CrPic, as compared to placebo, reduced food intake (P < 0.0001), hunger levels (P < 0.05), and fat cravings (P < 0.0001) and tended to decrease body weight (P = 0.08). In study 2, intraperitoneal administration resulted in a subtle decrease in food intake at only the highest dose (P = 0.03). However, when administered centrally, CrPic dose-dependently decreased food intake (P < 0.05). Conclusions These data suggest CrPic has a role in food intake regulation, which may be mediated by a direct effect on the brain. PMID:18715218

  20. A generalized weight-based particle-in-cell simulation scheme

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Jenkins, T. G.; Ethier, S.

    2011-03-01

    A generalized weight-based particle simulation scheme suitable for simulating magnetized plasmas, where the zeroth-order inhomogeneity is important, is presented. The scheme is an extension of the perturbative simulation schemes developed earlier for particle-in-cell (PIC) simulations. The new scheme is designed to simulate both the perturbed distribution ( δf) and the full distribution (full- F) within the same code. The development is based on the concept of multiscale expansion, which separates the scale lengths of the background inhomogeneity from those associated with the perturbed distributions. The potential advantage for such an arrangement is to minimize the particle noise by using δf in the linear stage of the simulation, while retaining the flexibility of a full- F capability in the fully nonlinear stage of the development when signals associated with plasma turbulence are at a much higher level than those from the intrinsic particle noise.

  1. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metalmore » at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.« less

  2. Lorentz boosted frame simulation technique in Particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng

    In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT/Finite Difference solver. This scheme also requires a current correction and filtering which require FFTs. However, we show that in this case the FFTs can be done locally on each parallel partition. We also describe how the use of the hybrid FFT/Finite Difference or the hybrid higher order finite difference/second order finite difference methods permit combining the Lorentz boosted frame simulation technique with another "speed up" technique, called the quasi-3D algorithm, to gain unprecedented speed up for the LWFA simulations. In the quasi-3D algorithm the fields and currents are defined on an r--z PIC grid and expanded in azimuthal harmonics. The expansion is truncated with only a few modes so it has similar computational needs of a 2D r--z PIC code. We show that NCI has similar properties in r--z as in z-x slab geometry and show that the same strategies for eliminating the NCI in Cartesian geometry can be effective for the quasi-3D algorithm leading to the possibility of unprecedented speed up. We also describe a new code called UPIC-EMMA that is based on fully spectral (FFT) solver. The new code includes implementation of a moving antenna that can launch lasers in the boosted frame. We also describe how the new hybrid algorithms were implemented into OSIRIS. Examples of LWFA using the boosted frame using both UPIC-EMMA and OSIRIS are given, including the comparisons against the lab frame results. We also describe how to efficiently obtain the boosted frame simulations data that are needed to generate the transformed lab frame data, as well as how to use a moving window in the boosted frame. The NCI is also a major issue for modeling relativistic shocks with PIC algorithm. In relativistic shock simulations two counter-propagating plasmas drifting at relativistic speeds are colliding against each other. We show that the strategies for eliminating the NCI developed in this dissertation are enabling such simulations being run for much longer simulation times, which should open a path for major advances in relativistic shock research. (Abstract shortened by ProQuest.).

  3. 46 CFR 13.309 - Eligibility: Cargo course.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Eligibility: Cargo course. 13.309 Section 13.309... TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.309 Eligibility: Cargo course. Each... a course in DL or LG appropriate for tank barges and for Tankerman-PIC or Tankerman-PIC (Barge), and...

  4. 46 CFR 13.309 - Eligibility: Cargo course.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Eligibility: Cargo course. 13.309 Section 13.309... TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.309 Eligibility: Cargo course. Each... a course in DL or LG appropriate for tank barges and for Tankerman-PIC or Tankerman-PIC (Barge), and...

  5. 46 CFR 13.309 - Eligibility: Cargo course.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Eligibility: Cargo course. 13.309 Section 13.309... TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.309 Eligibility: Cargo course. Each... a course in DL or LG appropriate for tank barges and for Tankerman-PIC or Tankerman-PIC (Barge), and...

  6. 46 CFR 13.309 - Eligibility: Cargo course.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Eligibility: Cargo course. 13.309 Section 13.309... TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.309 Eligibility: Cargo course. Each... a course in DL or LG appropriate for tank barges and for Tankerman-PIC or Tankerman-PIC (Barge), and...

  7. Chemical properties and biotoxicity of several chromium picolinate derivatives.

    PubMed

    Liu, Bin; Liu, Yanfei; Chai, Jie; Hu, Xiangquan; Wu, Duoming; Yang, Binsheng

    2016-11-01

    As a man-made additive, chromium picolinate Cr(pic) 3 has become a popular dietary supplement worldwide. In this paper Cr(pic) 3 and its new derivatives Cr(6-CH 3 -pic) 3 (1), [Cr(6-NH 2 -pic) 2 (H 2 O) 2 ]NO 3 (2) and Cr(3-NH 2 -pic) 3 (3) were synthesized, and complexes 1 and 2 were characterized by X-ray crystal structure (where pic=2-carboxypyridine). The relationship between the chemical properties and biotoxicity of these complexes was fully discussed: (1) The dynamics stability of chromium picolinate complexes mainly depends on the CrN bonds length. (2) There is a positive correlation between the dynamics stability, electrochemical potentials and generation of reactive oxygen species through Fenton-like reaction. (3) However, no biological toxicity was observed through MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and sub-chronic oral toxicity study for these chromium picolinate compounds. Together, our findings establish a framework for understanding the structure-property-toxicity relationships of the chromium picolinate complexes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of chromium picolinate on the viability of chick embryo fibroblast.

    PubMed

    Bai, Y; Zhao, X; Qi, C; Wang, L; Cheng, Z; Liu, M; Liu, J; Yang, D; Wang, S; Chai, T

    2014-04-01

    Chromium picolinate (CrPic), which is used as a nutritional supplement and to treat type 2 diabetes, has gained much attention because of its cytotoxicity. This study evaluated the effects of CrPic on the viability of the chick embryo fibroblast (CEF) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, morphological detection, and flow cytometry. The results show that lower concentrations of CrPic (8 and 16 μM) did not damage CEF viability (p > 0.05). However, higher CrPic concentrations (400 and 600 μM) indicated a highly significant effect on the production of intracellular reactive oxygen species, alteration of mitochondrial membrane potential, intracellular calcium ion concentration, and the apoptosis rate (p < 0.01), contrary to lower CrPic concentrations (8 and 16 μM) and control group. Moreover, apoptotic morphological changes induced by these processes in CEF were confirmed using Hoechst 33258 staining. Cell death induced by higher concentrations of CrPic was caused by an apoptotic and a necrotic mechanism, whereas the main mechanism of oxidative stress-induced mitochondrial dysfunction was apoptotic death.

  9. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet

    PubMed Central

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-01-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources. PMID:26601273

  10. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K.

    2015-12-01

    The Antarctic Ice Sheet stores water equivalent to 58 meters in global sea-level rise. Here we show in simulations with the Parallel Ice Sheet Model that burning the currently attainable fossil-fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil-fuel emissions of 10 000 GtC, Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 meters per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West- and East Antarctica results in a threshold-increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  11. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    PubMed

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  12. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  13. Effects of radial compression on a novel simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell cell-sheets for annulus fibrosus regeneration.

    PubMed

    See, Eugene Yong-Shun; Toh, Siew Lok; Goh, James Cho-Hong

    2011-10-01

    The aim of this study was to develop a tissue engineering approach in regenerating the annulus fibrosus (AF) as part of an overall strategy to produce a tissue-engineered intervertebral disc (IVD) replacement. To determine whether a rehabilitative simulation regime on bone marrow–derived mesenchymal stem cell cell-sheet is able to aid the regeneration of the AF. No previous study has used bone marrow–derived mesenchymal stem cell cell-sheets simulated by a rehabilitative regime to regenerate the AF. The approach was to use bone marrow–derived stem cells to form cell-sheets and incorporating them onto silk scaffolds to simulate the native lamellae of the AF. The in vitro experimental model used to study the efficacy of such a system was made up of the tissue engineering AF construct wrapped around a silicone disc to form a simulated IVD-like assembly. The assembly was cultured within a custom-designed bioreactor that provided a compressive mechanical stimulation onto the silicone disc. The silicone nucleus pulposus would bulge radially and compress the simulated AF to mimic the physiological conditions. The simulated IVD-like assembly was compressed using a rehabilitative regime that lasted for 4 weeks at 0.25 Hz, for 15 minutes each day. With the rehabilitative regime, the cell-sheets remained viable but showed a decrease in cell numbers and viability. Gene expression analysis showed significant upregulation of IVD-related genes and there was an increased ratio of collagen type II to collagen type I found within the extracellular matrix. The results suggested that a rehabilitative regime caused extensive remodeling to take place within the simulated IVD-like assembly, producing extracellular matrix similar to that found in the inner AF.

  14. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  15. Web Service Model for Plasma Simulations with Automatic Post Processing and Generation of Visual Diagnostics*

    NASA Astrophysics Data System (ADS)

    Exby, J.; Busby, R.; Dimitrov, D. A.; Bruhwiler, D.; Cary, J. R.

    2003-10-01

    We present our design and initial implementation of a web service model for running particle-in-cell (PIC) codes remotely from a web browser interface. PIC codes have grown significantly in complexity and now often require parallel execution on multiprocessor computers, which in turn requires sophisticated post-processing and data analysis. A significant amount of time and effort is required for a physicist to develop all the necessary skills, at the expense of actually doing research. Moreover, parameter studies with a computationally intensive code justify the systematic management of results with an efficient way to communicate them among a group of remotely located collaborators. Our initial implementation uses the OOPIC Pro code [1], Linux, Apache, MySQL, Python, and PHP. The Interactive Data Language is used for visualization. [1] D.L. Bruhwiler et al., Phys. Rev. ST-AB 4, 101302 (2001). * This work is supported by DOE grant # DE-FG02-03ER83857 and by Tech-X Corp. ** Also University of Colorado.

  16. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-06-03

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  17. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    PubMed Central

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  18. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Fernandes, Katia; Giannini, Alessandra; Verchot, Louis; Baethgen, Walter; Pinedo-Vasquez, Miguel

    2015-08-01

    The unusual severity and return time of the 2005 and 2010 dry-season droughts in western Amazon is attributed partly to decadal climate fluctuations and a modest drying trend. Decadal variability of western Amazon hydroclimate is highly correlated to the Atlantic sea surface temperature (SST) north-south gradient (NSG). Shifts of dry and wet events frequencies are also related to the NSG phase, with a 66% chance of 3+ years of dry events per decade when NSG > 0 and 19% when NSG < 0. The western Amazon and NSG decadal covariability is well reproduced in general circulation models (GCMs) historical (HIST) and preindustrial control (PIC) experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The HIST and PIC also reproduce the shifts in dry and wet events probabilities, indicating potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase favors above normal frequency of western Amazon dry events in coming decades.

  19. Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and Antarctica high-altitude stations during quiet solar activity

    NASA Astrophysics Data System (ADS)

    Hubert, G.

    2016-10-01

    In this paper are described a new neutron spectrometer which operate in the Concordia station (Antarctica, Dome C) since December 2015. This instrument complements a network including neutron spectrometers operating in the Pic-du-Midi and the Pico dos Dias. Thus, this work present an analysis of cosmic ray induced-neutron based on spectrometers operated simultaneously in the Pic-du-Midi and the Concordia stations during a quiet solar activity. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation and effects of local and seasonal changes, but also the short term dynamics during solar flare events. A first part is devoted to analyze the count rates, the spectrum and the neutron fluxes, implying cross-comparisons between data obtained in the both stations. In a second part, measurements analyses were reinforced by modeling based on simulations of atmospheric cascades according to primary spectra which only depend on the solar modulation potential.

  20. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less

  1. Dynamic Antarctic ice sheet during the early to mid-Miocene

    PubMed Central

    DeConto, Robert M.; Pollard, David; Levy, Richard H.

    2016-01-01

    Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate–ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet–climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52–0.66‰, or a sea level equivalent change of 30–36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability. PMID:26903645

  2. Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model

    NASA Technical Reports Server (NTRS)

    Kantelis, J. P.; Widnall, S. E.

    1986-01-01

    A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.

  3. Role of liver fatty acid binding protein in hepatocellular injury: effect of CrPic treatment.

    PubMed

    Fan, Weijiang; Chen, Kun; Zheng, Guoqiang; Wang, Wenhang; Teng, Anguo; Liu, Anjun; Ming, Dongfeng; Yan, Peng

    2013-07-01

    This study was designed to investigate the molecular mechanisms of chromium picolinate (CrPic, Fig. 1) hepatoprotective activity from alloxan-induced hepatic injury. Diabetes is induced by alloxan-treatment concurrently with the hepatic injury in mice. In this study, we investigate the protective effect of CrPic treatment in hepatic injury and the signal role of liver fatty acid binding protein in early hepatocellular injury diagnostics. In this study, alanine aminotransferase (ALT; EC 2.6.1.2) and aspartate aminotransferase (AST; EC 2.6.1.1) levels in the alloxan group were higher 71% and 50%, respectively, than those of the control group (ALT: 14.51±0.74; AST: 22.60±0.69). The AST and ALT levels in CrPic group were of minimal difference compared to the control groups. Here, CrPic exhibited amelioration alloxan induced oxidative stress in mouse livers. A significant increase in liver fatty acid-binding protein (L-FABP) was observed, which indicates increased fatty acid utilization in liver tissue [1]. In this study, the mRNA levels of L-FABP increased in both the control (1.1 fold) and CrPic (0.78 fold) groups compared the alloxan group. These findings suggest that hepatic injury may be prevented by CrPic, and is a potential target for use in the treatment of early hepatic injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Evaluation of the Parent-Implemented Communication Strategies (PiCS) Project Using the Multiattribute Utility (MAU) Approach

    ERIC Educational Resources Information Center

    Stoner, Julia B.; Meadan, Hedda; Angell, Maureen E.; Daczewitz, Marcus

    2012-01-01

    We conducted a multiattribute utility (MAU) evaluation to assess the Parent-Implemented Communication Strategies (PiCS) project which was funded by the Institute of Education Sciences (IES). In the PiCS project parents of young children with developmental disabilities are trained and coached in their homes on naturalistic and visual teaching…

  5. Global Magnetosphere Modeling With Kinetic Treatment of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Toth, G.; Chen, Y.; Gombosi, T. I.; Cassak, P.; Markidis, S.; Peng, B.; Henderson, M. G.

    2017-12-01

    Global magnetosphere simulations with a kinetic treatment of magnetic reconnection are very challenging because of the large separation of global and kinetic scales. We have developed two algorithms that can overcome these difficulties: 1) the two-way coupling of the global magnetohydrodynamic code with an embedded particle-in-cell model (MHD-EPIC) and 2) the artificial increase of the ion and electron kinetic scales. Both of these techniques improve the efficiency of the simulations by many orders of magnitude. We will describe the techniques and show that they provide correct and meaningful results. Using the coupled model and the increased kinetic scales, we will present global magnetosphere simulations with the PIC domains covering the dayside and/or tail reconnection sites. The simulation results will be compared to and validated with MMS observations.

  6. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  7. Integration of Extended MHD and Kinetic Effects in Global Magnetosphere Models

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Wang, L.; Maynard, K. R. M.; Raeder, J.; Bhattacharjee, A.

    2015-12-01

    Computational models of Earth's geospace environment are an important tool to investigate the science of the coupled solar-wind -- magnetosphere -- ionosphere system, complementing satellite and ground observations with a global perspective. They are also crucial in understanding and predicting space weather, in particular under extreme conditions. Traditionally, global models have employed the one-fluid MHD approximation, which captures large-scale dynamics quite well. However, in Earth's nearly collisionless plasma environment it breaks down on small scales, where ion and electron dynamics and kinetic effects become important, and greatly change the reconnection dynamics. A number of approaches have recently been taken to advance global modeling, e.g., including multiple ion species, adding Hall physics in a Generalized Ohm's Law, embedding local PIC simulations into a larger fluid domain and also some work on simulating the entire system with hybrid or fully kinetic models, the latter however being to computationally expensive to be run at realistic parameters. We will present an alternate approach, ie., a multi-fluid moment model that is derived rigorously from the Vlasov-Maxwell system. The advantage is that the computational cost remains managable, as we are still solving fluid equations. While the evolution equation for each moment is exact, it depends on the next higher-order moment, so that truncating the hiearchy and closing the system to capture the essential kinetic physics is crucial. We implement 5-moment (density, momentum, scalar pressure) and 10-moment (includes pressure tensor) versions of the model, and use local approximations for the heat flux to close the system. We test these closures by local simulations where we can compare directly to PIC / hybrid codes, and employ them in global simulations using the next-generation OpenGGCM to contrast them to MHD / Hall-MHD results and compare with observations.

  8. Water column profiles of particulate inorganic carbon in the northeast subarctic Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sutton, J. N.; Bishop, J. K.; Martinez, E. J.; Weiss, G. A.; Weiss, A.; Derr, A.; Strubhar, W.; Robert, M.; Wood, T.

    2013-12-01

    High resolution and real-time measurement of particulate inorganic carbon (PIC) content in seawater is necessary to improve our spatial and temporal understanding of marine carbon flux and the possible effects of ocean acidification on the biological pump. On four occasions since August 2012, we have mapped PIC distribution from surface to bottom at 26 stations along the IOS-Canada Line P transect from western Vancouver Island, BC, Canada to Ocean Station PAPA, 50N 145W using a prototype (PIC001) and a near-commercial quality (PIC008) optical birefringence sensor. The sensors are highly modified 6000m-rated WETLabs C-star transmissometers, which use a polarized laser beam and a cross-polarized receiver to measure photons emitted after passing through birefringent solids. At major stations along Line P (P2, P4, P8, P12, P16, P20, P26), one-liter rosette-collected calibration water samples were filtered through 0.45 μm Supor filters using a small-volume direct filtration system. These samples were analysed for acid-leachable particulate elements (with emphasis on Ca, Na, and Mg) by inductively coupled plasma mass spectrometry (ICPMS). ICPMS PIC was calculated as residual Ca after correction for seawater Ca using Na data. Here we report results for late summer (Aug. 2012) and winter (Feb. 2013). As expected, high levels of PIC (> 100 nmol L-1 to > 2000 nmol L-1) were found in surface waters but rapidly declined at depths greater than 200m and increased again in the nepheloid layer (>50 nmol L-1). Striking seasonal differences in PIC content and PIC profile shape were observed particularly at near shore stations P2, P4, P8 and P12. The results from this research, including sensor evolution and calibration performance, will be presented.

  9. Effects of Chromium Picolinate on Vascular Reactivity and Cardiac Ischemia Reperfusion Injury in Spontaneously Hypertensive Rats

    PubMed Central

    Abebe, Worku; Liu, Jun Yao; Wimborne, Hereward; Mozaffari, Mahmood S.

    2013-01-01

    Chromium picolinate [Cr(pic)3] is a nutritional supplement widely promoted to exert beneficial metabolic effects in patients with type 2 diabetes/impaired glucose tolerance. Frequent comorbidities in these individuals include systemic hypertension, abnormal vascular function and ischemic heart disease but information on effects of the supplement on these aspects is sparse. Utilizing male spontaneously hypertensive rats (SHR), we examined potential impact of Cr(pic)3 on blood pressure, vascular reactivity and myocardial ischemia reperfusion injury (IRI). Dietary Cr(pic)3 supplementation (as 10 mg chromium/kg diet for 6 weeks) did not affect blood pressure of the SHR. Also, neither norepinephrine (NE) and potassium chloride (KCl)-induced contractility nor sodium nitroprusside (SNP)-induced relaxation of aortic smooth muscle from the SHR was altered by Cr(pic)3 treatment. However, Cr(pic)3 augmented endothelium-dependent relaxation of aortas, produced by acetylcholine (ACh), and this effect was abolished by N-nitro-L-arginine methyl ester (L-NAME) suggesting induction of nitric oxide (NO) production/release. Treatment with Cr(pic)3 did not affect baseline coronary flow rate and rate-pressure-product (RPP) or infarct size following regional IRI. Nonetheless, Cr(pic)3 treatment was associated with improved coronary flow and recovery of myocardial contractility and relaxation following ischemia reperfusion insult. In conclusion, dietary Cr(pic)3 treatment of SHR neither alters blood pressure nor vascular smooth muscle reactivity, but causes enhancement of endothelium-dependent vasorelaxation associated with NO production/release. Additionally, while the treatment does not affect infarct size, it improves functional recovery of the viable portion of the myocardium following IRI. PMID:20885007

  10. Effects of chromium picolinate on vascular reactivity and cardiac ischemia-reperfusion injury in spontaneously hypertensive rats.

    PubMed

    Abebe, Worku; Liu, Jun Yao; Wimborne, Hereward; Mozaffari, Mahmood S

    2010-01-01

    Chromium picolinate [Cr(pic)(3)] is a nutritional supplement widely promoted to exert beneficial metabolic effects in patients with type 2 diabetes/impaired glucose tolerance. Frequent comorbidities in these individuals include systemic hypertension, abnormal vascular function and ischemic heart disease, but information on the effects of the supplement on these aspects is sparse. Utilizing male spontaneously hypertensive rats (SHR), we examined the potential impact of Cr(pic)(3) on blood pressure, vascular reactivity and myocardial ischemia-reperfusion injury (IRI). Dietary Cr(pic)(3) supplementation (as 10 mg chromium/kg diet for six weeks) did not affect blood pressure of the SHR. Also, neither norepinephrine (NE) and potassium chloride (KCl)-induced contractility nor sodium nitroprusside (SNP)-induced relaxation of aortic smooth muscle from the SHR was altered by Cr(pic)(3) treatment. However, Cr(pic)(3) augmented endothelium-dependent relaxation of aortas, produced by acetylcholine (ACh), and this effect was abolished by N-nitro-L-arginine methyl ester (L-NAME), suggesting induction of nitric oxide (NO) production/release. Treatment with Cr(pic)(3) did not affect baseline coronary flow rate and rate-pressure-product (RPP) or infarct size following regional IRI. Nonetheless, Cr(pic)(3) treatment was associated with improved coronary flow and recovery of myocardial contractility and relaxation following ischemia-reperfusion insult. In conclusion, dietary Cr(pic)(3) treatment of SHR alters neither blood pressure nor vascular smooth muscle reactivity but causes enhancement of endothelium-dependent vasorelaxation associated with NO production/release. Additionally, while the treatment does not affect infarct size, it improves functional recovery of the viable portion of the myocardium following IRI.

  11. Freeing data through The Polar Information Commons

    NASA Astrophysics Data System (ADS)

    de Bruin, T.; Chen, R. S.; Parsons, M. A.; Carlson, D. J.; Cass, K.; Finney, K.; Wilbanks, J.; Jochum, K.

    2010-12-01

    The polar regions are changing rapidly with dramatic global effect. Wise management of resources, improved decision support, and effective international cooperation on resource and geopolitical issues require deeper understanding and better prediction of these changes. Unfortunately, polar data and information remain scattered, scarce, and sporadic. Inspired by the Antarctic Treaty of 1959 that established the Antarctic as a global commons to be used only for peaceful purposes and scientific research, we assert that data and information about the polar regions are themselves “public goods” that should be shared ethically and with minimal constraint. ICSU’s Committee on Data (CODATA) therefore started the Polar Information Commons (PIC) as an open, virtual repository for vital scientific data and information. The PIC provides a shared, community-based cyber-infrastructure fostering innovation, improving scientific efficiency, and encouraging participation in polar research, education, planning, and management. The PIC builds on the legacy of the International Polar Year (IPY), providing a long-term framework for access to and preservation of both existing and future data and information about the polar regions. Rapid change demands rapid data access. The PIC system enables scientists to quickly expose their data to the world and share them through open protocols on the Internet. A PIC digital label will alert users and data centers to new polar data and ensure that usage rights are clear. The PIC utilizes the Science Commons Protocol for Implementing Open Access Data, which promotes open data access through the public domain coupled with community norms of practice to ensure use of data in a fair and equitable manner. A set of PIC norms has been developed in consultation with key polar data organizations and other stakeholders. We welcome inputs from the broad science community as we further develop and refine the PIC approach and move ahead with implementation.

  12. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores - A numerical model study for Emiliania huxleyi.

    PubMed

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2017-05-07

    A recent numerical cell model, which explains observed light and carbonate system effects on particulate organic and inorganic carbon (POC and PIC) production rates under the assumption of internal pH homeostasis, is extended for stable carbon isotopes ( 12 C, 13 C). Aim of the present study is to mechanistically understand the stable carbon isotopic fractionation signal (ε) in POC and PIC and furthermore the vital effect(s) included in measured ε PIC values. The virtual cell is divided into four compartments, for each of which the 12 C as well as the 13 C carbonate system kinetics are implemented. The compartments are connected to each other via trans-membrane fluxes. In contrast to existing carbon fractionation models, the presented model calculates the disequilibrium state for both carbonate systems and for each compartment. It furthermore calculates POC and PIC production rates as well as ε POC and ε PIC as a function of given light conditions and the compositions of the external carbonate system. Measured POC and PIC production rates as well as ε PIC values are reproduced well by the model (comparison with literature data). The observed light effect on ε POC (increase of ε POC with increasing light intensities), however, is not reproduced by the basic model set-up, which is solely based on RubisCO fractionation. When extending the latter set-up by assuming that biological fractionation includes further carbon fractionation steps besides the one of RubisCO, the observed light effect on ε POC is also reproduced. By means of the extended model version, four different vital effects that superimpose each other in a real cell can be detected. Finally, we discuss potential limitations of the ε PIC proxy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Internal flow measurement in transonic compressor by PIV technique

    NASA Astrophysics Data System (ADS)

    Wang, Tongqing; Wu, Huaiyu; Liu, Yin

    2001-11-01

    The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.

  14. Copper Import into the Mitochondrial Matrix in Saccharomyces cerevisiae Is Mediated by Pic2, a Mitochondrial Carrier Family Protein*

    PubMed Central

    Vest, Katherine E.; Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2013-01-01

    Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria. PMID:23846699

  15. Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein.

    PubMed

    Vest, Katherine E; Leary, Scot C; Winge, Dennis R; Cobine, Paul A

    2013-08-16

    Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.

  16. Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager.

    PubMed

    Su, Tiehui; Liu, Guangyao; Badham, Katherine E; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Wuchenich, Danielle; Ogden, Chad; Chriqui, Guy; Feng, Shaoqi; Chun, Jaeyi; Lai, Weicheng; Yoo, S J B

    2018-05-14

    This paper reports design, fabrication, and experimental demonstration of a silicon nitride photonic integrated circuit (PIC). The PIC is capable of conducting one-dimensional interferometric imaging with twelve baselines near λ = 1100-1600 nm. The PIC consists of twelve waveguide pairs, each leading to a multi-mode interferometer (MMI) that forms broadband interference fringes or each corresponding pair of the waveguides. Then an 18 channel arrayed waveguide grating (AWG) separates the combined signal into 18 signals of different wavelengths. A total of 103 sets of fringes are collected by the detector array at the output of the PIC. We keep the optical path difference (OPD) of each interferometer baseline to within 1 µm to maximize the visibility of the interference measurement. We also constructed a testbed to utilize the PIC for two-dimension complex visibility measurement with various targets. The experiment shows reconstructed images in good agreement with theoretical predictions.

  17. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture

    PubMed Central

    Eychenne, Thomas; Novikova, Elizaveta; Barrault, Marie-Bénédicte; Alibert, Olivier; Boschiero, Claire; Peixeiro, Nuno; Cornu, David; Redeker, Virginie; Kuras, Laurent; Nicolas, Pierre; Werner, Michel; Soutourina, Julie

    2016-01-01

    Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator–TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. PMID:27688401

  18. Modeling and simulations of the double-probe electric field instrument in tenuous and cold streaming plasmas

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Cully, C. M.; Usui, H.; Nakashima, H.

    2013-12-01

    In order to increase accuracy and reliability of in-situ measurements made by scientific spacecraft, it is imperative to develop comprehensive understanding of spacecraft-plasma interactions. In space environments, not only the spacecraft charging but also surrounding plasma disturbances such as caused by the wake formation may interfere directly with in-situ measurements. The self-consistent solutions of such phenomena are necessary to assess their effects on scientific spacecraft systems. As our recent activity, we work on the modeling and simulations of Cluster double-probe instrument in tenuous and cold streaming plasmas [1]. Double-probe electric field sensors are often deployed using wire booms with radii much less than typical Debye lengths of magnetospheric plasmas (millimeters compared to tens of meters). However, in tenuous and cold streaming plasmas seen in the polar cap and lobe regions, the wire booms have a high positive potential due to photoelectron emission and can strongly scatter approaching ions. Consequently, an electrostatic wake formed behind the spacecraft is further enhanced by the presence of the wire booms. We reproduce this process for the case of the Cluster satellite by performing plasma particle-in-cell (PIC) simulations [2], which include the effects of both the spacecraft body and the wire booms in a simultaneous manner, on modern supercomputers. The simulations reveal that the effective thickness of the booms for the Cluster Electric Field and Wave (EFW) instrument is magnified from its real thickness (2.2 millimeters) to several meters, when the spacecraft potential is at 30-40 volts. Such booms enhance the wake electric field magnitude by a factor of about 2 depending on the spacecraft potential, and play a principal role in explaining the in situ Cluster EFW data showing sinusoidal spurious electric fields of about 10 mV/m amplitudes. The boom effects are quantified by comparing PIC simulations with and without wire booms. The paper also reports some recent progress of ongoing PIC simulation research that focuses on spurious electric field generation in subsonic ion flows. Our preliminary simulation results revealed that; (1) there is no apparent wake signature behind the spacecraft in such a condition, but (2) spurious electric field over 1 mV/m amplitude is observed in the direction of the flow vector. The observed field amplitude is sometimes comparable to the convection electric field (a few mV/m) associated with the flow. Our analysis also confirmed that the spurious field is caused by a weakly-asymmetric potential pattern created by the ion flow. We will present the parametric study of such spurious fields for various conditions of plasma flows. [References] [1] Miyake, Y., C. M. Cully, H. Usui, and H. Nakashima (2013), Plasma particle simulations of wake formation behind a spacecraft with thin wire booms, submitted to J. Geophys. Res. [2] Miyake, Y., and H. Usui (2009), New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions, Phys. Plasmas, 16, 062904, doi:10.1063/1.3147922.

  19. Impact of mismatched and misaligned laser light sheet profiles on PIV performance

    NASA Astrophysics Data System (ADS)

    Grayson, K.; de Silva, C. M.; Hutchins, N.; Marusic, I.

    2018-01-01

    The effect of mismatched or misaligned laser light sheet profiles on the quality of particle image velocimetry (PIV) results is considered in this study. Light sheet profiles with differing widths, shapes, or alignment can reduce the correlation between PIV images and increase experimental errors. Systematic PIV simulations isolate these behaviours to assess the sensitivity and implications of light sheet mismatch on measurements. The simulations in this work use flow fields from a turbulent boundary layer; however, the behaviours and impacts of laser profile mismatch are highly relevant to any fluid flow or PIV application. Experimental measurements from a turbulent boundary layer facility are incorporated, as well as additional simulations matched to experimental image characteristics, to validate the synthetic image analysis. Experimental laser profiles are captured using a modular laser profiling camera, designed to quantify the distribution of laser light sheet intensities and inform any corrective adjustments to an experimental configuration. Results suggest that an offset of just 1.35 standard deviations in the Gaussian light sheet intensity distributions can cause a 40% reduction in the average correlation coefficient and a 45% increase in spurious vectors. Errors in measured flow statistics are also amplified when two successive laser profiles are no longer well matched in alignment or intensity distribution. Consequently, an awareness of how laser light sheet overlap influences PIV results can guide faster setup of an experiment, as well as achieve superior experimental measurements.

  20. Mechanism of ultra low friction of multilayer graphene studied by coarse-grained molecular simulation.

    PubMed

    Washizu, Hitoshi; Kajita, Seiji; Tohyama, Mamoru; Ohmori, Toshihide; Nishino, Noriaki; Teranishi, Hiroshi; Suzuki, Atsushi

    2012-01-01

    Coarse-grained Metropolis Monte Carlo Brownian Dynamics simulations are used to clarify the ultralow friction mechanism of a transfer film of multilayered graphene sheets. Each circular graphene sheet consists of 400 to 1,000,000 atoms confined between the upper and lower sliders and are allowed to move in 3 translational and 1 rotational directions due to thermal motion at 300 K. The sheet-sheet interaction energy is calculated by the sum of the pair potential of the sp2 carbons. The sliding simulations are done by moving the upper slider at a constant velocity. In the monolayer case, the friction force shows a stick-slip like curve and the average of the force is high. In the multilayer case, the friction force does not show any oscillation and the average of the force is very low. This is because the entire transfer film has an internal degree of freedom in the multilayer case and the lowest sheet of the layer is able to follow the equipotential surface of the lower slider.

Top