Sample records for sheeted dike complex

  1. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Koepke, Juergen; Ildefonse, Benoit; Cichy, Sarah B.; Deschamps, Fabien

    2010-11-01

    In ophiolites and in present-day oceanic crust formed at fast spreading ridges, oceanic plagiogranites are commonly observed at, or close to the base of the sheeted dike complex. They can be produced either by differentiation of mafic melts, or by hydrous partial melting of the hydrothermally altered sheeted dikes. In addition, the hydrothermally altered base of the sheeted dike complex, which is often infiltrated by plagiogranitic veins, is usually recrystallized into granoblastic dikes that are commonly interpreted as a result of prograde granulitic metamorphism. To test the anatectic origin of oceanic plagiogranites, we performed melting experiments on a natural hydrothermally altered dike, under conditions that match those prevailing at the base of the sheeted dike complex. All generated melts are water saturated, transitional between tholeiitic and calc-alkaline, and match the compositions of oceanic plagiogranites observed close to the base of the sheeted dike complex. Newly crystallized clinopyroxene and plagioclase have compositions that are characteristic of the same minerals in granoblastic dikes. Published silicic melt compositions obtained in classical MORB fractionation experiments also broadly match the compositions of oceanic plagiogranites; however, the compositions of the coexisting experimental minerals significantly deviate from those of the granoblastic dikes. Our results demonstrate that hydrous partial melting is a likely common process in the root zone of the sheeted dike complex, starting at temperatures exceeding 850°C. The newly formed melt can either crystallize to form oceanic plagiogranites or may be recycled within the melt lens resulting in hybridized and contaminated MORB melts. It represents the main MORB crustal contamination process. The residue after the partial melting event is represented by the granoblastic dikes. Our results support a model with a dynamic melt lens that has the potential to trigger hydrous partial melting reactions in the previously hydrothermally altered sheeted dikes. A new thermometer using the Al content of clinopyroxene is also elaborated.

  2. Evidence of Tectonic Rotations and Magmatic Flow Within the Sheeted Dike Complex of Super-Fast Spread Crust Exposed at the Pito Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.

    2008-12-01

    Escarpments bounding the Pito Deep Rift expose cross-sections into ~3 Ma oceanic crust accreted at a super-fast spreading (>140 mm/yr) segment of the East Pacific Rise (EPR). Dikes within the sheeted dike complex persistently strike NE, parallel to local abyssal hill lineaments and magnetic anomaly stripes, and dip SE, outward and away from the EPR. During the Pito Deep 2005 Cruise, both ALVIN and JASON II used the Geocompass to fully orient a total of 69 samples [63 basaltic dikes, 6 massive gabbros] collected in situ. Paleomagnetic analyses of these oriented samples provide a quantitative constraint of kinematics of structural rotations of dikes. Magnetic remanence of dike samples indicates a dominant normal polarity with almost all directions rotated clockwise from the expected direction. The most geologically plausible model to account for these dispersions using these data coupled with the general orientation of the dikes incorporates two different structural rotations: 1) A horizontal-axis rotation that occurred near the EPR axis, related to sub-axial subsidence, and 2) A clockwise vertical-axis rotation, associated with the rotation of the Easter microplate consistent with current models. Additionally, the anisotropy of magnetic susceptibility (AMS) of dike samples indicates rock fabric and magmatic flow direction within dikes. In most samples, two of three AMS eigenvectors lie near the dike plane orientations. Generally, Kmin lies perpendicular to dike planes, while Kmax is often shallow within the dike planes, indicating dominantly subhorizontal magma flow. Steep Kmax in a few samples indicates vertical flow directions that suggest either primary flow or gravitational back-flow during waning stages of dike intrusion. These results provide the first direct evidence for primarily horizontal magma flow in sheeted dikes of super-fast spread oceanic crust. Results for Pito Deep Rift and previous results for Hess Deep Rift reveal outward dipping dikes that are interpreted as a result of subaxial spreading processes that are not evident from surface studies of spreading centers. Both areas show evidence of subaxial subsidence during accretion and lateral magmatic flow in the sheeted dike complex.

  3. Role of upwelling hydrothermal fluids in the development of alteration patterns at fast spreading ridges: Evidence from the sheeted dike complex at Pito Deep

    NASA Astrophysics Data System (ADS)

    Heft, Kerri L.; Gillis, Kathryn M.; Pollock, Megan A.; Karson, Jeffery A.; Klein, Emily M.

    2008-05-01

    Alteration of sheeted dikes exposed along submarine escarpments at the Pito Deep Rift (NE edge of the Easter microplate) provides constraints on the crustal component of axial hydrothermal systems at fast spreading mid-ocean ridges. Samples from vertical transects through the upper crust constrain the temporal and spatial scales of hydrothermal fluid flow and fluid-rock reaction. The dikes are relatively fresh (average extent of alteration is 27%), with the extent of alteration ranging from 0 to >80%. Alteration is heterogeneous on scales of tens to hundreds of meters and displays few systematic spatial trends. Background alteration is amphibole-dominated, with chlorite-rich dikes sporadically distributed throughout the dike complex, indicating that peak temperatures ranged from <300°C to >450°C and did not vary systematically with depth. Dikes locally show substantial metal mobility, with Zn and Cu depletion and Mn enrichment. Amphibole and chlorite fill fractures throughout the dike complex, whereas quartz-filled fractures and faults are only locally present. Regional variability in alteration characteristics is found on a scale of <1-2 km, illustrating the diversity of fluid-rock interaction that can be expected in fast spreading crust. We propose that much of the alteration in sheeted dike complexes develops within broad, hot upwelling zones, as the inferred conditions of alteration cannot be achieved in downwelling zones, particularly in the shallow dikes. Migration of circulating cells along rides axes and local evolution of fluid compositions produce sections of the upper crust with a distinctive character of alteration, on a scale of <1-2 km and <5-20 ka.

  4. Styles of Deformation on Either Side of a Ridge-Transform Intersection, Troodos Ophiolite, Cyprus

    NASA Astrophysics Data System (ADS)

    Titus, S.; Wagner, C.; Alexander, S. O.; Scott, C. P.; Davis, J. R.

    2015-12-01

    The Troodos ophiolite in Cyprus includes two orthogonal structures - the NS-striking Solea graben and the EW-striking Arakapas fault - that form a ridge-transform intersection. Sheeted dikes and gabbros are preserved on both the inside and outside corners providing a view of mid-crustal deformation in the system. We examine and model these patterns of deformation using existing map and paleomagnetic data combined with new rock magnetic data. The inside corner of the system has been well studied. The most notable feature is the changing orientation of sheeted dikes, which shift from NW- to NE- to E-striking with increasing proximity to the Arakapas fault. Paleomagnetic data from many studies, including our own, show declination anomalies that vary with distance from the ridge and the transform. The three principal axes from anisotropy of magnetic susceptibility (AMS) ellipsoids in the gabbros seem to be correlated with local sheeted dike orientations. The outside corner of the system has been less well studied. Sheeted dike orientations change more subtly; many are NS-striking and dip towards the Solea Graben, but near the inferred ridge-transform intersection, they are NNE-striking. Our new paleomagnetic data from 26 sites record declination and inclination anomalies that vary spatially within the outside corner. AMS data from the gabbros and sheeted dikes again seem loosely linked to sheeted dike orientations. To summarize, the structural and rock magnetic results on either side of the Solea Graben are distinct, confirming the idea that these rocks formed on different sides of a ridge-transform system. The paleomagnetic data yield insights about the styles of deformation following crystallization. The AMS data may yield insights about magmatic plumbing systems when combined systematically with paleomagnetic results. Our results from the outside corner show that patterns of deformation can be complex even on the non-plate boundary side of a ridge-transform system.

  5. Direct evidence from anisotropy of magnetic susceptibility for lateral melt migration at superfast spreading centers

    NASA Astrophysics Data System (ADS)

    Varga, Robert J.; Horst, Andrew J.; Gee, Jeffrey S.; Karson, Jeffrey A.

    2008-08-01

    Rare, fault-bounded escarpments expose natural cross sections of ocean crust in several areas and provide an unparalleled opportunity to study the end products of tectonic and magmatic processes that operated at depth beneath oceanic spreading centers. We mapped the geologic structure of ocean crust produced at the East Pacific Rise (EPR) and now exposed along steep cliffs of the Pito Deep Rift near the northern edge of the Easter microplate. The upper oceanic crust in this area is typified by basaltic lavas underlain by a sheeted dike complex comprising northeast striking, moderately to steeply southeast dipping dikes. Paleomagnetic remanence of oriented blocks of dikes collected with both Alvin and Jason II indicate clockwise rotation of ˜61° related to rotation of the microplate indicating structural coupling between the microplate and crust of the Nazca Plate to the north. The consistent southeast dip of dikes formed as the result of tilting at the EPR shortly after their injection. Anisotropy of magnetic susceptibility of dikes provides well-defined magmatic flow directions that are dominantly dike-parallel and shallowly plunging. Corrected to their original EPR orientation, magma flow is interpreted as near-horizontal and parallel to the ridge axis. These data provide the first direct evidence from sheeted dikes in ocean crust for along-axis magma transport. These results also suggest that lateral transport in dikes is important even at fast spreading ridges where a laterally continuous subaxial magma chamber is present.

  6. Dynamics of the Axial Melt Lens/Dike transition at fast spreading ridges: assimilation and hydrous partial melting

    NASA Astrophysics Data System (ADS)

    France, L.; Ildefonse, B.; Koepke, J.

    2009-04-01

    Recent detailed field studies performed in the Oman ophiolite on the gabbro/sheeted dike transition, compared to corresponding rocks from the EPR drilled by IODP (Site 1256), constrain a general model for the dynamics of the axial melt lens (AML) present at fast spreading ridges (France et al., 2008). This model implies that the AML/dike transition is a dynamic interface migrating up- and downward, and that the isotropic gabbro horizon on top of the igneous section represents its fossilization. It is also proposed that upward migrations are associated to reheating of the base of the sheeted dike complex and to assimilation processes. Plagiogranitic lithologies are observed close to the truncated base of the dikes and are interpreted to represent frozen melts generated by partial melting of previously hydrothermalized sheeted dikes. Relicts of previously hydrothermalized lithologies are also observed in the fossil melt lens, and are associated to lithologies that have crystallized under high water activities, with clinopyroxene crystallizing before plagioclase, and An-rich plagioclase. To better understand our field data, we performed hydrous partial melting experiments at shallow pressures (0.1 GPa) under slightly oxidizing conditions (NNO oxygen buffer) and water saturated conditions on hydrothermalized sheeted dike sample from the Oman ophiolite. These experiments have been performed between 850°C and 1030°C; two additional experiments in the subsolidus regime were also conducted (750°C and 800°C). Clinopyroxenes formed during incongruent melting at low temperature (<910°C) have compositions that match those from the corresponding natural rocks (reheated base of the sheeted dike and relicts of assimilated lithologies). In particular, the characteristic low TiO2 and Al2O3 contents are reproduced. The experimental melts produced at low temperatures correspond to compositions of typical natural plagiogranites. In natural settings, these silicic liquids would be mixed with the basaltic melt of the AML, resulting in intermediate compositions that can be observed in the isotropic gabbro horizon. Our study suggests that assimilation of previously hydrothermalized lithologies in the melt lens is a common process at fast spreading ridges. This process should consequently be carefully considered in geochemical studies that deal with the origin of MORB. France L., Ildefonse B., Koepke J., (2008) The fossilisation of a dynamic melt lens at fast spreading centers: insights from the Oman ophiolite. Eos Trans. AGU, 89(53), Fall Meet. Suppl. Abstract V51F-2111

  7. Time Dependent Model of Magma Intrusion in and around Miyake and Kozu Islands, Central Japan in June-August, 2000

    NASA Astrophysics Data System (ADS)

    Murase, M.; Irwan, M.; Kariya, S.; Tabei, T.; Okuda, T.; Miyajima, R.; Kimata, F.; Fujii, N.

    2004-12-01

    We discuss a time dependent model of magma intrusion in and around Miyake and Kozu Islands, Central Japan from GPS measurements at 28 sites in Miyake Island, Kozu Island and their surrounding islands in the period from June 27 to August 27, 2000. A dike complex model of three sheets is assumed between Miyake and Kozu Islands, suggested from the precise hypocenter distribution map (Sakai et al., 2003). Other dike intrusion models, a dike with an aseismic creep model (Nishimura et al.,2001; Furuya et al.,2003) and a dike with a deep deflation source model (Yamaoka et al., submitted) , are also discussed. Akaike's Information Criteria (AIC) value of optimal parameters of a dike complex model indicates lower than that of other two models. After fixing the geometry of three dikes using a genetic algorithm (GA), the amounts of dike openings of top, inside, and bottom of each dike are estimated by GA for seven time periods. In the period from June 27 to July 8, dike opening is concentrated in the dike near Miyake Island, and a large deflation is also estimated at a depth of 5 km of Miyake Volcano. It suggests that magma is supplied from the depths of Miyake Island. In next period until August 10, a huge dike intrusion is characterized in the dike near Kozu Island and the lower parts of dike in central and near Miyake Island. This suggests that magma is supplied from depth between Miyake and Kozu Islands. In the period of August 10 to 27, a huge deflation is estimated at a depth of 10 km under Miyake Volcano, and dike opening is limited

  8. Influence of Topographic Unloading on Magma Intrusions: Modelling Dike Propagation Under Calderas

    NASA Astrophysics Data System (ADS)

    Gaete Rojas, A. B.; Kavanagh, J.; Walter, T. R.

    2017-12-01

    Dikes are common igneous bodies involved in the transport of magma through the crust to feed volcanic eruptions. Dike emplacement in the presence of topographic depressions, as produced by unloading in volcanic systems with calderas, is enigmatic. Field observations of post-caldera volcanism suggest the emplacement of dikes often occurs as cone sheets and/or ring/radial dikes. However, the extrapolation of the surface expression of these laminar intrusions to depth to infer their sub-surface geometry is often based on limited information. As a result, key questions remain regarding the propagation dynamics of dikes beneath calderas, including the physical processes that influence the development of an intrusive cone sheet rather than a circumferential, steep-sided ring dike that could breach the surface. Scaled laboratory modeling allows us to study the development of cone sheets and ring dikes in 3D in the presence of a surface depression, tracking the evolution of the dynamic processes of their formation.Here, we analyze the evolution of dikes propagating in an elastic medium in the presence of a stress perturbation due to unloading. We performed experiments using a 30 × 40 × 40 cm3tank filled with 2.5 wt.% solidified gelatine with a cylindrical surface depression to produce a crustal analogue with caldera-like topography. Magma-filled hydrofractures were creating by injecting dyed water as the magma analogue. The intrusion evolution was monitored using 3 cameras, with an overhead laser scanner measuring the progressive surface uplift and polarized light tracking the evolution of the stress field. We find that the formation of a cone sheet or a ring dike is a consequence of the caldera size and its stress field, with small calderas favouring ring dike formation. The offset of the injection point relative to the centre of the caldera is also assessed. Cone sheets are formed as the dike is strongly deflected, and the dike propagation front transitions into radially propagating fingers that eventually join to form the cone. Surface deformation is broader and produces greater topographic change, whereas a ring dike produces a smaller and more localized surface displacement. These results may help to identify and interpret the process related to magma ascent during post-caldera volcanism.

  9. Overview of Hole GT3A: The sheeted dike/gabbro transition

    NASA Astrophysics Data System (ADS)

    Abe, N.; Harris, M.; Michibayashi, K.; de Obeso, J. C.; Kelemen, P. B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.; Matter, J. M.; Phase I Science Party, T. O. D. P.

    2017-12-01

    Hole GT3A (23.11409 N, 58.21172 E) was drilled by the Oman Drilling Project (OmDP) into Wadi Abdah of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientifi1c Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT3A was diamond cored in February to March 2017 to a total depth of 400 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT3A recovered predominantly sheeted dikes and gabbros and has been sub-divided into 4 igneous groups based on the abundance of gabbro downhole. Group 1 (Upper Sheeted Dike Sequence) occurs from 0 to 111.02 m, group II (Upper Gabbro Sequence) is from 111.02 to 127.89 m, group III (Lower Sheeted Dike Sequence) is between 127.89 to 233.84 m and group IV (Lower Gabbro Sequence) is from 233.84 to 400 m. Group II and IV are both associated with almost equal proportions of dikes to gabbroic lithologies, whereas group I & III have >95% dikes. The sheeted dikes were logged as either basalt (46.9 %) or diabase (26.2 %) depending on the predominant grain size of the dike. Gabbroic lithologies include (most to least abundant) gabbro, oxide gabbro and olivine gabbro. Other lithologies present include diorite (7.5%) and tonalite and trondhjemite (1%). Tonalite and trondhjemite are present as cm-sized dikelets and are found within group II and IV. Gabbroic lithologies generally display a varitextured appearance and are characterised by the co-existence of poikilitic and granular domains. Detailed observations of chilled margins and igneous contacts reveal the relative timing of dike and gabbro intrusion, and identify that the Upper Gabbro Sequence intrudes into dikes, whereas the Lower Gabbro Sequence is intruded by dikes.

  10. Structure and Geochemistry of the Continental-Oceanic Crust Boundary of the Red Sea and the Rifted Margin of Western Arabia

    NASA Astrophysics Data System (ADS)

    Dilek, Y.; Furnes, H.; Schoenberg, R.

    2009-12-01

    The continental-oceanic crust boundary and an incipient oceanic crust of the Red Sea opening are exposed within the Arabian plate along a narrow zone of the Tihama Asir coastal plain in SW Saudi Arabia. Dike swarms, layered gabbros, granophyres and basalts of the 22 Ma Tihama Asir (TA) continental margin ophiolite represent products of magmatic differentiation formed during the initial stages of rifting between the African and Arabian plates. Nearly 4-km-wide zone of NW-trending sheeted dikes are the first products of mafic magmatism associated with incipient oceanic crust formation following the initial continental breakup. Gabbro intrusions are composed of cpx-ol-gabbro, cpx-gabbro, and norite/troctolite, and are crosscut by fine-grained basaltic dikes. Granophyre bodies intrude the sheeted dike swarms and are locally intrusive into the gabbros. Regional Bouger gravity anomalies suggest that the Miocene mafic crust represented by the TA complex extends westward beneath the coastal plain sedimentary rocks and the main trough of the Red Sea. The TA complex marks an incipient Red Sea oceanic crust that was accreted to the NE side of the newly formed continental rift in the earliest stages of seafloor spreading. Its basaltic to trachyandesitic lavas and dikes straddle the subalkaline-mildly alkaline boundary. Incompatible trace element relationships (e.g. Zr-Ti, Zr-P) indicate two distinct populations. The REE concentrations show an overall enrichment compared to N-MORB; light REEs are enriched over the heavy ones ((La/Yb)n > 1), pointing to an E-MORB influence. Nd-isotope data show ɛNd values ranging from +4 to +8, supporting an E-MORB melt source. The relatively large variations in ɛNd values also suggest various degrees of involvement of continental crust during ascent and emplacement, or by mixing of another mantle source.

  11. Structure of Hole 1256D: The role of mechanical deformation in superfast-spread crust

    NASA Astrophysics Data System (ADS)

    Tartarotti, P.; Hayman, N. W.; Anma, R.; Crispini, L.; Veloso Espinosa, E. A.; Galli, L.

    2006-12-01

    One view of seafloor spreading is that mechanical deformation is not significant at high spreading rates. With recovery of up to 37%, and the vertical axis known for many pieces, shipboard visual core descriptions from Hole 1256D provide an opportunity to evaluate the significance of deformational structures in EPR-, superfast- (~220 mm-yr) spread crust. From top to bottom, the structural characteristics of crustal units are: (1) A relatively flat-lying, ~100-m thick "lava pond" that is largely free of deformational structures; (2) ~184 m of shallowly dipping lava flows remarkable for hyaloclastites and a cooling-related fracture system; (3) ~466 m of massive and sheet flows with flow-related fractures, hydrothermal veins, and (fault-related) cataclastic domains; (3) A ~61 m thick transition zone that contains a well-developed (fault-related) cataclastic domain; (4) A ~346 m thick sheeted dike complex, with abundant hydrothermal veins, local breccias, and magmatic flow features. Recovered chilled dike margins have a mean dip of 70° and range from 41-88°; (5) A ~100 m thick plutonic suite contains gabbroic rocks that intrude the sheeted dikes. Gabbros contain some local brittle structures and minor (largely static) recrystallized domains, but are more noteworthy for their magmatic features: dike/gabbro contacts and flow foliations are modestly dipping (e.g., ~45°) with leucocratic melt patches concentrated toward the top of the section. Brittle structures were subordinate to magmatic processes in accommodating large extensional strain. Brittle deformation was important, however, in accommodating magmatism and hydrothermal fluid flow, thereby affecting the variation of crustal physical properties and the distribution of oceanic alteration.

  12. Geochemical consequences of flow differentiation in a multiple injection dike (Trinity ophiolite, N. California)

    USGS Publications Warehouse

    Brouxel, M.

    1991-01-01

    A clinopyroxene-rich dike of the Trinity ophiolite sheeted-dike complex shows three different magmatic pulses, probably injected in a short period of time (no well developed chilled margin) and important variations of the clinopyroxene and plagioclase percentages between its core (highly porphyritic) and margins (aphyric). This variation, interpreted as related to a flow differentiation phenomenon (mechanical phenocryst redistribution), has important geochemical consequences. It produces increases in the FeO, MgO, CaO, Cr and Ni contents from the margin to the core, together with increases in the clinopyroxene percentage, and decreases in the SiO2, Zr, Y, Nb and REE contents together with a decrease in the percentage of the fine-grained groundmass toward the core of the dike. This mineralogical redistribution, which also affects the incompatible trace element ratios because of the difference in plagioclase and clinopyroxene mineral/liquid partition coefficients, illustrate the importance of fractionation processes outside of a magma chamber. ?? 1991.

  13. Tectonic evolution of the Troodos Ophiolite within the Tethyan Framework

    NASA Astrophysics Data System (ADS)

    Dilek, Yildirim; Thy, Peter; Moores, Eldridge M.; Ramsden, Todd W.

    1990-08-01

    A new tectonic model reconciles conflicting structural and geochemical evidence for the origin of the Troodos ophiolite, a well-preserved remnant of Neotethyan oceanic crust. Grabens and normal faults within the sheeted dike complex and the extrusive sequence of the Troodos ophiolite resemble those of oceanic spreading centers. Diverse intrusive and tectonic contact relationships between the sheeted dike complex and the underlying plutonic sequence indicate multiple and episodic intrusion of magma and along- and across-strike variation in volcanic and tectonic activity during development of oceanic crust. Coupled with the existence of the Arakapas transform fault to the south, these structural and intrusive relationships suggest origin at an intersection between a spreading center and a transform fault. The arclike chemistry of sheeted dikes and related extrusive rocks and the inferred highly depleted and hydrous nature of the mantle source of the late stage intrusive and extrusive rocks argue, however, for generation of part of the ophiolite within a subduction zone environment. Regional reconstructions suggest that the Mesozoic Neotethys may have evolved as a marginal basin both to the Afro-Arabian continent and the Paleotethyan ocean over an active or recently active south dipping subduction zone. The Troodos ophiolite and other eastern Mediterranean ophiolites, whose magma compositions were affected by the subducted Paleotethyan slab, may have formed along east-west trending spreading centers separated by north-south trending transform faults within this marginal basin. A rapid change in relative plate motion in late Cretaceous time between Eurasia and Afro-Arabia created a regional compressive regime that may have resulted in plate boundary reorganizations within the Neotethyan realm and in initiation of north dipping subduction zone(s) beneath the Troodos and other ophiolites in the region. The apparent forearc setting of the Troodos ophiolite is a consequence of this intraoceanic displacement after its formation and thus is unrelated to its generation.

  14. Shape-preferred orientation (SPO) of oceanic gabbros at IODP Hole 1256D: Implications for magmatic processes

    NASA Astrophysics Data System (ADS)

    Trela, J.; Ferré, E. C.; Deans, J.; Anma, R.; Morris, A.; Expedition 335 Scientific Party

    2012-04-01

    Magmatic fabrics in oceanic gabbros close to the sheeted dike-gabbro transition at superfast spreading centers (>200 mm/y) remain poorly investigated. At ~1407 mbsf at IODP Hole 1256D, Expedition 312 recovered non-azimuthally oriented core samples from two gabbro bodies of undetermined shapes: Gabbro 1; 52 m-thick and Gabbro 2; 24 m-thick. Oceanic gabbros in the upper part of the plutonic complex are expected to be macroscopically isotropic, therefore investigating the existence and strength of a fabric requires a highly sensitive method. The Intercept method (Launeau and Robin, 1996), based on quantification of shape-preferred orientation (SPO) in 3-D, has a remarkably high sensitivity for shape anisotropy (0.3%). This method has been used on 33 oceanic gabbro samples from Hole 1256D as a function of depth for each mineral phase. Image analysis using the Intercept method on gabbroic fabrics provides new constraints on crustal accretion mechanisms, the timing of deformation relative to crystallization, i.e., pre-full crystallization fabric vs crystal plastic strain fabric. Observed fabrics provide constrains to test the two-end member ocean accretion models: (A) the "Gabbro Glacier" model; (B) the "Sheeted Sills" model or a hybrid model between (A) and (B). The following lines of evidence are distinct and allow testing of the two models respectively: Model A- The "Gabbro Glacier" model - Microstructures including fractured grains and mechanical twins in plagioclase grains should indicate increasing amounts of strain. SPO is expected to increase as a function of depth. A transitional zone from steeply foliated cumulate gabbros to horizontally layered gabbros is anticipated to occur below the sheeted dike complex. Model B- The "Sheeted Sills" model - No specific correlation between SPO and depth is expected unless geochemical investigations indicate Gabbros 1 and 2 were convecting. Fine-grained margins are expected to occur along the tops and bottoms of the sills. Microstructures should be equilibrated with high angle grain boundaries and should lack syn-magmatic/high-temperature plastic deformation fabrics. If sills are convection-driven then the magmatic foliation may be oblique to compositional layering. SPO image analysis has been performed for major primary silicate phases (plagioclase, orthopyroxene, clinopyroxene, and olivine) and oxides. The Intercept and Ellipsoid softwares have been used to calculate SPO tensors and errors. The results of this research will prove either the "Gabbro Glacier" model or the "Sheeted Sills" model and will provide new quantitative structural data on the mechanisms controlling magmatic accretion at the sheeted dike-plutonic transition zone.

  15. Anatexis at the roof of an oceanic magma chamber at IODP Site 1256 (equatorial Pacific): an experimental study

    NASA Astrophysics Data System (ADS)

    Erdmann, Martin; Fischer, Lennart A.; France, Lydéric; Zhang, Chao; Godard, Marguerite; Koepke, Jürgen

    2015-04-01

    Replenished axial melt lenses at fast-spreading mid-oceanic ridges may move upward and intrude into the overlying hydrothermally altered sheeted dikes, resulting in high-grade contact metamorphism with the potential to trigger anatexis in the roof rocks. Assumed products of this process are anatectic melts of felsic composition and granoblastic, two-pyroxene hornfels, representing the residue after partial melting. Integrated Ocean Drilling Program Expeditions 309, 312, and 335 at Site 1256 (eastern equatorial Pacific) sampled such a fossilized oceanic magma chamber. In this study, we simulated magma chamber roof rock anatectic processes by performing partial melting experiments using six different protoliths from the Site 1256 sheeted dike complex, spanning a lithological range from poorly to strongly altered basalts to partially or fully recrystallized granoblastic hornfels. Results show that extensively altered starting material lacking primary magmatic minerals cannot reproduce the chemistry of natural felsic rocks recovered in ridge environments, especially elements sensitive to hydrothermal alteration (e.g., K, Cl). Natural geochemical trends are reproduced through partial melting of moderately altered basalts from the lower sheeted dikes. Two-pyroxene hornfels, the assumed residue, were reproduced only at low melting degrees (<20 vol%). The overall amphibole absence in the experiments confirms the natural observation that amphibole is not produced during peak metamorphism. Comparing experimental products with the natural equivalents reveals that water activity ( aH2O) was significantly reduced during anatectic processes, mainly based on lower melt aluminum oxide and lower plagioclase anorthite content at lower aH2O. High silica melt at the expected temperature (1000-1050 °C; peak thermal overprint of two-pyroxene hornfels) could only be reproduced in the experimental series performed at aH2O = 0.1.

  16. National Program for Inspection of Non-Federal Dams. Congamond Lakes North Dike (MA 00072), Connecticut River Basin, Southwick, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1980-08-01

    erosion resistant surface should be designed and con - structed on the downstream face after trees and trash have been removed. The owner should also...made by the Division of Waterways to con - struct a drop inlet spillway at North Dike in order to provide a more constant iake level. Plans (12 sheets...provide a more constant lake level. Plans (12 sheets) for this pro - * posal were prepared for the Division of Waterways by Robert G. Brown & Associ

  17. Oman Drilling Project GT3 site survey: dynamics at the roof of an oceanic magma chamber

    NASA Astrophysics Data System (ADS)

    France, L.; Nicollet, C.; Debret, B.; Lombard, M.; Berthod, C.; Ildefonse, B.; Koepke, J.

    2017-12-01

    Oman Drilling Project (OmanDP) aims at bringing new constraints on oceanic crust accretion and evolution by drilling Holes in the whole ophiolite section (mantle and crust). Among those, operations at GT3 in the Sumail massif drilled 400 m to sample the dike - gabbro transition that corresponds to the top (gabbros) and roof (dikes) of the axial magma chamber, an interface where hydrothermal and magmatic system interacts. Previous studies based on oceanic crust formed at present day fast-spreading ridges and preserved in ophiolites have highlighted that this interface is a dynamic horizon where the axial melt lens that top the main magma chamber can intrude, reheat, and partially assimilate previously hydrothermally altered roof rocks. Here we present the preliminary results obtained in GT3 area that have allowed the community to choose the drilling site. We provide a geological and structural map of the area, together with new petrographic and chemical constraints on the dynamics of the dike - gabbro transition. Our new results allow us to quantify the dynamic processes, and to propose that 1/ the intrusive contact of the varitextured gabbro within the dikes highlights the intrusion of the melt lens top in the dike rooting zone, 2/ both dikes and previously crystallized gabbros are reheated, and recrystallized by underlying melt lens dynamics (up to 1050°C, largely above the hydrous solidus temperature of altered dikes and gabbros), 3/ the reheating range can be > 200°C, 4/ the melt lens depth variations for a given ridge position is > 200m, 5/ the reheating stage and associated recrystallization within the dikes occurred under hydrous conditions, 6/ the reheating stage is recorded at the root zone of the sheeted dike complex by one of the highest stable conductive thermal gradient ever recorded on Earth ( 3°C/m), 7/ local chemical variations in recrystallized dikes and gabbros are highlighted and used to quantify crystallization and anatectic processes, and the presence of trapped melt, 8/ melt lens cannibalism is attested by numerous assimilation figures close its roof. Besides providing a general context for future studies at OmanDP GT3 site, those new results allow us to quantify the dynamic processes that govern the layer 2 - layer 3 transition in ocean lithosphere.

  18. Strontium isotope constraints on fluid flow in the sheeted dike complex of fast spreading crust: Pervasive fluid flow at Pito Deep

    NASA Astrophysics Data System (ADS)

    Barker, A. K.; Coogan, L. A.; Gillis, K. M.; Weis, D.

    2008-06-01

    Fluid flow through the axial hydrothermal system at fast spreading ridges is investigated using the Sr-isotopic composition of upper crustal samples recovered from a tectonic window at Pito Deep (NE Easter microplate). Samples from the sheeted dike complex collected away from macroscopic evidence of channelized fluid flow, such as faults and centimeter-scale hydrothermal veins, show a range of 87Sr/86Sr from 0.7025 to 0.7030 averaging 0.70276 relative to a protolith with 87Sr/86Sr of ˜0.7024. There is no systematic variation in 87Sr/86Sr with depth in the sheeted dike complex. Comparison of these new data with the two other localities that similar data sets exist for (ODP Hole 504B and the Hess Deep tectonic window) reveals that the extent of Sr-isotope exchange is similar in all of these locations. Models that assume that fluid-rock reaction occurs during one-dimensional (recharge) flow lead to significant decreases in the predicted extent of isotopic modification of the rock with depth in the crust. These model results show systematic misfits when compared with the data that can only be avoided if the fluid flow is assumed to be focused in isolated channels with very slow fluid-rock exchange. In this scenario the fluid at the base of the crust is little modified in 87Sr/86Sr from seawater and thus unlike vent fluids. Additionally, this model predicts that some rocks should show no change from the fresh-rock 87Sr/86Sr, but this is not observed. Alternatively, models in which fluid-rock reaction occurs during upflow (discharge) as well as downflow, or in which fluids are recirculated within the hydrothermal system, can reproduce the observed lack of variation in 87Sr/86Sr with depth in the crust. Minimum time-integrated fluid fluxes, calculated from mass balance, are between 1.5 and 2.6 × 106 kg m-2 for all areas studied to date. However, new evidence from both the rocks and a compilation of vent fluid compositions demonstrates that some Sr is leached from the crust. Because this leaching lowers the fluid 87Sr/86Sr without changing the rock 87Sr/86Sr, these mass balance models must underestimate the time-integrated fluid flux. Additionally, these values do not account for fluid flow that is channelized within the crust.

  19. A laser profilometry technique for monitoring fluvial dike breaching in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Dewals, Benjamin; Rifai, Ismail; Erpicum, Sébastien; Archambeau, Pierre; Violeau, Damien; Pirotton, Michel; El kadi Abderrezzak, Kamal

    2017-04-01

    A challenging aspect for experimental modelling of fluvial dike breaching is the continuous monitoring of the transient breach geometry. In dam breaching cases induced by flow overtopping over the whole breach crest (plane erosion), a side view through a glass wall is sufficient to monitor the breach formation. This approach can be extended for 3D dam breach tests (spatial erosion) if the glass wall is located along the breach centreline. In contrast, using a side view does not apply for monitoring fluvial dike breaching, because the breach is not symmetric in this case. We present a non-intrusive, high resolution technique to record the breach development in experimental models of fluvial dikes by means of a laser profilometry (Rifai et al. 2016). Most methods used for monitoring dam and dike breaching involve the projection of a pattern (fringes, grid) on the dam or dike body and the analysis of its deformation on images recorded during the breaching (e.g., Pickert et al. 2011, Frank and Hager 2014). A major limitation of these methods stems from reflection on the water surface, particularly in the vicinity of the breach where the free surface is irregular and rippled. This issue was addressed by Spinewine et al. (2004), who used a single laser sheet so that reflections on the water surface were strongly limited and did not hamper the accurate processing of each image. We have developed a similar laser profilometry technique tailored for laboratory experiments on fluvial dike breaching. The setup is simple and relatively low cost. It consists of a digital video camera (resolution of 1920 × 1080 pixels at 60 frames per second) and a swiping red diode 30 mW laser that enables the projection of a laser sheet over the dike body. The 2D image coordinates of each deformed laser profile incident on the dike are transformed into 3D object coordinates using the Direct Linear Transformation (DLT) algorithm. All 3D object coordinates computed over a swiping cycle of the laser are merged to generate a cloud of points. The DLT-based image processing method uses control points and reference axes, so that no prior knowledge is needed on the position, orientation and intrinsic characteristics of the camera, nor on the laser position. Refraction of the light and laser rays across the water surface needs to be taken into account, because the dike is partially submerged during the experiments. An ad hoc correction is therefore applied using the Snell-Descartes law. For this purpose, planar approximations are used to describe the shape of the water surface. In the presentation, we will discuss the resulting uncertainty and will detail the validation of the developed method based on configurations of known geometry with various complexity. The presented laser profilometry technique allows for a rapid non-intrusive measurement of the dike geometry evolution. It is readily available for laboratory experiments and has proven its performance (Rifai et al. 2017). Further adjustments are needed for its application to cohesive dike material due to the reduced visibility resulting from the higher turbidity of water. References Frank, P.-J., Hager, W.H. (2014). Spatial dike breach: Accuracy of photogrammetric measurement system. Proc. of the International Conference on Fluvial Hydraulics, River Flow 2014, 1647-1654. Pickert, G., Weitbrecht, V., Bieberstein A. (2011). Beaching of overtopped river embankments controlled by apparent cohesion. Journal of Hydraulic Research 49:143-156. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El kadi Abderrezzak, K., Dewals, B. (2016). Monitoring topography of laboratory fluvial dike models subjected to breaching based on a laser profilometry technique. Proc. of the International Symposium on River Sedimentation (ISRS): Stuttgart, 19-22 September 2016. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El kadi Abderrezzak, K., Dewals, B. (2017). Overtopping induced failure of non-cohesive, homogenous fluvial dikes. Water Resources Research, under revision. Spinewine, B., Delobbe, A., Elslander, L., Zech, Y. (2004). Experimental investigation of the breach growth process in sand dikes. Proc. of the International Conference on Fluvial Hydraulics, River Flow 2004, 2:983-991.

  20. Vertical linear feeder to elliptical igneous saucer-shaped sills: evidences from structural observations, geochemistry and experimental modeling

    NASA Astrophysics Data System (ADS)

    Galerne, C. Y.; Galland, O.; Neumann, E. R.; Planke, S.

    2009-12-01

    The structural relationships between sills and their feeders are poorly documented because they are rarely observed in the field and difficult to image on seismic data. For instance, it is unclear whether sills are fed by pipes, dikes or other sills. Nevertheless, the geometrical relationships between sills and their feeders provide first-order constraints on magma emplacement mechanisms. Here, we investigate the structural and geochemical relationships between sills and potential feeder dikes in a remarkably well-preserved and exposed sill complex, the Golden Valley Sill Complex (GVSC), Karoo Basin, South Africa. The GVSC consists of five major saucer-shaped sills and six dikes. The Golden Valley sill itself is an elliptical saucer, with a N-S trend. A one meter thick dike (D4) crops out underneath the southern tip of the Golden Valley sill. The strike of this dike is parallel to the long axis of the Golden Valley sill. Detailed sampling and geochemical analyses of the GVSC show that each sill and dike exhibits a specific geochemical signature. The Golden Valley sill and its underlying dike D4 have identical signatures. Although there is no clear structural evidence, the consistent geometrical and geochemical relationships between the Golden Valley sill and the D4 dike suggest that this vertical linear structure is the feeder of the overlying saucer-shaped sill. In order to investigate the relationships between sills and feeders, we resorted to scaled laboratory experiments. The experiments consisted of a low-viscosity vegetable oil representing magma and a cohesive fine-grained silica flour representing brittle rocks. We placed a horizontal weak layer into the silica flour, just above the top of the inlet, to simulate strata. Such a weak layer controlled the formation of horizontal sill that subsequently turned into a transgressive sheet leading to the formation of a saucer geometry. We ran experiments with varying inlet shapes: 1) a point inlet representing a pipe-like feeder and 2) a linear feeder representing a dike-like feeder. In the experiments with point inlet, circular saucer-shaped sills formed. In the experiments with linear feeder, elliptical saucer-shaped sills formed. In the latter experiments, the long axes of the saucers were parallel to, and located directly above, the linear feeder. The experiments show that the feeder geometry has an important influence on the geometry of the emplaced sills. There are close similarities between the geometry of the Golden Valley sill and the intrusions formed in the experiments. The elliptical shape of the Golden Valley sill suggests that it was fed by an elongated feeder, probably the D4 dike. In general, our results show that the three-dimensional geometry of saucer-shaped sills observed in sedimentary basins, may constrain the shape of their feeders, i.e. their emplacement mechanisms.

  1. Lunar floor-fractured craters: Modes of dike and sill emplacement and implications of gas production and intrusion cooling on surface morphology and structure

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Head, James W.

    2018-05-01

    Lunar floor-fractured craters (FFCs) represent the surface manifestation of a class of shallow crustal intrusions in which magma-filled cracks (dikes) rising to the surface from great depth encounter contrasts in host rock lithology (breccia lens, rigid solidified melt sheet) and intrude laterally to form a sill, laccolith or bysmalith, thereby uplifting and deforming the crater floor. Recent developments in the knowledge of lunar crustal thickness and density structure have enabled important revisions to models of the generation, ascent and eruption of magma, and new knowledge about the presence and behavior of magmatic volatiles has provided additional perspectives on shallow intrusion processes in FFCs. We use these new data to assess the processes that occur during dike and sill emplacement with particular emphasis on tracking the fate and migration of volatiles and their relation to candidate venting processes. FFCs result when dikes are capable of intruding close to the surface, but fail to erupt because of the substructure of their host impact craters, and instead intrude laterally after encountering a boundary where an increase in ductility (base of breccia lens) or rigidity (base of solidified melt sheet) occurs. Magma in dikes approaching the lunar surface experiences increasingly lower overburden pressures: this enhances CO gas formation and brings the magma into the realm of the low pressure release of H2O and sulfur compounds, both factors adding volatiles to those already collected in the rising low-pressure part of the dike tip. High magma rise velocity is driven by the positive buoyancy of the magma in the part of the dike remaining in the mantle. The dike tip overshoots the interface and the consequent excess pressure at the interface drives the horizontal flow of magma to form the intrusion and raise the crater floor. If sill intrusion were controlled by the physical properties at the base of the melt sheet, dikes would be required to approach to within ∼300 m of the surface, and thus eruptions, rather than intrusions, would be very likely to occur; instead, dynamical considerations strongly favor the sub-crustal breccia lens as the location of the physical property contrast localizing lateral intrusion, at a depth of several kilometers. The end of lateral and vertical sill growth occurs when the internal magma pressure equals the external pressure (the intrusion just supports the weight of the overlying crust). Dynamical considerations lead to the conclusion that dike magma volumes are up to ∼1100 km3, and are generally insufficient to form FFCs on the lunar farside; the estimated magma volumes available for injection into sills on the lunar nearside (up to ∼800 km3) are comparable to the observed floor uplift in many smaller FFCs, and thus consistent with these FFCs forming from a single dike emplacement event. In contrast, the thickest intrusions in the largest craters imply volumes requiring multiple dike contributions; these are likely to be events well-separated in time, rather than injection of new magma into a recently-formed and still-cooling intrusion. We present a temporal sequence of 1) dike emplacement, 2) sill formation and surface deformation, 3) bubble rise, foam layer formation and collapse, 4) intrusion cooling, and a synthesis of predicted deformation sequence and eruption styles. Initial lateral injection of the sill at a depth well below the upper dike tip initiates upbowing of the overburden, leveraging deformation of the crater floor melt sheet above. This is followed by lateral spreading of the sill toward the edges of the crater floor, where crater wall and rim deposit overburden inhibit further lateral growth, and the sill grows vertically into a laccolith or bysmalith, uplifting the entire floor above the intrusion. Subsidiary dikes can be emplaced in the fractures at the uplift margins and will rise to the isostatic level of the initial dike tip; if these contain sufficient volatiles to decrease magma density, eruptions can also occur. This initial phase of intrusion, sill lateral spreading and floor uplift occurs within a few hours after initial dike emplacement. During the subsequent cooling of the sill, bubbles can rise hundreds of meters to the top of the intrusion to create a foam layer; when drainage of gas bubble wall magma occurs in the foam layer, a continuous gas layer forms above the foam. Gas formation and upward migration produces an increase in sill thickness, while subsequent cooling and solidification cause a thickness decreases and subsidence. The total topographic evolution history, following an initial 2 km thick sill intrusion and floor uplift (hours), includes further floor uplift by gas formation and migration (decades; ∼30 m), followed by cooling, solidification and subsidence (∼a century; ∼350 m). An initial 2 km thick sill is predicted to have a final thickness of ∼1.7 km. This predicted sequence of events can be compared with the sequence of floor deformation and volcanism in FFCs in order to test and refine this model.

  2. Silurian extension in the Upper Connecticut Valley, United States and the origin of middle Paleozoic basins in the Québec embayment

    USGS Publications Warehouse

    Rankin, D.W.; Coish, R.A.; Tucker, R.D.; Peng, Z.X.; Wilson, S.A.; Rouff, A.A.

    2007-01-01

    Pre-Silurian strata of the Bronson Hill arch (BHA) in the Upper Connecticut Valley, NH-VT are host to the latest Ludlow Comerford Intrusive Suite consisting, east to west, of a mafic dike swarm with sheeted dikes, and an intrusive complex. The rocks are mostly mafic but with compositions ranging from gabbro to leucocratic tonalite. The suite is truncated on the west by the Monroe fault, a late Acadian thrust that carries rocks of the BHA westward over Silurian-Devonian strata of the Connecticut Valley-Gaspe?? trough (CVGT). Dikes intrude folded strata with a pre-intrusion metamorphic fabric (Taconian?) but they experienced Acadian deformation. Twenty fractions of zircon and baddeleyite from three sample sites of gabbrodiorite spanning nearly 40 km yield a weighted 207Pb/206Pb age of 419 ?? 1 Ma. Greenschist-facies dikes, sampled over a strike distance of 35 km, were tholeiitic basalts formed by partial melting of asthenospheric mantle, with little or no influence from mantle or crustal lithosphere. The dike chemistry is similar to mid-ocean ridge, within-plate, and back-arc basin basalts. Parent magmas originated in the asthenosphere and were erupted through severely thinned lithosphere adjacent to the CVGT. Extensive middle Paleozoic basins in the internides of the Appalachian orogen are restricted to the Que??bec embayment of the Laurentian rifted margin, and include the CVGT and the Central Maine trough (CMT), separated from the BHA by a Silurian tectonic hinge. The NE-trending Comerford intrusions parallel the CVGT, CMT, and the tectonic hinge, and indicate NW-SE extension. During post-Taconian convergence, the irregular margins of composite Laurentia and Avalon permitted continued collision in Newfoundland (St. Lawrence promontory) and coeval extension in the Que??bec embayment. Extension may be related to hinge retreat of the northwest directed Brunswick subduction complex and rise of the asthenosphere following slab break-off. An alternative hypothesis is that the basins originated as pull-apart basins between northwest-trending, left-stepping, sinistral strike-slip faults along the southern flanks of the New York and St. Lawrence promontories.

  3. Igneous Sheet Intrusions as a Record of Paleostress States

    NASA Astrophysics Data System (ADS)

    Stephens, T. L.; Walker, R. J.; Healy, D.; Bubeck, A.; England, R. W.; McCaffrey, K. J. W.

    2017-12-01

    The architecture of igneous sheet intrusion networks provides useful constraints on paleostress during emplacement. Several models for sill emplacement have used the close spatial relationships between sills and dikes in layered (sedimentary) host rocks to propose that dike-sill transitions are driven by layering. Such models require a stress rotation - from horizontal extension for dikes, to horizontal compression for sills - which is assumed to reflect a near-hydrostatic stress state, facilitating the dilation and intrusion of pre-existing structures (e.g. faults, joints, and bedding). Here, we present case examples of sills for which layering is not the main control on emplacement: Isle of Mull (UK), Faroe Islands (European Atlantic margin) and the San Rafael Subvolcanic Field (Utah, USA). In each case, dikes cut, or are cut by, sills; indicating that dikes were not the feeders to sills in the same section. The sills consist of linked, flat and shallowly-dipping segments that always show near-vertical opening directions. Sills cut bedding and formation contacts with consistent low-angle dips, and cut or abut against vertical faults, fractures, and tectonic foliations. From this, we infer that magma pressure during emplacement did not exceed the horizontal stress. To constrain the stress state during emplacement we present a novel approach that combines analysis of local and overall sill geometry data with mechanical models for slip tendency, dilation tendency, and fracture susceptibility. We also present a new depth-independent mechanical model, which estimates paleostress ratio and driving fluid pressure ratio using the opening angles of dilated fluid-filled fractures. Our results show that the studied sills record previously unrecognised local fluctuations in the far-field stress state, during magmatic supply. Sills, therefore, present an important tool for determining paleostress in areas where few brittle deformation structures (e.g. faults), other than intrusions, are present.

  4. Subglacial Depositional Processes in the Port Askaig Formation (Neoproterozoic) of Ireland

    NASA Astrophysics Data System (ADS)

    Knight, J.

    2004-12-01

    The Port Askaig Formation was deposited during the Vendian glaciation (c. 650 Ma) and is a range of tillites that outcrop discontinuously from Banffshire (Scotland) to Connemara (Ireland). Sedimentary structures commonly observed include dropstones and sediment drapes, interpreted as deposition from a floating glacial ice shelf in a shallow marginal sea. Other structures, such as intersecting clastic dikes, have been interpreted as evidence for subaerial exposure of the tillite surface. Exposures of the Port Askaig Formation were examined at its Irish type area at Kiltyfanned Lough, County Donegal. Here, homogeneous sandy beds with internal planar bedding structures are separated by laminated fine sand beds which have erosional upper surfaces. The laminated beds are clast-free and individual laminae are laterally continuous and undisturbed. Larger clasts lie bed-parallel and are draped by overlying beds. Occasionally drapes are asymmetric with a thickened sediment prow, suggestive of flow direction. The clastic dikes are polygonal in plan view, may be isolated or interconnected, and are often arranged in parallel sheets which pinch out laterally. Internally, the clastic dikes are infilled with coarse sand to gravel. Infills are often aligned parallel to dike margins. The presence of draped and deformed sediments suggest a subglacial environment with free water availability. The flat-lying morphology of clasts also favours a subglacial rather than a full marine environment. The morphology and disposition of clastic dikes is interpreted as due to subglacial hydrofracturing of a till sheet and upward passage of sediment-charged water through the fracture zone, which is known from late Pleistocene and Precambrian tillites elsewhere. Variations in water availability can be reconciled by a sub-ice shelf depositional model with spatial and temporal changes in tidally-induced ice-bed coupling.

  5. Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California

    USGS Publications Warehouse

    Webber, Karen L.; Simmons, William B.; Falster, Alexander U.; Foord, Eugene E.

    1999-01-01

    Pegmatites of the Pala and Mesa Grande Pegmatite Districts, San Diego County, California are typically thin, sheet-like composite pegmatite-aplite dikes. Aplitic portions of many dikes display pronounced mineralogical layering referred to as "line rock," characterized by fine-grained, garnet-rich bands alternating with albite- and quartz-rich bands. Thermal modeling was performed for four dikes in San Diego County including the 1 m thick Himalaya dike, the 2 m thick Mission dike, the 8 m thick George Ashley dike, and the 25 m thick Stewart dike. Calculations were based on conductive cooling equations accounting for latent heat of crystallization, a melt emplacement temperature of 650 °C into 150 °C fractured, gabbroic country rock at a depth of 5 km, and an estimated 3 wt% initial H2O content in the melt. Cooling to -5 cm/s. Crystal size distribution (CSD) studies of garnet from layered aplites suggest growth rates of about 10-6 cm/s. These results indicate that the dikes cooled and crystallized rapidly, with variable nucleation rates but high overall crystal-growth rates. Initial high nucleation rates coincident with emplacement and strong undercooling can account for the millimeter-size aplite grains. Lower nucleation rates coupled with high growth rates can explain the decimeter-size minerals in the hanging walls, cores, and miarolitic cavities of the pegmatites. The presence of tourmaline and/or lepidolite throughout these dikes suggests that although the melts were initially H2O-undersaturated, high melt concentrations of incompatible (or fluxing) components such as B, F, and Li (±H2O), aided in the development of large pegmatitic crystals that grew rapidly in the short times suggested by the conductive cooling models.

  6. Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge: Quantification through intra-plagioclase diffusion revealed by IODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Koepke, J.; Kirchner, C.; Götze, N.; Behrens, H.

    2014-12-01

    At fast-spreading mid-ocean ridges the axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed "gabbro glacier" model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, resulting in partly crystallization and leading to crystal-melt mush which may subside down to form the lower crust. These processes are believed to be controlled dominantly by periodical magma supply and hydrothermal circulation above melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes overlying the uppermost gabbros, which are part of the dike-gabbro transition zone drilled in Hole 1256D in the Eastern equatorial Pacific by the Integrated Ocean Drilling Program, where for the first time the dike-gabbro transition zone of an intact oceanic crust was penetrated and sampled. The measured zoning patterns are supposed to be a combined result of diffusion during both on-ridge and off-ridge cooling. We estimate the on-ridge cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that the recrystallized sheeted dikes have been cooled from the peak thermal overprint at 1000-1050 °C to 600 °C within about 5-30 years as a result of hydrothermal circulation above a melt lens during a period of magma starvation, corresponding to a cooling rate of 30±15 °C/yr. Heat balance calculation also approves that in order to balance the heat output of a melt lens at a fast-spreading mid-ocean ridge similar to the case of IODP Hole 1256D, the cooling rate above the melt lens is required to be around 30 °C/yr. The estimated rapid hydrothermal cooling rate coincides with the observed annual to decal episodes of melt lens fluctuation and lava eruption, which favors the "gabbro glacier" model and explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.

  7. Multi-stage origin of the Coast Range ophiolite, California: Implications for the life cycle of supra-subduction zone ophiolites

    USGS Publications Warehouse

    Shervais, J.W.; Kimbrough, D.L.; Renne, P.; Hanan, B.B.; Murchey, B.; Snow, C.A.; Zoglman, Schuman M.M.; Beaman, J.

    2004-01-01

    The Coast Range ophiolite of California is one of the most extensive ophiolite terranes in North America, extending over 700 km from the northernmost Sacramento Valley to the southern Transverse Ranges in central California. This ophiolite, and other ophiolite remnants with similar mid-Jurassic ages, represent a major but short-lived episode of oceanic crust formation that affected much of western North America. The history of this ophiolite is important for models of the tectonic evolution of western North America during the Mesozoic, and a range of conflicting interpretations have arisen. Current petrologic, geochemical, stratigraphic, and radiometric age data all favor the interpretation that the Coast Range ophiolite formed to a large extent by rapid extension in the forearc region of a nascent subduction zone. Closer inspection of these data, however, along with detailed studies of field relationships at several locales, show that formation of the ophiolite was more complex, and requires several stages of formation. Our work shows that exposures of the Coast Range ophiolite preserve evidence for four stages of magmatic development. The first three stages represent formation of the ophiolite above a nascent subduction zone. Rocks associated with the first stage include ophiolite layered gabbros, a sheeted complex, and volcanic rocks vith arc tholeiitic or (roore rarely) low-K calc-alkaline affinities. The second stage is characterized by intrusive wehrlite-clinopyroxenite complexes, intrusive gabbros, Cr-rich diorites, and volcanic rocks with high-Ca boninitic or tholeiitic ankaramite affinities. The third stage includes diorite and quartz diorite plutons, felsic dike and sill complexes, and calc-alkaline volcanic rocks. The first three stages of ophiolite formation were terminated by the intrusion of mid-ocean ridge basalt dikes, and the eruption of mid-ocean ridge basalt or ocean-island basalt volcanic suites. We interpret this final magmatic event (MORB dikes) to represent the collision of an active spreading ridge. Subsequent reorganization of relative plate motions led to sinistral transpression, along with renewed subduction and accretion of the Franciscan Complex. The latter event resulted in uplift and exhumation of the ophiolite by the process of accretionary uplift. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.

  8. Late Archean intermediate-felsic magmatism of the South Vygozersky and Kamennozersky greenstone structures of Central Karelia

    NASA Astrophysics Data System (ADS)

    Myskova, T. A.; Zhitnikova, I. A.; L'vov, P. A.

    2015-07-01

    The geochemistry and zircon geochronology (U-Pb, SHRIMP-II) of Late Archean intermediate-felsic dikes and plagiogranites of the Shilossky massif of the South Vygozersky and Kamennozersky greenstone belts of Central Karelia were studied. Subvolcanic rocks of the dike complex vary in composition from andesitobasalts to rhyolites, in structural-textural peculiarities, and in the formation age, from 2862 ± 8 to 2785 ± 15 Ma. Compositionally and geochronologically (2853 ± 11 Ma), plagiogranites of the Shilossky massif of the South Vygozersky greenstone belts are close to the most ancient dacite and granodiorite porphyry dikes. Dikes intruded synchronously with intrusion of plagiogranites over a period of at least 70 m.y. Geochronologically, subvolcanic rocks of the dike complex and plagiogranites of the Shilossky massif are similar to granitoids of the TTG assemblages of I- and M-type granites. The Sm-Nd model age of some dikes (2970-2880 Ma) is close to the age of rock crystallization, which is evidence in favor of juvenile origin of magma. Dikes with more ancient model age (3050 Ma) are presumed to contain crustal material. Variations in age and ɛNd (from -2.7 to +2.9) indicate the absence of a unified magmatic source.

  9. Volcanotectonic earthquakes induced by propagating dikes

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2016-04-01

    Volcanotectonic earthquakes are of high frequency and mostly generated by slip on faults. During chamber expansion/contraction earthquakes are distribution in the chamber roof. Following magma-chamber rupture and dike injection, however, earthquakes tend to concentrate around the dike and follow its propagation path, resulting in an earthquake swarm characterised by a number of earthquakes of similar magnitudes. I distinguish between two basic processes by which propagating dikes induce earthquakes. One is due to stress concentration in the process zone at the tip of the dike, the other relates to stresses induced in the walls and surrounding rocks on either side of the dike. As to the first process, some earthquakes generated at the dike tip are related to pure extension fracturing as the tip advances and the dike-path forms. Formation of pure extension fractures normally induces non-double couple earthquakes. There is also shear fracturing in the process zone, however, particularly normal faulting, which produces double-couple earthquakes. The second process relates primarily to slip on existing fractures in the host rock induced by the driving pressure of the propagating dike. Such pressures easily reach 5-20 MPa and induce compressive and shear stresses in the adjacent host rock, which already contains numerous fractures (mainly joints) of different attitudes. In piles of lava flows or sedimentary beds the original joints are primarily vertical and horizontal. Similarly, the contacts between the layers/beds are originally horizontal. As the layers/beds become buried, the joints and contacts become gradually tilted so that the joints and contacts become oblique to the horizontal compressive stress induced by a driving pressure of the (vertical) dike. Also, most of the hexagonal (or pentagonal) columnar joints in the lava flows are, from the beginning, oblique to an intrusive sheet of any attitude. Consequently, the joints and contacts function as potential shear fractures many of which, when loaded by the dike driving pressure, slip and generate double-couple earthquakes. All types of faulting occur, but strike-slip and reverse faulting are particularly common. Dike-induced faulting is one reason why (mostly small) reverse and strike-slip faults are so commonly observed in palaeorift-zones. Here I present field examples of dike-induced extension fractures and fault slips. I also present numerical and analytical models to explain the effects of mechanical layering and heterogeneity on the likely dike paths and the associated variations in the type and location of the dike-induced earthquakes. Becerril, L., Galindo, I., Gudmundsson, A., Morales, J.M., 2013. Depth of origin of magma in eruptions. Sci. Reports (Nature Publishing), 3, 2762, doi: 10.1038/srep02762. Gudmundsson, A., Lecoeur, N., Mohajeri, N., Thordarson, T., 2014. Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bull. Volcanol., 76, 869, doi: 10.1007/s00445-014-0869-8.

  10. Geometric and kinematic features of the dike complex at Mt. Somma, Vesuvio (Italy)

    NASA Astrophysics Data System (ADS)

    Porreca, M.; Acocella, V.; Massimi, E.; Mattei, M.; Funiciello, R.; De Benedetti, A. A.

    2006-05-01

    Dikes provide important information on the structure, state of stress and activity of a volcano. Mt. Somma borders part of the Vesuvio cone (Italy), displaying ˜ 100 dikes emplaced between ˜ 18 and 30 ka. Field, AMS (anisotropy of magnetic susceptibility) and thin section analyses are used to characterize their geometry and kinematics (direction and sense of flow). The dikes mostly have a NNW-SSE to NE-SW strike. Approximately 57% are radial to the older Somma edifice, ˜ 27% are oblique and ˜ 16% tangential. Among the latter two groups, ˜ 32% are outward dipping and ˜ 11% inward dipping. The dike thickness varies between 0.2 and 3 m, with a mean value of 1.17 m. The kinematics of 19 dikes is determined through a combination of field (8 dikes), AMS (16 dikes) and thin section analyses (15 dikes). Thirteen dikes have a vertical upward flow, whereas six have an oblique-subhorizontal flow, suggesting a lateral propagation from the summit or eccentric vents of the former Somma edifice. These propagation paths differ from those deducible from the recent activity, as all the seven major fissure eruptions between 1631 and 1944 were related to the lateral propagation of radial dikes. We propose that these different behaviours in dike propagation may be mainly related to the opening conditions of the summit conduit. The laterally propagating dikes in 1631-1944 formed with an open conduit. Conversely, the vertically propagating dikes may have formed, between 18 and 30 ka, with a closed conduit.

  11. Constraints On Fluid Evolution During Mid-Ocean Ridge Hydrothermal Circulation From Anhydrite Sampled by ODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Smith-Duque, C.; Teagle, D. A.; Alt, J. C.; Cooper, M. J.

    2008-12-01

    Anhydrite is potentially a useful mineral for recording the evolution of seawater-derived fluids during mid- ocean ridge hydrothermal circulation because it exhibits retrograde solubility, and hence may precipitate due to the heating of seawater or the sub-surface mixing of seawater with black smoker-like fluids. Here we provide new insights into the chemical and thermal evolution of seawater during hydrothermal circulation through analyses of anhydrite recovered from ODP Hole 1256D, the first complete penetration of intact upper oceanic crust down to gabbros. Previously, crustal anhydrite has been recovered only from Hole 504B. Measurements of 87Sr/86Sr, major element ratios, Rare Earth Elements and δ18O in anhydrite constrain the changing composition of fluids as they chemically interact with basalt. Anhydrite fills veins and pore-space in the lower lava sequences from ~530 to ~1000 meters sub- basement (msb), but is concentrated in the lava-dike transition (754 to 811 msb) and uppermost sheeted dikes. Although present in greater quantities than in Hole 504B, the amount of anhydrite recovered from the Site 1256 crust is low compared to that predicted by models of hydrothermal circulation (e.g., Sleep, 1991). Two distinct populations of anhydrite are indicated by measurements of 87Sr/86Sr suggesting different fluid evolution paths within Site 1256. One group of anhydrites have 87Sr/86Sr of 0.7070 to 0.7085, close to that of 15 Ma seawater (0.70878), suggesting that some fluids penetrate through the lavas and into the sheeted dikes with only minimal Sr-exchange with the host basalts. A second group, with low 87Sr/86Sr between 0.7048 and 0.7052, indicates precipitation from a fluid that has undergone far greater interaction with basalt. This range is close to that estimated from Sr-isotopic analyses of epidote for the Hole 1256D hydrothermal fluids (87Sr/86Sr ~0.705). Sr/Ca and 87Sr/86Sr indicate a similar relationship to that seen at ODP Hole 504B suggesting that Sr/Ca ratios reduce greatly during recharge before there is significant Sr exchange with the host basalts. δ18O measurements display an irregular trend with depth from +17‰ in the lower volcanics to +10‰ in the sheeted dikes suggesting an increase in precipitation temperatures from 105 to 211°C. One sample, from a chalcopyrite mineralized dike margin has a very light δ18O of +2.2‰ suggesting a temperature of ~408°, perhaps indicating that fluid was superheated following direct contact with the hot intrusive body. This sample also records low 87Sr/86Sr and high total REE.

  12. Petrology of iron-rich magmatic segregations associated with strongly peraluminous trondhjemite in the Cornucopia stock, northeastern Oregon

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Barnes, C. G.; Browning, J. M.; Karlsson, H. R.

    The Middle Cretaceous Cornucopia stock in the Blue Mountains of northeastern Oregon is a small composite intrusion consisting of hornblende biotite tonalite, biotite trondhjemite, and three cordierite two mica trondhjemite units. Unusual magnetite + biotite-rich tonalitic rocks are associated with the Crater Lake cordierite trondhjemite, the youngest of the intrusions. Oxide-rich tonalites are characterized by high Fe ( 47-68 wt% total Fe as FeO), low SiO2 (<36 wt%), and enrichments in HFSE and REE (La(N)=361-903). Oxide-rich tonalites appear in a variety of forms, including composite dikes and sheets, in which they are associated with leucocratic tonalite. Leucotonalite is lower in SiO2 (60-72 wt%) than Crater Lake trondhjemite, and generally has ΣREE contents and Eu anomalies intermediate between the oxide-rich tonalite and Crater Lake compositions. Oxide-rich tonalites crosscut, and are crosscut by, shear zones in the host trondhjemite, indicating their emplacement late in the pluton's crystallization history. Granitic dikes crosscut the composite dikes in all localities. Geochemical considerations and sedimentary-like structures, such as load casts and bedding of magnetite-rich assemblages in the composite dikes and sheets, are suggestive of crystal settling from an Fe-rich parental magma. The Fe-rich liquid parental to the oxide-rich tonalite-leucotonalite pairs formed by extensive, in-situ, plagioclase + quartz-dominated crystallization of strongly peraluminous trondhjemite. Early magnetite saturation in the trondhjemite was suppressed, either because the parental trondhjemitic magma had a lower initial total Fe content or because it had a lower ferric-ferrous ratio, possibly reflecting a lower oxygen fugacity. Accumulation of magnetite from Fe-rich residual magma is a viable mechanism for the concentration of iron, and the subsequent formation of Fe-rich rocks, in calcic siliceous intrusions. Apparently, Fe-enrichment can occur locally in calcic magmas, and is not restricted to rocks of mafic tholeiitic or anorthositic affinity.

  13. Petrology of iron-rich magmatic segregations associated with strongly peraluminous trondhjemite in the Cornucopia stock, northeastern Oregon

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Barnes, C. G.; Browning, J. M.; Karlsson, H. R.

    2001-11-01

    The Middle Cretaceous Cornucopia stock in the Blue Mountains of northeastern Oregon is a small composite intrusion consisting of hornblende biotite tonalite, biotite trondhjemite, and three cordierite two mica trondhjemite units. Unusual magnetite + biotite-rich tonalitic rocks are associated with the Crater Lake cordierite trondhjemite, the youngest of the intrusions. Oxide-rich tonalites are characterized by high Fe ( 47-68 wt% total Fe as FeO), low SiO2 (<36 wt%), and enrichments in HFSE and REE (La(N)=361-903). Oxide-rich tonalites appear in a variety of forms, including composite dikes and sheets, in which they are associated with leucocratic tonalite. Leucotonalite is lower in SiO2 (60-72 wt%) than Crater Lake trondhjemite, and generally has ΣREE contents and Eu anomalies intermediate between the oxide-rich tonalite and Crater Lake compositions. Oxide-rich tonalites crosscut, and are crosscut by, shear zones in the host trondhjemite, indicating their emplacement late in the pluton's crystallization history. Granitic dikes crosscut the composite dikes in all localities. Geochemical considerations and sedimentary-like structures, such as load casts and bedding of magnetite-rich assemblages in the composite dikes and sheets, are suggestive of crystal settling from an Fe-rich parental magma. The Fe-rich liquid parental to the oxide-rich tonalite-leucotonalite pairs formed by extensive, in-situ, plagioclase + quartz-dominated crystallization of strongly peraluminous trondhjemite. Early magnetite saturation in the trondhjemite was suppressed, either because the parental trondhjemitic magma had a lower initial total Fe content or because it had a lower ferric-ferrous ratio, possibly reflecting a lower oxygen fugacity. Accumulation of magnetite from Fe-rich residual magma is a viable mechanism for the concentration of iron, and the subsequent formation of Fe-rich rocks, in calcic siliceous intrusions. Apparently, Fe-enrichment can occur locally in calcic magmas, and is not restricted to rocks of mafic tholeiitic or anorthositic affinity.

  14. Unique Tremor observed coincident with the major emplacement phase of the September 2005 dike in Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Ayele, A.; Keir, D.; Wright, T. J.; Ebinger, C. J.; Stuart, G. W.; Neuberg, J.

    2009-12-01

    The advent of digital and broadband seismic stations helped to capture the complex dynamics of earthquakes and volcanic sources processes ranging from high frequency microfractures to ultra long period transient signals. The September 2005 dike in the Afar depression of Ethiopia demonstrated to be one of the rare events of its kind to demonstrate the complex interaction of ambient tectonic stress, volcanic processes and dike intrusions. Unusually long period tremor in the range 18-20 seconds is observed by seismic stations located from ~ 350-700 km distance on 25 September, 2006 at about 14:00:00 GMT. This tremor sustain for about 30 minutes at FURI station. This time is coincident with the major emplacement phase of the dike beneath the Ado Ale Volcanic Complex (AVC before the small felsic eruption at Da’Ure in the afternoon of September 26, 2005. This tremor sustain for about 30 minutes at FURI station. The preliminary interpretation of this observation is postulated to be a highly pressurized magma source/reservoir breaking into the channel and its interaction with its deformable rock walls.

  15. Understanding and modeling volcanotectonic processes that generate surface deformation on active stratovolcanoes

    NASA Astrophysics Data System (ADS)

    Gudmundsson, A.

    2005-05-01

    Surface deformation on stratovolcanoes is the result of local stresses generated by various volcanotectonic processes. These processes include changes in fluid pressure in the associated geothermal fields and magma chambers, regional seismic or tectonic events, fault development, and dike injections. Here the focus is on magma-chamber pressure changes and dike injections. Surface deformation associated with magma-chamber pressure changes is normally referred to as inflation when the pressure increases, and as deflation when the pressure decreases. The processes that lead to inflation are primarily addition of new magma to the chamber and rapid exsolution of gas from the magma in the chamber. The processes that lead to deflation are primarily cooling (and contraction) of magma in the chamber, regional tectonic extension of the crust holding the chamber, and eruption and/or dike injection. Injection of dikes (including inclined sheets) is common in most active stratovolcanoes. However, no dike-fed eruptions can take place unless the local stress field within the volcano is favorable to feeder-dike formation. By contrast, if at any location - in any layer - in the stratovolcano the stress field is unfavorable to dike propagation, the dike becomes arrested and no eruption occurs. Detailed studies of dikes in stratovolcanoes worldwide indicate that most dikes become arrested and never reach the surface. However, arrested dikes may give rise to surface deformation, such as is commonly monitored during volcanic unrest periods. By definition, stratovolcanoes are composed of numerous alternating strata (layers) of pyroclastic material and lava flows. Commonly, these layers have widely different mechanical properties. In particular, some layers such as lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas other layers, such as non-welded pyroclastic units, may be soft (with a low Young's modulus). Here I present new numerical models on the surface deformation on typical stratovolcanoes. The models show, first, that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. Second, the models show that dike-induced stresses and surface deformation depend much on the mechanical properties of the layers between the dike tip and the surface. In particular, the models indicate that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Thus, many dikes may become injected and arrested with little or no surface deformation. Generally, the numerical models suggest that standard analytical surface-deformation models such as point sources (nuclei of strain) for magma-chamber pressure changes and dislocations for dikes should be used with great caution. These models normally assume the volcanoes and rift zones to behave as homogeneous, isotropic half spaces or semi-infinite plates. When applied to stratovolcanoes composed of layers of contrasting mechanical properties and, particularly at shallow depths, weak or open contacts, inversions using these analytical models may yield results that, at best, are unreliable.

  16. An internally consistent inverse model to calculate ridge-axis hydrothermal fluxes

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.; Dosso, S.

    2010-12-01

    Fluid and chemical fluxes from high-temperature, on-axis, hydrothermal systems at mid-ocean ridges have been estimated in a number of ways. These generally use simple mass balances based on either vent fluid compositions or the compositions of altered sheeted dikes. Here we combine these approaches in an internally consistent model. Seawater is assumed to enter the crust and react with the sheeted dike complex at high temperatures. Major element fluxes for both the rock and fluid are calculated from balanced stoichiometric reactions. These reactions include end-member components of the minerals plagioclase, pyroxene, amphibole, chlorite and epidote along with pure anhydrite, quartz, pyrite, pyrrhotite, titanite, magnetite, ilmenite and ulvospinel and the fluid species H2O, Mg2+, Ca2+, Fe2+, Na+, Si4+, H2S, H+ and H2. Trace element abundances (Li, B, K, Rb, Cs, Sr, Ba, U, Tl, Mn, Cu, Zn, Co, Ni, Pb and Os) and isotopic ratios (Li, B, O, Sr, Tl, Os) are calculated from simple mass balance of a fluid-rock reaction. A fraction of the Cu, Zn, Pb, Co, Ni, Os and Mn in the fluid after fluid-rock reaction is allowed to precipitate during discharge before the fluid reaches the seafloor. S-isotopes are tied to mineralogical reactions involving S-bearing phases. The free parameters in the model are the amounts of each mineralogical reaction that occurs, the amounts of the metals precipitated during discharge, and the water-to-rock ratio. These model parameters, and their uncertainties, are constrained by: (i) mineral abundances and mineral major element compositions in altered dikes from ODP Hole 504B and the Pito and Hess Deep tectonic windows (EPR crust); (ii) changes in dike bulk-rock trace element and isotopic compositions from these locations relative to fresh MORB glass compositions; and (iii) published vent fluid compositions from basalt-hosted high-temperature ridge axis hydrothermal systems. Using a numerical inversion algorithm, the probability density of different model parameter sets has been computed and thus the probability of different fluid and chemical fluxes. Most data can be fit by the model within their uncertainty. The entire dataset is best-fit with a water-to-rock mass ratio between 1.3 and 2.1 (~1 to 1.5 x10**13 kg yr-1) implying a substantial fraction of the magmatic (latent) heat available to drive the axial hydrothermal system is extracted by these systems. Many element fluxes are better constrained than in previous studies (e.g., Sr: 2 to 7 x10**8 moles yr-1; Ca: 2 to 7 x10**11 moles yr-1). Future developments will use experimental data to further constrain the model.

  17. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  18. Isukasia area: Regional geological setting (includes excursion guide)

    NASA Technical Reports Server (NTRS)

    Nutman, A. P.; Rosing, M.

    1986-01-01

    A brief account of the geology of the Isukasis area is given and is biased toward the main theme of the itinerary for the area: What has been established about the protoliths of the early Archean rocks of the area - the Isua supracrustal belt and the Amitsoq gneisses? The area's long and complex tectonometamorphic history of events can be divided into episodes using a combination of dike chronology, isotopic, and petrological studies. The earliest dikes, the ca 3700 Ma Inaluk dikes, intrude the earliest (tonalitic) components of the Amitsoq gneisses but are themselves cut up by the injection of the younger (granitic and pegmatitic) phases of the Amitsoq gneisses of the area. The areas of low late Archean deformation, strongly deformed early Archean mafic rocks have coarse grained metamorphic segregations and are cut by virtually undeformed mid-Archean Tarssartoq (Ameralik) dikes devoid of metamorphic segregations. The shows that the area was affected by regional amphibolite facies metamorphism in the early Archean. Late Archean and Proterozoic metamorphic imprints are marked to very strong in the area. Much of the early Archean gneiss complex was already highly deformed when the mid-Archean Tarssartoq dikes were intruded.

  19. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work has suggested that the Reykjanes geothermal system has been active since the last glaciation, 10ka. No shallow melt bodies have been detected on the Reykjanes Peninsula suggesting that hydrothermal circulation typical of black smoker systems can be sustained with out a magmatic heat source.

  20. The Morphological Characteristics and Mechanical Formation of Giant Radial Dike Swarms on Venus: An Overview Emphasizing Recent Numerical Modeling Insights

    NASA Astrophysics Data System (ADS)

    McGovern, P. J., Jr.; Grosfils, E. B.; Le Corvec, N.; Ernst, R. E.; Galgana, G. A.

    2017-12-01

    Over 200 giant radial dike swarms have been identified on Venus using Magellan data, yielding insight into morphological characteristics long since erased by erosion and other processes on Earth. Since such radial dike systems are typically associated with magma reservoirs, large volcanoes and/or larger-scale plume activity—and because dike geometry reflects stress conditions at the time of intrusion—assessing giant radial dike formation in the context of swarm morphology can place important constraints upon this fundamental volcanotectonic process. Recent numerical models reveal that, contrary to what is reported in much of the published literature, it is not easy, mechanically, to produce either large or small radial dike systems. After extensive numerical examination of reservoir inflation, however, under conditions ranging from a simple halfspace to complex flexural loading, we have thus far identified four scenarios that produce radial dike systems. Two of these scenarios yield dike systems akin to those often associated with shield and stratocone volcanoes on Earth, while the other two, our focus here, are more consistent with the giant radial dike system geometries catalogued on Venus. In this presentation we will (a) review key morphological characteristics of the giant radial systems identified on Venus, (b) briefly illustrate why it is not easy, mechanically, to produce a radial dike system, (c) present the two volcanological circumstances we have identified that do allow a giant radial dike system to form, and (d) discuss current model limitations and potentially fruitful directions for future research.

  1. Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Koepke, Juergen; Kirchner, Clemens; Götze, Niko; Behrens, Harald

    2014-09-01

    Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed ``gabbro glacier'' model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-1050°C to 600°C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.

  2. Summary of the geology of the northern part of the Sierra Cuchillo, Socorroand Sierra Counties, southwestern New Mexico

    USGS Publications Warehouse

    Maldonado, Florian; Edited by Lucas, Spencer G.; McLemore, Virginia T.; Lueth, Virgil W.; Spielmann, Justin A.; Krainer, Karl

    2012-01-01

    The northern part of the Sierra Cuchillo is located within the northeastern part of the Mogollon-Datil volcanic field west of the Rio Grande rift in the Basin and Range Province, approximately 50 km northwest of Truth or Consequences in south-central New Mexico. The Sierra Cuchillo is a north-south, elongated horst block composed of Tertiary volcanic and intrusive rocks, sparse outcrops of Lower Permian and Upper Cretaceous rocks, and sediments of the Tertiary-Quaternary Santa Fe Group. The horst is composed mainly of a basal volcanic rock sequence of andesite-latite lava flows and mud-flow breccias with a 40Ar/39Ar isotopic age of about 38 Ma. The sequence is locally intruded by numerous dikes and plugs that range in composition from basaltic andesite through rhyolite and granite. The andesite-latite sequence is overlain by ash-flow tuffs and a complex of rhyolitic lava flows and domes. Some of these units are locally derived and some are outflow sheets derived from calderas in the San Mateo Mountains, northeast of the study area. These locally derived units and outflow sheets range in age from 28 to 24 Ma.

  3. Rhyodacites of Kulshan caldera, North Cascades of Washington: Postcaldera lavas that span the Jaramillo

    USGS Publications Warehouse

    Hildreth, W.; Lanphere, M.A.; Champion, D.E.; Fierstein, J.

    2004-01-01

    Kulshan caldera (4.5??8 km), at the northeast foot of Mount Baker, is filled with rhyodacite ignimbrite (1.15 Ma) and postcaldera lavas and is only the third Quaternary caldera identified in the Cascade arc. A gravity traverse across the caldera yields a steep-sided, symmetrical, complete Bouguer anomaly of -16 mGal centered over the caldera. Density considerations suggest that the caldera fill, which is incised to an observed thickness of 1 km, may be about 1.5 km thick and is flat-floored, overlying a cylindrical piston of subsided metamorphic rocks. Outflow sheets have been stripped by advances of the Cordilleran Ice Sheet, but the climactic fallout (Lake Tapps tephra) is as thick as 30 cm some 200 km south of the caldera. Ten precaldera units, which range in 40Ar/39Ar age from 1.29 to 1.15 Ma, are dikes and erosional scraps that probably never amounted to a large edifice. A dozen postcaldera rhyodacite lavas and dikes range in age from 1.15 to 0.99 Ma; rhyodacites have subsequently been absent, the silicic reservoir having finally crystallized. At least 60 early Pleistocene intermediate dikes next intruded the caldera fill, helping energize an acid-sulfate hydrothermal system and constituting the main surviving record of an early postcaldera andesite-dacite pile presumed to have been large. Most of the pre- and postcaldera rhyodacites were dated by 40Ar/39Ar or K-Ar methods, and 13 were drilled for remanent magnetic directions. In agreement with the radiometric ages, the paleomagnetic data indicate that eruptions took place before, during, and after the Jaramillo Normal Polarity Subchron, and that one rhyodacite with transitional polarity may represent the termination of the Jaramillo. Most of the biotite-hornblende-orthopyroxene-plagioclase rhyodacite lavas, dikes, and tuffs are in the range 68-73% SiO2, but there were large compositional fluctuations during the 300-kyr duration of the rhyodacite episode. The rhyodacitic magma reservoir was wider (11 km) than the caldera that collapsed into it (8 km). ?? 2003 Elsevier B.V. All rights reserved.

  4. Li Isotopes as Tracers of Fluid-Rock Interactions in Oceanic Hydrothermal Systems: Evidence From the Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    Brant, C. O.; Coogan, L. A.; Gillis, K. M.

    2004-12-01

    Li isotopes have the potential to be powerful tracers of fluid-rock interactions at mid-ocean ridge hydrothermal systems due to the large isotopic difference between seawater (δ7Li = 31‰) and fresh MORB (δ7Li = 1.5 to 5.6 ‰). Sampling programs along tectonic escarpments at Hess Deep provide an ideal suite to examine the spatial variability of Li mobility and Li isotopic content within young (1 Ma) lavas and sheeted dikes formed at the fast-spreading East Pacific Rise towards the end of a segment. Previous work has shown that the lavas are relatively fresh, with minor alteration to clay minerals and Fe oxyhydroxides. Sheeted dikes are variably altered to amphibole-dominated assemblages, with localized zones where chlorite dominates. Sr and O isotope data correlate with these regional patterns. Preliminary data, collected by Thermo X-series quadrupole ICP-MS, show that the lavas have similar Li concentrations to fresh MORB (5 to 6 ppm) and are slightly enriched in δ7Li (4.1 to 7.7 ‰). There is a positive correlation between Li content and δ7Li within the lavas, however, the trend is not a simple mixing line between seawater and fresh MORB, being offset to lower δ7Li in the altered component. Similar to previous studies, these relationships support the prediction that 6Li is preferentially retained in low temperature clay minerals. Sheeted dykes are depleted in Li (0.8-4.63 ppm) and most samples are enriched in δ7Li (6.7-15.4 ‰) relative to fresh MORB. These samples show an inverse relationship between decreasing concentration and increasing isotopic enrichment. This implies that 6Li is not simply preferentially retained in the replacement mineral assemblages. The degree of isotopic enrichment appears to increase with increasing clinopyroxene alteration, and is greatest for amphibolite dominated assemblages. A broad positive correlation between Li concentration and δ18O is observed in the dikes. Thus Li isotopes are sensitive indicators of the nature and extent of hydrothermal interactions for both high and low temperature processes.

  5. Li Isotopes as Tracers of Fluid-Rock Interactions in Oceanic Hydrothermal Systems: Evidence From the Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    Brant, C. O.; Coogan, L. A.; Gillis, K. M.

    2007-12-01

    Li isotopes have the potential to be powerful tracers of fluid-rock interactions at mid-ocean ridge hydrothermal systems due to the large isotopic difference between seawater (δ7Li = 31‰) and fresh MORB (δ7Li = 1.5 to 5.6 ‰). Sampling programs along tectonic escarpments at Hess Deep provide an ideal suite to examine the spatial variability of Li mobility and Li isotopic content within young (1 Ma) lavas and sheeted dikes formed at the fast-spreading East Pacific Rise towards the end of a segment. Previous work has shown that the lavas are relatively fresh, with minor alteration to clay minerals and Fe oxyhydroxides. Sheeted dikes are variably altered to amphibole-dominated assemblages, with localized zones where chlorite dominates. Sr and O isotope data correlate with these regional patterns. Preliminary data, collected by Thermo X-series quadrupole ICP-MS, show that the lavas have similar Li concentrations to fresh MORB (5 to 6 ppm) and are slightly enriched in δ7Li (4.1 to 7.7 ‰). There is a positive correlation between Li content and δ7Li within the lavas, however, the trend is not a simple mixing line between seawater and fresh MORB, being offset to lower δ7Li in the altered component. Similar to previous studies, these relationships support the prediction that 6Li is preferentially retained in low temperature clay minerals. Sheeted dykes are depleted in Li (0.8-4.63 ppm) and most samples are enriched in δ7Li (6.7-15.4 ‰) relative to fresh MORB. These samples show an inverse relationship between decreasing concentration and increasing isotopic enrichment. This implies that 6Li is not simply preferentially retained in the replacement mineral assemblages. The degree of isotopic enrichment appears to increase with increasing clinopyroxene alteration, and is greatest for amphibolite dominated assemblages. A broad positive correlation between Li concentration and δ18O is observed in the dikes. Thus Li isotopes are sensitive indicators of the nature and extent of hydrothermal interactions for both high and low temperature processes.

  6. New insights into the origin of ladder dikes: Implications for punctuated growth and crystal accumulation in the Cathedral Peak granodiorite

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.; Jellinek, A. M.; Hodge, K. F.

    2017-04-01

    Ladder dikes are steep tabular bodies, typically a meter or less thick, composed of moderately dipping, concave upward, alternating dark (i.e. schlieren) and light bands oriented roughly perpendicular to the ladder dike margins. These structures occur widely but sparsely in granitic rocks and are found prominently in the Cathedral Peak granodiorite (CPG) of the Tuolumne Intrusive suite. Previous studies have interpreted that ladder dikes form as a result of processes including the downward flow of crystal mush in cracks within strong crystal mush or by upward flow in steep tubes that migrate within a strong crystal mush. Our new observations indicate that ladder dikes formed by downward flow of crystal mush in troughs or valleys, in a manner potentially comparable to trough bands in mafic layered intrusions. Extensions of the schlieren outward and upward away from the ladder dike margins into the host granite demonstrate that the host granite was deposited as mounds on both sides at the same time as the ladder dikes. Ladder dikes, therefore, record lateral flows of crystal mush on a magma chamber floor. Vertical exposures suggest these flows are on the order of ten meters thick. Some steep exposures on granite domes indicate multiple ladder dikes (and flows) over a stratigraphic height of 80-100 m. Later (stratigraphically higher) flows commonly deform and erode the top of an earlier flow, and granitic material rich in K-feldspar megacrysts has locally engulfed large blocks of ladder dikes, demonstrating that the megacrysts were also transported in flows. Flows in the CPG are directed away from the center of the pluton toward the western and eastern margins and apparently spread along a strong crystal mush floor and into a rheologically complex CPG magma. Whereas established dynamical models for spreading (single phase) gravity currents with simple and complex rheologies explain the elongate geometry, spacing and orientation of the tabular bodies, the origin and character of the downward flows required to explain the trough band schlieren structures is challenging. However, an intermittent and progressive deposition of trough bands, consistent with field observations, is potentially explained if the two-phase (crystals and melt) dynamics governing the response of the CPG magma to a new injection are considered.

  7. Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus

    NASA Technical Reports Server (NTRS)

    Grosfils, E. B.; Ernst, R. E.

    2003-01-01

    Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some key implications for the questions framed above.

  8. 3D modelling of the Tejeda Caldera cone-sheet swarm, Gran Canaria, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Samrock, Lisa K.; Jensen, Max J.; Burchardt, Steffi; Troll, Valentin R.; Mattsson, Tobias; Geiger, Harri

    2015-04-01

    Cone-sheet swarms provide vital information on the interior of volcanic systems and their plumbing systems (e.g. Burchardt et al. 2013). This information is important for the interpretation of processes and dynamics of modern and ancient volcanic systems, and is therefore vital for assessing volcanic hazards and to reduce risks to modern society. To more realistically model cone-sheet emplacement an approximation of their 3D shape needs to be known. Most cone-sheet swarms are not sufficiently exposed laterally and/or vertically, however, which makes it difficult to determine the geometry of a cone-sheet swarm at depth, especially since different shapes (e.g. convex, straight or concave continuations) would produce a similar trace at the surface (cf. Burchardt et al. 2011, and references therein). The Miocene Tejeda Caldera on Gran Canaria, Canary Islands, Spain, hosts a cone-sheet swarm that was emplaced into volcaniclastic caldera infill at about 12.3-7.3 Ma (Schirnick et al. 1999). The dyke swarm displays over 1000 m of vertical exposure and more than 15 km of horizontal exposure, making it a superb locality to study the evolution of cone-sheet swarms in detail and to determine its actual geometry in 3D space. We have used structural data of Schirnick (1996) to model the geometry of the Tejeda cone-sheet in 3D, using the software Move® by Midland Valley Ltd. Based on previous 2D projections, Schirnick et al. (1999) suggested that the cone-sheet swarm is formed by a stack of parallel intrusive sheets which have a truncated dome geometry and form a concentric structure around a central axis, assuming straight sheet-intrusions. Our 3D model gives insight into the symmetries of the sheets and the overall geometry of the cone-sheet swarm below the surface. This visualization now allows to grasp the complexity of the Tejeda cone-sheet swarm at depth, particularly in relation to different possible cone-sheet geometries suggested in the literature (cf. Burchardt et al. 2011, and references therein), and we discuss the implications of this architecture for the feeding system of the Tejeda volcano and the associated temporal variations of cone-sheet emplacement. References: Burchardt, S., Tanner, D.C., Troll, V.R., Krumbholz, M., Gustafsson, L.E. (2011) Three-dimensional geometry of concentric intrusive sheet swarms in the Geitafell and the Dyrfjöll volcanoes, eastern Iceland. Geochemistry, Geophysics, Geosystems 12(7): Q0AB09. Burchardt, S., Troll, V.R., Mathieu, L., Emeleus, H.C., Donaldson, C.H. (2013) Ardnamruchan 3D cone-sheet architecture explained by a single elongate magma chamber. Scientific Reports 3:2891. Schirnick, C. (1996) Formation of an intracaldera cone sheet dike swarm (Tejeda Caldera, Gran Canaria) (Dissertation). Christian-Albrechts-Universität, Kiel, Germany. Schirnick, C., van den Bogaard, P., Schmincke, H.-U. (1999) Cone-sheet formation and intrusive growth of an oceanic island - The Miocene Tejeda complex on Gran Canaria (Canary Islands). Geology, 27: 207-210.

  9. Dike Propagation Mechanisms from Seismicity Accompanying the 2014 Bárðarbunga-Holuhraun Fissure Eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Woods, J.; Ágústsdóttir, T.; Greenfield, T. S.; Green, R. G.; White, R. S.; Brandsdottir, B.

    2015-12-01

    We present data from our dense seismic network which captured in unprecedented detail the micro-seismicity associated with the 2014 dike intrusion from the subglacial Bárðarbunga volcano in central Iceland. Over 30,000 automatically located earthquakes delineate a complex 46 km dike propagation during the days preceding the onset of effusive magmatism at the Holuhraun lava field on 29 August 2014. Approximately 1.5 km3 of lava was erupted, making this the largest eruption in Iceland for over 200 years.Micro-seismicity tracks the lateral migration of the dike, with a concentration of earthquakes in the advancing tip where stresses are greatest, and trailing zones of lesser or no seismicity behind. Onset of an initial 4 hour fissure eruption was accompanied simultaneously by a backward retreat in seismic activity, followed by a gradual re-advance prior to the onset of a second, sustained fissure eruption in the same location on 31 August. Rock fracture mechanisms are determined from fault plane solutions of these seismic events. At the tip of the advancing dike, left-lateral strike-slip faulting parallel to the propagation is dominant, utilising pre-existing lineations and releasing stress accumulated in the brittle layer from rift zone extension. Behind the dike tip, both right-lateral and left-lateral strike-slip earthquakes are found, marking failure of solidifying magma plugs within the dike conduit. Contrary to many models of dike propagation, both normal faulting and failure at high angles to the dike are rare. Furthermore, a distinct lack of seismicity is observed in the 3-4 km region beneath the surface rupture. This suggests that opening is occuring aseismically, with earthquakes focused at the base of the dike near the brittle-ductile boundary.

  10. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  11. Drone based structural mapping at Holuhraun indicates fault reactivation and complexity

    NASA Astrophysics Data System (ADS)

    Mueller, Daniel; Walter, Thomas R.; Steinke, Bastian; Witt, Tanja; Schoepa, Anne; Duerig, Tobi; Gudmundsson, Magnus T.

    2016-04-01

    Accompanied by an intense seismic swarm in August 2014, a dike laterally formed, starting under Icelands Vatnajökull glacier, propagating over a distance of more than 45 km within only two weeks, leading to the largest eruption by volume since the 1783-84 Laki eruption. Along its propagation path, the dike caused intense surface displacements up to meters. Based on seismicity, GPS and InSAR, the propagation has already been analysed and described as segmented lateral dike growth. We now focus on few smaller regions of the dike. We consider the Terrasar-X tandem digital elevation map and aerial photos and find localized zones where structural fissures formed and curved. At these localized, regions we performed a field campaign in summer 2015, applying the close range remote sensing techniques Structure from Motion (SfM) and Terrestrial Laser Scanning (TLS). Over 4 TLS scan were collected, along with over 5,000 aerial images. Point clouds from SfM and TLS are merged and compared, and local structural lineaments analysed. As a result, we obtained an unprecedentedly high-resolution digital elevation map. With this map, we analyse the structural expression of the fissure eruption at the surface and improve understanding on the conditions that influenced the magma propagation path. We elaborate scenarios that lead to complexities of the surface structures and the link to the underlying dike intrusion.

  12. Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes

    NASA Astrophysics Data System (ADS)

    Harp, A. G.; Valentine, G. A.

    2018-02-01

    Mafic flank eruptions are common events that pose a serious hazard to the communities and infrastructure often encroaching on the slopes of stratovolcanoes. Flank vent locations are dictated by the propagation path of their feeder dikes. The dikes are commonly thought to propagate either laterally from the central conduit or vertically from a deeper source. However, these interpretations are often based on indirect measurements, such as surface deformation and seismicity at active systems, and several studies at eroded volcanoes indicate the propagation paths may be more complex. We investigated the Oligocene age Summer Coon volcano (Colorado, USA), where erosion has exposed over 700 basaltic-andesitic radial dikes, to constrain the propagation directions, geometries, and spatial distributions of mafic dikes within a stratovolcano. The mean fabric angle of aligned plagioclase crystals was measured in oriented samples from the margins of 77 dikes. Of the 41 dikes with statistically significant flow fabrics, 85% had fabric angles that were inclined—plunging both inward and outward relative to the center of the volcano. After comparing fabric angles to those reported in other studies, we infer that, while most of the dikes with outward-plunging fabrics descended toward the flanks from a source within the edifice and near its axis, dikes with inward-plunging fabrics ascended through the edifice and toward the flanks from a deeper source. A possible control for the inclination of ascending dikes was the ratio between magma overpressure and the normal stress in the host rock. While higher ratios led to high-angle propagation, lower ratios resulted in inclined emplacement. Dikes crop out in higher frequencies within a zone surrounding the volcano axis at 2500 m radial distance from the center and may be the result of ascending dikes, emplaced at similar propagation angles, intersecting the current level of exposure at common distances from the volcano axis. The process of inclined dike emplacement may be common at other stratovolcanoes and should be considered from a monitoring and hazard perspective as slight variations in the propagation angle would translate to major shifts in the anticipated vent location.

  13. High-resolution seismic measurements at loamy dikes for monitoring high-water influences

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger

    2010-05-01

    For the risk management of high-water events it is important to know how secure river dikes are. Even the structures of dikes are often unknown. Methods for the exploration of existing dikes and of their underground, for an evaluation of failure potential and strengthening requirements are needed. In the presented work, the potential of a high-resolution seismics to monitor the moisture penetration of dikes during flood periods was analyzed. To identify the extent of moisture penetration and to determine the structures of a loamy dike body would enable to determine the probability of a dike failure. Dikes made of loam show a different behavior of moisture penetration under high-water influence. The distribution and penetration of water is moderate compared to sandy dikes and resist longer high-water events. The water expands slowly in the dike body in all directions known as fingering. It should be analyzed how the moisture penetration from a dike can be displayed with seismic methods. The aim was to identify on the basis of seismic measurements the areas of moisture penetration within a dike during a flood and out of it to determine the probability of collapse of the dike. For that purpose the structures in the dike body should be determined in reference to the materials and his soil parameters like water content and porosity. A test facility was built for dikes including a regulation for the water level. This allowed the simulation of flood scenarios at dikes. Two dikes with different loam content were built in order to determine the failure mechanism of dikes. With a width of 8 meters at the basis they had nearly the dimension of river dikes. Seismic instrumentation was installed on both dike models. The seismic survey consists of three parallel receiver lines on the dike which recorded seismic signals emitted along the same lines, resulting in a 3D-seismic data set. The receivers were 3-component-geophones fixed in spikes, at the flooded side of the dike were taken water-proof geophones. In order to achieve a high resolution a magnetostricitve actuator was used as seismic source. The actuator generated sweeps within a frequency range from 100 up to 6100 Hz. The measurements show a complex wave field, which is dominated by direct P-waves, surface waves as well as refracted waves at the boundaries of the model. The frequencies of the direct P-waves are up to 3000 Hz at small offsets and beyond it declines to about 700 to 900 Hz. Close to the source the entire sweep energy for all frequencies is transmitted in the dike. Surface waves show frequencies from 300 to 400 Hz. A comparison of seismic data at not flooded conditions and at high flood mark shows clearly that the seismic waves were attenuated due to strong moisture penetration of the dike, surface waves were not observed after flooding the dike. Also, travel times and wave field differ in their characteristics. With increasing moisture content in the dike body the P-wave velocity decreases continuously over 30 percent from 290 m/s at not flooded conditions to 200 m/s at the highest flood. The first breaks at longer distances of the measured data stem from refractions at the dike underground which is made of concrete. Calculated travel time tomography's of different saturation states of the dike show the water content in the dike body on the basis of a correlation with the P-wave velocity. Structural heterogeneities in the dike were also visualized by the travel time tomography's.

  14. The Landforms of Granitic Rocks: An Annotated Bibliography

    DTIC Science & Technology

    1990-05-01

    major sources of copper , tin, silver, gold, and many other valuable commodities. They are naturally highly radioactive, particularly at depth, and are...et al., 1978). Kesel (1977) cited sheeting and spalling as the major process in central Arizona . Crystal growth, usually salt or ice, is a common...quarries; and 4) aplite veins and dikes. Tin is found on Dartmoor, but copper is common only around the edges. Tin and copper lodes run east-west and

  15. Reconnaissance geology of the Jibal Matalli Quadrangle, sheet 27/40 D, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Ekren, E.B.

    1984-01-01

    Two northeast-trending buried right-lateral faults are inferred in the quadrangle; one in the southeast and one in the northwest. The one in the northwest probably offsets the comendite dike swarm about 3 km. This fault appears to be part of a broad right-lateral fault and flexure zone that juxtaposes the Hadn formation on the west against the Hulayfah group on the east.

  16. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  17. Magma traps and driving pressure: consequences for pluton shape and emplacement in an extensional regime

    NASA Astrophysics Data System (ADS)

    Hogan, John P.; Price, Jonathan D.; Gilbert, M. Charles

    1998-09-01

    The level of emplacement and final form of felsic and mafic igneous rocks of the Wichita Mountains Igneous Province, southwestern Oklahoma, U.S.A. are discussed in light of magma driving pressure, lithostatic load, and crustal magma traps. Deposition of voluminous A-type rhyolites upon an eroded gabbroic substrate formed a subhorizontal strength anisotropy that acted as a crustal magma trap for subsequent rising felsic and mafic magma. Intruded along this crustal magma trap are the A-type sheet granites (length/thickness 100:1) of the Wichita Granite Group, of which the Mount Scott Granite sheet is typical, and smaller plutons of biotite bearing Roosevelt Gabbro. In marked contrast to the subhorizontal granite sheets, the gabbro plutons form more equant stocks with flat roofs and steep side walls. Late Diabase dikes cross-cut all other units, but accompanying basaltic flows are extremely rare in the volcanic pile. Based on magmastatic calculations, we draw the following conclusions concerning the level of emplacement and the shape of these intrusions. (1) Magma can rise to a depth at which the magma driving pressure becomes negligible. Magma that maintains a positive driving pressure at the surface has the potential to erupt. (2) Magma ascent may be arrested at a deeper level in the crust by a subhorizontal strength anisotropy (i.e. crustal magma trap) if the magma driving pressure is greater than or equal to the lithostatic load at the depth of the subhorizontal strength anisotropy. (3) Subhorizontal sheet-intrusions form along crustal magma traps when the magma driving pressure greatly exceeds the lithostatic load. Under such conditions, the magma driving pressure is sufficent to lift the overburden to create the necessary space for the intrusion. (4) Thicker steep-sided stocks or batholiths, with flat roofs, form at crustal magma traps when the magma driving pressure approximates that of the lithostatic load. Under these conditions, the necessary space for the intrusion must be created by other mechanisms (e.g. stoping). (5) Subvertical sheets (i.e. dikes) form when the magma driving pressure is less than the lithostatic load at the level of emplacement.

  18. Age dependent variation of magnetic fabric on dike swarms from Maio Island (Cape Verde)

    NASA Astrophysics Data System (ADS)

    Moreira, Mário; Madeira, José; Mata, João.; Represas, Patrícia

    2010-05-01

    Maio is one of the oldest and most eroded islands of Cape Verde Archipelago. It comprises three major geological units: (1) an old raised sea-floor sequence of MORB covered by Jurassic(?)-Cretaceous deep marine sediments; (2) an intrusive 'Central Igneous Complex' (CIC), forming a dome-like structure in the older rocks; and (3) a sequence of initially submarine, then subaerial, extrusive volcanic formations and sediments. Based on the trend distribution of 290 dikes, we performed magnetic sampling on 26 basic and one carbonatite dikes. Anisotropy of magnetic susceptibility (AMS) was measured to infer geometries of magmatic flow. Dikes were sampled in both chilled margins were larger shear acting on particles embedded in the magmatic flow is expected. Sampling involved 11 dikes (N=195) intruding MORB pillows from the Upper Jurassic 'Batalha Formation' (Bt fm); 6 dikes (N=95) intruding the Lower Cretaceous 'Carquejo Formation' (Cq fm), and 10 dikes (N=129) intruding the submarine sequence of the Neogene 'Casas Velhas Formation' (CV fm). The studied hypabissal rocks are usually porphyritic, with phenocrysts of clinopyroxene and/or olivine set on an aphanitic groundmass. Dikes intruding CV fm trend N-S to NE-SW and plunge to SW. In Bt fm, dikes make ≈ 99% of the outcrops, span all directions and include frequent low dip sills. Dikes intruding Cq fm are shallow (mostly parallel to the limestone strata), dip 30o- 40o to the E, and trend N-S to NE-SW. Bulk susceptibility of the 26 basic dikes presents an average value of k = 47 ± 26 (×10-3) SI. The carbonatite dike intruding Bt fm has lower susceptibility: k = 4.6 ± 1.2 (×10-3) SI. More than 80% of the dikes show normal and triaxial magnetic fabric. Anisotropy is usually low, with P' < 1.08, but in CV fm dikes the anisotropy is higher and grows (up to P' ≈ 1.5) towards the centre of the volcano. Dominant magnetic fabric in CV fm is planar but in dikes from Cq fm and Bt fm it varies between oblate and prolate. Carbonatite dike shows low anisotropy (1.01 < P' < 1.06) and a slightly dominant planar fabric. Magnetic foliation is parallel or slightly oblique to the respective margins. Usually, when magnetic imbrication is observed the dihedral angle is small or the imbrications in both margins are scissored relative to the dike axis. Magnetic lineation shows some interesting systematic behaviours. In CV fm, lineation changes from shallow or intermediate plunges (~45o) in southern dikes to more than 60o in northern dikes (close to CIC). In Cq fm, lineation of N-S dikes has intermediate plunge (~40o) to the NE, while NE-SW trending dikes intruding the same formation in the south show shallower inclinations (< 30o). Lineation always falls in E or NE sectors of the projections. In Bt fm, (southeast shore) lineations usually plunge more than 60o. Thermomagnetic magnetic behaviour of rocks from Cv fm dikes indicates the Ti-rich composition of the main oxide phase, while the rocks from Bt fm present either a single magnetite-rich phase, either two phases: titano-magnetite 300o < TC

  19. Magnetic fabrics of the Cretaceous dike swarms from São Paulo coastline (SE Brazil): Its relationship with South Atlantic Ocean opening

    NASA Astrophysics Data System (ADS)

    Raposo, M. Irene B.

    2017-11-01

    Magnetic fabric and rock magnetism studies were performed on 91 dikes from Cretaceous diabase and lamprophyre dike swarms that outcrop side by side on the beaches of NE São Paulo State coastline. The dikes crosscut Archean and Proterozoic poly-metamorphic rocks of the Costeiro Complex. Their thicknesses range from a few centimeters to 2 m for lamprophyre and up to about 10 m for the diabase. They trend predominantly N30°-60°E with vertical dip. Magnetic fabrics were determined using anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). Rock-magnetism measurements reveal that magnetite grains in the range of 2-5 μm are the magnetic mineral of both swarms. For most dikes, these grains are the carriers of bulk magnetic susceptibility but, surprisingly, are not responsible for the AMS which is carried by Fe-bearing minerals as shown by AARM. The main AMS fabric recognized in the swarms is due to magma flow, in which the Kmax-Kint plane is parallel to the dike's plane, and the magnetic foliation pole (Kmin) is perpendicular to it. The analysis of the Kmax inclination showed that the dikes were fed by horizontal to vertical flows. However, for the majority of the dikes the AMS and AARM tensors are not coaxial. The AARM lineation (AARMmax) is oriented N30-60W, approximately perpendicular to AMS lineation (Kmax) suggesting that magnetite grains were rotated approximately 90° anticlockwise from the dike plane. The AARMmax orientation is similar to the direction of a fault system mainly in the Santos marginal basin which was formed in the Cretaceous rifting during the South Atlantic opening. Therefore the AARM fabric is tectonic in origin, and the comparison of AMS and AARM fabrics suggests that lamprophyre and diabase dikes were emplaced in three distinct events in the earliest stages of the South Atlantic opening.

  20. A-type granite and the Red Sea opening

    USGS Publications Warehouse

    Coleman, R.G.; DeBari, S.; Peterman, Z.

    1992-01-01

    Miocene-Oligocene A-type granite intrudes the eastern side of the Red Sea margin within the zone of extension from Jiddah, Saudi Arabia south to Yemen. The intrusions developed in the early stages of continental extension as Arabia began to move slowly away from Africa (around 30-20 Ma). Within the narrow zone of extension silicic magmas formed dikes, sills, small plutons and extrusive equivalents. In the Jabal Tirf area of Saudi Arabia these rocks occur in an elongate zone consisting of late Precambrian basement to the east, which is gradually invaded by mafic dikes. The number of dikes increases westward until an igneous complex is produced parallel to the present Red Sea axis. The Jabal Tirf igneous complex consists of diabase and rhyolite-granophyre sills (20-24 Ma). Although these are intrusine intrusive rocks their textures indicate shallow depths of intrusion (< 1 km). To the south, in the Yemen, contemporaneous with alkali basaltic eruptions (26-30 Ma) and later silicic eruptions, small plutons, dikes, and stocks of alkali granite invaded thick (1500 m) volcanic series, at various levels and times. Erosion within the uplifted margin of Yemen suggests that the maximum depth of intrusion was less than 1-2 km. Granophyric intrusions (20-30 Ma) within mafic dike swarms similar to the Jabal Tirf complex are present along the western edge of the Yemen volcanic plateau, marking a north-south zone of continental extension. The alkali granites of Yemen consist primarily of perthitic feldspar and quartz with some minor alkali amphiboles and acmite. These granites represent water-poor, hypersolvus magmas generated from parent alkali basalt magmas. The granophyric, two-feldspar granites associated with the mafic dike swarms and layered gabbros formed by fractional crystallization from tholeiitic basalt parent developed in the early stages of extension. Initial 87Sr/86Sr ratios of these rocks and their bulk chemistry indicate that production of peralkaline and metaluminous granitic magmas involved both fractio??nation and partial melting as they ascended through the late Precambrian crust of the Arabian plate. ?? 1992.

  1. X-ray Fluorescence Core Scanning of Oman Drilling Project Holes BT1B and GT3A Cores on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Johnson, K. T. M.; Kelemen, P. B.; Michibayashi, K.; Greenberger, R. N.; Koepke, J.; Beinlich, A.; Morishita, T.; Jesus, A. P. M.; Lefay, R.

    2017-12-01

    The JEOL JSX-3600CA1 energy dispersive X-ray fluorescence core logger (XRF-CL) on the D/V Chikyu provides quantitative element concentrations of scanned cores. Scans of selected intervals are made on an x-y grid with point spacing of 5 mm. Element concentrations for Si, Al, Ti, Ca, Mg, Mn, Fe, Na, K, Cr, Ni, S and Zn are collected for each point on the grid. Accuracy of element concentrations provided by the instrument software is improved by applying empirical correction algorithms. Element concentrations were collected for 9,289 points from twenty-seven core intervals in Hole BT1B (basal thrust) and for 6,389 points from forty core intervals in Hole GT3A (sheeted dike-gabbro transition) of the Oman Drilling Project on the D/V Chikyu XRF-CL during Leg 2 of the Oman Drilling Project in August-September, 2017. The geochemical data are used for evaluating downhole compositional details associated with lithological changes, unit contacts and mineralogical variations and are particularly informative when plotted as concentration contour maps or downhole concentration diagrams. On Leg 2 additional core scans were made with X-ray Computed Tomography (X-ray CT) and infrared images from the visible-shortwave infrared imaging spectroscopy (IR) systems on board. XRF-CL, X-ray CT and IR imaging plots used together provide detailed information on rock compositions, textures and mineralogy that assist naked eye visual observations. Examples of some uses of XRF-CL geochemical maps and downhole data are shown. XRF-CL and IR scans of listvenite clearly show zones of magnesite, dolomite and the Cr-rich mica, fuchsite that are subdued in visual observation, and these scans can be used to calculate variations in proportions of these minerals in Hole BT1B cores. In Hole GT3A XRF-CL data can be used to distinguish compositional changes in different generations of sheeted dikes and gabbros and when combined with visual observations of intrusive relationships the detailed geochemical information can be used to infer temporal changes in parental magma compositions. Secondary sulfide mineralization and epidote-rich hydrothermal alteration zones in sheeted dikes and gabbros are clearly highlighted on element maps of S, Fe, Ca, Al, and Zn.

  2. Geodetic evidence for en echelon dike emplacement and concurrent slow slip during the June 2007 intrusion and eruption at Kīlauea volcano, Hawaii

    USGS Publications Warehouse

    Montgomery-Brown, E. K.; Sinnett, D.K.; Poland, M.; Segall, P.; Orr, T.; Zebker, H.; Miklius, Asta

    2010-01-01

    A series of complex events at Kīlauea Volcano, Hawaii, 17 June to 19 June 2007, began with an intrusion in the upper east rift zone (ERZ) and culminated with a small eruption (1500 m3). Surface deformation due to the intrusion was recorded in unprecedented detail by Global Positioning System (GPS) and tilt networks as well as interferometric synthetic aperture radar (InSAR) data acquired by the ENVISAT and ALOS satellites. A joint nonlinear inversion of GPS, tilt, and InSAR data yields a deflationary source beneath the summit caldera and an ENE-striking uniform-opening dislocation with ~2 m opening, a dip of ∼80° to the south, and extending from the surface to ~2 km depth. This simple model reasonably fits the overall pattern of deformation but significantly misfits data near the western end of an inferred dike-like source. Three more complex dike models are tested that allow for distributed opening including (1) a dike that follows the surface trace of the active rift zone, (2) a dike that follows the symmetry axis of InSAR deformation, and (3) two en echelon dike segments beneath mapped surface cracks and newly formed steaming areas. The en echelon dike model best fits near-field GPS and tilt data. Maximum opening of 2.4 m occurred on the eastern segment beneath the eruptive vent. Although this model represents the best fit to the ERZ data, it still fails to explain data from a coastal tiltmeter and GPS sites on Kīlauea's southwestern flank. The southwest flank GPS sites and the coastal tiltmeter exhibit deformation consistent with observations of previous slow slip events beneath Kīlauea's south flank, but inconsistent with observations of previous intrusions. Slow slip events at Kīlauea and elsewhere are thought to occur in a transition zone between locked and stably sliding zones of a fault. An inversion including slip on a basal decollement improves fit to these data and suggests a maximum of ~15 cm of seaward fault motion, comparable to previous slow-slip events.

  3. Thermochronologic constraints on mylonite and detachment fault development, Kettle Highlands, northeastern Washington and southern British Columbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, B.R.; Snee, L.W.

    1992-01-01

    The Kettle dome, northeastern Washington and southern British Columbia, is one of several large metamorphic core complexes in the region. New Ar-40/Ar-39 cooling dates from the mylonite immediately beneath the Kettle River detachment fault at Barney's Junction, a cross-cutting mafic dike, and the youngest Eocene lavas in the Republic graben set constraints on kinematic models of the tectonic evolution of the dome and related grabens: Amphibolite--hornblende (59.0 [+-] 0.2); Pegmatite--muscovite (49.3 [+-] 0.2); Pegmatite--K-feldspar (49.2 [+-] 1); Augen gneiss--K-feldspar (48.0 [+-] 1); Mafic dike--hornblende (54.5 [+-] 0.1) and biotite (49.6 [+-] 0.1); Klondike Mt. Formation lava--feeder dike (48.8 [+-] 1).more » The authors interpret the dates to indicate that the tectonized amphibolite, part of a Cretaceous and older metamorphosed terrane, had formed and cooled to [approx] 500 C by Late Paleocene, the mylonite zone was being domed above the ductile zone by Early Eocene at the time of emplacement of the dike--temporally equivalent to the Keller Butte suite, Eocene Colville batholith--which crosscuts the mylonite, and incipient rifting was occurring in the Republic graben as evidenced by dike swarms. The mylonite complex reached 300 C by 49Ma coincident with the termination of Sanpoil volcanism, and then cooled rapidly to near or below 150 C by 48 Ma. At about this time, mafic Klondike Mt. lavas mark the termination of Republic graben rifting and possibly detachment faulting along the Kettle River fault.« less

  4. Three Hawaiian calderas: An origin through loading by shallow intrusions?

    NASA Astrophysics Data System (ADS)

    Walker, George P. L.

    1988-12-01

    The calderas of Kilauea and Mauna Loa are highly dynamic structures, and in the <200-year historic period have varied in volume by a factor of 2, and gained or lost 1 km3 per century. The deeply eroded caldera of the extinct Koolau Volcano in Oahu is wider than active Hawaiian calderas, and its lavas have a strong centripetal dip and funnel structure not evident at Kilauea or Mauna Loa. The differences can be attributed to the different erosion depths, and the time integrated subsidence profile of Kilauea is also a stepped funnel (having its apex at Halemaumau). Koolau caldera is the focus of an extraordinarily intense dike complex, and an intriguing feature is the great diminution in dike concentration into the caldera. It is thought that dike injection in any part of the complex generally continued until it reached 50% to 65%. In outer parts of the caldera, the complex was maintained at or rebuilt to this value despite subsidence. In the center of the caldera (where the positive Bouguer anomaly is centered), subsidence evidently greatly outpaced the capacity of dike injections to rebuild the complex. Assuming the same dike injection rate as Kilauea and Mauna Loa yields a volumetric subsidence rate in Koolau caldera exceeding 1 km3 per century. Hawaiian calderas are much more dynamic than calderas of silicic volcanoes, shaped by frequent small events instead of a few great ones. The temporal and volumetric correspondence of historical subsidence events with eruptions is poor, and this and the high subsidence rates argue for a caldera-forming mechanism that consumes the subsided rocks. It is suggested that subsidence is caused by the great localized excess load of intrusive rocks, carrying the center of the volcano into the thermally weakened lithosphere above the Hawaiian hot spot. It is envisaged that under steady state conditions the magma chamber rises, as the injection of intrusions causes the level of neutral buoyancy (at which the chamber is located) to ascend, and keeps pace with subsidence.

  5. Geochemistry and mineralogy of the Dotson Zone HREE deposit in the Bokan Mountain peralkaline igneous complex, southeastern Alaska, USA

    USGS Publications Warehouse

    Taylor, Cliff D.; Lowers, Heather; Adams, David; Robinson, R. James

    2017-01-01

    The Bokan Mountain igneous complex (BMIC) is a typical example of a peralkaline intrusive system that has evolved to the point of developing late stage HFSE- and REE-rich silicic pegmatites and dikes. The Dotson Zone comprises a series of felsic dikes that extend from the southeast margin of the composite pluton and may represent an important resource of critical HREEs. Petrographically, the primary igneous mineral assemblage is altered by late-igneous and hydrothermal fluids resulting in redistribution and enrichment of REEs. An area of flexure in the southeastern end of the Dotson Zone was the primary locus of enrichment as shown by the pervasive alteration and consistently high REE+Y values. We favor a model in which the dikes were emplaced concurrently with the marginal intrusions, and then altered during emplacement of the inner, main intrusion in a relatively rapid series of overlapping intrusive and late magmatic fluid-high temperature hydrothermal events as the complex cooled. A much later sodic intrusive event focused on the BMIC may have resulted in additional silica-Na-Zr-rich alteration in proximity to the pluton.

  6. Relic magma chamber structures preserved within the Mesozoic North Atlantic crust?

    USGS Publications Warehouse

    McCarthy, J.; Mutter, J.C.; Morton, J.L.; Sleep, Norman H.; Thompson, G.A.

    1988-01-01

    The North Atlantic Transect seismic reflection data, collected southwest of Bermuda, have been reinterpreted following post-stack migration and reveal two major intracrustal reflections. The shallower of these two events, located ~1 s below the igneous basement, is a subhorizontal, undulating surface that in some places is continuous for as much as 10 km. This upper crustal reflection corresponds to the intermittently sharp contact between the sheeted dikes and the underlying isotropic gabbro. A second set of lower crustal reflections, dipping ~20??-40?? eastward, is also prominent on the migrated profile and terminates downdip against the subhorizontal reflection Moho. Their presence may be ascribed to mafic-ultramafic cumulate layers frozen into the oceanic crust at the time of formation at the paleo-spreading center. The gradual thinning in the crust approaching the fracture zones is shown to be more complex than was originally inferred. An intepretation advocating crustal thickening in this narrow zone is proposed as an alternative to the crustal-thinning model of Mutter and others. -from Authors

  7. The Influence of Baker Bay and Sand Island on Circulations in the Mouth of the Columbia River

    DTIC Science & Technology

    2014-06-01

    the presence of Baker Bay, a shallow sub -embayment, adds further complexity. Drifter velocities were greatest during maximum ebb flows and were...Drifters occasionally entered Baker Bay via Baker Inlet during flood flows , especially in conjunction with strong southwesterly winds. During ebb flows ...occurred in the vicinity of the pile dikes, including reversed (upriver) flow between the pile dikes during maximum ebb . Understanding unique flow

  8. A reconnaissance space sensing investigation of the crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau: April 1971

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator); Liggett, M. A.

    1972-01-01

    The author has identified the following significant results. An area of anomalous linear topographic grain and color expressions was recognized in Apollo 9 and ERTS-1 imagery along the Colorado River of northwestern Arizona and southern Nevada. Field reconnaissance and analysis of U-2 photography has shown the anomaly to be a zone of north to north-northwest trending dike swarms and associated granitic plutons. The dikes vary in composition from rhyolite to diabase, with an average composition nearer rhyolite. Shearing and displacement of host rocks along dikes suggest dike emplacement along active fault zones. Post-dike deformation has resulted in shearing and complex normal faulting along a similar north-south trend. The epizonal plutonism and volcanism of this north-south belt appears to represent a structurally controlled volcanogenic province which ends abruptly in the vicinity of Lake Mead at a probable eastern extension of the Las Vegas Shear Zone. The magnitude and chronology of extensional faulting and plutonism recognized in the north-south zone, support the hypothesis that the Las Vegas Shear Zone is a transform fault separating two areas of crustal spreading.

  9. An overview of the association between lamprophyric intrusions and rare-metal mineralization

    NASA Astrophysics Data System (ADS)

    Štemprok, Miroslav; Seifert, Thomas

    2011-01-01

    Granite-related rare metal districts in orogenic settings are occasionally associated with lamprophyre dikes. We recorded 63 occurrences of lamprophyres in bimodal dike suites of about 200 granite bodies related to rare metal deposits. Most lamprophyres occur in Paleozoic and Mesozoic metallogenic provinces in the northern hemisphere. Lamprophyres which are associated with rare metal deposits are calc-alkaline (kersantites, minettes, spessartites) or more rarely alkaline lamprophyres (camptonites, monchiquites) which occur in the roof zone of complex granitic bodies as pre-granitic, intra-granitic, intra-ore or post-ore dikes. Most lamprophyres are spatially associated with dominant felsic dikes and/or with mafic dikes represented by diorites or diabases. Diorites and lamprophyres occasionally exhibit transitional compositions from one to another. Lamprophyres share common geochemical characteristics of highly evolved granitoids such as enrichment in K and F, increased abundances of Li, Rb, and Cs and enrichment in some HFSE (e.g. Zr, U, Th, Mo, Sn, W). Lamprophyres in rare metal districts testify to accessibility of the upper crust to mantle products at the time of rare metal mineralization and possible influence of mantle melts or mantle-derived fluids in the differentiation of granitic melts in the lower crust.

  10. Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Miller, Calvin F.; Furbish, David J.; Walker, Barry A.; Claiborne, Lily L.; Koteas, G. Christopher; Bleick, Heather A.; Miller, Jonathan S.

    2011-03-01

    Growing evidence supports the notion that plutons are constructed incrementally, commonly over long periods of time, yet field evidence for the multiple injections that seem to be required is commonly sparse or absent. Timescales of up to several million years, among other arguments, indicate that the dominant volume does not remain largely molten, yet if growing plutons are constructed from rapidly solidifying increments it is unlikely that intrusive contacts would escape notice. A model wherein magma increments are emplaced into melt-bearing but crystal-rich host, rather than either solid or crystal-poor material, provides a plausible explanation for this apparent conundrum. A partially solidified intrusion undoubtedly comprises zones with contrasting melt fraction and therefore strength. Depending on whether these zones behave elastically or ductilely in response to dike emplacement, intruding magma may spread to form sheets by either of two mechanisms. If the melt-bearing host is elastic on the relevant timescale, magma spreads rather than continuing to propagate upward, where it encounters a zone of higher rigidity (higher crystal fraction). Similarly, if the dike at first ascends through rigid, melt-poor material and then encounters a zone that is weak enough (poor enough in crystals) to respond ductilely, the ascending material will also spread because the dike tip ceases to propagate as in rigid material. We propose that ascending magma is thus in essence trapped, by either mechanism, within relatively crystal-poor zones. Contacts will commonly be obscure from the start because the contrast between intruding material (crystal-poorer magma) and host (crystal-richer material) is subtle, and they may be obscured even further by subsequent destabilization of the crystal-melt framework. Field evidence and zircon zoning stratigraphy in plutons of the Colorado River region of southern Nevada support the hypothesis that emplacement of magma replenishments into a crystal-laden host is important in pluton construction. The dominant granite unit of the Spirit Mountain batholith displays only subtle internal contacts. However, ages and elemental zoning in zircons demonstrate a protracted history of almost 2 million years, major fluctuations in T and host melt chemistry, and mixing of strongly contrasting populations of magmatic zircon in single samples. We interpret this to reflect reactivation of rigid sponge and mush and entrainment of earlier-formed crystals, and we infer that this was in response to granitic replenishment. Much of the smaller Aztec Wash pluton comprises interlayered cumulate-textured quartz monzonite and mafic sheets. The latest phase of pluton emplacement is marked by numerous thick, fine-grained granite "sills" that intruded the subhorizontal quartz monzonite sheets. Contacts between granite and quartz monzonite are "soft," highly irregular on cm-dm scale with coarse xenocrysts from the quartz monzonite entrained in the fine-grained granite. We interpret the granite replenishments to have spread laterally within crystal-rich, melt-bearing quartz monzonite beneath rigid mafic sheets. In this case, clear evidence for the emplacement process is fortuitously preserved because the granite was emplaced in the waning stage of the thermal lifetime of the pluton, and because the mafic sheets enhance the strength contrast and make the geometry more visible. Similar "sills" of fine-grained granite were also preserved during the late stages of the history of the Spirit Mountain batholith.

  11. Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA

    USGS Publications Warehouse

    Miller, C.F.; Furbish, D.J.; Walker, B.A.; Claiborne, L.L.; Koteas, G.C.; Bleick, H.A.; Miller, J.S.

    2011-01-01

    Growing evidence supports the notion that plutons are constructed incrementally, commonly over long periods of time, yet field evidence for the multiple injections that seem to be required is commonly sparse or absent. Timescales of up to several million years, among other arguments, indicate that the dominant volume does not remain largely molten, yet if growing plutons are constructed from rapidly solidifying increments it is unlikely that intrusive contacts would escape notice. A model wherein magma increments are emplaced into melt-bearing but crystal-rich host, rather than either solid or crystal-poor material, provides a plausible explanation for this apparent conundrum. A partially solidified intrusion undoubtedly comprises zones with contrasting melt fraction and therefore strength. Depending on whether these zones behave elastically or ductilely in response to dike emplacement, intruding magma may spread to form sheets by either of two mechanisms. If the melt-bearing host is elastic on the relevant timescale, magma spreads rather than continuing to propagate upward, where it encounters a zone of higher rigidity (higher crystal fraction). Similarly, if the dike at first ascends through rigid, melt-poor material and then encounters a zone that is weak enough (poor enough in crystals) to respond ductilely, the ascending material will also spread because the dike tip ceases to propagate as in rigid material. We propose that ascending magma is thus in essence trapped, by either mechanism, within relatively crystal-poor zones. Contacts will commonly be obscure from the start because the contrast between intruding material (crystal-poorer magma) and host (crystal-richer material) is subtle, and they may be obscured even further by subsequent destabilization of the crystal-melt framework. Field evidence and zircon zoning stratigraphy in plutons of the Colorado River region of southern Nevada support the hypothesis that emplacement of magma replenishments into a crystal-laden host is important in pluton construction. The dominant granite unit of the Spirit Mountain batholith displays only subtle internal contacts. However, ages and elemental zoning in zircons demonstrate a protracted history of almost 2 million years, major fluctuations in T and host melt chemistry, and mixing of strongly contrasting populations of magmatic zircon in single samples. We interpret this to reflect reactivation of rigid sponge and mush and entrainment of earlier-formed crystals, and we infer that this was in response to granitic replenishment. Much of the smaller Aztec Wash pluton comprises interlayered cumulate-textured quartz monzonite and mafic sheets. The latest phase of pluton emplacement is marked by numerous thick, fine-grained granite "sills" that intruded the subhorizontal quartz monzonite sheets. Contacts between granite and quartz monzonite are "soft," highly irregular on cm-dm scale with coarse xenocrysts from the quartz monzonite entrained in the fine-grained granite. We interpret the granite replenishments to have spread laterally within crystal-rich, melt-bearing quartz monzonite beneath rigid mafic sheets. In this case, clear evidence for the emplacement process is fortuitously preserved because the granite was emplaced in the waning stage of the thermal lifetime of the pluton, and because the mafic sheets enhance the strength contrast and make the geometry more visible. Similar "sills" of fine-grained granite were also preserved during the late stages of the history of the Spirit Mountain batholith. ?? 2009 Elsevier B.V.

  12. Water resources of Windward Oahu, Hawaii

    USGS Publications Warehouse

    Takasaki, K.J.; Hirashima, George Tokusuke; Lubke, E.R.

    1969-01-01

    Windward Oahu lies in a large cavity--an erosional remnant of the Koolau volcanic dome at its greatest stage of growth. Outcrops include volcanic rocks associated with caldera collapse and the main fissure zone which is marked by a dike complex that extends along the main axis of the dome. The fissure zone intersects and underlies the Koolau Range north of Waiahole Valley. South of Waiahole Valley, the crest of the Koolau Range is in the marginal dike zone, an area of scattered dikes. The crest of the range forms the western boundary of windward Oahu. Dikes, mostly vertical and parallel or subparallel to the fissure zone, control movement and discharge of ground water because they are less permeable than the rocks they intrude. Dikes impound or partly impound ground water by preventing or retarding its movement toward discharge points. The top of this water, called high-level water in Hawaii, is at an altitude of about 1,000 feet in the north end of windward Oahu and 400 feet near the south end in Waimanalo Valley. It underlies most of the area and extends near or to the surface in poorly permeable rocks in low-lying areas. Permeability is high in less weathered mountain areas and is highest farthest away from the dike complex. Ground-water storage fluctuates to some degree owing to limited changes in the level of the ground-water reservoir--maximum storage is about 60,000 million gallons. The fluctuations control the rate at which ground water discharges. Even at its lowest recorded level, the reservoir contains a major part of the storage capacity because most of the area is perennially saturated to or near the surface. Tunnels have reduced storage by about 26,000 million gallons--only a fraction of the total storage--by breaching dike controls. Much of the reduction in storage can be restored if the .breached dike controls are replaced by flow-regulating bulkheads. Perennial streams intersect high-level water and collectively form its principal discharge. The larger streams are those that cut deepest into high-level reservoirs. Except near the coast in the northern end of the area, where dikes are absent, total base flow of streams equals total ground-water discharge. Development of high-level water by tunnels and wells diverts ground-water discharge from streams, decreasing the base flow of these streams. Construction of Haiku tunnel decreased the flow of Kahaluu Stream, 2 ? miles away, by about 26 percent. The dependable flow of water is estimated at 118 mgd (million gallons per day), of which 84 mgd is discharged by streams, tunnels, springs, and wells The remaining 34 mgd is underflow, most of it discharging into the sea near the northern end of ,the area. Average flow is estimated at 220 mgd, of which 159 mgd is. inventoried flow and 61 mgd is estimated underflow. Specific capacity of wells tapping lava flows of the Koolau Volcanic Series ranges from less than 1 to 11 gallons per minute per foot of drawdown in the dike-complex zone and from 2 to 100 in the marginal dike zone. A transmissivity of 4,000,000 gallons per day per foot was determined for the basal aquifer. Permeabilities of rocks in high mountainous areas penetrated by water-development tunnels were compared by recession constants determined from free-flow drainage. Evapotranspiration was estimated from regression curves obtained by correlating median annual rainfall and median annual pan evaporation. Evapotranspiration values from these curves compared favorably w4th values obtained from water-budget listings of rainfall and measured ground-water flow. The chemical quality of water in wells and tunnels tapping rocks of the Koolau and Honolulu Volcanic Series is excellent. Except in a few isolated areas near the shore, the chloride content of the water from these sources is generally less than 100 parts per million. Wells tapping calcareous materials are subject to sea-water contamination under heavy pumping.

  13. Magnesium Isotope Composition of the Altered Upper Oceanic Crust at ODP Holes 504B and 896A, Costa Rica Rift

    NASA Astrophysics Data System (ADS)

    Beaumais, A.; Teagle, D. A. H.; James, R. H.; Pearce, C. R.; Milton, J. A.; Alt, J.; Coggon, R. M.

    2017-12-01

    Alteration of the oceanic crust is thought to be the principal sink of Mg in seawater, but the effect of this process on the Mg isotope (δ26Mg) composition of the oceans remains unclear. Here we present the first measurements of Mg isotopes in altered oceanic crust from ODP Holes 504B and 896A, located in 5.9 Ma crust, 200 km south of the intermediate spreading rate Costa Rica Rift. Hole 504B penetrates: (i) A volcanic section, consisting of partially altered basalt that was open to seawater circulation under oxic-suboxic conditions at temperatures of <150°C. (ii) A transition zone, characterized by mixing between upwelling hydrothermal fluid and seawater between 100 and 350°C. (iii) A sheeted dike complex consisting of diabase partially altered to greenschist facies minerals. Hole 896A penetrates volcanic rocks altered at low temperature (<100 °C) under oxic-suboxic conditions. The overall range in δ26Mg values is -0.53 to -0.01‰; significantly greater than the range observed in unaltered mid-ocean ridge basalts (MORB: -0.25 ± 0.06‰ [1]). δ26Mg values decrease with depth in the volcanic sections of both Holes 504B and 896A. The highest δ26Mg values are found in saponite-bearing basalts at the top of the volcanic sections of both holes, and are attributed to the preferential incorporation of heavy Mg isotopes into secondary clays (Mg-saponite). Lower δ26Mg values recorded in the deeper part of the volcanic section may be a result of fluid-rock interaction with isotopically lighter evolved seawater. The transition zone is characterised by MORB-like to relatively high δ26Mg values in the chlorite-smectite bearing basalts. The sheeted dike complex yields a narrow range of MORB-like δ26Mg values suggesting that limited fractionation occurs during high-temperature alteration and that the fluids have very low Mg concentrations. Low temperature fluid-rock interactions modify the Mg isotopic composition of the upper part of the oceanic crust. Therefore, this process could potentially play a role in balancing the δ26Mg of (i) the seawater via lateral fluid flow through oceanic crust off-axis ridge flanks, and (ii) the mantle via recycling of oceanic lithosphere at subduction zones. [1] Teng et al., (2010) GCA 74, 4150-4166.

  14. Hiding the Evidence: Growth of plutons by incremental emplacement of sheets in crystal mush

    NASA Astrophysics Data System (ADS)

    Miller, C. F.; Furbish, D. J.; Claiborne, L. L.; Walker, B. A.; Bleick, H. A.; Steinwinder, T. R.; Koteas, G. C.

    2006-12-01

    Growing evidence supports the notion that plutons are constructed incrementally, commonly over long periods of time, yet field evidence for the multiple injections that seem to be required is commonly sparse or absent (e.g. Glazner et al. 2004). Timescales of up to several million years, among other arguments, indicate that the dominant volume does not remain largely molten, yet if growing plutons are constructed from rapidly solidifying increments it is unlikely that intrusive contacts would escape notice. A model wherein magma increments are emplaced into crystal mush rather than either solid or crystal-poor material provides a plausible explanation for this apparent conundrum. A partially solidified intrusion undoubtedly comprises zones with contrasting melt fraction and therefore strength. The emplacement of dikes that intrude such a strength-zoned intrusion will be guided by the contrasts in the same way that dikes intruding solid media: magma spreads rather than continuing to propagate upward where it encounters a zone of higher rigidity (e.g. experiments by Kavanagh et al. 2006). We propose that ascending magma is in essence trapped by low-strength zones in plutonic mushes that are relatively melt-rich. In many cases, such zones may be subhorizontal and thus sill-like in geometry, but shapes and orientations could be highly variable, depending on the prior history of the composite intrusion. Contacts will commonly be obscure from the start because the contrast between intruding material (crystal-poorer magma) and host (crystal-richer mush) is subtle, and it may be obscured even further by subsequent destabilization of the mush. Field evidence and zircon zoning stratigraphy in plutons of the Colorado River region of southern Nevada support the hypothesis that emplacement of magma replenishments into a mush host is important in pluton construction. Except for highly fractionated dikes and sills, the dominant granite unit of the Spirit Mountain batholith displays only subtle internal contacts. However, ages and elemental zoning in zircons demonstrate a protracted history of almost 2 million years, major fluctuations in T and host melt chemistry, and mixing of strongly contrasting zircon populations in single samples (Walker et al. in press; Claiborne et al. in press). We interpret this to reflect reactivation of mushes and entrainment of earlier-formed crystals, and we infer that this was in response to granitic replenishment. Much of the smaller Aztec Wash pluton comprises interlayered cumulate-textured quartz monzonite and mafic sheets. The latest phase of pluton emplacement is marked by numerous thick granite "sills" that intruded the subhorizontal quartz monzonite sheets. Contacts between granite and quartz monzonite are "soft," highly irregular on cm-dm scale with coarse xenocrysts from the quartz monzonite entrained in the fine-grained granite. We interpret the granite replenishments to have spread laterally within mushy, melt-bearing quartz monzonite, beneath rigid mafic sheets. In this case, clear evidence for the emplacement process is fortuitously preserved because the granite was emplaced in the waning stage of thermal lifetime of the pluton, and because the mafic sheets enhance the strength contrast and make the geometry more visible.

  15. Reconnaissance geology of the Jabal Hashahish Quadrangle, sheet 17/41 B, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Hadley, D.G.

    1982-01-01

    The Jabal Hashahish quadrangle (sheet 17/41 B) lies between lat 17?30' and 18?00' N. and long 41?30' and 42?00' E. and encompasses an area of 2,950 km2, of which only about 600 km2 is land; the remainder is covered by the Red Sea. The geologic formations exposed in the quadrangle include Precambrian layered and intrusive rocks, Tertiary gabbro dikes, Quaternary basaltic lavas and pyroclastic rocks, and Quaternary surficial deposits. The Precambrian rocks include layered sedimentary and volcanic rocks that have been assigned to the Baish, Bahah, and Ablah groups. These rocks have been folded, metamorphosed, and invaded by intrusions. They are cut by Miocene gabbro dikes that were intruded during the initial stages of the opening of the Red Sea rift. The Quaternary rocks also include basalt that was extruded during a continuation of that opening, after the uplift that formed the escarpment that parallels the eastern shore of the Red Sea, but before the Holocene erosional cycle. Coastal, pediment, and alluvial, and eolian deposits of various kinds are also of Quaternary age. The economic potential of the quadrangle lies essentially in the agricultural value of its flood-plain deposits, though these are not so widely used as those in Wadi Hali and Wadi Yiba, which are located in the Manjamah quadrangle. The coral reefs possibly could provide raw materials for use in a cement industry, if any such industry were ever required in this area.

  16. Preliminary Geophysical Investigations of the Ship Rock Diatreme, Navajo Nation, New Mexico

    NASA Astrophysics Data System (ADS)

    Gruen, E. M.; McCarthy, L.; Namingha, G.; Bank, C.; Noblett, J.; Semken, S.

    2003-12-01

    Magnetic and gravity data were collected at the Ship Rock minette neck and dikes, part of the Navajo volcanic field in the central Colorado Plateau, to investigate their subsurface structure. The deep root system of Ship Rock, an exhumed Oligocene maar-diatreme complex, has not been resolved. The diatreme is largely composed of minette tuff-breccia with a large wallrock fraction, whereas the dikes are composed of hypabyssal minette. The country rock is the Upper Cretaceous Mancos Shale. Density and magnetic contrasts between the igneous rock and surrounding shale suggest that the buried structure of Ship Rock can be imaged. Preliminary geophysical investigations were carried out in order to test this hypothesis. We collected magnetic and gravitational data along four lines selected to transect the major south and northeast dikes and to partly encircle the diatreme. Modeling differently sized, oriented and shaped intrusions, we created theoretical Free Air anomaly curves to try to match the two clearest anomalies. Modeling necessitates (i) that the major north-south dike dips west and (ii) the presence of a high-density, deep body near the diatreme. The Free Air anomaly curves show that smaller dikes might not be detected from gravity data; however, they are necessary to determine the presence of large, dense bodies. Although not modeled, the magnetics curves show that smaller dikes can easily be detected. Our study results are promising, and we plan a more thorough investigation in the future which will produce a magnetic map to determine if further buried dikes exist in the vicinity, and measure gravity along additional profiles to better constrain the location of the dense body at depth.

  17. Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA

    USGS Publications Warehouse

    Muirhead, James D.; Van Eaton, Alexa R.; Re, Giuseppe; White, James D. L.; Ort, Michael H.

    2016-01-01

    Although monogenetic volcanic fields pose hazards to major cities worldwide, their shallow magma feeders (<500 m depth) are rarely exposed and, therefore, poorly understood. Here, we investigate exposures of dikes and sills in the Hopi Buttes volcanic field, Arizona, to shed light on the nature of its magma feeder system. Shallow exposures reveal a transition zone between intrusion and eruption within 350 m of the syn-eruptive surface. Using a combination of field- and satellite-based observations, we have identified three types of shallow magma systems: (1) dike-dominated, (2) sill-dominated, and (3) interconnected dike-sill networks. Analysis of vent alignments using the pyroclastic massifs and other eruptive centers (e.g., maar-diatremes) shows a NW-SE trend, parallel to that of dikes in the region. We therefore infer that dikes fed many of the eruptions. Dikes are also observed in places transforming to transgressive (ramping) sills. Estimates of the observable volume of dikes (maximum volume of 1.90 × 106 m3) and sills (minimum volume of 8.47 × 105 m3) in this study reveal that sills at Hopi Buttes make up at least 30 % of the shallow intruded volume (∼2.75 × 106 m3 total) within 350 m of the paeosurface. We have also identified saucer-shaped sills, which are not traditionally associated with monogenetic volcanic fields. Our study demonstrates that shallow feeders in monogenetic fields can form geometrically complex networks, particularly those intruding poorly consolidated sedimentary rocks. We conclude that the Hopi Buttes eruptions were primarily fed by NW-SE-striking dikes. However, saucer-shaped sills also played an important role in modulating eruptions by transporting magma toward and away from eruptive conduits. Sill development could have been accompanied by surface uplifts on the order of decimeters. We infer that the characteristic feeder systems described here for the Hopi Buttes may underlie monogenetic fields elsewhere, particularly where magma intersects shallow, and often weak, sedimentary rocks. Results from this study support growing evidence of the important role of shallow sills in active monogenetic fields.

  18. Sm-Nd and Rb-Sr isotopic systematics of the Pea Ridge Fe-P deposit and related rocks, southeast Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marikos, M.A.; Barton, M.D.

    1993-03-01

    Pea ridge is a discordant Middle Proterozoic Fe-P deposit hosted in rhyolite tuffs and flows of the 1.4--1.5 Ga St. Francois terrane. Host rocks and the deposit are cut by basalt and aplite/pegmatite dikes. The deposit overlies a blind pluton which is partially surrounded by a trachytic ring complex. In the deposit, which is mined for Fe, early Qtz+Amph+Mag+Ap rock is cut by Mag+Ap+Qtz rock. Subsequently, portions of the deposit and host rocks were brecciated, oxidized and silicified to produce a complex suite of rocks enriched in Hem+Qtz+Ksp+Mu. Late breccia pipes/dikes cut the complex and were mineralized with Bar+Ksp+Flu+Chl+Cc+REE-phosphates. Sm/Ndmore » and Rb/Sr isotopic systematics have been studied to: (1) constrain source(s) of igneous rocks and deposit components, (2) refine ages of magmatism, mineralization, and later hydrothermal activity, (3) begin regional comparison of isotopic systematics in SE Missouri Fe deposits, and (4) complement ongoing Missouri DGLS/USGS studies. Fourteen combined Sm-Nd and Rb-Sr analyses were done on materials including two host rhyolites, two nearby trachytes, two gneiss samples representing plausible basement, two intramineral dikes, and six samples of mineralization.« less

  19. Geochemistry of pillow lavas and sheeted dikes from Nain and Ashin ophiolites (Central Iran)

    NASA Astrophysics Data System (ADS)

    Saccani, Emilio; Pirnia Naeini, Tahmineh; Torabi, Ghodrat

    2017-04-01

    An extensive, worldwide database on the geochemistry of basalts from well-known tectonic settings is available. Knowing the chemistry of basalts on one hand, and the tectonic setting of their origin on the other hand, resulted in the development of tectonic discrimination diagrams. Recently developed discrimination diagrams allow us to determine the tectonic setting of volcanics with almost neglectable probability of misclassification (<1%). One major application of these diagrams lies in discriminating the tectonic setting of formation of ophiolites, particularly in poorly-known areas. A good example is the Inner ophiolite belt of Iran, located in Central Iran. The geodynamic significance of the inner ophiolites is still poorly known. From the Inner ophiolites, either no volcanic section is reported, or, the data are highly limited and poorly-reliable due the high degree of alteration of the studied samples. We have been able to overcome this problem by spotting relatively well-preserved outcrops of pillow lavas and sheeted dikes from two ophiolite mélanges of Central Iran, Nain and Ashin ophiolites. The two mélanges are located in the west of Central-East Iranian microplate. In total, 28 samples have been collected from the pillow lavas and sheeted dikes outcrops. The studied volcanic rocks consist mainly of basalts and minor ferrobasalts and basaltic andesites, all showing a clear subalkaline nature (e.g., Nb/Y = 0.03-0.21). Two samples from the Nain ophiolite are characterized by N-MORB normalized incompatible element patterns showing marked Th positive anomalies and Ta, Nb, Ti negative anomalies. Chondrite-normalized REE patterns show LREE/HREE (light REE/heavy REE) enrichment, with LaN/YbN=3.2-4.3. These rocks are chemically similar to the calc-alkaline basalts (CAB), as also highlighted by many discrimination diagrams. These rocks are interpreted to have generated in a cordilleran-type volcanic arc setting. All other samples from both the Nain and Ashin ophiolites display a wide range of chemical composition. However, the relatively less fractionated basalts are characterized by low TiO2 (0.60-1 wt%), P2O5 (0.03-0.08 wt%), Zr (23-75 ppm) and Y (9-27) contents. Cr (38-619 ppm) and Ni (22-220 ppm) contents show a wide range of variation. N-MORB normalized incompatible element patterns show rather flat trends and a general depletion (from 0.4 to 0.8 times N-MORB composition) coupled with a slight Th enrichment (1-3 times N-MORB). Chondrite-normalized REE patterns are generally flat and are characterized by either a slight depletion or a slight enrichment in LREE compared to HREE (LaN/YbN=0.7-1.2). These overall chemical features resemble those of island arc tholeiites from many ophiolitic complexes. The depletion in incompatible elements compared to N-MORB suggest that these rocks were derived from partial melting of a depleted mantle source. Th enrichment with respect to Nb (ThN/NbN = 2.6-12.4) suggests that mantle sources underwent enrichment in subduction-derived chemical components prior melting. Our data suggest that the Nain and Ashin ophiolites were formed in a subduction-related tectonic setting during the Late Cretaceous. The chemistry of the studied rocks is compatible with transition zone either from forearc to arc or from arc to backarc.

  20. Cambrian ophiolite complexes in the Beishan area, China, southern margin of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Shi, Yuruo; Zhang, Wei; Kröner, Alfred; Li, Linlin; Jian, Ping

    2018-03-01

    We present zircon ages and geochemical data for Cambrian ophiolite complexes exposed in the Beishan area at the southern margin of the Central Asian Orogenic Belt (CAOB). The complexes consist of the Xichangjing-Xiaohuangshan and Hongliuhe-Yushishan ophiolites, which both exhibit complete ophiolite stratigraphy: chert, basalt, sheeted dikes, gabbro, mafic and ultramafic cumulates and serpentinized mantle peridotites. Zircon grains of gabbro samples yielded 206Pb/238U ages of 516 ± 8, 521 ± 4, 528 ± 3 and 535 ± 6 Ma that reflect the timing of gabbro emplacement. The geochemical data of the basaltic rocks show enrichment in large-ion lithophile elements and depletion in the high field strength elements relative to normal mid-oceanic ridge basalt (NMORB) in response to aqueous fluids or melts expelled from the subducting slab. The gabbro samples have higher whole-rock initial 87Sr/86Sr ratios and lower positive εNd(t) values than NMORB. These geochemical signatures resulted from processes or conditions that are unique to subduction zones, and the ophiolites are therefore likely to have formed within a supra-subduction zone (SSZ) environment. We suggest that the Cambrian ophiolite complexes in the Beishan area formed within a SSZ setting, reflecting an early Paleozoic subduction of components of the Paleo-Central Asian Ocean and recording an early Paleozoic southward subduction event in the southern CAOB along the northern margin of the Tarim and North China Cratons.

  1. Geology of the southernmost Piedmont from Columbus to Junction City, GA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanley, T.B.

    1993-03-01

    Mapping in the Piedmont from the Chattahoochee River to Junction City, GA, is critical to understanding contacts with Southern Appalachian outboard terranes, relationships to the Piedmont allochthon, strike slip displacements along major faults and late Paleozoic and post Paleozoic tectonic activity. Three major map units defining a large synform are recognized in western Muscogee County: the North Columbus Migmatite Complex, the Moffitts Mill Schist (MMS), and the Phenix City gneiss. The distinctive but poorly exposed fine grained feldspar augen MMS, which extends at least as far east as Geneva, contains small enclaves of amphibolite and calcsilicate and large enclaves ofmore » lineated granitoid gneiss. Protomylonites and mylonitic gneiss with a N-S to N45E strike are exposed from Geneva to Junction City. Three brecciated quartz dikes transect the area in eastern Muscogee Co. and Talbot Co., converging on Talbotton from the southwest. The northern dike strikes ENE and is associated with an augen schist; the middle dike strikes NE and projects to the southwest deep into Muscogee County as a silicified fracture zone with minor associated granite. The southern dike has a NNE strike and is parallel to and locally silicifies the mylonitic foliation that dominates gneisses to the east. Deflections of the magnetic anomaly patterns to the northeast in the Geneva - Junction City area are parallel to quartz dikes and mylonitic foliations.« less

  2. Alkalic rocks and resources of thorium and associated elements in the Powderhorn District, Gunnison County, Colorado

    USGS Publications Warehouse

    Olson, J.C.; Hedlund, D.C.

    1981-01-01

    Alkalic igneous rocks and related concentrations of thorium, niobium, rare-earth elements, titanium, and other elements have long been known in the Powderhorn mining district and have been explored intermittently for several decades. The deposits formed chiefly about 570 m.y. (million years) ago in latest Precambrian or Early Cambrian time. They were emplaced in lower Proterozoic (Proterozoic X) metasedimentary, metavolcanic, and plutonic rocks. The complex of alkalic rocks of Iron Hill occupies 31 km 2 (square kilometers) and is composed of pyroxenite, uncompahgrite, ijolite, nepheline syenite, and carbonatite, in order of generally decreasing age. Fenite occurs in a zone, in places more than 0.6 km (kilometer) wide, around a large part of the margin of the complex and adjacent to alkalic dikes intruding Precambrian host rock. The alkalic rocks have a radioactivity, chiefly due to thorium, greater than that of the surrounding Powderhorn Granite (Proterozoic X) and metamorphic rocks. The pyroxenite, uncompahgrite, ijolite, and nepheline syenite, which form more than 80 percent of the complex, have fairly uniform radioactivity. Radioactivity in the carbonatite stock, carbonatite dikes, and the carbonatite-pyroxenite mixed rock zone, however, generally exceeds that in the other rocks of the complex. The thorium concentrations in the Powderhorn district occur in six types of deposits: thorite veins, a large massive carbonatite body, carbonatite dikes, trachyte dikes, magnetite-ilmeniteperovskite dikes or segregations, and disseminations in small, anomalously radioactive plutons chiefly of granite or quartz syenite that are older than rocks of the alkalic complex. The highest grade thorium concentrations in the district are in veins that commonly occur in steeply dipping, crosscutting shear or breccia zones in the Precambrian rocks. They range in thickness from a centimeter or less to 5 m (meters) and are as much as 1 km long. The thorite veins are composed chiefly of potassic feldspar, white to smoky quartz, calcite, barite, goethite, and hematite, and also contain thorite, jasper, magnetite, pyrite, galena, chalcopyrite, sphalerite, synchysite, apatite, fluorite, biotite, sodic amphibole, rutile, monazite, bastnaesite, and vanadinite. The Th0 2 content of the thorite veins ranges from less than 0.01 percent to as much as 4.9 percent in high-grade samples. The Th0 2 content is generally less than 1 percent, however, and is only 0.05 to 0.1 percent in many of the veins examined in the district. Samples of the dolomitic carbonatite of Iron Hill mostly range from 3 to 145 ppm (parts per million) thorium. Thirty samples of the carbonatite dikes, the most radioactive rocks within the complex of Iron Hill, contain about 30 to 3,200 ppm thorium and a trace to about 1.5 percent rare-earth oxides. The magnetite-ilmenite-perovskite rocks have a radioactivity of 2 to 12 times the background of Precambrian granite that is attributable chiefly to thorium substitution for calcium in the perovskite. In two analyses the perovskite contains 0.12 and 0.15 percent Th0 2 . Trachyte dikes as much as 25 m thick cut the Precambrian rocks; their radioactivity is generally about two to four times the background of typical Precambrian granite, is locally higher, but is low relative to other types of thorium concentrations. A finegrained granite that is anomalously radioactive occurs in thick, dikelike plutons as much as 1.2 km wide, or more. The thorium content varies widely within the granite bodies. Eight samples of the granite contain 32 to 281 ppm thorium (averaging 115 ppm). The economic potential of thorium in the Powderhorn district is related in part to other elements such as niobium, titanium, iron, and rare earths. The proportions of niobium and rare earths to thorium vary in different parts of the district. Within the carbonatite body of Iron Hill, the Nb 2 0 5 content greatly exceeds Th0 2 , but the Th0 2 -Nb 2 0 5

  3. Rare Mineralogy in Alkaline Ultramafic Rocks, Western Kentucky Fluorspar District

    NASA Astrophysics Data System (ADS)

    Anderson, W.

    2017-12-01

    The alkaline ultramafic intrusive dike complex in the Western Kentucky Fluorspar District contains unusual mineralogy that was derived from mantle magma sources. Lamprophyre and peridotite petrologic types occur in the district where altered fractionated peridotites are enriched in Rare Earth Elements (REE) and some lamprophyre facies are depleted in incompatible elements. Unusual minerals in dikes, determined by petrography and X-ray diffraction, include schorlomite and andradite titanium garnets, astrophyllite, spodumene, niobium rutile, wüstite, fluoro-tetraferriphlogopite, villiaumite, molybdenite, and fluocerite, a REE-bearing fluoride fluorescent mineral. Mixing of MVT sphalerite ore fluids accompanies a mid-stage igneous alteration and intrusion event consistent with paragenetic studies. The presence of lithium in the spodumene and fluoro-tetraferriphlogopite suggests a lithium phase in the mineral fluids, and the presence of enriched REE in dikes and fluorite mineralization suggest a metasomatic event. Several of these rare minerals have never been described in the fluorspar district, and their occurrence suggests deep mantle metasomatism. Several REE-bearing fluoride minerals occur in the dikes and in other worldwide occurrences, they are usually associated with nepheline syenite and carbonatite differentiates. There is an early and late stage fluoride mineralization, which accompanied dike intrusion and was also analyzed for REE content. One fluorite group is enriched in LREE and another in MREE, which suggests a bimodal or periodic fluorite emplacement. Whole-rock elemental analysis was chondrite normalized and indicates that some of the dikes are slightly enriched in light REE and show a classic fractionation enrichment. Variations in major-element content; high titanium, niobium, and zirconium values; and high La/Yb, Zr/Y, Zr/Hf, and Nb/Ta ratios suggest metasomatized lithospheric-asthenospheric mantle-sourced intrusions. The high La/Yb ratios in some dikes in the titanium garnet facies suggest a magma melt trend toward the carbonation phase of a fractionated peridotite parent magma.

  4. Battling through the thermal boundary layer: Deep sampling in ODP Hole 1256D during IODP Expedition 335

    NASA Astrophysics Data System (ADS)

    Ildefonse, B.; Teagle, D. A.; Blum, P.; IODP Expedition 335 Scientists

    2011-12-01

    IODP Expedition 335 "Superfast Spreading Rate Crust 4" returned to ODP Hole 1256D with the intent of deepening this reference penetration of intact ocean crust several hundred meters into cumulate gabbros. This was the fourth cruise of the superfast campaign to understand the formation of oceanic crust accreted at fast spreading ridges, by exploiting the inverse relationship between spreading rate and the depth to low velocity zones seismically imaged at active mid-ocean zones, thought to be magma chambers. Site 1256 is located on 15-million-year-old crust formed at the East Pacific Rise during an episode of superfast ocean spreading (>200 mm/yr full rate). Three earlier cruises to Hole 1256D have drilled through the sediments, lavas and dikes and 100 m into a complex dike-gabbro transition zone. The specific objectives of IODP Expedition 335 were to: (1) test models of magmatic accretion at fast spreading ocean ridges; (2) quantify the vigor of hydrothermal cooling of the lower crust; (3) establish the geological meaning of the seismic Layer 2-3 boundary at Site 1256; and (4) estimate the contribution of lower crustal gabbros to marine magnetic anomalies. It was anticipated that even a shortened IODP Expedition could deepen Hole 1256D a significant distance (300 m) into cumulate gabbros. Operations on IODP Expedition 335 proved challenging from the outset with almost three weeks spent re-opening and securing unstable sections of the Hole. When coring commenced, the destruction of a hard-formation C9 rotary coring bit at the bottom of the hole required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets returned large samples of a contact-metamorphic aureole between the sheeted dikes and a major heat source below. These large (up to 3.5 kg) irregular samples preserve magmatic, hydrothermal and structural relationships hitherto unseen because of the narrow diameter of drill core and previous poor core recovery. Including the ~60 m-thick zone of granoblastic dikes overlying the uppermost gabbro, the dike-gabbro transition zone at Site 1256 is over 170 m thick, of which more than 100 m are recrystallized granoblastic basalts. This zone records a dynamically evolving thermal boundary layer between the principally hydrothermal domain of the upper crust and a deeper zone of intrusive magmatism. The recovered samples document a sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting and retrogressive processes. Despite the operational challenges, we achieved a minor depth advance to 1522 m, but this was insufficient penetration to complete any of the primary objectives. However, Hole 1256D has been thoroughly cleared of junk and drill cuttings that have hampered operations during this and previous Expeditions. At the end of Expedition 335, we briefly resumed coring and stabilized problematic intervals with cement. Hole 1256D is open to its full depth and ready for further deepening in the near future.

  5. DualSPHysics: A numerical tool to simulate real breakwaters

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Crespo, Alejandro; Altomare, Corrado; Domínguez, José; Marzeddu, Andrea; Shang, Shao-ping; Gómez-Gesteira, Moncho

    2018-02-01

    The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.

  6. Sudbury project (University of Muenster-Ontario Geological Survey): New investigations on Sudbury breccia

    NASA Astrophysics Data System (ADS)

    Mueller-Mohr, V.

    Sudbury breccias occur as discordant dike breccias within the footwall rocks of the Sudbury structure, which is regarded as the possible remnant of a multiring basin. Exposures of Sudbury breccias in the North Range are known up to a radial distance of 60-80 km from the Sudbury Igneous Complex (SIC). The breccias appear more frequent within a zone of 10 km adjacent to the SIC and a further zone located about 20-33 km north of the structure. From differences in the structure of the breccias, as for example the size of the breccia dikes, contact relationships between breccia and country rock as well as between different breccia dikes, fragment content, and fabric of the ground mass, as seen in this section, the Sudbury Breccias have been classified into four different types. (1) Early breccias with a clastic/crystalline matrix comprise small dikes ranging in size from approx. 1 cm to max. 20 cm. (2) Polymict breccias with a clastic matrix represent the most common type of Sudbury breccia. The thickness of the dikes varies from several tens of centimeters to a few meters but can also extend to more than 100 m in the case of the largest known breccia dike. Contacts with country rock are sharp or gradational. Heterogenous matrix consisting of a fine-grained rock flour displays nonoriented textures as well as extreme flow lines. Chemical analysis substantiates at least some mixing with allochthonous material. (3) Breccias with a crystalline matrix are a subordinate type of Sudbury breccia. According to petrographical and chemical differences, three subtypes have been separated. (4) Late breccias with a clastic matrix are believed to represent the latest phase of brecciation. Two subtypes have been distinguished due to differences in the fragment content.

  7. Sudbury project (University of Muenster-Ontario Geological Survey): New investigations on Sudbury breccia

    NASA Technical Reports Server (NTRS)

    Mueller-Mohr, V.

    1992-01-01

    Sudbury breccias occur as discordant dike breccias within the footwall rocks of the Sudbury structure, which is regarded as the possible remnant of a multiring basin. Exposures of Sudbury breccias in the North Range are known up to a radial distance of 60-80 km from the Sudbury Igneous Complex (SIC). The breccias appear more frequent within a zone of 10 km adjacent to the SIC and a further zone located about 20-33 km north of the structure. From differences in the structure of the breccias, as for example the size of the breccia dikes, contact relationships between breccia and country rock as well as between different breccia dikes, fragment content, and fabric of the ground mass, as seen in this section, the Sudbury Breccias have been classified into four different types. (1) Early breccias with a clastic/crystalline matrix comprise small dikes ranging in size from approx. 1 cm to max. 20 cm. (2) Polymict breccias with a clastic matrix represent the most common type of Sudbury breccia. The thickness of the dikes varies from several tens of centimeters to a few meters but can also extend to more than 100 m in the case of the largest known breccia dike. Contacts with country rock are sharp or gradational. Heterogenous matrix consisting of a fine-grained rock flour displays nonoriented textures as well as extreme flow lines. Chemical analysis substantiates at least some mixing with allochthonous material. (3) Breccias with a crystalline matrix are a subordinate type of Sudbury breccia. According to petrographical and chemical differences, three subtypes have been separated. (4) Late breccias with a clastic matrix are believed to represent the latest phase of brecciation. Two subtypes have been distinguished due to differences in the fragment content.

  8. Petrogenesis of the Ni-Cu-PGE sulfide-bearing Tamarack Intrusive Complex, Midcontinent Rift System, Minnesota

    NASA Astrophysics Data System (ADS)

    Taranovic, Valentina; Ripley, Edward M.; Li, Chusi; Rossell, Dean

    2015-01-01

    The Tamarack Intrusive Complex (TIC, 1105.6 ± 1.2 Ma) in NE Minnesota, was emplaced during the early stages of the development of the Midcontinent Rift System (MRS, "Early Stage": 1110-1106 Ma). Country rocks of the TIC are those of the Paleoproterozoic Thomson Formation, part of the Animikie Group including sulfide-bearing metasedimentary black shale. The magmatic system is composed of at least two principal mafic-ultramafic intrusive sequences: the sulfide-barren Bowl Intrusion in the south and the "dike" area intrusions in the north which host Ni-Cu-Platinum Group Elements (PGE) mineralization with up to 2.33% Ni, 1.24% Cu, 0.34 g/t Pt, 0.23 g/t Pd and 0.18 g/t Au. Two distinct intrusive units in the "dike" area are the CGO (coarse-grained olivine-bearing) Intrusion, a sub-vertical dike-like body, and the overlying sub-horizontal FGO (fine-grained olivine-bearing) Intrusion. Both intrusions comprise peridotite, feldspathic peridotite, feldspathic pyroxenite, melatroctolite and melagabbro. Massive sulfides are volumetrically minor and mainly occur as lenses emplaced into the country rocks associated with both intrusions. Semi-massive (net-textured) sulfides are distributed at the core of the CGO Intrusion, surrounded by a halo of the disseminated sulfides. Disseminated sulfides also occur in lenses along the base of the FGO Intrusion. Olivine compositions in the CGO Intrusion are between Fo89 and Fo82 and in the FGO Intrusion from Fo84 to Fo82. TIC intrusions have more primitive olivine compositions than that of olivine in the sheet-like intrusions in the Duluth Complex (below Fo70), as well as olivine from the smaller, conduit-related, Eagle and East Eagle Intrusions in Northern Michigan (Fo86 to Fo75). The FeO/MgO ratios of the CGO and FGO Intrusion parental magmas, inferred from olivine compositions, are similar to those of picritic basalts erupted during the early stages of the MRS formation. Trace element ratios differ slightly from other intrusions in the MRS, and are indicative of significant crustal contamination. Differences in textures, whole-rock and mineral compositions, and sulfide distribution are consistent with the emplacement of at least two distinct sulfide saturated magmatic pulses. Ni-enrichment in the TIC indicates that sulfide saturation was attained prior to the sequestration of major proportions of Ni by olivine, possibly at a deeper chamber in the magmatic system. The addition of crustal S from the Thomson Formation sulfidic country rocks is thought to have been the principal process which drove the early attainment of sulfide saturation in the magmas. The CGO Intrusion carried the greater abundance of sulfide liquid, but both the CGO and FGO intrusive sequences represent the accumulation of dense silicate minerals and sulfide liquid in a conduit system. The genetic processes that were operative in the formation of Ni-Cu-PGE mineralization in the Tamarack Intrusive Complex appear to be typical of conduit-style magmatic sulfide deposits associated with large continental basaltic provinces.

  9. Dikes under Pressure - Monitoring the Vulnerability of Dikes by Means of SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Marzahn, Philip; Seidel, Moritz; Ludwig, Ralf

    2016-04-01

    Dikes are the main man made structures in flood protection systems for the protection of humans and economic values. Usually dikes are built with a sandy core and clay or concrete layer covering the core. Thus, dikes are prone to a vertical shrinkage due to soil physical processes such as reduction of pore space and gravity increasing the risk of a crevasse during floods. In addition, this vulnerability is amplified by a sea level rise due to climate change. To guarantee the stability of dikes, a labourer intensive program is carried out by national authorities monitoring the dikes by visual inspection. In the presented study, a quantitative approach is presented using SAR Interferometry for the monitoring of the stability of dikes from space. In particular, the vertical movement of dikes due to shrinkage is monitored using persistent scatterer interferometry. Therefore three different types of dikes have been investigated: a sea coast dike with a concrete cover, a sea coast dike with short grass cover and a smaller river dike with grass cover. All dikes are located in Germany. Results show the potential of the monitoring technique as well as spatial differences in the stability of dikes with subsidence rates in parts of a dike up to 7 mm/a.

  10. Crustal faults exposed in the Pito Deep Rift: Conduits for hydrothermal fluids on the southeast Pacific Rise

    NASA Astrophysics Data System (ADS)

    Hayman, Nicholas W.; Karson, Jeffrey A.

    2009-02-01

    The escarpments that bound the Pito Deep Rift (northeastern Easter microplate) expose in situ upper oceanic crust that was accreted ˜3 Ma ago at the superfast spreading (˜142 mm/a, full rate) southeast Pacific Rise (SEPR). Samples and images of these escarpments were taken during transects utilizing the human-occupied vehicle Alvin and remotely operated vehicle Jason II. The dive areas were mapped with a "deformation intensity scale" revealing that the sheeted dike complex and the base of the lavas contain approximately meter-wide fault zones surrounded by fractured "damage zones." Fault zones are spaced several hundred meters apart, in places offset the base of the lavas, separate areas with differently oriented dikes, and are locally crosscut by (younger) dikes. Fault rocks are rich in interstitial amphibole, matrix and vein chlorite, prominent veins of quartz, and accessory grains of sulfides, oxides, and sphene. These phases form the fine-grained matrix materials for cataclasites and cements for breccias where they completely surround angular to subangular clasts of variably altered and deformed basalt. Bulk rock geochemical compositions of the fault rocks are largely governed by the abundance of quartz veins. When compositions are normalized to compensate for the excess silica, the fault rocks exhibit evidence for additional geochemical changes via hydrothermal alteration, including the loss of mobile elements and gain of some trace metals and magnesium. Microstructures and compositions suggest that the fault rocks developed over multiple increments of deformation and hydrothermal fluid flow in the subaxial environment of the SEPR; faults related to the opening of the Pito Deep Rift can be distinguished by their orientation and fault rock microstructure. Some subaxial deformation increments were likely linked with violent discharge events associated with fluid pressure fluctuations and mineral sealing within the fault zones. Other increments were linked with the influx of relatively fresh seawater. The spacing of the faults is consistent with fault localization occurring every 7000 to 14,000 years, with long-term slip rates of <3 mm/a. Once spread from the ridge axis, the faults were probably not active, and damage zones likely played a more significant role in axial flank and off-axis crustal permeability.

  11. Protolith and metamorphic ages of the Haiyangsuo Complex, eastern China: A non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane

    USGS Publications Warehouse

    Liou, J.G.; Tsujimori, T.; Chu, W.; Zhang, R.Y.; Wooden, J.L.

    2006-01-01

    The Haiyangsuo Complex in the NE Sulu ultrahigh-pressure (UHP) terrane has discontinuous, coastal exposures of Late Archean gneiss with amphibolitized granulite, amphibolite, Paleoproterozoic metagabbroic intrusives, and Cretaceous granitic dikes over an area of about 15 km2. The U-Pb SHRIMP dating of zircons indicates that theprotolith age of a garnet-biotite gneiss is >2500 Ma, whereas the granulite-facie metamorphism occurred at around 1800 Ma. A gabbroic intrusion was dated at ???1730 Ma, and the formation of amphibolite-facies assemblages in both metagabbro and granulite occurred at ???340-460 Ma. Petrologic and geochronological data indicate that these various rocks show no evidence of Triassic eclogite-facies metamorphism and Neoproterozoic protolith ages that are characteristics of Sulu-Dabie HP-UHP rocks, except Neoproterozoic inherited ages from post-collisional Jurassic granitic dikes. Haiyangsuo retrograde granulites with amphibolite-facies assemblages within the gneiss preserve relict garnet formed during granulite-facies metamorphism at ???1.85 Ga. The Paleoproterozoic metamorphic events are almost coeval with gabbroic intrusions. The granulite-bearing gneiss unit and gabbro-dominated unit of the Haiyangsuo Complex were intruded by thin granitic dikes at about 160 Ma, which is coeval with post-collisional granitic intrusions in the Sulu terrane. We suggest that the Haiyangsuo Complex may represent a fragment of the Jiao-Liao-Ji Paleoproterozoic terrane developed at the eastern margin of the Sino-Korean basement, which was juxtaposed with the Sulu terrane prior to Jurassic granitic activity and regional deformation. ?? Springer-Verlag 2006.

  12. Study of Water Quality Changes due to Offshore Dike Development Plan at Semarang Bay

    NASA Astrophysics Data System (ADS)

    Wibowo, M.; Hakim, B. A.

    2018-03-01

    Now, coast of Semarang Gulf is experiencing rapid growth because Semarang as a center economic growth in Central Java. On the other hand, coast of Gulf Semarang also experience a variety of very complex problems, such as tidal flood, land subsidence, as well as coastal damage due to erosion and sedimentation process. To overcome these problems BPPT and other institutions proposed construction of offshore dike. Construction of the offshore dike is a technology intervention to the marine environment that will certainly affect the hydrodynamic balance in coastal water including water quality in the Gulf of Semarang. Therefore, to determine changes in water quality that will happen is necessary to study the water quality modeling. The study was conducted by using a computational modeling software MIKE-21 Eco Lab Module from DHI. Based on this study result knowed that development offshore dike will change water quality in the west and east dam that formed. In west dam the average value of the DO decline 81.56% - 93.32 % and the average value of BOD rise from 22.01 to 31.19% and in the east dam, there is an increase average value DO of 83.19% - 75.80%, while the average value of BOD decrease by 95,04% - 96.01%. To prevent the downward trend in water quality due to the construction of the offshore dike, its necessary precautions at the upstream area before entering the Gulf of Semarang.

  13. The absorption spectra of the complexes of uranium (VI) with some β-diketones

    USGS Publications Warehouse

    Feinstein, H.I.

    1956-01-01

    The absorption spectra of the complexes of uranium (VI) with four β-dike tones were determined under various conditions of pH, concentration of uranium, and alcohol concentration. Under optimum conditions, the maximum molar absorptivity (31,200) is obtained using 2-furoyltrifluoroacetone. This compares with about 4,000 and 19,000 for the thiocyanate and dibenzoylmethane complexes, respectively.

  14. Shallow conduit system at Kilauea Volcano, Hawaii, revealed by seismic signals associated with degassing bursts

    USGS Publications Warehouse

    Chouet, Bernard; Dawson, Phillip

    2011-01-01

    Eruptive activity at the summit of Kilauea Volcano, Hawaii, beginning in March, 2008 and continuing to the present time is characterized by episodic explosive bursts of gas and ash from a vent within Halemaumau Pit Crater. These bursts are accompanied by seismic signals that are well recorded by a broadband network deployed in the summit caldera. We investigate in detail the dimensions and oscillation modes of the source of a representative burst in the 1−10 s band. An extended source is realized by a set of point sources distributed on a grid surrounding the source centroid, where the centroid position and source geometry are fixed from previous modeling of very-long-period (VLP) data in the 10–50 s band. The source time histories of all point sources are obtained simultaneously through waveform inversion carried out in the frequency domain. Short-scale noisy fluctuations of the source time histories between adjacent sources are suppressed with a smoothing constraint, whose strength is determined through a minimization of the Akaike Bayesian Information Criterion (ABIC). Waveform inversions carried out for homogeneous and heterogeneous velocity structures both image a dominant source component in the form of an east trending dike with dimensions of 2.9 × 2.9 km. The dike extends ∼2 km west and ∼0.9 km east of the VLP centroid and spans the depth range 0.2–3.1 km. The source model for a homogeneous velocity structure suggests the dike is hinged at the source centroid where it bends from a strike E 27°N with northern dip of 85° west of the centroid, to a strike E 7°N with northern dip of 80° east of the centroid. The oscillating behavior of the dike is dominated by simple harmonic modes with frequencies ∼0.2 Hz and ∼0.5 Hz, representing the fundamental mode ν11 and first degenerate mode ν12 = ν21 of the dike. Although not strongly supported by data in the 1–10 s band, a north striking dike segment is required for enhanced compatibility with the model elaborated in the 10–50 s band. This dike provides connectivity between the east trending dike and the new vent within Halemaumau Pit Crater. Waveform inversions with a dual-dike model suggest dimensions of 0.7 × 0.7 km to 2.6 × 2.6 km for this segment. Further elaboration of the complex dike system under Halemaumau does not appear to be feasible with presently available data.

  15. Inflation and Collapse of the Wai'anae Volcano (Oahu,Hawaii, USA):Insights from Magnetic Fabric Studies of Dikes

    NASA Astrophysics Data System (ADS)

    Lau, J. K. S.; Herrero-Bervera, E.; Moreira, M. A. D. A.

    2016-12-01

    The Waianae Volcano is the older of two shield volcanoes that make up the island of Oahu. Previous age determinations suggest that the subaerial portion of the edifice erupted between approximately 3.7 and 2.7 Ma. The eroded Waianae Volcano had a well-developed caldera centered near the back of its two most prominent valleys and two major rift zones: a prominent north-west rift zone, well-defined by a complex of sub-parallel dikes trending approximately N52W, and a more diffuse south rift zone trending between S20W to due South. In order to investigate the volcanic evolution, the plumbing and the triggering mechanisms of the catastrophic mass wasting that had occurred in the volcano, we have undertaken an AMS study of 7 dikes from the volcano. The width of the dikes ranged between 0.5 to 4 m. Low-field susceptibility versus temperature (k-T) and SIRM experiments were able to identify magnetite at 575 0C and at about 250-300 0C, corresponding to titanomagnetite.. Magnetic fabric studies of the dikes along a NW-SE section across the present southwestern part of the Waianae volcano have been conducted. The flow direction was studied using the imbrication angle between the dike walls and the magnetic foliation. The flow direction has been obtained in the 7 studied dikes. For the majority of the cases, the maximum axis, K1, appears to be perpendicular to the flow direction, and in some cases, with a permutation with respect to the intermediate axis, K2, or even with respect to the minimum axis, K3. In addition, in one of the sites studied, the minimum axis, K3, is very close to the flow direction. In all cases, the magma flowed along a direction with a moderate plunge. For six of the dikes, the interpreted flow was from the internal part of the volcano towards the volcano border, and corresponds probably to the inflation phase of the volcano. In two cases (dikes located on the northwestern side of the volcano), the flow is slightly downwards, possibly related to the distal extension due to inflation of the central part of the volcano. . It also revealed a downward flow that could correspond to another magma pulse that resulted from a flow-back during distension due to the collapsing of the Waianae volcano.

  16. Petrogenesis of calcic plagioclase megacrysts in Archean rocks

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.

    1986-01-01

    Anorthositic complexes with large equidimensional plagioclase grains of highly calcic composition occur in nearly all Archean cratons. Similar plagioclase occur as megacrysts in many Archean sills, dikes, and volcanic flows. In the Canadian Shield these units occur throughout the Archean portions of the entire shield and are particularly common as dikes over an area of a few 100,000 sq km in Ontario and Manitoba during a period of at least 100 m.y. in many different rock types and metamorphic grades. The plagioclase generally occurs in three modes: as inclusions in mafic intrusions at various stages of fractionation, as crystal segregations in anorthosite complexes, or as megacrysts in fractionated sills, dikes, and flows. Most occurrences suggest that the plagioclase was formed elsewhere before being transported to its present location. The evidence seems to be quite clear that occurrences of these types of calcic plagioclase require: (1) ponding of a relatively undifferentiated Archean tholeiitic melt at some depth; (2) isothermal crystallization of large, equidimensional homogeneous plagioclase crystals; (3) separation of the plagioclase crystals from any other crystalline phases; (4) further fractionation of melt; (5)transport of various combinations of individual plagioclase crystals and clusters of crystals by variously fractionated melts; and (6) emplacement as various types of igneous intrusions or flows.

  17. Initial report of the physical property measurement, ChikyuOman core description Phase I: sheeted dike and gabbro boundary from ICDP Holes GT1A, GT2A and GT3A

    NASA Astrophysics Data System (ADS)

    Abe, N.; Okazaki, K.; Hatakeyama, K.; Ildefonse, B.; Leong, J. A. M.; Tateishi, Y.; Teagle, D. A. H.; Takazawa, E.; Kelemen, P. B.; Michibayashi, K.; Coggon, J. A.; Harris, M.; de Obeso, J. C.

    2017-12-01

    We report results on the physical property measurements of the core samples from ICDP Holes GT1A, GT2A and GT3A drilled at Samail Ophiolite, Sultanate of Oman. Cores from Holes GT1A and GT2A in the lower crust section are mainly composed of gabbros (gabbro and olivine gabbro), and small amounts of ultramafic rocks (wehrlite and dunite), while cores from Hole GT3A at the boundary between sheeted dikes and gabbro are mainly composed of basalt and diabase, followed by gabbros (gabbro, olivine gabbro and oxide gabbro), and less common felsic dikes, trondhjemite and tonalite, intrude the mafic rocks. Measurements of physical properties were undertaken to characterize recovered core material. Onboard the Drilling Vessel Chikyu, whole-round measurements included X-ray CT image, natural gamma radiation, and magnetic susceptibility for Leg 1, and additional P-wave velocity, gamma ray attenuation density, and electrical resistivity during Leg 2. Split-core point magnetic susceptibility and color spectroscopy were measured for all core sections. P-wave velocity, bulk/grain density and porosity of more than 500 discrete cube samples, and thermal conductivity on more than 240 pieces from the working half of the split core sections were also measured. Physical Properties of gabbroic rocks from Holes GT1A and GT2A are similar to typical oceanic gabbros from ODP and IODP expeditions at Atlantis Bank, Southwestern Indian Ridge (ODP Legs 118, 176 and 179; IODP Exp 360) and at Hess Deep, Eastern Pacific (ODP Leg 147 and IODP Exp. 345). Average P-wave velocity, bulk density, grain density, porosity and thermal conductivity are 6.7 km/s, 2.92 g/cm^3, 2.93 g/cm^3, 0.98% and 2.46 W/m/K, respectively. P-wave velocity of samples from all three holes is inversely correlated with porosity. No clear correlation between the original lithology and physical properties is observed. GT3A cores show a wider range (e.g., Vp from 2.2 to 7.1 km/s) of values for the measured physical properties, compared to gabbros from Holes GT1A and GT2A.

  18. Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon

    NASA Astrophysics Data System (ADS)

    Harper, Gregory D.; Wright, James E.

    1984-12-01

    The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.

  19. The propagation direction of mafic radial dikes inferred from flow-direction analysis of an exposed radial dike sequence, Summer Coon Volcano, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Harp, A.; Valentine, G.

    2016-12-01

    Mafic eruptions along the flanks of stratovolcanoes pose significant hazards to life and property due to the uncertainty linked to new vent locations and their potentially close proximity to inhabited areas. Flank eruptions are often fed by radial dikes with magma supplied either laterally from the central conduit or vertically from a deeper storage location. The highly eroded Oligocene age Summer Coon stratovolcano, Colorado reveals over 700 mafic dikes surrounding a series of intrusive stocks (inferred conduit). The exposure provides an opportunity to study radial dike propagation directions and their relationship with the conduit in the lower portions of a volcanic edifice. Detailed geologic mapping and a geophysical survey revealed that little or no direct connection exists between the mafic radial dikes and the inferred conduit at the current level of exposure. Oriented samples collected from the chilled margins of 29 mafic dikes were analyzed for flow fabrics and emplacement directions. Among them, 20 dikes show flow angles greater than 30 degrees from horizontal, and a single dike had flow fabrics oriented at approximately 20 degrees. Of the dikes with steeper fabrics nine dikes were emplaced up and toward the volcano's center between 30-75 degrees from horizontal, and 11 dikes emplaced up and away from the volcano's center between 35-60 degrees. The two groups of dikes likely responded to the stress field within the edifice, where steepest-emplaced had relatively high magma overpressure and were focused toward the volcano's summit, while dikes with lower overpressures propagated out toward the flanks. At Summer Coon, the lack of connection between mafic dikes and the inferred conduit and presence of only one sub-horizontally emplaced dike implies the stresses within lower edifice impeded lateral dike nucleation and propagation while promoting and influencing the emplacement direction of upward propagating dikes.

  20. Architecture of near-surface magma transport in the Columbia River Flood Basalts as defined by a career's worth of feeder dike mapping: The legacy dataset of William H. Taubeneck

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Morriss, M. C.; Nasholds, M. W.

    2016-12-01

    The Miocene Columbia River Flood Basalts (CRFB) are the youngest, best preserved, and most thoroughly studied Large Igneous Province on Earth. The Grande Ronde basalts erupted 150,000 km3in less than 100 kyr ( 72% of the CRFB volume) from a network of feeder dikes, the Chief Joseph dike swarm, exposed in SE Washington, NE Oregon, and W Idaho, USA. William H. Taubeneck (1923-2016) spent several decades mapping CRFB dikes. His extensive, meticulous field work defined the spatial extent and dominant trends in the Chief Joseph dike swarm, providing a key constraint for theories of CRFB emplacement and their deep origin. However, these measurements were never published nor made public. We are revitalizing Taubeneck's maps, notebooks, and numerous unpublished geochemical analyses, synthesizing his work with other published and mapped dikes and field checking select measurements to ensure accurate interpretation. This dataset should lead to increased understandings of the CRFB shallow plumbing system and flood basalt eruptive dynamics in general. Preliminary analysis of 4,410 mapped CRFB feeder dike segments from Taubeneck and other workers reveals systematic trends in both dike orientation and lithology of host rock. Average dike orientation strikes to the north-northwest across 400 km. Orientations are generally parallel to the cratonic boundary, but appear generally unaffected by a major transition in craton position and also exhibit minor trends with near orthogonal orientations. Dike spatial density peaks in Paleozoic to Cenozoic accreted terranes. Exposed dikes are concentrated among Jurassic and Cretaceous plutons, which host 53% of mapped dikes and accommodate the largest variability in dike orientation. Preliminary investigations suggest variations of feeder dike thickness with depth in the plumbing system as preserved through exposure in the uplifted Wallowa Mountains, although this is complicated by evidence for dikes that accommodated multiple injections and uncertain duration of flow. Ongoing work aims to resolve these issues. Summary figure: (a) Dikes mapped by Taubeneck and others versus latitude. (b) Dike orientation. (c) Paleozoic and Mesozoic accreted terranes and the cratonic margin. Dikes are mostly exposed in the Baker and Wallowa Terranes. (d) Dike host rock lithology.

  1. A water-budget approach to restoring a sedge fen affected by diking and ditching

    USGS Publications Warehouse

    Wilcox, Douglas A.; Sweat, Michael J.; Carlson, Martha L.; Kowalski, Kurt P.

    2006-01-01

    A vast, ground-water-supported sedge fen in the Upper Peninsula of Michigan, USA was ditched in the early 1900s in a failed attempt to promote agriculture. Dikes were later constructed to impound seasonal sheet surface flows for waterfowl management. The US Fish and Wildlife Service, which now manages the wetland as part of Seney National Wildlife Refuge, sought to redirect water flows from impounded C-3 Pool to reduce erosion in downstream Walsh Ditch, reduce ground-water losses into the ditch, and restore sheet flows of surface water to the peatland. A water budget was developed for C-3 Pool, which serves as the central receiving and distribution body for water in the affected wetland. Surface-water inflows and outflows were measured in associated ditches and natural creeks, ground-water flows were estimated using a network of wells and piezometers, and precipitation and evaporation/evapotranspiration components were estimated using local meteorological data. Water budgets for the 1999 springtime peak flow period and the 1999 water year were used to estimate required releases of water from C-3 Pool via outlets other than Walsh Ditch and to guide other restoration activities. Refuge managers subsequently used these results to guide restoration efforts, including construction of earthen dams in Walsh Ditch upslope from the pool to stop surface flow, installation of new water-control structures to redirect surface water to sheet flow and natural creek channels, planning seasonal releases from C-3 Pool to avoid erosion in natural channels, stopping flow in downslope Walsh Ditch to reduce erosion, and using constructed earthen dams and natural beaver dams to flood the ditch channel below C-3 Pool. Interactions between ground water and surface water are critical for maintaining ecosystem processes in many wetlands, and management actions directed at restoring either ground- or surface-water flow patterns often affect both of these components of the water budget. This approach could thus prove useful in guiding restoration efforts in many hydrologically altered and managed wetlands worldwide.

  2. The Early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): geochemistry, petrogenesis and rare-metal mineralization

    USGS Publications Warehouse

    Dostal, Jaroslav; Kontak, Daniel J.; Karl, Susan M.

    2014-01-01

    The Early Jurassic (ca. 177 Ma) Bokan Mountain granitic complex, located on southern Prince of Wales Island, southernmost Alaska, cross-cuts Paleozoic igneous and metasedimentary rocks of the Alexander terrane of the North American Cordillera and was emplaced during a rifting event. The complex is a circular body (~3 km in diameter) of peralkaline granitic composition that has a core of arfvedsonite granite surrounded by aegirine granite. All the rock-forming minerals typically record a two-stage growth history and aegirine and arfvedsonite were the last major phases to crystalize from the magma. The Bokan granites and related dikes have SiO2 from 72 to 78 wt. %, high iron (FeO (tot) ~3-4.5 wt. %) and alkali (8-10 wt.%) concentrations with high FeO(tot)/(FeO(tot)+MgO) ratios (typically >0.95) and the molar Al2O3/(Na2O+K2O) ratio Nd values which are indicative of a mantle signature. The parent magma is inferred to be derived from an earlier metasomatized lithospheric mantle by low degrees of partial melting and generated the Bokan granitic melt through extensive fractional crystallization. The Bokan complex hosts significant rare-metal (REE, Y, U, Th, Nb) mineralization that is related to the late-stage crystallization history of the complex which involved the overlap of emplacement of felsic dikes, including pegmatite bodies, and generation of orthomagmatic fluids. The abundances of REE, HFSE, U and Th as well as Pb and Nd isotopic values of the pluton and dikes were modified by orthomagmatic hydrothermal fluids highly enriched in the strongly incompatible trace elements, which also escaped along zones of structural weakness to generate rare-metal mineralization. The latter was deposited in two stages: the first relates to the latest stage of magma emplacement and is associated with felsic dikes that intruded along the faults and shear deformations, whereas the second stage involved ingress of hydrothermal fluids that both remobilized and enriched the initial magmatic mineralization. Mineralization is mostly composed of new minerals. Fluorine complexing played a role during the transportation of REE and HFSE in hydrothermal fluids and oxygen isotopes in the granites and quartz veins negate the significant incursion of an external fluid and support a dominantly orthomagmatic hydrothermal system. Many other REE-HFSE deposits hosted by peralkaline felsic rocks (nepheline syenites, peralkaline granites and peralkaline trachytes) were formed by a similar two stage process.

  3. Father's Day dike intrusion and eruption reveals interaction between magmatic and tectonic processes at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Foster, J. H.; Brooks, B. A.; Sandwell, D. T.; Poland, M.; Miklius, A.; Myer, D.; Okubo, P. G.; Patrick, M.; Wolfe, C.

    2007-12-01

    The June 17-19, 2007, Father's Day dike intrusion and eruption at Kilauea volcano brought to an end a seven- year period of steady state lava effusion at the Pu'u 'O'o vent. The event was observed by an unprecedented number of geophysical instruments, with temporary arrays of GPS and tiltmeters augmenting the continuous monitoring network. Envisat and ALOS SAR scenes were also acquired during this event and provide further information on the surface deformation as the event progressed. Fortuitously, the Envisat acquisition was during a pause in the middle of the sequence, while the ALOS PALSAR scene was acquired at the end of the sequence, allowing us to model each phase separately. Analysis of these data sets indicates that, in addition to three phases of the dike intrusion, a slow earthquake also occurred on the south flank of Kilauea. The slow earthquake apparently began near the end of the second phase of the dike intrusion. It was still underway the following day, when the third phase of the intrusion began and culminated in a small eruption. This suggests the possibility that the slow earthquake was triggered by the initial diking, and then in turn influenced the progression of the intrusion. Two of the largest previous slow earthquakes also hint at a connection between slow earthquakes and eruptive activity on Kilauea. The range of observations of the Father's Day events provides us with a unique opportunity to investigate the complex interactions between the tectonic processes of the south flank and magmatic processes within the summit and rift zones.

  4. Middle Holocene coastal environment and the rise of the Liangzhu City complex on the Yangtze delta, China

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Sun, Qianli; Thomas, Ian; Zhang, Li; Finlayson, Brian; Zhang, Weiguo; Chen, Jing; Chen, Zhongyuan

    2015-11-01

    The large prehistoric city of Liangzhu and its associated earthen dike emerged on the Yangtze delta-coast after two millennia of occupation in this area by scattered communities. Details of its development have been widely discussed in the literature. Our results reveal that the city was selectively built at the head of an embayment backed by hills, with close access to food, freshwater and timber, and with protection from coastal hazards. Radiocarbon and optically stimulated luminescence (OSL) dating shows that it was built around 4.8-4.5 ka, and the earthen dike was constructed a little later at 4.1 ka. During this time, saltwater wetlands were changing to freshwater in response to rapid coastal progradation as the postglacial sea-level rise stabilized. This facilitated rice farming and furthered the development of the city with elaborate city planning. The younger large-scale earthen dike and artificial ponds possibly suggest increasing demand for flood mitigation and irrigation.

  5. On the mechanisms governing dike arrest: Insight from the 2000 Miyakejima dike injection

    NASA Astrophysics Data System (ADS)

    Maccaferri, F.; Rivalta, E.; Passarelli, L.; Aoki, Y.

    2016-01-01

    Magma stored beneath volcanoes is sometimes transported out of the magma chambers by means of laterally propagating dikes, which can lead to fissure eruptions if they intersect the Earth's surface. The driving force for lateral dike propagation can be a lateral tectonic stress gradient, the stress gradient due to the topographic loads, the overpressure of the magma chamber, or a combination of those forces. The 2000 dike intrusion at Miyakejima volcano, Izu arc, Japan, propagated laterally for about 30 km and stopped in correspondence of a strike-slip system, sub-perpendicular to the dike plane. Then the dike continued to inflate, without further propagation. Abundant seismicity was produced, including five M > 6 earthquakes, one of which occurred on the pre-existing fault system close to the tip of the dike, at approximately the time of arrest. It has been proposed that the main cause for the dike arrest was the fault-induced stress. Here we use a boundary element numerical approach to study the interplay between a propagating dike and a pre-stressed strike-slip fault and check the relative role played by dike-fault interaction and topographic loading in arresting the Miyakejima dike. We calibrate the model parameters according to previous estimates of dike opening and fault displacement based on crustal deformation observations. By computing the energy released during the propagation, our model indicates whether the dike will stop at a given location. We find that the stress gradient induced by the topography is needed for an opening distribution along the dike consistent with the observed seismicity, but it cannot explain its arrest at the prescribed location. On the other hand, the interaction of dike with the fault explains the arrest but not the opening distribution. The joint effect of the topographic load and the stress interaction with strike-slip fault is consistent with the observations, provided the pre-existing fault system is pre-loaded with a significant stress, released gradually during the dike-fault interplay. Our results reveal how the mechanical interaction between dikes and faults may affect the propagation of magmatic intrusions in general. This has implications for our understanding of the geometrical arrangement of rift segments and transform faults in Mid Ocean Ridges, and for the interplay between dikes and dike-induced graben systems.

  6. Evidence for spreading in the lower Kam Group of the Yellowknife greenstone belt: Implications for Archaean basin evolution in the Slave Province

    NASA Technical Reports Server (NTRS)

    Helmstaedt, H.; Padgham, W. A.

    1986-01-01

    The Yellowknife greenstone belt is the western margin of an Archean turbidite-filled basin bordered on the east by the Cameron River and Beaulieu River volcanic belts (Henderson, 1981; Lambert, 1982). This model implies that rifting was entirely ensialic and did not proceed beyond the graben stage. Volcanism is assumed to have been restricted to the boundary faults, and the basin was floored by a downfaulted granitic basement. On the other hand, the enormous thickness of submarine volcanic rocks and the presence of a spreading complex at the base of the Kam Group suggest that volcanic rocks were much more widespread than indicated by their present distribution. Rather than resembling volcanic sequences in intracratonic graben structures, the Kam Group and its tectonic setting within the Yellowknife greenstone belt have greater affinities to the Rocas Verdes of southern Chile, Mesozoic ophiolites, that were formed in an arc-related marginal basin setting. The similarities of these ophiolites with some Archean volcanic sequences was previously recognized, and served as basis for their marginal-basin model of greenstone belts. The discovery of a multiple and sheeted dike complex in the Kam Group confirms that features typical of Phanerozoic ophiolites are indeed preserved in some greenstone belts and provides further field evidence in support of such a model.

  7. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Gregory, Robert T.; Taylor, Hugh P., Jr.

    1981-04-01

    Isotopic analyses of 75 samples from the Samail ophiolite indicate that pervasive subsolidus hydrothermal exchange with seawater occurred throughout the upper 75% of this 8-km-thick oceanic crustal section; locally, the H2O even penetrated down into the tectonized peridotite. Pillow lavas (δ18O = 10.7 to 12.7) and sheeted dikes (4.9 to 11.3) are typically enriched in 18O, and the gabbros (3.7 to 5.9) are depleted in 18O. In the latter rocks, water/rock ≤ 0.3, and δ18Ocpx ≈ 2.9 + 0.44 δ18Ofeld, indicating pronounced isotopic disequilibrium. The mineral δ18O values approximately follow an exchange (mixing) trajectory which requires that plagioclase must exchange with H2O about 3 to 5 times faster than clinopyroxene. The minimum δ18Ofeld value (3.6) occurs about 2.5 km below the diabase-gabbro contact. Although the gabbro plagioclase appears to be generally petrographically unaltered, its oxygen has been thoroughly exchanged; the absence of hydrous alteration minerals, except for minor talc and/or amphibole, suggests that this exchange occurred at T > 400°-500°C. Plagioclase δ18O values increase up section from their minimum values, becoming coincident with primary magmatic values near the gabbro-sheeted diabase contact and reaching 11.8 in the diabase dikes. These 18O enrichments in greenschist facies diabases are in part due to exchange with strongly 18O-shifted fluids, in addition to retrograde exchange at much lower temperatures. The δ18O data and the geometry of the mid-ocean ridge (MOR) magma chamber require that two decoupled hydrothermal systems must be present during much of the early spreading history of the oceanic crust (approximately the first 106 years); one system is centered over the ridge axis and probably involves several convective cells that circulate downward to the roof of the magma chamber, while the other system operates underneath the wings of the chamber, in the layered gabbros. Upward discharge of 18O-shifted water into the altered dikes from the lower system, just beyond the distal edge of the magma chamber, combined with the effects of continued low-T hydrothermal activity, produces the 18O enrichments in the dike complex. Integrating δ18O as a function of depth for the entire ophiolite establishes (within geologic and analytical error) that the average δ18O (5.7 ± 0.2) of the oceanic crust did not change as a result of all these hydrothermal interactions with seawater. Therefore the net change in δ18O of seawater was also zero, indicating that seawater is buffered by MOR hydrothermal circulation. Under steady state conditions the overall bulk 18O fractionation (Δ) between the oceans and primary mid-ocean ridge basalt magmas is calculated to be +6.1 ± 0.3, implying that seawater has had a constant δ18O≈-0.4 (in the absence of transient effects such as continental glaciation). Utilizing these new data on the depth of interaction of seawater with the oceanic crust, numerical modeling of the hydrothermal exchange shows that as long as worldwide spreading rates are greater than 1 km2/yr, 18O buffering of seawater will occur. These conclusions can be extended as far back in time as the Archean (> 2.6 eons) with the proviso that Δ may have been slightly smaller (about 5?) because of the overall higher temperatures that could have prevailed then. Thus ocean water has probably had a constant δ18O value of about -1.0 to +1.0 during almost all of earth's history.

  8. [Estimation of spur dike-affected fish habitat area].

    PubMed

    Ray-Shyan, Wu; Yan-Ru, Chen; Yi-Liang, Ge

    2012-04-01

    Based on the HEC-RAS and River 2D modes, and taking 5% change rate of weighted usable area (WUA) as the threshold to define the spur dike- affected area of target fish species Acrossocheilus paradoxus in Fazi River in Taiwan, this paper studied the affected area of the fish habitat by spur dike, and, in combining with the references about the installations of spur dikes in Taiwan in recent 10 years, analyzed the relative importance of related affecting factors such as dike height, dike length (water block rate), average slope gradient of river way, single or double spur dike, and flow discharge. In spite of the length of the dike, the affected area in downstream was farther, and was about 2-6 times as large as that in upstream. The ratio of the affected area in downstream / upstream decreased with increasing slope gradient, but increased with increasing dike length and flow discharge. When the discharge was approximate to 10 years return periods, the ratio of the affected area would be close to a constant of 2. Building double spur dike would produce a better WUA than building single spur dike.

  9. Mesozoic intra-arc tectonics in the NE Mojave Desert, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, K.A.; Schermer, E.R.; Walker, J.D.

    1993-04-01

    Field and U-Pb zircon geochronological data from the Tiefort Mts. (TM) and surrounding areas in the NE Mojave Desert provide new constraints on Precambrian to Paleozoic paleogeography and Mesozoic intra-arc tectonics. Amphibolite facies metasediments appear to correlate with lower Paleozoic miogeoclinal sequences. Coarse-grained K-feldspar augen gneiss occurs in sharp contact with the metasedimentary rocks; U-Pb dating yields a 1393[+-]12 Ma age. This gneiss is interpreted to represent cratonal basement of North America. A texturally and compositionally heterogeneous amphibolite-facies monzonitic complex which intrudes the basement and metasediments yields a mid-Jurassic age. Felsite and biotite granite that intrude the foliated monzonitic complexmore » locally contain the mylonitic fabric and appear to be syn-late kinematic. Undeformed pegmatite, granite, and microdiorite appear as dikes throughout the region. Vertical silicic dikes at southern TM trend N5-25E and are dated at 148[+-]14 Ma, coeval with the Independence dike swarm (IDS). Similar dikes that occur at TM trend N60-80E. Undeformed granite cross-cuts the foliated monzonite; some granitic rocks cut dikes of the IDs and are likely to be Cretaceous in age. The E- to SE-vergence and mid-late Jurassic age of ductile shear zones in the TM region are similar to that in nearby parts of the East Sierra Thrust System (ESTS). If NE and NNE dikes are IDS-equivalent, this implies clockwise, vertical-axis rotation of 30[degree]--90[degree] by younger structures. The authors interpret this to be related to late Cenozoic strike-slip faults. Restoration of folds and the IDS to the regional NW trend results in top to the E to NE sense of shear during Jurassic deformation. Deformation in the TM and areas to the north connects the ESTS from the Garlock fault to the central Mojave region indicating a region in which mid-crustal levels of the arc and cratonal basement experienced contractional tectonism during mid-Jurassic time.« less

  10. Automatic Monitoring System Design and Failure Probability Analysis for River Dikes on Steep Channel

    NASA Astrophysics Data System (ADS)

    Chang, Yin-Lung; Lin, Yi-Jun; Tung, Yeou-Koung

    2017-04-01

    The purposes of this study includes: (1) design an automatic monitoring system for river dike; and (2) develop a framework which enables the determination of dike failure probabilities for various failure modes during a rainstorm. The historical dike failure data collected in this study indicate that most dikes in Taiwan collapsed under the 20-years return period discharge, which means the probability of dike failure is much higher than that of overtopping. We installed the dike monitoring system on the Chiu-She Dike which located on the middle stream of Dajia River, Taiwan. The system includes: (1) vertical distributed pore water pressure sensors in front of and behind the dike; (2) Time Domain Reflectometry (TDR) to measure the displacement of dike; (3) wireless floating device to measure the scouring depth at the toe of dike; and (4) water level gauge. The monitoring system recorded the variation of pore pressure inside the Chiu-She Dike and the scouring depth during Typhoon Megi. The recorded data showed that the highest groundwater level insides the dike occurred 15 hours after the peak discharge. We developed a framework which accounts for the uncertainties from return period discharge, Manning's n, scouring depth, soil cohesion, and friction angle and enables the determination of dike failure probabilities for various failure modes such as overtopping, surface erosion, mass failure, toe sliding and overturning. The framework was applied to Chiu-She, Feng-Chou, and Ke-Chuang Dikes on Dajia River. The results indicate that the toe sliding or overturning has the highest probability than other failure modes. Furthermore, the overall failure probability (integrate different failure modes) reaches 50% under 10-years return period flood which agrees with the historical failure data for the study reaches.

  11. Fluid-driven fracture and melt transport through lithosphere on earth and terrestrial planets

    NASA Astrophysics Data System (ADS)

    Fialko, Yuri Alex

    Fluid-driven fracture is a fundamental geophysical phenomenon operating in planetary interiors on many scales. A few examples of geological processes involving fluid transport via self-induced fractures include melt segregation in the mantle, magma ascent through the lithosphere, crustal accretion at mid-ocean ridges and volcanic "hot spots", migration of metamorphic and sedimentary fluids in the crust, etc. Overall, fluid-driven (in particular, magma-driven) fracture plays a major role in chemical differentiation of the upper mantle. Because our ability to make direct observations of the dynamics and styles of fluid-driven fracture is quite limited, our understanding of this phenomenon relies on theoretical models that use fundamental physical principles and available field data to constrain the behavior of fluid-driven cracks at depth. This thesis proposes new and more accurate ways of theoretical and experimental description of magma transport in self-induced fractures, or dikes. Dike propagation is a complex process that involves elastic and inelastic deformation of the host rocks, rock fracture, viscous flow of magma, heat transfer, and phase transitions (e.g., rock crystallization and fusion, volatile exolution etc.). We consider relationships between different physical processes associated with magma transport in dikes by solving appropriate boundary value problems of continuum mechanics and heat and mass transfer. The first chapter of this thesis revises existing interpretations of available experimental data bearing on the role of fracture resistance in the overall energy balance during dike propagation. It is shown for the first time that the experimental data indicate that the rock tensile fracture energy, which is not a material property at elevated confining pressures, may substantially increase under in-situ stress conditions. The second chapter concentrates on the interaction between magma flow, heat transfer and phase changes associated with dike emplacement, and discusses some important implications of our results for the generation of the Earth's crust at mid-ocean ridges. In particular, we find that the thermal arrest lengths of typical mid-ocean ridge dikes are of the order of the wavelength of crustal thickness variations and transform fault spacing along slow spreading ridges. This suggests that thermal controls on the crustal melt delivery system could be an important factor in modulating these variations. The third chapter deals with fluid-mechanical aspects of lateral dike propagation in volcanic rift zones. We demonstrate the existence of a feedback between viscous pressure losses during magma transport at depth and the along-strike surface topography of a rift zone. Our estimated values of the along-strike slopes resulting from such a feedback are in general agreement with observations in Hawaiian rift zones. The fourth chapter explores mechanisms of emplacement of giant dike swarms that might have played a role in splitting continents and producing mass extinctions. We reconcile field observations of chilled margins, low crustal contamination, and large dike thicknesses with the theoretically inferred turbulent mode of magma flow in such dikes.

  12. Buffered and unbuffered dike emplacement on Earth and Venus - Implications for magma reservoir size, depth, and rate of magma replenishment

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Head, J. W., III

    1993-01-01

    Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.

  13. Gravity and the mechanics of dike intrusion

    NASA Astrophysics Data System (ADS)

    Townsend, M.

    2017-12-01

    Dikes are a diverse yet ubiquitous feature of terrestrial volcanic and magmatic settings, ranging in size from decimeter-thick aplite dikes in silicic plutons, to meters-thick dikes at basaltic shield volcanoes and rift zones, to 100-meter-thick "giant" dikes in swarms that can exceed over 2000 km in length. Dike profiles may be planar or curved, elliptical or teardrop-shaped, and blunt or tapered at the tips. The variety of size, shape, composition, and intrusion environment is in contrast with the ubiquitous observation that dikes tend to be vertically inclined, emanate from central reservoirs, and propagate laterally for distances that are 10 to over 100 times their height. In this talk, I will briefly review the geological and geophysical observations of dike geometry and propagation directions. These data motivate a 2D mechanical model for vertical dikes in which the primary loading is due to gravity. Using this model, I will explore fundamental relationships between density structure within the magma and surrounding crust, driving pressure, topographic and tectonic loading, and the size, shape, and depth at which dikes become vertically stable such that subsequent propagation is lateral. Modeling results highlight a dual effect of gravity, as both a source of diversity in stable dike geometries and as a robust mechanism for trapping dikes in the subsurface.

  14. Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah

    USGS Publications Warehouse

    Delaney, P.T.; Gartner, A.E.

    1997-01-01

    Some 200 shonkinite dikes, sills, and breccia bodies on the western Colorado Plateau of south-central Utah were intruded from approximately 3.7 to 4.6 Ma, contemporaneous with mafic volcanism along the nearby plateau margin. Thicknesses of dikes range to about 6 m; the log-normal mean thickness is 85 cm. Despite the excellent exposures of essentially all dikes in strata of the Jurassic San Rafael Group, their number is indeterminate from their outcrop and spacing because they are everywhere greatly segmented. By our grouping of almost 2000 dike segments, most dikes are less than 2 km in outcrop length; the longest is 9 km. Because the San Rafael magmas were primitive and probably ascended directly from the mantle, dike lengths in outcrop are much less than their heights. The present exposures probably lie along the irregular upper peripheries of dikes that lengthen and merge with depth. Orientations of steps on dike contacts record local directions of dike-fracture propagation; about half of the measurements plunge less than 30??, showing that lateral propagation at dike peripheries is as important as the vertical propagation ultimately responsible for ascent. The San Rafael dikes, now exposed after erosion of about 0.5-1.5 km, appear to thicken and shorten upward, probably because near-surface vesiculation enhanced magmatic driving pressures. Propagation likely ceased soon after the first dike segments began to feed nearby sills or vented to initiate small-volume eruptions. Most of the dikes are exposed in clastic strata of the Jurassic San Rafael Group. They probably acquired their strikes, however, while ascending along well-developed joints in massive sandstones of the underlying Glen Canyon Group. Rotation of far-field stresses during the emplacement interval cannot account for disparate strikes of the dikes, which vary through 110??, most lying between north and N25??W. Rather, the two regional horizontal principal stresses were probably nearly equal, and so the dominant N75??E direction of dike opening was not strongly favored. Across the center of the swarm, about 10 to 15 dikes overlap and produce 15-20 m of dilation. Many are in sufficient proximity that later dikes should be thinner than earlier ones if neither the magma pressures nor regional stresses were changing during the emplacement interval. However, dike thicknesses vary systematically neither along the length of the swarm nor in proportion to the number of neighboring dikes. It appears that crustal extension during the maginatic interval relieved compressive stresses localized by intrusion.

  15. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    USGS Publications Warehouse

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  16. Products of a Subglacial Flood Basalt Eruption

    NASA Astrophysics Data System (ADS)

    Gorny, C. F.; White, J. D. L.; Gudmundsson, M. T.

    2015-12-01

    The Snæbýlisheiði unit, SE Iceland, is a ca. 26 km³ elongate, flat-topped ridge of volcaniclastic debris coupled with and intruded by coherent basalt stretching over 34 km from the eruption site perpendicular to the rift fissure source. It formed from a single subglacial flood basalt eruption during a recent glaciation, and its elongation reflects glacial control on dispersal via the hydraulic potential gradient at the glacier's base, which drove towards the glacier terminus the meltwater+debris formed during the eruption by quenching and fragmentation. High magma discharge and outgassing drove segregation of magma into down-flow propagating intrusions. Edifice growth was mediated by the extent of ice melting, extent and efficiency of meltwater+debris drainage, and hydraulic gradients locally favoring meltwater accumulation. Eruption style reflected magma flux, edifice stability, and accessibility of water to the vent area via flooding or infiltration. Deposits reflect these competing factors in their chaotic internal organization and stratigraphy, limited lithofacies continuity, and diverse particle populations from multiple source vents. Linear growth of the ridge down-gradient from the eruption site was driven primarily by propagation and continuous fragmentation of shoaling intrusions that formed an interconnected intrusive complex with extensive peperites. Advance was along gently meandering and locally bifurcating sub-ice conduits within hyaloclastite with sheet-lobe levees and lobate fingered intrusions. Irregular dikes, apophyses, horns, and tendrils extended from the main body and generated voluminous lapilli tuff and contorticlasts while providing additional heat to the system. Prolonged transport and deposition of debris produced complexly bedded volcaniclastic deposits derived from and intruded by the basalt sheet. The bedding and depositional features of volcaniclastic debris and relationship to their adjacent intrusions suggest transport and deposition through a complex network of migrating and converging tunnels evolving with time under multiple flow regimes and sudden outbursts floods, rather than from a single jökulhlaup or within a single tunnel.

  17. Constraints on dike propagation from continuous GPS measurements

    USGS Publications Warehouse

    Segall, P.; Cervelli, Peter; Owen, S.; Lisowski, M.; Miklius, Asta

    2001-01-01

    The January 1997 East Rift Zone eruption on Kilauea volcano, Hawaii, occurred within a network of continuous Global Positioning System (GPS) receivers. The GPS measurements reveal the temporal history of deformation during dike intrusion, beginning ??? 8 hours prior to the onset of the eruption. The dike volume as a function of time, estimated from the GPS data using elastic Green's functions for a homogeneous half-space, shows that only two thirds of the final dike volume accumulated prior to the eruption and the rate of volume change decreased with time. These observations are inconsistent with simple models of dike propagation, which predict accelerating dike volume up to the time of the eruption and little or no change thereafter. Deflationary tilt changes at Kilauea summit mirror the inferred dike volume history, suggesting that the rate of dike propagation is limited by flow of magma into the dike. A simple, lumped parameter model of a coupled dike magma chamber system shows that the tendency for a dike to end in an eruption (rather than intrusion) is favored by high initial dike pressures, compressional stress states, large, compressible magma reservoirs, and highly conductive conduits linking the dike and source reservoirs. Comparison of model predictions to the observed dike volume history, the ratio of erupted to intruded magma, and the deflationary history of the summit magma chamber suggest that most of the magma supplied to the growing dike came from sources near to the eruption through highly conductive conduits. Interpretation is complicated by the presence of multiple source reservoirs, magma vesiculation and cooling, as well as spatial variations in dike-normal stress. Reinflation of the summit magma chamber following the eruption was measured by GPS and accompanied a rise in the level of the Pu'u O'o lava lake. For a spheroidal chamber these data imply a summit magma chamber volume of ??? 20 km3, consistent with recent estimates from seismic tomography. Continuous deformation measurements can be used to image the spatiotemporal evolution of propagating dikes and to reveal quantitative information about the volcanic plumbing systems. Copyright 2001 by the American Geophysical Union.

  18. Constraints on dike propagation from continuous GPS measurements

    NASA Astrophysics Data System (ADS)

    Segall, Paul; Cervelli, Peter; Owen, Susan; Lisowski, Mike; Miklius, Asta

    2001-09-01

    The January 1997 East Rift Zone eruption on Kilauea volcano, Hawaii, occurred within a network of continuous Global Positioning System (GPS) receivers. The GPS measurements reveal the temporal history of deformation during dike intrusion, beginning ˜8 hours prior to the onset of the eruption. The dike volume as a function of time, estimated from the GPS data using elastic Green's functions for a homogeneous half-space, shows that only two thirds of the final dike volume accumulated prior to the eruption and the rate of volume change decreased with time. These observations are inconsistent with simple models of dike propagation, which predict accelerating dike volume up to the time of the eruption and little or no change thereafter. Deflationary tilt changes at Kilauea summit mirror the inferred dike volume history, suggesting that the rate of dike propagation is limited by flow of magma into the dike. A simple, lumped parameter model of a coupled dike magma chamber system shows that the tendency for a dike to end in an eruption (rather than intrusion) is favored by high initial dike pressures, compressional stress states, large, compressible magma reservoirs, and highly conductive conduits linking the dike and source reservoirs. Comparison of model predictions to the observed dike volume history, the ratio of erupted to intruded magma, and the deflationary history of the summit magma chamber suggest that most of the magma supplied to the growing dike came from sources near to the eruption through highly conductive conduits. Interpretation is complicated by the presence of multiple source reservoirs, magma vesiculation and cooling, as well as spatial variations in dike-normal stress. Reinflation of the summit magma chamber following the eruption was measured by GPS and accompanied a rise in the level of the Pu'u O'o lava lake. For a spheroidal chamber these data imply a summit magma chamber volume of ˜20 km3, consistent with recent estimates from seismic tomography. Continuous deformation measurements can be used to image the spatiotemporal evolution of propagating dikes and to reveal quantitative information about the volcanic plumbing systems.

  19. Geology and complex collapse mechanisms of the 3.72 Ma Hannegan caldera, North Cascades, Washington, USA

    USGS Publications Warehouse

    Tucker, D.; Hildreth, W.; Ullrich, T.; Friedman, R.

    2007-01-01

    Contiguous ring faults of the 8 ?? 3.5 km Hannegan caldera enclose the Hannegan volcanics in the Cascade arc of northern Washington. The caldera collapsed in two phases, which each erupted rhyolitic ignimbrite (72.3%-75.2% SiO2). The first collapse phase, probably trap-door style, erupted the ???900-m-thick ignimbrite of Hannegan Peak at 3.722 ?? 0.020 Ma. This single cooling unit, generally welded, has an uppermost facies of nonwelded ignimbrite and fine ash. A short period of localized sedimentation followed. Eruption of the ignimbrite of Ruth Mountain then led to a second trap-door collapse as the first-phase partial ring fault propagated to the south to completely enclose the caldera. Wallrock breccias are intercalated as lenses and megabreccia blocks in both ignimbrites. The minimum intracaldera volume is 55-60 km3. No base is exposed, nor are outflow sheets preserved. Caldera collapse and glacial erosion have removed precaldera volcanic rocks, which survive only as intracaldera breccias. Rhyolite dikes and pods, one of which yielded a 40Ar/39Ar age of 3.72 ?? 0.34 Ma, intrude the ring fault and caldera fill. Dacite-andesite domes, dikes, and lava flows were emplaced subsequently; one lava flow gives a 40Ar/39Ar age of 2.96 ?? 0.20 Ma. The quartz diorite of Icy Peak and the granite of Nooksack Cirque (plutons with 206Pb/238U zircon ages of 3.42 ?? 0.10 Ma and 3.36 ?? 0.20 Ma, respectively) intrude caldera fill and basement rocks on the southwest margin of the caldera. Both plutons are now exceptionally well expose on high, glacially sculpted peaks within the caldera, indicating erosion of at least 1 km of intracaldera fill. Hannegan caldera anchors the northeast end of a linear NE-SW age-progressive migration of magmatic focus from the Chilliwack batholith to the active Mount Baker volcano. ?? 2006 Geological Society of America.

  20. Internal structure of Puna Ridge: evolution of the submarine East Rift Zone of Kilauea Volcano, Hawai ̀i

    NASA Astrophysics Data System (ADS)

    Leslie, Stephen C.; Moore, Gregory F.; Morgan, Julia K.

    2004-01-01

    Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawai ̀i, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early arrival times or 'pull-up' of sediment reflections on time sections imply a region of high P-wave velocity ( Vp) along the submarine ERZ. Refraction measurements along the axis of the ridge yield Vp values of 2.7-4.85 km/s within the upper 1 km of the volcanic pile and 6.5-7 km/s deeper within the edifice. Few coherent reflections are observed on seismic reflection sections within the high-velocity area, suggesting steeply dipping dikes and/or chaotic and fractured volcanic materials. Southeastward dipping reflections beneath the NW flank of Puna Ridge are interpreted as the buried flank of the older Hilo Ridge, indicating that these two ridges overlap at depth. Gravity measurements define a high-density anomaly coincident with the high-velocity region and support the existence of a complex of intrusive dikes associated with the ERZ. Gravity modeling shows that the intrusive core of the ERZ is offset to the southeast of the topographic axis of the rift zone, and that the surface of the core dips more steeply to the northwest than to the southeast, suggesting that the dike complex has been progressively displaced to the southeast by subsequent intrusions. The gravity signature of the dike complex decreases in width down-rift, and is absent in the distal portion of the rift zone. Based on these observations, and analysis of Puna Ridge bathymetry, we define three morphological and structural regimes of the submarine ERZ, that correlate to down-rift changes in rift zone dynamics and partitioning of intrusive materials. We propose that these correspond to evolutionary stages of developing rift zones, which may partially control volcano growth, mobility, and stability, and may be observable at many other oceanic volcanoes.

  1. What lies beneath: geophysical mapping of a concealed Precambrian intrusive complex along the Iowa–Minnesota border

    USGS Publications Warehouse

    Drenth, Benjamin J.; Anderson, Raymond R.; Schulz, Klaus J.; Feinberg, Joshua M.; Chandler, Val W.; Cannon, William F.

    2015-01-01

    Large-amplitude gravity and magnetic highs over northeast Iowa are interpreted to reflect a buried intrusive complex composed of mafic–ultramafic rocks, the northeast Iowa intrusive complex (NEIIC), intruding Yavapai province (1.8–1.72 Ga) rocks. The age of the complex is unproven, although it has been considered to be Keweenawan (∼1.1 Ga). Because only four boreholes reach the complex, which is covered by 200–700 m of Paleozoic sedimentary rocks, geophysical methods are critical to developing a better understanding of the nature and mineral resource potential of the NEIIC. Lithologic and cross-cutting relations interpreted from high-resolution aeromagnetic and airborne gravity gradient data are presented in the form of a preliminary geologic map of the basement Precambrian rocks. Numerous magnetic anomalies are coincident with airborne gravity gradient (AGG) highs, indicating widespread strongly magnetized and dense rocks of likely mafic–ultramafic composition. A Yavapai-age metagabbro unit is interpreted to be part of a layered intrusion with subvertical dip. Another presumed Yavapai unit has low density and weak magnetization, observations consistent with felsic plutons. Northeast-trending, linear magnetic lows are interpreted to reflect reversely magnetized diabase dikes and have properties consistent with Keweenawan rocks. The interpreted dikes are cut in places by normally magnetized mafic–ultramafic rocks, suggesting that the latter represent younger Keweenawan rocks. Distinctive horseshoe-shaped magnetic and AGG highs correspond with a known gabbro, and surround rocks with weaker magnetization and lower density. Here, informally called the Decorah complex, the source body has notable geophysical similarities to Keweenawan alkaline ring complexes, such as the Coldwell and Killala Lake complexes, and Mesoproterozoic anorogenic complexes, such as the Kiglapait, Hettasch, and Voisey’s Bay intrusions in Labrador. Results presented here suggest that much of the NEIIC is composed of such complexes, and broadly speaking, may be a discontinuous group of several intrusive bodies. Most units are cut by suspected northwest-trending faults imaged as magnetic lineaments, and one produces apparent sinistral fault separation of a dike in the eastern part of the survey area. The location, trend, and apparent sinistral sense of motion are consistent with the suspected faults being part of the Belle Plaine fault zone, a complex transform fault zone within the Midcontinent rift system that is here proposed to correspond with a major structural discontinuity.

  2. Relating Seismicity to Dike Emplacement, and the Conundrum of Dyke-Parallel Faulting

    NASA Astrophysics Data System (ADS)

    Dering, G.; Micklethwaite, S.; Cruden, A. R.; Barnes, S. J.; Fiorentini, M. L.

    2016-12-01

    Seismic monitoring shows that faulting and fracturing precede and accompany magma emplacement on timescales of hours and days. One outstanding problem is that the precision of earthquake hypocentre locations is typically limited to tens or hundreds of meters and cannot resolve whether the hypocentres relate to strain of wall rock fragments within the dikes, in a process zone around the intrusion or peripherally in the country rock. We examine a swarm of 19 dolerite dikes, near Albany, Western Australia using an unmanned aerial vehicle and Structure-from-Motion photogrammetry to obtain accurate, high resolution 3D reconstructions of outcrop and to digitally extract structural data. We find rare overprinting relationships indicate dike emplacement and faulting was coeval and that the number of faults/fractures increase into the dike swarm (2.2 ± 0.7 more fractures, per unit length in host rocks intruded by dikes relative to the background value). The faults are cataclasite-bearing and parallel to the dikes but intriguingly dike emplacement appears to have been accommodated by mode 1 extension. We further provide the first evidence that dike-parallel shear failure occurs in a damage zone associated with the dike swarm. These results support seismological observations of dike-parallel shear failure associated with some intrusion events, which contradict Mohr-Coulomb theory and numerical modelling of dike propagation in brittle-elastic rock, where shear failure is predicted to occur on faults oriented approximately 30° to the dyke plane. We suggest the dike swarm occupies a network of joints and fractures formed prior to swarm emplacement but then reactivated ahead of propagating dikes and remaining active during the early stages of emplacement.

  3. Possible contribution of ice-sheet/lithosphere interactions to past glaciological changes in Greenland

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Pollard, D.; Stevens, N. T.; Pourpoint, M.

    2017-12-01

    Ice-lithosphere interactions may have influenced the history of ice-sheet sensitivity to climate change. The Greenland ice sheet (GIS) is sensitive to warming, and is likely to be largely removed if subjected to relatively small additional temperature increases. The recent report (Schaefer et al., 2016, Nature) of near-complete GIS removal under modest Pleistocene forcing suggests that GIS sensitivity may be even greater than generally modeled, but lack of major Holocene retreat is more consistent with existing models. As shown by Stevens et al. (2016, JGR), peak lithospheric flexural stresses associated with ice-age GIS cycling are of the same order as dike-driving stresses in plutonic systems, and migrate over ice-age cycles. The full analysis by Stevens et al. suggests the possibility that the onset of cyclic ice-sheet loading allowed deep melt associated with the passage of the Icelandic hot spot beneath Greenland to work up though the crust to or near the base of the ice sheet, helping explain the anomalous geothermal heat fluxes observed at the head of the Northeast Greenland Ice Stream and elsewhere in the northern part of GIS. If ice-age cycling aided extraction of an existing reservoir of melted rock, then geothermal heat flux would have risen with the onset of extraction and migration, but with a subsequent fall associated with reservoir depletion. Simple parameterized flow-model simulations confirm intuition that a higher geothermal flux makes deglaciation easier, with the northern part of the ice sheet especially important. Large uncertainties remain in quantification, but we suggest the hypothesis that, following the onset of ice-age cycling, deglaciation of the GIS first became easier and then more difficult in response to feedbacks involving the ice sheet and the geological system beneath. In turn, this suggests that evidence of past deglaciation under moderate forcing is consistent with existing ice-sheet models.

  4. A model for radial dike emplacement in composite cones based on observations from Summer Coon volcano, Colorado, USA

    USGS Publications Warehouse

    Poland, Michael P.; Moats, W.P.; Fink, J.H.

    2008-01-01

    We mapped the geometry of 13 silicic dikes at Summer Coon, an eroded Oligocene stratovolcano in southern Colorado, to investigate various characteristics of radial dike emplacement in composite volcanoes. Exposed dikes are up to about 7 km in length and have numerous offset segments along their upper peripheries. Surprisingly, most dikes at Summer Coon increase in thickness with distance from the center of the volcano. Magma pressure in a dike is expected to lessen away from the pressurized source region, which would encourage a blade-like dike to decrease in thickness with distance from the center of the volcano. We attribute the observed thickness pattern as evidence of a driving pressure gradient, which is caused by decreasing host rock shear modulus and horizontal stress, both due to decreasing emplacement depths beneath the sloping flanks of the volcano. Based on data from Summer Coon, we propose that radial dikes originate at depth below the summit of a host volcano and follow steeply inclined paths towards the surface. Near the interface between volcanic cone and basement, which may represent a neutral buoyancy surface or stress barrier, magma is transported subhorizontally and radially away from the center of the volcano in blade-like dikes. The dikes thicken with increasing radial distance, and offset segments and fingers form along the upper peripheries of the intrusions. Eruptions may occur anywhere along the length of the dikes, but the erupted volume will generally be greater for dike-fed eruptions far from the center of the host volcano owing to the increase in driving pressure with distance from the source. Observed eruptive volumes, vent locations, and vent-area intrusions from inferred post-glacial dike-fed eruptions at Mount Adams, Washington, USA, support the proposed model. Hazards associated with radial dike emplacement are therefore greater for longer dikes that propagate to the outer flanks of a volcano. ?? Springer-Verlag 2007.

  5. Rifts of deeply eroded Hawaiian basaltic shields: A structural analog for large Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Knight, Michael D.; Walker, G. P. L.; Mouginis-Mark, P. J.; Rowland, Scott K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars.

  6. Dike/Drift Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Gaffiney

    2004-11-23

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses ofmore » the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).« less

  7. The rheological behavior of fracture-filling cherts: example of Barite Valley dikes, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Ledevin, M.; Arndt, N.; Simionovici, A.

    2014-05-01

    A 100 m-thick complex of near-vertical carbonaceous chert dikes marks the transition from the Mendon to Mapepe Formations (3260 Ma) in the Barberton Greenstone Belt, South Africa. Fracturing was intense in this area, as shown by the profusion and width of the dikes (ca. 1 m on average) and by the abundance of completely shattered rocks. The dike-and-sill organization of the fracture network and the upward narrowing of some of the large veins indicate that at least part of the fluid originated at depth and migrated upward in this hydrothermal plumbing system. Abundant angular fragments of silicified country rock are suspended and uniformly distributed within the larger dikes. Jigsaw-fit structures and confined bursting textures indicate that hydraulic fracturing was at the origin of the veins. The confinement of the dike system beneath an impact spherule bed suggests that the hydrothermal circulations were triggered by the impact and located at the external margin of a large crater. From the geometry of the dikes and the petrography of the cherts, we infer that the fluid that invaded the fractures was thixotropic. On one hand, the injection of black chert into extremely fine fractures is evidence for low viscosity at the time of injection; on the other hand, the lack of closure of larger veins and the suspension of large fragments in a chert matrix provide evidence of high viscosity soon thereafter. The inference is that the viscosity of the injected fluid increased from low to high as the fluid velocity decreased. Such rheological behavior is characteristic of media composed of solid and colloidal particles suspended in a liquid. The presence of abundant clay-sized, rounded particles of silica, carbonaceous matter and clay minerals, the high proportion of siliceous matrix and the capacity of colloidal silica to form cohesive 3-D networks through gelation, account for the viscosity increase and thixotropic behavior of the fluid that filled the veins. Stirring and shearing of the siliceous mush as it was injected imparted a low viscosity by decreasing internal particle interactions; then, as the flow rate declined, the fluid became highly viscous as the inter-particulate bonds (siloxane bonds, Si-O-Si) were reconstituted. The gelation of the chert was rapid and the structure persisted at low temperature (T < 200 °C) before fractures were sealed and chert indurated.

  8. Sudbury project (University of Muenster-Ontario Geological Survey): Sr-Nd in heterolithic breccias and gabbroic dikes

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Deutsch, A.; Lakomy, R.; Brockmeyer, P.; Dressler, B.

    1992-01-01

    One major objective of our Sudbury project was to define origin and age of the huge breccia units below and above the Sudbury Igneous Complex (SIC). The heterolithic Footwall Breccia (FB) represents a part of the uplifted crater floor. It contains subrounded fragments up to several meters in size and lithic fragments with shock features (greater than 10 GPa) embedded into a fine- to medium-grained matrix. Epsilon(sub Nd)-epsilon(sub Sr) relationships point to almost exclusively parautochthonous precursor lithologies. The different textures of the matrix reflect the metamorphic history of the breccia layer; thermal annealing by the overlying hot impact melt sheet (SIC) at temperatures greater than 1000 C resulted in melting of the fine crushed material, followed by an episode of metasomatic K-feldspar growth and, finally, formation of low-grade minerals such as actinolite and chlorite. Isotope relationships in the Onaping breccias (Gray and Green Member) are much more complex. All attempts to date the breccia formation failed: Zircons are entirely derived from country rocks and lack the pronounced Pb loss caused by the heat of the slowly cooling impact melt sheet (SIC). Rb-Sr techniques using either lithic fragments of different shock stages or the thin slab method, set time limits for the apparently pervasive alkali mobility in these suevitic breccias. The data array and the intercept in the plots point to a major Rb-Sr fractionation around 1.54 Ga ago. This model age is in the same range as the age obtained for the metasomatic matrix of the FB. Rb-Sr dating of a shock event in impact-related breccias seems to be possible only if their matrix had suffered total melting by the hot melt sheet (FB) or if they contain a high fraction of impact melt (suevitic Onaping breccias), whereas the degree of shock metamorphism in rock or lithic fragments plays a minor role. In the Sudbury case, however, the impact melt in the seuvitic breccias is devitrified and recrystallized, which changed Rb/Sr ratios quite drastically. Therefore, the Onaping breccias give only age limits for alteration and low-grade metamorphism. The Sm-Nd system was not reset during the Sudbury event; clasts as well as the matrix in the FB and in the Onaping breccias show preimpact 'Archean' Nd isotope signatures.

  9. Dike orientations in the late jurassic independence dike swarm and implications for vertical-axis tectonic rotations in eastern California

    USGS Publications Warehouse

    Hopson, R.F.; Hillhouse, J.W.; Howard, K.A.

    2008-01-01

    Analysis of the strikes of 3841 dikes in 47 domains in the 500-km-long Late Jurassic Independence dike swarm indicates a distribution that is skewed clockwise from the dominant northwest strike. Independence dike swarm azimuths tend to cluster near 325?? ?? 30??, consistent with initial subparallel intrusion along much of the swarm. Dike azimuths in a quarter of the domains vary widely from the dominant trend. In domains in the essentially unrotated Sierra Nevada block, mean dike azimuths range mostly between 300?? and 320??, with the exception of Mount Goddard (247??). Mean dike azimuths in domains in the Basin and Range Province in the Argus, Inyo, and White Mountains areas range from 291?? to 354?? the mean is 004?? in the El Paso Mountains. In the Mojave Desert, mean dike azimuths range from 318?? to 023??, and in the eastern Transverse Ranges, they range from 316?? to 051??. Restoration for late Cenozoic vertical-axis rotations, suggested by paleodeclinations determined from published studies from nearby Miocene and younger rocks, shifts dike azimuths into better agreement with azimuths measured in the tectonically stable Sierra Nevada. This confirms that vertical-axis tectonic rotations explain some of the dispersion in orientation, especially in the Mojave Desert and eastern Transverse Ranges, and that the dike orientations can be a useful if imperfect guide to tectonic rotations where paleomagnetic data do not exist. Large deviations from the main trend of the swarm may reflect (1) clockwise rotations for which there is no paleomagnetic evidence available, (2) dike intrusions of other ages, (3) crack filling at angles oblique or perpendicular to the main swarm, (4) pre-Miocene rotations, or (5) unrecognized domain boundaries between dike localities and sites with paleomagnetic determinations. ?? 2008 The Geological Society of America.

  10. Fluid inclusion and vitrinite-reflectance geothermometry compared to heat-flow models of maximum paleotemperature next to dikes, western onshore Gippsland Basin, Australia

    USGS Publications Warehouse

    Barker, C.E.; Bone, Y.; Lewan, M.D.

    1999-01-01

    Nine basalt dikes, ranging from 6 cm to 40 m thick, intruding the Upper Jurassic-Lower Cretaceous Strzelecki Group, western onshore Gippsland Basin, were used to study maximum temperatures (Tmax) reached next to dikes. Tmax was estimated from fluid inclusion and vitrinitereflectance geothermometry and compared to temperatures calculated using heat-flow models of contact metamorphism. Thermal history reconstruction suggests that at the time of dike intrusion the host rock was at a temperature of 100-135??C. Fracture-bound fluid inclusions in the host rocks next to thin dikes ( 1.5, using a normalized distance ratio used for comparing measurements between dikes regardless of their thickness. In contrast, the pattern seen next to the thin dikes is a relatively narrow zone of elevated Rv-r. Heat-flow modeling, along with whole rock elemental and isotopic data, suggests that the extended zone of elevated Rv-r is caused by a convection cell with local recharge of the hydrothermal fluids. The narrow zone of elevated Rv-r found next to thin dikes is attributed to the rise of the less dense, heated fluids at the dike contact causing a flow of cooler groundwater towards the dike and thereby limiting its heating effects. The lack of extended heating effects suggests that next to thin dikes an incipient convection system may form in which the heated fluid starts to travel upward along the dike but cooling occurs before a complete convection cell can form. Close to the dike contact at X/D 1.5. ?? 1998 Elsevier Science B.V. All rights reserved.

  11. Constraints on the Chief Joseph Dike Swarm of the Columbia River Flood Basalts from the legacy dataset of William H. Taubeneck

    NASA Astrophysics Data System (ADS)

    Nasholds, M. W.; Karlstrom, L.; Morriss, M. C.

    2016-12-01

    The Chief Joseph dike swarm, spanning northeastern OR, southeastern WA, and parts of western ID, is one of the primary dike swarms feeding the mid-Miocene Columbia River Basalt Group (CRBG) (e.g. Reidel et al. 2013). William H. Taubeneck (1923-2016) mapped these and other CRBG feeder dikes over 40 years, generating an expansive dataset with locations and characteristics of dike segments, primarily centered within the Wallowa Mountains, extending as far north as Lewiston, ID, and as far south as Farewell Bend, OR. Taubeneck is credited with originally defining the Chief Joseph swarm, but his data was not made available until his death. Using ArcMap, we are in the process of digitizing, field checking, and making available relevant data from Taubeneck's annotated maps and notebooks. We extract dike locations, orientations, thicknesses, and host rock characteristics. We present an overview of the Taubeneck data, relating to Chief Joseph dikes in WA, ID, and newer field measurements in the Wallowas, OR. Strikes of the 4410 dike segments range from NNW to NNE, with outliers that define smaller clusters with distinct orientations. The dikes have primarily near-vertical dips, paleo-depths ranging from 2 km to 0.3 km, and limited observations indicate widths from <5 m to 40 m. A majority of dikes are exposed in uplifted granites of the Wallowa batholith and metamorphosed host: 1606 dikes occur in quartz diorite, 60 occur in the Hurwal Formation, 139 occur in metavolcanics, while 401 occur in CRBG basalt. The other 2204 dikes are not in the Chief Joseph area. There does not seem to be a significant relation between host rock composition and dike orientation, although wall rock interactions are more dramatic in non-granitic Tertiary rocks. This dataset may provide further insight into both dike emplacement dynamics and the plumbing system of the CRBG.

  12. An integrated geophysical survey of Kilbourne Hole, southern New Mexico: Implications for near surface exploration of Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Maksim, Nisa

    Features such as the Home Plate plateau on Mars, a suspected remnant of an ancient phreatomagmatic eruption, can reveal important information about paleohydrologic conditions. The eruption intensity of a phreatomagmatic volcano is controlled mainly by the quantity of water and magma, the internal geometry of the volcano, and the depth of the interaction zone between magma and water. In order to understand the paleohydrologic conditions at the time of eruption, we must understand all the factors that influenced the phreatomagmatic event. I conducted an integrated geophysical survey, which are magnetic and gravity surveys, and a ground-penetrating radar (GPR) surveys at Kilbourne Hole, a phreatomagmatic crater in southern New Mexico. These investigations serve an analog paleo-hydrogeological study that could be conducted on Mars and the Moon with an implication for planetary exploration. These geophysical surveys are designed to delineate the internal structure of a phreatomagmatic volcano and to define the volumes and masses of volcanic dikes and excavation unit, the depth of feeder dikes, and impacted velocity of the volcanic blocks. For the gravity and magnetic surveys at Kilbourne Hole, I collected data at a total of 171 gravity survey stations and 166 magnetics survey stations. A 2D gravity and magnetic inverse model was developed jointly to map the body of the magma intrusions and the internal structure of Kilbourne Hole. A total of 6 GPR surveys lines were also completed at Kilbourne Hole to image and to define locations of pyroclastic deposits, volcanic sags and blocks, the sizes distribution of volcanic blocks, and the impact velocity of the volcanic blocks. Using the size distribution and impact velocity of volcanic blocks from our GPR data, I derived the initial gas expansion velocity and the time duration of the gas expansion phase of the Kilbourne Hole eruption. These obtained parameters (volumes, masses, and depths of the feeder dikes and the excavation zone, and the initial gas expansion velocity) are used to quantitatively calculate the mass, volume and condition of groundwater involved in the magma-water interaction process that caused Kilbourne Hole eruption. The joint gravity and magnetic 2D inversion reveals two main bodies of basaltic intrusion dike underneath Kilbourne Hole. The depth to the top of the dike is varied between 0.91 and 3.58 km from the ground surface. The models are able to delineate several complex areas of slumping blocks and collapsed crater, the area of the diatreme and the area of the original crater's excavation. The estimated depth of the diatreme is 13.6-15.8 km. The model shows that the tuff ring deposits extend 600 m to 1 km away from the crater rim and vary in thickness (50-150 m). Based on our 2D gravity and magnetic inverse models of Kilbourne Hole, we were able to calculate the mass of the magma and the final product of this research, which is the mass of water that fed the Kilbourne Hole eruption. The total mass of the magma (M m) is 1.38 +/- 0.15 x 1013 kg and the mass of water (Mw) is (1.09 +/- 0.31) x 10 13 kg. The water to rock mass ratio of the Kilbourne Hole eruption was 0.01-0-02. With the GPR surveys results, we estimate that the initial gas expansion velocity (V0) of the Kilbourne Hole eruption was 123 +/- 9 m/s and the time duration of the gas expansion phase was 92 +/- 11 s. The obtained initial gas expansion velocity and the depth of the dikes suggest that the eruption occurred at an initial pressure of 163 +/- 9 bar. I also utilized the lunar gravity field measured by the Gravity Recovery and Interior Laboratory (GRAIL) mission to reconstruct the history of lunar mascon basin formation and magmatic activity. We hypothesize that a combination of uplifted lunar Moho, impact melt sheets, and brecciated crust creates the gravity signature of lunar mascon basins. To test this hypothesis, We performed low-pass and preferential filtering on the free-air anomaly map derived from GRAIL lunar gravity model GL0660A. Using the preferential filtering method, we isolated the gravity anomalies associated with structures at 16 km and 30 km depth where we can avoid high-frequency gravity signal from the highly impacted subsurface topography and mare basalt. We construct four 2D inversion models from the filtered gravity data to visualize the internal structure of lunar mascon basins. We conclude from our 2D inversion models that the parameters that determine the gravity signatures of mascon basins are: (1) the extent of the impact-melt sheet; (2) the depth to the mantle; and (3) the thickness and density of the surrounding crust.

  13. New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials

    NASA Astrophysics Data System (ADS)

    Duszyński, Remigiusz; Duszyńska, Angelika; Cantré, Stefan

    2017-12-01

    The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.

  14. Preliminary AMS Study in Cretaceous Igneous Rocks of Valle Chico Complex, Uruguay: Statistical Determination of Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Mena, M.; Sanchez-Bettucci, L.

    2009-05-01

    The Valle Chico Complex, at southeast Uruguay, is related Paraná-Etendeka Province. The study involved basaltic lavas, quarz-syenites, and rhyolitic and trachytic dikes. Samples were taken from 18 sites and the AMS of 250 specimens was analyzed. The AMS is modeled by a second order tensor K and it graphical representation is a symmetric ellipsoid. The axes relations determine parameters which describe different properties like shape, lineation, and foliation, degree of anisotropy and bulk magnetic susceptibility. Under this perspective, one lava, dike, or igneous body can be considered a mosaic of magnetic susceptibility domains (MSD). The DSM is an area with specific degree of homogeneity in the distribution of parameters values and cinematic conditions. An average tensor would weigh only one MSD, but if the site is a mosaic, subsets of specimens with similar parameters can be created. Hypothesis tests can be used to establish parameter similarities. It would be suitable considered as a MSD the subsets with statistically significant differences in at least one of its means parameters, and therefore, be treated independently. Once defined the MSDs the tensor analysis continues. The basalt-andesitic lavas present MSD with an NNW magnetic foliation, dipping 10. The K1 are sub-horizontal, oriented E-W and reprsent the magmatic flow direction. The quartz-syenites show a variable magnetic fabric or prolate ellipsoids mayor axes dispose parallel to the flow direction (10 to the SSE). Deformed syenites show N300/11 magnetic foliation, consistent with the trend of fractures. The K1 is subvertical. The MSD defined in rhyolitic dikes have magnetic foliations consistent with the structural trend. The trachytic dikes show an important indetermination in the magnetic response. However, a 62/N90 magnetic lineation was defined. The MSDs obtained are consistent with the geological structures and contribute to the knowledge of the tectonic, magmatic and kinematic events.

  15. 106. DAM EARTH DIKE SUBMERSIBLE DAMS & DIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. DAM - EARTH DIKE - SUBMERSIBLE DAMS & DIKE CONN. AT MOVABLE DAM (ML-8-52/2-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  16. Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico

    USGS Publications Warehouse

    Delaney, Paul T.; Pollard, David D.

    1981-01-01

    We have studied a small group of minette dikes and plugs that crop out within a flat-lying sequence of siltstone and shale near Ship Rock, a prominent volcanic throat of tuff breccia in northwestern New Mexico. Seven dikes form a radial pattern about Ship Rock we describe in detail the northeastern dike, which has an outcrop length of about 2,900 m, an average thickness of 2.3 m, and a maximum thickness of 7.2 m. The dike is composed of 35 discrete segments arranged in echelon; orientation. of dike segments ranges systematically from N. 52? E. to N. 66? E. A prominent joint set strikes parallel to the segments and is localized within several tens of meters of the dike. Regional joint patterns display no obvious relation to dike orientation. Small offsets of segment contacts, as well as wedge-shaped bodies of crumpled host rock within segments mark the sites of coalescence of smaller segments during dike growth. Bulges in the dike contact, which represent a nondilational component of growth, indicate that wall rocks were brecciated and eroded during the flow of magma. Breccias make up about 9 percent of the 7,176-m 2 area of the dike, are concentrated in its southwest half, and are commonly associated with its thickest parts. We also describe three subcircular plugs; each plug is smaller than 30 m in diameter, is laterally associated with a dike, and contains abundant breccias. Field evidence indicates that these plugs grew from the dikes by brecciation and erosion of wallrocks and that the bulges in the contact of the northeastern dike represent an initial stage of this process. From continuum-mechanical models of host-rock deformation, we conclude that dike propagation was the dominant mechanism for creating conduits for magma ascent where the host rock was brittle and elastic. At a given driving pressure, dikes dilate to accept greater volumes of magma than plugs, and for a given dilation, less work is done on the host rocks. In addition, the pressure required for dike growth decreases with dike length. From numerical solutions for dilation of cracks oriented like segments of the northeastern dike, we find that we can best model the form of the dike by treating it as composed of 10 cracks rather than 35. We attribute this result to coalescence of adjacent segments below the present outcrop and to inelastic deformation at segment ends. Using a driving pressure of 2 MPa (20 bars), we estimate a shear modulus of about 10^3 MPa for the host rocks, in agreement with laboratory tests on soft shale. A propagation criterion based on stress intensity at the segment ends indicates a fracture toughness of the host rocks of about 100 MPa-m^? , a hundredfold greater than values reported from laboratory tests. Segmentation of fractures is common in many materials and has been observed during fissure eruptions at Kilauea Volcano in Hawaii. At the northeastern dike, we attribute segmentation to local rotation of the direction of least principal compressive stress. From continuum-mechanical models of magma and heat flow in idealized conduits, we conclude that magma flows far more rapidly and with less relative heat loss in plugs than in dikes. Although dikes are the preferred form for emplacement, plugs are the preferred form for the flow of magma. We present a numerical solution for volumetric flow rate and wall heat flux for the northeastern dike and find that although the flow rate is extremely sensitive to conduit geometry, the rate of heat loss to wall rocks is not. During emplacement of the northeastern dike, local flow rate increased where wall rocks were eroded and reached a maximum of about 45 times the mean initial rate, whereas the maximum rate of heat loss to wallrocks increased to only 1.6 times the mean initial rate. An inferred progression from continuous magma flow along a dike to flow from a plug agrees well with observations of volcanic eruptions that begin from fissures and later are localized at discrete vents. We

  17. Global Projection of Coastal Exposure Associated with Sea-level Rise beyond Tipping Points

    NASA Astrophysics Data System (ADS)

    Tawatari, R.; Miyazaki, C.; Iseri, Y.; Kiguchi, M.; Kanae, S.

    2015-12-01

    Sea-level rise due to global warming becomes a great matter of concern for global coastal area. Additionally, it has reported in fifth report of IPCC (Intergovernmental Panel on Climate Change) that deglaciation of Greenland ice sheet and Antarctic ice sheet would occur rapidly and enhance sea-level rise if temperature passes certain "Tipping point". In terms of projecting damage induced by sea-level rise globally, some previous studies focused on duration until mainly 2100. Furthermore long-term estimations on centuries to millennial climatic response of the ice sheets which are supposed to be triggered within this or next century would be also important to think about future climate and lifestyle in coastal . In this study, I estimated the long term sea-level which take into account the tipping points of Greenland ice sheet (1.4℃) as sum of 4 factors (thermal expansion, glacier and ice cap, Greenland ice sheet, Antarctic ice sheet). The sea-level follows 4 representative concentration pathways up to 3000 obtained through literature reviewing since there were limited available sea-level projections up to 3000. I also estimated a number of affected population lives in coastal area up to 3000 with using the estimated sea-level. The cost for damage, adaptation and mitigation would be also discussed. These estimations would be useful when decision-makers propose policies for construction of dikes and proposing mitigation plans for sustainable future. The result indicates there would be large and relatively rapid increases in both sea-level rise and coastal exposure if global mean temperature passes the tipping point of Greenland ice sheet. However the tipping points, melting rate and timescale of response are highly uncertain and still discussed among experts. Thus more precise and credible information is required for further accurate estimation of long-term sea-level rise and population exposure in the future.

  18. Mechanical models for dikes: A third school of thought

    NASA Astrophysics Data System (ADS)

    Townsend, Meredith R.; Pollard, David D.; Smith, Richard P.

    2017-04-01

    Geological and geophysical data from continental volcanic centers and giant radial swarms, and from oceanic shield volcanoes and rift zones, indicate that dikes propagate laterally for distances that can be 10 to over 100 times their height. What traps dikes within the shallow lithosphere and promotes these highly eccentric shapes? Gravity-induced stress gradients in the surrounding rock and pressure gradients in the magma are the primary loading mechanisms; pressure gradients due to magma flow are secondary to insignificant, because the flow direction is dominantly horizontal. This configuration of vertical, blade-shaped dikes with horizontal dike propagation and magma flow is fundamentally different from the two dike model configurations described in a recent review paper as two schools of thought for mechanical models of dikes. In School I, a dike is disconnected from its source and ascends under the influence of buoyancy. In School II, a dike is connected to a magma reservoir and is driven upward by magma flux from the source. We review the geological and geophysical data supporting the vertical dike - horizontal flow/propagation configuration and suggest the abundance and veracity of these data in many different geological settings, and the modeling results that address this physical process, warrant adding this as a third school of thought. A new analytical solution for the boundary-value problem of a homogeneous, isotropic, and linear elastic solid with a vertical, fluid-filled crack is used to investigate the effects of gravitationally induced stress and pressure gradients on the aperture distribution, dike-tip stress intensity, and stable height. Model results indicate that in a homogeneous crust, dikes can achieve stable heights greater than a kilometer only if the host rock fracture toughness KIC 100 MPa · m1/2. However, density stratification of the crust is an effective mechanism for trapping kilometer-scale dikes even if the host rock is very weak (KIC = 0). This analysis may explain why vertical dikes propagate laterally for great distances, but reside within a narrow range of depths in the crust.

  19. To Plume or Not To Plume: SC Mesozoic Diabase Dike Orientations, Stress Fields During the Break-up of Pangea, and the Feasibility of a Causal Plume.

    NASA Astrophysics Data System (ADS)

    Beutel, E. K.; Alexander, M.; Kotecha, A.; Edwards, D.

    2002-12-01

    New compilations of Mesozoic diabase dikes in South Carolina suggest that previously unrecognized N-S and NE-SW dike orientations exist throughout the western Charlotte belt, into the Carolina belt and possible into the Laurens Thrust Stack. Previous studies indicated that the majority of dikes in South Carolina were solely NW trending. While we found that the majority of dikes did trend NW-SE, the number and size of the NE-SW and N-S trending dikes indicate that these are not mere fingers off the main NW trending dikes and are likely true swarms. Previous studies of Mesozoic diabase dikes further north along the Atlantic coast have found evidence that suggests that NW-SE trending dikes are the oldest set, the N-S trending set followed, and the NE-SW trending dikes were injected last. Based on this relationship, and the stress field that most likely existed in the crust during the injection of each dike set, we have constructed a series of evolutionary models for the break-up of Pangea. Our models are based on the assumption that the multiple overlapping swarms negate the possibility of a plume being solely responsible for the break-up or for the dikes. These models suggest a complicated history of relative motion between Africa, North America, and South America. Finite element models were run to test the feasibility of these models. Preliminary model results suggest that the extensional stresses necessary for the major dike patterns seen in northwestern Africa, northern South America, and the southeastern United States may have occurred when the relative motion of Africa was northeast of North America. Initial model runs suggest that multiple dike orientations are best accounted for by a strongly nonlinear rift trend, a temporary aulacogen in Georgia, and/or rift propagation. The affect of events in the Gulf of Mexico is strongly dependent on the location and trend of the rifts and micro-continents modeled.

  20. Potential Future Igneous Activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Cline, M.; Perry, F. V.; Valentine, G. A.; Smistad, E.

    2005-12-01

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgement, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 X 10-8 per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. U.S. Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 X 10-8 be evaluated. Two consequence scenarios are considered; 1) igneous intrusion-groundwater transport case and 2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the contents of the waste packages into the atmosphere, deposition of a tephra sheet, and redistribution of the contaminated ash. In both cases radioactive material is released to the accessible environment either through groundwater transport or through the atmospheric dispersal and deposition. Six Quaternary volcanic centers exist within 20 km of Yucca Mountain. Lathrop Wells cone (LWC), the youngest (approximately 75,000 yrs), is a well-preserved cinder cone with associated flows and tephra sheet that provides an excellent analogue for consequence studies related to future volcanism. Cone, lavas, hydrovolcanic ash, and ash-fall tephra have been examined to estimate eruptive volume and eruption type. LWC ejecta volumes suggest basaltic volcanism may be waning in the Yucca Mountain region.. The eruptive products indicate a sequence of initial fissure fountaining, early Strombolian ash and lapilli deposition forming the scoria cone, a brief hydrovolcanic pulse (possibly limited to the NW sector), and a violent Strombolian phase. Mathematical models have been developed to represent magmatic processes and their consequences on proposed repository performance. These models address dike propagation, magma interaction and flow into drifts, eruption through the proposed repository, and post intrusion/eruption effects. These models continue to be refined to reduce the uncertainty associated with the consequences from a possible future igneous event.

  1. Carbonate Cements from the Sverrefjell and Sigurdfjell Volcanoes, Svalbard Norway: Analogs for Martian Carbonates

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Treiman, A. H.; Morris, R.; Bish, D.; Amundsen, H.E.F.; Steele, A.

    2011-01-01

    The Sverrefjell and Sigurdfjell volcanic complexes erupted at 1Ma on Svalbard, Norway. Sverrefjell is a cone of cinders, pillow lavas and dikes; Sigurdfjell is elongate in outcrop and may represent a fissure eruption [1]. The lavas of both volcanos were volatile rich. The volcanos erupted under ice and were subsequently dissected by glaciation (glacial eratics are present on most of Sverrefjell, even on its summit). Eruption beneath an ice sheet is inferred, based on the presence of pillow lavas from near sea level to 1000 m above sea level. Sverrefjell contains the largest fraction of ultramafic xenoliths of any volcanic complex in the world, in places accounting for as much as 50% of the volume of the outcrop. The Sverrefjell and Sigurdfell volcanos contain carbonate cements of several varieties: (1) Amundsen [2] reported Mg-Fe-rich carbonate in sub-mm globules in basalts and ultramafic xenoliths from the volcanos. These globules are the best terrestrial analogs to the carbonate globules in the Mars meteorite ALH84001 [3]. (2) Thick (1-3 cm) coatings of carbonate cement drape the walls of vertical volcanic pipes or conduits on the flanks and near the present summit of Sverrefjell. Similar occurrences are found on Sigurdfjell. (3) Breccia-filled pipes or vents occur on Sverrefjell and Siggurdfjell in which the breccia fragments are cemented by carbonate. The fragments themselves commonly contain carbonate globules similar to those found in the basalts and ultramafic xenoliths.

  2. On the plumbing system of volcanic complexes: field constraints from the Isle of Skye (UK) and FEM elasto-plastic modelling including gravity and tectonics.

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Pisterna, R.; Romano, V.; Rust, D.; Tibaldi, A.

    2009-04-01

    The plumbing system that connects a sub-volcanic magma reservoir to the surface has been the object of field characterization and mechanical modelling efforts since the pioneering work by Anderson (1936), who produced a detailed account of the spectacular Cullin Cone-sheet Complex (Isle of Skye, UK) and a geometrical and mechanical model aimed at defining the depth to the magma chamber. Since this work, the definition of the stress state in the half space comprised between the magma reservoir and the surface (modelled either as a flat surface or a surface comprising a volcanic edifice) was considered the key point in reconstructing dike propagation paths from the magma chamber. In fact, this process is generally seen as the propagation in an elastic media of purely tensional joints (mode I or opening mode propagation), which follow trajectories perpendicular to the least compressive principal stress axis. Later works generally used different continuum mechanics methodologies (analytic, BEM, FEM) to solve the problem of a pressure source (the magma chamber, either a point source or a finite volume) in an elastic (in some cases heterogeneous) half space (bounded by a flat topography or topped by a "volcano"). All these models (with a few limited exceptions) disregard the effect of the regional stress field, which is caused by tectonic boundary forces and gravitational body load, and consider only the pressure source represented by the magma chamber (review in Gudmundsson, 2006). However, this is only a (sometimes subordinate) component of the total stress field. Grosfils (2007) first introduced the gravitational load (but not tectonic stresses) in an elastic model solved with FEM in a 2D axisymmetric half-space, showing that "failure to incorporate gravitational loading correctly" affect the calculated stress pattern and many of the predictions that can be drawn from the models. In this contribution we report on modelling results that include: 2D axisymmetric or true 3D geometry; gravitational body load; anisotropic tectonic stresses; different shapes and depths of the magma chamber; different overpressure levels in the magma chamber; different shapes of the topographic surface (e.g. flat, volcano, caldera); linear-elastic or elasto-plastic Drucker-Prager rheology. The latter point, which in our opinion constitutes a fundamental improvement in the model, has proven necessary because in a purely elastic model the stress state would rise at levels that cannot be sustained by geologic materials. Particularly around and above the magma chamber, yielding is expected, influencing the stress field in the remaining modelling domain. The non-linear problem has been solved with the commercial finite element package Comsol Multiphysics, using a parametric solver. At the same time, a field structural analysis of the classical Cuillin Cone-sheet Complex has been performed. This analysis has shown that four distinct families of cone sheets of different age do exist. Among these, the sheets with the higher dip angle range (80-65°) are confirmed as purely tensional joints, but those with a lower dip angle range (60-40°) are quite often (when suitable markers are available) associated with a measurable shear component. Combining these new field observations with mechanical modelling results, we propose a new interpretation for the Cuillin Cone Sheet Complex. The plumbing system was composed by both purely tensional joints and mesoscopic faults with a shear component, produced in response to the regional stress field perturbed by the magma chamber, and later passively re-used as magma emplacement conduits. Under this assumption, the observed geometry of the Cuillin Cone-sheet Complex is consistent with a relatively shallow magma chamber with a flattened laccolite shape. The shape of the palaeotopography, now completely eroded, has also been considered, but is more weakly constrained by modelling results. References: Anderson E.M., 1936. The dynamics of the formation of cone-sheets, ring-dykes and cauldron subsidences. Proc R Soc Edinburgh, 56, 128-157. Grosfils E.B., 2007. Magma reservoir failure on the terrestrial planets: Assessing the importance of gravitational loading in simple elastic models. Journal of Volcanology and Geothermal Research, 166 (2), 47-75. Gudmundsson A. , 2006. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth Science Reviews, 79 (1), 1-31.

  3. Propagation of dikes at Vesuvio (Italy) and the effect of Mt. Somma

    NASA Astrophysics Data System (ADS)

    Acocella, V.; Porreca, M.; Neri, M.; Massimi, E.; Mattei, M.

    2006-04-01

    Dikes provide crucial information on how magma propagates within volcanoes. Somma-Vesuvio (Italy) consists of the active Vesuvio cone, partly bordered by the older Mt. Somma edifice. Historical chronicles on the fissure eruptions in 1694-1944 are matched with an analytical solution to define the propagation path of the related dikes and to study any control of the Mt. Somma relief. The fissures always consisted of the downslope migration of vents from an open summit conduit, indicating lateral propagation as the predominant mechanism for shallow dike emplacement. No fissure emplaced beyond Mt. Somma, suggesting that its buttressing hinders the propagation of the radial dikes. An analytical solution is defined to describe the mechanism of formation of the laterally propagating dikes and to evaluate the effect of topography. The application to Somma-Vesuvio suggests that, under ordinary excess magmatic pressures, the dikes should not propagate laterally at depths >240-480 m below the surface, as the increased lithostatic pressure requires magmatic pressures higher than average. This implies that, when the conduit is open, the lateral emplacement of dikes is expectable on the S, W and E slopes. The lack of fissures N of Mt. Somma is explained by its buttressing, which hinders dike propagation.

  4. Sr-Nd-Hf-O isotope geochemistry of the Ertaibei pluton, East Junggar, NW China: Implications for development of a crustal-scale granitoid pluton and crustal growth

    NASA Astrophysics Data System (ADS)

    Tang, Gong-Jian; Wang, Qiang; Zhang, Chunfu; Wyman, Derek A.; Dan, Wei; Xia, Xiao-Ping; Chen, Hong-Yi; Zhao, Zhen-Hua

    2017-09-01

    To better understand the compositional diversity of plutonic complexes and crustal growth of the Central Asian Orogenic Belt (CAOB), we conducted an integrated study of the Ertaibei pluton, which obtained geochronological, petrological, geochemical, and isotopic (including whole rock Sr-Nd, in situ zircon Hf-O) data. The pluton (ca. 300 Ma) is composed of granodiorites that contain mafic microgranular enclaves (MMEs), dolerite dikes, and granite dikes containing quartz-tourmaline orbicules. The dolerite dikes were possibly generated by melting of an asthenospheric mantle source, with discrete assimilation of lower crustal components in the MASH (melting, assimilation, storage, and homogenization) zone. The MMEs originated from hybridization between mantle and crust-derived magmas, which spanned a range of melting depths (˜25-30 km) in the MASH zone and were episodically tapped. Melting of the basaltic lower crust in the core of the MASH zone generated magmas to form the granodiorites. The granite dikes originated from melting of an arc-derived volcanogenic sedimentary source with a minor underplated basaltic source in the roof of the MASH zone (˜25 km). The compositional diversity reflects both the magma sources and the degree of maturation of the MASH zone. Although having mantle-like radiogenic isotope compositions, the Ertaibei and other postcollisional granitoids show high zircon δ18O values (mostly between +6 and +9‰), indicating a negligible contribution to the CAOB crustal growth during the postcollisional period.

  5. Fish assemblages at engineered and natural channel structures in the lower Missouri river: implications for modified dike structures

    USGS Publications Warehouse

    Schloesser, J.T.; Paukert, Craig P.; Doyle, W.J.; Hill, T.; Steffensen, K.D.; Travnichek, Vincent H.

    2012-01-01

    Large rivers throughout the world have been modified by using dike structures to divert water flows to deepwater habitats to maintain navigation channels. These modifications have been implicated in the decline in habitat diversity and native fishes. However, dike structures have been modified in the Missouri River USA to increase habitat diversity to aid in the recovery of native fishes. We compared species occupancy and fish community composition at natural sandbars and at notched and un-notched rock dikes along the lower Missouri River to determine if notching dikes increases species diversity or occupancy of native fishes. Fish were collected using gill nets, trammel nets, otter trawls, and mini fyke nets throughout the lower 1212 river km of the Missouri River USA from 2003 to 2006. Few differences in species richness and diversity were evident among engineered dike structures and natural sandbars. Notching a dike structure had no effect on proportional abundance of fluvial dependents, fluvial specialists, and macrohabitat generalists. Occupancy at notched dikes increased for two species but did not differ for 17 other species (81%). Our results suggest that dike structures may provide suitable habitats for fluvial species compared with channel sand bars, but dike notching did not increase abundance or occupancy of most Missouri River fishes. Published in 2011 by John Wiley & Sons, Ltd.

  6. Time dependent model of magma intrusion in and around Miyake and Kozu Islands, Central Japan in June August, 2000

    NASA Astrophysics Data System (ADS)

    Murase, Masayuki; Irwan, Meilano; Kariya, Shinichi; Tabei, Takao; Okuda, Takashi; Miyajima, Rikio; Oikawa, Jun; Watanabe, Hidefumi; Kato, Teruyuki; Nakao, Shigeru; Ukawa, Motoo; Fujita, Eisuke; Okayama, Muneo; Kimata, Fumiaki; Fujii, Naoyuki

    2006-02-01

    A time-dependent model of magma intrusion is presented for the Miyake-Kozu Island area in central Japan based on global positioning system (GPS) measurements at 28 sites recorded between June 27 and August 27, 2000. A model derived from a precise hypocenter distribution map indicates the presence of three dikes between Miyake and Kozu Islands. Other dike intrusion models, including a dike with aseismic creep and a dike associated with a deep deflation source are also discussed. The optimal parameters for each model are estimated using a genetic algorithm (GA) approach. Using Akaike's information criteria (AIC), the three-dike model is shown to provide the best solution for the observed deformation. Volume changes in spherical inflation and deflation sources, as well as three dikes, are calculated for seven discretized periods after GA optimization of the dike geometry. The optimization suggests a concentration of dike expansion near Miyake Island in the period from June 27 to July 1 associated with large deflation at a depth of about 7 km below Miyake volcano, indicating magma supply from depth below Miyake Island. In the period from July 9 to August 10, a huge dike intrusion near Kozu Island is inferred, accompanied by expansion of the lower parts of a central dike, suggesting magma supply from depth in the region between Miyake and Kozu Islands.

  7. Reconnaissance geology of the Manjamah Quadrangle, sheet 18/41 A, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Hadley, D.G.

    1982-01-01

    The Manjamah quadrangle (sheet 18/41 A) lies between lat 18?30' and 19?00' N. and long 41?00' and 41?30' E. and encompasses an area of 2,932 km2, of which about half is land and the remainder covered by the Red Sea. The geologic formations exposed in the quadrangle comprise Precambrian layered and intrusive rocks,. Tertiary layered rocks and gabbro dikes, and. Quaternary basaltic lavas, pyroclastic rocks, and surficial deposits. The Precambrian rocks are layered metasedimentary and metavolcanic rocks that have been assigned to the Baish and Bahah groups. These rocks are cut by Precambrian biotite quartz monzonite and by Miocene gabbro dikes that were intruded during the initial stages of the opening of the Red Sea rift. Tuffaceous siltstone of the Baid formation was also deposited during the Miocene, followed in the Pliocene by the polymict conglomerate of the Bathan formation. The Quaternary rocks include basalt that was extruded during a continuation of the opening of the Red Sea rift, after uplift of the escarpment parallel with the Red Sea but before the Holocene erosional cycle. The greater part of the land area of the quadrangle is covered by Quaternary coastal, pediment, and alluvial deposits of various kinds associated with the deltaic mouths of Wadi Hall and Wadi Yiba and their tributaries and with the development of fringing reefs and islands. The area also contains extensive Quaternary eolian deposits. The economic potential of the quadrangle lies essentially in the agricultural value .of its flood-plain deposits, which are frequently refreshed during flooding with the products of weathering and erosion of the Precambrian rocks in the valleys of Wadi Hal i and Wadi Yiba; coral reefs could possibly provide raw material for use in a cement industry, if any such industry were ever required in this area.

  8. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.; Collins, W. J.

    1998-09-01

    Many granitic plutons contain sheet-like masses of dioritic to gabbroic rocks or swarms of mafic to intermediate enclaves which represent the input of higher temperature, more mafic magma during crystallization of the granitic plutons. Small-scale structures associated with these bodies (e.g. load-cast and compaction features, silicic pipes extending from granitic layers into adjacent gabbroic sheets) indicate that the sheets and enclave swarms were deposited on a floor of the magma chamber (on granitic crystal mush and beneath crystal-poor magma) while the mafic magma was incompletely crystallized. These structures indicate 'way up', typically toward the interior of the intrusions, and appear to indicate that packages of mafic sheets and enclave concentrations in these plutons are a record of sequential deposition. Hence, these plutons preserve a stratigraphic history of events involved in the construction (filling, replenishment) and crystallization of the magma chamber. The distinctive features of these depositional portions of plutons allow them to be distinguished from sheeted intrusions, which usually preserve mutual intrusive contacts and 'dike-sill' relations of different magma types. The considerable thickness of material that can be interpreted as depositional, and the evidence for replenishment, suggest that magma chamber volumes at any one time were probably much less than the final size of the pluton. Thus, magma chambers may be constructed much more slowly than presently envisaged. The present steep attitudes of these structures in many plutons may have developed gradually as the floor of the chamber (along with the underlying solidified granite and country rock) sank during continuing episodes of magma chamber replenishment. These internal magmatic structures support recent suggestions that the room problem for granites could be largely accommodated by downward movement of country rock beneath the magma chamber.

  9. Mo-mineralized porphyries are relatively hydrous and differentiated: insights from the Permian-Triassic granitic complex in the Baituyingzi Mo-Cu district, eastern Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Liu, Jianming; Zeng, Qingdong; Wang, Jingbin; Wang, Yuwang; Hu, Ruizhong; Zhou, Lingli; Wu, Guanbin

    2017-08-01

    Mo-Cu mineralization in the Baituyingzi district of eastern Inner Mongolia occurs within a granitic complex. This paper presents and discusses zircon U-Pb ages and whole-rock geochemical and Sr-Nd-Pb isotopic data from the granitic complex as potential indicators for porphyry Mo fertility. The U-Pb ages indicate that five units of the granitic complex were emplaced between 265.2 ± 0.7 and 246.5 ± 1.0 Ma. Constrained by crosscutting dikes, Mo-Cu mineralization was probably related to the Baituyingzi monzogranite porphyry dated at 248.2 ± 0.64 Ma. The intrusions belong to high-K calc-alkaline to shoshonitic series that are characterized by highly fractionated rare earth element (REE) patterns and strong enrichments of large ion lithophile elements, relative to high-field strength elements. Apart from the ˜246-Ma dike that shows negative ɛNd ( t) values (-14.9 to -13.1), the intrusions have ɛNd( t) values ranging from -3.9 to 1.0, relatively young depleted mantle model ages (811 to 1183 Ma), 206Pb/204Pb of 18.137-18.335, and 207Pb/204Pb of 15.591-15.625, which are consistent with a juvenile lower crustal origin. Among the intrusions, the ˜248-Ma porphyry and the ˜246-Ma dike show adakite-like characteristics (e.g., Sr/Y = 44.9-185) and listric-shaped REE patterns that indicate amphibole fractionation and a hydrous magma source. However, the porphyry exhibits a higher differentiation index (81.4-91.5) and a steeper REE profile (e.g., LaN/YbN = 25.6-87.0) than those of the ˜246-Ma dike, which suggests that it is highly differentiated. We propose that the complex was generated by the partial melting of juvenile mafic lower crust (containing minor old crustal relicts) that was triggered by collision between the North China Craton and Siberian Craton. As indicated by the Th/Nb, Th/Yb, Ba/Th, and Ba/La ratios of the intrusions, the crust may have been derived from the melting of the fertile mantle wedge that was metasomatized by various amounts of slab-derived fluids or melts due to earlier subduction and was heterogeneous in terms of water, Cu, Mo, and S contents and possible oxidation state. The fertility of the porphyry was likely associated with the addition of earlier subduction-related slab melts to the magma source (leading to a hydrous and possible high oxidation state) and the long-time (˜20 Ma) collision tectonic setting in which it formed (resulting in a highly differentiated state).

  10. 3D Numerical Models of the Effect of Diking on the Faulting Pattern at Incipient Continental Rifts and Steady-State Spreading Centers

    NASA Astrophysics Data System (ADS)

    Tian, X.; Choi, E.; Buck, W. R.

    2015-12-01

    The offset of faults and related topographic relief varies hugely at both continental rifts and mid-ocean ridges (MORs). In some areas fault offset is measured in 10s of meters while in places marked by core complexes it is measured in 10s of kilometers. Variation in the magma supply is thought to control much of these differences. Magma supply is most usefully described by the ratio (M) between rates of lithospheric extension accommodated by magmatic dike intrusion and that occurring via faulting. 2D models with different values of M successfully explain much of the observed cross-sectional structure seen at rifts and ridges. However, magma supply varies along the axis of extension and the interactions between the tectonics and magmatism are inevitably three-dimensional. We investigate the consequences of this along-axis variation in diking in terms of faulting patterns and the associated structures using a 3D parallel geodynamic modeling code, SNAC. Many observed 3D structural features are reproduced: e.g., abyssal hill, oceanic core complex (OCC), inward fault jump, mass wasting, hourglass-shaped median valley, corrugation and mullion structure. An estimated average value of M = 0.65 is suggested as a boundary value for separating abyssal hills and OCCs formation. Previous inconsistency in the M range for OCC formation between 2D model results (M = 0.3˜0.5) and field observations (M < 0.3 or M > 0.5) is reconciled by the along-ridge coupling between different faulting regimes. We also propose asynchronous faulting-induced tensile failure as a new possibility for explaining corrugations seen on the surface of core complexes. For continental rifts, we will describe a suite of 2D and 3D model calculations with a range of initial lithospheric structures and values of M. In one set of the 2D models we limit the extensional tectonic force and show how this affects the maximum topographic relief produced across the rift. We are also interested in comparing models in which the value of M varies as the rift evolves with observations from real rifts and continental margins. Finally, we plan to show how the faulting pattern in 3D can depend on the distribution of dike opening rate along segments for incipient continental rifts.

  11. Timing of mid-crustal ductile extension in the northern Snake Range metamorphic core complex, Nevada: Evidence from U/Pb zircon ages

    NASA Astrophysics Data System (ADS)

    Lee, J.; Blackburn, T.; Johnston, S. M.

    2016-12-01

    Metamorphic core complexes (Mccs) within the western U.S. record a history of Cenozoic ductile and brittle extensional deformation, metamorphism, and magmatism, and exhumation within the footwall of high-angle Basin and Range normal faults. Documenting these histories within Mccs have been topics of research for over 40 years, yet there remains disagreement about: 1) whether the detachment fault formed and moved at low angles or initiated at high angles and rotated to a low angle; 2) whether brittle and ductile extensional deformation were linked in space and time; and 3) the temporal relationship of both modes of extension to the development of the detachment fault. The northern Snake Range metamorphic core complex (NSR), Nevada has been central to this debate. To address these issues, we report new U/Pb dates from zircon in deformed and undeformed rhyolite dikes emplaced into ductilely thinned and horizontally stretched lower plate rocks that provide tight bounds on the timing of ductile extension at between 38.2 ± 0.3 Ma and 22.50 ± 0.36 Ma. The maximum age constraint is from the Northern dike swarm (NDS), which was emplaced in the northwest part of the range pre- to syn-tectonic with ductile extension. The minimum age constraint is from the Silver Creek dike swarm (SDS) that was emplaced in the southern part of the range post ductile extensional deformation. Our field observations, petrography, and U/Pb zircon ages on the dikes combined with published data on the geology and kinematics of extension, moderate and low temperature thermochronology on lower plate rocks, and age and faulting histories of Cenozoic sedimentary basins adjacent to the NSR are interpreted as recording an episode of localized upper crustal brittle extension during the Eocene that drove upward ductile extensional flow of hot middle crustal rocks from beneath the NSR detachment soon after, or simultaneous with, emplacement of the NDS. Exhumation of the lower plate continued in a rolling hinge/isostatic rebound style; the western part of the lower plate was exhumed first and the eastern part extended ductilely either continuously or episodically until the early Miocene when the post-tectonic SDS was emplaced. Major brittle slip along the eastern part of the NSR detachment and along high angle normal faults exhumed the lower plate during middle Miocene.

  12. Propagation and arrest of dikes under topography: Models applied to the 2014 Bardarbunga (Iceland) rifting event

    NASA Astrophysics Data System (ADS)

    Urbani, S.; Acocella, V.; Rivalta, E.; Corbi, F.

    2017-07-01

    Dikes along rift zones propagate laterally downslope for tens of kilometers, often becoming arrested before topographic reliefs. We use analogue and numerical models to test the conditions controlling the lateral propagation and arrest of dikes, exploring the presence of a slope in connection with buoyancy and rigidity layering. A gentle downslope assists lateral propagation when combined with an effective barrier to magma ascent, e.g., gelatin stiffness contrasts, while antibuoyancy alone may be insufficient to prevent upward propagation. We also observe that experimental dikes become arrested when reaching a plain before opposite reliefs. Our numerical models show that below the plain the stress field induced by topography hinders further dike propagation. We suggest that lateral dike propagation requires an efficient barrier (rigidity) to upward propagation, assisting antibuoyancy, and a lateral pressure gradient perpendicular to the least compressive stress axis, while dike arrest may be induced by external reliefs.

  13. Spatial-temporal Change of Sanshui district's Dike-pond from 1979-2009

    NASA Astrophysics Data System (ADS)

    Liu, Jiaxing; Chen, Jianfei; Wang, Xiaoxuan

    Dike-pond is a representative style of ecological agriculture in the PRD(Pearl River Delta). Since 1992, Guangdong quicken its pace of reform and opening-up to the outside world. A mass of factories had been built in the PRD. The dike-ponds have come across some influential changes in the recent 30 years. To detect and study on the changes of dike-ponds, the Remote Sensing and Geography Information System skill was applied in this paper. This article selected Sanshui district as an example and used Landsat TM 1979, 1990, 2000 and SPOT 2009 satellite image as the major data sources. With the help of ITTVIS company newly released software-ENVI EX, object-oriented approach has been used to extract the dike-pond land from each image. The result indicates that the area of dike-pond gained rapidly growth from 1979 to 2000, but decrease critically during 2000-2009. When using Change Detection Analysis to compute each period's change statistics, the result shown that the increased dike-pond area were mainly from vegetation covered land and other bare land. Then we found out that the mean centre of Sanshui district's dike-pond was moving from northwest to southeast during 1979-2009. Therefore, it comes to the conclusion that Sanshui district's dike-pond increased across the southeast of Sanshui district from 1979 to 2009. Last but not least, some suggestions have been put forward to keep the dike-pond land area from decreasing.

  14. Modeling magma flow and cooling in dikes: Implications for emplacement of Columbia River flood basalts

    NASA Astrophysics Data System (ADS)

    Petcovic, Heather L.; Dufek, Josef D.

    2005-10-01

    The Columbia River flood basalts include some of the world's largest individual lava flows, most of which were fed by the Chief Joseph dike swarm. The majority of dikes are chilled against their wall rock; however, rare dikes caused their wall rock to undergo partial melting. These partial melt zones record the thermal history of magma flow and cooling in the dike and, consequently, the emplacement history of the flow it fed. Here, we examine two-dimensional thermal models of basalt injection, flow, and cooling in a 10-m-thick dike constrained by the field example of the Maxwell Lake dike, a likely feeder to the large-volume Wapshilla Ridge unit of the Grande Ronde Basalt. Two types of models were developed: static conduction simulations and advective transport simulations. Static conduction simulation results confirm that instantaneous injection and stagnation of a single dike did not produce wall rock melt. Repeated injection generated wall rock melt zones comparable to those observed, yet the regular texture across the dike and its wall rock is inconsistent with repeated brittle injection. Instead, advective flow in the dike for 3-4 years best reproduced the field example. Using this result, we estimate that maximum eruption rates for Wapshilla Ridge flows ranged from 3 to 5 km3 d-1. Local eruption rates were likely lower (minimum 0.1-0.8 km3 d-1), as advective modeling results suggest that other fissure segments as yet unidentified fed the same flow. Consequently, the Maxwell Lake dike probably represents an upper crustal (˜2 km) exposure of a long-lived point source within the Columbia River flood basalts.

  15. Getting granite dikes out of the source region

    NASA Technical Reports Server (NTRS)

    Rubin, Allan M.

    1995-01-01

    Whether a dike can propagate far from a magma reservoir depends upon the competition between the rate at which propagation widens the dike and the rate at which freezing constricts the aperture available for magma flow. Various formulations are developed for a viscous fluid at temperature T(sub m) intruding a growing crack in an elastic solid. The initial solid temperature equals T(sub m) at the source and decreases linearly with distance from the source. If T(sub m) is the unique freezing temperature of the fluid, dike growth is initially self-similar and an essentially exact solution is obtained; if T(sub m) is above the solidus temperature, the solution is approximate but is designed to overestimate the distance the dike may propagate. The ability of a dike to survive thermally depends primarily upon a single parameter that is a measure of the ratio of the dike frozen margin thickness to elastic thickness. Perhaps more intuitively, one may define a minimum distance from the essentially solid reservoir wall to the point at which the host rock temperature drops below the solidus, necessary for dikes to propagate far into subsolidus rock. It is concluded that for reasonable material properties and source conditions, most basalt dikes will have little difficulty leaving the source region, but most rhyolite dikes will be halted by freezing soon after the magma encounters rock at temperatures below the magma solidus. While these results can explain why granitic dikes are common near granitic plutons but rare elsewhere, the potentially large variation in magmatic systems makes it premature to rule out the possibility that most granites are transported through the crust in dikes. Nonetheless, these results highlight difficulties with such proposals and suggest that it may also be premature to rule out the possibility that most granite plutons ascend as more equidimensional bodies.

  16. Experimental investigation of fluvial dike breaching due to flow overtopping

    NASA Astrophysics Data System (ADS)

    El Kadi Abderrezzak, K.; Rifai, I.; Erpicum, S.; Archambeau, P.; Violeau, D.; Pirotton, M.; Dewals, B.

    2017-12-01

    The failure of fluvial dikes (levees) often leads to devastating floods that cause loss of life and damages to public infrastructure. Overtopping flows have been recognized as one of the most frequent cause of dike erosion and breaching. Fluvial dike breaching is different from frontal dike (embankments) breaching, because of specific geometry and boundary conditions. The current knowledge on the physical processes underpinning fluvial dike failure due to overtopping remains limited. In addition, there is a lack of a continuous monitoring of the 3D breach formation, limiting the analysis of the key mechanisms governing the breach development and the validation of conceptual or physically-based models. Laboratory tests on breach growth in homogeneous, non-cohesive sandy fluvial dikes due to flow overtopping have been performed. Two experimental setups have been constructed, permitting the investigation of various hydraulic and geometric parameters. Each experimental setup includes a main channel, separated from a floodplain by a dike. A rectangular initial notch is cut in the crest to initiate dike breaching. The breach development is monitored continuously using a specific developed laser profilometry technique. The observations have shown that the breach develops in two stages: first the breach deepens and widens with the breach centerline being gradually shifted toward the downstream side of the main channel. This behavior underlines the influence of the flow momentum component parallel to the dike crest. Second, the dike geometry upstream of the breach stops evolving and the breach widening continues only toward the downstream side of the main channel. The breach evolution has been found strongly affected by the flow conditions (i.e. inflow discharge in the main channel, downstream boundary condition) and floodplain confinement. The findings of this work shed light on key mechanisms of fluvial dike breaching, which differ substantially from those of dam breaching. These specific features need to be incorporated in flood risk analyses involving fluvial dike breach and failure. In addition, a well-documented, reliable data set, with a continuous high resolution monitoring of the 3D breach evolution under various flow conditions, has been gathered, which can be used for validating numerical models.

  17. Magnetic Remanence and Anisotropy of Magnetic Susceptibility of Dikes From Super-Fast Spread Crust Exposed At Pito Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A.; Varga, R. J.; Gee, J. S.; Karson, J. A.

    2006-12-01

    The tectonic window at the Pito Deep Rift exposes super-fast spread (>140mm/yr) oceanic crust created at the East Pacific Rise (EPR). Observations and investigations of well-exposed cross sections into modern ocean crust, such as Pito Deep, provide essential insights into ridge crest dynamics. Paleomagnetic analysis provides a quantitative means for assessing both magnitude and style of structural rotations of oceanic crust. The Pito Cruise 2005 collected 69 fully oriented samples [67 dikes, 2 gabbros] during several ALVIN and JASON II dives. These samples were all oriented in situ using the Geocompass. Along the escarpment of Pito Deep, dike orientations have consistant NE strikes and SE dips. These dikes are all formed roughly 3 million years ago at the EPR located to the west of their present position. We determined magnetic remanence for a subset of 34 oriented blocks. A majority of dikes in this subset have normal polarity and many are clockwise rotated from expected orientations. To assess possible orientation errors during collection, we sampled multiple dikes from relatively small areas. On ALVIN dive 4081, for example, we collected 14 samples from a well-exposed, subparallel series of dikes. These dikes provide stable and consistently oriented remanence directions suggesting that errors in the collection process are small. Remanence data collected to date verify tectonic models that suggest clockwise rotation of the Easter microplate, consistent with current models. In addition to magnetic remanence, we determined the anisotropy of magnetic susceptibility (AMS) of the 34 dike samples. AMS studies have proven their utility in a wide range of geological studies and have been shown to determine flow direction within dikes in a variety of settings. In most Pito Deep samples, two of three AMS eigenvectors lie close to dike plane orientations. Kmin generally lies perpendicular to dike planes while, in most samples, Kmax is shallow indicating dominantly subhorizontal magma flow. Steep Kmax in a few samples indicates vertical flow directions suggestive of primary flow or of gravitational back-flow during the waning stages of dike injection. Primarily horizontal magma flow in dikes might indicate injection of magma from a centralized magma chamber toward a plate segment boundary.

  18. Preliminary geologic map of the Murrieta 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Kennedy, Michael P.; Morton, Douglas M.

    2003-01-01

    The Murrieta quadrangle is located in the northern part of the Peninsular Ranges Province and includes parts of two structural blocks, or structural subdivisions of the province. The quadrangle is diagonally crossed by the active Elsinore fault zone, a major fault zone of the San Andreas fault system, and separates the Santa Ana Mountains block to the west from the Perris block to the east. Both blocks are relatively stable internally and within the quadrangle are characterized by the presence of widespread erosional surfaces of low relief. The Santa Ana Mountains block, in the Murrieta quadrangle, is underlain by undifferentiated, thick-layered, granular, impure quartzite and well-layered, fissile, phyllitic metamorphic rock of low metamorphic grade. Both quartzite and phyllitic rocks are Mesozoic. Unconformably overlying the metamorphic rocks are remnants of basalt flows having relatively unmodified flow surfaces. The age of the basalt is about 7-8Ma. Large shallow depressions on the surface of the larger basalt remnants form vernal ponds that contain an endemic flora. Beneath the basalt the upper part of the metamorphic rocks is deeply weathered. The weathering appears to be the same as the regional Paleocene saprolitic weathering in southern California. West of the quadrangle a variable thickness sedimentary rock, physically resembling Paleogene rocks, occurs between the basalt and metamorphic rock. Where not protected by the basalt, the weathered rock has been removed by erosion. The dominant feature on the Perris block in the Murrieta quadrangle is the south half of the Paloma Valley ring complex, part of the composite Peninsular Ranges batholith. The complex is elliptical in plan view and consists of an older ring-dike with two subsidiary short-arced dikes that were emplaced into gabbro by magmatic stoping. Small to large stoped blocks of gabbro are common within the ring-dikes. A younger ring-set of hundreds of thin pegmatite dikes occur largely within the central part of the complex. These pegmatite dikes were emplaced into a domal fracture system, apparently produced by cauldron subsidence, and include in the center of the complex, a number of flat-floored granophyre bodies. The granophyre is interpreted to be the result of pressure quenching of pegmatite magma. Along the eastern edge of the quadrangle is the western part of a large septum of medium metamorphic grade Mesozoic schist. A dissected basalt flow caps the Hogbacks northeast of Temecula, and represents remnants of a channel filling flow. Beneath the basalt is a thin deposit of stream gravel. Having an age of about 10Ma, this basalt is about 2-3Ma older than the basalt flows in the Santa Ana Mountains. The Elsinore fault zone forms a complex of pull-apart basins. The west edge of the fault zone, the Willard Fault, is marked by the high, steep eastern face of the Santa Ana Mountains. The east side of the zone, the Wildomar Fault, forms a less pronounced physiographic step. In the center of the quadrangle a major splay of the fault zone, the Murrieta Hot Springs Fault, strikes east. Branching of the fault zone causes the development of a broad alluvial valley between the Willard Fault and the Murrieta Hot Springs Fault. All but the axial part of the zone between the Willard and Wildomar Faults consist of dissected Pleistocene sedimentary units. The axial part of the zone is underlain by Holocene and latest Pleistocene sedimentary units.

  19. Dike Intrusion Process of 2000 Miyakejima - Kozujima Event estimated from GPS measurements in Kozujima - Niijima Islands, central Japan

    NASA Astrophysics Data System (ADS)

    Murase, M.; Nakao, S.; Kato, T.; Tabei, T.; Kimata, F.; Fujii, N.

    2003-12-01

    Kozujima - Niijima Islands of Izu Volcano Islands are located about 180 km southeast of Tokyo, Japan. Although the last volcano eruptions in Kozujima and Niijima volcanoes are recorded more than 1000 year before, the ground deformation of 2-3 cm is detected at Kozujima - Niijima Islands by GPS measurements since 1996. On June 26, 2000, earthquake swarm and large ground deformation more than 20 cm are observed at Miyakejima volcano located 40 km east-southeastward of Kozu Island, and volcano eruption are continued since July 7. Remarkable earthquake swarm including five earthquakes more than M5 is stretching to Kozushima Island from Miyakejima Island. From the rapid ground deformation detected by continuous GPS measurements at Miyakejima Island on June 26, magma intrusion models of two or three dikes are discussed in the south and west part of Miyakejima volcano by Irwan et al.(2003) and Ueda et al.(2003). They also estimate dike intrusions are propagated from southern part of Miyakejima volcano to western part, and finally dike intrusion is stretching to 20 km distance toward Kozujima Island. From the ground deformation detected by GPS daily solution of Nation-wide dense GPS network (GEONET), some dike intrusion models are discussed. Ito et al.(2002) estimate the huge dike intrusion with length of about 20 km and volume of 1 km3 in the sea area between the Miyake Island and Kozu Island. (And) Nishimura et al.(2001) introduce not only dike but also aseismic creep source to explain the deformation in Shikinejima. Yamaoka et al.(2002) discuss the dike and spherical deflation source under the dike, because of no evidence supported large aseismic creep. They indicate a dike and spherical deflation source model is as good as dike and creep source model. In case of dike and creep, magma supply is only from the chamber under the Miyakejima volcano. In dike and spherical deflation source model, magma supply is from under Miyakejima volcano and under the dike. Furuya et al.(2003) discuss the gravity change of Miyakejima and they conclude that the magma supply from the chamber under Miyakejima volcano is too small to explain the dike intrusion. In order to discuss the local ground deformation, Nagoya University additionally operates the local GPS network of single frequency receivers at seven sites in Kozujima, Shikineshima and Niijima. Form the vertical deformation detected on local GPS network, northward tilting is observed in Kozujima. We used Genetic Algorithm (GA) for search the model parameter of dike intrusion and fault. GA is an attractive global search tool suitable for the irregular, multimodal fitness functions typically observed in nonlinear optimization problems. We discuss mechanism of Miyakejima - Kozujima event in detail using data of 20 GPS sites near field by GA. The results suggest that magma intrusion system of the dike between Miyakejima and Kozujima changes on August 18 when a large volcano eruption occurred. Until August 18 the activity of creep fault is high and after then deflation at the point source just under the dike is active.

  20. Geology and Fluorspar Deposits of the Levias-Keystone and Dike-Eaton Areas, Crittenden County, Kentucky

    USGS Publications Warehouse

    Trace, Robert Denny

    1962-01-01

    The fault systems of the Levias-Keystone and Dike-Eaton areas, in the Kentucky-Illinois fiuorspar district, are a complex northeastward-trending sys- tem and a simple northwestward-trending system of steeply dipping normal faults, associated in part with a lamprophyre dike. Fluorspar mining started in the area about 1900 and, as of 1945, more than 200,000 tons of crude ore probably has been mined; most of the ore was from the Levias-Keystone area. A small quantity of zinc and lead ore also is present in the Dike-Eaton area. The deposits are localized along faults that displace fiat-lying or low-dipping limestones, sandstones, and shales of the Meramec and Chester series of Missis- sippian age. Movement along most of the faults was principally vertical, with displacement as much as 600 feet. Some horizontal movement occurred along at least one fault. Geologic mapping of the surface and data from underground workings have revealed 13 faults in an area of four-fifths of a square mile. Only a few of these faults are known to contain economically important deposits of fiuorspar. The most abundant vein minerals are calcite and fiuorite with subordinate quantities of sphalerite, galena, barite, and quartz. Some weathering products of sphalerite and galena are present also. The veins are dominantly calcite that contains fiuorite lenses but in places are mainly fiuorite having lesser quantities of calcite. Sphalerite- and galena-bearing deposits are present in the Dike-Eaton area. The ore bodies mainly are the result of fissure filling and replacement of calcite by fiuorite; in addition a small amount of limestone wallrock probably has been replaced. Residual concentrations of high-grade fluorspar in the overburden above faults have yielded some so-called gravel fiuorspar. The position of the veins within the faults may be related to one or more factors such as type of wallrock, change in dip of the fault, and amount of displacement.

  1. Eruptive history and geochronology of the Mount Baker volcanic field, Washington

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.; Lanphere, M.

    2003-01-01

    Mount Baker, a steaming, ice-mantled, andesitic stratovolcano, is the most conspicuous component of a multivent Quaternary volcanic field active almost continuously since 1.3 Ma. More than 70 packages of lava flows and ~110 dikes have been mapped, ???500 samples chemically analyzed, and ~80 K-Ar and 40Ar/39Ar ages determined. Principal components are (1) the ignimbrite-filled Kulshan caldera (1.15 Ma) and its precaldera and postcaldera rhyodacite lavas and dikes (1.29-0.99 Ma); (2)~60 intracaldera, hydrothermally altered, andesite-dacite dikes and pods-remnants of a substantial early-postcaldera volcanic center (1.1-0.6 Ma); (3) unaltered intracaldera andesite lavas and dikes, including those capping Ptarmigan and Lasiocarpa Ridges and Table Mountain (0.5-0.2 Ma); (4) the long-lived Chowder Ridge focus (1.29-0.1 Ma)-an andesite to rhyodacite eruptive complex now glacially reduced to ~50 dikes and remnants of ~10 lava flows; (5) Black Buttes stratocone, basaltic to dacitic, and several contemporaneous peripheral volcanoes (0.5-0.2 Ma); and (6) Mount Baker stratocone and contemporaneous peripheral volcanoes (0.1 Ma to Holocene). Glacial ice has influenced eruptions and amplified erosion throughout the lifetime of the volcanic field. Although more than half the material erupted has been eroded, liberal and conservative volume estimates for 77 increments of known age yield cumulative curves of volume erupted vs. time that indicate eruption rates in the range 0.17-0.43 km3/k.y. for major episodes and longterm background rates of 0.02-0.07 km3/k.y. Andesite and rhyodacite each make up nearly half of the 161 ?? 56 km3 of products erupted, whereas basalt and dacite represent only a few cubic kilometers, each representing 1%-3% the total. During the past 4 m.y., the principal magmatic focus has migrated stepwise 25 km southwestward, from the edge of the Chilliwack batholith to present-day Mount Baker.

  2. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Yun-Chuan; Xu, Ji-Feng; Chen, Jian-Lin; Wang, Bao-Di; Kang, Zhi-Qiang; Huang, Feng

    2018-02-01

    The formation of the Shiquanhe-Yunzhug-Namu Tso ophiolite mélange zone (SNMZ) within the Lhasa Terrane, Tibetan Plateau, is key to understanding the Mesozoic tectonic evolution of this terrane, which remains controversial. We show that the Yunzhug ophiolite in the central segment of the SNMZ formed at 150 Ma, based on U-Pb dating of zircons from a gabbroic sample in a well-developed sheeted dike complex. Geochemically, these mafic rocks are dominated by E-MORB-type compositions, along with minor amounts of rocks with P-MORB-type compositions. The samples also exhibit high εNd(t) values and lack negative Nb and Ta anomalies. Data for all the samples plot within the MORB array on a Th/Yb-Nb/Yb diagram. Therefore, these mafic rocks most likely formed in either a slow spreading oceanic setting or an embryonic ocean, and not in a back-arc basin as has been previously assumed. Taking into account the regional geology, we propose that the Yunzhug ophiolite is part of a distinct ophiolitic belt and represents material formed in an embryonic ocean within the Lhasa Terrane, which provides new insights into the Jurassic tectonic evolution of the Lhasa Terrane.

  3. The case for simultaneous deformation, metamorphism and plutonism: an example from Proterozoic rocks in central Arizona

    NASA Astrophysics Data System (ADS)

    Karlstrom, K. E.; Williams, M. L.

    1995-01-01

    The syntectonic 1.70 Ga Crazy Basin Monzogranite provides an example of the complex spatial and temporal interactions between metamorphism, deformation, and plutonism. Synchronous plutonism and deformation is indicated by syn-shortening dikes, sills, and veins; parallel magmatic and solid state fabrics; fabrics in xenoliths; and a foliation triple point. Synchronous plutonism and metamorphism is indicated by a systematic increase from 400 °C to 630 °C towards the pluton at a constant pressure of 300 MPa (3 kb). Temperatures are consistent with a conductive cooling model in which a 700 °C pluton was emplaced into country rocks undergoing greenschist facies regional metamorphism. Synchronous deformation and metamorphism is indicated by porphyroblast inclusion geometries that document the synmetamorphic development of the S2 cleavage. The pluton was emplaced adjacent to the Shylock shear zone during progressive shortening. Emplacement of granite as NE-trending sheets was facilitated by temporal partitioning of transpressional convergence into strike-slip and dip-slip components. At the scale of the pluton's aureole and on the relatively rapid time scale of 10 3-10 6 y, regional deformation and metamorphism were punctuated by thermal softening and increased diffusion rates. Data suggests that accretion of Proterozoic arcs in Arizona involved diachronous pluton-enhanced deformation and associated high temperature-low pressure regional metamorphism.

  4. Ediacaran paleomagnetic results from feeder dikes of the Catoctin Formation

    NASA Astrophysics Data System (ADS)

    Hankard, F.; Domeier, M. M.; Bentley, C.; Van Der Voo, R.

    2011-12-01

    A paleomagnetic study undertaken sixteen years ago on the Catoctin basalts, feeder dikes and sills (Meert et al, 1994) did not bring firm and strong conclusions about the paleoposition of Laurentia during the Ediacaran period. The results were rather complex and sketchy. In effect, three paleomagnetic directions derived from this study were interpreted as follows: one placed Laurentia at high southerly latitude during Catoctin time while the other two were considered as later "remagnetization" events. One remagnetization was hypothesized to have been acquired in the Late Cambrian, when Laurentia was in an equatorial position, whereas a second one was attributed to Taconian mountain-building during the Ordovician period. In order to attempt to unravel the confusing late Precambrian paleogeography, we conducted a detailed paleomagnetic sampling in the Blue Ridge Province of Central Virginia. We focused on the dikes that fed the 568-555 Ma volcanism of the Catoctin Formation (Southworth et al, 2009) in the Shenandoah National Park, as well as in several locations outside the park, and along the south shore of the Potomac River (Maryland). These new data should help to define unambiguously which (if any) of the magnetization components is primary for the Catoctin Formation.

  5. Abundance and distribution of ultramafic microbreccia in Moses Rock Dike: Quantitative application of AIS data

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Pieters, Carle M.

    1987-01-01

    Moses Rock dike is a Tertiary diatreme containing serpentinized ultramafic microbreccia (SUM). Field evidence indicates the SUM was emplaced first followed by breccias derived from the Permian strata exposed in the walls of the diatreme and finally by complex breccias containing basement and mantle derived rocks. SUM is found primarily dispersed throughout the matrix of the diatreme. Moses Rock dike was examined with Airborne Imaging Spectrometer (AIS) to map the distribution and excess of SUM in the matrix and to better understand the nature of the eruption which formed this explosive volcanic feature. AIS data was calibrated by dividing the suite of AIS data by data from an internal standard area and then multiplying this relative reflectance data by the absolute bidirectional reflectance of a selected sample from the standard area which was measured in the lab. From the calibrated AIS data the minerals serpentine, gypsum, and illite as well as desert varnish and the lithologies SUM and other sandstones were identified. SUM distribution and abundance in the matrix of the diatreme were examined in detail and two distinct styles of SUM dispersion were observed. The two styles are discussed in detail.

  6. Emplacement of the La Peña alkaline igneous complex, Mendoza, Argentina (33° S): Implications for the early Miocene tectonic regime in the retroarc of the Andes

    NASA Astrophysics Data System (ADS)

    Pagano, D. S.; Galliski, M. A.; Márquez-Zavalía, M. F.

    2014-03-01

    The La Peña alkaline complex (LPC) of Miocene age (18-19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400-2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW-SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N-S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R‧), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW-SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by dikes cross-cutting the clinopyroxenite, (3) a malignite facies that causes a small breccia in the clinopyroxenite, (4) a central syenite facies that develops breccias at the contact with the clinopyroxenite and, finally, (5) porphyry necks and a system of radial dikes intruding all units. At the moment of the emplacement different mechanisms would have acted, they summarized in: 1) opening of discontinuities synchronous to the magma circulation as the principal mechanism for formation of dikes and conduits; 2) stoping processes, that play an important role in the development of the breccia zone and enabling an efficient transference of material during the emplacement of the syenitic magma and 3) shear-related deformation (regional stress), affected the internal fabric of the facies, causing intracrystalline deformation and submagmatic flow, which is very evident in the central syenite intrusive. The kinematic analysis of shear planes allows proposing that emplacement of the LPC took place in a transtensive regime, which would have occurred in the back-arc of the Andes orogen, during a long period spanning from Miocene to the present, of the compressive deformation responsible, westward and at the same latitude, for the development of the Aconcagua fold and thrust belt.

  7. Under-Pressured and Avoiding Interaction: How Magmatic Storage Regions Can Deflect Dikes

    NASA Astrophysics Data System (ADS)

    Pansino, S.; Taisne, B.

    2017-12-01

    It has been shown through numerical techniques that ascending dikes can be attracted to a pressurized magma storage region. This is due to the state of stresses around such a region, in which the minimum compressive stress is tangential to reservoir boundary and dikes thereby prefer to propagate radially. We show that the reverse scenario has a reverse effect. A storage region that has under-pressurized, perhaps due to an eruption, rotates the stresses in the crust to deflect dikes away; this inhibits interaction with the reservoir and favors other behaviors like intrusion or monogenetic eruptions. We demonstrate through analogue experiments the ability for a dike to avoid a magmatic reservoir, which depends in part on the internal pressure as well as on the initial dike orientation. We show that dikes have the potential to change orientation, curling and twisting to avoid the pressure sink, or to propagate preferentially at their sides, allowing them to slide away laterally.

  8. How integrating 3D LiDAR data in the dike surveillance protocol: The French case

    NASA Astrophysics Data System (ADS)

    Bretar, F.; Mériaux, P.; Fauchard, C.

    2012-04-01

    The recent and dramatic floods of the last years in Europe (e.g. Rhône river major flood, December 2003, Windstorm Xynthia, February 2010, in France) and in the United-States (Hurricane Katrina, August 2005) showed the vulnerability of flood or coastal defence systems. The first key point for avoiding these dramatic damages and the high cost of a failure and its consequences lies in the appropriate conception and construction of the dikes, but above all in the relevance of the surveillance protocol. Many factors introduce weaknesses in the fluvial or maritime dikes. Most of them are old embankment structures. For instance, some of the French Loire River dikes were built several centuries ago. They may have been rebuilt, modified, heightened several times, with some materials that do not necessarily match the original conception of the structure. In other respects, tree roots or animal burrows could modify the structure of the dike and reduce the watertightness or mechanical properties. The French government has built a national database, "BarDigues", since 1999 to inventory and characterize dikes. Today, there are approx. 9000 km of dikes protecting 1.5 to 2 millions of people. In the meantime, a GIS application, called « Dike SIRS » [Maurel P., 2004] , provides an operational and accurate tool to several great stakeholders in charge of managing more than 100 km of dikes. Today, the dike surveillance and diagnosis protocol consists in identifying the weaknesses of the structure and providing the degree of safety by making a preliminary study (historical research, geological and morphodynamic study, topography), geophysical study (e.g. electromagnetic methods and electrical resistivity tomography) and at last geotechnical study (e.g. drillings and stability modelling) at the very local scale when necessary [Mériaux P. & Royet P, 2007] . Considering the stretch of hundreds of kilometres, rapid, cost-effective and reliable techniques for surveying the dike must be carried out. A LiDAR system is able to acquire data on a dike structure of up to 80 km per day, which makes the use of this technique also valuable in case of emergency situations. It provides additional valuable products like precious information on dike slopes and crest or their near environment (river banks, etc.). Moreover, in case of vegetation, LiDAR data makes possible to study hidden structures or defaults from images like the erosion of riverbanks under forestry vegetation. The possibility of studying the vegetation is also of high importance: the development of woody vegetation near or onto the dike is a major risk factor. Surface singularities are often signs of disorder or suspected disorder in the dike itself: for example a subsidence or a sinkhole on a ridge may result from internal erosion collapse. Finally, high resolution topographic data contribute to build specific geomechanical model of the dike that, after incorporating data provided by geophysical and geotechnical surveys, are integrated in the calculations of the structure stability. Integrating the regular use of LiDAR data in the dike surveillance protocol is not yet operational in France. However, the high number of French stakeholders at the national level (on average, there is one stakeholder for only 8-9km of dike !) and the real added value of LiDAR data makes a spatial data infrastructure valuable (webservices for processing the data, consulting and filling the database on the field when performing the local diagnosis)

  9. On the physical links between the dynamics of the Izu Islands 2000 dike intrusions and the statistics of the induced seismicity

    NASA Astrophysics Data System (ADS)

    Passarelli, Luigi; Rivalta, Eleonora; Simone, Cesca; Aoki, Yosuke

    2014-05-01

    The emplacement of magma-filled dikes often induce abundant seismicity in the surrounding host rocks. Most of the earthquakes are thought to occur close to the propagating tip (or edges, in 3D) of the dike, where stresses are concentrated. The resulting seismicity often appears as a swarm, controlled mainly by dike-induced stresses and stressing rate and by other factors, such as the background stressing rate, tectonic setting, regional stresses and tectonic history. The spatial distribution and focal mechanisms of the seismicity bear information on the interaction of the dike stress field and the tectonic setting of the area. The seismicity accompanying the intrusion of a dike is usually characterized by weak events, for which it is difficult to calculate the focal mechanisms. Therefore, only for a few well-recorded dike intrusions a catalog of focal mechanisms, allowing to perform a robust statistical analysis, is available. The 2000 dike intrusion at Miyakejima is in this sense an outstanding case, as about 18000 seismic events were recorded in a time span of three months. This seismic swarm was one of the most energetic ever recorded with five M>6 earthquakes. For this swarm a catalog of 1500 focal mechanisms is avalable (NIED, Japan). We perform a clustering analysis of the focal mechanism solutions, in order to infer the most frequent focal mechanism features prior to the intrusion (pre-diking period) and during the co-diking period. As previously suggested, we find that the dike stress field modified substantially the pre-existing seismicity pattern, by shadowing some non-optimally oriented strike-slip structures and increasing seismic rate on optimally oriented strike-slip tectonic structures. Alongside, during the co-diking period a large number of normal and oblique-normal faulting were observed. These events cannot be explained within the tectonics of the intrusion area. We suggest they are directly generated by the intense stress field induced at the dike edges. We further investigate the distribution of the two main clusters we identify, i.e. strike-slip and oblique-normal mechanisms. We find that the strike-slip family obeys a Gutenberg-Richter law with a b-value close to one. The oblique-normal family of events deviates from the Gutenberg-Richter distribution and is slightly bimodal, with a marked roll-off on its right-hand tail suggesting a lack of large magnitude events (M>5.5). This set of events seems to collect earthquakes rupturing above the dike, similar to graben faulting events widely observed in volcanic areas during diking. A possible explanation of the anomalous frequency-magnitude distribution is that these earthquakes may be limited in size by the thickness of the layer where they nucleate, being spatially constrained between the dike upper edge and the Earth's surface.

  10. Spectroscopy of Moses Rock Kimberlite Diatreme

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Mustard, J. F.

    1985-01-01

    Three types of remote sensing data (Airborne Imaging Spectroscopy (AIS), NS001, Zeiss IR-photographs) were obtained for the Moses Rock kimberlite dike in southern Utah. The goal is to identify and characterize the mantle derived mafic component in such volcanic features. The Zeiss and NS001 images provide information on the regional setting and allow units of the dike to be distinguished from surrounding material. A potential unmapped satellite dike was identified. The AIS data provide characterizing information of the surface composition of the dike. Serpentized olivine-bearing soils are (tentatively) identified from the AIS spectra for a few areas within the dike.

  11. Petrologic Consequences of the Magmatic Death of a Continental Arc: Vanda Dike Swarm, Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Harpp, K. S.; Christensen, B. C.; Geist, D. J.; Garcia, M. O.

    2005-12-01

    The Dry Valleys of southern Victoria Land, Antarctica, are notable for the presence of the Vanda dikes, prominent NE-trending swarms that crosscut a sequence of granitoid plutons. These older plutons are regional in extent and comprise 3 Cambro-Ordovician groups, including: a) calc-alkaline granitoids formed at an active plate margin during the Ross Orogeny (c. 505 Ma); b) adakitic granitoids, likely marking the conclusion of Ross Orogeny subduction-related activity (c. 490 Ma); and c) younger monzonitic plutons, probably generated in an intraplate extensional setting (Cox et al., 2000). The Vanda dikes crosscut the younger plutons, possibly between c. 490 and 477 Ma (Allibone et al., 1993; Encarnacion and Grunow, 1996). Dikes from the east wall of Bull Pass and the south wall of the Wright Valley range from 0.5-25 m wide with nearly vertical dips, are usually several km long, and, in the center of the swarms, occur with a frequency of ~18 dikes/km. Most have chilled margins and are surrounded by brittle fractures, indicative of shallow intrusion into cold country rock. Dike compositions are bimodal, most defining a trend at the boundary between the high-K calc-alkaline and shoshonite series in SiO2-K2O space; some Wright Valley dikes have slightly lower K2O and are calc-alkaline. Granite porphyry dikes are relatively homogeneous (69-73 wt.% SiO2), whereas the mafic dikes exhibit a wider range of compositions (49-57 wt.% SiO2). The felsic and mafic dikes have distinct trace element abundances but similar normalized distribution patterns, including fractionated heavy rare earth elements and negative Eu and high field-strength element anomalies. Average Sr/Y ratios of both the felsic and mafic dikes cluster around 20, well below a typical adakite signature. Major and trace element variations suggest that the felsic dikes may be differentiates of the mafic magmas. Field relations further indicate that the felsic lavas may represent, on average, a later phase of dike intrusion (Keiller, 1988; Allibone et al., 1993). The high-K calc-alkaline Vanda dike swarm likely represents the last phase of magmatism in a dying continental arc, perhaps accompanied by extension and uplift of the orogen. The relatively alkaline compositions of the dikes may result from lower degrees of melting, as subduction waned. References: Allibone, AH et al., New Zealand J of Geology and Geophysics, 36: 281-297, 1993. Cox, SC et al., New Zealand J of Geology and Geophysics, 43: 501-520, 2000. Encarnacion, J and Grunow, A, Tectonics, 15: 1325-1341, 1996. Keiller, IG, New Zealand Antarctic Record, 8: 25-34, 1988.

  12. Paleomagnetism of Proterozoic mafic dikes from the Tobacco Root Mountains, southwest Montana

    USGS Publications Warehouse

    Harlan, S.S.; Geissman, J. Wm; Snee, L.W.

    2008-01-01

    Paleomagnetic data from Proterozoic mafic dikes in southwestern Montana provides evidence for two distinct episodes of subparallel dike emplacement at ca. 1450 and 780 Ma. Published geochemical data from dikes in the southern Tobacco Root Mountains has identified three distinct compositional groups, termed groups A, B, and C. Geochronological data from the group A dikes yielded a Sm-Nd age of 1448 ?? 49 Ma. Emplacement of these dikes is thought to reflect mafic magmatism associated with extension accompanying development of the adjacent Mesoproterozoic Belt Basin. Paleomagnetic results from these dikes and a group C dike yield antipodal magnetizations with a group-mean direction of D = 225.0??, I = 61.8?? (k = 27.9, ??95 = 7.7??, N = 14 independent means/24 sites). The average paleomagnetic pole (8.7??N, 216.1??E, A95 = 10.3??) is considered to be primary on the basis of positive baked contact tests and similarity to poles of ca. 1.45-1.4 Ga from intrusions elsewhere in North America, but is discordant with respect to poles from age equivalent sedimentary rocks of the Meosoproterozoic Belt Supergroup. 40Ar/39Ar dates from geochemical group B dikes are consistent with published U-Pb dates that demonstrate dike emplacement at 780 Ma as part of the regional Gunbarrel magmatic event. Hornblende concentrates from the group B dikes yield 40Ar/39Ar apparent ages of 778-772 Ma, whereas biotite from a baked contact zone yielded a plateau date of 788 Ma. Paleomagnetic results from the group B dikes yield a mean direction of D = 301.5??, I = -17.1?? (k = 65.7, ??95 = 4.0??, N = 12 independent means/23 sites) with a paleomagnetic pole at 14.6??N, 127.0??E (A95 = 3.2??). The combination of geochronologic data, results of a baked contact test, and spatial agreement of the paleomagnetic poles with poles of similar age elsewhere in North America indicates that this is also a primary magnetization associated with dike emplacement. Paleomagnetic data from some of the Tobacco Root Mountains dikes provide evidence that they were partially to completely remagnetized during latest Cretaceous to early Tertiary time, perhaps due to thermal affects associated with emplacement of the Late Cretaceous Tobacco Root Batholith. The overall agreement of paleomagnetic poles from the Proterozoic dikes with those of age equivalent rocks elsewhere in North America and agreement of the secondary magnetization with expected directions for the latest Cretaceous/early Tertiary indicate that the rocks of the Tobacco Root Mountains have not experienced significant tilting or vertical axis rotation since the Mesoproterozoic. The new paleomagnetic poles from this study thus provide key data for refining Meso- and Neoproterozoic parts of the North American APW path. ?? 2008 Elsevier B.V. All rights reserved.

  13. Detailed Segmentation and Episodic Propagation of the 2014 Bárðarbunga Dike Intrusion and Seismicity Accompanying the Sustained Holuhraun Eruption, Central Icleand

    NASA Astrophysics Data System (ADS)

    Ágústsdóttir, T.; Woods, J.; Greenfield, T. S.; Green, R. G.; White, R. S.; Brandsdottir, B.

    2015-12-01

    An intense swarm of seismicity on 16 August 2014 marked the intrusion of a large dike from the subglacial Bárðarbunga volcano, central Iceland. Melt propagated laterally from the central volcano at the brittle-ductile boundary at ~6 km b.s.l. and created over 30,000 earthquakes along a 46 km path heading NE from Bárðarbunga. On 31 August a fissure eruption began at Holuhraun and the seismicity rate within the dike dropped instantaneously to a much lower level suggesting that once a pathway to the surface had formed, magma was able to flow freely and largely aseismically. Melt was fed from the subsiding Bárðarbunga volcano to Holuhraun for 6 months, until the eruption ceased on 27 February 2015. We discuss the relationship between bursts of seismicity in the feeder volcano and periods of rapid dike propagation. We use a dense seismic network and relative earthquake relocations to map in detail the segmentation of the dike on all scales. New dike segments were initiated with a rapid advance of the dike tip at typically 1 km/h, separated by pauses of up to 78 h. During the stalled periods the magma pressure built until it was sufficient to fracture a new segment, which then propagated rapidly forward. Large segments became seismically quiet once a new segment had intruded beyond it as extensional stresses had been relieved and melt was able to flow freely. Each rapid propagation phase was accompanied by a drop in the seismicity rate directly behind the dike tip, most likely due to a stress shadow being formed behind the dike tip. Moment tensor solutions show that the dominant failure mechanism is left-lateral strike slip faulting at the leading edge, orientated parallel to the dike, with a combination of right-lateral, left-lateral and normal faulting behind the dike tip, contradicting many widely used models. Much of the seismicity behind the tip may represent fracture of frozen melt as the dike inflated and propagated forward

  14. Dike propagation energy balance from deformation modeling and seismic release

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Alessandro; Aoki, Yosuke; Rivalta, Eleonora

    2017-06-01

    Magma is transported in the crust mainly by dike intrusions. In volcanic areas, dikes can ascend toward the free surface and also move by lateral propagation, eventually feeding flank eruptions. Understanding dike mechanics is a key to forecasting the expected propagation and associated hazard. Several studies have been conducted on dike mechanisms and propagation; however, a less in-depth investigated aspect is the relation between measured dike-induced deformation and the seismicity released during its propagation. We individuated a simple x that can be used as a proxy of the expected mechanical energy released by a propagating dike and is related to its average thickness. For several intrusions around the world (Afar, Japan, and Mount Etna), we correlate such mechanical energy to the seismic moment released by the induced earthquakes. We obtain an empirical law that quantifies the expected seismic energy released before arrest. The proposed approach may be helpful to predict the total seismic moment that will be released by an intrusion and thus to control the energy status during its propagation and the time of dike arrest.Plain Language SummaryDike propagation is a dominant mechanism for magma ascent, transport, and eruptions. Besides being an intriguing physical process, it has critical hazard implications. After the magma intrusion starts, it is difficult to predict when and where a specific horizontal dike is going to halt and what its final length will be. In our study, we singled an equation that can be used as a proxy of the expected mechanical energy to be released by the opening dike. We related this expected energy to the seismic moment of several eruptive intrusions around the world (Afar region, Japanese volcanoes, and Mount Etna). The proposed novel approach is helpful to estimate the total seismic moment to be released, therefore allowing potentially predicting when the dike will end its propagation. The approach helps answer one of the fundamental questions raised by civil protection authorities, namely, "how long will the eruptive fissure propagate?"</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3337T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3337T"><span>Interpreting inverse magnetic fabric in dikes from Eastern Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trippanera, Daniele; Urbani, Stefano; Porreca, Massimiliano; Acocella, Valerio; Kissel, Catherine; Sagnotti, Leonardo; Winkler, Aldo</p> <p>2017-04-01</p> <p>Since the 70's magnetic fabric analysis has been used to infer magma emplacement in dikes. However, the interpretation of magmatic flow orientation in dikes is often complicated by the occurrence of anomalous (i.e. inverse) magnetic fabric. This latter may either reflect the presence of single-domain (SD) grains or result from peculiar orientation mechanisms of magnetic minerals in magmas of different viscosities. Tertiary dike swarms of extinct volcanic systems in Eastern Iceland represent the ideal case study to clarify the origin of anomalous magnetic fabric. Here we present the results of a multidisciplinary study on dikes belonging to the Alftafjordur volcanic system (Eastern Iceland), including a: (1) structural field study in order to identify kinematic and thermal indicators of dikes; (2) anisotropy of low-field magnetic susceptibility (AMS) analysis, to investigate the magnetic fabric and reconstruct the flow direction of 25 dikes; (3) first order reversal curve (FORC) diagrams and thermomagnetic properties of selected dikes to define the magnetic mineralogy; (4) petrofabric and image analyses at different microscopic scales to investigate the origin of the magnetic fabric and compare the AMS results with mineral texture. Our results show that half of the dikes show a well defined inverse magnetic fabrics (k max orthogonal to the dike margins) and anomalous high anisotropy degrees. Only 7 dikes have a normal magnetic fabric and other 6 dikes have an intermediate magnetic fabric. No clear prevalence of SD grains, which could explain the inverse magnetic fabric, was observed. On the contrary, petrofabric and thermomagnetic analysis reveal the presence of low Ti-content coarse magnetite and high Ti-content elongated magnetite grains as the main contributors to most of the observed magnetic fabrics. In particular, the orientation of the elongated high Ti-content magnetite grains, though usually scattered, is partly comparable with that of the maximum and minimum axes of the AMS ellipsoids, suggesting that the preferential orientation of these minerals represent the main source of inverse and intermediate magnetic fabrics. The results of this study demonstrate that the interpretation of the magnetic fabric is not always straightforward and the origin of anomalous fabrics may be related to a variety of physical and chemical processes during magma emplacement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH43B..02O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH43B..02O"><span>Development of method for evaluating estimated inundation area by using river flood analysis based on multiple flood scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ono, T.; Takahashi, T.</p> <p>2017-12-01</p> <p>Non-structural mitigation measures such as flood hazard map based on estimated inundation area have been more important because heavy rains exceeding the design rainfall frequently occur in recent years. However, conventional method may lead to an underestimation of the area because assumed locations of dike breach in river flood analysis are limited to the cases exceeding the high-water level. The objective of this study is to consider the uncertainty of estimated inundation area with difference of the location of dike breach in river flood analysis. This study proposed multiple flood scenarios which can set automatically multiple locations of dike breach in river flood analysis. The major premise of adopting this method is not to be able to predict the location of dike breach correctly. The proposed method utilized interval of dike breach which is distance of dike breaches placed next to each other. That is, multiple locations of dike breach were set every interval of dike breach. The 2D shallow water equations was adopted as the governing equation of river flood analysis, and the leap-frog scheme with staggered grid was used. The river flood analysis was verified by applying for the 2015 Kinugawa river flooding, and the proposed multiple flood scenarios was applied for the Akutagawa river in Takatsuki city. As the result of computation in the Akutagawa river, a comparison with each computed maximum inundation depth of dike breaches placed next to each other proved that the proposed method enabled to prevent underestimation of estimated inundation area. Further, the analyses on spatial distribution of inundation class and maximum inundation depth in each of the measurement points also proved that the optimum interval of dike breach which can evaluate the maximum inundation area using the minimum assumed locations of dike breach. In brief, this study found the optimum interval of dike breach in the Akutagawa river, which enabled estimated maximum inundation area to predict efficiently and accurately. The river flood analysis by using this proposed method will contribute to mitigate flood disaster by improving the accuracy of estimated inundation area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035304','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035304"><span>Late Cretaceous to Paleocene metamorphism and magmatism in the Funeral Mountains metamorphic core complex, Death Valley, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mattinson, C.G.; Colgan, J.P.; Metcalf, J.R.; Miller, E.L.; Wooden, J.L.</p> <p>2007-01-01</p> <p>Amphibolite-facies Proterozoic metasedimentary rocks below the low-angle Ceno-zoic Boundary Canyon Detachment record deep crustal processes related to Meso-zoic crustal thickening and subsequent extension. A 91.5 ?? 1.4 Ma Th-Pb SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) monazite age from garnet-kyanite-staurolite schist constrains the age of prograde metamorphism in the lower plate. Between the Boundary Canyon Detachment and the structurally deeper, subparallel Monarch Spring fault, prograde metamorphic fabrics are overprinted by a pervasive greenschist-facies retrogression, high-strain subhorizontal mylonitic foliation, and a prominent WNW-ESE stretching lineation parallel to corrugations on the Boundary Canyon Detachment. Granitic pegmatite dikes are deformed, rotated into parallelism, and boudinaged within the mylonitic foliation. High-U zircons from one muscovite granite dike yield an 85.8 ?? 1.4 Ma age. Below the Monarch Spring fault, retrogression is minor, and amphibolite-facies mineral elongation lineations plunge gently north to northeast. Multiple generations of variably deformed dikes, sills, and leucosomal segregations indicate a more complex history of partial melting and intrusion compared to that above the Monarch Spring fault, but thermobarometry on garnet amphibolites above and below the Monarch Spring fault record similar peak conditions of 620-680 ??C and 7-9 kbar, indicating minor (<3-5 km) structural omission across the Monarch Spring fault. Discordant SHRIMP-RG U-Pb zircon ages and 75-88 Ma Th-Pb monazite ages from leucosomal segregations in paragneisses suggest that partial melting of Proterozoic sedimentary protoliths was a source for the structurally higher 86 Ma pegmatites. Two weakly deformed two-mica leucogranite dikes that cut the high-grademetamorphic fabrics below the Monarch Spring fault yield 62.3 ?? 2.6 and 61.7 ?? 4.7 Ma U-Pb zircon ages, and contain 1.5-1.7 Ga cores. The similarity of metamorphic, leuco-some, and pegmatite ages to the period of Sevier belt thrusting and the period of most voluminous Sierran arc magmatism suggests that both burial by thrusting and regional magmatic heating contributed to metamorphism and subsequent partial melting. ??2007 Geological Society of America. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1254471','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1254471"><span>Hawaii Gravity Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Nicole Lautze</p> <p>2015-12-15</p> <p>Gravity model for the state of Hawaii. Data is from the following source: Flinders, A.F., Ito, G., Garcia, M.O., Sinton, J.M., Kauahikaua, J.P., and Taylor, B., 2013, Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes: Geophysical Research Letters, v. 40, p. 3367–3373, doi:10.1002/grl.50633.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70046825','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70046825"><span>Evolution of dike opening during the March 2011 Kamoamoa fissure eruption, Kīlauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lundgren, Paul; Poland, Michael; Miklius, Asta; Orr, Tim R.; Yun, Sang-Ho; Fielding, Eric; Liu, Zhen; Tanaka, Akiko; Szeliga, Walter; Hensley, Scott; Owen, Susan</p> <p>2013-01-01</p> <p>The 5–9 March 2011 Kamoamoa fissure eruption along the east rift zone of Kīlauea Volcano, Hawai`i, followed months of pronounced inflation at Kīlauea summit. We examine dike opening during and after the eruption using a comprehensive interferometric synthetic aperture radar (InSAR) data set in combination with continuous GPS data. We solve for distributed dike displacements using a whole Kīlauea model with dilating rift zones and possibly a deep décollement. Modeled surface dike opening increased from nearly 1.5 m to over 2.8 m from the first day to the end of the eruption, in agreement with field observations of surface fracturing. Surface dike opening ceased following the eruption, but subsurface opening in the dike continued into May 2011. Dike volumes increased from 15, to 16, to 21 million cubic meters (MCM) after the first day, eruption end, and 2 months following, respectively. Dike shape is distinctive, with a main limb plunging from the surface to 2–3 km depth in the up-rift direction toward Kīlauea's summit, and a lesser projection extending in the down-rift direction toward Pu`u `Ō`ō at 2 km depth. Volume losses beneath Kīlauea summit (1.7 MCM) and Pu`u `Ō`ō (5.6 MCM) crater, relative to dike plus erupted volume (18.3 MCM), yield a dike to source volume ratio of 2.5 that is in the range expected for compressible magma without requiring additional sources. Inflation of Kīlauea's summit in the months before the March 2011 eruption suggests that the Kamoamoa eruption resulted from overpressure of the volcano's magmatic system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRB..118..897L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRB..118..897L"><span>Evolution of dike opening during the March 2011 Kamoamoa fissure eruption, Kīlauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lundgren, Paul; Poland, Michael; Miklius, Asta; Orr, Tim; Yun, Sang-Ho; Fielding, Eric; Liu, Zhen; Tanaka, Akiko; Szeliga, Walter; Hensley, Scott; Owen, Susan</p> <p>2013-03-01</p> <p>5-9 March 2011 Kamoamoa fissure eruption along the east rift zone of Kīlauea Volcano, Hawai`i, followed months of pronounced inflation at Kīlauea summit. We examine dike opening during and after the eruption using a comprehensive interferometric synthetic aperture radar (InSAR) data set in combination with continuous GPS data. We solve for distributed dike displacements using a whole Kīlauea model with dilating rift zones and possibly a deep décollement. Modeled surface dike opening increased from nearly 1.5 m to over 2.8 m from the first day to the end of the eruption, in agreement with field observations of surface fracturing. Surface dike opening ceased following the eruption, but subsurface opening in the dike continued into May 2011. Dike volumes increased from 15, to 16, to 21 million cubic meters (MCM) after the first day, eruption end, and 2 months following, respectively. Dike shape is distinctive, with a main limb plunging from the surface to 2-3 km depth in the up-rift direction toward Kīlauea's summit, and a lesser projection extending in the down-rift direction toward Pu`u `Ō`ō at 2 km depth. Volume losses beneath Kīlauea summit (1.7 MCM) and Pu`u `Ō`ō (5.6 MCM) crater, relative to dike plus erupted volume (18.3 MCM), yield a dike to source volume ratio of 2.5 that is in the range expected for compressible magma without requiring additional sources. Inflation of Kīlauea's summit in the months before the March 2011 eruption suggests that the Kamoamoa eruption resulted from overpressure of the volcano's magmatic system.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.5156V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.5156V"><span>Analysis of flood hazard under consideration of dike breaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vorogushyn, S.; Apel, H.; Lindenschmidt, K.-E.; Merz, B.</p> <p>2009-04-01</p> <p>The study focuses on the development and application of a new modelling system which allows a comprehensive flood hazard assessment along diked river reaches under consideration of dike failures. The proposed Inundation Hazard Assessment Model (IHAM) represents a hybrid probabilistic-deterministic model. It comprises three models interactively coupled at runtime. These are: (1) 1D unsteady hydrodynamic model of river channel and floodplain flow between dikes, (2) probabilistic dike breach model which determines possible dike breach locations, breach widths and breach outflow discharges, and (3) 2D raster-based diffusion wave storage cell model of the hinterland areas behind the dikes. Due to the unsteady nature of the 1D and 2D coupled models, the dependence between hydraulic load at various locations along the reach is explicitly considered. The probabilistic dike breach model describes dike failures due to three failure mechanisms: overtopping, piping and slope instability caused by the seepage flow through the dike core (micro-instability). Dike failures for each mechanism are simulated based on fragility functions. The probability of breach is conditioned by the uncertainty in geometrical and geotechnical dike parameters. The 2D storage cell model driven by the breach outflow boundary conditions computes an extended spectrum of flood intensity indicators such as water depth, flow velocity, impulse, inundation duration and rate of water rise. IHAM is embedded in a Monte Carlo simulation in order to account for the natural variability of the flood generation processes reflected in the form of input hydrographs and for the randomness of dike failures given by breach locations, times and widths. The scenario calculations for the developed synthetic input hydrographs for the main river and tributary were carried out for floods with return periods of T = 100; 200; 500; 1000 a. Based on the modelling results, probabilistic dike hazard maps could be generated that indicate the failure probability of each discretised dike section for every scenario magnitude. Besides the binary inundation patterns that indicate the probability of raster cells being inundated, IHAM generates probabilistic flood hazard maps. These maps display spatial patterns of the considered flood intensity indicators and their associated return periods. The probabilistic nature of IHAM allows for the generation of percentile flood hazard maps that indicate the median and uncertainty bounds of the flood intensity indicators. The uncertainty results from the natural variability of the flow hydrographs and randomness of dike breach processes. The same uncertainty sources determine the uncertainty in the flow hydrographs along the study reach. The simulations showed that the dike breach stochasticity has an increasing impact on hydrograph uncertainty in downstream direction. Whereas in the upstream part of the reach the hydrograph uncertainty is mainly stipulated by the variability of the flood wave form, the dike failures strongly shape the uncertainty boundaries in the downstream part of the reach. Finally, scenarios of polder deployment for the extreme floods with T = 200; 500; 1000 a were simulated with IHAM. The results indicate a rather weak reduction of the mean and median flow hydrographs in the river channel. However, the capping of the flow peaks resulted in a considerable reduction of the overtopping failures downstream of the polder with a simultaneous slight increase of the piping and slope micro-instability frequencies explained by a more durable average impoundment. The developed IHAM simulation system represents a new scientific tool for studying fluvial inundation dynamics under extreme conditions incorporating effects of technical flood protection measures. With its major outputs in form of novel probabilistic inundation and dike hazard maps, the IHAM system has a high practical value for decision support in flood management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720004690','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720004690"><span>Ethiopian Tertiary dike swarms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mohr, P. A.</p> <p>1971-01-01</p> <p>Mapping of the Ethiopian rift and Afar margins revealed the existence of Tertiary dike swarms. The structural relations of these swarms and the fed lava pile to monoclinal warping of the margins partly reflect a style of continental margin tectonics found in other parts of the world. In Ethiopia, however, conjugate dike trends appear to be unusually strongly developed. Relation of dikes to subsequent margin faulting is ambiguous, and there are instances where the two phenomena are spatially separate and of differing trends. There is no evidence for lateral migration with time of dike injection toward the rift zone. No separate impingement of Red Sea, Gulf of Aden, and African rift system stress fields on the Ethiopian region can be demonstrated from the Tertiary dike swarms. Rather, a single, regional paleostress field existed, suggestive of a focus beneath the central Ethiopian plateau. This stress field was dominated by tension: there is no cogent evidence for shearing along the rift margins. A gentle compression along the rift floor is indicated. A peculiar sympathy of dike hade directions at given localities is evident.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..77...70S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..77...70S"><span>Mafic subvolcanic intrusions and their petrologic relation with the volcanism in the south hinge Torres Syncline, Paraná-Etendeka Igneous Province, southern Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarmento, Carla Cecília Treib; Sommer, Carlos Augusto; Lima, Evandro Fernandes</p> <p>2017-08-01</p> <p>The hypabyssal intrusions investigated in this study are located in the east-central region of the state of Rio Grande do Sul, in the south hinge of the Torres Syncline. The intrusions comprise twenty-four dikes and ten sills, intruding in ponded pahoehoe, compound pahoehoe, rubbly and acidic lava flows of the south sub-Province of the Paraná Igneous Province and the sedimentary rocks of the Botucatu, Pirambóia, Santa Maria and Rio do Rasto Formations, on the edge of the Paraná Basin. The intrusive dikes in the flows have preferred NNW-SSE direction and the intrusive dikes in the sedimentary rocks have preferred NE-SW direction. Regarding the morphology, the dikes were separated into two different groups: symmetrical and asymmetrical. The small variation in facies is characterized by fine to aphanitic equigranular rocks. The rocks were divided into two types: Silica Supersaturated Tholeiite (SST) - dikes and sills consisting of plagioclase and clinopyroxene as essential minerals, with some olivine and felsic mesostasis, predominant intergranular texture and subordinate subophitic texture; and Silica Saturated Olivine Tholeiite (SSOT) - dikes consisting mainly of plagioclase, clinopyroxene and olivine, and predominant ophitic texture. The major and trace element geochemistry allows classifying these hypabyssal bodies as basalts (SSOT), basaltic andesites and trachyandesites (TSS) of tholeiitic affinity. The mineral chemistry data and the REE behavior, combined with the LILE and HFSE patterns, similar to the flows and low-Ti basic intrusions of southern Brazil and northwestern Namibia allow suggesting that these dikes and sills were part of a feeder system of the magmatism in the Paraná-Etendeka Igneous Province. The preferred direction of the intrusive dikes in the sedimentary rocks of the Paraná Basin coincides with tectonic-magmatic lineaments related to extensional processes and faulting systems that served as vents for dike swarms parallel to the Brazilian coast, with the same direction as the Namibia coast dike swarm. This suggests that these dikes were part of the triple junction system related to the opening of the South Atlantic Ocean. The preferred directions of the intrusive dikes in the lava flows are similar to the directions of the Ponta Grossa and Rio Grande Arcs and the Torres Syncline. They may have been a part of, or been caused by one or more geotectonic cycles that originated these structures. The emplacement process of the asymmetric dikes suggests they were enclosed under the hydraulic fracture model, since they do not follow a pre-existing fracture filling pattern. The emplacement of the sills conforms to the weakness zones of the sedimentary units. Regarding the intrusive dikes in the flows, divided by lithofacies associations, also taking into account the geochemical and petrographic similarities, it is observed that these dikes are part of a supply system of the basic lava flows, stratigraphically positioned above the host lava flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC41A..08X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC41A..08X"><span>Dujiangyan: Could the ancient hydraulic engineering be a sustainable solution for Mississippi River diversions?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Y. J.</p> <p>2016-02-01</p> <p>Dujiangyan, also known as the Dujiangyan Project, is a hydraulic engineering complex built more than 2260 years ago on the Mingjiang River near Chengdu in China's Sichuan Province. The complex splits the river into two channels, a so-called "inner river" (Leijiang) and an "outer river" (Waijiang) that carry variable water volumes and sediment loads under different river flow conditions. The inner river and its numerous distributary canals are primarily man-made for irrigation over the past 2000 years, while the outer river is the natural channel and flows southward before entering into the Yangtze River. Under normal flow, 60% of the Mingjiang River goes into the inner river for irrigating nearly 1 million hectares of agricultural land on the Chengdu plain. During floods, however, less than 40% of the Mingjiang River flows into the inner river. Under both flow conditions, about 80% of the riverine sediments is carried by the outer river and continues downstream. This hydrology is achieved through a weir work complex that comprises three major components: a V-shaped bypass dike in the center of the Mingjiang River (the Yuzui Bypass Dike, see photo below), a sediment diversion canal in the inner river below the bypass dike (the Feishayan Floodgate), and a flow control in the inner river below the sediment diversion canal (the Baopingkou Diversion Passage). Together with ancillary embankments, these structures have not only ensured a regular supply of silt-reduced water to the fertile Chengdu plain, but have provided great benefits in flood control, sediment transport, and water resources regulation over the past two thousand years. The design of this ancient hydraulic complex ingeniously conforms to the natural environment while incorporating many sophisticated techniques, reflecting the concept that humankind is an integral part of nature. As we are urgently seeking solutions today to save the sinking Mississippi River Delta, examination of the ancient engineering marvel may offer insights into sustainable practices in river engineering of the lower Mississippi under climate change and sea level rise. This paper will introduce the Dujiangyan Project and will discuss possibilities of applying Dujiangyan's fundamental concept for sediment diversions in the Lower Mississippi River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.alaskageology.org/pubfieldbooks.htm','USGSPUBS'); return false;" href="http://www.alaskageology.org/pubfieldbooks.htm"><span>The Resurrection Peninsula ophiolite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, Steven W.; Miller, M.L.; Dumoulin, Julie A.; Nelson, Steven W.; Hamilton, Thomas D.</p> <p>1989-01-01</p> <p>The Resurrection Peninsula forms the east side of Resurrection Bay (fig. 3). Relief ranges from 437 m (1,434 ft) at the southern end of the peninsula to more than 1,463 m (4,800 ft) opposite the head of the bay. All rock units composing the informally named Resurrection Peninsula ophiolite of Nelson and others (1987) are visible or accessible by boat."Ophiolite" has been a geologic term since 1827 (Coleman, 1977). The term "ophiolite" initially referred to the rock serpentinite; the Greek root "ophi" (meaning snake or serpent) alluded to the greenish, mottled, and shiny appearance of serpentinites. In 1927, Steinmann described a rock association in the Alps, sometimes known as the "Steinmann Trinity', consisting of serpentine, diabase and spilitic lavas, and chert. Recognition of this suite led to the idea that ophiolites represent submarine magmatism that took place early in the development of a eugeosyncline. In the early 1970s the Steinmann Trinity was reconsidered in light of the plate tectonic theory, new petrologic studies, and the recognition of abducted oceanic lithosphere in orogenic belts of the world. In 1972 at a Geological Society of America Penrose Conference (Anonymous, 1972) the term "ophiolite" was defined as a distinctive assemblage of mafic to ultramafic rocks, with no emphasis on their origin. A complete ophiolite should contain, from bottom to top:1) Tectonized ultramafic rocks (more or less serpentinized)2) Gabbro complex containing cumulus textures and commonly cumulus peridotites3) Mafic sheeted-dike complex, grading upward into;4) Submarine pillow lavas of basaltic composition. Common associated rock types include plagiogranite (Na-rich) and an overlying sedimentary section typically dominated by chert.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V33B2629K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V33B2629K"><span>Conduits and dike distribution analysis in San Rafael Swell, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiyosugi, K.; Connor, C.; Wetmore, P. H.; Ferwerda, B. P.; Germa, A.</p> <p>2011-12-01</p> <p>Volcanic fields generally consist of scattered monogenetic volcanoes, such as cinder cones and maars. The temporal and spatial distribution of monogenetic volcanoes and probability of future activity within volcanic fields is studied with the goals of understanding the origins of these volcano groups, and forecasting potential future volcanic hazards. The subsurface magmatic plumbing systems associated with volcanic fields, however, are rarely observed or studied. Therefore, we investigated a highly eroded and exposed magmatic plumbing system on the San Rafael Swell (UT) that consists of dikes, volcano conduits and sills. San Rafael Swell is part of the Colorado Plateau and is located east of the Rocky Mountain seismic belt and the Basin and Range. The overburden thickness at the time of mafic magma intrusion (Pliocene; ca. 4 Ma) into Jurassic sandstone is estimated to be ~800 m based on paleotopographical reconstructions. Based on a geologic map by P. Delaney and colleagues, and new field research, a total of 63 conduits are mapped in this former volcanic field. The conduits each reveal features of root zone and / or lower diatremes, including rapid dike expansion, peperite and brecciated intrusive and host rocks. Recrystallized baked zone of host rock is also observed around many conduits. Most conduits are basaltic or shonkinitic with thickness of >10 m and associated with feeder dikes intruded along N-S trend joints in the host rock, whereas two conduits are syenitic and suggesting development from underlying cognate sills. Conduit distribution, which is analyzed by a kernel function method with elliptical bandwidth, illustrates a N-S elongate higher conduit density area regardless of the azimuth of closely distributed conduits alignment (nearest neighbor distance <200 m). In addition, dike density was calculated as total dike length in unit area (km/km^2). Conduit and sill distribution is concordant with the high dike density area. Especially, the distribution of conduits is not random with respect to the dike distribution with greater than 99% confidence on the basis of the Kolmogorov-Smirnov test. On the other hand, dike density at each conduits location also suggests that there is no threshold of dike density for conduit formation. In other words, conduits may be possible to develop from even short mapped dikes in low dike density areas. These results show effectiveness of studying volcanic vent distribution to infer the size of magmatic system below volcanic fields and highlight the uncertainty of forecasting the location of new monogenetic volcanoes in active fields, which may be associated with a single dike intrusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T32C..08D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T32C..08D"><span>The Atlantis Bank Gabbro Massif, SW Indian Ridge: the Largest Know Exposure of the Lower Crust in the Oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dick, H. J.; Kvassnes, A. J.; Kinoshita, H.; MacLeod, C. J.; Robinson, P. T.</p> <p>2017-12-01</p> <p>Until the discovery of oceanic core complexes little was known and much inferred about the lower ocean crust at slow-spreading ridges. Their study shows the ocean crust isn't simply a uniform layer-cake of pillow lavas, sheeted dikes and gabbros, but is highly variable in thickness, composition and architecture, and even absent over large regions. The 660 km2 Atlantis Bank Gabbro Massif in the rift-mountains of the SW Indian Ridge flanking the Atlantis II Transform is the magmatic end member for ocean core complexes, and best approximates `average' slow-spread crust. Thus it has been a focus for drilling since its discovery in 1986, leading to the current attempt to drill to Moho there (Project SloMo). There are 3 ODP and IODP drill holes on its crest: 1508-m deep Hole 735B, 158-m deep Hole 1105A, and 809.4-m deep Hole U1473. These provide a 200 Kyr view of lower crustal accretion at a slow-spread ocean ridge. Here we extend this view to 2.7 Myr. Mapping and sampling shows the gabbro massif extends nearly the length of a single 2nd order magmatic ridge segment. With numerous inliers of the dike-gabbro transition at numerous locations, and a crust-mantle boundary, traced for 30-km along the transform wall, it would appear to represent a full section of the lower crust. As Moho is at 5.5 ± 1 km mbsf near Hole 735B, and 4.5 km beneath the transform, it is likely a serpentinization front. The crust-mantle boundary was crossed by dives at 4 locations. In each case gabbros at the base of the crust crystallized from melt that had previously fractionated 50% or more from a likely parent. Thus the gabbro massif must be laterally zoned, and the parental mantle melts had to have been emplaced at the center of the paleo-ridge segment, before intruding laterally to the distal end of the complex. Gabbros on a lithospheric flow line down the center of the massif closely resemble those from the drill holes. This shows that while lateral variations in crustal composition and thickness exist at Atlantis Bank, we can extend the conclusions derived from drilling at Hole U1473 that there is a continuum of accretionary magmatic and tectonic processes for 2.7 Myr, and a centrally located deep hole through the lower crust and mantle there will likely be representative of the 660-km2 Atlantis Bank gabbro massif as a whole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016200&hterms=Hawaii+Kilauea+volcano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DHawaii%2BKilauea%2Bvolcano','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016200&hterms=Hawaii+Kilauea+volcano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DHawaii%2BKilauea%2Bvolcano"><span>Thermal and rheological controls on magma migration in dikes: Examples from the east rift zone of Kilauea volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parfitt, E. A.; Wilson, L.; Pinkerton, H.</p> <p>1993-01-01</p> <p>Long-lived eruptions from basaltic volcanoes involving episodic or steady activity indicate that a delicate balance has been struck between the rate of magma cooling in the dike system feeding the vent and the rate of magma supply to the dike system from a reservoir. We describe some key factors, involving the relationships between magma temperature, magma rheology, and dike geometry that control the nature of such eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020045553&hterms=nemesis&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dnemesis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020045553&hterms=nemesis&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dnemesis"><span>Stratigraphy and Stress History Recorded by a Complex Volcano-Tectonic Feature in the Nemesis Tessera Quadrangle, Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Doggett, T. C.; Grosfils, E. B.</p> <p>2002-01-01</p> <p>The stress history of a feature, identified as a previously uncataloged dike swarm, at 45N 191E is mapped as clockwise rotation of maximum horizontal compressive stress. It is intermediate between areas associated with compression, mantle upwelling and convection. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1981/1194/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1981/1194/report.pdf"><span>A finite-element model study of the impact of the proposed I-326 crossing on flood stages of the Congaree River near Columbia, South Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, J.K.; Bennett, C. S.</p> <p>1981-01-01</p> <p>A two-dimensional finite element surface water model was used to study the hydraulic impact of the proposed Interstate Route 326 crossing of the Congaree River near Columbia, SC. The finite element model was assessed as a potential operational tool for analyzing complex highway crossings and other modifications of river flood plains. Infrared aerial photography was used to define regions of homogeneous roughness in the flood plain. Finite element networks approximating flood plain topography were designed using elements of three roughness types. High water marks established during an 8-yr flood that occurred in October 1976 were used to calibrate the model. The maximum flood of record, an approximately 100-yr flood that occurred in August 1908, was modeled in three cases: dikes on the right bank, dikes on the left bank, and dikes on both banks. In each of the three cases, simulations were performed both without and with the proposed highway embankments in place. Detailed information was obtained about backwater effects upstream from the proposed highway embankments, changes in flow distribution resulting from the embankments, and local velocities in the bridge openings. On the basis of results from the model study, the South Carolina Department of Highways and Public Transportation changed the design of several bridge openings. A simulation incorporating the new design for the case with dikes on the left bank indicated that both velocities in the bridge openings and backwater were reduced. A major problem in applying the model was the difficulty in predicting the network detail necessary to avoid local errors caused by roughness discontinuities and large depth gradients. (Lantz-PTT)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SGeo...39..683D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SGeo...39..683D"><span>Geostatistical Interplay Between Geophysical and Geochemical Data: Mapping Litho-Structural Assemblages of Mesozoic Igneous Activities in the Parnaíba Basin (NE Brazil)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Castro, David L.; Oliveira, Diógenes C.; Hollanda, Maria Helena B. M.</p> <p>2018-07-01</p> <p>Two widespread magmatic events are recorded in the Parnaíba basin (NE Brazil) during the Jurassic/Cretaceous opening of the Central and South Atlantic Oceans. The Early Jurassic ( 200 Ma) lava flows of the Mosquito Formation occur essentially in the western and southern basin segments, representing one of the largest expressions of the Central Atlantic Magmatic Province in the South American Plate. In contrast, sill complexes and dike swarms of the Early Cretaceous (129-124 Ma) Sardinha Formation occur in the eastern part of the basin and are chrono-correlated to the large Paraná-Etendeka igneous province and to the Rio Ceará-Mirim Dike Swarm. We gathered geophysical, well logging, outcrop analogs and geochemical data to recognize geometrical shapes and areal distribution patterns of igneous-related constructions. Seismic and well data reveal hundreds of km wide multilayered sill complexes and dikes, which are widespread across vast regions of the basin without evident structural control from either the Precambrian basement grain or the basin internal architecture. Anomaly enhancement techniques and self-organizing maps (SOM) procedure were applied on airborne magnetic data, unraveling near-surface magmatic features in four distinct magnetic domains. Using SOM analysis, the basaltic rocks were divided into six groups based on magnetic susceptibility and major elements composition. These results suggest common origin for both magmatic episodes, probably a combination of effects of edge-driven convection and large-scale mantle warming under the westward moving West Gondwana during the Central and South Atlantic opening, which caused a shifted emplacement to the east of the igneous rocks in the Parnaíba basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SGeo..tmp....9D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SGeo..tmp....9D"><span>Geostatistical Interplay Between Geophysical and Geochemical Data: Mapping Litho-Structural Assemblages of Mesozoic Igneous Activities in the Parnaíba Basin (NE Brazil)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Castro, David L.; Oliveira, Diógenes C.; Hollanda, Maria Helena B. M.</p> <p>2018-02-01</p> <p>Two widespread magmatic events are recorded in the Parnaíba basin (NE Brazil) during the Jurassic/Cretaceous opening of the Central and South Atlantic Oceans. The Early Jurassic ( 200 Ma) lava flows of the Mosquito Formation occur essentially in the western and southern basin segments, representing one of the largest expressions of the Central Atlantic Magmatic Province in the South American Plate. In contrast, sill complexes and dike swarms of the Early Cretaceous (129-124 Ma) Sardinha Formation occur in the eastern part of the basin and are chrono-correlated to the large Paraná-Etendeka igneous province and to the Rio Ceará-Mirim Dike Swarm. We gathered geophysical, well logging, outcrop analogs and geochemical data to recognize geometrical shapes and areal distribution patterns of igneous-related constructions. Seismic and well data reveal hundreds of km wide multilayered sill complexes and dikes, which are widespread across vast regions of the basin without evident structural control from either the Precambrian basement grain or the basin internal architecture. Anomaly enhancement techniques and self-organizing maps (SOM) procedure were applied on airborne magnetic data, unraveling near-surface magmatic features in four distinct magnetic domains. Using SOM analysis, the basaltic rocks were divided into six groups based on magnetic susceptibility and major elements composition. These results suggest common origin for both magmatic episodes, probably a combination of effects of edge-driven convection and large-scale mantle warming under the westward moving West Gondwana during the Central and South Atlantic opening, which caused a shifted emplacement to the east of the igneous rocks in the Parnaíba basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189134','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189134"><span>Bokan Mountain peralkaline granitic complex, Alexander terrane (southeastern Alaska): evidence for Early Jurassic rifting prior to accretion with North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dostal, Jaroslav; Karl, Susan M.; Keppie, J. Duncan; Kontak, Daniel J.; Shellnutt, J. Gregory</p> <p>2013-01-01</p> <p>The circular Bokan Mountain complex (BMC) on southern Prince of Wales Island, southernmost Alaska, is a Jurassic peralkaline granitic intrusion about 3 km in diameter that crosscuts igneous and metasedimentary rocks of the Alexander terrane. The BMC hosts significant rare metal (rare earth elements, Y, U, Th, Zr, and Nb) mineralization related to the last stage of BMC emplacement. U–Pb (zircon) and 40Ar/39Ar (amphibole and whole-rock) geochronology indicates the following sequence of intrusive activity: (i) a Paleozoic basement composed mainly of 469 ± 4 Ma granitic rocks; (ii) intrusion of the BMC at 177 ± 1 Ma followed by rapid cooling through ca. 550 °C at 176 ± 1 Ma that was synchronous with mineralization associated with vertical, WNW-trending pegmatites, felsic dikes, and aegirine–fluorite veins and late-stage, sinistral shear deformation; and (iii) intrusion of crosscutting lamprophyre dikes at >150 Ma and again at ca. 105 Ma. The peralkaline nature of the BMC and the WNW trend of associated dikes suggest intrusion during NE–SW rifting that was followed by NE–SW shortening during the waning stages of BMC emplacement. The 177 Ma BMC was synchronous with other magmatic centres in the Alexander terrane, such as (1) the Dora Bay peralkaline stock and (2) the bimodal Moffatt volcanic suite located ∼30 km north and ∼100 km SE of the BMC, respectively. This regional magmatism is interpreted to represent a regional extensional event that precedes deposition of the Late Jurassic – Cretaceous Gravina sequence that oversteps the Wrangellia and Alexander exotic accreted terranes and the Taku and Yukon–Tanana pericratonic terranes of the Canadian–Alaskan Cordillera.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70046292','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70046292"><span>Bokan Mountain peralkaline granitic complex, Alexander terrane (southeastern Alaska): evidence for Early Jurassic rifting prior to accretion with North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dostal, Jaroslav; Karl, Susan M.; Keppie, J. Duncan; Kontak, Daniel J.; Shellnutt, J. Gregory</p> <p>2013-01-01</p> <p>The circular Bokan Mountain complex (BMC) on southern Prince of Wales Island, southernmost Alaska, is a Jurassic peralkaline granitic intrusion about 3 km in diameter that crosscuts igneous and metasedimentary rocks of the Alexander terrane. The BMC hosts significant rare metal (rare earth elements, Y, U, Th, Zr, and Nb) mineralization related to the last stage of BMC emplacement. U–Pb (zircon) and 40Ar/39Ar (amphibole and whole-rock) geochronology indicates the following sequence of intrusive activity: (i) a Paleozoic basement composed mainly of 469 ± 4 Ma granitic rocks; (ii) intrusion of the BMC at 177 ± 1 Ma followed by rapid cooling through ca. 550 °C at 176 ± 1 Ma that was synchronous with mineralization associated with vertical, WNW-trending pegmatites, felsic dikes, and aegirine–fluorite veins and late-stage, sinistral shear deformation; and (iii) intrusion of crosscutting lamprophyre dikes at >150 Ma and again at ca. 105 Ma. The peralkaline nature of the BMC and the WNW trend of associated dikes suggest intrusion during NE–SW rifting that was followed by NE–SW shortening during the waning stages of BMC emplacement. The 177 Ma BMC was synchronous with other magmatic centres in the Alexander terrane, such as (1) the Dora Bay peralkaline stock and (2) the bimodal Moffatt volcanic suite located ~30 km north and ~100 km SE of the BMC, respectively. This regional magmatism is interpreted to represent a regional extensional event that precedes deposition of the Late Jurassic – Cretaceous Gravina sequence that oversteps the Wrangellia and Alexander exotic accreted terranes and the Taku and Yukon–Tanana pericratonic terranes of the Canadian–Alaskan Cordillera.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005168','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005168"><span>The origins of radial fracture systems and associated large lava flows on Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parfitt, Elisabeth A.; Wilson, Lionel; Head, James W., III</p> <p>1992-01-01</p> <p>Magellan images have revealed the existence of systems of radial fractures on venus that are very similar in form to terrestrial dike swarms such as the Mackenzie swarm in Northern Canada. The association of many of the fracture systems with lava flows, calderas, and volcanic edifices further support the idea of a dike emplacement origin. A global survey of the Magellan images has allowed the location of 300 such fracture systems. Two types of fracture systems are defined. A series of models were developed to simulate the emplacement of dikes on Venus. Observations of fracture lengths and widths were then used to constrain the emplacement conditions. The model results show that the great length and relatively large width of the fractures can only be explained if the dikes that produce them were emplaced in high driving pressure (pressure buffered) conditions. Such conditions imply high rates of melt production, which is consistent with the melt being derived directly from a plume head. We have recently modeled the vertical emplacement of a dike from the top of a mantle plume and calculated the eruption rates such a dike would produce on reaching the surface. This modeling shows that eruption rates of approximately 0.1 cu km/hr can readily be generated by such a dike, consistent with the above results. However, the sensitivity of the model to dike width and therefore driving pressure means that eruption rates from dikes emplaced from the base of the crust or the head of a mantle plume could be orders of magnitude higher than this. Clearly, therefore, the model needs to be refined in order to better constrain eruption conditions. However, it is worth noting here that the initial results do show that even for moderate dike widths, eruption rates could be at least on the order of those estimated for terrestrial flood basalts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.491..226L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.491..226L"><span>Magmatic controls on axial relief and faulting at mid-ocean ridges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Zhonglan; Buck, W. Roger</p> <p>2018-06-01</p> <p>Previous models do not simultaneously reproduce the observed range of axial relief and fault patterns at plate spreading centers. We suggest that this failure is due to the approximation that magmatic dikes open continuously rather than in discrete events. During short - lived events, dikes open not only in the strong axial lithosphere but also some distance into the underlying weaker asthenosphere. Axial valley relief affects the partitioning of magma between the lithosphere and asthenosphere during diking events. The deeper the valley, the more magma goes into lithospheric dikes in each event and so the greater the average opening rate of those dikes. The long-term rate of lithospheric dike opening controls faulting rate and axial depth. The feedback between axial valley depth D and lithospheric dike opening rate allows us to analytically relate steady-state values of D to lithospheric thickness HL and crustal thickness HC. A two-dimensional model numerical model with a fixed axial lithospheric structure illustrates the analytic model implications for axial faulting. The predictions of this new model are broadly consistent with global and segment-scale trends of axial depth and fault patterns with HL and HC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V23G..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V23G..04K"><span>Magma mixing during caldera forming eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kennedy, B.; Jellinek, M.; Stix, J.</p> <p>2006-12-01</p> <p>During explosive caldera-forming eruptions magma erupts through a ring dyke. Flow is driven, in part, by foundering of a magma chamber roof into underlying buoyant magma. One intriguing and poorly understood characteristic of deposits from calderas is that bulk ignimbrite, pumices, and crystals can show complex stratigraphic zonation. We propose that zonation patterns can be explained by different, and temporally evolving subsidence styles, and that the geometry imposed by subsidence can affect flow and cause mixing in the chamber and ring dyke. We use two series of laboratory experiments to investigate aspects of the mixing properties of flow in the chamber and ring dike during caldera collapse. In the first series, cylindrical blocks of height, h, and diameter, d, are released into circular analog magma chambers of diameter D and height H, containing buoyant fluids with viscosities that we vary. Subsidence occurs as a result of flow through the annular gap (ring dike) between the block and the wall of the surrounding tank of width, w = D-d. Three dimensionless parameters characterize the nature and evolution of the subsidence, and the resulting flow: A Reynolds number, Re, a tilt number, T = w/h and a subsidence number, S = w/H. Whereas Re indicates the importance of inertia for flow and mixing, T and S are geometric parameters that govern the extent of roof tilting, the spatial variation in w during collapse and the wavelength and structure of fluid motions. On the basis of field observations and theoretical arguments we fix T ≍ 0.14 and characterize subsidence and the corresponding flow over a wide range of Re - S parameter space appropriate to silicic caldera systems. Where S < 2 and Re < 103 the roof can rotate or tilt as it sinks and a spectrum of fluid mechanical behavior within the ring dike are observed. The combination of roof rotation and tilting drives unsteady, 3D overturning motions within the ring dike that are inferred to cause extensive mixing. In the absence of tilting and rotation flow is quasi-steady, there is negligible overturning and mixing. Where S > 2 and Re < 10^1 there is a "locking regime" in which the roof the roof rotates as it sinks but does not settle to the floor. The resulting flow leads to little overturning and mixing. Where S > 2 and Re > 10^1 the roof block settles with negligible tilting. Unsteady laminar overturning (Re < 102) and turbulent motions (Re > 103) produce extensive mixing in the ring dike. In a second series of experiments, motivated by the "piecemeal" collapse of many calderas, we investigate additional effects arising in the presence of two blocks. In contrast to the single-block case, the relative motions of the blocks cause extensive overturning and mixing in the chamber as well as the ring dike. Our experimental results are applied to understand the subsidence behavior and the mixing properties of a number of natural cases. Our work suggests that during most caldera-forming eruptions mixing is an inevitable consequence of synchronous eruption and subsidence. In addition, extensive mechanical mixing within the ring dike can explain the cumulate and mingled textures characteristic of many ring dikes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS054-152-016&hterms=5S&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D5S','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS054-152-016&hterms=5S&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D5S"><span>Great Dike of Zimbabwe, Zimbabwae, Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1993-01-01</p> <p>The Great Dike of Zimbabwe (17.5S, 31.5E) bisects the entire length of Zimbabwae in southern Africa and is one of the prominent visual features easily recognized from low orbit. The volcanic rocks which make up the dike are about 1.2 billion years old and are rich in chromite and platinum which are mined from it. The straight line of the dike is offset in places by faults which are often occupied by streams flowing through the fractures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185074','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185074"><span>Episodic growth of a Late Cretaceous and Paleogene intrusive complex of pegmatitic leucogranite, Ruby Mountains core complex, Nevada, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Howard, Keith A.; Wooden, J.L.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.; Lee, S.-Y.</p> <p>2011-01-01</p> <p>Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains–East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma. This injection complex consists of deformed sheets and other bodies emplaced syntectonically into a stratigraphic framework of marble, calc-silicate rocks, quartzite, schist, and other granitoids. Bodies of pegmatitic granite coalesce around host-rock remnants, which preserve relict or ghost stratigraphy, thrusts, and fold nappes. Intrusion inflated but did not disrupt the host-rock structure. The pegmatitic granite increases proportionally downward from structurally high positions to the bottoms of 1-km-deep canyons where it constitutes 95%–100% of the rock. Zircon and monazite dated by U-Pb (sensitive high-resolution ion microprobe, SHRIMP) for this rock type cluster diffusely at ages near 92, 82(?), 69, 38, and 29 Ma, and indicate successive or rejuvenated igneous crystallization multiple times over long periods of the Late Cretaceous and the Paleogene. Initial partial melting of unexposed pelites may have generated granite forerunners, which were remobilized several times in partial melting events. Sources for the pegmatitic granite differed isotopically from sources of similar-aged interleaved equigranular granites. Dominant Late Cretaceous and fewer Paleogene ages recorded from some pegmatitic granite samples, and Paleogene-only ages from the two structurally deepest samples, together with varying zircon trace element contents, suggest several disparate ages of final emplacement or remobilization of various small bodies. Folded sills that merge with dikes that cut the same folds suggest that there may have been in situ partial remobilization. The pegmatitic granite intrusions represent prolonged and recurrent generation, assembly, and partial melting modification of a batholithic volume even while the regional tectonic environment varied dramatically from contractile thickening to extension and mafic underplating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V31A3086J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V31A3086J"><span>The Relationship Between Carbonatitic, Melilititic and Potassic Trachytic Magma Types at the Saltpeterkop Carbonatite Complex, Sutherland, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janney, P. E.; Marageni, M.</p> <p>2016-12-01</p> <p>The 74 Ma Saltpeterkop Carbonatite Complex near Sutherland, South Africa, is unusual in that it is one of the few southern African carbonatites with preserved volcanic features, including a 1 km-diameter tuff ring composed of silicified volcaniclastic breccia. Around the complex, the regionally flat-lying Karoo strata have been dramatically upwarped, with dips away from the Complex as high as 45°. Further, within about a 10 km radius of the center of the complex are hundreds of dikes, sills and diatremes composed mainly of carbonatite, potassic trachyte and olivine melilitite, with the spatial density of these intrusions decreasing with increasing distance. We have recently completed an in-depth geochemical reconnaissance of the Saltpeterkop complex, involving field sampling and whole-rock major and trace element analysis, with radiogenic and stable isotope measurements in progress. While the association with potassic trachytes is relatively common in southern African carbonatites, the presence of significant amounts of primitive olivine melilitite (30-40 wt.% SiO2, Mg# = 61-74) is unusual. Our preliminary model for the origin of the complex involves (1) ascent and intrusion of a mantle-derived carbonated and potassic magma into the mid-to upper crust, (2a) separation of an alkali carbonatite phase from this magma, resulting in intensive local fenitization and partial melting of mid-crustal rocks (thereby forming potassic trachytes), and possibly triggering the initial eruption, (2b) small amounts of primitive, but now less potassic, mantle-derived magma are emplaced as olivine melilitite dikes and diatremes, and (3) differentiation of the mantle-derived magma to generate significant quantities of mainly calcio- and ferro-carbonatite magmas emplaced as dykes and sills.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptLT.103..346S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptLT.103..346S"><span>Distributed optical fiber-based monitoring approach of spatial seepage behavior in dike engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Huaizhi; Ou, Bin; Yang, Lifu; Wen, Zhiping</p> <p>2018-07-01</p> <p>The failure caused by seepage is the most common one in dike engineering. As to the characteristics of seepage in dike, such as longitudinal extension engineering, the randomness, strong concealment and small initial quantity order, by means of distributed fiber temperature sensor system (DTS), adopting an improved optical fiber layer layout scheme, the location of initial interpolation point of the saturation line is obtained. With the barycentric Lagrange interpolation collocation method (BLICM), the infiltrated surface of dike full-section is generated. Combined with linear optical fiber monitoring seepage method, BLICM is applied in an engineering case, which shows that a real-time seepage monitoring technique is presented in full-section of dike based on the combination method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/pa2635.photos.356809p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/pa2635.photos.356809p/"><span>2. VIEW EAST ALONG DIKE TOWARDS HYDROELECTRIC GENERATING FACILITY. FORMER ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>2. VIEW EAST ALONG DIKE TOWARDS HYDROELECTRIC GENERATING FACILITY. FORMER TRANSFORMER BUILDING AND SERVICE SHED SEEN TO LEFT BELOW DIKE - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930030857&hterms=Saunders&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D30%26Ntt%3DSaunders%252C%2BM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930030857&hterms=Saunders&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D30%26Ntt%3DSaunders%252C%2BM"><span>Dike emplacement on Venus and on earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mckenzie, Dan; Mckenzie, James M.; Saunders, R. S.</p> <p>1992-01-01</p> <p>Attention is given to long linear features visible in SAR images of the surface of Venus. They are shallow graben a few kilometers across. Calculations show that dike emplacement can account for such features if the top of the dikes is a few kilometers below the surface of the planet. The dikes are often curved near their probable sources, and the magnitude of the regional stress field estimated from this curvature is about 3 MPa, or similar to that of earth. On both Venus and earth, dikes often form intersecting patterns. Two-dimensional calculations show that this behavior can occur only if the stress field changes with time. Transport of melt over distances as large as 2000 km in dikes whose width is 30 m or more occurs in some continental shields on earth and can also account for linear features on Venus that extend for comparable distances. Such transport is possible because the viscosity and thermal conductivity of both the melt and the wall rock are small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40.1065K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40.1065K"><span>Aspect ratios and magma overpressures of non-feeder dikes observed in the Miyake-jima volcano (Japan), and fracture toughness of its upper part</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kusumoto, Shigekazu; Geshi, Nobuo; Gudmundsson, Agust</p> <p>2013-03-01</p> <p>present a new method for estimating the length and maximum thickness (aperture) of a dike from the observed opening at one dike tip. We apply the method to 15 arrested non-feeder dikes (where the upper tip is known, the lower tip unknown) in the caldera walls of Miyake-jima, Japan, to estimate the length-thickness ratio, as well as the magma overpressure and fracture toughness. The calculated length-thickness ratio ranges from 61 to 246, with an average of 136. The ratios are low because the dikes are emplaced close to the surface in comparatively compliant (soft) rocks. Using these ratios and the appropriate elastic constants, the calculated magmatic overpressures of the dikes are between 2.3 and 8.9 MPa, and the stress intensity factors between 38 and 117 MPa m1/2. All these values are within the range of typical in situ estimates, supporting the validity of this new method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V43E0569Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V43E0569Y"><span>Paleoproterozoic mafic dike swarms of the Dunhuang Block: record of initial breakup of the Columbia suppercontinent?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, X. T.; Zhang, C. L.</p> <p>2017-12-01</p> <p>Mafic dike swarms have been described as igneous record related to the breakup and dispersal of continental masses. Studying their origin and distribution are thus important for the understanding of the regional magmatic-tectonic evolution during the late Paleoproterozoic and possible relationship between the Dunhuang Block and the Columbia supercontinent. Here detail petrolography, zircon U-Pb age, and geochemistry are presented of the mafic dikes in the Dunhuang Block. The mafic dikes are tabular, E-W trending, mainly consist of the diabase and diabasic gabbro. Fine-grained gabbroic rocks are seen in the center of some of the thick dikes. These rocks are massive, showing ophitic texture with tholeiitic affinity and dominated by basaltic compositions. Zircon SHRIMP U-Pb dating of these dykes yields emplacement age of 1867 ± 8 Ma. According to their geochemical features, the mafic dikes are subdivided into three groups (G1, G2, and G3). G1 dikes have low SiO2 (47.80-48.82%), high MgO (6.00-8.44%), Cr (92-170 ppm), and Ni (46-106 ppm), indicating that they were not significantly affected by fractional crystallization or crustal assimilations. This result is consistent with their insignificant Nb-Ta troughs on the incompatible elements spider diagrams. Compared to G1 dikes, G2 dikes show higher SiO2 (49.18-49.76%), lower MgO (4.92-5.23%), Cr (35-44 ppm), and Ni (72-82 ppm). They show moderate Nb-Ta depletion on the primitive mantle normalized spider diagrams. Compared with G1 and G2 dikes, G3 dikes exhibit lowest SiO2 (46.05-49.76%) and MgO (4.07-4.37%) and highest TiO2 (3.38-3.50%), P2O5 (1.81-1.94%), and total alkalis (5.04-5.73%). In addition, G3 dikes have higher total REE abundances and extremely depleted in Nb-Ta with Nb/La ratios from 0.25 to 0.27. Although these mafic dikes show different REE and trace element patterns, the element signatures (Nb/La, Th/La, Ce/Nb, Th/Nb, and (Zr/Nb)N ratios) are similar to those of the intraplate basalts, while different from the volcanic arc basalts or mid-ocean ridge basalts. This may suggest that the primitive magmas of G1, G2, and G3 were derived from an OIB-like mantle source, which may be related to the plume magmatism or to an intracontinental extension setting, associated with the initial breakup of the Columbia suppercontinent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021588','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021588"><span>An ancient depleted mantle sample from a 42-Ma dike in Montana: Constraints on persistence of the lithosphere during Eocene Magmatism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dudas, F.O.; Harlan, S.S.</p> <p>1999-01-01</p> <p>Recent models for the Cenozoic tectonic evolution of the western margin of North America propose that delamination of ancient lithosphere accompanied asthenospheric upwelling, magmatism, and uplift subsequent to Laramide deformation. On the basis of the age of an alkaline dike in south-central Montana, thermometry of mantle xenoliths from the dike, and Sr, Nd, and Pb isotopic compositions of the dike and a xenocryst, we show that refractory lithosphere, derived from ancient, depleted mantle, remained in place under the Wyoming Craton as late as 42 Ma. The Haymond School Dike, a camptonite, yields a 40Ar/39Ar plateau date of 41.97 ?? 0.19 Ma (2??). Paleomagnetic data are consistent with this date and indicate intrusion during chron C19r. The dike has Sr, Nd, and Pb isotopic compositions similar to those of other Eocene alkaline rocks from central Montana. A clinopyroxene megacryst from the dike has ??42 = 17, and 87Sr/86Sr = 0.70288, indicating that it derives from ancient, depleted mantle isotopically distinct from the source of the host camptonite. Thermometry of xenoliths from the dike shows pyroxene populations that formed at 880?? and 1200??C. Combining thermometry with previous estimates of the regional Eocene geotherm inferred from xenoliths in kimberlites, and with the Al-in-orthopyroxene barometer, we infer that lithospheric mantle remained intact to depths of 110-150 km as late as 42 Ma. Eocene magmatism was not accompanied by complete removal of ancient lithosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1983/0448/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1983/0448/report.pdf"><span>Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Greene, Robert C.</p> <p>1983-01-01</p> <p>The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was discovered at the edge of the tonalite gneiss belt east of Wadi Ranyah. Granite and gabbro have economic potential as building stone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S51B4472N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S51B4472N"><span>Material and Stress Rotations: Anticipating the 1992 Landers, CA Earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nur, A. M.</p> <p>2014-12-01</p> <p>"Rotations make nonsense of the two-dimensional reconstructions that are still so popular among structural geologists". (McKenzie, 1990, p. 109-110) I present a comprehensive tectonic model for the strike-slip fault geometry, seismicity, material rotation, and stress rotation, in which new, optimally oriented faults can form when older ones have rotated about a vertical axis out of favorable orientations. The model was successfully tested in the Mojave region using stress rotation and three independent data sets: the alignment of epicenters and fault plane solutions from the six largest central Mojave earthquakes since 1947, material rotations inferred from paleomagnetic declination anomalies, and rotated dike strands of the Independence dike swarm. The model led not only to the anticipation of the 1992 M7.3 Landers, CA earthquake but also accounts for the great complexity of the faulting and seismicity of this event. The implication of this model for crustal deformation in general is that rotations of material (faults and the blocks between them) and of stress provide the key link between the complexity of faults systems in-situ and idealized mechanical theory of faulting. Excluding rotations from the kinematical and mechanical analysis of crustal deformation makes it impossible to explain the complexity of what geologists see in faults, or what seismicity shows us about active faults. However, when we allow for rotation of material and stress, Coulomb's law becomes consistent with the complexity of faults and faulting observed in situ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=273960','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=273960"><span>Flow near a model spur dike with a fixed scoured bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Three-dimensional flow velocities were measured using an acoustic Doppler velocimeter at a closely spaced grid over a fixed scoured bed with a submerged spur dike. Three-dimensional flow velocities were measured at 3484 positions around the trapezoidal shaped submerged model spur dike over a fixed ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1565a/pp_1565a.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1565a/pp_1565a.pdf"><span>Late Proterozoic diabase dikes of the New Jersey Highlands; a remnant of Iapetan rifting in the north-central Appalachians</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Volkert, R.A.; Puffer, J.H.</p> <p>1995-01-01</p> <p>Diabase dikes of widespread occurrence intrude only middle Proterozoic rocks in the New Jersey Highlands. These dikes are enriched in TiO2, P2O5, Zr, and light rare earth elements, and have compositions that range from tholeiitic to alkalic. Dike descriptions, field relations, petrography, geochemistry, petrogenesis, and tectonic setting are discussed. The data are consistent with emplacement in a rift-related, within-plate environment and suggest a correlation with other occurrences of late Proterozoic Appalachian basaltic magmatism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011391','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011391"><span>Modeling of self-potential anomalies near vertical dikes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fitterman, D.V.</p> <p>1983-01-01</p> <p>The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1982/1047/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1982/1047/report.pdf"><span>Paleomagnetic evidence bearing on Tertiary tectonics of the Tihamat Asir coastal plain, southwestern Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kellogg, K.S.; Blank, H.R.</p> <p>1982-01-01</p> <p>Paleomagnetic directions determined for an upper Oligocene to lower Miocene dike swarm and from two lower Miocene layered gabbros in the Tihamat Asir coastal plain of southwestern Saudi Arabia are used to test several hypotheses concerning the tectonics of rifting along the eastern margin of the Red Sea. The dikes and gabbros were emplaced during the initial phases of Red Sea rifting and may mark the transition between continental and oceanic crust. Although these rocks have been hydrothermally altered to varying degrees, reliable remanent directions after alternating-field demagnetization were obtained for 23 dikes and for gabbros at Jabal at Tirf and Wadi Liyyah. Twelve of the dikes are reversely magnetized. After the directions of the reversely magnetized dikes are inverted 180?, the mean direction calculated for the normal dikes is approximately 24? more downward than that calculated for the reversed dikes. This result is similar to that found for the As Sarat volcanic field, 100 km to the north, and may be due to a displaced dipole source for the field. The unrotated mean remanent direction for the dikes (inverting reversed dike directions 180?) is D (declination) = 353.2? and I (inclination) = 6.8? with a95 (radius of the cone of 95 percent confidence) = 8.9? whereas directions from the Jabal at Tirf and Wadi Liyyah gabbros lie at D = 176.2?, I = -1.6? (a95 = 7 1 ?) and D = 17.1?, I = 16.3? (a 95 = 8.7?), respectively. Comparing these results with the results from the As Sarat volcanic field, all the paleomagnetic evidence supports a model for approximately 20 ? of westward tilting of the Wadi Damad and Wadi Jizan areas after the emplacement of the Jabal at Tiff gabbro. The Wadi Liyyah area may have been tilted even more toward the Red Sea. The paleomagnetic directions from three widely separated localities in the Jabal at Tirf gabbro are not significantly different, a fact which indicates that the body cooled in approximately its present bowl shape. Evidence suggests that the ratio of normal to reversed dikes may change significantly along a 6-km-long traverse normal to the trend of the dike swarm, possibly reflecting migration of .a spreading axis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5825R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5825R"><span>Surface fracturing and graben subsidence during the 2014 Bárdarbunga dike intrusion in Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rut Hjartardóttir, Ásta; Einarsson, Páll; Tumi Gudmundsson, Magnús; Högnadóttir, Thordís</p> <p>2015-04-01</p> <p>A dike propagated laterally away from the Bárdarbunga central volcano in August 2014. The dike propagated about 48 km towards the northeast and north-northeast, mostly beneath the Vatnajökull glacier. However, the farthest 8 km of the dike were located north of the glacier, where the ice-free area allowed surface fractures and graben subsidence to be observed. This dike intrusion was accompanied by eruptions, the most prominent ones occurring within the graben at the distal end of the dike. In this study, photographs taken from airplanes were rectified by using the ArcGIS software. This was done in order to map the fractures and eruptive fissures which were formed or reactivated during this dike intrusion, and to show the temporal evolution of the fracture pattern. Ground deformation across the graben was measured from an airplane with a radar altimeter and kinematic GPS. The propagation of the dike was shown by laterally propagating earthquakes and by ground deformation recorded by GPS geodetic network. Three days after the dike had propagated north of the Vatnajökull glacier, new and reactivated fractures were detected in this area, above the dike. The fractures delineated two grabens in direct continuation of each other. The southern graben extended 5 km northwards from the glacier boundary, and was 700-1000 m wide. Before the eruptions, the northern graben was seen ~6.6-7.5 km north of the glacier, and was only 250-450 m wide. Two days later, on the 29th of August, a four-hour long eruption took place on a 600 m long eruptive fissure 6 km north of the glacier. Then, the narrow northern graben was seen extending about 1-1.6 km farther to the south than before the eruption, with the new eruptive fissure in the middle of it. The eruption resumed again two days later, extending the same eruptive fissure towards the south and north, to a total of ~1900 m length. This eruption is still ongoing (in January 2014). On the 5th of September, three short (~100 to 250 m) eruptive fissures also opened up ~3 km north of the glacier, although these eruptions only lasted two days. Notably, the eruptive fissures activated on 29th and 31st August were located within the eruptive fissures of the older Holuhraun lava, which erupted in the 17th and/or 18th century. A profile taken on the 30th December 2014 by radar measurements across the southern graben, 4 km north of the glacier, showed that the graben had then subsided ~4-5 m, compared with a TanDEM-X Digital Elevation Model acquired before the dike intrusion. The width of a graben implies the depth to the top of the dike. The narrow grabens observed before the eruptions thus indicated that the dike was shallow, and that an eruption was likely to occur. The width of active grabens therefore is an important observable in hazard assessment during dike intrusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP51A0777B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP51A0777B"><span>Relation between Fabric Anisotropy of Host-Rock vis-à-vis Far-Field Stress, and the Emplacement Of Pegmatite Dikes - an example from the Dharwar Craton (South India)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhatt, S.; Rana, V.; Mamtani, M. A.</p> <p>2017-12-01</p> <p>Dikes are known to control magma transport within the lithosphere. They (dikes) usually form by the fracturing of host rock and propagate orthogonal to the minimum principal stress direction and/or may follow the pre-existing anisotropy depending on the magnitude of fluid pressure and the tensile strength of the host rock. Pegmatite veins/dikes are often associated with hydraulic fracturing and high magmatic fluid pressure, which is attributed to volatile rich hydrous melt. The Koppal Pluton (KP) is a syenite body that lies to the East of the Chitradurga Shear Zone, which separates the Dharwar Craton into East and West Dharwar Craton. The KP is visually isotropic and profusely permeated by pegmatite dikes. Orientation data of the pegmatite dikes (n=357) were collected for geometric and paleostress analysis. The orientation of anisotropy with respect to the maximum principal stress and fluid pressure dictates whether a new fracture will form or a pre-existing anisotropy will be reactivated/dilated. To understand the relationship between the pre-existing anisotropy and orientation of pegmatite dikes, anisotropy of magnetic susceptibility (AMS) analysis was performed on the samples of KP. AMS analysis reveals NNE-SSW oriented magnetic fabric ascribed to regional D3 deformational event (NW-SE compression). Mean orientation of the magnetic fabric (NNE-SSW) is oblique to the mean orientation of the pegmatite dikes (NNW-SSE). It is envisaged that pegmatite dikes emplaced syntectonically as mode-I crack during regional D3 deformation event (pure shear dominated transpression) and developed oblique to the magnetic fabric of the pluton. The present study leads to a better understanding about the influence and interaction of principle stress, magmatic fluid pressure, and host-rock anisotropy on the ascent and emplacement of pegmatite dikes that intrude the visually isotropic KP. Acknowledgments: SB acknowledges INSPIRE Fellowship Programme (Award no: IF131138) of DST (New Delhi). VR and MAM thank Ministry of Earth Sciences (project no: MoES/P.O.(Geosci)/1/2013).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGP33C0954K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGP33C0954K"><span>Paleomagnetism of the Wyoming Craton: A Pre-Laurentian Puzzle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kilian, T.; Chamberlain, K.; Mitchell, R. N.; Evans, D. A.; Bleeker, W.; Lecheminant, A. N.</p> <p>2010-12-01</p> <p>The Archean Wyoming craton is mostly buried beneath Phanerozoic sediments in the Rocky Mountains of the west central United States. Exposures of the craton are entirely in thrust-bounded Laramide uplifts and contain numerous swarms of Neoarchean-Proterozoic mafic dikes. U-Pb ages from these dikes include ~2685 Ma from a dike in the Owl Creek Mountains (Frost et al., 2006) as well as another in the Bald Mountain region of the Bighorn Mountains (this study), ~2170 Ma from the Wind River Mountain quartz diorite (Harlan et al., 2003), ~2110 Ma from a dike in the Granite Mountains (Bowers and Chamberlain, 2006), ~2010 Ma from a Kennedy dike in the Laramie Range (Cox et al., 2000), and ~780 Ma for dikes in the Beartooth and Teton Mountains (Harlan et al., 1997). These possible age ranges of magmatic events will allow a detailed comparison with other cratons, especially Superior and Slave. Prior to the assembly of Laurentia, Wyoming may have been connected with Slave in supercraton Sclavia (Bleeker, 2003; Frost et al., 2007), or alternatively, Wyoming may have been attached to the present southern margin of Superior in the supercraton Superia, as judged by similarities of the thrice-glaciated Huronian and Snowy Pass sedimentary successions (Roscoe and Card, 1993). Paleomagnetic results will be presented from over 150 dikes in the Wyoming craton. All dikes were from the basement uplifts of the Beartooth Mountains, Bighorn Mountains, Owl Creek Mountains, Granite Mountains, Ferris Mountains and Laramie Range. Dikes range in widths from 1 to >100 meters, and trends vary across all orientations. Stable remanence is observed in majority of sites with at least 8 different directions from the various uplifts. Structural corrections are applied when necessary to restore shallowly dipping Cambrian strata to horizontal. The paleomagnetic study is being integrated with precise U-Pb geochronology of dikes that bear stable remanence directions. Results will eventually allow a comparison of results from both Slave and Superior cratons throughout the Archean and Proterozoic. The data will test the prior connections, or lack thereof, among the Archean cratons in Laurentia, and help assess whether there was a supercontinent during the Archean-Proterozoic transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JSAES...7..135C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JSAES...7..135C"><span>Uplifted ophiolitic rocks on Isla Gordon, southernmost Chile: implications for the closure history of the Rocas Verdes marginal basin and the tectonic evolution of the Beagle Channel region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cunningham, W. D.</p> <p>1994-04-01</p> <p>A succession of mafic rocks that includes gabbro, sheeted dikes and deformed pillow basalts has been mapped in detail on Isla Gordon, southernmost Chile and is identified as an upper ophiolitic complex representing the uplifted floor of the Late Jurassic-Early Cretaceous Rocas Verdes marginal basin. The complex was uplifted, deformed, and regionally metamorphosed prior to the intrusion of an undeformed 90 Ma granodiorite that cuts the complex. The complex appears para-autochthonous, is gently tilted to the northeast and is internally sheared by near-vertical foliation zones. No evidence for obduction was observed although the base of the complex is not exposed. The ophiolitic rocks have been regionally metamorphosed to mid-upper greenschist levels. Isla Gordon is bounded by the northwest and southwest arms of the Beagle Channel, two important structural boundaries in the southernmost Andes that are interpreted to have accommodated north-side-up and left-lateral displacements. Directly north of Isla Gordon is the Cordillera Darwin metamorphic complex that exposes the highest grade metamorphic rocks in the Andes south of Peru. On the north coast of Isla Gordon a volcaniclastic turbidite sequence that is interpreted to have been deposited above the mafic floor is metamorphosed to lower greenschist levels in strong metamorphic contrast to amphibolite-grade othogneisses exposed in Cordillera Darwin only 2 km away across the northwest arm of the Beagle Channel. The profound metamorphic break across the northwest arm of the Beagle Channel and the regional northeast tilt of the ophiolitic complex are consistent with the previously proposed hypothesis that Isla Gordon represents the upper plate to an extensional fault that accommodated tectonic unroofing of Cordillera Darwin. However, limited structural evidence for extension was identified in this study to support the model and further work is needed to determine the relative importance of contractional, extensional and strike-slip displacements during the closure of the Rocas Verdes marginal basin and uplift of Cordillera Darwin. The Isla Gordon ophiolitic complex is correlative with other regional occurrences of ophiolitic rocks including the previously studied Tortuga, Sarmiento and Larsen Harbour complexes. The existence of the Isla Gordon ophiolitic complex helps link the known occurrences of the marginal basin floor into a semi-continuous belt that sheds light on the original continuity of the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JOUC...16..953D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JOUC...16..953D"><span>Tidal current and tidal energy changes imposed by a dynamic tidal power system in the Taiwan Strait, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, Peng; Zhang, Jisheng; Zheng, Jinhai</p> <p>2017-12-01</p> <p>The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000958','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000958"><span>Where's the Beaverhead beef?. [meteorite impact structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hargraves, R. B.</p> <p>1992-01-01</p> <p>Only rare quartz grains with single-set planar (1013) deformation features (PDF's) are present in breccia dikes found in association with uniformly oriented shatter cones that occur over an area 8 x 25 km. This suggests that the Beaverhead shocked rocks come from only the outer part of the central uplift of what must have been a large (greater than 100 km diameter) complex impact structure. An impact event of this magnitude on continental crust (thought to have occurred in late Precambrian or ealy Paleozoic time) could be expected to punctuate local geologic history. Furthermore, although it may now be covered, its scar should remain despite all the considerable subsequent erosion/deposition and tectonism since the impact. The following are three large-scale singularities or anomalies that may reflect the event and mark its source. (1) The Lemhi Arch is a major structural uplift that occurred in late Proterozoic-early Paleozoic time in East Central Idaho and caused the erosion of at least 4 km of sedimentary cover. This may be directly related to the impact. (2) Of the many thrust sheets comprising the Cordilleran belt, the Cabin plate that carries the shocked rocks is unique in that it alone intersected the crystalline basement. It also now marks the apex of the Southwest Montana Recess in the Sevier front. The basement uplift remaining from the impact may have constituted a mechanical obstacle to the advancing thrust sheets in Cretaceous time, causing the recess. (3) What could be interpreted as a roughly circular aeromagnetic anomaly approx. 70 km in diameter can be discerned in the state aeromagnetic map centered about 20 km southeast of Challis, Idaho, in the Lost River range. It is in approximately the right place, and ignoring the possibility that the anomalies have diverse causes and the circular pattern is coincidental, it may mark what remains of the buried central uplift structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992lmip.conf...35H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992lmip.conf...35H"><span>Where's the Beaverhead beef?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hargraves, R. B.</p> <p></p> <p>Only rare quartz grains with single-set planar (1013) deformation features (PDF's) are present in breccia dikes found in association with uniformly oriented shatter cones that occur over an area 8 x 25 km. This suggests that the Beaverhead shocked rocks come from only the outer part of the central uplift of what must have been a large (greater than 100 km diameter) complex impact structure. An impact event of this magnitude on continental crust (thought to have occurred in late Precambrian or ealy Paleozoic time) could be expected to punctuate local geologic history. Furthermore, although it may now be covered, its scar should remain despite all the considerable subsequent erosion/deposition and tectonism since the impact. The following are three large-scale singularities or anomalies that may reflect the event and mark its source. (1) The Lemhi Arch is a major structural uplift that occurred in late Proterozoic-early Paleozoic time in East Central Idaho and caused the erosion of at least 4 km of sedimentary cover. This may be directly related to the impact. (2) Of the many thrust sheets comprising the Cordilleran belt, the Cabin plate that carries the shocked rocks is unique in that it alone intersected the crystalline basement. It also now marks the apex of the Southwest Montana Recess in the Sevier front. The basement uplift remaining from the impact may have constituted a mechanical obstacle to the advancing thrust sheets in Cretaceous time, causing the recess. (3) What could be interpreted as a roughly circular aeromagnetic anomaly approx. 70 km in diameter can be discerned in the state aeromagnetic map centered about 20 km southeast of Challis, Idaho, in the Lost River range. It is in approximately the right place, and ignoring the possibility that the anomalies have diverse causes and the circular pattern is coincidental, it may mark what remains of the buried central uplift structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BVol...80...49H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BVol...80...49H"><span>Erratum: Correction to: Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harp, A. G.; Valentine, G. A.</p> <p>2018-06-01</p> <p>In the article "Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes", the vertical axis for Fig. 8 a was incorrectly labeled (i.e., the value for dikes per km2).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tecto..35.1575C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tecto..35.1575C"><span>Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: Numerical simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Wenrong; Kaus, Boris J. P.; Paterson, Scott</p> <p>2016-06-01</p> <p>We conducted a 2-D thermomechanical modeling study of intrusion of granitic magma into the continental crust to explore the roles of multiple pulsing and dike-diapir interactions in the presence of visco-elasto-plastic rheology. Multiple pulsing is simulated by replenishing source regions with new pulses of magma at a certain temporal frequency. Parameterized "pseudo-dike zones" above magma pulses are included. Simulation results show that both diking and pulsing are crucial factors facilitating the magma ascent and emplacement. Multiple pulses keep the magmatic system from freezing and facilitate the initiation of pseudo-dike zones, which in turn heat the host rock roof, lower its viscosity, and create pathways for later ascending pulses of magma. Without diking, magma cannot penetrate the highly viscous upper crust. Without multiple pulsing, a single magma body solidifies quickly and it cannot ascent over a long distance. Our results shed light on the incremental growth of magma chambers, recycling of continental crust, and evolution of a continental arc such as the Sierra Nevada arc in California.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1133/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1133/report.pdf"><span>Clastic dikes of Heart Mountain fault breccia, northwestern Wyoming, and their significance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pierce, W.G.</p> <p>1979-01-01</p> <p>Structural features in northwestern Wyoming indicate that the Heart Mountain fault movement was an extremely rapid, cataclysmic event that created a large volume of carbonate fault breccia derived entirely from the lower part of the upper plate. After fault movement had ceased, much of the carbonate fault breccia, here called calcibreccia, lay loose on the resulting surface of tectonic denudation. Before this unconsolidated calcibreccia could be removed by erosion, it was buried beneath a cover of Tertiary volcanic rocks: the Wapiti Formation, composed of volcanic breccia, poorly sorted volcanic breccia mudflows, and lava flows, and clearly shown in many places by inter lensing and intermixing of the calcibreccia with basal volcanic rocks. As the weight of volcanic overburden increased, the unstable water-saturated calcibreccia became mobile and semifluid and was injected upward as dikes into the overlying volcanic rocks and to a lesser extent into rocks of the upper plate. In some places the lowermost part of the volcanic overburden appears to have flowed with the calcibreccia to form dike like bodies of mixed volcanic rock and calcibreccia. One calcibreccia dike even contains carbonized wood, presumably incorporated into unconsolidated calcibreccia on the surface of tectonic denudation and covered by volcanic rocks before moving upward with the dike. Angular xenoliths of Precambrian rocks, enclosed in another calcibreccia dike and in an adjoining dikelike mass of volcanic rock as well, are believed to have been torn from the walls of a vent and incorporated into the basal part of the Wapiti Formation overlying the clastic carbonate rock on the fault surface. Subsequently, some of these xenoliths were incorporated into the calcibreccia during the process of dike intrusion. Throughout the Heart Mountain fault area, the basal part of the upper-plate blocks or masses are brecciated, irrespective of the size of the blocks, more intensely at the base and in places extending upward for several tens of meters. North of Republic Mountain a small 25-m-high upper-plate mass, brecciated to some degree throughout, apparently moved some distance along the Heart Mountain fault as brecciated rock. Calcibreccia dikes intrude upward from the underlying 2 m of fault breccia into the lower part of the mass and also from its top into the overlying volcanic rocks; an earthquake-related mechanism most likely accounts for the observed features of this deformed body. Calcibreccia dikes are more common within the bedding-plane phase of the Heart Mountain fault but also occur in its transgressive and former land-surface phases. Evidence that the Wapiti Formation almost immediately buried loose, unconsolidated fault breccia that was the source of the dike rock strongly suggests a rapid volcanic deposition over the area in which clastic dikes occur, which is at least 75 km long. Clastic dikes were injected into both the upper-plate and the volcanic rocks at about the same time, after movement on the Heart Mouuntain fault had ceased, and therefore do not indicate a fluid-flotation mechanism for the Heart Mountain fault. The difference between contacts of the clastic dikes with both indurated and unconsolidated country rock is useful in field mapping at localities where it is difficult to distinguish between volcanic rocks of the Cathedral Cliffs and Lamar River Formations, and the Wapiti Formation. Thus, calcibreccia dikes in the Cathedral Cliffs and Lamar River Formations show a sharp contact because the country rock solidified prior to fault movement, whereas calcibreccia dikes in the Wapiti Formation in many instances show a transitional or semifluid contact because the country rock was still unconsolidated or semifluid at the time of dike injection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyDy.tmp....1R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyDy.tmp....1R"><span>The coupling between hydrodynamic and purification efficiencies of ecological porous spur-dike in field drainage ditch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rao, Lei; Wang, Pei-fang; Dai, Qing-song; Wang, Chao</p> <p>2018-05-01</p> <p>In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simulations and experimental methods. An Ammonia-Nitrogen (NH3-N) degradation evaluation model is built to calculate the pollution removal rate by coupling with the inner flow field of the porous spur-dikes. The variations of the total pollutant removal rate in the channel are discussed in terms of different porosities and gap distances between spur-dikes and inlet flow velocities. It is indicated that a reasonable parameter matching of the porosity and the gap distance with the flow velocity of the ditch can bring about a satisfactory purification efficiency with a small delivery quantity of ecological porous materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSM.T43D..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSM.T43D..02H"><span>40Ar/39Ar dates from alkaline intrusions of the northern Crazy Mountains, south-central Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harlan, S. S.</p> <p>2005-05-01</p> <p>The Crazy Mountains basin of south-central Montana is a complex foreland basin that formed during the interaction of thin-skinned, decollement-style folds of the Montana thrust belt and the basement-involved folds and thrust faults of the Rocky Mountain foreland province. Near the depositional center of the basin, synorogenic strata of the Paleocene Fort Union Formation have been intruded and locally thermally metamorphosed by strongly alkaline to subalkaline Tertiary intrusive rocks. The subalkaline rocks are found mostly in the southern Crazy Mountains and form stocks (Big Timber stock, Loco Mountain stock), radiating dikes and sills. With the exception of the Ibex Mountain sill (?), the alkaline rocks are restricted to the northern Crazy Mountains. New 40Ar/39Ar dates are reported from the strongly alkaline rocks, including the Comb Creek stock and dike swarm, the Ibex Mountain sill(?), and sills from the Robinson anticline intrusive complex. The alkaline rocks of the Robinson anticline intrusive complex are exposed in the easternmost folds of the Cordilleran fold and thrust belt, but despite their arcuate and apparently folded map geometry they have been shown to post-date folding. Hornblende from a trachyte sill in the Robinson anticline intrusive complex yielded a relatively simple age spectrum with a weighted mean of 50.61 ± 0.14 Ma (2σ), which probably records the age of sill emplacement. Nepheline syenite and mafic nepheline syenites of the Comb Creek stock and a dike from its radial dike swarm, two sills from the Robinson antlicline intrusive complex, and the Ibex Mountains sill(?) gave biotite plateau dates ranging from 50.03 to 50.22 Ma, with 2σ errors of ± 0.11 to 0.19 Ma. Because these dates are from fairly small, hypabyssal intrusions, they must have cooled quickly and thus these dates closely approximate the emplacement age of the intrusions. These data indicate that the strongly alkaline intrusions were emplaced during a fairly restricted interval of time at about 50.1 Ma. The dates from the alkaline rocks are somewhat older than dates from the subalkaline Big Timber stock in the southern Crazy Mountains, which gave biotite 40Ar/39Ar dates of about 49.3 Ma (du Bray and Harlan, 1996). However, because these dates represent cooling through closure temperatures of about 350° C, they are minimum estimates for the age of the stock. The limited span of 40Ar/39Ar dates between the alkaline and subalkaline rocks of the Crazy Mountains intrusions (i.e., 50.6 to 49.2 Ma) indicates that the magmas represented by these different geochemical groups were closely associated in both time and space, with emplacement occurring in as little as 1.5 Ma. On a regional scale, the 49-51 Ma age is similar to that of most of the igneous centers of the Central Montana alkalic province and is coeval with the peak of widespread volcanism in the Absaroka-Gallatin volcanic field immediately to the south of the Crazy Mountains Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JVGR..254...80J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JVGR..254...80J"><span>A hybrid composite dike suite from the northern Arabian Nubian Shield, southwest Jordan: Implications for magma mixing and partial melting of granite by mafic magma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas</p> <p>2013-03-01</p> <p>The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1999/4073/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1999/4073/report.pdf"><span>Geohydrology and Numerical Simulation of the Ground-Water Flow System of Kona, Island of Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Oki, Delwyn S.</p> <p>1999-01-01</p> <p>Prior to the early 1990's, ground-water in the Kona area, which is in the western part of the island of Hawaii, was withdrawn from wells located within about 3 mi from the coast where water levels were less than 10 feet above sea level. In 1990, exploratory drilling in the uplands east of the existing coastal wells first revealed the presence of high water levels (greater than 40 feet above sea level) in the Kona area. Measured water levels from 16 wells indicate that high water levels exist in a zone parallel to and inland of the Kona coast, between Kalaoa and Honaunau. Available hydrologic and geophysical evidence is generally consistent with the concept that the high ground-water levels are associated with a buried dike complex. A two-dimensional (areal), steady-state, freshwater-saltwater, sharp-interface ground-water flow model was developed for the Kona area of the island of Hawaii, to enhance the understanding of (1) the distribution of aquifer hydraulic properties, (2) the conceptual framework of the ground-water flow system, and (3) the regional effects of ground-water withdrawals on water levels and coastal discharge. The model uses the finite-difference code SHARP. To estimate the hydraulic characteristics, average recharge, withdrawals, and water-level conditions for the period 1991-93 were simulated. The following horizontal hydraulic-conductivity values were estimated: (1) 7,500 feet per day for the dike-free volcanic rocks of Hualalai and Mauna Loa, (2) 0.1 feet per day for the buried dike complex of Hualalai, (3) 10 feet per day for the northern marginal dike zone (north of Kalaoa), and (4) 0.5 feet per day for the southern marginal dike zone between Palani Junction and Holualoa. The coastal leakance was estimated to be 0.05 feet per day per foot. Measured water levels indicate that ground water generally flows from inland areas to the coast. Model results are in general agreement with the limited set of measured water levels in the Kona area. Model results indicate, however, that water levels do not strictly increase in an inland direction and that a ground-water divide exists within the buried dike complex. Data are not available, however, to verify model results in the area near and inland of the model-calculated ground-water divide. Three simulations to determine the effects of proposed withdrawals from the high water-level area on coastal discharge and water levels, relative to model-calculated, steady-state coastal discharge and water levels for 1997 withdrawal rates, show that the effects are widespread. During 1997, the total withdrawal of ground water from the high water-level area between Palani Junction and Holualoa was about 1 million gallons per day. Model results indicate that it may not be possible to withdraw 25.6 million gallons per day of freshwater from this area between Palani Junction and Holualoa, but that it may be possible to withdraw between 5 to 8 million gallons per day from the same area. For a proposed withdrawal rate of 5.0 million gallons per day uniformly distributed to 12 sites between Palani Junction and Holualoa, the model-calculated drawdown of 0.01 foot or more extends about 9 miles north-northwest and about 7 miles south of the proposed well sites. In all scenarios, freshwater coastal discharge is reduced by an amount equal to the additional freshwater withdrawal. Additional data needed to improve the understanding of the ground-water flow system in the Kona area include: (1) a wider spatial distribution and longer temporal distribution of water levels, (2) improved information about the subsurface geology, (3) independent estimates of hydraulic conductivity, (4) improved recharge estimates, and (5) information about the vertical distribution of salinity in ground water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70001085','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70001085"><span>The stress state near Spanish Peaks, colorado determined from a dike pattern</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Muller, O.H.; Pollard, D.D.</p> <p>1977-01-01</p> <p>The radial pattern of syenite and syenodiorite dikes of the Spanish Peaks region is analysed using theories of elasticity and dike emplacement. The three basic components of Ode??'s model for the dike pattern (a pressurized, circular hole; a rigid, planar boundary; and uniform regional stresses) are adopted, but modified to free the regional stresses from the constraint of being orthogonal to the rigid boundary. Dike areal density, the White Peaks intrusion, the strike of the upturned Mesozoic strata, and the contact between these strata and the intensely folded and faulted Paleozoic rocks are used to brient the rigid boundary along a north-south line. The line of dike terminations locates the rigid boundary about 8 km west of West Peak. The location of a circular plug, Goemmer Butte, is chosen as a point of isotropic stress. A map correlating the location of isotropic stress points with regional stress parameters is derived from the theory and used to determine a regional stress orientation (N82E) and a normalized stress magnitude. The stress trajectory map constructed using these parameters mimics the dike pattern exceptionally well. The model indicates that the regional principal stress difference was less than 0.05 times the driving pressure in the West Peak intrusion. The regional stress difference probably did not exced 5 MN/m2. ?? 1977 Birkha??user Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP23B3675D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP23B3675D"><span>Untangling Magmatic Processes and Hydrothermal Alteration of in situ Superfast Spreading Ocean Crust at ODP/IODP Site 1256 with Fuzzy c-means Cluster Analysis of Rock Magnetic Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dekkers, M. J.; Heslop, D.; Herrero-Bervera, E.; Acton, G.; Krasa, D.</p> <p>2014-12-01</p> <p>Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6.44.1' N, 91.56.1' W) on the Cocos Plate occurs in 15.2 Ma oceanic crust generated by superfast seafloor spreading. Presently, it is the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Here we interpret down-hole trends in several rock-magnetic parameters with fuzzy c-means cluster analysis, a multivariate statistical technique. The parameters include the magnetization ratio, the coercivity ratio, the coercive force, the low-field susceptibility, and the Curie temperature. By their combined, multivariate, analysis the effects of magmatic and hydrothermal processes can be evaluated. The optimal number of clusters - a key point in the analysis because there is no a priori information on this - was determined through a combination of approaches: by calculation of several cluster validity indices, by testing for coherent cluster distributions on non-linear-map plots, and importantly by testing for stability of the cluster solution from all possible starting points. Here, we consider a solution robust if the cluster allocation is independent of the starting configuration. The five-cluster solution appeared to be robust. Three clusters are distinguished in the extrusive segment of the Hole that express increasing hydrothermal alteration of the lavas. The sheeted dike and gabbro portions are characterized by two clusters, both with higher coercivities than in lava samples. Extensive alteration, however, can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. All clusters display rock magnetic characteristics in line with a stable NRM. This implies that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Determination of the absolute paleointensity with thermal techniques is not straightforward because of the propensity of oxyexsolution during laboratory heating and/or the presence of intergrowths. The upper part of the extrusive sequence, the granoblastic portion of the dikes, and moderately altered gabbros may contain a comparatively uncontaminated thermoremanent magnetization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA191689','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA191689"><span>Lower Mississippi River Environmental Program. Report 10. Evaluation of Bird and Mammal Utilization of Dike Systems Along the Lower Mississippi River.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-11-01</p> <p>Salix nigra). and cocklebur (Xanthium strumarium ) occurred in all 10 dike systems. False indigo (Amorpha fruticosa). day 6 flower (Commelina diffusa...Xanthium strumarium + + + + + + + + + + Number of species recorded by dike system 11 33 56 58 33 50 50 39 52 18 Percent of total number of species</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol3/pdf/CFR-2011-title33-vol3-sec321-3.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol3/pdf/CFR-2011-title33-vol3-sec321-3.pdf"><span>33 CFR 321.3 - Special policies and procedures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>..., DEPARTMENT OF DEFENSE PERMITS FOR DAMS AND DIKES IN NAVIGABLE WATERS OF THE UNITED STATES § 321.3 Special... (Civil Works) will decide whether DA authorization for a dam or dike in an interstate navigable water of... dam or dike in an intrastate navigable water of the United States will be issued (see 33 CFR 325.8...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr49B3..227H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr49B3..227H"><span>Morphological Changes Along a Dike Landside Slope Sampled by 4d High Resolution Terrestrial Laser Scanning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrero-Huertaa, Mónica; Lindenbergh, Roderik; Ponsioen, Luc; van Damme, Myron</p> <p>2016-06-01</p> <p>Emergence of light detection and ranging (LiDAR) technology provides new tools for geomorphologic studies improving spatial and temporal resolution of data sampling hydrogeological instability phenomena. Specifically, terrestrial laser scanning (TLS) collects high resolution 3D point clouds allowing more accurate monitoring of erosion rates and processes, and thus, quantify the geomorphologic change on vertical landforms like dike landside slopes. Even so, TLS captures observations rapidly and automatically but unselectively. In this research, we demonstrate the potential of TLS for morphological change detection, profile creation and time series analysis in an emergency simulation for characterizing and monitoring slope movements in a dike. The experiment was performed near Schellebelle (Belgium) in November 2015, using a Leica Scan Station C10. Wave overtopping and overflow over a dike were simulated whereby the loading conditions were incrementally increased and 14 successful scans were performed. The aim of the present study is to analyse short-term morphological dynamic processes and the spatial distribution of erosion and deposition areas along a dike landside slope. As a result, we are able to quantify the eroded material coming from the impact on the terrain induced by wave overtopping which caused the dike failure in a few minutes in normal storm scenarios (Q = 25 l/s/m) as 1.24 m3. As this shows that the amount of erosion is measurable using close range techniques; the amount and rate of erosion could be monitored to predict dike collapse in emergency situation. The results confirm the feasibility of the proposed methodology, providing scalability to a comprehensive analysis over a large extension of a dike (tens of meters).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70004950','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70004950"><span>An evaluation of the relative quality of dike pools for benthic macroinvertebrates in the Lower Missouri River, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poulton, B.C.; Allert, A.L.</p> <p>2012-01-01</p> <p>A habitat-based aquatic macroinvertebrate study was initiated in the Lower Missouri River to evaluate relative quality and biological condition of dike pool habitats. Water-quality and sediment-quality parameters and macroinvertebrate assemblage structure were measured from depositional substrates at 18 sites. Sediment porewater was analysed for ammonia, sulphide, pH and oxidation-reduction potential. Whole sediments were analysed for particle-size distribution, organic carbon and contaminants. Field water-quality parameters were measured at subsurface and at the sediment-water interface. Pool area adjacent and downstream from each dike was estimated from aerial photography. Macroinvertebrate biotic condition scores were determined by integrating the following indicator response metrics: % of Ephemeroptera (mayflies), % of Oligochaeta worms, Shannon Diversity Index and total taxa richness. Regression models were developed for predicting macroinvertebrate scores based on individual water-quality and sediment-quality variables and a water/sediment-quality score that integrated all variables. Macroinvertebrate scores generated significant determination coefficients with dike pool area (R2=0.56), oxidation–reduction potential (R2=0.81) and water/sediment-quality score (R2=0.71). Dissolved oxygen saturation, oxidation-reduction potential and total ammonia in sediment porewater were most important in explaining variation in macroinvertebrate scores. The best two-variable regression models included dike pool size + the water/sediment-quality score (R2=0.84) and dike pool size + oxidation-reduction potential (R2=0.93). Results indicate that dike pool size and chemistry of sediments and overlying water can be used to evaluate dike pool quality and identify environmental conditions necessary for optimizing diversity and productivity of important aquatic macroinvertebrates. A combination of these variables could be utilized for measuring the success of habitat enhancement activities currently being implemented in this system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.cerc.usgs.gov/pubs/MoRiver/herm_hab.htm+','USGSPUBS'); return false;" href="http://www.cerc.usgs.gov/pubs/MoRiver/herm_hab.htm+"><span>Habitat assessment, Missouri River at Hermann, Missouri</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jacobson, Robert B.; Laustrup, Mark S.; Reuter, Joanna M.</p> <p>2002-01-01</p> <p>This report documents methods and results of aquatic habitat assessment in the Missouri River near Hermann, Missouri. The assessment is intended to improve understanding of spatial and temporal variability of aquatic habitat, including habitats thought to be critical for the endangered pallid sturgeon (Scaphirhynchus albus). Physical aquatic habitat - depth, velocity, and substrate - was assessed around 9 wing dikes and adjacent to the U.S. Route 19 bridge, at discharges varying from 44,000 cubic feet per second (cfs) to 146, 000 cfs during August 2000-May, 2001. For the river as a whole, velocities are bi-modally distributed with distinct peaks relating to navigation channel and wing-dike environments. Velocities predictably showed an increasing trend with increasing discharge. Substrate within wing dikes was dominated by mud at low discharges, whereas the navigation channel had patches of transporting sand, rippled sand, and coarse sand. Discharges that overtopped the wing dikes (about 93,000 cfs, March 2001) were associated with increases of patchy sand, rippled sand, and coarse sand within the wing dikes. When flows were substantially over the wing dikes (146,000 cfs, May 2001) substrates within most wing dikes showed substantial reorganization and coarsening. The habitat assessment provides a geospatial database that can be used to query wing dikes for distributions of depth, velocity, and substrate for comparison with fish samples collected by US Fish and Wildlife Service biologists (Grady and others, 2001). In addition, the assessment documented spatial and temporal variation in habitat within the Hermann reach and over a range of discharges. Measurable geomorphic change--alteration of substrate conditions plus substantial erosion and deposition--was associated with flows equaled or exceeded 12-40% of the time (40-140 days per year). Documented geomorphic change associated with high-frequency flows underscores the natural temporal variability of physical habitat in the Lower Missouri River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24469260','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24469260"><span>Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Passarelli, L; Rivalta, E; Shuler, A</p> <p>2014-01-28</p> <p>As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031855','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031855"><span>Aquatic habitat change in the Arkansas river after the development of a lock-and-dam commercial navigation system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schramm, H.L.; Minnis, R.B.; Spencer, A.B.; Theel, R.T.</p> <p>2008-01-01</p> <p>The McClellan-Kerr Arkansas River Navigation System (MKARNS), completed in 1971, required the construction of 17 locks and dams and associated navigation works to make the Arkansas and Verdigris Rivers navigable for barge traffic from the Mississippi River to Catoosa, Oklahoma. We used a Geographic Information System to assess habitat changes in the 477-km portion of this system within Arkansas from 1973 to 1999. Total aquatic area declined by 9% from 42 404 to 38 655 ha. Aquatic habitat losses were 1-17% among pools. Greatest habitat losses occurred in diked secondary channels (former secondary channels with flow reduced by rock dikes) and backwaters adjacent to the main channel. Most of the area of dike pools (aquatic habitat downstream of rock dikes), diked secondary channels and adjacent backwaters were <0.9 m deep. Copyright ?? 2008 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FrEaS...5...59M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FrEaS...5...59M"><span>High resolution digital elevation modelling from TLS and UAV campaign reveals structural complexity at the 2014/15 Holuhraun eruption site, Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, Daniel; Walter, Thomas R.; Schöpa, Anne; Witt, Tanja; Steinke, Bastian; Gudmundsson, Magnús T.; Dürig, Tobias</p> <p>2017-07-01</p> <p>Fissure eruptions are commonly linked to magma dikes at depth, associated with elastic and anelastic surface deformation. Elastic deformation is well described by subsidence above, uplift and lateral widening perpendicular to the dike plane. The anelastic part is associated with the formation of a graben, bordered by graben parallel faults that might express as sets of fractures at the surface. Additionally secondary structures, like push ups, bends and step overs yield information about the deforming domain. The formation of such structures associated with fissure eruptions, however, is barely preserved in nature because of the rapid erosion or sediment coverage. Therefore, simple normal fault displacements are commonly assumed at dikes. At the 2014/2015 Holuhraun eruption sites (Iceland), evidence is increasing that the developing fractures are showing variations in their displacement modes. In an attempt to investigate these variations, a fieldwork mapping project combining Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) based aerophoto analysis was realized. From this data, we generated locally high resolution Digital Elevation Models (DEMs) and a structural map that allows for identification of kinematic indicators and assessing particularities of the observed structures. We identified 315 fracture segments from satellite data. For single segments we measured strike directions including the amount of opening and opening angles, indicating that many of the measured fractures show transtensional dislocations. Out of these, 81 % are showing significant left-lateral slip, only 17% right-lateral slip and 2% pure tensile opening. We show that local complexities in the fracture traces and geometries are closely related to variations in the transtensional opening direction. Moreover, we identified local changes in fracture azimuths and offsets close to eruption sites, which we speculate to be associated with geometrical changes in the magma feeder itself. Results highlight that opening of fractures associated with an erupting fissure commonly show transtensional modes having both, left-lateral and right-lateral slip, with important implications for interpreting the expression of surface structures at rift zones elsewhere. Results further highlight the great value of UAV based high resolution data to contribute to the integrity of observations of structural complexities at local geologic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T11D..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T11D..04M"><span>Beating the Heat: Magmatism in the Low-Temperature Thermochronologic Record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murray, K. E.; Reiners, P. W.; Braun, J.; Karlstrom, L.; Morriss, M. C.</p> <p>2017-12-01</p> <p>The low-temperature thermochronology community was quick to recognize upper-crustal complexities in the geotherm that reflect landscape evolution, but the complex effects of crustal magmatism on thermochronometers can be difficult to independently document and remain underexplored. Because magmatism is common in many regions central to our understanding of tectonics, this is a significant gap in our ability to robustly interpret rock cooling. Here, we use several different numerical approaches to examine how local and regional crustal magmatism affects cooling age patterns and present examples from the western US that demonstrate the importance—and utility—of considering these effects. We modified the finite-element code Pecube to calculate how thermochronometers document the emplacement of simple hot bodies at different crustal levels. Results demonstrate the potential for mid-crustal plutons, emplaced at 10-15 km depth, to reset cooling ages in the overlying rocks at partial-retention depths at the time of magmatism. Permo-Triassic sandstones from the Colorado Plateau's Canyonlands region have apatite cooling ages that exemplify the resulting ambiguity: Oligocene rock cooling can be attributed to either 1 km of erosion or relaxation of a geothermal gradient transiently doubled by mid-crustal magmatism. Despite these complexities, there are compelling reasons to target rocks with magmatic histories. Shallowly emplaced plutons can usefully reset cooling ages in country rocks with protracted near-surface histories, as we have demonstrated in the Colorado Plateau's Henry Mountains. Cooling age patterns are also useful for quantifying magmatic processes themselves. In an ongoing project, we use the pattern of thermochronometer resetting around individual dikes that fed the Columbia River flood basalts, which are exposed in the Wallowa Mountains, to identify long-lived feeder dikes and model their thermal aureoles to further constrain eruptive dynamics. The pattern of resetting around dikes compliments higher-temperature constraints on the longevity of magma flow from phase equilibria in partially melted wall rocks. In principal, this technique should also resolve along-strike variability in flow localization, providing novel constraints on eruptive flux in large igneous provinces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V53A1139S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V53A1139S"><span>Source Models of the June 17th, 2007 Kilauea Intrusion: Monte Carlo Optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinnett, D. K.; Montgomery-Brown, E. D.; Segall, P.; Miklius, A.; Poland, M.; Yun, S.; Zebker, H.</p> <p>2007-12-01</p> <p>Father's Day, 17 June 2007, marked the beginning of the 56th episode of the ongoing eruption of Kilauea volcano, Hawaii. The episode culminated in a short-lived eruption approximately 6 km west of Pu\\`{}u \\`{}O\\`{}o and 13 km southeast of Kilauea summit. The interruption of magma supply to, and withdrawal from, the reservoir beneath Pu\\`{}u \\`{}O\\`{}o caused cessation of activity and ~100 m of crater floor subsidence there. The continuous and campaign GPS, electronic tiltmeter, and seismic networks, as well as InSAR captured the episode in fine detail. Visual inspection of the data show subsidence at Kilauea summit and Pu\\`{}u \\`{}O\\`{}o, which fed the inflating dike. We began by modeling the intrusion with a Mogi source beneath Kilauea summit and a dislocation with uniform opening beneath the east rift zone embedded in an isotropic, homogenous, elastic, half space. We invert for the 12 source parameters (length, width, depth, dip, strike, horizontal position, and opening of the dike, and position, depth, and volume change of the Mogi source) using Monte Carlo optimization. The inversion used three component displacement data from 23 continuous and campaign GPS stations, diurnally and tidally filtered tilt from 6 stations, and an ENVISAT InSAR interferogram spanning 04/12/07 to 06/21/07 decimated using a quadtree algorithm. The optimum model included ~-4.1 * 106 m3 of volume loss from a reservoir 3 km beneath the summit, and a total dike volume of ~19*106 m3 (~4.84 km length x 2.45 km width x 1.6 m opening at 2.4 km depth). The discrepancy between summit volume loss and total dike volume suggests that other sources must have fed the dike. A crude estimate of volume loss from Pu\\`{}u \\`{}O\\`{}o is 8.5*106 m3 accounting for ~ 66% of the volume of the dike. The eruption site lies inside the eastern edge of the model, and ~0.5 km to the south of the best fit dike top. The best fit dike top parallels the northern margin of an area of ground cracking near Makaopuhui and terminates at its western margin near Mauna Ulu. The western termination is ~2.5 km east of the westernmost observed ground cracks. Within 95% bounds the dike top may intersect the eruption area and extend to all regions of ground cracking. It is also interesting to note that this dike is located in an area between the 1997 and 1999 intrusions. The best fit single dislocation model explains only 35% of the variance in the data. This is in part due to the inadequacies of a single planar dike with uniform opening to explain surface deformation and perhaps to inelastic deformation associated with ground cracking near the western edge of the dike. Models with distributed opening, in which the dike plane honors the optimization results as well as the region of decorrelation in the ENVISAT interferogram, explain 69% of the data (Montgomery-Brown et al., this session).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2240K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2240K"><span>Why do complex impact craters have elevated crater rims?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kenkmann, Thomas; Sturm, Sebastian; Krueger, Tim</p> <p>2014-05-01</p> <p>Most of the complex impact craters on the Moon and on Mars have elevated crater rims like their simple counterparts. The raised rim of simple craters is the result of (i) the deposition of a coherent proximal ejecta blanket at the edge of the transient cavity (overturned flap) and (ii) a structural uplift of the pre-impact surface near the transient cavity rim during the excavation stage of cratering [1]. The latter occurs either by plastic thickening or localized buckling of target rocks, as well as by the emplacement of interthrust wedges [2] or by the injection of dike material. Ejecta and the structural uplift contribute equally to the total elevation of simple crater rims. The cause of elevated crater rims of large complex craters [3] is less obvious, but still, the rim height scales with the final crater diameter. Depending on crater size, gravity, and target rheology, the final crater rim of complex craters can be situated up to 1.5-2.0 transient crater radii distance from the crater center. Here the thickness of the ejecta blanket is only a fraction of that occurring at the rim of simple craters, e.g. [4], and thus cannot account for a strong elevation. Likewise, plastic thickening including dike injection of the underlying target may not play a significant role at this distance any more. We started to systematically investigate the structural uplift and ejecta thickness along the rim of complex impact craters to understand the cause of their elevation. Our studies of two lunar craters (Bessel, 16 km diameter and Euler, 28 km diameter) [5] and one unnamed complex martian crater (16 km diameter) [6] showed that the structural uplift at the final crater rim makes 56-67% of the total rim elevation while the ejecta thickness contributes 33-44%. Thus with increasing distance from the transient cavity rim, the structural uplift seems to dominate. As dike injection and plastic thickening are unlikely at such a distance from the transient cavity, we propose that reverse faulting induced by radially outward directed maximum stresses during the excavation flow may be responsible for the elevation of complex crater rims. This hypothesis is tested at terrestrial craters whose apparent crater rims are often confined by circumferential faults [7]. References:[1] Shoemaker, E. M. (1963) The Solar System, 4, 301-336. [2] Poelchau M.H. et al. (2009), JGR, 114, E01006. [3] Settle, M., and Head, J.W., (1977), Icarus, 31, 123. [4] McGetchin, T. R., et al., (1973), EPSL, 20, 226.[5] Krüger T. et al. (2014), LPSC 45, #1834. [6] Sturm, S. et al. (2014), LPSC 45, 1801. [7] Turtle, E. et al. (2005), GSA-SP. 384, 1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA147440','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA147440"><span>Environmental and Water Quality Operational Studies. Environmental Guidelines for Dike Fields.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-09-01</p> <p>public release; distribution unlimited. I. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report) IS. SUPPLEMENTARY NOTES...necessary and identify by block number) Aquatic biology--Environmental aspects. (LC) Dikes (Engineering)--Design and construction--Environmental...w ad Idenwify by block number) ’The environmental guidelines for dike fields-contained within this report consist of environmental objectives, design</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1857i0004B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1857i0004B"><span>Wave run-up of a possible Anak-Krakatau tsunami on planned and optimized Jakarta Sea Dike</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badriana, M. R.; Bachtiar, H.; Adytia, D.; Sembiring, L.; Andonowati, van Groesen, E.</p> <p>2017-07-01</p> <p>The infrastructural plans in the Jakarta Bay to reduce risks of flooding in Jakarta city comprise a large Sea Dike that encloses a retention lake. Part of the planned dike has the shape of the iconic Garuda bird. This paper shows that if in the future an explosion of Anak Krakatau will occur with strength 1/4th of the original Karkatau 1883 explosion, wave crests of 11m and troughs of 6m may collide against the bird's head. As an alternative example, a more optimized design of the dike is constructed that reduces the maximal wave effects considerably.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035629','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035629"><span>Paleomagnetic quantification of upper-plate deformation during Miocene detachment faulting in the Mohave Mountains, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pease, V.; Hillhouse, J.W.; Wells, R.E.</p> <p>2005-01-01</p> <p>Paleomagnetic data from Miocene (???20 Ma) volcanic rocks and dikes of west central Arizona reveal the tilt history of Proterozoic crystalline rocks in the hanging wall of the Chemehuevi-Whipple Mountains detachment fault. We obtained magnetization data from dikes and flows in two structural blocks encompassing Crossman Peak and Standard Wash in the Mohave Mountains. In the Crossman block the dike swarm records two components of primary magnetization: (1) CNH, a normal polarity, high-unblocking-temperature or high-coercivity component (inclination, I = 48.5??, declination, D = 6.4??), and (2) CRHm, a reversed polarity, high-temperature or high-coercivity component (I = -33.6??, D = 197.5??). Argon age spectra imply that the dikes have not been reheated above 300??C since their emplacement, and a baked-contact test suggests that the magnetization is likely to be Miocene in age. CRHm deviates from the expected direction of the Miocene axial dipole field and is best explained as a result of progressive tilting about the strike of the overlying andesite flows. These data suggest that the Crossman block was tilted 60?? to the southwest prior to intrusion of the vertical dike swarm, and the block continued to tilt during a magnetic field reversal to normal polarity (CNH). Miocene dikes in the Crossman block are roughly coplanar, so the younger dikes with normal polarity magnetization intruded along planes of weakness parallel to the earlier reversed polarity swarm. An alternative explanation involves CNH magnetization being acquired later during hydrothermal alteration associated with the final stages of dike emplacement. In the Standard Wash block, the primary component of magnetization is a dual-polarity, high-temperature or high-coercivity component (SWHl, I = 7.2??,D= 0.7??). To produce agreement between the expected Miocene magnetic direction and the SWH component requires (1) correcting for a 56?? tilt about the strike of flow bedding and (2) removing a counterclockwise vertical-axis rotation of 20??. The two rotations restore the Standard Wash dikes to vertical, make parallel the dike layering in the Crossman and Standard Wash blocks, and align the strikes of bedding in both blocks. Geologic mapping, geochemical evidence, and paleomagnetic data are consistent with the upper plate of the Mohave Mountains having tilted in response to formation of the underlying detachment fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003ESRv...60..147R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003ESRv...60..147R"><span>Sudbury Breccia (Canada): a product of the 1850 Ma Sudbury Event and host to footwall Cu Ni PGE deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rousell, Don H.; Fedorowich, John S.; Dressler, Burkhard O.</p> <p>2003-02-01</p> <p>The Sudbury Structure, formed by meteorite impact at 1850 Ma, consists of three major components: (1) the Sudbury Basin; (2) the Sudbury Igneous Complex, which surrounds the basin as an elliptical collar; and (3) breccia bodies in the footwall known as Sudbury Breccia. In general, the breccia consists of subrounded fragments set in a dark, fine-grained to aphanitic matrix. A comparison of the chemical composition of host rocks, clasts and matrices indicates that brecciation was essentially an in-situ process. Sudbury Breccia forms irregular-shaped bodies or dikes that range in size from mm to km scale. Contacts with the host rocks are commonly sharp. The aspect ratio of most clasts is approximately 2 with the long axes parallel to dike walls. The fractal dimension (Dr)=1.55. Although there appears to be some concentration of brecciation within concentric zones, small Sudbury Breccia bodies within and outside these zones have more or less random strikes and steep dips. Sudbury Breccia bodies near an embayment structure tend to be subparallel to the base of the Sudbury Igneous Complex. Sudbury Breccia occurs as much as 80 km from the outer margin of the Sudbury Igneous Complex. In an inner zone, 5 to 15 km wide, breccia comprises 5% of exposed bedrock with an increase in brecciation intensity in embayment structures. Sudbury Breccia may be classified into three types based on the nature of the matrix: clastic, pseudotachylite and microcrystalline. Clastic Sudbury Breccia, the dominant type in the Southern Province, is characterized by flow-surface structures. Possibly, a sudden rise in pore pressure caused explosive dilation and fragmentation, followed by fluidization and flowage into extension fractures. Pseudotachylite Sudbury Breccia, mainly confined to Archean rocks, apparently formed by comminution and frictional melting. Microcrystalline Sudbury Breccia formed as a result of the thermal metamorphism, of the North Range footwall, by the Sudbury Igneous Complex. This produced a zone, approximately 1.2 km wide, wherein the matrix of the breccia either recrystallized or, locally, melted. An overprint of regional metamorphism obliterated contact effects in the South Range footwall. The Ni-Cu-PGE magmatic sulphide deposits may be classified into four types based on structural setting: Sudbury Igneous Complex-footwall contact, footwall, offset, and sheared deposits. Sudbury Breccia is the main host for footwall deposits (e.g., McCreedy East, Victor, Lindsley). Sudbury Breccia locally hosts mineralization in radial (e.g., Parkin and Copper Cliff) and concentric (e.g., Frood-Stobie) offset dikes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770000236&hterms=Cork&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DCork','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770000236&hterms=Cork&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DCork"><span>Molding cork sheets to complex shapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharpe, M. H.; Simpson, W. G.; Walker, H. M.</p> <p>1977-01-01</p> <p>Partially cured cork sheet is easily formed to complex shapes and then final-cured. Temperature and pressure levels required for process depend upon resin system used and final density and strength desired. Sheet can be bonded to surface during final cure, or can be first-formed in mold and bonded to surface in separate step.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V43G2954M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V43G2954M"><span>Metamorphism Near the Dike-Gabbro Transition in the Ocean Crust Based on Preliminary Results from Oman Drilling Project Hole GT3A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manning, C. E.; Nozaka, T.; Harris, M.; Michibayashi, K.; de Obeso, J. C.; D'Andres, J.; Lefay, R.; Leong, J. A. M.; Zeko, D.; Kelemen, P. B.; Teagle, D. A. H.</p> <p>2017-12-01</p> <p>Oman Drilling Project Hole GT3A intersected 400 m of altered basaltic dikes, gabbros, and diorites. The 100% recovery affords an unprecedented opportunity to study metamorphism and hydrothermal alteration near the dike-gabbro transition in the ocean crust. Hydrothermal alteration is ubiquitous; all rocks are at least moderately altered, and mean alteration intensity is 54%. The earliest alteration in all rock types is background replacement of igneous minerals, some of which occurred at clinopyroxene amphibolite facies, as indicated by brown-green hornblende, calcic plagioclase, and secondary cpx. In addition, background alteration includes greenschist, subgreenschist, and zeolite facies minerals. More extensive alteration is locally observed in halos around veins, patches, and zones related to deformation. Dense networks of hydrothermal veins record a complex history of fluid-rock alteration. During core description, 10,727 individual veins and 371 vein networks were logged in the 400 m of Hole GT3A. The veins displayed a range of textures and connectivities. The total density of veins in Hole GT3A is 26.8 veins m-1. Vein density shows no correlation with depth, but may be higher near dike margins and faults. Vein minerals include amphibole, epidote, quartz, chlorite, prehnite, zeolite (chiefly laumontite) and calcite in a range of combinations. Analysis of crosscutting relations leads to classification of 4 main vein types. In order of generally oldest to youngest these are: amphibole, quartz-epidote-chlorite (QEC), zeolite-prehnite (ZP), and calcite. QEC and ZP vein types may contain any combination of minerals except quartz alone; veins filled only by quartz may occur at any relative time. Macroscopic amphibole veins are rare and show no variation with depth. QEC vein densities appear to be higher (>9.3 veins m-1) in the upper 300 m of GT3A, where dikes predominate. In contrast, there are 5.5 veins m-1 at 300-400 m, where gabbros and diorites are abundant. ZP veins increase in density downhole; the highest density of 17.5 ZP veins/m occurs in the lowest 100 m where substantial faulting is observed. Equilibrium coexistence of laumontite and prehnite in ZP veins implies formation at 100-250 °C, lower than amphibole and QEC veins. Calcite veins are abundant only in the uppermost 100 m of the hole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001GeCoA..65.3749D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001GeCoA..65.3749D"><span>Coupled heat and silica transport associated with dike intrusion into sedimentary rock: effects on isotherm location and permeability evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dutrow, Barbara L.; Travis, Bryan J.; Gable, Carl W.; Henry, Darrell J.</p> <p>2001-11-01</p> <p>An 11-meter-wide alkalic monchiquite dike recovered from the subsurface of Louisiana has produced a metasomatic aureole in the adjacent interbedded carbonate mudstones and siltstones. The asymmetric contact aureole, which extends nearly 6 m above and 4 m below the intrusion, contains the metamorphic minerals, diopside, pectolite, fluor-apophyllite, fluorite, and garnet. A series of coupled heat and mass transport calculations was undertaken to provide thermal constraints for the aureole, in the absence of robust geothermometric assemblages, and insights into accompanying mass transport associated with the sedimentary rock-dike system. Calculations were completed for systems with homogeneous, anisotropic, and layered permeability, κ. Transport, dissolution, and precipitation of silica were also incorporated into calculations. All systems modeled indicate that the thermal pulse waned in ∼3 yr with a return to background temperatures in ∼10 yr. Heat and fluid transport produce maximum temperature isotherms that are distinctly different in spatial extent and lateral variability for each numerical system. The homogeneous κ case produced isotherms that pinch and swell vertically above the dike and have large lateral variations, in contrast to the anisotropic κ case that produced a single large plume above the dike. The layered system κ case produced the most spatially extensive thermal aureole, unlike that recorded in the rocks. Addition of dissolved silica to the flow system significantly impacts the calculated transport of heat and fluid, primarily due to density changes that affect upwelling dynamics. Although precipitation and dissolution of SiO2 can affect flow through the feedback to permeability, κ changes were found to be minor for these system conditions. Where κ decreased, flow was refocused into higher κ zones, thus mitigating the κ differences over time. This negative feedback tends to defocus flow and provides a mechanism for lateral migration of plumes. Coupled heat and silica transport produces a complex isotherm geometry surrounding the intrusion due to formation of upwelling and downwelling plumes and lateral translation of plumes, leading to variability in the isotherm pattern that does not reflect the inherent heterogeneity of the initial material properties. Initial heterogeneities in κ are not a prerequisite for the development of a complicated flow and transport pattern. In addition, if isotherms reflect isograds, these calculations demonstrate that isograds may not form uniform structures with isograd boundaries characterized by their distance from the heat source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197524','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197524"><span>Bedrock geologic map of the Littleton and Lower Waterford quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rankin, Douglas W.</p> <p>2018-06-13</p> <p>The bedrock geologic map of the Littleton and Lower Waterford quadrangles covers an area of approximately 107 square miles (277 square kilometers) north and south of the Connecticut River in east-central Vermont and adjacent New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks. The northwestern part of the map is divided by the Monroe fault which separates Early Devonian rocks of the Connecticut Valley-Gaspé trough from rocks of the Bronson Hill anticlinorium.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic suite, and extends from Maine, down the eastern side of the Connecticut River in New Hampshire, to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary rocks and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (upper and lower sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of metamorphic and metasedimentary rocks. The Ammonoosuc Volcanics overlies the Albee Formation that consists of interlayered feldspathic sandstone, siltstone, pelite, and slate.During the Late Ordovician, a series of arc-related plutons intruded the Ammonoosuc Volcanics, including the Whitefield pluton to the east, the Scrag granite of Billing (1937) in the far southeastern corner of the map, the Highlandcroft Granodiorite just to the west of the Ammonoosuc fault, and the Joslin Turn tonalite (just north of the Connecticut River). To the east of the Monroe fault lies the late Silurian Comerford Intrusive Complex, which consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes of the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics well east of the Monroe fault.This report consists of a single geologic map sheet and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12171368','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12171368"><span>Integrating environmental goals into urban redevelopment schemes: lessons from the Code River, Yogyakarta, Indonesia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Setiawan, B B</p> <p>2002-01-01</p> <p>The settlement along the bank of the Code River in Yogyakarta, Indonesia provides housing for a large mass of the city's poor. Its strategic location and the fact that most urban poor do not have access to land, attracts people to "illegally" settle along the bank of the river. This brings negative consequences for the environment, particularly the increasing domestic waste along the river and the annual flooding in the rainy season. While the public controversies regarding the existence of the settlement along the Code River were still not resolved, at the end of the 1980s, a group of architects, academics and community members proposed the idea of constructing a dike along the River as part of a broader settlement improvement program. From 1991 to 1998, thousands of local people mobilized their resources and were able to construct 6,000 metres of riverside dike along the Code River. The construction of the riverside dike along the River has become an important "stimulant" that generated not only settlement improvement, but also a better treatment of river water. As all housing units located along the River are now facing the River, the River itself is considered the "front-yard". Before the dike was constructed, the inhabitants used to treat the River as the "backyard" and therefore just throw waste into the River. They now really want to have a cleaner river, since the River is an important part of their settlement. The settlement along the Code River presents a complex range of persistent problems with informal settlements in Indonesia; such problems are related to the issues of how to provide more affordable and adequate housing for the poor, while at the same time, to improve the water quality of the river. The project represents a good case, which shows that through a mutual partnership among stakeholders, it is possible to integrate environmental goals into urban redevelopment schemes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BVol...76..807V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BVol...76..807V"><span>Unconventional maar diatreme and associated intrusions in the soft sediment-hosted Mardoux structure (Gergovie, France)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valentine, Greg A.; van Wyk de Vries, Benjamin</p> <p>2014-03-01</p> <p>A Miocene age volcanic-hypabyssal structure comprising volcaniclastic deposits and mafic intrusions is exposed with vertical relief of ˜110 m on the side of Gergovie Plateau (Auvergne, France). Three main volcaniclastic facies are: (1) Fluidal tuff breccia composed of juvenile basalt and sediment clasts with dominantly fluidal shapes, with several combinations of basalt and sediment within individual clasts. (2) Thickly bedded lapilli tuff composed of varying proportions of fine-grained sediment derived from Oligocene-Miocene lacustrine marls and mudstones and basaltic lapilli, blocks, and bombs. (3) Planar-bedded tuff forming thin beds of fine to coarse ash-size sedimentary material and basalt clasts. Intrusive bodies in the thickly bedded lapilli tuff range from irregularly shaped and anastomosing dikes and sills of meters to tens of meters in length, to a main feeder dike that is up to ˜20 m wide, and that flares into a spoon-shaped sill at ˜100 m in diameter and 10-20 m thick in the eastern part of the structure. Volcaniclastic deposits and structural features suggest that ascending magma entrained soft, saturated sediment host material into the feeder dike and erupted fluidal magma and wet sediment via weak, Strombolian-like explosions. Host sediment and erupted material subsided to replace the extracted sediments, producing the growth subsidence structure that is similar to upper diatreme facies in typical maar diatremes but lacks evidence for explosive disruption of diatreme fill. Irregularly shaped small intrusions extended from the main feeder dike into the diatreme, and many were disaggregated due to shifting and subsidence of diatreme fill and recycled via eruption. The Mardoux structure is an "unconventional" maar diatreme in that it was produced mainly by weak explosive activity rather than by violent phreatomagmatic explosions and is an example of complex coupling between soft sediment and ascending magma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1801/downloads/pp1801_Chap5_Poland.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1801/downloads/pp1801_Chap5_Poland.pdf"><span>Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.</p> <p>2014-01-01</p> <p>Magma supply to Hawaiian volcanoes has varied over millions of years but is presently at a high level. Supply to Kīlauea’s shallow magmatic system averages about 0.1 km3/yr and fluctuates on timescales of months to years due to changes in pressure within the summit reservoir system, as well as in the volume of melt supplied by the source hot spot. Magma plumbing systems beneath Kīlauea and Mauna Loa are complex and are best constrained at Kīlauea. Multiple regions of magma storage characterize Kīlauea’s summit, and two pairs of rift zones, one providing a shallow magma pathway and the other forming a structural boundary within the volcano, radiate from the summit to carry magma to intrusion/eruption sites located nearby or tens of kilometers from the caldera. Whether or not magma is present within the deep rift zone, which extends beneath the structural rift zones at ~3-km depth to the base of the volcano at ~9-km depth, remains an open question, but we suggest that most magma entering Kīlauea must pass through the summit reservoir system before entering the rift zones. Mauna Loa’s summit magma storage system includes at least two interconnected reservoirs, with one centered beneath the south margin of the caldera and the other elongated along the axis of the caldera. Transport of magma within shield-stage Hawaiian volcanoes occurs through dikes that can evolve into long-lived pipe-like pathways. The ratio of eruptive to noneruptive dikes is large in Hawai‘i, compared to other basaltic volcanoes (in Iceland, for example), because Hawaiian dikes tend to be intruded with high driving pressures. Passive dike intrusions also occur, motivated at Kīlauea by rift opening in response to seaward slip of the volcano’s south flank.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/p1615/p1615po.pdf#page=12','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/p1615/p1615po.pdf#page=12"><span>New geochronological evidence for the timing of early Tertiary ridge subduction in southern Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bradley, Dwight C.; Parrish, Randall; Clendenen, William; Lux, Daniel R.; Layer, Paul W.; Heizler, Matthew; Donley, D. Thomas</p> <p>2000-01-01</p> <p>We present new U/Pb (monazite, zircon) and 40Ar/39Ar (biotite, amphibole) ages for 10 Tertiary plutons and dikes that intrude the Chugach–Prince William accretionary complex of southern Alaska. The Sanak pluton of Sanak Island yielded ages of 61.1±0.5 Ma (zircon) and 62.7±0.35 (biotite). The Shumagin pluton of Big Koniuji Island yielded a U/Pb zircon age of 61.1±0.3 Ma. Two biotite ages from the Kodiak batholith of Kodiak Island are nearly identical at 58.3±0.2 and 57.3±2.5 Ma. Amphibole from a dike at Malina Bay, Afognak Island, is 59.3±2.2 Ma; amphibole from a dike in Seldovia Bay, Kenai Peninsula, is 57.0±0.2 Ma. The Nuka pluton, Kenai Peninsula, yielded ages of 56.0±0.5 Ma (monazite) and 54.2±0.1 (biotite). Biotite plateau ages are reported for the Aialik (52.2±0.9 Ma), Tustumena (53.2±1.1 Ma), Chernof (54.2±1.1 Ma), and Hive Island (53.4±0.4 Ma) plutons of the Kenai Peninsula. Together, these new results confirm, but refine, the previously documented along-strike diachronous age trend of near-trench magmatism during the early Tertiary. We suggest that this event began at 61 Ma at Sanak Island, 2-4 m.y. later than previously supposed. An intermediate dike near Tutka Bay, Kenai Peninsula, yielded a hornblende age of 115±2 Ma. This represents a near-trench magmatic event that had heretofore gone unrecognized on the Kenai Peninsula; correlative Early Cretaceous near-trench plutons are known from the western Chugach Mountains near Palmer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800017889','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800017889"><span>Cork-resin ablative insulation for complex surfaces and method for applying the same</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walker, H. M.; Sharpe, M. H.; Simpson, W. G. (Inventor)</p> <p>1980-01-01</p> <p>A method of applying cork-resin ablative insulation material to complex curved surfaces is disclosed. The material is prepared by mixing finely divided cork with a B-stage curable thermosetting resin, forming the resulting mixture into a block, B-stage curing the resin-containing block, and slicing the block into sheets. The B-stage cured sheet is shaped to conform to the surface being insulated, and further curing is then performed. Curing of the resins only to B-stage before shaping enables application of sheet material to complex curved surfaces and avoids limitations and disadvantages presented in handling of fully cured sheet material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3904149','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3904149"><span>Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>L., Passarelli; E., Rivalta; A., Shuler</p> <p>2014-01-01</p> <p>As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27842561','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27842561"><span>Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan</p> <p>2016-11-14</p> <p>Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019787','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019787"><span>Geophysical setting of the Wabash Valley fault system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hildenbrand, T.G.; Ravat, D.</p> <p>1997-01-01</p> <p>Interpretation of existing regional magnetic and gravity data and new local high-resolution aeromagnetic data provides new insights on the tectonic history and structural development of the Wabash Valley Fault System in Illinois and Indiana. Enhancement of short-wavelength magnetic anomalies reveal numerous NW- to NNE-trending ultramafic dikes and six intrusive complexes (including those at Hicks Dome and Omaha Dome). Inversion models indicate that the interpreted dikes are narrow (???3 m), lie at shallow depths (500 km long and generally >50 km wide) and with deep basins (locally >3 km thick), the ancestral Wabash Valley faults express, in comparison, minor tectonic structures and probably do not represent a failed rift arm. There is a lack of any obvious relation between the Wabash Valley Fault System and the epicenters of historic and prehistoric earthquakes. Five prehistoric earthquakes lie conspicuously near structures associated with the Commerce geophysical lineament, a NE-trending magnetic and gravity lineament lying oblique to the Wabash Valley Fault System and possibly extending over 600 km from NE Arkansas to central Indiana.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016414&hterms=rock+islands&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DThe%2Brock%2Bislands','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016414&hterms=rock+islands&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DThe%2Brock%2Bislands"><span>Shock attenuation at the Slate Islands revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, S.; Robertson, P. B.; Grieve, R. A. F.</p> <p>1993-01-01</p> <p>This study of a more extensive suite of Slate Islands samples confirms previous interpretations. It indicates clearly that recorded shock pressures, as determined by planar deformation feature orientations, increased towards the center. The 'shock center' is very close (considering the structural movements during cavity modification) to that from an independent determination from shatter cone orientations. Shock metamorphism at a higher level in breccia clasts than in the adjacent country rocks is evidence that the shock event preceded the formation of the breccia dikes. These observations, which are consistent with those at other impact structures, are all contrary to the interpretation by Sage that breccia dike formation by diatreme action was the source of the shock event. There is no plausible reason to consider the Slate Islands as anything but the emergent portion of the central uplift of a complex impact crater. It cannot be cited as an example of endogenic shock in arguments regarding evidence of impact in the terrestrial stratigraphic record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21658731','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21658731"><span>The extent and historical trend of metal pollution recorded in core sediments from the artificial Lake Shihwa, Korea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ra, Kongtae; Bang, Jae-Hyun; Lee, Jung-Moo; Kim, Kyung-Tae; Kim, Eun-Soo</p> <p>2011-08-01</p> <p>The vertical distribution of trace metals in sediment cores was investigated to evaluate the extent and the historical record of metal pollution over 30 years in the artificial Lake Shihwa in Korea. A marked increase of trace metals after 1980 was observed due to the operation of two large industrial complexes and dike construction for a reclamation project. There was a decreasing trend of metal concentrations with the distance from the pollution source. The enrichment factor and pollution load index of the metals indicated that the metal pollution was mainly derived from Cu, Zn and Cd loads due to anthropogenic activities. The concentrations of Cr, Ni, Cu, Zn, As and Pb in the upper part of all core sediments exceeded the ERL criteria of NOAA. Our results indicate that inadequate planning and management of industrialization and a large reclamation project accomplished by dike construction have continued to strongly accelerate metal pollution in Lake Shihwa. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70117455','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70117455"><span>The Columbia River Basalt Group: from the gorge to the sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wells, Ray E.; Niem, Alan R.; Evarts, Russell C.; Hagstrum, Jonathan T.</p> <p>2009-01-01</p> <p>Miocene flood basalts of the Columbia River Basalt Group inundated eastern Washington, Oregon, and adjacent Idaho between 17 and 6 Ma. Some of the more voluminous flows followed the ancestral Columbia River across the Cascade arc, Puget-Willamette trough, and the Coast Range to the Pacific Ocean. We have used field mapping, chemistry, and paleomagnetic directions to trace individual flows and flow packages from the Columbia River Gorge westward into the Astoria Basin, where they form pillow palagonite complexes and mega-invasive bodies into older marine sedimentary rocks. Flows of the Grande Ronde, Wanapum, and Saddle Mountains Basalts all made it to the ocean; at least 33 flows are recognized in the western Columbia River Gorge, 50 in the Willamette Valley, 16 in the lower Columbia River Valley, and at least 12 on the Oregon side of the Astoria Basin. In the Astoria Basin, the basalt flows loaded and invaded the wet marine sediments, producing peperite breccias, soft sediment deformation, and complex invasive relations. Mega-invasive sills up to 500 m thick were emplaced into strata as old as Eocene, and invasive dikes up to 90 m thick can be traced continuously for 25 km near the basin margin. Mega-pillow complexes up to a kilometer thick are interpreted as the remains of lava deltas that prograded onto the shelf and a filled submarine canyon southeast of Astoria, possibly providing the hydraulic head for injection of invasive sills and dikes at depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014352','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014352"><span>FORTRAN 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Delaney, P.T.</p> <p>1988-01-01</p> <p>Temperature histories obtained from transient heat-conduction theory are applicable to most dikes despite potential complicating effects related to magma flow during emplacement, groundwater circulation, and metamorphic reaction during cooling. Here. machine-independent FORTRAN 77 programs are presented to calculate temperatures in and around dikes as they cool conductively. Analytical solutions can treat thermal-property contrasts between the dike and host rocks, but cannot address the release of magmatic heat of crystallization after the early stages of cooling or the appreciable temperature dependence of thermal conductivity and diffusivity displayed by most rock types. Numerical solutions can incorporate these additional factors. The heat of crystallization can raise the initial temperature at the dike contact, ??c1, about 100??C above that which would be estimated if it were neglected, and can decrease the rate at which the front of solidified magma moves to the dike center by a factor of as much as three. Thermal conductivity and diffusivity of rocks increase with decreasing temperature and, at low temperatures, these properties increase more if the rocks are saturated with water. Models that treat these temperature dependencies yield estimates of ??c1 that are as much as 75??C beneath those which would be predicted if they were neglected. ?? 1988.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1978/0815/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1978/0815/report.pdf"><span>Exploration geophysics calculator programs for use on Hewlett-Packard models 67 and 97 programmable calculators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Campbell, David L.; Watts, Raymond D.</p> <p>1978-01-01</p> <p>Program listing, instructions, and example problems are given for 12 programs for the interpretation of geophysical data, for use on Hewlett-Packard models 67 and 97 programmable hand-held calculators. These are (1) gravity anomaly over 2D prism with = 9 vertices--Talwani method; (2) magnetic anomaly (?T, ?V, or ?H) over 2D prism with = 8 vertices?Talwani method; (3) total-field magnetic anomaly profile over thick sheet/thin dike; (4) single dipping seismic refractor--interpretation and design; (5) = 4 dipping seismic refractors--interpretation; (6) = 4 dipping seismic refractors?design; (7) vertical electrical sounding over = 10 horizontal layers--Schlumberger or Wenner forward calculation; (8) vertical electric sounding: Dar Zarrouk calculations; (9) magnetotelluric planewave apparent conductivity and phase angle over = 9 horizontal layers--forward calculation; (10) petrophysics: a.c. electrical parameters; (11) petrophysics: elastic constants; (12) digital convolution with = 10-1ength filter.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123..264C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123..264C"><span>Seismic Amplitude Ratio Analysis of the 2014-2015 Bár∂arbunga-Holuhraun Dike Propagation and Eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caudron, Corentin; White, Robert S.; Green, Robert G.; Woods, Jennifer; Ágústsdóttir, Thorbjörg; Donaldson, Clare; Greenfield, Tim; Rivalta, Eleonora; Brandsdóttir, Bryndís.</p> <p>2018-01-01</p> <p>Magma is transported in brittle rock through dikes and sills. This movement may be accompanied by the release of seismic energy that can be tracked from the Earth's surface. Locating dikes and deciphering their dynamics is therefore of prime importance in understanding and potentially forecasting volcanic eruptions. The Seismic Amplitude Ratio Analysis (SARA) method aims to track melt propagation using the amplitudes recorded across a seismic network without picking the arrival times of individual earthquake phases. This study validates this methodology by comparing SARA locations (filtered between 2 and 16 Hz) with the earthquake locations (same frequency band) recorded during the 2014-2015 Bár∂arbunga-Holuhraun dike intrusion and eruption in Iceland. Integrating both approaches also provides the opportunity to investigate the spatiotemporal characteristics of magma migration during the dike intrusion and ensuing eruption. During the intrusion SARA locations correspond remarkably well to the locations of earthquakes. Several exceptions are, however, observed. (1) A low-frequency signal was possibly associated with a subglacial eruption on 23 August. (2) A systematic retreat of the seismicity was also observed to the back of each active segment during stalled phases and was associated with a larger spatial extent of the seismic energy source. This behavior may be controlled by the dike's shape and/or by dike inflation. (3) During the eruption SARA locations consistently focused at the eruptive site. (4) Tremor-rich signal close to ice cauldrons occurred on 3 September. This study demonstrates the power of the SARA methodology, provided robust site amplification; Quality Factors and seismic velocities are available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012NatCh...4..355M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012NatCh...4..355M"><span>Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-Cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.</p> <p>2012-05-01</p> <p>Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EP%26S...68...68H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EP%26S...68...68H"><span>Rapid dike intrusion into Sakurajima volcano on August 15, 2015, as detected by multi-parameter ground deformation observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hotta, Kohei; Iguchi, Masato; Tameguri, Takeshi</p> <p>2016-04-01</p> <p>We present observations of ground deformation at Sakurajima in August 2015 and model the deformation using a combination of GNSS, tilt and strain data in order to interpret a rapid deformation event on August 15, 2015. The pattern of horizontal displacement during the period from August 14 to 16, 2015, shows a WNW-ESE extension, which suggests the opening of a dike. Using a genetic algorithm, we obtained the position, dip, strike length, width and opening of a dislocation source based on the combined data. A nearly vertical dike with a NNE-SSW strike was found at a depth of 1.0 km below sea level beneath the Showa crater. The length and width are 2.3 and 0.6 km, respectively, and a dike opening of 1.97 m yields a volume increase of 2.7 × 106 m3. 887 volcano-tectonic (VT) earthquakes beside the dike suggest that the rapid opening of the dike caused an accumulation of strain in the surrounding rocks, and the VT earthquakes were generated to release this strain. Half of the total amount of deformation was concentrated between 10:27 and 11:54 on August 15. It is estimated that the magma intrusion rate was 1 × 106 m3/h during this period. This is 200 times larger than the magma intrusion rate prior to one of the biggest eruptions at the summit crater of Minami-dake on July 24, 2012, and 2200 times larger than the average magma intrusion rate during the period from October 2011 to March 2012. The previous Mogi-type ground deformation is considered to be a process of magma accumulation in preexisting spherical reservoirs. Conversely, the August 2015 event was a dike intrusion and occurred in a different location to the preexisting reservoirs. The direction of the opening of the dike coincides with the T-axes and direction of faults creating a graben structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044480','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044480"><span>A model for Iapetan rifting of Laurentia based on Neoproterozoic dikes and related rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Burton, William C.; Southworth, Scott</p> <p>2010-01-01</p> <p>Geologic evidence of the Neoproterozoic rifting of Laurentia during breakup of Rodinia is recorded in basement massifs of the cratonic margin by dike swarms, volcanic and plutonic rocks, and rift-related clastic sedimentary sequences. The spatial and temporal distribution of these geologic features varies both within and between the massifs but preserves evidence concerning the timing and nature of rifting. The most salient features include: (1) a rift-related magmatic event recorded in the French Broad massif and the southern and central Shenandoah massif that is distinctly older than that recorded in the northern Shenandoah massif and northward; (2) felsic volcanic centers at the north ends of both French Broad and Shenandoah massifs accompanied by dike swarms; (3) differences in volume between massifs of cover-sequence volcanic rocks and rift-related clastic rocks; and (4) WNW orientation of the Grenville dike swarm in contrast to the predominately NE orientation of other Neoproterozoic dikes. Previously proposed rifting mechanisms to explain these features include rift-transform and plume–triple-junction systems. The rift-transform system best explains features 1, 2, and 3, listed here, and we propose that it represents the dominant rifting mechanism for most of the Laurentian margin. To explain feature 4, as well as magmatic ages and geochemical trends in the Northern Appalachians, we propose that a plume–triple-junction system evolved into the rift-transform system. A ca. 600 Ma mantle plume centered east of the Sutton Mountains generated the radial dike swarm of the Adirondack massif and the Grenville dike swarm, and a collocated triple junction generated the northern part of the rift-transform system. An eastern branch of this system produced the Long Range dike swarm in Newfoundland, and a subsequent western branch produced the ca. 554 Ma Tibbit Hill volcanics and the ca. 550 Ma rift-related magmatism of Newfoundland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.V31D..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.V31D..08G"><span>Basaltic Dike Propagation at Yucca Mountain, Nevada, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaffney, E. S.; Damjanac, B.; Warpinski, N. R.</p> <p>2004-12-01</p> <p>We describe simulations of the propagation of basaltic dikes using a 2-dimensional, incompressible hydrofracture code including the effects of the free surface with specific application to potential interactions of rising magma with a nuclear waste repository at Yucca Mountain, Nevada. As the leading edge of the dike approaches the free surface, confinement at the crack tip is reduced and the tip accelerates relative to the magma front. In the absence of either excess confining stress or excess gas pressure in the tip cavity, this leads to an increase of crack-tip velocity by more than an order of magnitude. By casting the results in nondimensional form, they can be applied to a wide variety of intrusive situations. When applied to an alkali basalt intrusion at the proposed high-level nuclear waste repository at Yucca Mountain, the results provide for a description of the subsurface phenomena. For magma rising at 1 m/s and dikes wider than about 0.5 m, the tip of the fissure would already have breached the surface by the time magma arrived at the nominal 300-m repository depth. An approximation of the effect of magma expansion on dike propagation is used to show that removing the restriction of an incompressible magma would result in even greater crack-tip acceleration as the dike approached the surface. A second analysis with a distinct element code indicates that a dike could penetrate the repository even during the first 2000 years after closure during which time heating from radioactive decay of waste would raise the minimum horizontal compressive stress above the vertical stress for about 80 m above and below the repository horizon. Rather than sill formation, the analysis indicates that increased pressure and dike width below the repository cause the crack tip to penetrate the horizon, but much more slowly than under in situ stress conditions. The analysis did not address the effects of either anisotropic joints or heat loss on this result.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4484652','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4484652"><span>Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gao, Hui; Li, Bei; Zhao, Lingzhou; Jin, Yan</p> <p>2015-01-01</p> <p>Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration. PMID:26150714</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26150714','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26150714"><span>Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Hui; Li, Bei; Zhao, Lingzhou; Jin, Yan</p> <p>2015-01-01</p> <p>Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.aidsinfonet.org/fact_sheets/view/514','NIH-MEDLINEPLUS'); return false;" href="http://www.aidsinfonet.org/fact_sheets/view/514"><span>Mycobacterium Avium Complex (MAC)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... Sheet Categories Internet Bookmarks on AIDS Have Questions? Printing & Downloading Fact Sheets Permission to Use Fact Sheets Sponsors and Advertising Privacy Policy Project Staff Contact Us This site ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.6987B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.6987B"><span>BICAPA case study of natural hazards that trigger technological disasters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boca, Gabriela; Ozunu, Alexandru; Nicolae Vlad, Serban</p> <p>2010-05-01</p> <p>Industrial facilities are vulnerable to natural disasters. Natural disasters and technological accidents are not always singular or isolated events. The example in this paper show that they can occur in complex combinations and/or in rapid succession, known as NaTech disasters, thereby triggering multiple impacts. This analysis indicates that NaTech disasters have the potential to trigger hazmat releases and other types of technological accidents. Climate changes play an important role in prevalence and NATECH triggering mechanisms. Projections under the IPCC IS92 a scenario (similar to SRES A1B; IPCC, 1992) and two GCMs indicate that the risk of floods increases in central and eastern Europe. Increase in intense short-duration precipitation is likely to lead to increased risk of flash floods. (Lehner et al., 2006). It is emergent to develop tools for the assessment of risks due to NATECH events in the industrial processes, in a framework starting with the characterization of frequency and severity of natural disasters and continuing with complex analysis of industrial processes, to risk assessment and residual functionality analysis. The Ponds with dangerous technological residues are the most vulnerable targets of natural hazards. Technological accidents such as those in Baia Mare, (from January to March 2000) had an important international echo. Extreme weather phenomena, like those in the winter of 2000 in Baia Mare, and other natural disasters such as floods or earthquakes, can cause a similar disaster at Târnăveni in Transylvania Depression. During 1972 - 1978 three decanting ponds were built on the Chemical Platform Târnăveni, now SC BICAPA SA, for disposal of the hazardous-wastes resulting from the manufacture of sodium dichromate, inorganic salts, sludge from waste water purification and filtration, wet gas production from carbide. The ponds are located on the right bank of the river Târnava at about 35-50m from the flooding defense dam. The total amount of toxic waste stored in the three ponds is about 2500 tons, equivalent at 128 tons expressed in hexavalent chromium. The ponds contour dikes are strongly damaged in many places, their safety is jeopardized by leakages, sliding slopes and ravens. The upstream dike has an increased failure risk. The upstream dike has an increased failure risk. In that section the coefficients of safety are under the allowable limit, both in static applications, and the earthquake. The risk of failure is very high also due to the dikes slopes. The risk becomes higher in case of heavy rainfall, floods or an earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/1874/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/1874/report.pdf"><span>Water in the Kahuku area, Oahu, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Takasaki, K.J.; Valenciano, Santos</p> <p>1969-01-01</p> <p>The Kahuku area comprises the north end of the Koolau Range and its bordering coastal plain. This part of the range is less deeply eroded than oth3r parts, and except for long, narrow valleys and cliffs near the shore, it has retained the general shape of the original volcanic dome. A 21/2-mile-wide dike zone of parallel and subparallel dikes along the crest is the remnant of the fissure zone of eruption. Outcrops are mostly permeable lava flows of the Koolau Volcanic Series, which are intruded by dikes inside the dike zone and are free of dikes outside it. The lava flows constitute main aquifers, and water bodies in them are called dike water inside the dike zone and basal water outside it. Dikes, because they are less permeable than the lava flows they intrude, impound ground water, thereby controlling its movement, discharge, and storage. The top of the dike-impounded water is at an altitude of at least 1,000 feet near the south end of the Kahuku area. Dike water is discharged as leakage, the amount of which fluctuates in response to changes in storage, as flow into streams, where they intersect saturated rock, and as underflow to the basal-water body. Basal water occurs on either side of the dike zone, which forms both a structural and hydrologic boundary. It is artesian on the windward side wherever it underlies the coastal plain, and the altitude of water levels ranges from 7 to 22 feet. Leeward of the dike zone, basal water occurs only under water-table conditions because of the near absence of a coastal plain, and the altitude of water levels ranges from less than 1 foot to about 3 feet. The quality of dike water is excellent except near the north end. where it is slightly contaminated by infiltration of irrigation water that contains as much as 1,200 mg/1 (milligrams per liter) chloride. Irrigation water is also a source of contamination of the basal-water body. The major contaminant, however, is sea water, which underlies the basal-water body. In the Kahuku subarea--where pumpage from the basal-water body is greatest--sea-water contamination is a major concern. Natural contamination by encroaching sea water extends more than 2 miles inland in the Waimea-Kawela subarea and generally precludes development of large quantities of basal water. At low altitudes where the perennial flow is small, all streams are intermittent except Kaluanui and Kamananui. Some streams are perennial in their upper reaches because of persistent rainfall, and some are perennial in their middle reaches owing to the discharge of dike water; however, most flows are small in the lower reaches because most of the flow has infiltrated into the ground-water reservoir. For these reasons, streamflow cannot be economically developed and is not a reliable source of water supply. Average rainfall is about 240 mgd (million gallons per day). Of this amount, about 220 mgd is in the mountains. On .the basis of a rainfall input of 220 mgd and estimates of stream runoff and evapotranspiration, ground-water flow is estimated to be 85 mgd, a figure which compares favorably with estimates based on analyses of pumping-test data. Of this amount, an average of 30 mgd is discharged by wells and the remaining 55 mgd is eventually discharged to the sea by underflow or to the atmosphere by evapotranspiration. The most promising areas for developing basal water are in the Hauula and Laie subareas, where draft is low and ground-water flow is high. The Waimea-Kawela subarea is not promising owing 'to low ground-water flow even though draft is low. Least promising for development is in the Kahuku subarea where an overdeveloped condition prevails in which draft for sugarcane irrigation exceeds the ground-water flow. The development of dike water is promising in the Waimea-Kawela subarea where ground-water flow greatly exceeds the draft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.158..324C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.158..324C"><span>Petrogenesis of Early Cretaceous dioritic dikes in the Shanyang-Zhashui area, South Qinling, central China: Evidence for partial melting of thickened lower continental crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Lei; Yan, Zhen; Wang, Zongqi; Wang, Kunming</p> <p>2018-06-01</p> <p>The dioritic dikes distributed in the Shanyang-Zhashui area of the South Qinling region play an important role in understanding the deep magmatic processes and tectonic evolution during the orogenic process. The zircon Usbnd Pb ages of the dioritic dikes indicate that they were emplaced at ∼144 Ma and therefore postdate the dikes that formed in the intracontinental orogenic background after the continental collision between the North China Block (NCB) and the South China Block (SCB). The dioritic dikes have SiO2 contents of 56.86-64.93 wt%; K2O contents of 1.65-3.21 wt%; low MgO (1.50-2.66 wt%), Y (14.4-25.5 ppm) and heavy rare earth element (HREE) contents; low Mg# values (39.9-49); high Sr contents (528-4833 ppm); and high Sr/Y ratios (32.8-189). They exhibit highly fractionated REE and flat HREE patterns, strong enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, and U) and depletion in high field strength elements (HFSEs) (e.g., Nb), as well as positive Sr and negative Ti anomalies. Furthermore, these dioritic dikes exhibit (87Sr/86Sr)i ratios ranging from 0.7048 to 0.7083, εNd(t) values ranging from -3.3 to -1.4, and εHf(t) values ranging from -4.1 to 1.6. The geochemical patterns of the dioritic dikes indicate that they possess adakitic characteristics. Moreover, the low MgO contents, Mg# values, Ni contents, Th/Ce ratios, and Srsbnd Ndsbnd Hf isotopic features all indicate that these dioritic dikes were generated by the partial melting of thickened mafic lower crust. The high La/Yb and Sr/Y ratios, low Y and Yb contents, absence of significant Eu anomalies, flat HREE patterns, and low Nb/Ta ratios of these rocks suggest that the adakitic melts were derived from the melting of garnet-bearing amphibolite. The geochronologic, elemental and isotopic evidence suggests that the dioritic dikes may have formed in a locally extensional environment within an overall N-S compressional setting or during the transition from compressional to extensional environments in the Early Cretaceous. This process resulted in the upwelling of the asthenospheric or lithospheric mantle, causing partial melting of the mafic lower crust and forming the adakitic dioritic melts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989CoMP..101...12M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989CoMP..101...12M"><span>Anomalous isotopic compositions of Sr, Ar and O in the Mesozoic diabase dikes of Liberia, West Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mauche, Renée; Faure, Gunter; Jones, Lois M.; Hoefs, Jochen</p> <p>1989-01-01</p> <p>The Mesozoic diabase dikes of Liberia are tholeiites whose 87Sr/86Sr and 87Rb/86Sr ratios scatter widely on the Rb-Sr isochron diagram. The problem is attributed to differences in the initial 87Sr/86Sr ratios of these rocks which range from 0.70311 to 0.70792, assuming a uniform age of 186 Ma for the dikes and using λ(87Rb)=1.42 × 10-11y-1. The range of values is similar to that observed in the Mesozoic basalt flows and dikes of other Gondwana continents. New whole-rock K-Ar dates confirm previous conclusions that the diabase dikes in the Liberian and Pan-African age provinces of Liberia absorbed extraneous 40Ar after intrusion. Only the dikes in the Paynesville Sandstone have K-Ar dates that range from 117 Ma to 201 Ma and may not contain extraneous 40Ar. However, dikes from all three age provinces of Liberia have elevated initial 87Sr/86Sr ratios. These results indicate that contamination with radiogenic 87Sr occurred primarily before intrusion of the magma whereas the addition of extraneous 40Ar occurred after emplacement and reflects the age and mineral composition of the country rock. The δ 18O values of the Liberian diabase range from +5.6/% to +9.10/% and correlate positively with initial 87Sr/86Sr ratios. The data can be modeled by fractional crystallization and simultaneous assimilation of crustal rocks by the magma. However, samples containing amphibole and biotite replacing pyroxene deviate from the Sr-O isotope trajectories of the model and appear to have been depleted in 18O and enriched in 87Sr by interactions with groundwater at high temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRB..113.4202H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRB..113.4202H"><span>Kinematic analysis of fractures in the Great Rift, Idaho: Implications for subsurface dike geometry, crustal extension, and magma dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holmes, Adrian A. J.; Rodgers, David W.; Hughes, Scott S.</p> <p>2008-04-01</p> <p>Extension across the southern Great Rift of the Eastern Snake River Plain (ESRP), Idaho, was measured to calculate the dimensions of underlying dikes and interpret magmatic and extensional processes. Cumulative rift-perpendicular extension ranges from 0.64 to 4.50 m along the 14 km long Kings Bowl segment, from 1.33 to 4.41 m along the 14 km long New Butte segment, and from 0.74 to 1.57 m along the 4 km long Minidoka segment. Along strike of each segment, extension increases toward coeval vents. Each rift segment is interpreted to be underlain by a subsurface dike, whose dimensions are calculated using buoyancy equilibrium and boundary element models. Dikes are calculated to have tops that are 950-530 m deep, bottoms that are 23-31 km deep, and widths that taper to zero from a maximum of 2-21 m. Modeling suggests that the Kings Bowl dike has a maximum probable width of ˜8 m and a volume of ˜2 km3, about 400 times the volume of its coeval lava flow. Dike widths and ages at the southern Great Rift provide evidence for a Holocene ESRP strain rate of about 1 to 3 × 10-16 s-1, which is as much as an order of magnitude slower than strain rates in the adjacent, seismically active Basin and Range province. Eruptive fissures are present where rift width is <1650 m. This corresponds to a depth to dike top of <700 m, which we propose was the depth where vesiculation initiated, thus increasing magma pressure and inducing eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22.1875T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22.1875T"><span>Assessing impacts of dike construction on the flood dynamics of the Mekong Delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tran, Dung Duc; van Halsema, Gerardo; Hellegers, Petra J. G. J.; Phi Hoang, Long; Quang Tran, Tho; Kummu, Matti; Ludwig, Fulco</p> <p>2018-03-01</p> <p>Recent flood dynamics of the Mekong Delta have raised concerns about an increased flood risk downstream in the Vietnamese Mekong Delta. Accelerated high dike building on the floodplains of the upper delta to allow triple cropping of rice has been linked to higher river water levels in the downstream city of Can Tho. This paper assesses the hydraulic impacts of upstream dike construction on the flood hazard downstream in the Vietnamese Mekong Delta. We combined the existing one-dimensional (1-D) Mekong Delta hydrodynamic model with a quasi-two-dimensional (2-D) approach. First we calibrated and validated the model using flood data from 2011 and 2013. We then applied the model to explore the downstream water dynamics under various scenarios of high dike construction in An Giang Province and the Long Xuyen Quadrangle. Calculations of water balances allowed us to trace the propagation and distribution of flood volumes over the delta under the different scenarios. Model results indicate that extensive construction of high dikes on the upstream floodplains has had limited effect on peak river water levels downstream in Can Tho. Instead, the model shows that the impacts of dike construction, in terms of peak river water levels, are concentrated and amplified in the upstream reaches of the delta. According to our water balance analysis, river water levels in Can Tho have remained relatively stable, as greater volumes of floodwater have been diverted away from the Long Xuyen Quadrangle than the retention volume lost due to dike construction. Our findings expand on previous work on the impacts of water control infrastructure on flood risk and floodwater regimes across the delta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011286','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011286"><span>Magnetic Signature of the Lunar South Pole-Aitken Basin: Character, Origin, and Age</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Purucker, Michael E.; Head, James W., III; Wilson, Lionel</p> <p>2012-01-01</p> <p>A new magnetic map of the Moon, based on Lunar Prospector (LP) magnetometer observations, sheds light on the origin of the South Pole-Aitken Basin (SPA), the largest and oldest of the recognized lunar basins. A set of WNW-trending linear to arcuate magnetic features, evident in both the radial and scalar observations, covers much of a 1000 km wide region centered on the NW portion of SPA. The source bodies are not at the surface because the magnetic features show no first-order correspondence to any surface topographic or structural feature. Patchy mare basalts of possible late Imbrianage are emplaced within SPA and are inferred to have been emplaced through dikes, directly from mantle sources. We infer that the magnetic features represent dike swarms that served as feeders for these mare basalts, as evident from the location of the Thomson/ Mare Ingenii, Van de Graaff, and Leeuwenhoek mare basalts on the two largest magnetic features in the region. Modeling suggests that the dike zone is between 25 and 50 km wide at the surface, and dike magnetization contrasts are in the range of 0.2 A/m. We theorize that the basaltic dikes were emplaced in the lunar crust when a long-lived dynamo was active. Based on pressure, temperature, and stress conditions prevalent in the lunar crust, dikes are expected to be a dominantly subsurface phenomenon, consistent with the observations reported here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcGeo..65..627K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcGeo..65..627K"><span>Interpretation of magnetic anomalies using a genetic algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaftan, İlknur</p> <p>2017-08-01</p> <p>A genetic algorithm (GA) is an artificial intelligence method used for optimization. We applied a GA to the inversion of magnetic anomalies over a thick dike. Inversion of nonlinear geophysical problems using a GA has advantages because it does not require model gradients or well-defined initial model parameters. The evolution process consists of selection, crossover, and mutation genetic operators that look for the best fit to the observed data and a solution consisting of plausible compact sources. The efficiency of a GA on both synthetic and real magnetic anomalies of dikes by estimating model parameters, such as depth to the top of the dike ( H), the half-width of the dike ( B), the distance from the origin to the reference point ( D), the dip of the thick dike ( δ), and the susceptibility contrast ( k), has been shown. For the synthetic anomaly case, it has been considered for both noise-free and noisy magnetic data. In the real case, the vertical magnetic anomaly from the Pima copper mine in Arizona, USA, and the vertical magnetic anomaly in the Bayburt-Sarıhan skarn zone in northeastern Turkey have been inverted and interpreted. We compared the estimated parameters with the results of conventional inversion methods used in previous studies. We can conclude that the GA method used in this study is a useful tool for evaluating magnetic anomalies for dike models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880005496','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880005496"><span>Petrogenesis of basalts from the Archean Matachewan Dike Swarm Superior Province of Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nelson, Dennis O.</p> <p>1987-01-01</p> <p>The Matachewan Dike swarm of eastern Ontario comprises Archean age basalts that were emplaced in the greenstone, granite-greenstone, and metasedimentary terrains of the Superior Province of Canada. The basalts are Fe-rich tholeiites, characterized by the near ubiquitos presence of large, compositionally uniform, calcic plagioclase. Major and trace element whole-rock compositions, along with microprobe analyses of constituent phases, from a group of dikes from the eastern portion of the province, were evaluated to constrain petrological processes that operated during the formation and evolution of the magmas. Three compositional groupings, were identified within the dikes. One group has compositional characteristics similar to modern abyssal tholeiites and is termed morb-type. A second group, enriched in incompatible elements and light-REE enriched, is referred to as the enriched group. The third more populated group has intermediate characteristics and is termed the main group. The observation of both morb-type and enriched compositions within a single dike strongly argues for the contemporaneous existence of magmas derived through different processes. Mixing calculations suggest that two possibilities exist. The least evolved basalts lie on a mixing line between the morb-type and enriched group, suggesting mixing of magmas derived from heterogeneous mantle. Mixing of magmas derived from a depleted mantle with heterogeneous Archean crust can duplicate certain aspects of the Matachewan dike composition array.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41F1505S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41F1505S"><span>Effects of Dike Fields on Channel Characteristics of the Lower Missiszippi River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simon, A.; Biedenharn, D. S.; Danis, N.; Little, C. D.</p> <p>2017-12-01</p> <p>Dike systems along the Lower Mississippi River have been functioning as intended through the mid-1990s. Measures of main-channel depth, which are primary metrics to evaluate the effectiveness of the dike fields show significant increases at both +0 and +35 Low Water Reference Plane (LWRP). Median values for the two conditions (+0 and +35 LWRP) show increases of 19.0 and 28.8%, respectively. Main-channel depths at +0 LWRP were in the 25- to 26-ft range, indicating that main-channel depths in the dike-system reaches have been maintained well above the minimum 9-ft value required. Increases in average boundary shear stress of about 8 and 18% for the whole channel and main channel at +35 LWRP, respectively, reflect increases in sediment-transport capacity. The effectiveness of the dike systems in reducing the need for maintenance dredging is supported by the inverse relation between the amount of dredging and the cumulative length of constructed dikes. Maintenance dredging peaked in the late 1960s at about 60 million cubic yards (yd3) in the Memphis and Vicksburg Districts and decreased to about 4 million yd3 by 2003, a reduction of about 93%. Cases where total conveyance has decreased appear to result from longer-termed, broad adjustment processes related to other factors including the historical cutoff program along the Lower Mississippi River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRB..118.3707H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRB..118.3707H"><span>New constraints on dike injection and fault slip during the 1975-1984 Krafla rift crisis, NE Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hollingsworth, J.; Leprince, Sébastien; Ayoub, François; Avouac, Jean-Philippe</p> <p>2013-07-01</p> <p>Correlation of KH9 spy and SPOT5 satellite images, airphotos, digital elevation model differencing, electronic distance measurement, and leveling survey data is used to constrain the deformation resulting from the 1975-1984 Krafla rifting crisis. We find that diking typically extends to depths of 5 km, while the dike tops range from 0 km in the caldera region to 3 km at the northern end of the rift. Extension is accommodated by diking at depth and normal faulting in the shallowest crust. In the southern section of the Krafla rift, surface opening is 80% of the dike opening at depth. Over the 70-80 km length of the rift, the average dike opening was 4.3-5.4 m. From these estimates, we calculate the total geodetic moment released over the Krafla rift crisis, 4.4-9.0×1019 Nm, which is an order of magnitude higher than the seismic moment released over the same time period, ~5.8×1018 Nm. The total volume of magma added to the upper crust was 1.1-2.1×109m3. This study highlights how optical image correlation using inexpensive declassified spy satellite and airphotos, combined with simple models of crustal deformation, can provide important constraints on the deformation resulting from past earthquake and volcanic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3698R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3698R"><span>Fluvial dike breaching due to overtopping: how different is it from dam breaching?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rifai, Ismail; Erpicum, Sébastien; Archambeau, Pierre; Violeau, Damien; Pirotton, Michel; El kadi Abderrezzak, Kamal; Dewals, Benjamin</p> <p>2017-04-01</p> <p>During floods in large rivers, casualties and extent of damage are often aggravated by breach formation across fluvial dikes. The most frequent cause of breaching is flow overtopping. Predicting the breach geometry and associated outflow hydrograph is of critical importance for estimating the inundation characteristics in the floodplain and the resulting flood risk. Because fluvial dikes are built along a main channel that conveys flowing water, fluvial dike breaching differs from dam breaching, in which the embankment is built across the channel downstream of a reservoir. While a vast body of studies exists on dam breaching configuration (e.g., Schmocker et al. 2012, 2014, Müller et al. 2016), little is known on specific aspects of fluvial dike breaching. We performed laboratory experiments that highlight the specific erosion processes governing fluvial dike breaching (Rifai et al. 2017a). The experimental setup includes a 10 m long and 1 m wide main channel, separated from a floodplain by a 0.3 m high dike of trapezoidal cross-section. The dike material was homogeneous and made of uniform sand. A rectangular initial notch was cut in the crest to initiate 3D breaching. The breach development was monitored continuously using a self-developed laser profilometry technique (Rifai et al. 2016). The observations reveal that the breach develops in two stages. First, a combined breach deepening and widening occur, together with a gradual shift of the breach centreline toward the downstream side of the main channel. Later, the breach widening continues only toward the downstream side of the main channel, highlighting a significant influence of flow momentum in the main channel. Moreover, the breach cross-section is tilted toward the downstream end of the main channel, which is a signature of an asymmetric velocity distribution through the breach (Rifai et al. 2017b). When the inflow discharge in the main channel is increased, the breach development becomes much faster (e.g., seven times faster for a 150 % increase in the inflow discharge). When an equilibrium state is reached at the end of the test, the breach centreline orientation is found consistent with the theory of flow over a lateral weir. In the experiments, the boundary condition at the downstream end of the main channel is a lumped representation of river characteristics downstream of the breach section. In real-world conditions, these river characteristics influence the flow partition between the breach and the main channel. Therefore, we tested several downstream boundary conditions (perforated plane, rectilinear weir and sluice gate). For the same inflow discharge and water levels, they lead to significantly different breach geometries. The findings of this research shed light on key mechanisms occurring in fluvial dike breaching, which differ substantially from those in dam breaching. These specific features need to be incorporated in flood risk analyses involving fluvial dike breaching. This research also delivers a unique experimental database of high resolution continuous monitoring of the breach geometry under various flow conditions. The datasets are freely available for engineers and researchers willing to assess the performance of numerical models to simulate dike breaching and resulting flood. References Müller, C., Frank, P.-J., Hager, W.H. (2016). Dyke overtopping: effects of shape and headwater elevation. Journal of Hydraulic Research, 54(4), 410-422. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El kadi Abderrezzak, K., Dewals, B. (2016). Monitoring topography of laboratory fluvial dike models subjected to breaching based on a laser profilometry technique. Proc. International Symposium on River Sedimentation (ISRS), 19-22 September 2016, Stuttgart. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El kadi Abderrezzak, K., Dewals, B. (2017a). Overtopping induced failure of non-cohesive, homogenous fluvial dikes. Water Resources Research, under revision. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El kadi Abderrezzak, K., Dewals, B. (2017b). Discussion of: Laboratory Study on 3D Flow Structures Induced by Zero-Height Side Weir and Implications for 1D Modeling. Journal of Hydraulic Engineering, 07016010. doi: 10.1061/(ASCE)HY.1943-7900.0001256 Schmocker, L., Frank, P.-J., Hager, W.H. (2014). Overtopping dike-breach: Effect of grain size distribution. Journal of Hydraulic Research, 52(4), 559-564. Schmocker, L., Hager, W.H. (2012). Plane dike-breach due to overtopping: Effects of sediment, dike height and discharge. Journal of Hydraulic Research, 50(6), 576-586.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/27495','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/27495"><span>Magnitude and frequency of flooding on the Myakka River, Southwest Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hammett, K.M.; Turner, J.F.; Murphy, W.R.</p> <p>1978-01-01</p> <p>Increasing numbers of urban and agricultural developments are being located on waterfront property in the Myakka River flood plain in southwest Florida. Under natural conditions, a large depression, Tatum Sawgrass, was available as a flood storage area in the upper Myakka River basin. Construction of dikes across the lower part of Tatum Sawgrass has restricted use of the depression for temporary storage of Myakka River flood water overflow, and has resulted in increased flood-peak discharges and flood heights in downstream reaches of the Myakka River. The difference between natural and diked condition flood-peak discharges and flood heights is presented to illustrate the effects of the dikes. Flood-peak discharges, water-surface elevations and flood profiles also are provided for diked conditions. Analytical procedures used to evaluate diking effects are described in detail. The study reach includes Myakka River main stem upstream from U.S. Highway 41, near Myakka Shores in Sarasota County, to State Road 70 near Myakka City in Manatee County (including Tatum Sawgrass and Clay Gully), and Blackburn Canal from Venice By-Way to Myakka River. (Woodard-USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V13C4796V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V13C4796V"><span>Distribution of "Compound" and "Simple" Flows in the Deccan Traps (India)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vanderkluysen, L.; Self, S.; Jay, A. E.; Sheth, H. C.; Clarke, A. B.</p> <p>2014-12-01</p> <p>The Deccan Traps are a dominantly mafic large igneous province (LIP) that, prior to erosion, covered ~1 million km2 of west-central India with lava flows. The type sections of the Western Ghats escarpment, where the Deccan lava pile reaches a maximum reconstructed stratigraphic thickness of ~3400 m, are subdivided into eleven formations defined on chemo-stratigraphic grounds. Earlier work recognized that emplacement of Deccan basalt flows primarily occurs following two main modes: as a stack of meter-sized pāhoehoe toes and lobes, termed "compound" flows; or as inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height, previously termed "simple" flows. Initially, the distribution of small lobes and sheet lobes in the Deccan was thought to be controlled by distance from source, but later work suggested the distribution to be mainly controlled along stratigraphic, formational boundaries, with six of the lower formations being composed exclusively of compound flows, and the upper 4-5 formations being wholly built of sheet lobes. This simple stratigraphic subdivision of lava flow morphologies has also been documented in the volcanic architecture of other LIPs, e.g., the Etendeka, the Ethiopian Traps, and in the Faeroe Islands (North Atlantic LIP). Upon examination of eight sections carefully logged along the Western Ghats, this traditional view must be challenged. Where the lower Deccan formations crop out, we found that as much as 65% of the exposed thickness (below the Khandala Formation) is made up of sheet lobes, from 40% in the Bhimashankar Formation to 75% in the Thakurvadi Formation. Near the bottom of the sequence, 25% of the Neral Formation is composed of sheet lobes ≥15 m in thickness. This distribution in lava flow morphology does not seem to be noticeably affected by the inferred distance to the source (based on the location of similar-composition dikes for each formation). Several mechanisms have been proposed to explain the development of compound flows and inflated sheet lobes, involving one or more of the following factors: underlying slope, varying effusion rate, and source geometry. Analogue experiments are currently under way to test the relative influence of each of these factors in the development of different lava flow morphologies in LIPs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27282420','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27282420"><span>Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz</p> <p>2016-06-10</p> <p>Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4901264','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4901264"><span>Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Andersson, Magnus; Almqvist, Bjarne S. G.; Burchardt, Steffi; Troll, Valentin R.; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz</p> <p>2016-01-01</p> <p>Magma transport through the Earth’s crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics. PMID:27282420</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/2217/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/2217/report.pdf"><span>Evaluation of Major Dike-Impounded Ground-Water Reservoirs, Island of Oahu</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Takasaki, Kiyoshi J.; Mink, John Francis</p> <p>1985-01-01</p> <p>Ground-water reservoirs impounded by volcanic dikes receive a substantial part of the total recharge to ground water on the island of Oahu because they generally underlie the rainiest areas. These reservoirs accumulate the infiltration from rainfall, store it temporarily, and steadily leak it to abutting basal reservoirs or to streams cutting into them. The dike reservoirs have high hydraulic heads and are mostly isolated from saline water. The most important and productive of the dike-impounded reservoirs are in an area of about 135 square miles in the main fissure zone of the Koolau volcano where the top of the dike-impounded water reaches an altitude of at least 1,000 feet. Water is impounded and stored both above and below sea level. The water stored above sea level in the 135 square mile area has been roughly estimated at 560 billion gallons. In comparison, the water stored above sea level in reservoirs underlying a dike-intruded area of about 53 square miles in the Waianae Range has been roughly estimated at 100 billion gallons. Storage below sea level is indeterminable, owing to uncertainties about the ability of the rock to store water as dike density increases and porosity decreases. Tunnels, by breaching dike controls, have reduced the water stored above sea level by at least 50 billion gallons in the Koolau Range and by 5 1/2 billion gallons in the Waianae Range, only a small part of the total water stored. Total leakage from storage in the Koolau Range has been estimated at about 280 Mgal/d (million gallons per day). This estimated leakage from the dike-impounded reservoirs makes up a significant part of the ground-water yield of the Koolau Range, which has been estimated to range from 450 to 580 Mgal/d. The largest unused surface leakage is in the Kaneohe, Kahana, and Punaluu areas, and the largest unused underflow occurs in the Waialee, Hauula-Laie, Punaluu, and Kahana areas. The unused underflow leakage is small in areas near and east of Waialae, but it is an important supply because of the great need for augmenting water supplies there. Total leakage from storage in the Waianae Range has not been estimated because underflow is difficult to determine. Much of the surface leakage, about 4 Mgal/d in the upper parts of Waianae, Makaha, and Lualualei Valleys, has been diverted by tunnels. Hence, supplies available, other than surface leakage, cannot be estimated from the discharge end of the hydrologic cycle. Infiltration in the Waianae Range to dike-intruded reservoirs in the upper part of the valleys on the west (leeward) side has been estimated at about 20 Mgal/d, and on the east (windward) side, at about 10 Mgal/d. The available supply has been estimated at about 15 Mgal/d from the infiltration on the leeward side, of which about 4 Mgal/d is now being developed. No estimate has been made for the available supply on the windward side. Dike-intruded reservoirs at shallow depths west (lee side) of the crest are in upper Makaha, Waianae, and Lualualei Valleys. They are at moderate depths in upper Haleanu and in lower Kaukonahua Gulches on the east (windward) side. Flow hydraulics in dike tunnels is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015002','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015002"><span>Late Cretaceous and early Tertiary plutonism and deformation in the Skagit Gneiss Complex, north Cascade Range, Washington and British Columbia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haugerud, R.A.; Van Der Heyden, P.; Tabor, R.W.; Stacey, J.S.; Zartman, R.E.</p> <p>1991-01-01</p> <p>The Skagit Gneiss Complex forms a more-or-less continuous terrane within the North Cascade Range. The complex comprises abundant plutons intruded at mid-crustal depths into a variety of metamorphosed supracrustal rocks of both oceanic and volcanic-arc origin. U-Pb zircon ages from gneissis plutons within and near the Skagit Gneiss Complex indicate magmatic crystallziations between 75 and 60 Ma. Deformation, recrystallization, and migmatization in part postdate intrusion of the 75-60 Ma plutons. This latest Cretaceous and earliest Tertiary plutonism and migmatization may reflect thermal relaxation following early Late Cretaceous orogeny. The complex was ductilely extended northwest-southeast shortly after intrusion of granite dikes at ~45 Ma, but before emplacement of the earliest (~34 Ma) plutons of the Cascade arc. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912236J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912236J"><span>Constraining dike emplacement conditions from virtual outcrop modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jørgen Kjøll, Hans; Andersen, Torgeir; Tegner, Christian</p> <p>2017-04-01</p> <p>In the Late Neoproterozoic, the paleocontinents of Baltica and Laurentia rifted apart and sea-floor spreading into the Ordovician formed the Iapetus Ocean. The Iapetus later closed and the two continents collided forming the Caledonian orogen. Rocks related to the break-up and subsequent opening of the Iapetus, now reside as partly well-preserved tectonic lenses in thrust nappes within the Scandinavian Caledonides. The break-up architecture can be separated in two distinct domains, one hyperextended magma-poor segment in the SW, and one magma-rich part that comprise the Baltoscandian Dike Swarm (BDS), the main subject of this study. The magma-rich segment is exposed from c. Røros in the south, through Sweden and into Northern Norway, a distance of more than 900 kilometers. The magmatism of the BDS has been dated to c. 580-610 Ma and is now interpreted to represent a break-up related large igneous province (LIP). The BDS is generally well exposed in freshly glaciated outcrops and mountain cliffs. It intrudes proximal to distal marine, argillaceous, meta-sandstones and carbonates that locally display well-preserved extensional features, such as normal faults at both high and low angle. Partial melting of host rocks is observed at several localities, indicating relatively high temperatures during dike emplacement. Temperature estimates by previous workers indicate high-T (850°C) conditions during the break-up from the northernmost part of the dike swarm. Emplacement depths have not yet been accurately constrained, although some anomalous high pressure for an extensional environment (≈9Kbar) is indicated in the Corrovarre area. The spectacular exposure of the dike swarm provides the opportunity to evaluate the conditions during emplacement from dike geometries and morphologies. The several hundred meters high vertical cliff walls give excellent opportunities to assess the dike geometries over a range of host lithologies and across several km of stratigraphy (up to 3 km) in the, now tilted, cross-sections. The outcrops and mountain cliffs have been thoroughly photographed using a UAV and helicopter. 3-dimensional digital outcrop models have been prepared and interpreted together with outcrop observations. The new data give new insight into dike emplacement mechanisms, which in turn provide better constraints for the ambient conditions during emplacement of the dikes. Our regional observations support previous interpretations, that the BDS represented the distal parts of a magma-rich passive margin and the ocean-continent transition. Such tectonic domains are rarely exposed and available for direct observation and the study area in the North Scandinavian Caledonides, therefore represents a unique opportunity to better constrain the conditions during continental break-up as well as the infra-crustal dike emplacement mechanisms at divergent plate margins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V33C2646H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V33C2646H"><span>Deformation during the 1975-84 Krafla rifting crisis, NE Iceland, measured by optical image correlation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hollingsworth, J.; Leprince, S.; Avouac, J.; Ayoub, F.</p> <p>2011-12-01</p> <p>In this study we combine results from optical image correlation of SPOT, KH-9 spy satellite and aerial photos, EDM data and high resolution topographic data to better constrain the 3D deformation associated with the 1975-84 Krafla rifting crisis, NE Iceland. Inversion of the various geodetic datasets yields new volumes for the amount of material injected into the crust during this rifting crisis. Correlation of aerial photos from 1957 and 1990 for the middle section of the 2 km-wide Krafla fissure swarm, along with DEM differencing of their respective 1957 and 1990 DEM's (extracted using photogrammetric techniques), provides constraints on the full 3D displacement field spanning the entire rifting period. Elastic dislocation modeling of this displacement data is then used to determine the geometry of faulting and diking in the crust. In contrast to leveling data from the northern end of the fissure swarm (Rubin, et al., 1988), we find that dikes do not extend into the upper 1-2 km, where extension is accommodated primarily by faulting in the fissure swarm. Dislocation modeling of a 4 m-wide dike injected between 2 km and 6 km in the crust produces a maximum surface strain which reaches the elastic yield limit for rock (derived from laboratory experiments of deformed granite) at two points spanning a 2 km-wide zone above the dike, and which corresponds with the location of the major rift-bounding faults of the Krafla fissure swarm. If dikes extend nearer to the surface, the predicted fissure zone width would be correspondingly smaller (consistent with the southern-end of the fissure swarm), while deeper diking produces a wider fissure swarm (consistent with the northern-end of the fissure swarm). The apparent northward increase in depth of diking is consistent with the flexural effects of rift-margin topography (Behn, et al., 2006); increased flexure in the south, where the Krafla caldera is located, results in the promotion of shallow diking, where as subdued topography in the north promotes deeper diking. Correlation of aerial photos between 1957 and 1976 (during the early stages of the rifting crisis) indicate 2 m extension, which is localized on faults along the northern end of the fissure swarm. No fault slip occurs in the central section of the fissure swarm during the same period, suggesting extension in the north during the early stages of rifting may result from dike injections sourced from the north (possibly offshore), rather than the Krafla caldera to the south. A similar variation in magmatic source region was also observed during the 2005-2009 Afar rifting crisis in East Africa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JSAES..32...75G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JSAES..32...75G"><span>Alkaline magmatism in the Amambay area, NE Paraguay: The Cerro Sarambí complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gomes, C. B.; Velázquez, V. F.; Azzone, R. G.; Paula, G. S.</p> <p>2011-07-01</p> <p>The Early Cretaceous alkaline magmatism in the northeastern region of Paraguay (Amambay Province) is represented by stocks, plugs, dikes, and dike swarms emplaced into Carboniferous to Triassic-Jurassic sediments and Precambrian rocks. This magmatism is tectonically related to the Ponta Porã Arch, a NE-trending structural feature, and has the Cerro Sarambí and Cerro Chiriguelo carbonatite complexes as its most significant expressions. Other alkaline occurrences found in the area are the Cerro Guazú and the small bodies of Cerro Apuá, Arroyo Gasory, Cerro Jhú, Cerro Tayay, and Cerro Teyú. The alkaline rocks comprise ultramafic-mafic, syenitic, and carbonatitic petrographic associations in addition to lithologies of variable composition and texture occurring as dikes; fenites are described in both carbonatite complexes. Alkali feldspar and clinopyroxene, ranging from diopside to aegirine, are the most abundant minerals, with feldspathoids (nepheline, analcime), biotite, and subordinate Ti-rich garnet; minor constituents are Fe-Ti oxides and cancrinite as the main alteration product from nepheline. Chemically, the Amambay silicate rocks are potassic to highly potassic and have miaskitic affinity, with the non-cumulate intrusive types concentrated mainly in the saturated to undersaturated areas in silica syenitic fields. Fine-grained rocks are also of syenitic affiliation or represent more mafic varieties. The carbonatitic rocks consist dominantly of calciocarbonatites. Variation diagrams plotting major and trace elements vs. SiO 2 concentration for the Cerro Sarambí rocks show positive correlations for Al 2O 3, K 2O, and Rb, and negative ones for TiO 2, MgO, Fe 2O 3, CaO, P 2O 5, and Sr, indicating that fractional crystallization played an important role in the formation of the complex. Incompatible elements normalized to primitive mantle display positive spikes for Rb, La, Pb, Sr, and Sm, and negative for Nb-Ta, P, and Ti, as these negative anomalies are considerably more pronounced in the carbonatites. Chondrite-normalized REE patterns point to the high concentration of these elements and to the strong LRE/HRE fractionation. The Amambay rocks are highly enriched in radiogenic Sr and have TDM model ages that vary from 1.6 to 1.1 Ga, suggesting a mantle source enriched in incompatible elements by metasomatic events in Paleo-Mesoproterozoic times. Data are consistent with the derivation of the Cerro Sarambí rocks from a parental magma of lamprophyric (minette) composition and suggest an origin by liquid immiscibility processes for the carbonatites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1011511','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1011511"><span>Seepage and Piping through Levees and Dikes using 2D and 3D Modeling Codes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-06-01</p> <p>by the Hydrologic Systems Branch of the Flood and Storm Protection Division (CEERD-HF), U.S. Army Engineer Research and Development Center, Coastal ...ER D C/ CH L TR -1 6- 6 Flood & Coastal Storm Damage Reduction Program Seepage and Piping through Levees and Dikes Using 2D and 3D...Flood & Coastal Storm Damage Reduction Program ERDC/CHL TR-16-6 June 2016 Seepage and Piping through Levees and Dikes Using 2D and 3D Modeling Codes</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880002225&hterms=sukhanov&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsukhanov','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880002225&hterms=sukhanov&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsukhanov"><span>Dike zones on Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Markov, M. S.; Sukhanov, A. L.</p> <p>1987-01-01</p> <p>Venusian dike zone structures were identified from Venera 15 and 16 radar images. These include: a zone of subparallel rows centered at 30 deg N, 7 deg E; a system of intersecting bands centered at 67 deg N, 284 deg E; polygonal systems in lavas covering the structural base uplift centered at 47 deg N, 200 deg E; a system of light bands in the region of the ring structure centered at 43 deg N, 13 deg E; and a dike band centered at 27 deg N, 36 deg E.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSM.V14A..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSM.V14A..06C"><span>Future Volcanism at Yucca Mountain - Statistical Insights from the Non-Detection of Basalt Intrusions in the Potential Repository</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coleman, N.; Abramson, L.</p> <p>2004-05-01</p> <p>Yucca Mt. (YM) is a potential repository site for high-level radioactive waste and spent fuel. One issue is the potential for future igneous activity to intersect the repository. If the event probability is <1E-8/yr, it need not be considered in licensing. Plio-Quaternary volcanos and older basalts occur near YM. Connor et al (JGR, 2000) estimate a probability of 1E-8/yr to 1E-7/yr for a basaltic dike to intersect the potential repository. Based on aeromagnetic data, Hill and Stamatakos (CNWRA, 2002) propose that additional volcanos may lie buried in nearby basins. They suggest if these volcanos are part of temporal-clustered volcanic activity, the probability of an intrusion may be as high as 1E-6/yr. We examine whether recurrence probabilities >2E-7/yr are realistic given that no dikes have been found in or above the 1.3E7 yr-old potential repository block. For 2E-7/yr (or 1E-6/yr), the expected number of penetrating dikes is 2.6 (respectively, 13), and the probability of at least one penetration is 0.93 (0.999). These results are not consistent with the exploration evidence. YM is one of the most intensively studied places on Earth. Over 20 yrs of studies have included surface and subsurface mapping, geophysical surveys, construction of 10+ km of tunnels in the mountain, drilling of many boreholes, and construction of many pits (DOE, Site Recommendation, 2002). It seems unlikely that multiple dikes could exist within the proposed repository footprint and escape detection. A dike complex dated 11.7 Ma (Smith et al, UNLV, 1997) or 10 Ma (Carr and Parrish, 1985) does exist NW of YM and west of the main Solitario Canyon Fault. These basalts intruded the Tiva Canyon Tuff (12.7 Ma) in an epoch of caldera-forming pyroclastic eruptions that ended millions of yrs ago. We would conclude that basaltic volcanism related to Miocene silicic volcanism may also have ended. Given the nondetection of dikes in the potential repository, we can use a Poisson model to estimate an upper-bound probability of 2E-7/yr (95% conf. level) for an igneous intrusion over the next 1E4 yrs. If we assume one undiscovered dike exists, the upper-bound probability would rise to 4E-7/yr. Higher probabilities may be possible if conditions that fostered Plio-Quaternary volcanism became enhanced over time. To the contrary, basalts of the past 11 Ma in Crater Flat have erupted in four episodes that together show a declining trend in erupted magma volume (DOE, TBD13, 2003). Smith et al (GSA Today, 2002) suggest there may be a common magma source for volcanism in Crater Flat and the Lunar Crater volcanic field, and that recurrence rates for YM could be underestimated. Their interpretation is highly speculative given the 130-km (80-mi) distance between these zones. A claim that crustal extension at YM is anomalously large, possibly favoring renewed volcanism (Wernicke et al, Science, 1999), was contradicted by later work (Savage et al, JGR, 2000). Spatial-temporal models that predict future intrusion probabilities of >2E-7/yr may be overly conservative and unrealistic. Along with currently planned site characterization activities, realistic models could be developed by considering the non-detection of basaltic dikes in the potential repository footprint. (The views expressed are the authors' and do not reflect any final judgment or determination by the Advisory Committee on Nuclear Waste or the Nuclear Regulatory Commission regarding the matters addressed or the acceptability of a license application for a geologic repository at Yucca Mt.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.4789B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.4789B"><span>Socio-economic Evaluation Of Different Alternatives For Flood Protection Within The Rivierenland-project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boot, S. P.; van Ast, J. A.</p> <p></p> <p>The Netherlands have a tradition of protecting land against flooding from the main rivers Rhine, Meuse and Scheldt by means of an extensive system of dikes. In recent years, however, this approach to protection has been increasingly questioned with re- gard to its sustainability and cost-effectiveness. The argument is that although the continued elevation of dikes may be technically feasible, there are several disadvan- tages to this approach. Firstly, a vast network of dikes requires a very high degree of organisation of water management, in which mistakes can not be afforded. Such a high degree of organisation may not always be maintainable in the future, due to changed economic or political circumstances. Secondly, it may not be the most cost- effective system for maintaining safety in the long term. Thirdly, it may not be the most desirable approach in terms of sustainability. One of the alternatives to contin- ued dike-elevation is the concept 'room for the river' ('ruimte voor de rivier'), which aims to give more space to rivers in the horizontal in stead of the vertical dimen- sion. This approach would reduce the risk of flooding, defined as the product of the probability and the consequences of flooding. In order to explore the long term con- sequences of both alternatives ('dike elevation' and 'room for the river'), the ministry of Verkeer en Waterstaat (Public Works, Transport and Water Management) started the 'Rivierenland'-project. The comparison of the alternatives mentioned was based on a fictitious project to adjust a region of The Netherlands, between the rivers Rhine and Meuse, to the concept of 'room for water'. The consequence of this adjustment would be that safety within that region would no longer be safeguarded by dikes, but by adjusting daily life to the 'demands of the water'. Part of the 'Rivierenland'-project was an analysis of the socio-economic costs and benefits of the alternative approaches. Within this analysis, a study was performed to identify the requirements an economic evaluation of the project-alternatives would have to meet to do justice to the specific characteristics of the project. These specific characteristics were its mere size (both in spatial and in financial terms), the duration and complexity of the decision-making process, and uncertainty about the effects of the alternatives. Requirements for the method to be used were an integrated analysis of the effects and the taking into account of both the short and the long term effects (over a hundred years) of the alternatives. As a result of these characteristics and requirements, the decision-making process in- volves considerations of intra- and intergenerational equity, the discount factor to be used, transparency of the decision-making process to the public and the possibility to adapt the results of the economic evaluation to changing insights and opinions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009BVol...71..881H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009BVol...71..881H"><span>Endogenous growth in channelized komatiite lava flows: evidence from spinifex-textured sills at Pyke Hill and Serpentine Mountain, Western Abitibi Greenstone Belt, Northeastern Ontario, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Houlé, Michel G.; Préfontaine, Sonia; Fowler, Anthony D.; Gibson, Harold L.</p> <p>2009-10-01</p> <p>Spinifex-textured sills (i.e., veins) characterized by komatiitic magmas that have intruded their own volcanic-piles have long been recognized. For instance, in the early 1970s, Pyke and coworkers, in their classic work at Pyke Hill in Munro Township, noted that not all spinifex-bearing ultramafic rocks formed as lava flows, rather some were clearly emplaced as small dikes and sills. Several hypotheses have been proposed to explain spinifex-textured sills: intrusion into a cold host, filter pressing, or drainage of residual liquid. However, these do not satisfactorily explain the phenomenon. Field and petrographic observations at Pyke Hill and Serpentine Mountain demonstrate that spinifex-bearing komatiite sills and dikes were emplaced during channel inflation processes when new magma was intruded into a cooler, semi-consolidated but permeable cumulate material. Komatiitic liquids were intruded into the olivine cumulate rocks near the boundary between the spinifex and the cumulate zones of well-organized to organized komatiite flows. Spinifex-textured sills are generally tabular in morphology, stacked one above another, with curviplanar contacts sub-parallel to stratigraphy. Some sills exhibit complex digitated apophyses. Thinner sills typically have a random olivine spinifex texture similar, though generally composed of coarser crystals, to that of komatiite lava flows. Thicker sills exhibit more complex organization of their constituent crystals characterized by zones of random olivine spinifex, overlying zones of organized coarse spinifex crystals similar to those found in lava flows. They have striking coarse dendritic spinifex zones composed of very large olivine crystals, up to several centimetres long and up to 1 cm wide that are not observed in lava flows. Typically, at the sill margins, the cumulate material of the host flow is composed of euhedral to subhedral olivine crystals that are larger than those distal to the contact. Many of these margin-crystals have either concentric overgrowth shells or dendritic olivine overgrowths that grew from the cumulate-sill contact toward the sill interior. The dendrites grew on pre-existing olivine cumulate at the contact in response to a sharp temperature gradient imposed by the intrusion of hot material, whereas the concentric overgrowths formed as new melt percolated into the unconsolidated groundmass of the host-flow cumulate material. Spinifex-textured sills and dikes occur in well-organized to organized flows that are interpreted to have formed by “breakouts” above and peripheral to lava pathways (channels/conduits) as a result of inflation that accompanied voluminous komatiitic eruptions responsible for the construction and channelization of komatiitic flow fields. The spinifex-textured dikes and sills represent komatiitic lava that was originally emplaced into the channel roof during periods of episodic inflation that resulted in lava breakouts and was subsequently trapped in the “roof rocks” during periods of channel deflation. Accordingly, the occurrence of spinifex-textured sills and dikes may indicate proximity to, and aid in the identification and delineation of lava channel-ways that could potentially host Ni-Cu-(PGE) mineralization within komatiitic lava flow-fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V21D0657L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V21D0657L"><span>Volcanoes Behave as Composite Materials: Implications for Modeling Magma Chambers, Dikes, and Surface Deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leiss, B.; Gudmundsson, A.; Philipp, S. L.</p> <p>2005-12-01</p> <p>By definition, composite volcanoes are composed of numerous alternating material units or layers such as lavas, sediments, and pyroclastics. Commonly, these layers have widely different mechanical properties. In particular, some lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas others, such as non-welded pyroclastic units and sediments, may be soft (with a low Young's modulus). As a consequence, even if the loading (tectonic stress, magmatic pressure, or displacement) is uniform, the stresses within the composite volcano will vary widely. In this sense, the behavior of composite volcanoes is similar to that of general composite materials. The deformation of the surface of a volcano during an unrest period results from stresses generated by processes and parameters such as fluid pressure in a geothermal field or a magma chamber, a regional tectonic event, and a dike injection. Here we present new numerical models on mechanics of magma chambers and dikes, and the associated surface deformation of composite volcanoes. The models show that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. The models also indicate that the surface deformation induced by a propagating dike depends much on the mechanical properties of the layers between the dike tip and the surface. In particular, the numerical results show that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Many dikes may therefore become injected and arrested at shallow depths in a volcano while giving rise to little or no surface deformation. Traditional analytical surface-deformation models such as a point source (Mogi model) for a magma-chamber pressure change and a dislocation for a dike normally assume the volcano to behave as a homogeneous, isotropic half space. The present numerical results, combined with field studies, indicate that such analytical models may yield results that have little similarity with the actual structure being modeled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T13A4620C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T13A4620C"><span>Development of kink bands in granodiorite: Effect of mechanical heterogeneities, fault geometry, and friction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chheda, T. D.; Nevitt, J. M.; Pollard, D. D.</p> <p>2014-12-01</p> <p>The formation of monoclinal right-lateral kink bands in Lake Edison granodiorite (central Sierra Nevada, CA) is investigated through field observations and mechanics based numerical modeling. Vertical faults act as weak surfaces within the granodiorite, and vertical granodiorite slabs bounded by closely-spaced faults curve into a kink. Leucocratic dikes are observed in association with kinking. Measurements were made on maps of Hilgard, Waterfall, Trail Fork, Kip Camp (Pollard and Segall, 1983b) and Bear Creek kink bands (Martel, 1998). Outcrop scale geometric parameters such as fault length andspacing, kink angle, and dike width are used to construct a representative geometry to be used in a finite element model. Three orders of fault were classified, length = 1.8, 7.2 and 28.8 m, and spacing = 0.3, 1.2 and 3.6 m, respectively. The model faults are oriented at 25° to the direction of shortening (horizontal most compressive stress), consistent with measurements of wing crack orientations in the field area. The model also includes a vertical leucocratic dike, oriented perpendicular to the faults and with material properties consistent with aplite. Curvature of the deformed faults across the kink band was used to compare the effects of material properties, strain, and fault and dike geometry. Model results indicate that the presence of the dike, which provides a mechanical heterogeneity, is critical to kinking in these rocks. Keeping properties of the model granodiorite constant, curvature increased with decrease in yield strength and Young's modulus of the dike. Curvature increased significantly as yield strength decreased from 95 to 90 MPa, and below this threshold value, limb rotation for the kink band was restricted to the dike. Changing Poisson's ratio had no significant effect. The addition of small faults between bounding faults, decreasing fault spacing or increasing dike width increases the curvature. Increasing friction along the faults decreases slip, so the shortening is accommodated by more kinking. Analysis of these parameters also gives us an insight concerning the kilometer-scale kink band in the Mount Abbot Quadrangle, where the Rosy Finch Shear Zone may provide the mechanical heterogeneity that is necessary to cause kinking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.P52A..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.P52A..01W"><span>Transfer Rates of Magma From Planetary Mantles to the Surface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, L.; Head, J. W.; Parfitt, E. A.</p> <p>2008-12-01</p> <p>We discuss the speed at which magma can be transferred to a planetary surface from the deep interior. Current literature describes a combination of slow percolation of melt in the mantle where convection-driven pressure-release melting is occurring, concentration of melt by source region deformation, initiation and growth of magma-filled brittle fractures (dikes) providing wider pathways for melt movement, additional growth and interconnection of dikes with decreasing depth, rise of magma to storage zones (reservoirs) located at levels of neutral buoyancy at the base of or within the crust, and transfer from the storage zones in dikes to feed eruptions or intrusions. We do not take issue with these mechanisms but think that their relative importance in various circumstances is poorly appreciated. On Earth, preservation of diamonds in kimberlites implies very rapid (hours) transfer of melts from depths of 100-300 km, and there is strong geochemical evidence that magmas at mid-ocean ridges reach shallow depths faster than is possible by percolation alone. On the Moon, the petrology of pyroclasts involved in dark-mantle-forming eruptions implies rapid (again probably hours) magma transfer from depths of up to 400 km. The ureilite meteorites, samples of the mantle of a disrupted asteroid 200 km in diameter, have compositions only consistent with the rapid (months) extraction of mafic melt from the mantle. All of these examples imply that brittle fractures (dikes) can sometimes be initiated at depths where mantle rheology would normally be expected to be plastic rather than elastic, and that melt can be fed into these dikes extremely efficiently. Further evidence for this is provided by the giant radial dike swarms observed on Earth, Mars and Venus. The dikes observed (on Earth) and inferred from the presence of radiating graben systems (Mars) and radiating fracture and graben systems (Venus) are so voluminous that they can only be understood if they are fed from extremely large magma reservoirs, probably located at the base of the crust, that are supplied from the mantle (i.e. buffered) while the dikes are being emplaced, again implying extremely efficient melt extraction from mantle source regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JSAES..37..266S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JSAES..37..266S"><span>Early post-collisional Brasiliano magmatism in Botuverá region, Santa Catarina, southern Brazil: Evidence from petrology, geochemistry, isotope geology and geochronology of the diabase and lamprophyre dikes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sacks de Campos, Roberto; Philipp, Ruy Paulo; Massonne, Hans-Joachim; Chemale, Farid</p> <p>2012-08-01</p> <p>The post-collisional magmatism related to Brasiliano orogeny represented the final stage of the Dom Feliciano Belt in Rio Grande do Sul and Santa Catarina states, southern Brazil, presenting high-K calc-alkaline to shoshonitic and alkaline chemical signatures. Magmatic episodes related to this early period were found in Botuverá region, Santa Catarina state, represented by diabase and lamprophyre (spessartite-type) dikes intrusive in metavolcano-sedimentary rocks of the Brusque Metamorphic Complex (CMB). These dikes have massive structure and igneous textures ranging from very fine equigranular to porphyritic, and the latter is characterized by the presence of phenocrysts of plagioclase and hornblende. The dikes have northeast direction and sharp contacts with the metamorphic rocks, indicating that its position was after the main orogenic regional metamorphism that affected the CMB, interpreted as of collisional nature. The diabase has a basic composition, whereas spessartite lamprophyres are intermediate, with geochemical affinities to the tholeiitic series, with a significant enrichment in light rare-earth elements (LREE) and large ion lithophile elements (LILE) such as Cs, Rb, Ba, K and Sr, and negative anomalies for high-field-strength elements (HFS) such as Nb, Ta, U and T. The concentration of standard trace elements and the Th/Yb and Ta/Yb ratios indicate that these magmas were derived from an enriched mantle source and were strongly contaminated by crust. Except for higher values of K, these features are similar to those found in basaltic volcanic rocks associated with the post-collisional period in south Brazil. The widely dispersed values of ɛND (618), ranging between -13.74 and +5.52, highlights the heterogeneity of the source and reinforces the importance of a crustal component in the generation of these rocks. The extremely low value of ɛNd (618), of -21.67 obtained for spessartite lamprophyres supports the importance of the involvement of crust in the genesis of this rock. Using the U-Pb and LA-ICP-MS method, a concordant age of 618 ± 8.7 Ma was obtained in zircon crystals of a diabase dike of the region of Barra do Areia, in Botuverá, SC. The existence of inherited zircon grains older than 1800 Ma in this sample supports the involvement of Paleoproterozoic continental crust. The data analysis characterizes the first magmatic age related to the post-collisional period of the Brasiliano orogeny in this region of the Santa Catarina Shield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGP21A1132F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGP21A1132F"><span>Geomagnetic Investigation of Sandstone Dikes of the Colorado Front Range, for Determination of Age and Mode of Emplacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freedman, D.; Petronis, M. S.; Siddoway, C. S.</p> <p>2012-12-01</p> <p>In the Colorado Front Range, an array of sandstone dikes has intrigued geologists for over a century (Cross 1894,GSAB, 5, 525). Within their crystalline host, the dikes reach widths >7m and have a lateral extent of 70km along the Ute Pass Fault (UPF). The essential questions of sediment source, emplacement mode, and age of the dikes are unanswered. We present new paleomagnetic, rock magnetic, and anisotropy of magnetic susceptibility (AMS) results used to determine the age and emplacement behavior of the dikes. The eleven dikes selected for magnetic studies have sharp, planar margins, and share the systematic geometry of the NW striking subvertical dike array. They exhibit little or no overprint by brittle fracturing/shear associated with the UPF. Our approach involved the use of paleomagnetic techniques to isolate the characteristic remanent magnetization (ChRM), which we used to limit the age of the dikes' magnetization. Anisotropy of magnetic susceptibility (AMS),arising from alignment of detrital magnetite, serves as a proxy for the orientation of flow during dike emplacement. U-Pb detrital zircon ages, obtained previously, did not provide a useful constraint on emplacement age because the dominant age matches that of the prevalent host,1.03Ga Pikes Peak Granite. IRM acquisition experiments were performed to identify the principal magnetic phases as a mixture of Fe-Ti oxide phases, likely to be low-Ti magnetite and hematite. The sandstone consists of sub-rounded to rounded sand-sized quartz, angular feldspar (<5%), and detrital magnetite; selected samples have uniform grain size and uniform color arising from hematite cement. Although direct cover relationships are not preserved, a portion of the study sites are proximal to in situ near-horizontal sedimentary cover rocks that offer evidence against large tectonic rotation. Cores were collected using a gas-powered drill with a diamond bit and oriented using a sun compass. Where possible, cores were obtained on paired margins to test for directionality of flow using AMS. Paleomagnetic results reveal a magnetization carried by both magnetite and hematite. Laboratory unblocking temperatures for most samples are >600°C. Some samples carry a characteristic remanent magnetization (ChRM) of NW declination with shallow positive inclination, while others yield a characteristic remanent magnetization of SE declination with shallow inclination. By correlation with paleomagnetic results from the region, our findings indicate an age Permian or older. The NW directed ChRM may signify a magnetization of Neoproterozoic age, while the SE directed ChRM is more consistent with a Permo-Carboniferous magnetization. Our investigation of these possibilities is ongoing. Analysis of AMS for nine dike sites yielded subhorizontal strongly prolate magnetic ellipsoids. The magnetic lineation (K1) has moderate plunge and trends NW, parallel to the dike margins. Average bulk susceptibilities (Km) are low (6.39E-5 SI). The AMS characteristics, together with primary sedimentary structures point to instantaneous lateral injection due to elevated pore fluid pressures arising from high lithostatic or tectonic loads. We hypothesize that sediment production and fluid overpressure led to emplacement in a glacial or seismically active setting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014963','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014963"><span>Low-K granophyres of the Stillwater Complex, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Czamanske, G.K.; Zientek, M.L.; Manning, C.E.</p> <p>1991-01-01</p> <p>Small bodies of granophyre occur as a volumetrically insignificant but ubiquitous component of the Banded series of the Stillwater Complex. White to pink granophyre typically occurs as veins, 1-12cm thick and as much as 100m long. A geochemically similar body of coalescing alaskite dikes, associated with an occurrence of Pt-group elements in the Banded series of the complex, crops out approximately 2km south-southeast of Picket Pin Mountain over an area 130 by 210m. Considering host rocks and chemistry, these rocks are comparable to the most siliceous examples of oceanic plagiogranite. The Stillwater granophyres, however, are enriched in Si, Th, U, and LREEs, and depleted in K, Fe, and Eu, relative to oceanic granophyres. -from Authors</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol3/pdf/CFR-2011-title33-vol3-sec321-2.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol3/pdf/CFR-2011-title33-vol3-sec321-2.pdf"><span>33 CFR 321.2 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... DAMS AND DIKES IN NAVIGABLE WATERS OF THE UNITED STATES § 321.2 Definitions. For the purpose of this.... (b) The term dike or dam means, for the purposes of section 9, any impoundment structure that...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol3/pdf/CFR-2010-title33-vol3-sec321-2.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol3/pdf/CFR-2010-title33-vol3-sec321-2.pdf"><span>33 CFR 321.2 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... DAMS AND DIKES IN NAVIGABLE WATERS OF THE UNITED STATES § 321.2 Definitions. For the purpose of this.... (b) The term dike or dam means, for the purposes of section 9, any impoundment structure that...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Litho.252..109S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Litho.252..109S"><span>Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south-western Alps, Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinigoi, Silvano; Quick, James E.; Demarchi, Gabriella; Klötzli, Urs S.</p> <p>2016-05-01</p> <p>The Permian Sesia Magmatic System of the southwestern Alps displays the plumbing system beneath a Permian caldera, including a deep crustal gabbroic complex, upper crustal granite plutons and a bimodal volcanic field dominated by rhyolitic tuff filling the caldera. Isotopic compositions of the deep crustal gabbro overlap those of coeval andesitic basalts, whereas granites define a distinct, more radiogenic cluster (Sri ≈ 0.708 and 0.710, respectively). AFC computations starting from the best mafic candidate for a starting melt show that Nd and Sr isotopic compositions and trace elements of andesitic basalts may be modeled by reactive bulk assimilation of ≈ 30% of partially depleted crust and ≈ 15%-30% gabbro fractionation. Trace elements of the deep crustal gabbro cumulates require a further ≈ 60% fractionation of the andesitic basalt and loss of ≈ 40% of silica-rich residual melt. The composition of the granite plutons is consistent with a mixture of relatively constant proportions of residual melt delivered from the gabbro and anatectic melt. Chemical and field evidence leads to a conceptual model which links the production of the two granitic components to the evolution of the Mafic Complex. During the growth of the Mafic Complex, progressive incorporation of packages of crustal rocks resulted in a roughly steady state rate of assimilation. Anatectic granite originates in the hot zone of melting crust located above the advancing mafic intrusion. Upward segregation of anatectic melts facilitates the assimilation of the partially depleted restite by stoping. At each cycle of mafic intrusion and incorporation, residual and anatectic melts are produced in roughly constant proportions, because the amount of anatectic melt produced at the roof is a function of volume and latent heat of crystallization of the underplated mafic melt which in turn produces proportional amounts of hybrid gabbro cumulates and residual melt. Such a process can explain the restricted range in isotopic compositions of most rhyolitic and granitic rocks of the Permo-Carboniferous province of Europe and elsewhere. Sheet labelled "XRF standard analyses" reports replicate analyses normalized to 100 obtained by XRF on international standards analyzed along with our samples. Sheet labelled "XRF replicate sample analyses" reports replicate XRF analyses on two samples of our data set. ICP-MS analyses from Acme Analytical Laboratories Ltd. are shown for comparison. Sheet labelled "ICP-MS analyses" reports replicate analyses of trace elements on standard SO18, its official value and replicate analyses of two our samples provided by Acme Analytical Laboratories Ltd. Sheet labelled "kinzigite". Major and trace elements of amphibolite-facies paragneiss samples of the Kinzigite Formation from the roof of the Mafic Complex. In bold data by ICP-MS, other data by XRF. For Ba, Rb and Sr XRF data were included in the average estimate to increase the statistics. The last column reports the average data of amphibolite-facies rocks from the Kinzigite Formation from Schnetger (1994). Sheet labelled "PBB paragneiss". Data for granulite-facies paragneiss samples in the septa of the paragneiss bearing belt (PBB). XRF data for Ba and Sr were included in the average estimate to increase the statistics (Rb excluded because close to detection limit for XRF in many samples). The last column reports the average data of granulite-facies rocks from Val Strona (stronalite) from Schnetger (1994). Sheet labelled "PBB charnockite". Data for charnockitic rocks included in paragneiss septa. XRF data for Ba and Sr were included in the average estimate to increase the statistics (Rb excluded because close to detection limit for XRF in many samples). Sheet labelled "computed crustal assimilant". Reports the average compositions of paragneiss in amphibolite and granulite facies from this work and from Schnetger (1994). The bulk composition of the septa is computed as 70% paragneiss and 30% charnockite, as roughly estimated in the field. The partially depleted assimilant is computed as a 50/50 mixture of amphibolite- and granulite facies rocks. Sheet labelled "anatectic products" includes leucosomes at the roof of the Mafic Complex, anatectic granites from this work and from the Atesina Volcanic district (Rottura et al., 1998). In bold data by ICP-MS, other data by XRF. Sheet labelled "Valle Mosso granite" reports the whole rock compositions of granitic rocks of the pluton, distinguishing samples from upper and lower granite. XRF data for Ba, Rb and Sr were included in the average estimate to increase the statistics. The last column reports the bulk composition of the pluton, estimated as 70% lower and 30% upper granite. Sheet labelled "Rhyolite" reports whole rock and average compositions of rhyolite. Sheet labelled "UMC gabbro" reports whole rock compositions of gabbros from the upper Mafic Complex. Samples are grouped as pertaining to the "Upper Zone" and "Main Gabbro" according the subdivision of Rivalenti et al. (1975). Gt gabbro = garnet-bearing gabbro. In bold data by ICP-MS, other data by XRF. For Ba and Sr XRF data were included in the average estimate to increase the statistics. Sheet labelled "computed average UMC" reports the whole composition of upper Mafic complex, estimated as 30% Upper Zone and 70% Main Gabbro. Sheet labelled "mafic rocks in middle crust" reports the whole rock compositions from the mafic pod PST262, intruded at the boundary between Ivrea Zone and Serie dei Laghi at 287 ± 5 Ma (Klötzli et al., 2014) and mafic dikes and an enclave intruded in the lower Valle Mosso granite. Sheet labelled "mafic volcanic rocks" reports the whole rock compositions of basaltic andesite and andesite from the Sesia Magmatic System. The average composition is computed excluding altered samples and XRF data for trace elements. Sr and Nd isotope data from this work and previous publications. Sheet labelled "compositions for modelling" reports a summary of the average compositions of the components used for the computations. Sheet labelled "Kd used for AFC and FC modelling" reports the Kd values and percent of mineral phases used in the AFC and FC computations (from Claeson and Meurer, 2004; Rollinson, 1993; Green et al., 2000; Namur et al., 2011). Sheet labelled "trace elements modelling" reports the results of AFC, bulk mixing and FC computations on trace elements. The enclosed figure illustrates the bulk mixing lines between Campore and average crust or anatectic granite respectively. Mixing required getting the composition of andesitic basalt with average crust and anatectic granite varies from 33 to 63% respectively (see text for consequences). The AFC path from Campore to andesitic basalts overlaps the bulk mixing lines. The shape of the mixing line between residual and anatectic melt results in the poor sensibility of Nd to the addition of anatectic melt to the residual one (εNd remains within the field of mafic rocks up to 80% addition of anatectic melt). Sheet labelled "major elements modelling" reports the results of mass balance computations on major-elements based on bulk mixing and XL-FRAC (Stormer and Nicholls, 1978). Sheet labelled "EC-RAXFC modelling" reports input data and results obtained by EC-RAXFC code (Bohrson and Spera, 2007) to simulate the energy constrained AFC from Campore to andesitic basalt. Liquidus temperature and specific heat of magma and assimilant (tlm, tla, cpm, cpa) as well as heat of crystallization and fusion (hm, ha) were obtained by Rhyolite-Melts code (Gualda et al., 2012) at P = 6 kbar (intermediate pressure between the roof and the deepest rocks of the Mafic Complex; Demarchi et al., 1998), assuming QFM + 2, and H2O content = 0.5 for Campore and = 1.0 for assimilant (intermediate between kinzigite and stronalite from Schnetger, 1994). Initial temperature of assimilant (tlo) was assumed equal to the solidus temperature (ts), which results around 850° from the experimental melting of natural metapelite (Vielzeuf and Holloway, 1988). Non-linear melting functions were chosen within the range of values suggested by Bohrson and Spera (2007). Recharge magma (R) was set = 0 because the homogeneity of the Upper Mafic Complex is best explained if each new mafic pulse is injected at the new neutral buoyancy level, above a dense and partially depleted restite, and may be treated as a single pulse. X was set = 1 assuming that all anatectic melt enters the mafic magma. Different simulations were run using alternatively bulk partition coefficients of Sr and Nd for the assimilant (Da) reported for "standard" upper crust by Bohrson and Spera (2001; 1.5 and 0.25, respectively), Da estimated from our data set (2.15 and 2.6, respectively) and intermediate values. For the mafic magma, the bulk D values (Dm) of 0.77 for Sr and 0.34 for Nd result from the Kd and percent of mineral phases used in the AFC computation. Lat-long grid for samples reported in OS tables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26382948','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26382948"><span>Sense and readability: participant information sheets for research studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ennis, Liam; Wykes, Til</p> <p>2016-02-01</p> <p>Informed consent in research is partly achieved through the use of information sheets. There is a perception however that these information sheets are long and complex. The recommended reading level for patient information is grade 6, or 11-12 years old. To investigate whether the readability of participant information sheets has changed over time, whether particular study characteristics are related to poorer readability and whether readability and other study characteristics are related to successful study recruitment. Method: We obtained 522 information sheets from the UK National Institute for Health Research Clinical Research Network: Mental Health portfolio database and study principal investigators. Readability was assessed with the Flesch reading index and the Grade level test. Information sheets increased in length over the study period. The mean grade level across all information sheets was 9.8, or 15-16 years old. A high level of patient involvement was associated with more recruitment success and studies involving pharmaceutical or device interventions were the least successful. The complexity of information sheets had little bearing on successful recruitment. Information sheets are far more complex than the recommended reading level of grade 6 for patient information. The disparity may be exacerbated by an increasing focus on legal content. Researchers would benefit from clear guidance from ethics committees on writing succinctly and accessibly and how to balance the competing legal issues with the ability of participants to understand what a study entails. © The Royal College of Psychiatrists 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4837385','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4837385"><span>Sense and readability: participant information sheets for research studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ennis, Liam; Wykes, Til</p> <p>2016-01-01</p> <p>Background Informed consent in research is partly achieved through the use of information sheets. There is a perception however that these information sheets are long and complex. The recommended reading level for patient information is grade 6, or 11–12 years old. Aims To investigate whether the readability of participant information sheets has changed over time, whether particular study characteristics are related to poorer readability and whether readability and other study characteristics are related to successful study recruitment. Method We obtained 522 information sheets from the UK National Institute for Health Research Clinical Research Network: Mental Health portfolio database and study principal investigators. Readability was assessed with the Flesch reading index and the Grade level test. Results Information sheets increased in length over the study period. The mean grade level across all information sheets was 9.8, or 15–16 years old. A high level of patient involvement was associated with more recruitment success and studies involving pharmaceutical or device interventions were the least successful. The complexity of information sheets had little bearing on successful recruitment. Conclusions Information sheets are far more complex than the recommended reading level of grade 6 for patient information. The disparity may be exacerbated by an increasing focus on legal content. Researchers would benefit from clear guidance from ethics committees on writing succinctly and accessibly and how to balance the competing legal issues with the ability of participants to understand what a study entails. PMID:26382948</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tecto..37..705G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tecto..37..705G"><span>Intrusion of Magmatic Bodies Into the Continental Crust: 3-D Numerical Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorczyk, Weronika; Vogt, Katharina</p> <p>2018-03-01</p> <p>Magma intrusion is a major material transfer process in the Earth's continental crust. Yet the mechanical behavior of the intruding magma and its host are a matter of debate. In this study we present a series of numerical thermomechanical simulations on magma emplacement in 3-D. Our results demonstrate the response of the continental crust to magma intrusion. We observe change in intrusion geometries between dikes, cone sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions, and injection time. The rheology and temperature of the host are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favors host rock displacement and plutons at the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. Here the passage of magmatic and hydrothermal fluids from the intrusion through the fracture pattern may result in the formation of ore deposits. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle crust. Intrusion of low-density magma may more over result in T-shaped intrusions in cross section with magma sheets at the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_54594.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_54594.htm"><span>Geology of St. John, U.S. Virgin Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rankin, Douglas W.</p> <p>2002-01-01</p> <p>The rocks of St. John, which is located near the eastern end of the Greater Antilles and near the northeastern corner of the Caribbean plate, consist of Cretaceous basalt, andesite, keratophyre, their volcaniclastic and hypabyssal intrusive equivalents, and minor calcareous rocks and chert. These rocks were intruded by Tertiary mafic dikes and tonalitic plutons. The oldest rocks formed in an extensional oceanic environment characterized by abundant keratophyre and sheeted dikes. Subduction-related volcanism of the east-west-trending marine Greater Antilles volcanic arc began on St. John near the transition between the Early and Late Cretaceous. South-directed compression, probably caused by the initial collision between the Greater Antilles arc of the Caribbean plate and the Bahama platform of the North American plate, deformed the Cretaceous strata into east-west-trending folds with axial-plane cleavage. Late Eocene tonalitic intrusions, part of the Greater Antilles arc magmatism, produced a contact aureole that is as much as two kilometers wide and that partly annealed the axial-plane cleavage. East-west compression, possibly related to the relative eastward transport of the Caribbean plate in response to the beginning of spreading at the Cayman Trough, produced long-wavelength, low-amplitude folds whose axes plunge gently north and warp the earlier folds. A broad north-plunging syncline-anticline pair occupies most of St. John. The last tectonic event affecting St. John is recorded by a series of post-late Eocene sinistral strike-slip faults related to the early stages of spreading at the Cayman Trough spreading center and sinistral strike-slip accommodation near the northern border of the Caribbean plate. Central St. John is occupied by a rhomb horst bounded by two of these sinistral faults. Unlike other parts of the Greater Antilles, evidence for recent tectonic movement has not been observed on St. John.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V23B4790K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V23B4790K"><span>Coupling fluid dynamics and host-rock deformation associated with magma intrusion in the crust: Insights from analogue experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kavanagh, J. L.; Dennis, D. J.</p> <p>2014-12-01</p> <p>Models of magma ascent in the crust tend to either consider the dynamics of fluid flow within intrusions or the associated host-rock deformation. However, these processes are coupled in nature, and so to develop a more complete understanding of magma ascent dynamics in the crust both need to be taken into account. We present a series of gelatine analogue experiments that use both Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) techniques to characterise the dynamics of fluid flow within intrusions and to quantify the associated deformation of the intruded media. Experiments are prepared by filling a 40x40x30 cm3 clear-Perspex tank with a low-concentration gelatine mixture (2-5 wt%) scaled to be of comparable stiffness to crustal strata. Fluorescent seeding particles are added to the gelatine mixture during its preparation and to the magma analogue prior to injection. Two Dantec CCD cameras are positioned outside the tank and a vertical high-power laser sheet positioned along the centre line is triggered to illuminate the seeding particles with short intense pulses. Dyed water (the magma analogue) injected into the solid gelatine from below causes a vertically propagating penny-shaped crack (dike) to form. Incremental and cumulative displacement vectors are calculated by cross-correlation between successive images at a defined time interval. Spatial derivatives map the fluid flow within the intrusion and associated strain and stress evolution of the host, both during dike propagation and on to eruption. As the gelatine deforms elastically at the experimental conditions, strain calculations correlate with stress. Models which couple fluid dynamics and host deformation make an important step towards improving our understanding of the dynamics of magma transport through the crust and to help constrain the tendency for eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.tmp..180J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.tmp..180J"><span>Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe</p> <p>2018-05-01</p> <p>Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033239','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033239"><span>Changes in optical properties, chemistry, and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mastalerz, Maria; Drobniak, A.; Schimmelmann, A.</p> <p>2009-01-01</p> <p>Changes in high-volatile bituminous coal (Pennsylvanian) near contacts with two volcanic intrusions in Illinois were investigated with respect to optical properties, coal chemistry, and coal pore structure. Vitrinite reflectance (Ro) increases from 0.62% to 5.03% within a distance of 5.5??m from the larger dike, and from 0.63% to 3.71% within 3.3??m from the small dike. Elemental chemistry of the coal shows distinct reductions in hydrogen and nitrogen content close to the intrusions. No trend was observed for total sulfur content, but decreases in sulfate content towards the dikes indicate thermochemical sulfate reduction (TSR). Contact-metamorphism has a dramatic effect on coal porosity, and microporosity in particular. Around the large dike, the micropore volume, after a slight initial increase, progressively decreases from 0.0417??cm3/g in coal situated 4.7??m from the intrusive contact to 0.0126??cm3/g at the contact. Strongly decreasing mesopore and micropore volumes in the altered zone, together with frequent cleat and fracture filling by calcite, indicate deteriorating conditions for both coalbed gas sorption and gas transmissibility. ?? 2008 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2004/1409/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2004/1409/report.pdf"><span>Assessment of Shallow-Water Habitat Availability in Modified Dike Structures, Lower Missouri River, 2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jacobson, Robert B.; Elliott, Caroline M.; Johnson, Harold E.</p> <p>2004-01-01</p> <p>This study documented the effects of wing-dike notching on the availabilit of shallow water habitat in the Lower Missouri River. Five wing dikes were surveyed in late May 2004 after they were notched in early May as part of shallow-water habitat (SWH) rehabilitation activities undertaken by the U.S. Army Corps of Engineers. Surveys included high-resolution hydroacoustic depth, velocity, and substrate mapping. Relations of bottom elevations within the wing dike fields to index discharges and water-surface elevations indicate that little habitat meeting the SWH definition was created immediately following notching. This result is not unexpected, as significant geomorphic adjustment may require large flow events. Depth, velocity, and substrate measurements in the post-rehabilitation time period provide baseline data for monitoring ongoing changes. Differences in elevation and substrate were noted at all sites. Most dike fields showed substantial aggradation and replacement of mud substrate with sandier sediment, although the changes did not result in increased availability of SWH at the index discharge. It is not known how much of the elevation and substrate changes can be attributed directly to notching and how much would result from normal sediment transport variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024503','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024503"><span>The 12 September 1999 Upper East Rift Zone dike intrusion at Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cervelli, Peter; Segall, P.; Amelung, F.; Garbeil, H.; Meertens, C.; Owen, S.; Miklius, Asta; Lisowski, M.</p> <p>2002-01-01</p> <p>Deformation associated with an earthquake swarm on 12 September 1999 in the Upper East Rift Zone of Kilauea Volcano was recorded by continuous GPS receivers and by borehole tiltmeters. Analyses of campaign GPS, leveling data, and interferometric synthetic aperture radar (InSAR) data from the ERS-2 satellite also reveal significant deformation from the swarm. We interpret the swarm as resulting from a dike intrusion and model the deformation field using a constant pressure dike source. Nonlinear inversion was used to find the model that best fits the data. The optimal dike is located beneath and slightly to the west of Mauna Ulu, dips steeply toward the south, and strikes nearly east-west. It is approximately 3 by 2 km across and was driven by a pressure of ??? 15 MPa. The total volume of the dike was 3.3 x 106 m3. Tilt data indicate a west to east propagation direction. Lack of premonitory inflation of Kilauea's summit suggests a passive intrusion; that is, the immediate cause of the intrusion was probably tensile failure in the shallow crust of the Upper East Rift Zone brought about by persistent deep rifting and by continued seaward sliding of Kilauea's south flank.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/wi0215.photos.171826p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/wi0215.photos.171826p/"><span>107. DAM EARTH DIKE SUBMERSIBLE DAMS PLANS ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>107. DAM - EARTH DIKE - SUBMERSIBLE DAMS - PLANS & SECTIONS (ML-8-52/3-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/wa0488.photos.370695p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/wa0488.photos.370695p/"><span>1. View of north tower, facing northwest from dike on ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>1. View of north tower, facing northwest from dike on north bank of the Columbia River. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S33C2852S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S33C2852S"><span>Coupled Mechanical and Thermal Modeling of Frictional Melt Injection to Constrain Physical Conditions of the Earthquake Source Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sawyer, W.; Resor, P. G.</p> <p>2016-12-01</p> <p>Pseudotachylyte, a fault rock formed through coseismic frictional melting, provides an important record of coseismic mechanics. In particular, injection veins formed at a high angle to the fault surface have been used to estimate rupture directivity, velocity, pulse length, stress and strength drop, as well as slip weakening distance and wall rock stiffness. These studies, however, have generally treated injection vein formation as a purely elastic process and have assumed that processes of melt generation, transport, and solidification have little influence on the final vein geometry. Using a modified analytical approximation of injection vein formation based on a dike intrusion model we find that the timescales of quenching and flow propagation are similar for a composite set of injection veins compiled from the Asbestos Mountain Fault, USA (Rowe et al., 2012), Gole Larghe Fault Zone, Italy (Griffith et al., 2012) and the Fort Foster Brittle Zone. This indicates a complex, dynamic process whose behavior is not fully captured by the current approach. To assess the applicability of the simplifying assumptions of the dike model when applied to injection veins we employ a finite-element time-dependent model of injection vein formation. This model couples elastic deformation of the wall rock with the fluid dynamics and heat transfer of the frictional melt. The final geometry of many injection veins is unaffected by the inclusion of these processes. However, some injection veins are found to be flow limited, with a final geometry reflecting cooling of the vein before it reaches an elastic equilibrium with the wall rock. In these cases, numerical results are significantly different from the dike model, and two basic assumptions of the dike model, self-similar growth and a uniform pressure gradient, are shown to be false. Additionally, we apply the finite-element model to provide two new constraints on the Fort Foster coseismic environment: a lower limit on the initial melt temperature of 1400 *C, and either significant coseismic wall rock softening or high transient tensile stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T53A4661I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T53A4661I"><span>Crustal Accretion at Subduction Initiation Along Izu-Bonin-Mariana Arc and the Link to SSZ Ophiolites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishizuka, O.; Tani, K.; Reagan, M. K.; Kanayama, K.; Umino, S.; Harigane, Y.; Sakamoto, I.</p> <p>2014-12-01</p> <p>The Izu-Bonin-Mariana (IBM) forearc preserves the earliest arc magmatic history from subduction initiation to the establishment of the arc. Recent investigations have established a bottom to top igneous stratigraphy of: 1) mantle peridotite, 2) gabbroic rocks, 3) a sheeted dyke complex, 4) basaltic pillow lavas (forearc basalts: FAB), 5) boninites and magnesian andesites, 6) tholeiites and calcalkaline arc lavas. This stratigraphy has many similarities to supra-subduction zone (SSZ) ophiolites. One of the most important common characteristics between the SSZ ophiolites and the forearc crust is the occurrence of MORB-like basaltic lavas underlying or accompanying boninites and early arc volcanic suites. A key observation from the IBM forearc is that FAB differs from nearby back-arc lavas in chemical characteristics, including a depletion in moderately incompatible elements. This indicates that FAB is not a pre-existing oceanic basement of the arc, but the first magmatic product after subduction initiation. Sheeted dikes of FAB composition imply that this magmatism was associated with seafloor spreading, possibly triggered by onset of slab sinking. Recognition of lavas with transitional geochemical characteristics between the FAB and the boninites strongly implies genetic linkage between these two magma types. The close similarity of the igneous stratigraphy of SSZ ophiolites to the IBM forearc section strongly implies a common magmatic evolutionary path, i.e., decompressional melting of a depleted MORB-type mantle is followed by melting of an even more depleted mantle with the addition of slab-derived fluid/melt to produce boninite magma. Similarity of magmatic process between IBM forearc and Tethyan ophiolites appears to be reflected on common characteristics of upper mantle section. Peridotite from both sections show more depleted characteristics compared to upper mantle rocks from mid-ocean ridges. Age determinations reveal that first magmatism at the IBM arc occurred at c. 52 Ma, and transition from forearc basalt to normal arc magmatism took 7-8 million years. Combined with the age information from SSZ-ophiolites, significant constraints on time scale of subduction initiation and associated crustal accretion might be obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995GeoRL..22.2897G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995GeoRL..22.2897G"><span>Hierarchical organization as a diagnostic approach to volcano mechanics: Validation on Piton de la Fournaise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grasso, J. R.; Bachèlery, P.</p> <p></p> <p>Self-organized systems are often used to describe natural phenomena where power laws and scale invariant geometry are observed. The Piton de la Fournaise volcano shows power-law behavior in many aspects. These include the temporal distribution of eruptions, the frequency-size distributions of induced earthquakes, dikes, fissures, lava flows and interflow periods, all evidence of self-similarity over a finite scale range. We show that the bounds to scale-invariance can be used to derive geomechanical constraints on both the volcano structure and the volcano mechanics. We ascertain that the present magma bodies are multi-lens reservoirs in a quasi-eruptive condition, i.e. a marginally critical state. The scaling organization of dynamic fluid-induced observables on the volcano, such as fluid induced earthquakes, dikes and surface fissures, appears to be controlled by underlying static hierarchical structure (geology) similar to that proposed for fluid circulations in human physiology. The emergence of saturation lengths for the scalable volcanic observable argues for the finite scalability of complex naturally self-organized critical systems, including volcano dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JVGR..302...64D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JVGR..302...64D"><span>Geothermal evolution of an intruded dike in the rift zone of Kilauea volcano, Hawaii from VLF and self-potential measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davis, Paul M.</p> <p>2015-09-01</p> <p>Self-potential (SP) and VLF measurements were made in 1973, 1975, 1995, 1997 and 2012 across a basaltic dike that intruded into the Koae fault zone of Kilauea volcano, Hawaii in May 1973. The SP anomaly remained strong throughout. In 2012 it was at about 60% of the strength it had in 1973. In contrast, the VLF anomaly, though diminished, was still observable in 1995/1997, but by 2012 it had disappeared. A hydrothermal dike model, with parameters calibrated by modeling the solidification of Kilauea Iki lava lake, is used to calculate temperatures and conductivity variation. Following Jaeger's (1957) method, we find that the time in years for a dike of width W (m) to solidify is 0.0075W2. Thus, a 1 m dike solidifies within the first few days, and after 39 years is only tens of degrees above ambient. Given the orders of magnitude difference between the conductivities of wet and dry basalt, we infer, that after solidification, the VLF anomalies were caused by induction in a localized veil of wet, hot basalt enveloping the dike, that was generated initially by condensation of steam, and subsequently by condensation of evaporated water as temperatures reduced. The conductivity anomaly persisted until the mid-nineties. By 2012, temperatures and condensation were too small for a VLF signal. The persistent SP anomaly is attributed to localized fluid disruption, with evaporation mainly at the water table and in the vadose zone. Streaming potentials are associated with evaporative circulation in the vadose zone. Next to the dike a positive potential is generated by upward flow of moisture-laden air, with a smaller negative potential on its flanks from downward infiltrating rainwater. The analysis indicates that the combination of SP and VLF measurements can characterize the evolving geothermal regime of intrusions above the water table.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/fl0694.photos.575234p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/fl0694.photos.575234p/"><span>Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. VOLUME 29, LAUNCH CONTROL CENTER (LCC) TITLE AND LOCATION SHEET. Sheet 29-01 - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919230B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919230B"><span>Reactive transport modeling of ferroan dolomitization by seawater interaction with mafic igneous dikes and carbonate host rock at the Latemar platform, Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blomme, Katreine; Fowler, Sarah Jane; Bachaud, Pierre</p> <p>2017-04-01</p> <p>The Middle Triassic Latemar carbonate platform, northern Italy, has featured prominently in the longstanding debate regarding dolomite petrogenesis [1-4]. Recent studies agree that ferroan and non-ferroan dolomite replaced calcite in limestone during reactive fluid flow at <0.1 GPa and 40-80°C. Regional igneous activity drove heating that provided kinetically favorable conditions for the replacement reaction. However, the origin of the dolomitizing fluid is unclear. Seawater may have been an important component, but its Fe concentrations are insufficient to account for ferroan dolomite. New field, petrographic, XRD, and geochemical data document a spatial, temporal, and geochemical link between ferroan replacement dolomite and altered mafic igneous dikes that densely intrude the platform. A critical observation is that ferroan dolomite abundances increase towards the dikes. We hypothesize that seawater interacted with mafic minerals in the dikes, leading to Fe enrichment in the fluid that subsequently participated in dolomitization. This requires that dolomite formation was preceded by dike alteration reactions that liberated Fe and did not consume Mg. Another requirement is that ferroan and non-ferroan dolomite (instead of other Fe- and Mg-bearing minerals) formed during fluid circulation within limestone host rock. We present reactive transport numerical simulations (Coores-Arxim, [5]) that predict equilibrium mineral assemblages and the evolution of fluid dolomitizing potential from dike crystallization, through dike alteration by seawater, to replacement dolomitization in carbonate host rock. The simulations are constrained by observations. A major advantage of the simulations is that stable mineral assemblages are identified based on a forward modeling approach. In addition, the dominant igneous minerals (plagioclase, clinopyroxene olivine and their alteration products) are solid solutions. Most reactive transport simulations of carbonate petrogenesis do not share these benefits (e.g. [6]). Predicted alteration mineral assemblages are consistent with observations on dikes and with ferroan and non-ferroan dolomite genesis. The simulation results also show that fluid dolomitizing potential (Mg/Ca and Fe/Mg) increases during dissolution of igneous solid solution minerals. Enrichment in fluid Fe concentration is sufficient to stabilize ferroan replacement dolomite. Consistent with field observations, ferroan dolomite forms closest to dikes due to the abundance of Fe associated with the dikes. This leads to depletion of Fe in fluid flowing away from dikes and formation of non-ferroan replacement dolomite further afield. References S.K. Carmichael, J.M. Ferry, W.F. McDonough, Formation of replacement dolomite in the Latemar carbonate buildup, Dolomites, Northern Italy: Part 1. Field relations, mineralogy and geochemistry, Am. J. Sci. 308 (2008) 851-884. J.M. Ferry, B.H. Passey, C. Vasconcelos, J.M. Eiler, Formation of dolomite at 40 - 80 °C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry, Geology. 39 (2011) 571-574. C. Jacquemyn, M. Huysmans, D. Hunt, G. Casini, R. Swennen, Multi-scale three-dimensional distribution of fracture- and igneous intrusion- controlled hydrothermal dolomite from digital outcrop model, Latemar platform, Dolomites, northern Italy, Am. Assoc. Pet. Geol. Bull. 99 (2015) 957-984. C. Jacquemyn, H. El Desouky, D. Hunt, G. Casini, R. Swennen, Dolomitization of the Latemar platform: Fluid flow and dolomite evolution, Mar. Pet. Geol. 55 (2014) 43-67. L. Trenty, A. Michel, E. Tillier, Y. Le Gallo, A Sequential Splitting Strategy for CO2 Storage Modelling, in: ECMOR X - 10th Eur. Conf. Math. Oil Recover., 2006. T. Gabellone, F. Whitaker, Secular variations in seawater chemistry controlling dolomitisation in shallow reflux systems: Insights from reactive transport modelling, Sedimentology. 63 (2016) 1233-1259.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/pa2635.photos.356810p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/pa2635.photos.356810p/"><span>3. VIEW NORTH FROM TOP OF DIKE, WITH FORMER TRANSFORMER ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>3. VIEW NORTH FROM TOP OF DIKE, WITH FORMER TRANSFORMER BUILDING AND SERVICE SHED - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1662.photos.011939p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1662.photos.011939p/"><span>1. OIL HOUSE FOUNDATIONS, DIKE, AND PORTION OF SOUTH FRONT ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>1. OIL HOUSE FOUNDATIONS, DIKE, AND PORTION OF SOUTH FRONT OF MAIN ASSEMBLY PLANT. VIEW TO WEST. - Ford Motor Company Long Beach Assembly Plant, Oil House, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSAES..83...68M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSAES..83...68M"><span>Mississippian lamprophyre dikes in western Sierras Pampeanas, Argentina: Evidence of transtensional tectonics along the SW margin of Gondwana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martina, Federico; Canelo, Horacio N.; Dávila, Federico M.; de Hollanda, María Helena M.; Teixeira, Wilson</p> <p>2018-04-01</p> <p>In the Famatina range, Sierras Pampeanas of Argentina (SW Gondwana), subvertical calc-alkaline lamprophyric dike swarms crop out through >300 km. The dikes cut Ordovician units with a prominent NW-SE trending and are covered by continental sedimentary successions of Pennsylvanian to Permian age. The dikes show a strong structural control associated with Riedel fault systems. Detailed field analysis suggested a ∼N-S opening direction oblique to the attitude of dike walls and a left-lateral transtensional tectonics during the emplacement. 40Ar/39Ar geochronology of a lamprophyric sample defined a crystallization age (plateau; whole rock) of 357.1 ± 7.1 Ma (MSWD = 2.3). Coetaneous ductile zones with dominant strike-slip motion, documented along western Argentina for >600 km, suggest a regional event in SW Gondwana during the Mississippian. We propose that this deformation was the result of the counterclockwise fast rotation of Gondwana between 365 and 345 Ma, when the Famatina range and western Argentina occupied a sub-polar position. A transform margin along SW Gondwana better explains our (and others) data rather than a subduction margin. This scenario is also consistent with the occurrence of A-type granites and normal-fault basins within the foreland as well as bimodal volcanics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V11C..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V11C..07H"><span>Subduction-modified oceanic crust in the sources of continental picrite dikes from the Karoo LIP?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heinonen, J. S.; Carlson, R. W.; Riley, T. R.; Luttinen, A. V.; Horan, M. F.</p> <p>2013-12-01</p> <p>The Ahlmannryggen mountain range in East Antarctica hosts unusual LILE-depleted, but Fe- and Ti-enriched ultramafic dikes (Group 3) that belong to the Jurassic (~180 Ma) Karoo continental flood basalt (CFB) province. Their high initial ɛNd (+5 to +9) indicates their origin within the sublithospheric mantle beneath the Gondwana supercontinent. Using the new Pb and Os isotopic data and previously published geochemical and mineral chemical data, we try to constrain their mantle sources. The dikes that lack evidence of crustal contamination exhibit very radiogenic ɛNd (+8.6 to +9.0), relatively radiogenic 206Pb/204Pb (18.2-18.4) and 87Sr/86Sr (0.7035-0.7037), and unradiogenic 187Os/188Os (0.124-0.125) at 180 Ma. These isotopic compositions are unlike those typical of MORBs, excluding depleted mantle as the sole source contributor. The Pb isotopic composition of the dikes plots close to the 4.43 Ga geochron and hence is compatible with derivation from an early-depleted reservoir (EDR), recently suggested to be a major source component in CFBs. However, the high ɛNd of the dikes exceeds the ɛNd estimated for EDR (+4.9 to +8.5 at 180 Ma) and the relative Nb, Fe, and Ti enrichment (pyroxenite fingerprint) of the dikes is not readily ascribed to EDR source. Based on our isotopic and trace element modeling, we regard that the mantle source of the picrite dikes contained seawater-altered and subduction-modified MORB with a recycling age of 0.8 Ga. Such a source component would explain the unusual combination of elevated initial 87Sr/86Sr, ɛNd, and 206Pb/204Pb, relative depletion in fluid-mobile LILE, U, Th, Pb, and LREE, and relative enrichment in Nb, Fe, Ti, and other HFSE. Behavior of Re and Os in subduction environments is not well constrained, but loss of Re from recycled MORB, as observed in some subduction-associated eclogites and blueschists, and predominant contribution of Os from depleted peridotite matrix could have produced the observed low 187Os/188Os. Pyroxenite sources also are consistent with mineral chemical data (e.g., high-Ni olivine) for the picrite dikes. Such peculiar sources were likely not a predominant component in Karoo magmatism in general. Nevertheless, less subduction-modified or more enriched (e.g., additional sediment component) recycled crustal signatures would be difficult to distinguish from the 'lithospheric signatures' of many common CFBs. In addition to depleted mantle or EDR components that have been identified in the high-Mg dikes of the adjacent Vestfjella mountain range, a variety of recycled source components could thus be hiding in the geochemical jungle of the Karoo (and other) CFBs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JVGR..310..186L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JVGR..310..186L"><span>Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lefebvre, Nathalie S.; White, James D. L.; Kjarsgaard, Bruce A.</p> <p>2016-01-01</p> <p>Maar-diatreme volcanoes, defined by their relatively large pyroclastic debris-filled subsurface structures and craters that cut into the pre-eruptive land surface, are typically found in small-volume mafic to ultramafic monogenetic volcanic fields. Diatremes are associated with strong explosions throughout most of their development, focused along feeder dikes and generally attributed to magma-water interaction, or high magmatic volatiles. Detailed mapping of the magnificently exposed Standing Rocks East (SRE) diatreme shows evidence of additional eruptive complexity, and offers new insights into how the plumbing and vent structures of small-volume volcanoes evolve during an eruption. SRE is part of a larger, basanitic volcanic complex that includes several diatremes formed along a series of irregular, offset NW-SE trending dikes exposed 300 m below the pre-eruptive land surface. Its similarly oriented elliptical-shaped diatreme structure comprises predominantly country rock lithic-rich breccia of coarse inhomogeneously mixed wall-rock blocks sourced from above and below the current surface, plus sparse juvenile material. Domains of pyroclastic deposits crosscut the country rock breccia deposits, and the best exposed is the NW massif rising 35 m above the current erosional surface. It represents a cross-section of an evolving crater floor, and comprises matrix-rich lapilli tuff and spatter deposits cut by irregularly distributed dikes, some with very complex textures. The most significant deposit, in terms of volume, is an unbedded lapilli tuff that is poorly sorted and has a well-mixed population of wall-rock and juvenile clast varieties, thus resembling deposits typical of diatremes. It is overlain by and locally intercalated with spatter deposits, and this irregular contact demarcates the base of what was during eruption an uneven, evolving crater floor. The generally massive, variably welded spatter deposits constitute mostly lapilli-sized juvenile clasts with fluidal, folded-over shapes and ropy surfaces, subordinate thermally altered wall-rock and variegated domains of lapilli tuff. SRE shows a progressive transition from fissure to diatreme, and overall evolution from more explosive to weakly explosive eruption styles recorded at the conduit-crater transition. Diatreme development was initiated by deep-quarrying explosive eruptions along a fissure to form the country rock-rich breccia. Only parts of the fissure remained active as magma feeding the highly explosive eruptions along the fissure localized into discrete point sources forming the matrix-rich lapilli tuff deposits. These superimposed deposits record the passage of multiple debris-jets and subvertical fallback from shallow cratering arising from explosions triggered by magma-water interaction at numerous, discrete sites. However, instead of continuing to build a well-formed diatreme, the system switched to weak spattering with intermittent explosive activity and near-surface dike emplacement into the unconsolidated anisotropic, pyroclastic debris of the crater floor. Dominant spatter from strombolian-style bursts accumulated on the topographically varied, evolving unstable syn-eruptive crater floor, and led to local failure and remobilization. This study demonstrates how the combination of fissure behavior and sensitivity of the shallow plumbing system to local conditions during an eruption can lead to a decrease in eruptive footprint within the diatreme structure, and an overall decrease in explosivity resulting in the arrested development of an immature diatreme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1867.photos.033699p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1867.photos.033699p/"><span>116. Photocopy of drawing (1964 mechanical drawing by Koebig & ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>116. Photocopy of drawing (1964 mechanical drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, FLOW SHEET 1 AND PIPING PLANS, SHEET M-2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_54820.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_54820.htm"><span>Preliminary geologic map of the Winchester 7.5' quadrangle, Riverside County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morton, Douglas M.</p> <p>2003-01-01</p> <p>The Winchester quadrangle is located in the northern part of the Peninsular Ranges Province within the central part of the Perris block, a relatively stable, rectangular in plan view, area located between the Elsinore and San Jacinto fault zones (see location map). The quadrangle is underlain by Cretaceous and older basement rocks. Cretaceous plutonic rocks are part of the composite Peninsular Ranges batholith, which indicates wide variety of granitic rocks, ranging from granite to gabbro. Parts of three major plutonic complexes are within the quadrangle, the Lakeview Mountains pluton, the Domenigoni Valley pluton and the Paloma Valley ring complex. In the northern part of the quadrangle is the southern part of the Lakeview Mountains pluton, a large composite body, most of which lies in the quadrangle to the north. In the center part of the quadrangle is the eastern part of the Domenigoni Valley pluton, which consists of massive biotite-hornblende granodiorite and tonalite; some tonalite in the southern part of the pluton has a relatively pronounced foliation produced by oriented biotite and hornblende. Common to abundant equant-shaped, mafic inclusions occur through out the pluton except in the outermost part where inclusions are absent. The pluton was passively emplaced by piecemeal stoping of a variety of older rocks and the eastern contact is well exposed in the quadrangle. Associated with the Domenigoni Valley pluton is a swarm of latite dikes; the majority of these dikes occur in the Winchester quadrangle, but they extend into the Romoland quadrangle to the west. The latite dikes intrude both the pluton and adjacent metamorphic rocks, most are foliated, and most have a well developed lineation defined by oriented biotite and/or hornblende crystals. Dikes intruding the pluton were emplaced in northwest striking joints; and dikes intruding the metamorphic rocks were emplaced along foliation planes. In the eastern part of the quadrangle a Cretaceous age suture juxtaposes low-metamorphic grade Mesozoic rocks against high-metamorphic grade gneissic-textured Mesozoic rocks. Juxtaposition occurred when the high-metamorphic grade rocks were at upper amphibolite grade temperatures, and produced a steep thermal gradient in the low-metamorphic grade Mesozoic rocks. Age of suturing and attendant metamorphism, based on metamorphic mineral ages, is about 100 Ma (L. Snee, personal communication, 2002). The suture zone appears to vary in thickness, and includes within it a number of metadunite bodies and related rocks. Prebatholithic rocks of Mesozoic age include a wide variety of sedimentary rocks of greenschist or lower metamorphic grade, in the western and central part of the quadrangle, and upper amphibolite grade near the eastern edge of the quadrangle. The metamorphic grade increases from greenschist to upper amphibolite grade over a distance of less than two miles; andalusite and sillimanite isograds are closely spaced near the suture. Metamorphism was Buchan type of relatively high temperature and relatively low pressure (Schwarcz, 1969). Common lithologies of the low metamorphic grade suite include phyllite, lithic greywacke, impure quartzite, meta-arkose, and interlayered quartzite and phyllite. Most of the layering and foliation in the metamorphic rocks is the result of intense structural transposition. Relic bedding appears to be restricted to very local occurrences in hinges of slip folds. The upper amphibolite grade, gneissic-textured Mesozoic rocks consist of sillimanite-biotite gneiss, black amphibolite, and impure quartzite. Anatectic gneiss containing igneous textured segregations of quartz and feldspar is commonly inter leaved with biotite gneiss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014388','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014388"><span>Evolution of silicic magma in the upper crust: the mid-Tertiary Latir volcanic field and its cogenetic granitic batholith, northern New Mexico, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lipman, P.W.</p> <p>1988-01-01</p> <p>Structural and topographic relief along the eastern margin of the Rio Grande rift, northern New Mexico, provides a remarkable cross-section through the 26-Ma Questa caldera and cogenetic volcanic and plutonic rocks of the Latir field. Exposed levels increase in depth from mid-Tertiary depositional surfaces in northern parts of the igneous complex to plutonic rocks originally at 3-5 km depths in the S. Erosional remnants of an ash-flow sheet of weakly peralkaline rhyolite (Amalia Tuff) and andesitic to dactitic precursor lavas, disrupted by rift-related faults, are preserved as far as 45 km beyond their sources at the Questa caldera. Broadly comagmatic 26 Ma batholithic granitic rocks, exposed over an area of 20 by 35 km, range from mesozonal granodiorite to epizonal porphyritic granite and aplite; shallower and more silicic phases are mostly within the caldera. Compositionally and texturally distinct granites defined resurgent intrusions within the caldera and discontinuous ring dikes along its margins: a batholithic mass of granodiorite extends 20 km S of the caldera and locally grades vertically to granite below its flat-lying roof. A negative Bouguer gravity anomaly (15-20 mgal), which encloses exposed granitic rocks and coincides with boundaries of the Questa caldera, defined boundaries of the shallow batholith, emplaced low in the volcanic sequence and in underlying Precambrian rocks. Paleomagnetic pole positions indicate that successively crystallised granitic plutons cooled through Curie temperatures during the time of caldera formation, initial regional extension, and rotational tilting of the volcanic rocks. Isotopic ages for most intrusions are indistinguishable from the volcanic rocks. These relations indicate that the batholithic complex broadly represents the source magma for the volcanic rocks, into which the Questa caldera collapsed, and that the magma was largely liquid during regional tectonic disruption. -from Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/bul/b2064-w/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/bul/b2064-w/"><span>The geology and mineral deposits of part of the western half of the Hailey 1 degree x 2 degrees quadrangle, Idaho; with sections on the Neal mining district and the Dixie mining district</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bennett, Earl H.</p> <p>2001-01-01</p> <p>Rocks in the western half of the Hailey 1 ?? 2 ? quadrangle of south-central Idaho include various units of the Atlanta lobe of the Idaho batholith (biotite granodiorite to two-mica granite) of Cretaceous age and plutons and dikes of Tertiary (Eocene to Miocene) age that intrude the batholith. Eocene plutonic rocks consist of a bimodal suite of anorogenic granite and tonalite-granodiorite and hypabyssal rhyolite and rhyodacite dikes. Rocks of the Eocene Challis Volcanics are scarce in the map area but are widespread to the east. Rhyolite ash flows of the Miocene Idavada Volcanics and basalt of the Snake River Plain crop out in the southern part of the area. Lacustrine rocks of probable Eocene to Holocene age are present in the vicinity of Anderson Ranch Reservoir. Quaternary basalts and gravels are widespread on the South Fork of the Boise River, and alluvial deposits are common along active drainages. Metasedimentary rocks of unknown age crop out on House Mountain, Chimney Peak, and on the ridges east of Anderson Ranch Reservoir. Older structures in the Idaho batholith include a major fault beneath House Mountain that may be a decollement for one of the large thrust sheets in eastern Idaho or part of an extensional core complex. The southern part of the Atlanta lobe of the Idaho batholith is cut by northeast-striking faults (parallel with the Trans-Challis fault system) that are related to Eocene extension and by northwest-oriented faults that formed during basin and range extension in the Miocene. The basin and range faults have prominent scarps typical of basin and range topography. The combination of northeast and northwest faults has broken the batholith into a series of rhomboid blocks. Some of these northeast and northwest faults are older structures that were reactivated in the Eocene or Miocene, as indicated by Ar 40 /Ar 39 dates on mineralized rock contained in some of the structures. The Idaho batholith and associated rocks in the map area host several hundred mines and prospects in 18 mining districts. The deposits range in age from Cretaceous to Eocene, and many were developed for precious metals. Most of the deposits are in quartz veins in shear zones in granitic rocks of the batholith. Several districts were actively being explored for low-grade, bulk-minable, precious-metal deposits in the late 1980s and early 1990s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V34A..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V34A..07L"><span>Source models for the March 5-9, 2011 Kamoamoa fissure eruption, Kilauea Volcano, Hawai`i, constrained by InSAR and in-situ observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lundgren, P.; Poland, M. P.; Miklius, A.; Yun, S.; Fielding, E. J.; Liu, Z.; Tanaka, A.; Szeliga, W. M.; Hensley, S.</p> <p>2011-12-01</p> <p>On March 5, 2011, the Kamoamoa fissure eruption began along the east rift zone (ERZ) of Kilauea Volcano. It followed several months of pronounced inflation at Kilauea's summit and was the first dike intrusion into the ERZ since June 2007. The eruption began in the late afternoon of March 5, 2011 (Hawaii Standard Time; UTC-10:00 hrs) with rapid deflation beginning at Pu'u 'O'o crater along the ERZ and followed about 30 minutes later at the summit. Magma from both locations fed the intrusion and an eruption that included lava fountaining along a set of discontinuous eruptive fissures ~2 km in length located between Napau and Pu'u 'O'o craters. Eruptive activity jumped between fissure segments until it ended on the night of March 9. A rich InSAR data set exists for this eruption from the COSMO-SkyMed (CSK), TerraSAR-X (TSX), ALOS PALSAR, and UAVSAR sensors. CSK data acquired on March 7 and processed that same day provided the earliest, quasi-real-time SAR data for this event. By March 10, after the eruption had ended, we had three CSK acquisitions and one ALOS scene acquired and processed. At present we have the following satellite data (UTC dates): ALOS March 6, 9, 11; CSK March 7, 10, 11; TSX March 11; from a mixture of ascending and descending tracks. UAVSAR airborne SAR data were acquired in early May 2011. Preliminary UAVSAR results are encouraging and complete processing should provide high-resolution data from four viewing directions. SAR data were acquired on all days of the eruption but March 8, allowing us to examine the progression of the dike opening beneath the surface with excellent spatial and temporal resolution. We use a combination of unwrapped interferograms, azimuthal pixel offsets, and in-situ data from GPS and electronic tiltmeters to model dike opening and summit deflation. GPS data are from the Hawaiian Volcano Observatory (HVO) continuous GPS network augmented by campaign occupations closer to the eruption area. Continuous tilt measurements are concentrated near Kilauea's summit and Pu'u 'O'o crater, with one site in between to help constrain dike propagation. To model the sources we use a Markov Chain Monte Carlo (MCMC) optimization to solve for Kilauea caldera source(s) and for the Kamoamoa dike dip, where we fixed the surface location of the dike based on field observations and solved for the opening distribution using Laplacian smoothing for a multi-patch dike. Preliminary models of the dike show 1-2 meters of dike opening at the beginning of the eruption, reaching 2-3 meters of opening by the end of the eruption. Preliminary results for the caldera favor a shallow source centered at roughly 1.5 km depth and extending in a SW-NE direction. Initial estimates of the volume changes show less than a 2 MCM (million cubic meters) decrease at the summit compared to a roughly 10 MCM increase for the dike. This difference suggests that much of the magma came from sources other than the shallow Kilauea summit source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AcSpA.159..238H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AcSpA.159..238H"><span>Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hassan, H. E.; Refat, Moamen S.; Sharshar, T.</p> <p>2016-04-01</p> <p>Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SolE....6..253L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SolE....6..253L"><span>The rheological behaviour of fracture-filling cherts: example of Barite Valley dikes, Barberton Greenstone Belt, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ledevin, M.; Arndt, N.; Davaille, A.; Ledevin, R.; Simionovici, A.</p> <p>2015-02-01</p> <p>In the Barberton Greenstone Belt, South Africa, a 100-250 m thick complex of carbonaceous chert dikes marks the transition from the Mendon Formation to the Mapepe Formation (3260 Ma). The sub-vertical- to vertical position of the fractures, the abundance of highly shattered zones with poorly rotated angular fragments and common jigsaw fit, radial structures, and multiple injection features point to repetitive hydraulic fracturing that released overpressured fluids trapped within the shallow crust. The chemical and isotopic compositions of the chert favour a model whereby seawater-derived fluids circulated at low temperature (< 100-150 °C) within the shallow crust. From the microscopic structure of the chert, the injected material was a slurry of abundant clay-sized, rounded particles of silica, carbonaceous matter and minor clay minerals, all suspended in a siliceous colloidal solution. The dike geometry and characteristics of the slurry concur on that the chert was viscoelastic, and most probably thixotropic at the time of injection: the penetration of black chert into extremely fine fractures is evidence for low viscosity at the time of injection and the suspension of large country rock fragments in the chert matrix provides evidence of high viscosity soon thereafter. We explain the rheology by the particulate and colloidal structure of the slurry, and by the characteristic of silica suspensions to form cohesive 3-D networks through gelation. Our results provide valuable information about the compositions, physical characteristics and rheological properties of the fluids that circulated through Archean volcano-sedimentary sequences, which is an additional step to understand conditions on the floor of Archean oceans, the habitat of early life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7021M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7021M"><span>The Age and Geodynamic Evolution of the Metamorphic sole rocks from Izmir-Ankara-Erzıncan suture zone (Northern-Turkey)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melih Çörtük, Rahmi; Faruk Çelik, Ömer; Özkan, Mutlu; Sherlock, Sarah C.; Marzoli, Andrea; Altıntaş, İsmail Emir; Topuz, Gültekin</p> <p>2016-04-01</p> <p>The İzmir-Ankara-Erzincan suture zone in northern Turkey is one of the major tectonic zones separating the Pontides to the North from the Anatolide-Tauride block and Kı rşehir Massif to the South. The accretionary complex of the İzmir-Ankara-Erzincan suture zone, near Artova, is composed mainly of peridotites with varying degree serpentinization, metamorphic rocks, basalt, sandstones, pelagic and neritic limestones. The metamorphic rocks are represented by amphibolite, garnet micaschit, calc-schist and marble. The metamorphic rocks were interpreted as the metamorphic sole rocks. Because; (i) They are tectonically located beneath the serpentinized peridotites. (ii) Foliation planes of both the amphibolites and mantle tectonites are parallel to each other. (iii) The metamorphic rocks are crosscut by non-metamorphic dolerite dikes which exhibite Nb and Ta depletion relative to Th enrichment on the N-MORB normalized multi-element spider diagram. The dolerite dikes display flat REE patterns (LaN/YbN=0.85-1.24). These geochemical signatures of the dolerite dikes are indicative of subduction component during their occurrences. Geochemical observations of the amphibolites suggest E-MORB- and OIB-like signatures (LaN/SmN= 1.39-3.14) and their protoliths are represented by basalt and alkali basaltic rocks. Amphiboles from the amphibolites are represented by calcic amphiboles (magnesio-hornblende, tchermakite and tremolite) and they yielded 40Ar-39Ar ages between 157.8 ± 3.6 Ma and 139 ± 11 Ma. These cooling ages were interpreted to be the intra-oceanic subduction/thrusting time of the İzmir-Ankara-Erzincan oceanic domain. This study was funded by TÜBİTAK (Project no: 112Y123).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.4074H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.4074H"><span>Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred From Contemporaneous Melting of the Mantle and Crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Feng; Xu, Jifeng; Zeng, Yunchuan; Chen, Jianlin; Wang, Baodi; Yu, Hongxia; Chen, Ling; Huang, Wenlong; Tan, Rongyu</p> <p>2017-11-01</p> <p>Oceanic slab breakoff significantly affects the thermal regime of the lithosphere during continental collision. This often triggers extension-related mafic magmatism and crustal melting. It is generally accepted that the Neo-Tethyan lithosphere subducted beneath the southern Lhasa Subterrane, resulting in the formation of the Gangdese magmatic arc. However, the timing of slab breakoff is still disputed, due to a lack of evidence for extension-related mafic magmatism. In this study, we provide comprehensive age, element and Sr-Nd-Hf isotopic data of mafic dikes, felsic intrusions, and enclaves from the Daju area, southern Lhasa Subterrane. The timing of mafic dikes and granitoids are contemporaneous at circa 57 Ma. The mafic dikes are characterized by high Th/U, and Zr/Y ratios, their geochemistry indicates an intraplate affinity rather than arc magmas. Furthermore, the mafic dikes show strongly variable igneous zircon ɛHf(t), and lower whole-rock ɛNd(t) than granitoids. This evidence suggests that the mafic dikes represent asthenosphere-derived melts contaminated by various degrees of ancient lithosphere. However, the granitoids were directly derived from the juvenile lower crust. Given the abrupt decrease in the convergence rate between India and Asia, and the surface uplift and sedimentation cessation in the southern Lhasa Subterrane in the early Cenozoic, the occurrence of synchronous mafic dikes and granitoids is best explained by a slab breakoff model. The occurrence of intraplate-type magmas likely corresponds to the magmatic expression of the initial stage of Neo-Tethyan slab breakoff. The slab breakoff concept also explains the onset of the magmatic "flare-up" and crustal growth after 57 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998Tectp.290..259B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998Tectp.290..259B"><span>Superimposed deformation in seconds: breccias from the impact structure at Kentland, Indiana (USA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bjørnerud, M. G.</p> <p>1998-05-01</p> <p>Breccias from the central uplift at the Kentland, Indiana impact structure have outcrop and microscopic characteristics that give insight into events that may occur in a carbonate-dominated sedimentary sequence in the moments following hypervelocity impact. Three distinct types of brecciated rock bodies — fault breccias, breccia lenses, and breccia dikes — suggest multiple mechanisms of fragmentation. The fault breccias occur along steeply dipping faults that coincide with compositional discontinuities in the stratigraphic succession. The breccia lenses and dikes are less localized in occurrence and show no systematic spatial distribution or orientation. The fault breccias and breccia lenses show no consistent cross-cutting relationships, but both are transected by the breccia dikes. Textural analysis reveals significant differences in particle size distributions for the different breccias. The fault breccias are typically monomict, coarsest and least uniform in grain size, and yield the highest power-law exponent (fractal dimension) in plots of particle size vs. frequency. The polymict dike filling is finest and most uniform in grain size, has the lowest power-law exponent, and is locally laminated and size-sorted. SEM images of the dike-filling breccia show that fragmentation occurred to the scale of microns. Material within the breccia lenses has textural characteristics intermediate between the other two types, but the irregular morphology of these bodies suggests a mechanism of formation different from that of either of the other breccia categories. The breccia lenses and dikes both have sub-mm-scale spheroidal vugs that may have been formed by carbon dioxide bubbles released during sudden devolatilization of the carbonate country rock. Collectively, these observations shed light on the processes that occur during the excavation and modification phases of crater formation in carbonate strata — heterogeneous, polyphase, multiscale deformation accomplished over a time interval of seconds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....7780G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....7780G"><span>Dike emplacement and the birth of the Yellowstone hotspot, western USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glen, J. M.; Ponce, D. A.; Nomade, S.; John, D. A.</p> <p>2003-04-01</p> <p>The birth of the Yellowstone hotspot in middle Miocene time was marked by extensive flood basalt volcanism. Prominent aeromagnetic anomalies (referred to collectively as the Northern Nevada rifts), extending hundreds of kilometers across Nevada, are thought to represent dike swarms injected at the time of flood volcanism. Until now, however, dikes from only one of these anomalies (eastern) have been documented, sampled, and dated (40Ar/ 39Ar ages range from 15.4 +/-0.2 to 16.7 +/-0.5Ma; John et al., 2000, ages recalculated using the FCS standard age of 28.02 +/-0.28Ma). We present new paleomagnetic data and an 40Ar/ 39Ar age of 16.6 +/-0.3Ma for a mafic dike suggesting that all the anomalies likely originate from the same mid-Miocene fracturing event. The magnetic anomalies, together with the trends of dike swarms, faults, and fold axes produce a radiating pattern that converges on a point near the Oregon-Idaho boarder. We speculate that this pattern formed by stresses imposed by the impact of the Yellowstone hotspot. Glen and Ponce (2002) propose a simple stress model to account for this fracture pattern that consists of a point source of stress at the base of the crust and a regional stress field aligned with the presumed middle Miocene stress direction. Overlapping point and regional stresses result in stress trajectories that form a radiating pattern near the point source (i.e., hotspot). Far from the influence of the point stress, however, stress trajectories verge towards the NNW-trending regional stress direction (i.e., plate boundary stresses), similar to the pattern of dike swarm traces. Glen and Ponce, 2002, Geology, 30, 7, 647-650 John et al., 2000, Geol. Soc. Nev. Sym. Proc., May 15-18, 2000, 127-154</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1414101H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1414101H"><span>Assessment of Environmental Radiation Impacts Related to Granites, Dikes and Stream Sediments of Sharm El-Sheikh Area, South Sinai, Egypt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heikal, M.; Ghoneim, M.; El Galy, M.; El Dousky, B.; Sherif, M.</p> <p>2012-04-01</p> <p>Sharm El Sheikh area represents one of the most touristic resort allover the world. This area is surrounded by such exposures of Precambrian granites and dike swarms as well as Miocene-Pliocene sedimentary rocks that imply more or less radionuclides U, Th, Ra and K. The radioactivity imposed within the Precambrian rocks has carefully focalized on both field and lab using up-to-date equipments and instruments. In order to evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity (Raeq), gamma activity concentration index (Iγ), external hazard index (Hex) internal hazard index (Hin) and annual effective dose rate (AEDR) have been calculated and compared with the internationally approved values. The permissible values for each index revealed that all exposures of granite and mafic dikes have values below safety limits of radiation. The stream sediments within the major wadis are also safe and available for the population and agricultural purposes and/or as construction materials. On the other hand, the felsic dikes that occur far from Sharm El Sheikh town exceed the permissible radiation limits indicating their environmental hazards impacts. It was recommended to restrict land use in a buffer zone adjacent to the felsic dikes of very limited distributions. A planned major town extension of Sharm El Sheikh area has to be stopped around and within these dikes sites, but alternative future residential areas could be delineated to the northwest of the town. An intensive coordination with the Ministry of Environmental Affairs of Egypt, the town planners and other affected authorities guarantees must take into considerations the outstanding integration of the recommendations of our study into future town and regional land use planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019327','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019327"><span>The role of diffusion-controlled oscillatory nucleation in the formation of line rock in pegmatite-aplite dikes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Webber, K.L.; Falster, A.U.; Simmons, W.B.; Foord, E.E.</p> <p>1997-01-01</p> <p>The George Ashley Block (GAB), located in the Pala Pegmatite District, San Diego County, California, is a composite pegmatite-aplite dike of 8 m thickness displaying striking mineralogical layering in the aphte portion of the dike, referred to as line rock. Rhythmic layering is characterized by garnet-rich bands alternating with albite-quartz-muscovite-rich bands. Cumulus textures are notably absent from the layered portion of the dike. Elongated quartz, megacrysts are oriented perpendicular to the garnet-rich layers and poikilitically include garnet, albite, and muscovite. Calculated crystal-free magma viscosity with 3% H2O is 106.2 Pa s and the calculated settling velocity for garnet is 0??51 cm/year. Conductive cooling calculations based on emplacement of a 650??C dike into 150?? C fractured gabbroic country rock at 1??5 kbar, and accounting for latent heat of crystallization, demonstrate that the line rock portion of the dike cools to 550?? C in about 1 year. Crystal size distribution studies also suggest very rapid nucleation and crystallization. Diffusion-controlled gel crystallization experiments yield textures virtually identical to those observed in the layered aplite, including rhythmic banding, colloform layering, and band discontinuities. Thus, observed textures and calculated magmatic parameters suggest that mineralogical layering in the GAB results from an in situ diffusion-controlled process of oscillatory nucleation and crystallization. We propose that any event that promotes strong undercooling has the potential to initiate rapid heterogeneous nucleation and oscillatory crystal growth, leading to the development of a layer of excluded components in front of the crystallization front, and the formation of line rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760021467','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760021467"><span>Development of explosive welding procedures to fabricate channeled nozzle structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pattee, H. E.; Linse, V. D.</p> <p>1976-01-01</p> <p>Research was conducted to demonstrate the feasibility of fabricating a large contoured structure with complex internal channeling by explosive welding procedures. Structures or nozzles of this nature for wind tunnel applications were designed. Such nozzles vary widely in their complexity. However, in their simplest form, they consist of a grooved base section to which a cover sheet is attached to form a series of internal cooling passages. The cover sheet attachment can be accomplished in various ways: fusion welding, brazing, and diffusion welding. The cover sheet has also been electroformed in place. Of these fabrication methods, brazing has proved most successful in producing nozzles with complex contoured surfaces and a multiplicity of internal channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JOUC...16..991D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JOUC...16..991D"><span>Operational wave now- and forecast in the German Bight as a basis for the assessment of wave-induced hydrodynamic loads on coastal dikes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dreier, Norman; Fröhle, Peter</p> <p>2017-12-01</p> <p>The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based early warning system. As a basis for the assessment of the wave-induced hydrodynamic loads, an operational wave now- and forecast system is set up that consists of i) available field measurements from the federal and local authorities and ii) data from numerical simulation of waves in the German Bight using the SWAN wave model. In this study, results of the hindcast of deep water wave conditions during the winter storm on 5-6 December, 2013 (German name `Xaver') are shown and compared with available measurements. Moreover field measurements of wave run-up from the local authorities at a sea dike on the German North Sea Island of Pellworm are presented and compared against calculated wave run-up using the EurOtop (2016) approach.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006MMI....12..121O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006MMI....12..121O"><span>Prediction of forming limit in hydro-mechanical deep drawing of steel sheets using ductile fracture criterion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.</p> <p>2006-04-01</p> <p>It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188868','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188868"><span>The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Blakely, Richard J.; Sherrod, Brian; Weaver, Craig S.; Wells, Ray; Rohay, Alan C.</p> <p>2014-01-01</p> <p>The Yakima fold and thrust belt (YFTB) in central Washington has accommodated regional, mostly north-directed, deformation of the Cascadia backarc since prior to emplacement of Miocene flood basalt of the Columbia River Basalt Group (CRBG). The YFTB consists of two structural domains. Northern folds of the YFTB strike eastward and terminate at the western margin of a 20-mGal negative gravity anomaly, the Pasco gravity low, straddling the North American continental margin. Southern folds of the YFTB strike southeastward, form part of the Olympic–Wallowa lineament (OWL), and pass south of the Pasco gravity low as the Wallula fault zone. An upper crustal model based on gravity and magnetic anomalies suggests that the Pasco gravity low is caused in part by an 8-km-deep Tertiary basin, the Pasco sub-basin, abutting the continental margin and concealed beneath CRBG. The Pasco sub-basin is crossed by north-northwest-striking magnetic anomalies caused by dikes of the 8.5 Ma Ice Harbor Member of the CRBG. At their northern end, dikes connect with the eastern terminus of the Saddle Mountains thrust of the YFTB. At their southern end, dikes are disrupted by the Wallula fault zone. The episode of NE–SW extension that promoted Ice Harbor dike injection apparently involved strike-slip displacement on the Saddle Mountains and Wallula faults. The amount of lateral shear on the OWL impacts the level of seismic hazard in the Cascadia region. Ice Harbor dikes, as mapped with aeromagnetic data, are dextrally offset by the Wallula fault zone a total of 6.9 km. Assuming that dike offsets are tectonic in origin, the Wallula fault zone has experienced an average dextral shear of 0.8 mm/y since dike emplacement 8.5 Ma, consistent with right-lateral stream offsets observed at other locations along the OWL. Southeastward, the Wallula fault transfers strain to the north-striking Hite fault, the possible location of the M 5.7 Milton-Freewater earthquake in 1936.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020843','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020843"><span>Change in the magnetic properties of bituminous coal intruded by an igneous dike, Dutch Creek Mine, Pitkin County, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thorpe, A.N.; Senftle, F.E.; Finkelman, R.B.; Dulong, F.T.; Bostick, N.H.</p> <p>1998-01-01</p> <p>Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (~400-525??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (approximately 400-525 ??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP51A0786H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP51A0786H"><span>Tectonic implications of a paleomagnetic direction obtained from a Miocene dike swarm in central Honshu, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoshi, H.; Sugisaki, Y.</p> <p>2017-12-01</p> <p>Central Honshu of Japan is an ideal field for the study of crustal deformation related to arc-arc collision. In this study we obtained rock magnetic and paleomagnetic results from early Miocene igneous rocks in central Honshu in order to examine rotational deformation caused by the collision of the Izu-Bonin-Mariana (IBM) arc with central Honshu. In Takane of the Hida region, gabbro intrusions and older sedimentary rocks are intruded by numerous andesitic dikes that comprise a parallel dike swarm. The dikes formed under two different normal-faulting paleostress conditions, which were suggested using a method of clustering dike orientations. Cross-cutting relationships indicate that the two paleostress conditions existed during the same period. More than 240 oriented cores were taken at 38 sites in two localities for magnetic study. The andesites and gabbros generally have magnetite, and some andesites also contain pyrrhotite. The magnetite records easterly deflected remanent magnetization directions of dual polarities that pass the reversals test. Positive baked contact tests at two sites demonstrate that the easterly deflected direction is a thermoremanent magnetization acquired at the time of intrusion. The overall in situ (i.e., in geographic coordinates) mean direction for andesitic dikes is judged to be highly reliable, although there are two possible scenarios for explaining the easterly deflection: (1) clockwise rotation and (2) tilting to the northwest. We prefer the former scenario and conclude that 45° clockwise rotation occurred in Takane with respect to the North China Block of the Asian continent. This rotation must represent the clockwise rotation of entire Southwest Japan during the opening period of the Japan Sea. Very little difference is observed between the amount of the easterly deflection in Takane and those in the Tokai and Hokuriku regions, indicating no significant relative rotation. Thus, the crust beneath Takane has not suffered rotation caused by collision of the IBM arc with Honshu. Statistical analyses of paleomagnetic directional data suggest that the two paleostress conditions during the intrusion of andesite dikes lasted for a long period enough to sample geomagnetic secular variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-02-01/pdf/2010-1984.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-02-01/pdf/2010-1984.pdf"><span>75 FR 5068 - Lock + TM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-02-01</p> <p>... gates, and an earth dike. The proposed project would consist of: (1) Two new underwater frame modules located adjacent to the earth dike each containing nine turbine generating units with a total capacity of... days from the issuance of this notice. Comments, motions to intervene, notices of intent, and competing...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JSAES..15..409S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JSAES..15..409S"><span>Timing of mafic magmatism in the Tapajós Province (Brazil) and implications for the evolution of the Amazon Craton: evidence from baddeleyite and zircon U Pb SHRIMP geochronology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santos, João Orestes Schneider; Hartmann, Léo Afraneo; McNaughton, Neal Jesse; Fletcher, Ian Robert</p> <p>2002-09-01</p> <p>The precise timing and possible sources of the mafic rocks in the Amazon craton are critical for reconstruction of the Atlantica supercontinent and correlation of mafic magmatism worldwide. New SHRIMP U-Pb baddeleyite and zircon ages and the reinterpretation of 207 existing dates indicate one orogenic (Ingarana) and four postorogenic (Crepori, Cachoeira Seca, Piranhas, and Periquito) basaltic events in the Tapajós Province, south central Amazon craton. Orogenic gabbro dikes that host gold mineralization are 1893 Ma and interpreted as associated with the Ingarana gabbro intrusions of the bimodal calk-alkalic Parauari intrusive suite. The age of 1893 Ma can be used as a guide to discriminate older and mineralized orogenic dikes from younger and nonmineralized Crepori- and Cachoeira Seca-related mafic dikes. The baddeleyite U-Pb age of the postorogenic Crepori dolerite (gabbro-dolerite sills and dikes) is 1780±9 Ma, ˜150 my older than the ages provided by K-Ar. This value correlates well with the Avanavero tholeiitic intrusions in the Roraima group, in the northern part of the craton in Guyana, Venezuela, and Roraima in Brazil. Early Statherian tholeiitic magmatism was widespread not only in the Amazon craton, but also in the La Plata craton of southern South America, where it is known as the giant Piedra Alta swarm of Uruguay and the post-Trans-Amazonian dikes of Tandil in Argentina. The Cachoeira Seca troctolite represents laccoliths, Feixes, and São Domingos, whose baddeleyite U-Pb age is 1186±12 Ma, 120-150 my older than the known K-Ar ages. This age is comparable to other Stenian gabbroic rocks with alkalic affinity in the craton, such as the Seringa Formation in NE Amazonas and the basaltic flows of the Nova Floresta formation in Rondônia. Dolerite from the giant Piranhas dike swarm in the western Tapajós Province has a Middle Cambrian age (507±4 Ma, baddeleyite) and inherited zircons in the 2238-1229 Ma range. The Piranhas dikes fill extensional NNE and NE faults that are possibly related to an early rifting period before the Ordovician onset of the Amazon Basin sedimentation. Representative rocks of the Paleozoic Taiano magmatism of the northern Amazon craton were not detected in the Tapajós Province. Mesozoic dikes are widespread in the Amazon craton, related to Gondwana continental break-up with K-Ar ages in the 260-124 Ma range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/923448','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/923448"><span>Reconstruction and Visualization of Fiber and Laminar Structure inthe Normal Human Heart from Ex Vivo DTMRI Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.</p> <p>2006-12-18</p> <p>Background - The human heart is composed of a helicalnetwork of muscle fibers. These fibers are organized to form sheets thatare separated by cleavage surfaces. This complex structure of fibers andsheets is responsible for the orthotropic mechanical properties ofcardiac muscle. The understanding of the configuration of the 3D fiberand sheet structure is important for modeling the mechanical andelectrical properties of the heart and changes in this configuration maybe of significant importance to understand the remodeling aftermyocardial infarction.Methods - Anisotropic least square filteringfollowed by fiber and sheet tracking techniques were applied to DiffusionTensor Magnetic Resonance Imaging (DTMRI) data of the excisedmore » humanheart. The fiber configuration was visualized by using thin tubes toincrease 3-dimensional visual perception of the complex structure. Thesheet structures were reconstructed from the DTMRI data, obtainingsurfaces that span the wall from the endo- to the epicardium. Allvisualizations were performed using the high-quality ray-tracing softwarePOV-Ray. Results - The fibers are shown to lie in sheets that haveconcave or convex transmural structure which correspond to histologicalstudies published in the literature. The fiber angles varied depending onthe position between the epi- and endocardium. The sheets had a complexstructure that depended on the location within the myocardium. In theapex region the sheets had more curvature. Conclusions - A high-qualityvisualization algorithm applied to demonstrated high quality DTMRI datais able to elicit the comprehension of the complex 3 dimensionalstructure of the fibers and sheets in the heart.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4740423','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4740423"><span>Complex Greenland outlet glacier flow captured</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin</p> <p>2016-01-01</p> <p>The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...62a2004F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...62a2004F"><span>Interpretation of Self-Potential anomalies for investigating fault using the Levenberg-Marquardt method: a study case in Pinggirsari, West Java, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fajriani; Srigutomo, Wahyu; Pratomo, Prihandhanu M.</p> <p>2017-04-01</p> <p>Self-Potential (SP) method is frequently used to identify subsurface structures based on electrical properties. For fixed geometry problems, SP method is related to simple geometrical shapes of causative bodies such as a sphere, cylinder, and sheet. This approach is implemented to determine the value of parameters such as shape, depth, polarization angle, and electric dipole moment. In this study, the technique was applied for investigation of fault, where the fault is considered as resembling the shape of a sheet representing dike or fault. The investigated fault is located at Pinggirsari village, Bandung regency, West Java, Indonesia. The observed SP anomalies that were measured allegedly above the fault were inverted to estimate all the fault parameters through inverse modeling scheme using the Levenberg-Marquardt method. The inversion scheme was first tested on a synthetic model, where a close agreement between the test parameters and the calculated parameters was achieved. Finally, the schema was carried out to invert the real observed SP anomalies. The results show that the presence of the fault was detected beneath the surface having electric dipole moment K = 41.5 mV, half-fault dimension a = 34 m, depth of the sheet’s center h = 14.6 m, the location of the fault’s center xo = 478.25 m, and the polarization angle to the horizontal plane θ = 334.52° in a clockwise direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI51A0286G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI51A0286G"><span>Magma emplacement in 3D</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorczyk, W.; Vogt, K.</p> <p>2017-12-01</p> <p>Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1423428-stressor-layer-induced-elastic-strain-sharing-srtio3-complex-oxide-sheets','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1423428-stressor-layer-induced-elastic-strain-sharing-srtio3-complex-oxide-sheets"><span>Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Tilka, J. A.; Park, J.; Ahn, Y.; ...</p> <p>2018-02-26</p> <p>A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1423428-stressor-layer-induced-elastic-strain-sharing-srtio3-complex-oxide-sheets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1423428-stressor-layer-induced-elastic-strain-sharing-srtio3-complex-oxide-sheets"><span>Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tilka, J. A.; Park, J.; Ahn, Y.</p> <p></p> <p>A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T13E2675L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T13E2675L"><span>A Jurassic Shock-Aftershock Earthquake Sequence Recorded by Small Clastic Pipes and Dikes within Dune Cross-Strata, Zion National Park, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loope, D. B.; Zlotnik, V. A.; Kettler, R. M.; Pederson, D. T.</p> <p>2012-12-01</p> <p>Eolian sandstones of south-central and southeast Utah contain large volumes of contorted cross-strata that have long been recognized as products of liquefaction caused by seismic shaking. Unlike most sites where Navajo Sandstone is exposed, in Zion National Park (southwestern Utah), the Navajo contains very, very few contorted strata. We have, however, mapped the distribution of more than 1,000 small-scale, vertical pipes and dikes in uncontorted cross-strata of the Navajo at two small study sites in Zion. Pipes are 2-5 cm in diameter and up to 3 m long; dikes are ~6 cm wide. Clusters of the water-escape structures lie directly above and below numerous, near-horizontal bounding surfaces. Dikes are restricted to the wind-ripple strata that lie above the bounding surfaces. Pipes are common both above and below the bounding surfaces. In map view, most pipes are arranged in lines. Near the bounding surfaces, pipes merge upward with shallow dikes trending parallel to the lines of pipes. Pipes formed in grainflows—homogeneous, well-sorted sand lacking cohesion. Dikes formed above the bounding surface, in more-cohesive, poorly sorted, wind-ripple strata. As liquefaction began, expansion of subsurface sand caused spreading within the unliquified (capping) beds near the land surface. Dikes intruded cracks in the wind-ripple strata, and pipes rose from the better-sorted sand to interdune surfaces, following trends of cracks. Because the wind-ripple strata had low cohesive strength, a depression formed around each rupture, and ejected sand built upward to a flat-topped surface rather than forming the cone of a classic sand volcano. In one 3 m2 portion of the map area, a cluster of about 20 pipes and dikes, many with truncated tops, record eight stratigraphically distinct seismic events. The large dunes that deposited the Navajo cross-strata likely moved ~1m/yr. When, in response to seismic shaking, a few liters of fluidized sand erupted onto the lowermost portion of the dune lee slope through a pipe, the erupted sand dried and was buried by climbing wind-ripple strata as the large dune continued to advance downwind. The mapped cluster recording eight distinct seismic events lies within thin-laminated sediment that was deposited by wind ripples during 1 m (~ 1 year) of southeastward dune migration. We conclude that the small pipes and dikes of our study sites are products of numerous >MM 5 earthquakes, some of which recurred at intervals of less than 2 months. We interpret one small cluster of pipes and dikes with well-defined upward terminations as a distinct shock-aftershock sequence. Because the largest modern earthquakes can produce surface liquefaction only up to about 175 km from their epicenters, the Jurassic epicenters must have been well within that distance. The tendency of modern plate boundaries to produce high-frequency aftershocks suggests that the epicenter for this Jurassic sequence lay to the southwest, within the plate boundary zone (not within continental rocks to the east). As eolian dunes steadily migrate over interdune surfaces underlain by water-saturated dune cross-strata, the thin, distinct laminae produced by the wind ripples that occupy dune toes can faithfully record high-frequency seismic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED475791.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED475791.pdf"><span>Communication Fact Sheets for Parents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Stremel, Kathleen; Bixler, Betsy; Morgan, Susanne; Layton, Kristen</p> <p></p> <p>This booklet contains 28 fact sheets on communication written primarily for parents and families with a child who is deaf-blind. They attempt to address fundamental but complex issues related to the communication needs of children with vision and hearing impairments. Each fact sheet targets a specific area, including: (1) communication; (2)…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26867205','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26867205"><span>Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hassan, H E; Refat, Moamen S; Sharshar, T</p> <p>2016-04-15</p> <p>Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JOM....67e.938C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JOM....67e.938C"><span>Strength and Formability Improvement of Al-Cu-Mn Aluminum Alloy Complex Parts by Thermomechanical Treatment with Sheet Hydroforming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Yi-Zhe; Liu, Wei; Yuan, Shi-Jian</p> <p>2015-05-01</p> <p>Normally, the strength and formability of aluminum alloys can be increased largely by severe plastic deformation and heat treatment. However, many plastic deformation processes are more suitable for making raw material, not for formed parts. In this article, an experimental study of the thermomechanical treatment by using the sheet hydroforming process was developed to improve both mechanical strength and formability for aluminum alloys in forming complex parts. The limiting drawing ratio, thickness, and strain distribution of complex parts formed by sheet hydroforming were investigated to study the formability and sheet-deformation behavior. Based on the optimal formed parts, the tensile strength, microhardness, grain structure, and strengthening precipitates were analyzed to identify the strengthening effect of thermomechanical treatment. The results show that in the solution state, the limiting drawing ratio of cylindrical parts could be increased for 10.9% compared with traditional deep drawing process. The peak values of tensile stress and microhardness of formed parts are 18.0% and 12.5% higher than that in T6 state. This investigation shows that the thermomechanical treatment by sheet hydroforming is a potential method for the products manufacturing of aluminum alloy with high strength and good formability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V44C..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V44C..04M"><span>Evolution of Volcano-Plutonic Centers in the Northern Colorado River Extensional Corridor, Nevada-Arizona: Protracted Cycles of Replenishment, Mush Accumulation, Fractionation, and Melt Extraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, C. F.; Miller, J. S.; Claiborne, L. L.; Walker, B. A.; Faulds, J. E.; Wooden, J. L.</p> <p>2007-12-01</p> <p>Three major magmatic systems were simultaneously active during early development of the northern Colorado River extensional corridor. These systems, centered on Spirit Mountain batholith, Searchlight pluton, and Aztec Wash and Nelson plutons, include hypabyssal intrusions as well as coarser, deeper-seated rocks emplaced at depths of 5-13 km. Erupted products of Searchlight are clearly exposed; connections between the other systems and extensive coeval volcanic sequences, while very likely, remain unverified. Intrusion at each center began at 17-18 Ma and terminated with a dike swarm at ca. 15.5 Ma. Dikes, sills, and evidence for mingling document the frequent replenishment suggested by longevity of the centers. Quenched magmas in pillows, dikes, and chilled margins indicate that input included trachybasalt (49- 52 wt pct SiO2), trachydacite (quartz monzonite; 62-65 wt pct SiO2), and low-Si rhyolite (granite; ca. 73 wt pct SiO2); similar magmas formed a large part of the regional volcanic sequence. Some of the basalt may represent juvenile magma from enriched mantle, but Sr and Nd isotopic data indicate that all other input magmas are hybrids with both juvenile and ancient crustal components. Although local mixing is evident from field and geochemical evidence, the system-wide hybridization occurred at deeper crustal levels prior to emplacement into the upper crust. Whole-rock elemental compositions, field relations, crystal-size distributions and textures within the volcanic rocks and co-genetic intrusions indicate repeated cycles of magma emplacement and extraction of fractionated melt from cumulate mush. Cumulates are enriched in Sr and Ba and have positive Eu anomalies relative to input magmas. The melt-rich extracts have high-silica rhyolite compositions. They are exposed in plutons as small dikes and large subhorizontal sheets and roof zones comprising fine-grained, commonly vesicle-rich aplitic granite, and they erupted from the Searchlight center and probably from the others. These rocks are extremely depleted in Sr, Ba, and Eu, and middle REE, low in light REE, P, Ti, and Zr, and enriched in Rb, reflecting fractionation of feldspars and accessory minerals. Their high SiO2 (77-79 wt pct) attests to fractionation at shallow levels, consistent with emplacement depths of the upper parts of the plutons. SHRIMP U-Pb ages and compositional zoning in zircon also indicate repeated cycles of growth from fractionating melts and recycling into less evolved melts. Most samples have two or more distinguishable age populations, and many individual grains show evidence for resorption. Compositions of zones indicate that grains experienced dramatic temperature fluctuations and were transferred from highly fractionated to unfractionated melts. Taken together, these data indicate that the intrusions formed and were modified by repeated (a) felsic replenishment that eventually formed thick crystal mush; (b) mafic replenishments that helped to maintain a thermal balance; (c) extraction of fractionated melt into local conduits or ponding zones, to the roof, or to erupt at the surface; (d) rejuvenation of the mush by the preceding processes, entraining and transporting crystals and blurring previous intrusive contacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896b0028A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896b0028A"><span>Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allazadeh, M. R.; Zuelli, N.</p> <p>2017-10-01</p> <p>A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=260083','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=260083"><span>Yield and economics of shallow subsurface drip irrigation (S3DI) and furrow diking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>A shallow subsurface drip irrigation (S3DI) was installed yearly in conjunction with furrow diking to document yield and economic benefit of these techniques on peanut (Arachis hypogaea L.), cotton (Gossypium hirsutum L.), and corn (Zea mays L.). This research was conducted for three years from 2005...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=257981','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=257981"><span>Furrow diking and the economic water use efficiency of irrigated cotton in the southeast United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Cotton (Gossypium hirsutum L.) production in the Southeast United States can be limited by periodic drought. Irrigation and furrow diking tillage may improve economic yield and water use efficiency of cotton. Timing of rainfall may interfere with the efficiency of irrigation. Field studies were c...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-02-05/pdf/2013-02459.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-02-05/pdf/2013-02459.pdf"><span>78 FR 8118 - Cancellation of the Notice of Intent To Prepare a Draft and Final Supplemental Environmental...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-02-05</p> <p>... Herbert Hoover Dike Major Rehabilitation Project, Martin and Palm Beach Counties AGENCY: Department of the... Supplemental Environmental Impact Statement (SEIS) for Reach 1A on the Herbert Hoover Dike (HHD) Major... required for safety modifications to dams. FOR FURTHER INFORMATION CONTACT: Questions may be forwarded to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1892c0009H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1892c0009H"><span>Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hassan, Marwan A.; Ismail, Mohd A. M.</p> <p>2017-10-01</p> <p>The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1899f0006Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1899f0006Z"><span>Mathematical investigation of tsunami-like long waves interaction with submerge dike of different thickness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhiltsov, Konstantin; Kostyushin, Kirill; Kagenov, Anuar; Tyryshkin, Ilya</p> <p>2017-11-01</p> <p>This paper presents a mathematical investigation of the interaction of a long tsunami-type wave with a submerge dike. The calculations were performed by using the freeware package OpenFOAM. Unsteady two-dimensional Navier-Stokes equations were used for mathematical modeling of incompressible two-phase medium. The Volume of Fluid (VOF) method is used to capture the free surface of a liquid. The effects caused by long wave of defined amplitude motion through a submerged dike of varying thickness were discussed in detail. Numerical results show that after wave passing through the barrier, multiple vortex structures were formed behind. Intensity of vortex depended on the size of the barrier. The effectiveness of the submerge barrier was estimated by evaluating the wave reflection and transmission coefficients using the energy integral method. Then, the curves of the dependences of the reflection and transmission coefficients were obtained for the interaction of waves with the dike. Finally, it was confirmed that the energy of the wave could be reduced by more than 50% when it passed through the barrier.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S41A2722K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S41A2722K"><span>Shallow active-source imaging of an andesite dike in southern New Mexico: comparing Reftek Texan and Fairfield Z-Land recordings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karplus, M. S.; Kaip, G.; Harder, S. H.; Johnson, K.</p> <p>2016-12-01</p> <p>In October 2015, the Advanced Exploration Seismology class at the University of Texas at El Paso together with additional volunteers acquired a 500-m active-source seismic profile across an andesite dike adjacent to the Rio Grande River near Sunland Park, New Mexico. Receivers included 100 RT-125 Reftek Texans with 4.5-Hz geophones, spaced every 5 m, and 47 Fairfield Z-Land nodes incorporating 5-Hz 3C geophones, spaced approximately every 10 m. A 8-gauge, 400 grain seismic gun source was fired every 5-10 m along most of the profile. Several locations at the ends of the profile experienced multiple gun shots, which have been stacked to increase signal-to-noise. We discuss similarities and differences in field methods and data acquired using the Texans compared to the nodes for a shallow active-source experiment. We extend the discussion to other types of active-source experiments using other recently-acquired nodal datasets. We observe changes in velocity between the andesite dike and surrounding lithologies, and create a seismic reflection image of the andesite dike.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159025','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159025"><span>Hydrogeology of the Hawaiian islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gingerich, Stephen B.; Oki, Delwyn S.; Cabrera, Maria del Carmen; Lambán, Luis Javier; Valverde, Margarida</p> <p>2011-01-01</p> <p>Volcanic-rock aquifers are the most extensive and productive aquifers in the Hawaiian Islands. These aquifers contain different types of groundwater systems depending on the geologic setting in which they occur. The most common groundwater systems include coastal freshwater-lens systems in the dike-free flanks of the volcanoes and dike-impounded systems within the dike-intruded areas of the volcanoes. In some areas, a thick (hundreds of meters) freshwater lens may develop because of the presence of a coastal confining unit, or caprock, that impedes the discharge of groundwater from the volcanic-rock aquifer, or because the permeability of the volcanic rocks forming the aquifer is low. In other areas with low groundwater-recharge rates and that lack a caprock, the freshwater lens may be thin or brackish water may exist immediately below the water table. Dike-impounded groundwater systems commonly have high water levels (hundreds of meters above sea level) and contribute to the base flow of streams where the water table intersects the stream. Recent numerical modeling studies have enhanced the conceptual understanding of groundwater systems in the Hawaiian Islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1997/4176/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1997/4176/report.pdf"><span>Geohydrology and Numerical Simulation of the Ground-Water Flow System of Molokai, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Oki, Delwyn S.</p> <p>1997-01-01</p> <p>A two-dimensional, steady-state, areal ground-water flow model was developed for the island of Molokai, Hawaii, to enhance the understanding of (1) the conceptual framework of the ground-water flow system, (2) the distribution of aquifer hydraulic properties, and (3) the regional effects of ground-water withdrawals on water levels and coastal discharge. The model uses the finite-element code AQUIFEM-SALT, which simulates flow of fresh ground water in systems that may have a freshwater lens floating on denser underlying saltwater. Model results are in agreement with the general conceptual model of the flow system on Molokai, where ground water flows from the interior, high-recharge areas to the coast. The model-calculated ground-water divide separating flow to the northern and southern coasts lies to either the north or the south of the topographic divide but is generally not coincident with the topographic divide. On the basis of model results, the following horizontal hydraulic conductivities were estimated: (1) 1,000 feet per day for the dike-free volcanic rocks of East and West Molokai, (2) 100 feet per day for the marginal dike zone of the East Molokai Volcano, (3) 2 feet per day for the West Molokai dike complex, (4) 0.02 feet per day for the East Molokai dike complex, and (5) 500 feet per day for the Kalaupapa Volcanics. Three simulations to determine the effects of proposed ground-water withdrawals on water levels and coastal discharge, relative to model-calculated water levels and coastal discharge for 1992-96 withdrawal rates, show that the effects are widespread. For a withdrawal rate of 0.337 million gallons per day from a proposed well about 4 miles southeast of Kualapuu and 3 miles north of Kamiloloa, the model-calculated drawdown of 0.01 foot or more extends 4 miles southeast and 6 miles northwest from the well. For a withdrawal rate of 1.326 million gallons per day from the same well, the model-calculated drawdown of 0.01 foot or more extends 6 miles southeast and 9 miles northwest from the well. In a third scenario, the withdrawal rate from an existing well near Kualapuu was increased by 0.826 million gallons per day. The model-calculated drawdown of 0.01 foot or more extends 6 miles southeast and 8 miles northwest from the well. In all scenarios, coastal discharge is reduced by an amount equal to the additional withdrawal. Additional data needed to improve the understanding of the ground-water flow system on Molokai include: (1) a wider spatial distribution and longer temporal distribution of water-levels, (2) independent estimates of hydraulic conductivity, (3) improved recharge estimates, (4) information about the vertical distribution of salinity in ground water, (5) streamflow data at additional sites, and (6) improved information about the subsurface geology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950007527','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950007527"><span>Coherent states on the m-sheeted complex plane as m-photon states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vourdas, Apostolos</p> <p>1994-01-01</p> <p>Coherent states on the m-sheeted complex plane are introduced and properties like overcompleteness and resolution of the identity are studied. They are eigenstates of the operators a(sub m)(+), a(sub m) which create and annihilate clusters of m-particles. Applications of this formalism in the study of Hamiltonians that describe m-particle clustering are also considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1979/0844/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1979/0844/report.pdf"><span>Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Koski, Randolph A.</p> <p>1979-01-01</p> <p>The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of igneous rocks is progressively more alkaline and silicic from basalt to granodiorite. Early (Stage I) chalcopyrite-bornite (-molybdenite) mineralization and genetically related K-silicate alteration are centered on the Christmas stock. K-silicate alteration is manifested by pervasive hornblende-destructive biotitization in the stock, biotitization of basaltic volcanic wall rocks, and a continuous stockwork of K-feldspar veinlets and quartz-K-feldspar veins in the stock and quartz-sulfide veins in volcanic rocks. Younger (Stage II) pyrite-chalcopyrite mineralization and quartz-sericite-chlorite alteration occur in a zone overlapping with but largely peripheral to the zone of Stage I stockwork veins. Within the Christmas intrusive complex, K-silicate-altered rocks in the central stock are flanked east and west by zones of fracture-controlled quartz-sericite alteration and strong pyritization. In volcanic rocks quartz-chlorite-pyrite-chalcopyrite veins are superimposed on earlier biotitization and crosscut Stage I quartz-sulfide veins. Beyond the zones of quartz-sericite alteration, biotite rhyodacite porphyry dikes contain the propylitic alteration assemblage epidote-chlorite-albite-sphene. Chemical analyses indicate the following changes during pervasive alteration of igneous rocks: (1) addition of Si, K, H, S, and Cu, and loss of Fe 3+ and Ca during intense biotitization of basalt; (2) loss of Na and Ca, increase of Fe3+/Fe2+, and strong H-metasomatism during sericitization of quartz diorite; and (3) increase in Ca, Na, and Fe3+/Fe2+, and loss of K during intense propylitization of biotite rhyodacite porphyry dikes. Thorough biotitization of biotite granodiorite porphyry in the Christmas stock was largely an isochemical process. Fluid-inclusion petrography reveals that Stage I veins are characterized by low to moderate populations of moderate-salinity and gas-rich inclusions, and sparse but ubiquitous halite-bearing inclusions. Moderate-salinity an</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSAES..67...11G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSAES..67...11G"><span>Evidence of Gondwana early rifting process recorded by Resende-Ilha Grande Dike Swarm, southern Rio de Janeiro, Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guedes, Eliane; Heilbron, Monica; de Morisson Valeriano, Claudio; de Almeida, Julio César Horta; Szatmari, Peter</p> <p>2016-04-01</p> <p>Continental flood basalts and dike swarm have been related to continental breakup process through geological time. The Resende - Ilha Grande Dike swarm (RIGDS) located in the southeast Brazil, is related the Gondwana breakup and composed of dikes/sills intruded in Precambrian gneiss. The dikes have three distinguish orientations: NNW more inland; NS-NNE in the central segment and NE orientation in the coast line, consistent with Precambrian structural lineaments. The swarm comprises high-TiO2 tholeiitic basalts divided into three suites based on REE and Sr and Nd isotope data. The Resende and Volta Redonda suites present higher initial 87Sr/86Sr ratios between 0.7077 and 0.7065, while Angra dos Reis suite presents values of 0.7066 to 0.7057. Geochemical and isotopic data support the sub-continental lithospheric mantle (SCLM) as the main source for the high-TiO2 basalts. The suites heterogeneities are explained by different compositions of SCLM in accreted Precambrian terranes and/or different degree of partial melting and fractional. 40Ar/39Ar data indicate age interval between ca. 156 to 144 Ma for the swarm, older than the average for Gondwana breakup (ca. 130-120 Ma). The age interval places the RIGDS between the Karoo magmatism (181-178 Ma) and the Paraná-Etendeka magmatism (133-134 Ma) and indicates that extensional process affected the supercontinent prior the break-up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMGP22A0263P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMGP22A0263P"><span>Characterization of Clastic Dikes Using Controlled Source Audio Magnetotellurics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Persichetti, J. A.; Alumbaugh, D.</p> <p>2001-12-01</p> <p>A site consisting of 3D geology on the Hanford Reservation in Hanford, Washington, has been surveyed using Controlled Source Audio Magnetotellurics (CSAMT) to determine the method's ability to detect clastic dikes. The dikes are fine-grained, soft-sediment intrusions, formed by the buoyant rise of buried, unconsolidated, water rich mud into overlying unconsolidated sediment. The dikes are of major importance because they may act as natural barriers inhibiting the spread of contaminants, or as conduits, allowing the contaminants to be quickly wicked away from the contaminant storage tanks that may be located in close vicinity of the dikes. The field setup consisted of a 33 meter by 63 meter receiver grid with 3 meter spacing in all directions with the transmitter positioned 71.5 meters from the center of the receiver grid. A total of 12 frequencies were collected from 1.1kHz to 66.2kHz. The CSAMT data is being analyzed using a 2D CSAMT RRI code (Lu, Unsworth and Booker, 1999) and a 2D MT RRI code (Smith and Booker, 1991). Of interest is examining how well the 2D codes are able to map 3D geology, the level of resolution that is obtained, and how important it is to include the 3D source in the solution. The ultimate goal is to determine the applicability of using CSAMT for mapping these types of features at the Hanford Reservation site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019695','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019695"><span>Biogeochemical effects of seawater restoration to diked salt marshes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Portnoy, J.W.; Giblin, A.E.</p> <p>1997-01-01</p> <p>We conducted greenhouse microcosm experiments to examine the biogeochemical effects of restoring seawater to historically diked Cape Cod salt marshes. Peat cores from both seasonally flooded and drained diked marshes were waterlogged with seawater, and porewater chemistry was subsequently monitored for 21 mo. The addition of seawater to highly organic, seasonally flooded peat caused the death of freshwater wetland plants, 6-8 cm of sediment subsidence, and increased N and P mineralization. Also, sulfides and alkalinity increased 10-fold, suggesting accelerated decomposition by sulfate reduction. Addition of seawater to the low-organic-content acidic peat from the drained marsh increased porewater pH, alkalinity, PO4-P, and Fe(II), which we attribute to the reestablishment of SO4 and Fe(III) mineral reduction. Increased cation exchange contributed to 6-fold increases in dissolved Fe(II) and Al and 60-fold increases in NH4-N within 6 mo of sail-nation. Seawater reintroductions to seasonally flooded diked marshes will cause porewater sulfides to increase, likely reducing the success of revegetation efforts. Sulfide toxicity is of less concern in resalinated drained peats because of the abundance of Fe(II) to precipitate sulfides, and of NH4-N to offset sulfide inhibition of N uptake. Restoration of either seasonally flooded or drained diked marshes could stimulate potentially large nutrient and Fe(II) releases, which could in turn increase primary production and lower oxygen in receiving waters. These findings suggest that tidal restoration be gradual and carefully monitored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V51E2737L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V51E2737L"><span>Three-Dimensional Analysis of dike/fault interaction at Mono Basin (California) using the Finite Element Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>La Marra, D.; Battaglia, M.</p> <p>2013-12-01</p> <p>Mono Basin is a north-trending graben that extends from the northern edge of Long Valley caldera towards the Bodie Hills and is bounded by the Cowtrack Mountains on the east and the Sierra Nevada on the west. The Mono-Inyo Craters volcanic chain forms a north-trending zone of volcanic vents extending from the west moat of the Long Valley caldera to Mono Lake. The Hartley Springs fault transects the southern Mono Craters-Inyo Domes area between the western part of the Long Valley caldera and June Lake. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of ~1350 A.D. The spatial and temporal proximity between Hartley Springs Fault motion and the North Mono-Inyo eruption sequence suggests a possible relation between seismic events and eruptions. We investigate the interactions between slip along the Hartley Springs fault and dike intrusion beneath the Mono-Inyo craters using a three-dimensional finite element model of the Mono Basin. We employ a realistic representation of the Basin that includes topography, vertical and lateral heterogeneities of the crust, contact relations between fault planes, and a physical model of the pressure required to propagate the dike. We estimate (a) the distribution of Coulomb stress changes to study the influence of dike intrusion on Hartley Springs fault, and (b) the local stress and volumetric dilatation changes to understand how fault slip may influence the propagation of a dike towards the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.302..370B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.302..370B"><span>The transition from granite to banded aplite-pegmatite sheet complexes: An example from Megiliggar Rocks, Tregonning topaz granite, Cornwall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breiter, K.; Ďurišová, J.; Hrstka, T.; Korbelová, Z.; Vašinová Galiová, M.; Müller, A.; Simons, B.; Shail, R. K.; Williamson, B. J.; Davies, J. A.</p> <p>2018-03-01</p> <p>The genetic relationship between a granite pluton and adjacent complex of rare-metal pegmatite-aplite-banded sheets (Megiliggar Sheet Complex - MSC) has been studied at the border of the Tregonning topaz granite at Megiliggar Rocks, Cornwall, SW England. Similarities in whole-rock chemical and mineralogical compositions, together with a gradual change in textures away from the granite margin, provide strong evidence for a genetic link between the Tregonning Granite and MSC. The sheets are likely to represent apophyses of residual melt which escaped from the largely crystallized roof of the granite pluton. The escaping melt was peraluminous, had a composition near the F, B, Li slightly enriched granite minimum, and, in comparison with other Cornish granites, was enriched in F, Li, Rb, Cs, Sn, W, Nb, Ta, and U, and depleted in Fe, Mg, Ca, Sr, Th, Zr, and REE. With increasing distance from the Tregonning Granite, the silicate melt crystallized as homogeneous leucogranite sheets and banded complex sheets (i.e. combinations of bands with granitic, aplitic and pegmatitic textures), then layered aplite-pegmatites; this sequence becoming progressively more depleted in the fluxing and volatile elements F, Li, Rb, and Cs, but showing no change in Zr/Hf ratios. The fixed Zr/Hf ratio is interpreted as indicating a direct genetic link (parental melt) between all rock types, however the melt progressively lost fluxing and volatile elements with distance from the granite pluton, probably due to wall-rock reaction or fluid exsolution and migration via fractures. Differentiation of the primary melt into Na-Li-F-rich and separate K-B-rich domains was the dominant chemical process responsible for the textural and mineral diversity of the MSC. On a large (cliff-section) scale, the proximal Na-Li-F-rich leucogranite passes through complex sheets into K-B-rich aplite-pegmatites, whilst at a smaller (<1 m) scale, the K-B-rich bands are interspersed (largely overlain) by Na-Li-F-rich segregations. The grain size differences between the aplite and pegmatite could be related to pressure fluctuations and/or undercooling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V31C0521V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V31C0521V"><span>New insights into the magma chamber activity under Mauna Loa inferred from SBAS-InSAR and geodetic inversion modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Varugu, B. K.; Amelung, F.</p> <p>2017-12-01</p> <p>Mauna Loa volcano, located on the Big Island, Hawaii, is the largest volcano on the earth and historically been one of the most active volcanoes on the earth. Since its last eruption in 1984, there was a decrease in the magmatic activity, yet episodic inflations with increased seismicity sparks interests in the scientific community and there is strong need to monitor the volcano with growing infrastructure close to the flanks of the volcano. Geodetic modelling of the previous inflations illustrate that the magma activity is due to inflation of hydraulically connected dike and magma chamber located from 4-8km beneath the summit (Amelung et al. 2007). Most of the seismicity observed on Mauna Loa is due to the movement along a decollement fault situated at the base of the volcano. Magma inflation under Mauna Loa has started again during the last quarter of 2013 and is continuing still with an increased seismicity. In this study, we used 140 images form COSMO SkyMED between 2013-2017 to derive and model the ground deformation. We carried out time series InSAR analysis using Small Baseline (SB) approach. While the deformation pattern seems similar in many ways to the previous inflation periods, geodetic modelling for inversion of source parameters indicate a significant propagation of the dike ( 1 km) into the South West Rift Zone(SWRZ) and a decreased depth of the dike top from summit, compared to the previous inflations. Such propagation needs to be studied further in view of the steep slope of SWRZ. In understanding the dynamics of this propagating dike, we also observed an increased seismic activity since 2014 in the vicinity of the modelled dike. Here in this study we attempt to characterize the stresses induced by the propagating dike and seaward slipping movement along the basal decollement, to explain the increased seismicity using a finite element model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025625','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025625"><span>Late Neoproterozoic felsite (602.3 +/- 2 Ma) and associated metadiabase dikes in the Reading Prong, Pennsylvania, and rifting of Laurentia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, R.C.</p> <p>2003-01-01</p> <p>Felsite dikes in the Rittenhouse Gap iron mine district of the Reading Prong, eastern Pennsylvania, have a close geochemical affinity with the peralkaline Battle Mountain Member of the Robertson River Igneous Suite (RRIS), northern Virginia. These newly recognized Rittenhouse Gap Felsite dikes of the Swabia Creek Igneous Suite (SCIS) of eastern Pennsylvania plot as within-plate, A-type, A1 granites on various discriminant diagrams, but are quite distinct from late Neoproterozoic Catoctin Metarhyolite of Pennsylvania which has lower Ga/Al and Nb, but higher Eu. Newly recognized metadiabase dikes, also found in the Rittenhouse Gap district and proposed as Tunnel Mine Metadiabase of the SCIS, classify as alkali within-plate or continental initial rifting alkali tholeiites. They are quite distinct chemically and mineralogically from Catoctin Metabasalt flows and equivalent metadiabase dikes in Pennsylvania, which have lower Nb. Sr and Nd isotopic data indicate that the Tunnel Mine Metadiabase and Rittenhouse Gap Felsite are of mantle origin, but that the latter also includes a crustal component. The SCIS bimodal volcanics in Pennsylvania suggest a previously unrecognized rift environment in Pennsylvania at 602 Ma, somewhat predating the recognized, latest Neoproterozoic Catoctin event in Pennsylvania. As such, they fill in both temporal and geographic gaps for the rifting of Laurentia in Pennsylvania. It is proposed that the SCIS melt developed from a remnant ember of the northeastward trace of the older Mount Rogers-RRIS hotspot as Laurentia rotated clockwise. However, release and intrusion of the SCIS may have been related to younger Catoctin event crustal thinning that slightly predated the mafic dike phase of the Catoctin as Laurentia later migrated northward over a second hotspot. Eventually, the mafic phase associated with this second hotspot sufficiently attenuated the crust to allow introduction of Catoctin volcanics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Tectp.448...60R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Tectp.448...60R"><span>Extensional Late Paleozoic deformation on the western margin of Pangea, Patlanoaya area, Acatlán Complex, southern Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramos-Arias, M. A.; Keppie, J. D.; Ortega-Rivera, A.; Lee, J. W. K.</p> <p>2008-02-01</p> <p>New mapping in the northern part of the Paleozoic Acatlán Complex (Patlanoaya area) records several ductile shear zones and brittle faults with normal kinematics (previously thought to be thrusts). These movement zones separate a variety of units that pass structurally upwards from: (i) blueschist-eclogitic metamorphic rocks (Piaxtla Suite) and mylonitic megacrystic granites (Columpio del Diablo granite ≡ Ordovician granites elsewhere in the complex); (ii) a gently E-dipping, listric, normal shear zone with top to the east kinematic indicators that formed under upper greenschist to lower amphibolite conditions; (iii) the Middle-Late Ordovician Las Minas quartzite (upper greenschist facies psammites with minor interbedded pelites intruded by mafic dikes and a leucogranite dike from the Columpio del Diablo granite) unconformably overlain by the Otate meta-arenite (lower greenschist facies psammites and pelites): roughly temporal equivalents are the Middle-Late Ordovician Mal Paso and Ojo de Agua units (interbedded metasandstone and slate, and metapelite and mafic minor intrusions, respectively) — some of these units are intruded by the massive, 461 ± 2 Ma, Palo Liso megacrystic granite: decussate, contact metamorphic muscovite yielded a 40Ar/ 39Ar plateau age of 440 ± 4 Ma; (iv) a steeply-moderately, E-dipping normal fault; (v) latest Devonian-Middle Permian sedimentary rocks (Patlanoaya Group: here elevated from formation status). The upward decrease in metamorphic grade is paralleled by a decrease in the number of penetrative fabrics, which varies from (i) three in the Piaxtla Suite, through (ii) two in the Las Minas unit (E-trending sheath folds deformed by NE-trending, subhorizontal folds with top to the southeast asymmetry, both associated with a solution cleavage), (iii) one in the Otate, Mal Paso, and Ojo de Agua units (steeply SE-dipping, NE-SW plunging, open-close folds), to (iv) none in the Patlanoaya Group. 40Ar/ 39Ar analyses of muscovite from the earliest cleavage in the Las Minas unit yielded a plateau age of 347 ± 3 Ma and show low temperature ages of ˜ 260 Ma. Post-dating all of these structures and the Patlanoaya Group are NE-plunging, subvertical folds and kink bands. An E-W, vertical normal fault juxtaposes the low-grade rocks against the Anacahuite amphibolite that is cut by megacrystic granite sheets, both of which were deformed by two penetrative fabrics. Amphibole from this unit has yielded a 40Ar/ 39Ar plateau age of 299 ± 6 Ma, which records cooling through ˜ 490 °C and is probably related to a Permo-Carboniferous reheating event during exhumation. The extensional deformation is inferred to have started in the latest Devonian (˜ 360 Ma) during deposition of the basal Patlanoaya Group, lasting through the rapid exhumation of the Piaxtla Suite at ˜ 350-340 Ma synchronous with cleavage development in the Las Minas unit, deposition of the Patlanoaya Group with active fault-related exhumation suggested by Mississippian and Early Permian conglomerates (˜ 340 and 300 Ma, respectively), and continuing at least into the Middle Permian (≡ 260 Ma muscovite ages). The continuity of Mid-Continent Mississippian fauna from the USA to southern Mexico suggests that this extensional deformation occurred on the western margin of Pangea after closure of the Rheic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711955J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711955J"><span>Changes induced by sea level rise on network properties of restoration areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiménez, Mirian; Castanedo, Sonia; Zhou, Zeng; Coco, Giovanni; Medina, Raúl</p> <p>2015-04-01</p> <p>Human actions have been reducing the natural domain of estuarine systems for centuries. In the past, estuaries were perceived as unhealthy areas, source of diseases, which were adapted to human use by drainage and heavy engineering. Our current understanding shows that estuaries are not sources of disease, but rich ecosystems that cover important ecosystem functions. They need to be restored to their natural state. However, restoration actions may induce morphological changes that may change the estuary current behavior. It is thus of the utmost importance to understand the morphodynamic changes induced by restoration actions, more so when the final aim is to predict these changes. Dikes have been the most used mean to enclose and drain areas of estuaries. In this work, we focus our attention on dike removal as a means to restore the areas enclosed by these dikes. Dikes may be removed completely, or only partially (opening one or several breaches), to allow the tidal flow to enter into the area to be restored. Morphodynamic effects of dike removal are simulated numerically using Delft3d. Different dike removal configurations are studied and their effect on the recovery of the estuary quantified. Estuarine tidal networks are characterized by means of a new approach that links network connectivity to the spatial hydrodynamic fields developed in the estuary. The impact of different restorations strategies in the drainage properties of the network has been studied in the short term (5 -10 years) and in the long term (100 years) allowing the connectivity to evolve with time. Results show, for different scenarios, differences not only in the spatial distribution of the tidal network but also in statistical characteristics after different dike removal actions. The new distribution of channels will have implications for the location of the tidal flats, flood patterns and thus biological environments within the tidal networks. These changes in the morphological properties are quantified with the new approach (Jiménez et al.,2014), which allows to highlight the changes that induce deep behavioral changes in the system. The importance of sea level rise in these behavioral changes is also assessed in the study. References: Jiménez, M., S. Castanedo, Z. Zhou, G.Coco, R. Medina, and I. Rodriguez-Iturbe (2014). Scaling properties of tidal networks, Water Resources Research., 50, doi:10.1002/2013WR015006.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53A3065M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53A3065M"><span>Hazard Models From Periodic Dike Intrusions at Kı¯lauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montgomery-Brown, E. K.; Miklius, A.</p> <p>2016-12-01</p> <p>The persistence and regular recurrence intervals of dike intrusions in the East Rift Zone (ERZ) of Kı¯lauea Volcano lead to the possibility of constructing a time-dependent intrusion hazard model. Dike intrusions are commonly observed in Kı¯lauea Volcano's ERZ and can occur repeatedly in regions that correlate with seismic segments (sections of rift seismicity with persistent definitive lateral boundaries) proposed by Wright and Klein (USGS PP1806, 2014). Five such ERZ intrusions have occurred since 1983 with inferred locations downrift of the bend in Kı¯lauea's ERZ, with the first (1983) being the start of the ongoing ERZ eruption. The ERZ intrusions occur on one of two segments that are spatially coincident with seismic segments: Makaopuhi (1993 and 2007) and Nāpau (1983, 1997, and 2011). During each intrusion, the amount of inferred dike opening was between 2 and 3 meters. The times between ERZ intrusions for same-segment pairs are all close to 14 years: 14.07 (1983-1997), 14.09 (1997-2011), and 13.95 (1993-2007) years, with the Nāpau segment becoming active about 3.5 years after the Makaopuhi segment in each case. Four additional upper ERZ intrusions are also considered here. Dikes in the upper ERZ have much smaller opening ( 10 cm), and have shorter recurrence intervals of 8 years with more variability. The amount of modeled dike opening during each of these events roughly corresponds to the amount of seaward south flank motion and deep rift opening accumulated in the time between events. Additionally, the recurrence interval of 14 years appears to be unaffected by the magma surge of 2003-2007, suggesting that flank motion, rather than magma supply, could be a controlling factor in the timing and periodicity of intrusions. Flank control over the timing of magma intrusions runs counter to the historical research suggesting that dike intrusions at Kı¯lauea are driven by magma overpressure. This relatively free sliding may have resulted from decreased friction following the 1975 Kalapana earthquake. A hazard model can be constructed from the historical intrusion record (i.e., how long has it been since an intrusion on that segment), and augmented by monitoring the accumulation of strain across the rift and local seismicity rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP11A3563P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP11A3563P"><span>Emplacement of Zebín Hill, Jičín Volcanic Field, Bohemian Paradise, Czech Republic: Anisotropy of Magnetic Susceptibility, Ground Magnetometry, Electric Resistivity Tomography, and Paleomagnetic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petronis, M. S.; Rapprich, , V.; Valenta, J.; Leman, J.; Brister, A. R.; van Wyk de Vries, B.</p> <p>2014-12-01</p> <p>A well-preserved set of mid-Miocene tuff-cones and their feeders outcrop in the Jičín Volcanic Field, Czech Republic. Zebín Hill is a tuff cone that has been quarried to reveal the volcanoes feeder system. This edifice offers the opportunity to understand how magma is transported through a monogenetic pyroclastic cone. Rock types include a coarse-grained basal phreatomagmatic layer and a stratified upper wall facies both of which are penetrated by feeder dikes. Anisotropy of magnetic susceptibility (AMS) and paleomagnetic data were collected at twenty-one sites from feeder dikes and the main conduit of the volcano. A high-resolution ground magnetometry survey, electric resistivity tomography and seismic tomography were also conducted. Magnetic susceptibility intensity indicates that the dominant magnetic mineral is a ferromagnetic phase with little contribution from paramagnetic minerals. AMS ellipsoids shapes are both oblate and prolate and inferred magma flow directions indicate magma flow away from the central vent area and subhorizontal flow towards and away from the axial conduit; both upward and downward magma flow is evident at some sites. Curie point estimates yield a spectrum of results indicating a mixture of high-Ti titanomagnetite, iron sulfide, and low-Ti titanomagnetite. Ground magnetometry data indicate that both normal and reverse polarity rocks are present at Zebín Hill. Paleomagnetic data confirm the ground magnetic data in that both normal and reverse polarity rocks are present. Most sites yield a single component magnetization that is well grouped at the site level and carried by pseudosingle domain titanomagnetite. The presence of both normal and reverse polarity magnetizations from the volcano indicate that significant time passed during the growth of this monogenic system. Complex system of branching dikes has been also observed from electric resistivity tomography. The simple external structure of monogenetic volcanoes hides a rather complex magmatic plumbing system that dynamically evolves during the life of the volcano. As we show, the well-exposed roots of Zebín Hill reveals that the growth of a volcano occurs not due to simple central axis feeder systems but rather through interplay of local structures, magmatic effects, and construct evolution during the life of the volcano</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SolED...5.1941S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SolED...5.1941S"><span>Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarifakioglu, E.; Dilek, Y.; Sevin, M.</p> <p>2013-11-01</p> <p>Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the Northern Neotethys. The Ankara Mélange thus exhibits the record of ~120-130 million years of oceanic magmatism in geological history of the Northern Neotethys.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JSAES..32..183C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JSAES..32..183C"><span>Reassessment of the volume of the Las Aguilas mafic-ultramafic intrusives, San Luis, Argentina, based on an alternative geophysical model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Claudia, Zaffarana; Silvana, Geuna; Stella, Poma; Alberto, Patiño Douce</p> <p>2011-10-01</p> <p>In the Sierra de San Luis, Central Argentina, a belt of small and discontinuous lenses of mafic-ultramafic rocks intrude a polydeformed basement and are thought to be the cause of a local increase of the metamorphic grade from amphibolite to granulite facies conditions. This assumption was especially based on forward modelling of a huge gravity anomaly centered over the Sierra de San Luis, which lead some workers to think that a vast volume of mafic-ultramafic rocks lay in shallow levels. Here, we propose an alternative model to explain this anomaly, in which the mafic-ultramafic intrusion is not the ultimate source. Therefore, there is no need to propose a bigger size than that observed in outcrops for the mafic-ultramafic bodies. The thermal effect of the emplacement of mafic-ultramafic sills and dikes on the host rocks was estimated applying a simple analytical solution (error function) for heating of a semi-infinite half space (the country rocks) in contact with a hotter sheet of finite thickness (the mafic-ultramafic intrusion). Results indicate that the effect of the intrusion of these hot mafic magmas is local, because beyond a few hundred meters from the contact zone temperatures never exceed 600 °C, and a few km from the intrusion they barely increase 50 °C relative to the initial temperature. These results, together with the preservation of primary igneous characteristics (such as rhythmic layering) being overprinted by metamorphic textural changes, indicate that the intrusion occurred before regional deformation. It is suggested that the thermal anomaly in the Pringles Metamorphic Complex could have been mainly caused by factors inherent to their geodynamic setting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016352&hterms=originals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doriginals','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016352&hterms=originals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doriginals"><span>Original size of the Vredefort structure, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Therriault, A. M.; Reid, A. M.; Reimold, W. U.</p> <p>1993-01-01</p> <p>The Vredefort structure is located approximately 120 km southwest of Johannesburg, South Africa, and is deeply eroded. Controversies remain on the origin of this structure with the most popular hypotheses being: (1) by impact cratering about 2.0 Ga; (2) as a cryptoexplosion structure about 2.0 Ga; and (3) by purely tectonic processes starting at about 3.0 Ga and ending with the Vredefort event at 2.0 Ga. In view of recent work in which the granophyre dikes are interpreted as the erosional remants of a more extensive impact melt sheet, injected downward into the underlying country rocks, the impact origin hypothesis for Vredefort is adopted. In order to estimate the original dimensions of the Vredefort impact structure, it is assumed that the structure was initially circular, that its predeformation center corresponds to the center of the granitic core, and that the pre-Vredefort geology of the area prior to approximately 2.0 Ga ago is as suggested by Fletcher and Reimold. The spatial relationship between shock metamorphic effects, the shock pressures they record, and the morphological features of the crater were established for a number of large terrestrial craters. The principles of crater formation at large complex impact structures comparable in size to Vredefort were also established, although many details remain unresolved. An important conclusion is that the transient crater, which is formed directly by excavation and displacement by the shock-induced cratering flow-field (i.e., the particle velocity flow field existing in the region of the transient crater but behind the initial outgoing shock front), is highly modified during the late stage processes. The original transient crater diameter lies well within the final rim of the crater, which is established by structural movements during late-stage cavity modification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6759601-two-dimensional-pattern-metamorphic-fluid-flow-mary-kathleen-australia-fluid-focusing-transverse-dispersion-implications-modeling-fluid-flow','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6759601-two-dimensional-pattern-metamorphic-fluid-flow-mary-kathleen-australia-fluid-focusing-transverse-dispersion-implications-modeling-fluid-flow"><span>The two-dimensional pattern of metamorphic fluid flow at Mary Kathleen, Australia: Fluid focusing, transverse dispersion, and implications for modeling fluid flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cartwright, I.</p> <p></p> <p>The pattern of [delta][sup 18]O values in layered Corella calc-silicate rocks adjacent to a scapolitized metadolerite dike at Timberu in the Mary Kathleen fold belt illustrates some of the complexities of two-dimensional metamorphic fluid flow. Fluids flowing from the dike ([delta][sup 18]O = 9-10%) into the calc-silicate rocks lowered calcite [delta][sup 18]O values form 19-20% to as low as 10.3%. Time-integrate advectite fluid fluxes varied from 0.72 to > 8.1 m[sup 3]/m[sup 2] over a 4.5-m lateral distance, and there are two distinct channels of higher fluid flux. If the duration of fluid flow was similar across the outcrop, intrinsicmore » permeabilities varied laterally by at least an order of magnitude. Fluid flow was largely focused across lithological layering, with rare excursions parallel to layering, suggesting that (up to 1 m) to those at the isotopic front ([approximately]1.2 m), indicating that the coefficients of transverse and longitudinal dispersion are of similar orders of magnitude. Localities in other terrains probably show similar complex patterns of isotopic resetting that in two dimensions correspond to the predictions of the advective-dispersive transport models, but which are difficult to interpret using a one-dimensional analysis. Transverse dispersion during channeled fluid flow will potentially reset O-isotope ratios adjacent to the channels and cause decoupling of geochemical parameters during advective and dispersive transport. 43 refs., 5 figs., 2 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195474','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195474"><span>Oxygen-isotope exchange and mineral alteration in gabbros of the Lower Layered Series, Kap Edvard Holm Complex, East Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fehlhaber, Kristen L.; Bird, Dennis K.</p> <p>1991-01-01</p> <p>Multiple intrusions of gabbros, mafic dikes, and syenites in the Kap Edvard Holm Complex gave rise to prolonged circulation of meteoric hydrothermal solutions and extreme isotope exchange and mineral alteration in the 3600-m-thick Lower Layered Series gabbros. In the Lower Layered Series, δ18O of plagioclase varies from +0.3‰ to -5.8‰, and it decreases with an increase in the volume of secondary talc, chlorite, and actinolite. In the same gabbros, pyroxenes have a more restricted range in δ18O, from 5.0‰ to 3.8‰ and values of δ18Opyroxene are independent of the abundance of secondary minerals, which ranges from 14% to 30%. These relations indicate that large amounts of water continued to flow through the rocks at temperatures of <500-600°C, altering the gabbros to assemblages of talc + chlorite + actinolite ± epidote ±albite and causing significant oxygen-isotope exchange in plagioclase, but not in pyroxene. The extensive low-temperature secondary mineralization and 18O depletion of plagioclase in the Lower Layered Series are associated with the later emplacement of dikes and gabbros and syenites, which created new fracture systems and provided heat sources for hydrothermal fluid circulation. This produced subsolidus mineral alteration and isotope exchange in the Lower Layered Series that are distinct from those in the Skaergaard and Cuillin gabbros of the North Atlantic Tertiary province, but are similar to those observed in some oceanic gabbros.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016mt12.book..301S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016mt12.book..301S"><span>The effects of strain and stress state in hot forming of mg AZ31 sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sherek, Paul A.; Carpenter, Alexander J.; Hector, Louis G.; Krajewski, Paul E.; Carter, Jon T.; Lasceski, Joshua; Taleff, Eric M.</p> <p></p> <p>Wrought magnesium alloys, such as AZ31 sheet, are of considerable interest for light-weighting of vehicle structural components. The poor room-temperature ductility of AZ31 sheet has been a hindrance to forming the complex part shapes necessary for practical applications. However, the outstanding formability of AZ31 sheet at elevated temperature provides an opportunity to overcome that problem. Complex demonstration components have already been produced at 450°C using gas-pressure forming. Accurate simulations of such hot, gas-pressure forming will be required for the design and optimization exercises necessary if this technology is to be implemented commercially. We report on experiments and simulations used to construct the accurate material constitutive models necessary for finite-element-method simulations. In particular, the effects of strain and stress state on plastic deformation of AZ31 sheet at 450°C are considered in material constitutive model development. Material models are validated against data from simple forming experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol3/pdf/CFR-2011-title33-vol3-sec321-1.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol3/pdf/CFR-2011-title33-vol3-sec321-1.pdf"><span>33 CFR 321.1 - General.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... DAMS AND DIKES IN NAVIGABLE WATERS OF THE UNITED STATES § 321.1 General. This regulation prescribes, in... dam in a navigable water of the United States pursuant to section 9 of the Rivers and Harbors Act of 1899 (33 U.S.C. 401). See 33 CFR 320.2(a). Dams and dikes in navigable waters of the United States also...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21655555','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21655555"><span>Room temperature synthesis of protonated layered titanate sheets using peroxo titanium carbonate complex solution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sutradhar, Narottam; Sinhamahapatra, Apurba; Pahari, Sandip Kumar; Bajaj, Hari C; Panda, Asit Baran</p> <p>2011-07-21</p> <p>We report the synthesis of peroxo titanium carbonate complex solution as a novel water-soluble precursor for the direct synthesis of layered protonated titanate at room temperature. The synthesized titanates showed excellent removal capacity for Pb(2+) and methylene blue. Based on experimental observations, a probable mechanism for the formation of protonated layered dititanate sheets is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896h0004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896h0004S"><span>Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spoelstra, Paul; Djakow, Eugen; Homberg, Werner</p> <p>2017-10-01</p> <p>The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V21A3025G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V21A3025G"><span>Seismic structure of oceanic crust at ODP borehole 504B: Investigating anisotropy and layer 2 characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.</p> <p>2015-12-01</p> <p>Fracture and fault networks in the upper oceanic crust influence the circulation of hydrothermal fluids and heat transfer between crust and ocean. These fractures form by extensional stresses, with a predominant orientation parallel to the ridge axis, creating porosity- and permeability-derived anisotropy that can be measured in terms of seismic velocity. These properties change as the crust ages and evolves through cooling, alteration and sedimentation. The rate at which these changes occur and their effects on oceanic crustal structure and hydrothermal flow patterns are currently not well constrained. The NERC-funded OSCAR project aims to understand the development of upper oceanic crust, the extent and influence of hydrothermal circulation on the crust, and the behavior of fluids flowing in fractured rock. We show P-wave velocity models centered on DSDP/ODP Hole 504B, located ~200 km south of the Costa Rica Rift, derived from data acquired during a recent integrated geophysics and oceanography survey of the Panama Basin. The data were recorded by 25 four-component OBSs deployed in a grid, that recorded ~10,000 full azimuthal coverage shots fired by a combined high- and low-frequency seismic source. Both reflection and refraction data are integrated to reveal the seismic velocity structure of the crust within the 25 km by 25 km grid. The down-hole geological structure of 6 Ma crust at 504B comprises 571.5 m of extrusive basalts overlying a 209 m transition zone of mixed pillows and dikes containing a clear alteration boundary, which grades to >1050 m of sheeted dikes. Our model results are compared with this lithological structure and other previously published results to better understand the nature of velocity changes within seismic layer 2. The data provide a 3D framework, which together with analysis of the S-wave arrivals and particle motion studies, constrain estimates of the seismic anisotropy and permeability structure of the upper oceanic crust as it ages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070023478','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070023478"><span>The Formation and Chronology of the PAT 91501 Impact-Melt L-Chondrite with Vesicle-Metal-Sulfide Assemblages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Benedix, G. K.; Ketcham, R. A.; Wilson, L.; McCoy, T. J.; Bogard, D. D.; Garrison, D. H.; Herzog, G. F.; Xue, S.; Klein, J.; Middleton, R.</p> <p>2007-01-01</p> <p>The L chondrite Patuxent Range (PAT) 41 91501 is an 8.5-kg unshocked, homogeneous, igneous-textured impact melt that cooled slowly compared to other meteoritic impact melts in a crater floor melt sheet or sub-crater dike. We conducted mineralogical and tomographic studies of previously unstudied mm- to cm-sized metal-sulfide-vesicle assemblages and chronologic studies of the silicate host. Metal-sulfide clasts constitute about 1 vol.%, comprise zoned taenite, troilite and pentlandite, and exhibit a consistent orientation between metal and sulfide and of metal-sulfide contacts. Vesicles make up approximately 2 vol.% and exhibit a similar orientation of long axes. Ar-39-Ar-40 measurements date the time of impact at 4.461 +/- 0.008 Gyr B.P. Cosmogenic noble gases and Be-10 and Al-2l activities suggest a pre-atmospheric radius of 40-60 cm and a cosmic ray exposure age of 25-29 Myr, similar to ages of a cluster of L chondrites. PAT 91501 dates the oldest known impact on the L chondrite parent body. The dominant vesicle-forming gas was S2 (approximately 15-20 ppm), which formed in equilibrium with impact-melted sulfides. The meteorite formed in an impact melt dike beneath a crater, as did other impact melted L chondrites, such as Chico. Cooling and solidification occurred over approximately 2 hours. During this time, approximately 90% of metal and sulfide segregated from the local melt. Remaining metal and sulfide grains oriented themselves in the local gravitational field, a feature nearly unique among meteorites. Many of these metal sulfide grains adhered to vesicles to form aggregates that may have been close to neutrally buoyant. These aggregates would have been carried upward with the residual melt, inhibiting further buoyancy-driven segregation. Although similar processes operated individually in other chondritic impact melts, their interaction produced the unique assemblage observed in PAT 91501.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21D..08R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21D..08R"><span>Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.</p> <p>2016-12-01</p> <p>Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.G42A..04A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.G42A..04A"><span>Geodetic measurements and numerical models of the Afar rifting sequence 2005-2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ali, T.; Feigl, K.; Calais, E.; Hamling, I. J.; Wright, T. J.</p> <p>2012-12-01</p> <p>Rifting episodes are characterized by magma migration and dike intrusions that perturb the stress field within the surrounding lithosphere, inducing viscous flow in the lower crust and upper mantle that leads to observable, transient surface deformation. The Manda Hararo-Dabbahu rifting episode that occurred in the Afar depression between 2005 and 2010 is the first such episode to unfold fully in the era of satellite geodesy, thus providing a unique opportunity to probe the rheology of lithosphere at a divergent plate boundary. GPS and SAR measurements over the region since 2005 show accelerated surface deformation rates during post-diking intervals [Wright et al., Nature Geosci., 2012]. Using these observations in combination with a numerical model, we estimate model parameters that best explain the deformation signal. Our model accounts for three distinct processes: (i) secular plate spreading between Nubian and Arabian plates, (ii) time dependent post-rifting viscoelastic relaxation following the 14 dike intrusions that occurred between 2005 and 2010, including the 60 km long mega dike intrusion of September 2005, and (iii) magma accumulation within crustal reservoirs that feed the dikes. To model the time dependent deformation field, we use the open-source unstructured finite element code, Defmod [Ali, 2011, http://defmod.googlecode.com/]. Using a gradient-based iterative scheme [Ali and Feigl, Geochem. Geophys. Geosyst., 2012], we optimize the fit between observed and modeled deformation to estimate parameters in the model, including the locking depth of the rift zone, geometry and depth of magma reservoirs and rheological properties of lower crust and upper mantle, along with their formal uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29908506','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29908506"><span>A framework for performing comparative LCA between repairing flooded houses and construction of dikes in non-stationary climate with changing risk of flooding.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hennequin, Thomas; Sørup, Hjalte Jomo Danielsen; Dong, Yan; Arnbjerg-Nielsen, Karsten</p> <p>2018-06-13</p> <p>Sustainable flood management is a basic societal need. In this article, life cycle assessment is used to compare two ways to maintain the state of a coastal urban area in a changing climate with increasing flood risk. On one side, the construction of a dike, a hard and proactive scenario, is modelled using a bottom up approach. On the other, the systematic repair of houses flooded by sea surges, a post-disaster measure, is assessed using a Monte Carlo simulation allowing for aleatory uncertainties in predicting future sea level rise and occurrences of extreme events. Two metrics are identified, normalized mean impacts and probability of dike being most efficient. The methodology is applied to three case studies in Denmark representing three contrasting areas, Copenhagen, Frederiksværk, and Esbjerg. For all case studies the distribution of the calculated impact of repairing houses is highly right skewed, which in some cases has implications for the comparative LCA. The results show that, in Copenhagen, the scenario of the dike is overwhelmingly favorable for the environment, with a 43 times higher impact for repairing houses and only 0% probability of the repairs being favorable. For Frederiksværk and Esbjerg the corresponding numbers are 5 and 0.9 times and 85% and 32%, respectively. Hence constructing a dike at this point in time is highly recommended in Copenhagen, preferable in Frederiksværk, and probably not recommendable in Esbjerg. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193603','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193603"><span>Pre-eruption deformation caused by dike intrusion beneath Kizimen volcano, Kamchatka, Russia, observed by InSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ji, Lingyun; Lu, Zhong; Dzurisin, Daniel; Senyukov, Sergey</p> <p>2013-01-01</p> <p>Interferometric synthetic aperture radar (InSAR) images reveal a pre-eruption deformation signal at Kizimen volcano, Kamchatka, Russia, where an ongoing eruption began in mid-November, 2010. The previous eruption of this basaltic andesite-to-dacite stratovolcano occurred in 1927–1928. InSAR images from both ascending and descending orbital passes of Envisat and ALOS PALSAR satellites show as much as 6 cm of line-of-sight shortening from September 2008 to September 2010 in a broad area centered at Kizimen. About 20 cm of opening of a nearly vertical dike provides an adequate fit to the surface deformation pattern. The model dike is approximately 14 km long, 10 km high, centered 13 km beneath Kizimen, and strikes NE–SW. Time-series analysis of multi-temporal interferograms indicates that (1) intrusion started sometime between late 2008 and July 2009, (2) continued at a nearly constant rate, and (3) resulted in a volume expansion of 3.2 × 107 m3 by September 2010, i.e., about two months before the onset of the 2010 eruption. Earthquakes located above the tip of the dike accompanied the intrusion. Eventually, magma pressure in the dike exceeded the confining strength of the host rock, triggering the 2010 eruption. Our results provide insight into the intrusion process that preceded an explosive eruption at a Pacific Rim stratovolcano following nearly a century of quiescence, and therefore have implications for monitoring and hazards assessment at similar volcanoes elsewhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..344..197W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..344..197W"><span>Surface deformation induced by magmatic processes at Pacaya Volcano, Guatemala revealed by InSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wnuk, K.; Wauthier, C.</p> <p>2017-09-01</p> <p>Pacaya Volcano, Guatemala is a continuously active, basaltic volcano with an unstable western flank. Despite continuous activity since 1961, a lack of high temporal resolution geodetic surveying has prevented detailed modeling of Pacaya's underlying magmatic plumbing system. A new, temporally dense dataset of Interferometric Synthetic Aperture Radar (InSAR) RADARSAT-2 images, spanning December 2012 to March 2014, show magmatic deformation before and during major eruptions in January and March 2014. Inversion of InSAR surface displacements using simple analytical forward models suggest that three magma bodies are responsible for the observed deformation: (1) a 4 km deep spherical reservoir located northwest of the summit, (2) a 0.4 km deep spherical source located directly west of the summit, and (3) a shallow dike below the summit. Periods of heightened volcanic activity are instigated by magma pulses at depth, resulting in rapid inflation of the edifice. We observe an intrusion cycle at Pacaya that consists of deflation of one or both magma reservoirs followed by dike intrusion. Intrusion volumes are proportional to reservoir volume loss and do not always result in an eruption. Periods of increased activity culminate with larger dike-fed eruptions. Large eruptions are followed by inter-eruptive periods marked by a decrease in crater explosions and a lack of detected deformation. Co-eruptive flank motion appears to have initiated a new stage of volcanic rifting at Pacaya defined by repeated NW-SE oriented dike intrusions. This creates a positive feedback relationship whereby magmatic forcing from eruptive dike intrusions induce flank motion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP43B0982V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP43B0982V"><span>Paleomagnetism and Geochronology of the Precambrian Dikes in NE Fennoscandia, Kola Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Veselovskiy, R. V.; Samsonov, A.; Stepanova, A.</p> <p>2017-12-01</p> <p>Paleomagnetism of Proterozoic dikes of Scandinavia, Karelia, and southern part of the Kola Peninsula is extensively explored in many studies (Veikkolainen et al., 2014). In particular, the paleomagnetism of intrusive formations in the southern part of the Kola Peninsula is thoroughly scrutinized in the study authored by Alexey Khramov and his colleagues (Khramov et al., 1997). However, information about the systematic paleomagnetic studies of the Archaean and Proterozoic dikes of the Central Kola block and, especially, Murmansk block are absent. Based on the results of preliminary paleomagnetic investigation of 57 Precambrian dikes of the Kola Peninsula, in 31 of them a stable monopolar component of natural remanent magnetization is revealed. The peculiarities of distribution of this magnetization component within the Kola Peninsula and the rock magnetic characteristics of the dikes in which this component is isolated suggest its secondary nature and relate the mechanism and formation time to the remagnetization processes which took place in the northwest of Fennoscandia about 1.8 Ga during the Svecofennian orogeny. The corresponding geomagnetic pole of Fennoscandia is located in the immediate vicinity of the known Paleoproterozoic (1.9-1.7 Ga) poles of Baltica (Khramov et al., 1997; Veikkolainen et al., 2014). We also present the new geochronological Ar/Ar, Sm-Nd, Rb-Sr and U-Pb data which allow to determine the age of remagnetization as 1.86 Ga. The studies were supported by the Russian Science Foundation (project no. 16-17-10260), partially supported by the Russian Federation Government (project no. 14.Z50.31.0017) and Russian Foundation for Basic Research (project no. 17-05-01121a).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec110-128.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec110-128.pdf"><span>33 CFR 110.128 - Columbia River at Portland, Oreg.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... waters of the Columbia River between Sand Island and Government Island, bounded on the west by pile dike U.S. 5.75 and a line extending true north from the northerly end of the dike to the south shore of Sand Island and bounded on the east by a line bearing 339°15′ true, from a point on Government Island...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec110-128.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec110-128.pdf"><span>33 CFR 110.128 - Columbia River at Portland, Oreg.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... waters of the Columbia River between Sand Island and Government Island, bounded on the west by pile dike U.S. 5.75 and a line extending true north from the northerly end of the dike to the south shore of Sand Island and bounded on the east by a line bearing 339°15′ true, from a point on Government Island...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec110-128.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec110-128.pdf"><span>33 CFR 110.128 - Columbia River at Portland, Oreg.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... waters of the Columbia River between Sand Island and Government Island, bounded on the west by pile dike U.S. 5.75 and a line extending true north from the northerly end of the dike to the south shore of Sand Island and bounded on the east by a line bearing 339°15′ true, from a point on Government Island...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec110-128.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec110-128.pdf"><span>33 CFR 110.128 - Columbia River at Portland, Oreg.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... waters of the Columbia River between Sand Island and Government Island, bounded on the west by pile dike U.S. 5.75 and a line extending true north from the northerly end of the dike to the south shore of Sand Island and bounded on the east by a line bearing 339°15′ true, from a point on Government Island...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec110-128.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec110-128.pdf"><span>33 CFR 110.128 - Columbia River at Portland, Oreg.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... waters of the Columbia River between Sand Island and Government Island, bounded on the west by pile dike U.S. 5.75 and a line extending true north from the northerly end of the dike to the south shore of Sand Island and bounded on the east by a line bearing 339°15′ true, from a point on Government Island...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11C0350L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11C0350L"><span>Down and Out at Pacaya Volcano: A Glimpse of Magma Storage and Diking as Interpreted From GPS Geodesy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lechner, H. N.; Waite, G. P.; Wauthier, D. C.; Escobar-Wolf, R. P.; Lopez-Hetland, B.</p> <p>2017-12-01</p> <p>Geodetic data from an eight-station GPS network at Pacaya volcano Guatemala allows us to produce a simple analytical model of deformation sources associated with the 2010 eruption and the eruptive period in 2013-2014. Deformation signals for both eruptive time-periods indicate downward vertical and outward horizontal motion at several stations surrounding the volcano. The objective of this research was to better understand the magmatic plumbing system and sources of this deformation. Because this down-and-out displacement is difficult to explain with a single source, we chose a model that includes a combination of a dike and spherical source. Our modelling suggests that deformation is dominated the inflation of a shallow dike seated high within the volcanic edifice and deflation of a deeper, spherical source below the SW flank of the volcano. The source parameters for the dike feature are in good agreement with the observed orientation of recent vent emplacements on the edifice as well the horizontal displacement, while the parameters for a deeper spherical source accommodate the downward vertical motion. This study presents GPS observations at Pacaya dating back to 2009 and provides a glimpse of simple models of possible deformation sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/nv0324.photos.211787p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/nv0324.photos.211787p/"><span>9. Fuel tanks engine piping yard equipment details, sheet 94 ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>9. Fuel tanks engine piping yard equipment details, sheet 94 of 130 - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211776p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211776p/"><span>21. Power plant engine fuel oil piping diagrams, sheet 83 ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211774p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211774p/"><span>19. Power plant engine pipinglower level plan, sheet 80 of ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>19. Power plant engine piping-lower level plan, sheet 80 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211775p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211775p/"><span>20. Power plant engine piping details and schedules, sheet 82 ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>20. Power plant engine piping details and schedules, sheet 82 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211773p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211773p/"><span>18. Power plant engine piping floor plan, sheet 71 of ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>18. Power plant engine piping floor plan, sheet 71 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211771p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211771p/"><span>16. Power plant roof plan and wall sections, sheet 65 ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>16. Power plant roof plan and wall sections, sheet 65 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211770p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/nv0323.photos.211770p/"><span>15. Power plant elevations and cross sections, sheet 64 of ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>15. Power plant elevations and cross sections, sheet 64 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dggs.alaska.gov/pubs/id/29480','SCIGOVWS'); return false;" href="http://www.dggs.alaska.gov/pubs/id/29480"><span>Presentations - Lande, Lauren and others, 2015 | Alaska Division of</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Details Title: A petrological model for emplacement <em>of</em> <em>the</em> ultramafic Ni-Cu-PGE Alpha complex, eastern , Newberry, R.J., and Twelker, Evan, 2015, A petrological model for emplacement <em>of</em> <em>the</em> ultramafic Ni-Cu-PGE Sheets Maps & Other Oversized Sheets Sheet 1 A petrological model for emplacement <em>of</em> <em>the</em> ultramafic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014809','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014809"><span>A magmatic model of Medicine Lake Volcano, California ( USA).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Donnelly-Nolan, J. M.</p> <p>1988-01-01</p> <p>Medicine Lake volcano is a Pleistocene and Holocene shield volcano of the southern Cascade Range. It is located behind the main Cascade arc in an extensional tectonic setting where high-alumina basalt is the most commonly erupted lava. This basalt is parental to the higher-silica calc-alkaline and tholeiitic lavas that make up the bulk of the shield. The presence of late Holocene, chemically identical rhyolites on opposite sides of the volcano led to hypotheses of a large shallow silicic magma chamber and of a small, deep chamber that fed rhyolites to the surface via cone sheets. Subsequent geophysical work has been unable to identify a large silicic magma body, and instead a small one has apparently been recognized. Some geologic data support the geophysical results. Tectonic control of vent alignments and the dominance of mafic eruptions both in number of events and volume throughout the history of the volcano indicate that no large silicic magma reservoir exists. Instead, a model is proposed that includes numerous dikes, sills and small magma bodies, most of which are too small to be recognized by present geophysical methods.-Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARB23002G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARB23002G"><span>Isometric immersions and self-similar buckling in elastic sheets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gemmer, John</p> <p></p> <p>The edges of torn elastic sheets and growing leaves often display hierarchical self-similar like buckling patterns. On the one hand, such complex, self similar patterns are usually associated with a competition between two distinct energy scales, e.g. elastic sheets with boundary conditions that preclude the possibility of relieving in plane strains, or at alloy-alloy interfaces between distinct crystal structures. On the other hand, within the non-Euclidean plate theory this complex morphology can be understood as low bending energy isometric immersions of hyperbolic Riemannian metrics. In particular, many growth patterns generate residual in-plane strains which can be entirely relieved by the sheet forming part of a surface of revolution or a helix. In this talk we will show that this complex morphology (i) arises from isometric immersions (ii) is driven by a competition between the two principal curvatures, rather than between bending and stretching. We identify the key role of branch-point (or monkey-saddle) singularities, in complex wrinkling patterns within the class of finite bending energy isometric immersions. Using these defects we will give an explicit construction of strain-free embeddings of hyperbolic surfaces that are fractal like and have lower elastic energy than their smooth counterparts US-Israel BSF Grant 2008432. NSF Grant DMS-0807501. NSF-RTG Grant DMS-1148284.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23621671','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23621671"><span>Towards comprehensive cell lineage reconstructions in complex organisms using light-sheet microscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Amat, Fernando; Keller, Philipp J</p> <p>2013-05-01</p> <p>Understanding the development of complex multicellular organisms as a function of the underlying cell behavior is one of the most fundamental goals of developmental biology. The ability to quantitatively follow cell dynamics in entire developing embryos is an indispensable step towards such a system-level understanding. In recent years, light-sheet fluorescence microscopy has emerged as a particularly promising strategy for recording the in vivo data required to realize this goal. Using light-sheet fluorescence microscopy, entire complex organisms can be rapidly imaged in three dimensions at sub-cellular resolution, achieving high temporal sampling and excellent signal-to-noise ratio without damaging the living specimen or bleaching fluorescent markers. The resulting datasets allow following individual cells in vertebrate and higher invertebrate embryos over up to several days of development. However, the complexity and size of these multi-terabyte recordings typically preclude comprehensive manual analyses. Thus, new computational approaches are required to automatically segment cell morphologies, accurately track cell identities and systematically analyze cell behavior throughout embryonic development. We review current efforts in light-sheet microscopy and bioimage informatics towards this goal, and argue that comprehensive cell lineage reconstructions are finally within reach for many key model organisms, including fruit fly, zebrafish and mouse. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028973','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028973"><span>Evolution of a Holocene delta driven by episodic sediment delivery and coseismic deformation, Puget Sound, Washington, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnhardt, W.A.; Sherrod, B.L.</p> <p>2006-01-01</p> <p>Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001739','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001739"><span>Factors controlling the structures of magma chambers in basaltic volcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, L.; Head, James W.</p> <p>1991-01-01</p> <p>The depths, vertical extents, and lateral extents of magma chambers and their formation are discussed. The depth to the center of a magma chamber is most probably determined by the density structure of the lithosphere; this process is explained. It is commonly assumed that magma chambers grow until the stress on the roof, floor, and side-wall boundaries exceed the strength of the wall rocks. Attempts to grow further lead to dike propagation events which reduce the stresses below the critical values of rock failure. The tensile or compressive failure of the walls is discussed with respect to magma migration. The later growth of magma chambers is accomplished by lateral dike injection into the country rocks. The factors controlling the patterns of growth and cooling of such dikes are briefly mentioned.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019277','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019277"><span>Inflation of Long Valley caldera, California, Basin and Range strain, and possible Mono Craters dike opening from 1990-94 GPS surveys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Marshall, G.A.; Langbein, J.; Stein, R.S.; Lisowski, M.; Svarc, J.</p> <p>1997-01-01</p> <p>Five years of annual Global Positioning System (GPS) surveys of a network centered on Long Valley, California, constrain displacement rates for these stations relative to a central station in the network. These observations are consistent with recent models of resurgent dome inflation in Long Valley (Langbein et al., 1995) and have sufficient signal to detect the presence of Basin and Range strain in the Long Valley region. The data also allow for the possibility of dike inflation beneath the Mono Craters; dike intrusion is consistent with the Mono Craters' recent geologic history of ash eruptions, with seismic tomography, leveling data, and geologic studies of these volcanic domes and flows. Copyright 1997 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23F..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23F..02D"><span>Lateral Variability of the Lower Ocean Crust at Atlantis Bank, SW Indian Ridge, Results of IODP Expedition 360</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dick, H. J.; MacLeod, C. J.; Blum, P.; Scientific Party, E.</p> <p>2016-12-01</p> <p>IODP Hole U1473A drilled 809.4 m into a 700-m depth wave-cut platform at Atlantis Bank on the SW Indian Ridge. It is an oceanic core complex where massive gabbro was emplaced into the footwall of a single detachment fault for ≥2.7 Myr, with total slip ≥39 km. It was then uplifted to its present position flanking the 6,100 m deep 199-km Atlantis II Transform. The gabbros are back-tilted 20°S, while a sub-horizontal 15 km long mantle peridotite-gabbro contact lies along the transform wall at 4200 m depth 11.5 km west of Hole U1473A. Hole U1473A is 1.4 km north of 158-m deep Hole 1105A and 2.2 km NNE of 1508-m deep Hole 735B. Thus we examine the lateral continuity of the lower ocean crust at ultraslow rates ( 15-16 mm/yr.), and compare it to 1400-m Hole U1309D in the Atlantis Massif MAR core complex (24 mm/yr.) flanking the 63-km Atlantis Transform. The three Atlantis Bank holes are very similar, consisting of a complex series of oxide-rich gabbros and olivine gabbros. Several dikes crosscutting the gabbro sections show that they passed through the dike-gabbro transition after crystallizing and cooling deeper in the crust. They all show extensive high-temperature crystal-plastic deformation predating dike intrusion. A small amount of troctolite was recovered only in Hole 735B. By contrast, gabbro, rather than olivine gabbro was the dominant lithology in Hole U1309D, with intercalations of troctolite and mantle peridotite, and subordinate oxide gabbro. Oxide gabbro is often associated with crystal-plastic deformation. While these are concentrated in the upper 1/3 of Hole 735B, they are more uniformly distributed in Hole U1309D. While one section cannot be traced directly to the other at Atlantis Bank, it appears that they can be correlated based on chemical and structural similarities, with the 1105A and 1473A sections lying some hundreds of meters deeper structurally than Hole 735B, consistent with erosion on the platform. All these sections represent sequential emplacement of small gabbro bodies, with upward compaction of late melt, often fault controlled. The primary differences in the sections are due to variations in the melt supply, which was significantly lower at Hole U1309D, resulting in incorporation of mantle peridotite screens into the section as additional gabbro intrusions were added to the base of the section.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4434K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4434K"><span>Effects of 500 years of eutrophication and flooding control on lowland lake development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirilova, E.; van Hardenbroek, M.; Heiri, O.; Cremer, H.; Lotter, A. F.</p> <p>2009-04-01</p> <p>Nutrient enrichment and the ecology of surface waters have been intensively studied in lowland regions. However, detailed palaeolimnological reconstructions of the trophic and flooding history of floodplain lakes are still rare. In the Netherlands dike-breaches caused by high floods of the river Rhine formed a new type of lake since the Middle Ages. These dike-breach lakes were strongly impacted by the development of channel systems in their catchment, agriculture, and repeated flooding events. Here we present a multiproxy palaeolimnological study of past nutrient loading and ecology of the dike-breach lake De Waay which is located on the Rhine-Meuse delta (The Netherlands). The lake was created in A.D. 1496 as a result of damage done to a dike by floating ice and the subsequent dike-breach due to a flooding event. A sediment core of 11.5 m was recovered from Lake De Waay and diatoms, Cladocera, and geochemistry were analyzed in the sediment. From the beginning of the lake's existence to the end of the 18th century diatom-inferred total phosphorus (TP) concentrations were above 300 µg/l, suggesting hypertrophic conditions. Cladoceran assemblages reflect the lake's pioneer stage and suggest a lack of rooted aquatic macrophytes resulting from low water-transparency, possibly caused by frequent floods. Until the late 18th century floods occurred regularly in the area, as shown by the elevated Ti values in the sediments, indicative of high erosion from the floodplain and runoff from the surrounding agricultural catchment. This caused the exceptionally high sedimentation rates and elevated nutrient contents of the lake waters. Since the beginning of the 19th century sewage input and flooding frequency were strongly reduced by the construction of new ditches, canals, and dikes. The improved sewage and dike systems are reflected by decreased TP concentrations of 40-150 µg/l. The increased stability of littoral habitats led to an increased diversity in the Cladocera assemblages. The phase with the lowest inferred TP concentrations lasted from the end of the 19th to the mid-20th century. During this period direct nutrient sources were no longer connected to the lake and TP concentrations consequently decreased to 40 µg/l. Dike construction was highly developed and flooding events no longer affected this region. However, a renewed eutrophication with TP values reaching 100 µg/l was registered in the sediment record since the mid-20th century. The increased TP concentrations are most likely related to increased agricultural activity in the vicinity of the lake. Our results show that Lake De Waay was eutrophic to hypertrophic during much of its history. The lake was formed as a consequence of human activity and never existed in an undisturbed state. Restoration of lakes to an "undisturbed" natural state, as required by the European Water Framework Directive, can therefore not be recommended for strongly modified lowland lakes such as De Waay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T43C2696S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T43C2696S"><span>Did in-place rotation of South America during the Early Cretaceous create both the early South Atlantic rift/salt basin and the Paraná-Etendeka large igneous province? Peter Szatmari1 and Edison J. Milani1 1Petrobras Research Center (CENPES) Geological Research & Development (PDGEO), Ilha do Fundão, Rio de Janeiro, Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szatmari, P.; Milani, E.</p> <p>2012-12-01</p> <p>Large igneous provinces with continental flood basalts, some related to rifting, have been traditionally attributed to mantle plume heads rising from the lower mantle. The early Cretaceous South Atlantic rift, an archetype of plate tectonics, and the Paraná-Etendeka continental flood basalts on land outside the rift, formed as South America rotated clockwise about a pole in its northeastern tip (Rabinowitz & LaBrecque, 1979), away from Africa and toward the subduction zone on its Pacific margin. This rotation opened the early South Atlantic southward while it kept the Equatorial Atlantic gateway to the Central Atlantic and the Tethys closed by compression. Rifting started in the late Jurassic in the extreme south, near the subduction zone at the continent's southern tip. It rapidly propagated NNE, mainly along inherited late Proterozoic (mostly Ediacaran) fold belts, and reached what has later become the eastern end of the Equatorial margin still in latest Jurassic time. Massive mostly basaltic volcanism peaked about 20 Ma later in Hauterivian time (136 to 130 Ma), forming dike swarms which, in the south, are accompanied by flood basalts of the Paraná-Etendeka large igneous province. The massive rise of mostly tholeiitic magma resulted from hotspot-like high temperatures prevailing beneath the cold and thick Gondwana lithosphere that had remained unbroken since Proterozoic times for about 400 Ma. Early basalt dike swarms trending E-W and SE-NW were transversal to the rift. They are two-three hundred kilometers long and 1000-2000 km apart, penetrating far into the continent's unrifted lithosphere and cutting through all inherited Proterozoic structures that controlled rifting. The successive basalt dike swarms (and their individual dikes) increase in thickness to the southwest, away from the continent's pole of rotation, as does the width of the rift. The E-W-trending Ceará-Mirim dike swarm occurs in the extreme northeast of the continent. Further southwest the Colatina dike swarm and still further southwest the widest, Ponta Grossa dike swarm both trend SE-NW; the latter is associated with the continental flood basalts of the Paraná-Etendeka province that lie on land in the Paraná Basin and offshore in the rift beneath Aptian salt. South of about 28 degrees S offshore from southernmost Brazil, Uruguay and Argentina, a seaward dipping reflector sequence (SDRs) composed predominantly of volcanic rocks borders pre-Aptian oceanic crust that is absent to the north. The southwest increasing abundance of the volcanics,together with the E-W and SE-NW trends of the early dike swarms strongly suggest that volcanism was controlled by the same in-place rotation of the continent that controlled rifting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V33E..05A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V33E..05A"><span>Dating sub-20 micron zircons in granulite-facies mafic dikes from SW Montana: a new approach using automated mineralogy and SIMS U-Pb geochronology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ault, A. K.; Mahan, K. H.; Flowers, R. M.; Chamberlain, K.; Appleby, S. K.; Schmitt, A. K.</p> <p>2010-12-01</p> <p>Geochronological data is fundamental to all tectonic studies, but a major limitation for many lithologies is a paucity of sizeable zircons suitable for conventional U-Pb techniques. In particular, mafic dike swarms provide important time markers for tectonometamorphic activity in Precambrian terranes, but commonly yield little or no zircon or baddeleyite sufficient for TIMS or standard ion-probe analysis of crystal separates. We apply a new approach involving in-situ automated mineralogy and high spatial resolution Secondary Ion Mass Spectrometry (SIMS) geochronology to a mafic dike swarm exposed in the Northern Madison Range of SW Montana. The dikes cross-cut early fabrics but are also variably deformed and metamorphosed to P-T conditions as high as 1.2 GPa and 850 C. The swarm emplacement age is inferred to be ca. 2.1 Ga based on similarities to dated dikes in the adjacent Tobacco Root Mountains. Resolving the timing of dike emplacement and high-grade metamorphism in the study area is important for understanding the extent of post-Archean modification to the northwest margin of the Wyoming craton. Identification and textural characterization of zircons were facilitated by in-situ automated mineralogical analysis, in contrast to a standard elemental X-ray mapping approach. Our technique uses an SEM-based platform coupling calibrated BSE data with X-ray data collected by multiple energy dispersive spectrometers to rapidly identify target accessory phases at high spatial resolution. Whole thin section search maps were generated in ~30 minutes at 4 µm pixel resolution. Our dike thin sections commonly contained >300 zircons in a variety of textural settings, with 80% having a short dimension <10 µm. Zircons were dated in-situ by adjusting the field aperture of the CAMECA ims1270 to preferentially collect secondary ions emitted from within the inner few microns of the ~15 µm diameter analysis pit. This allows us to analyze zircon grains with a minimum dimension as small as 8 μm at radiogenic yields typically >95% for 206Pb. SIMS data for 22 zircons from a granulite-facies mafic dike thin section define a chord with upper and lower intercepts of 1753.1 ± 9.5 Ma and 63.2 ± 7.9 Ma, respectively (2 sigma error, MSWD = 1.6). A positive correlation between U concentration and degree of discordance indicates that the more radiation-damaged zircons underwent greater Pb loss. We infer Pb loss to reflect re-heating linked to emplacement of the nearby Tobacco Roots Batholith (ca. 74-71 Ma). Metamorphic zircon growth ca. 1750 Ma indicates that the high-grade metamorphic core of the Big Sky orogeny extends into the Northern Madison Range, farther inboard into the Wyoming craton than previously recognized. Coupling automated mineralogy searching with refined SIMS methods enables acquisition and interpretation of in-situ U-Pb data from zircons of a size that would not be feasible with most other techniques.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V33C2383W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V33C2383W"><span>Constraints on the Geometries and Compositions of Subvolcanic Conduits from Intrusions of the San Rafael Swell, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wetmore, P. H.; Connor, C.; Wilson, J.</p> <p>2010-12-01</p> <p>Conduit models incorporate varying degrees of complexity (or parsimony) and account for the transport properties of magmas, steady-state or transient behavior, and conduit geometry (e.g., 1- to 1.5 D, variable width and erodable conduit walls). Improvement of these models is important if we are to work toward deployment of eruption models at active volcanoes, link these models to geophysical observations (seismic, deformation, gravity) and eventually forecast eruption magnitude. One conclusion of a recent comparison of many conduit models (Sahagian, 2005 JVGR) is that next generation models need to better account for interaction of the erupting mixture with surrounding wall rocks (accounting for melting, solidification, and erosion) and better account for the effects of conduit shape on flows. In an effort to address these issues our research group has completed mapping of a suite of subvolcanic intrusions (dikes, sills, and conduits) from the west-central San Rafael Swell of central Utah. The results of this study demonstrate that vertical flow of melt through crust in this system of intrusion was dominated by dikes. Conduits form, in nearly all cases, as a result of localized flow along dikes. The conduits are commonly comprised of three distinct lithologic units: brecciated host rock (without any intrusive material), brecciated host rock mixed with brecciated and mechanically contaminated intrusive, and relatively clean (i.e. containing less than ~10% accidental material) intrusive. Contacts between all three of these units are typically discreet and traceable for several tens of meters. In some examples clasts within the unmixed breccia unit exhibit a strong alignment of clasts dipping into the core of the conduit. These observations suggests an evolutionary history that involves an early phase of brecciation and mixing, followed by confined flow with a fluidized mixed unit and an essentially uninvolved outer zone (i.e. the breccia). The final phase likely involves the inward collapse as fluid pressures reduce.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V23B4797G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V23B4797G"><span>Sills of the San Rafael Volcanic Field, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallant, E.; Connor, C.; Connor, L.; Richardson, J. A.; Wetmore, P. H.</p> <p>2014-12-01</p> <p>Substantial populations, such as Mexico City, Auckland, and Portland, are built within or near monogenetic fields, so it is important to understand both eruption precursors and magma plumbing systems in such areas. Directly observing the plumbing systems of this rarely witnessed eruption style provides valuable insight into the nature of magmatic transport and storage within the shallow crust, as well as the associated monogenetic eruptive processes. Within the San Rafael Desert of Central Utah is an exposed Pliocene complex of approximately 2000 mapped dikes, 12 sills, and 60 conduits eroded to a depth of 800 m below the paleosurface. A combination of airborne LiDAR (ALS), provided by NCALM, and terrestrial LiDAR (TLS) surveys are used to map the dip of 5 major sills within a 35 sq km area. The ALS provides a 1 m aerial resolution of exposed volcanic features and the TLS gives vertical measurements to cm accuracy. From these data we determine that the 5-25 m thick sills in this area dip approximately 1 to 6 degrees. Field observations show that steps in sills and related fabrics indicate flow direction in sills during emplacement and that sills normally propagate down dip in the Entrada sandstone host rock away from apparent feeder dikes and conduits. Some sills have foundered roofs, especially near conduits, suggesting that nearly neutrally buoyant magmas emplaced into sills along bed partings in the Entrada, differentiated, and in some cases flowed back into conduits. By volume, at 800 m depth in the San Rafael, nearly all igneous rock (approximately 90 percent) is located in sills rather than in dikes or conduits. These observations are consistent with geochemical models that suggest differentiation in shallow sills explains geochemical trends observed in single monogenetic volcanoes in some active fields. Deformation associated with sill inflation and deflation may be a significant precursor to eruptive activity in monogenetic volcanic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1070/ofr20161070.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1070/ofr20161070.pdf"><span>Gravity and magnetic studies of the eastern Mojave Desert, California and Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Denton, Kevin M.; Ponce, David A.</p> <p>2016-06-17</p> <p>IntroductionFrom May 2011 to August 2014, the U.S. Geological Survey (USGS) collected gravity data at more than 2,300 stations and physical property measurements on more than 640 rock samples from outcrops in the eastern Mojave Desert, California and Nevada. Gravity, magnetic, and physical-property data are used to study and locate regional crustal structures as an aid to understanding the geologic framework related to mineral resources of the eastern Mojave Desert.The eastern Mojave Desert is host to a world-class rare earth element carbonatite deposit located at Mountain Pass, California. Carbonatites are typically defined as magmatic rocks with high modal abundances of primary carbonate minerals >50 weight percent and elevated abundances of rare earth elements (REEs) (Nelson and others, 1988; Woolley and Kempe, 1989). The “Sulphide Queen” carbonatite ore deposit is a composite, tabular body made up of sills and dikes of REE-bearing sovites and beforsites that occurs just south of the Clark Mountain Range along a north-northwest trending fault-bounded block that extends along the northeast edge of the Mescal Range and northwestern extent of Ivanpah Mountains. This early to middle Proterozoic block is composed of a 1.7 Ga metamorphic complex of gneiss and schist that underwent widespread metamorphism and associated plutonism during the Ivanpah orogeny (Miller and others, 2007). Subsequently, these rocks were intruded by a series of granitoids, which included the 1.4 Ga (DeWitt and others, 1987) ultrapotassic alkaline suite of intrusions that are spatially and temporally associated with hundreds of dikes, outcrops, and a carbonatite ore body. The relative age sequence of this intrusive suite of alkaline rocks from oldest to youngest includes shonkinite, mesosyenite, syenite, quartz syenite, potassic granite, carbonatite, and late shonkinite dikes (Olson and others, 1954; Wooden and Miller, 1990; Haxel, 2005; Miller and others, 2007).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/nv0324.photos.211788p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/nv0324.photos.211788p/"><span>10. Fuel tanks concrete form plans, elevations and details, sheet ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>10. Fuel tanks concrete form plans, elevations and details, sheet 95 of 130 - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..433..232M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..433..232M"><span>Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mai, Y. J.; Zhou, M. P.; Ling, H. J.; Chen, F. X.; Lian, W. Q.; Jie, X. H.</p> <p>2018-03-01</p> <p>How to uniformly disperse graphene sheets into the electrolyte is one of the main challenges to synthesize graphene enhanced nanocomposites by electrodeposition. A surfactant-free colloidal solution comprised of copper (II)-ethylene diamine tetra acetic acid ([CuIIEDTA]2-) complexes and graphene oxide (GO) sheets is proposed to electrodeposit reduced graphene oxide/copper (RGO/Cu) composite coatings. Anionic [CuIIEDTA]2- complexes stably coexist with negatively charged GO sheets due to the electrostatic repulsion between them, facilitating the electrochemical reduction and uniform dispersion of GO sheets into the copper matrix. The RGO/Cu composite coatings are well characterized by XRD, Raman, SEM and XPS. Their tribological behavior as a function of RGO content in composite coatings and normal loads are investigated. Also the chemical composition and topography of the wear tracks for the composite coatings are analyzed to deduce the lubricating and anti-wear mechanism of RGO/Cu composite coatings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeCoA.102...65R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeCoA.102...65R"><span>Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris</p> <p>2013-02-01</p> <p>The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin are increasingly dominated by shallow decompressional melting of the ambient asthenosphere, the composition of which may in part be controlled by preferential channeling of plume material along the developing neo-oceanic axes of extension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Litho.106..365L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Litho.106..365L"><span>U Pb zircon age, geochemical and Sr Nd Pb Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Shen; Hu, Ruizhong; Gao, Shan; Feng, Caixia; Qi, Youqiang; Wang, Tao; Feng, Guangying; Coulson, Ian M.</p> <p>2008-12-01</p> <p>Post-orogenic alkaline intrusions and associated mafic dikes from the Sulu orogenic belt of eastern China consist of quartz monzonites, A-type granites and associated mafic dikes. We report here U-Pb zircon ages, geochemical data and Sr-Nd-Pb-Hf isotopic data for these rocks. The SHRIMP U-Pb zircon analyses yield consistent ages ranging from 120.3 ± 2.1 Ma to 126.9 ± 1.9 Ma for five samples from the felsic rocks, and two crystallization ages of 119.0 ± 1.7 Ma and 120.2 ± 1.9 Ma for the mafic dikes. The felsic rocks and mafic dikes are characterized by high ( 87Sr/ 86Sr) i ranging from 0.7079 to 0.7089, low ɛNd( t) values from - 15.3 to - 19.2, 206Pb/ 204Pb = 16.54-17.25, 207Pb/ 204Pb = 15.38-15.63, 208Pb/ 204Pb = 37.15-38.45, and relatively uniform ɛHf( t) values of between - 21.6 ± 0.6 and - 23.7 ± 1.0, for the magmatic zircons. The results suggest that they were derived from a common enriched lithospheric mantle source that was metasomatized by foundered lower crustal eclogitic materials before magma generation. Geochemical and isotopic characteristics imply that the primary magma to these rocks originated through partial melting of ancient lithospheric mantle that was variably hybridized by melts derived from foundered lower crustal eclogite. The mafic dikes may have been generated by subsequent fractionation of clinopyroxene, whereas the felsic rocks resulted from fractionation of potassium feldspar, plagioclase and ilmenite or rutile. Both were not affected by crustal contamination. Combined with previous studies, these findings provide new evidence that the intense lithospheric thinning beneath the Sulu belt of eastern China occurred between 119 and 127 Ma, and that this was caused by the removal of the lower lithosphere (mantle and lower crust).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V33A0665W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V33A0665W"><span>Probablistic Analyses of Waste Package Quantities Impacted by Potential Igneous Disruption at Yucca Mountain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallace, M. G.; Iuzzolina, H.</p> <p>2005-12-01</p> <p>A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analysis includes disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift was intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in association with a volcanic eruption through the repository. Mathematical relations were built between the resulting conduit areas and the fraction of the repository area occupied by waste packages. This relation was used in conjunction with a joint distribution incorporating variability in eruptive conduit diameters and in the number of eruptive conduits that could intersect the repository.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1428S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1428S"><span>Sedimentation and contamination patterns of dike systems along the Rhône River (France)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry</p> <p>2017-04-01</p> <p>Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in the 20th century. Sediment thickness tends to increase in the dike systems following downstream direction. Coupling trace elements (Cu, Zn, Pb) and sediment patterns, metal pollution is mainly observed in the 1970's deposits, similarly to previous studies focused on PCB. These results constitute basic information to inform managers and improve restoration actions that are currently implemented in the Rhône River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015970','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015970"><span>Horizontal ground deformation patterns and magma storage during the Puu Oo eruption of Kilauea volcano, Hawaii: episodes 22-42</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hoffmann, J.P.; Ulrich, G.E.; Garcia, M.O.</p> <p>1990-01-01</p> <p>Horizontal ground deformation measurements were made repeatedly with an electronic distance meter near the Puu Oo eruption site approximately perpendicular to Kilauea's east rift zone (ERZ) before and after eruptive episodes 22-42. Line lengths gradually extended during repose periods and rapidly contracted about the same amount following eruptions. The repeated extension and contraction of the measured lines are best explained by the elastic response of the country rock to the addition and subsequent eruption of magma from a local reservoir. The deformation patterns are modeled to constrain the geometry and location of the local reservoir near Puu Oo. The observed deformation is consistent with deformation patterns that would be produced by the expansion of a shallow, steeply dipping dike just uprift of Puu Oo striking parallel to the trend of the ERZ. The modeled dike is centered about 800 m uprift of Puu Oo. Its top is at a depth of 0.4 km, its bottom at about 2.9 km, and the length is about 1.6 km; the dike strikes N65?? E and dips at about 87??SE. The model indicates that the dike expanded by 11 cm during repose periods, for an average volumetric expansion of nearly 500 000 m3. The volume of magma added to the dike during repose periods was variable but correlates positively with the volume of erupted lava of the subsequent eruption and represents about 8% of the new lava extruded. Dike geometry and expansion values are used to estimate the pressure increase near the eruption site due to the accumulation of magma during repose periods. On average, vent pressures increased by about 0.38 MPa during the repose periods, one-third of the pressure increase at the summit. The model indicates that the dikelike body below Puu Oo grew in volume from 3 million cubic meters (Mm3) to about 10-12 Mm3 during the series of eruptions. The width of this body was probably about 2.5-3.0 m. No net long-term deformation was detected along the measured deformation lines. ?? 1990 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T11E..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T11E..03L"><span>Initiation of a Low-Angle Normal Fault Active Across the Upper Brittle-Plastic Transition, Chemehuevi Mountains, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LaForge, J.; John, B. E.; Grimes, C. B.; Stunitz, H.; Heilbronner, R.</p> <p>2016-12-01</p> <p>The Chemehuevi detachment fault system, part of the regionally developed Colorado River extensional corridor, hosts exceptional exposures of a denuded fault system related to Miocene extension. Here, we characterize the early history of extension associated with a small slip (1-2 km) low-angle normal fault, the Mohave Wash fault (MWF), initially active across the brittle-plastic transition. Strain localized in three principal ways across the 23-km down-dip exposure (T <150° to >400°C): a brittle fault zone, localized, disseminated quartz mylonites, and syntectonic dikes hosting mylonitic fabrics. Brittle deformation in these crystalline rocks was concentrated into a 10-62-m thick brittle fault zone hosting localized, unmineralized to chlorite-epidote-quartz mineralized zones of cataclasite series fault rocks ≤3 m thick and rare pseudotachylite. Mylonitic deformation played an increased role in deformation down dip (NE), with mylonites increasing in quantity and average thickness. At shallow structural levels, footwall mylonites are absent; at 9-18 km down dip, cm-scale quartz mylonites are common; ≥18 km down dip, meter-scale syntectonic intermediate-felsic dikes are mylonitic, are attenuated into parallelism with the MWF, and host well-developed L-S fabric; 23 km down dip, the footwall hosts meter-thick zones of disseminated mylonitic quartz of varying intensities. These mylonites host microstructures that record progressively higher deformation temperature down dip, with dislocation-creep in quartz indicative of T of 280-400°C to ≥500°C, and diffusion creep with grain boundary sliding in dikes suggestive of even higher T deformation. Dike emplacement in the system is syntectonic with MWF slip; mafic-intermediate composition dikes intruded damage zone fractures and cataclasites, and were in turn fractured; Pb/U zircon ages of intermediate-felsic dikes range from ca. 1.5 ± 1 Ma to 3.8 ± 1 Ma after the onset of regional extension, but predate rapid slip. Cross cutting relations and absolute dating suggest the early history of the MWF evolved in two distinct phases: 1) seismogenic rupture with contemporaneous localized footwall mylonitization, followed by 2) additional cataclasis, episodic localized and magmatism, mylonitization and fluid-flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28347862','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28347862"><span>Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Costa, Marina; Cerqueira, Mariana T; Santos, Tírcia C; Sampaio-Marques, Belém; Ludovico, Paula; Marques, Alexandra P; Pirraco, Rogério P; Reis, Rui L</p> <p>2017-06-01</p> <p>Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditions for up to 8days in the absence of extrinsic growth factors. Immunocytochemistry against CD31 and CD146 revealed spontaneous organization in capillary-like structures, more complex after hypoxic conditioning. Inhibition of HIF-1α pathway hindered capillary-like structure formation in SVF cells cultured in hypoxia, suggesting a role of HIF-1α. Moreover, hypoxic SVF cells showed a trend for increased secretion of angiogenic factors, which was reflected in increased network formation by endothelial cells cultured on matrigel using that conditioned medium. In vivo implantation of SVF CS in a mouse hind limb ischemia model revealed that hypoxia-conditioned CS led to improved restoration of blood flow. Both in vitro and in vivo data suggest that SVF CS can be used as simple and cost-efficient tools to promote functional vascularization of TE constructs. Neovascularization after implantation is a major obstacle for producing clinically viable cell sheet-based tissue engineered constructs. Strategies using endothelial cells and extrinsic angiogenic growth factors are expensive and time consuming and may raise concerns of tumorigenicity. In this manuscript, we describe a simplified approach using angiogenic cell sheets fabricated from the stromal vascular fraction of adipose tissue. The strong angiogenic behavior of these cell sheets, achieved without the use of external growth factors, was further stimulated by low oxygen culture. When implanted in an in vivo model of hind limb ischemia, the angiogenic cell sheets contributed to blood flux recovery. These cell sheets can therefore be used as a straightforward tool to increase the neovascularization of cell sheet-based thick constructs. Copyright © 2017. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914880B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914880B"><span>Uncertainty quantification of Antarctic contribution to sea-level rise using the fast Elementary Thermomechanical Ice Sheet (f.ETISh) model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bulthuis, Kevin; Arnst, Maarten; Pattyn, Frank; Favier, Lionel</p> <p>2017-04-01</p> <p>Uncertainties in sea-level rise projections are mostly due to uncertainties in Antarctic ice-sheet predictions (IPCC AR5 report, 2013), because key parameters related to the current state of the Antarctic ice sheet (e.g. sub-ice-shelf melting) and future climate forcing are poorly constrained. Here, we propose to improve the predictions of Antarctic ice-sheet behaviour using new uncertainty quantification methods. As opposed to ensemble modelling (Bindschadler et al., 2013) which provides a rather limited view on input and output dispersion, new stochastic methods (Le Maître and Knio, 2010) can provide deeper insight into the impact of uncertainties on complex system behaviour. Such stochastic methods usually begin with deducing a probabilistic description of input parameter uncertainties from the available data. Then, the impact of these input parameter uncertainties on output quantities is assessed by estimating the probability distribution of the outputs by means of uncertainty propagation methods such as Monte Carlo methods or stochastic expansion methods. The use of such uncertainty propagation methods in glaciology may be computationally costly because of the high computational complexity of ice-sheet models. This challenge emphasises the importance of developing reliable and computationally efficient ice-sheet models such as the f.ETISh ice-sheet model (Pattyn, 2015), a new fast thermomechanical coupled ice sheet/ice shelf model capable of handling complex and critical processes such as the marine ice-sheet instability mechanism. Here, we apply these methods to investigate the role of uncertainties in sub-ice-shelf melting, calving rates and climate projections in assessing Antarctic contribution to sea-level rise for the next centuries using the f.ETISh model. We detail the methods and show results that provide nominal values and uncertainty bounds for future sea-level rise as a reflection of the impact of the input parameter uncertainties under consideration, as well as a ranking of the input parameter uncertainties in the order of the significance of their contribution to uncertainty in future sea-level rise. In addition, we discuss how limitations posed by the available information (poorly constrained data) pose challenges that motivate our current research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025997','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025997"><span>Crustal structure in the Elko-Carlin Region, Nevada, during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Howard, K.A.</p> <p>2003-01-01</p> <p>The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large-displacement Cenozoic extensional faulting and flow in the deep crust, would be expected to blur the expression of any regional structural roots that could correlate with mineral belts. Structural mismatch of the mineralized upper crust and the tectonically complex middle crust suggests that the Carlin trend relates not to subjacent deeply penetrating rooted structures but to favorable upper crustal host rocks aligned within a relatively coherent regional block of upper crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1352834-molecular-view-role-chirality-charge-driven-polypeptide-complexation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1352834-molecular-view-role-chirality-charge-driven-polypeptide-complexation"><span>A molecular view of the role of chirality in charge-driven polypeptide complexation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hoffmann, K. Q.; Perry, S. L.; Leon, L.</p> <p></p> <p>Polyelectrolyte molecules of opposite charge are known to form stable complexes in solution. Depending on the system conditions, such complexes can be solid or liquid. The latter are known as complex coacervates, and they appear as a second liquid phase in equilibrium with a polymer-dilute aqueous phase. This work considers the complexation between poly(glutamic acid) and poly(lysine), which is of particular interest because it enables examination of the role of chirality in ionic complexation, without changes to the overall chemical composition. Systematic atomic-level simulations are carried out for chains of poly(glutamic acid) and poly(lysine) with varying combinations of chirality alongmore » the backbone. Achiral chains form unstructured complexes. In contrast, homochiral chains lead to formation of stable beta-sheets between molecules of opposite charge, and experiments indicate that beta-sheet formation is correlated with the formation of solid precipitates. Changes in chirality along the peptide backbone are found to cause "kinks" in the beta-sheets. These are energetically unfavorable and result in irregular structures that are more difficult to pack together. Taken together, these results provide new insights that may be of use for the development of simple yet strong bioinspired materials consisting of beta-rich domains and amorphous regions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/984088-modeling-fracture-ice-sheets-parallel-computers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/984088-modeling-fracture-ice-sheets-parallel-computers"><span>Modeling the fracture of ice sheets on parallel computers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Waisman, Haim; Bell, Robin; Keyes, David</p> <p>2010-03-01</p> <p>The objective of this project is to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse of ice shelves inmore » Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the diminishing extent of the Larsen B shelf from 1998 to 2002). Other fracture examples include ice calving (fracture of icebergs) which is presently approximated in simplistic ways within ice sheet models, and the draining of supraglacial lakes through a complex network of cracks, a so called ice sheet plumbing system, that is believed to cause accelerated ice sheet flows due essentially to lubrication of the contact surface with the ground. These dramatic changes are emblematic of the ongoing change in the Earth's polar regions and highlight the important role of fracturing ice. To model ice fracture, a simulation capability will be designed centered around extended finite elements and solved by specialized multigrid methods on parallel computers. In addition, appropriate dynamic load balancing techniques will be employed to ensure an approximate equal amount of work for each processor.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512782S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512782S"><span>Geochemical characteristics of Antarctic magmatism connected with Karoo-Maud and Kerguelen mantle plumes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sushchevskaya, Nadezhda; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Migdisova, Natalya</p> <p>2013-04-01</p> <p>Emplacement (130-115 m.y. ago) of dikes and sills of alkaline-ultrabasic composition within Jetty oasis (East Antarctica) is suggested as a later appearance of plume magmatism within the East-Antarctic Shield [Andronikov et al., 1993, 2001; Laiba et al., 1987]. This region is located opposite Kerguelen Islands and possibly could be properly connected with activity of the Kerguelen-plume [Foley et al., 2001, 2006]. Jurassic-Cretaceous dykes, stocks and sills of alkaline-ultrabasic rocks, relatively close to kimberlite-type, are exposed within Jetty oasis and on the southern shore of the Raddock Lake. This alkaline-ultrabasic magmatism has appeared to be connected with the main Mesozoic stage of the evolution of the Lambert and Amery glaciers riftogenic structure [Kurinin et al., 1980, 1988]. The alkaline-ultrabasic dikes and sills within Jetty oasis cut the rocks of the Beaver complex, Permo-Triassic terrigeneous successions of the Amery complex, and late Paleozoic low-alkaline basic dikes as well. Dashed chain of 6 stock bodies spread out on 15 km along the eastern shore of the Beaver Lake, marked their allocation with submeridianal zone of the deep cracks, boarded of the eastern side of the Beaver Lake trough. At the same time, new data upon Quaternary magmatism of the mountain Gaussberg has confirmed the unique features of ultra-potassium alkaline magmatism (up to 14-17% K2O) formed under exclusively continental conditions [Murphy et al., 2002]. Volcanic cone is located at the continuation of Gaussberg rift zone which is possibly a part of Lambert fracture zone. Its formation is connected with the early stages of Gondwana development, perhaps, reactivated in different Precambrian events and according to numerous data is a single rift zone which is traced Indian inland (Indrani graben, [Golynsky, 2011]). The time of lamproitic magmas eruption is estimated at 56000±5000 yeas ago [Tingey et al., 1983]. Earlier it had been shown the Mesozoic (about 170 Ma) basaltic dykes of the Schirmacher Oasis and basalts and dolerites of the Queen Maud Land (180 Ma) are identical in petrology and geochemistry terms and supposedly could be interpreted as the manifestation of the Karoo-Maud plume activity in Antarctica [Sushchevskaya et al., 2012]. The spatial distribution of the dikes indicates the eastward spreading of the plume material from DML to the Schirmacher Oasis within at least 10 Ma (up to ~35 Ma, taking into account the uncertainty of age determination). On the other hand, the considerable duration and multistage character of plume magmatism related to the activity of the Karoo-Maud plume in Antarctica and Africa [Leat et al., 2007; Luttinen et al., 2002] may indicate that the Mesozoic dikes of the oasis correspond to a single stage of plume magmatism. On the basis of obtained isotopic data it has been determined two magmatic melt evolution trends for basalts from: Queen Maud Land - Kerguelen Archipelago - Afanasy Nikitin Rise (Indian Ocean) and Jetty - Schirmacher oasises which mantle sources are quite different. Thus the Jetty - Schirmacher oasises magmatic melt sources are characterized by prevalence of the matter of moderately enriched or primitive chondritic mantle source and lithospheric mantle of Proterozoic ages but the substances of depleted mantle source similar to MORB-type and ancient mantle are absent. New data obtained on Nd, Sr, Pb isotopic and lithophile elements compositions of the alkaline-ultrabasic rocks from the Jetty oasis and Gaussberg volcano completed imagine of the Kerguelen-plume evolution. It has been confirmed unique character of the alkaline lamproiites of the Gaussberg volcano enrichments. Highly radiogenic Sr and Pb isotope ratios of these lamproiites reflect melting of the ancient sublithospheric depleted mantle which was stored from the Archean till nowadays unaffected by metasomatic-enrichment processes. During modern melting of this mantle part there is input of additional substances (crustal fluid of sediment origins, subducted sediments etc.) with high Rb/Sr ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1383..927X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1383..927X"><span>Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Yanmin</p> <p>2011-08-01</p> <p>Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26033874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26033874"><span>Cell Sheet-Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takahashi, Hironobu; Okano, Teruo</p> <p>2015-11-18</p> <p>In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41C1241P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41C1241P"><span>IGLOO: an Intermediate Complexity Framework to Simulate Greenland Ice-Ocean Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perrette, M.; Calov, R.; Beckmann, J.; Alexander, D.; Beyer, S.; Ganopolski, A.</p> <p>2017-12-01</p> <p>The Greenland ice-sheet is a major contributor to current and future sea level rise associated to climate warming. It is widely believed that over a century time scale, surface melting is the main driver of Greenland ice volume change, in contrast to melting by the ocean. It is due to relatively warmer air and less ice area exposed to melting by ocean water compared to Antarctica, its southern, larger twin. Yet most modeling studies do not have adequate grid resolution to represent fine-scale outlet glaciers and fjords at the margin of the ice sheet, where ice-ocean interaction occurs, and must use rather crude parameterizations to represent this process. Additionally, the ice-sheet area grounded below sea level has been reassessed upwards in the most recent estimates of bedrock elevation under the Greenland ice sheet, revealing a larger potential for marine-mediated melting than previously thought. In this work, we develop an original approach to estimate potential Greenland ice sheet contribution to sea level rise from ocean melting, in an intermediate complexity framework, IGLOO. We use a medium-resolution (5km) ice-sheet model coupled interactively to a number of 1-D flowline models for the individual outlet glaciers. We propose a semi-objective methodology to derive 1-D glacier geometries from 2-D Greenland datasets, as well as preliminary results of coupled ice-sheet-glaciers simulations with IGLOO.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss014e07258.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss014e07258.html"><span>Earth Observations taken by the Expedition 14 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2006-11-04</p> <p>ISS014-E-07258 (4 Nov. 2006) --- Galveston, Texas is featured in this image photographed by an Expedition 14 crewmember on the International Space Station (ISS). Mexico established a port of entry (known as Galveston) in 1825, and following the Texas Revolution it was the capital of the Republic of Texas during 1836. The modern-day city of Galveston was incorporated in 1839, and became the major trading seaport of Texas during the latter half of the 19th century. The city was largely destroyed in early September of 1900 by a powerful hurricane; this, coupled with construction of the Houston Ship Channel and discovery of oil in eastern Texas shifted the center of trade northwest to Houston. Many human footprints are easily observed from the vantage point of low Earth orbit. The eastern half of Galveston Island is dominated by the city of Galveston (gray-white region at center). A large seawall along the Gulf of Mexico (southern coastline of Galveston Island) protects most of the city. To the west of Galveston, coastal wetlands are largely submerged by regional subsidence--a result of ground water withdrawal by the petrochemical industry of Houston and Texas City. The entrance to Galveston Bay and the Houston Ship Channel is located between Galveston Island and the Bolivar Peninsula (upper right). Numerous ship wakes are visible along the Houston Ship Channel. Other visible features of the entrance to Galveston Bay include the five-mile long Texas City Dike, a structure that protects the Texas City channel and includes a fishing pier that extends 600 feet beyond the end of the Dike. Extensive petroleum processing facilities are located to the west of the Dike in Texas City. The Intracoastal Waterway runs through western Galveston Bay; new subdivisions built on dredge spoils are visible along the northern boundary of the Waterway. Geologists studying the ISS collection of down linked still imagery observe that complex estuarine sediment patterns are visible in this image. Dark brown to tan waters adjacent to the Bolivar Peninsula and Texas City Dike reflect increased sediment loads following heavy rains in mid-to-late October, coupled with northerly winds moving Bay water southwards. Turbidity currents to both the northwest and southeast of Galveston Island produce a more chaotic pattern of sediment-laden (light green to tan) and relatively sediment-free (dark green) water leading into the dark green Gulf of Mexico (lower right).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1353322-sediment-transport-swinomish-navigation-channel-puget-soundhabitat-restoration-versus-navigation-maintenance-needs','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1353322-sediment-transport-swinomish-navigation-channel-puget-soundhabitat-restoration-versus-navigation-maintenance-needs"><span>Sediment Transport into the Swinomish Navigation Channel, Puget Sound—Habitat Restoration versus Navigation Maintenance Needs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Khangaonkar, Tarang; Nugraha, Adi; Hinton, Steve; ...</p> <p>2017-04-21</p> <p>The 11 mile (1.6 km) Swinomish Federal Navigation Channel provides a safe and short passage to fishing and recreational craft in and out of Northern Puget Sound by connecting Skagit and Padilla Bays, US State abbrev., USA. A network of dikes and jetties were constructed through the Swinomish corridor between 1893 and 1936 to improve navigation functionality. Over the years, these river training dikes and jetties designed to minimize sedimentation in the channel have deteriorated, resulting in reduced protection of the channel. The need to repair or modify dikes/jetties for channel maintenance, however, may conflict with salmon habitat restoration goalsmore » aimed at improving access, connectivity and brackish water habitat. Several restoration projects have been proposed in the Skagit delta involving breaching, lowering, or removal of dikes. To assess relative merits of the available alternatives, a hydrodynamic model of the Skagit River estuary was developed using the Finite Volume Community Ocean Model (FVCOM). Here, in this paper, we present the refinement and calibration of the model using oceanographic data collected from the years 2006 and 2009 with a focus on the sediment and brackish water transport from the river and Skagit Bay tide flats to the Swinomish Channel. The model was applied to assess the feasibility of achieving the desired dual outcome of (a) reducing sedimentation and shoaling in the Swinomish Channel and (b) providing a direct migration pathway and improved conveyance of freshwater into the Swinomish Channel. Finally, the potential reduction in shoaling through site-specific structure repairs is evaluated. Similarly, the potential to significantly improve of brackish water habitat through dike breach restoration actions using the McGlinn Causeway project example, along with its impacts on sediment deposition in the Swinomish Navigation Channel, is examined« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1954/0014/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1954/0014/report.pdf"><span>Fusion of arkosic sand by intrusive andesite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bailey, Roy A.</p> <p>1954-01-01</p> <p>An andesite dike in the Valles Mountains of northern New Mexico has intruded and partly fused arkosic sediments for a distance of 50 feet from its contacts. The dike is semi-circular in form, has a maximum width of about 100 feet, and is about 500 feet long. Small associated arcuate dikes are arranged in spiral fashion around the main dike, suggesting that they were intruded along shear fractures similar to those described by Burbank (1941). The fused rocks surrounding the andesite dike are of three general types: 1) partly fused arkosic sand, 2) fused clay, and 3) hybrid rocks. The fused arkosic sand consists of relict detrital grains of quartz, orthoclose, and plagioclase, imbedded in colorless glass containing microlites of tridymite, cordierite, and magnetite. The relict quartz grains are corroded and embayed by glass; the orthoclase is sanidinized and partly fused; and the plagioclase is inverted to the high temperature form and is partly fused. The fused clay, which was originally a mixture of montmorillonite and hydromica, consists primarily of cordierite but also contains needle-like crystals of sillimanite (?) or mullite (?). The hybrid rocks originated in part by intermixing of fused arkosic sediments and andesitic liquid and in part by diffusion of mafic constituents through the fused sediments. They are rich in cordierite and magnetite and also contain hypersthene, augite, and plagioclase. The composition of pigeonite in the andesite indicates that the temperature of the andesite at the time of intrusion probably did not exceed 1200?C. Samples of arkosic sand were fused in the presence of water in a Morey bomb at 1050?C. Stability relations of certain minerals in the fused sand suggest that fusion may have taken place at a lower temperature, however, and the fluxing action of volatiles from the andesite are thought to have made this possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1353322','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1353322"><span>Sediment Transport into the Swinomish Navigation Channel, Puget Sound—Habitat Restoration versus Navigation Maintenance Needs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khangaonkar, Tarang; Nugraha, Adi; Hinton, Steve</p> <p></p> <p>The 11 mile (1.6 km) Swinomish Federal Navigation Channel provides a safe and short passage to fishing and recreational craft in and out of Northern Puget Sound by connecting Skagit and Padilla Bays, US State abbrev., USA. A network of dikes and jetties were constructed through the Swinomish corridor between 1893 and 1936 to improve navigation functionality. Over the years, these river training dikes and jetties designed to minimize sedimentation in the channel have deteriorated, resulting in reduced protection of the channel. The need to repair or modify dikes/jetties for channel maintenance, however, may conflict with salmon habitat restoration goalsmore » aimed at improving access, connectivity and brackish water habitat. Several restoration projects have been proposed in the Skagit delta involving breaching, lowering, or removal of dikes. To assess relative merits of the available alternatives, a hydrodynamic model of the Skagit River estuary was developed using the Finite Volume Community Ocean Model (FVCOM). Here, in this paper, we present the refinement and calibration of the model using oceanographic data collected from the years 2006 and 2009 with a focus on the sediment and brackish water transport from the river and Skagit Bay tide flats to the Swinomish Channel. The model was applied to assess the feasibility of achieving the desired dual outcome of (a) reducing sedimentation and shoaling in the Swinomish Channel and (b) providing a direct migration pathway and improved conveyance of freshwater into the Swinomish Channel. Finally, the potential reduction in shoaling through site-specific structure repairs is evaluated. Similarly, the potential to significantly improve of brackish water habitat through dike breach restoration actions using the McGlinn Causeway project example, along with its impacts on sediment deposition in the Swinomish Navigation Channel, is examined« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tecto..35.1177H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tecto..35.1177H"><span>Mechanical anisotropy control on strain localization in upper mantle shear zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herwegh, Marco; Mercolli, Ivan; Linckens, Jolien; Müntener, Othmar</p> <p>2016-05-01</p> <p>Mantle rocks at oceanic spreading centers reveal dramatic rheological changes from partially molten to solid-state ductile to brittle deformation with progressive cooling. Using the crustal-scale Wadi al Wasit mantle shear zone (SZ, Semail ophiolite, Oman), we monitor such changes based on quantitative field and microstructural investigations combined with petrological and geochemical analyses. The spatial distribution of magmatic dikes and high strain zones gives important information on the location of magmatic and tectonic activity. In the SZ, dikes derived from primitive melts (websterites) are distributed over the entire SZ but are more abundant in the center; dikes from more evolved, plagioclase saturated melts (gabbronorites) are restricted to the SZ center. Accordingly, harzburgite deformation fabrics show a transition from protomylonite (1100°C), mylonite (900-800°C) to ultramylonite (<700°C) and a serpentine foliation (<500°C) from the SZ rim to the center. The spatial correlation between solid-state deformation fabrics and magmatic features indicates progressive strain localization in the SZ on the cooling path. Three stages can be discriminated: (i) Cycles of melt injection (dunite channels and websterite dikes) and solid-state deformation (protomylonites-mylonites; 1100-900°C), (ii) dominant solid-state deformation in harzburgite mylonites (900-800°C) with some last melt injections (gabbronorites) and ultramylonites (<700°C), and (iii) infiltration of seawater inducing a serpentine foliation (<500°C) followed by cataclasis during obduction. The change of these processes in space and time indicates that early dike-related ridge-parallel deformation controls the onset of the entire strain localization history promoting nucleation sites for different strain weakening processes as a consequence of changing physicochemical conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53C3116W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53C3116W"><span>Temporal Evolution of Surface Deformation and Magma Sources at Pacaya Volcano, Guatemala Revealed by InSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wnuk, K.; Wauthier, C.</p> <p>2016-12-01</p> <p>Pacaya Volcano, Guatemala is a persistently active volcano whose western flank is unstable. Despite continuous activity since 1961, a lack of high temporal resolution geodetic surveying has prevented detailed modeling of Pacaya's underlying magmatic plumbing system. A new, temporally dense dataset of Interferometric Synthetic Aperture Radar (InSAR) RADARSAT-2 images, spanning December 2012 to March 2014, shows magmatic deformation before and during major eruptions in January and March 2014. Inverse modeling of InSAR surface displacements suggest that three magma bodies are responsible for observed deformation: (1) a 3.7 km deep spherical reservoir located northwest of the summit, (2) a 0.4 km deep spherical source located directly west of the summit, and (3) a shallow dike below the summit that provides the primary transport pathway for erupted materials. Periods of heightened activity are brought on by magma pulses at depth, which result in rapid inflation of the edifice. We observe an intrusion cycle at Pacaya that consists of deflation of one or both magma reservoirs followed by dike intrusion. Intrusion volumes are proportional to reservoir volume loss, and do not always result in an eruption. Periods of increased activity culminate with larger dike fed eruptions. Large eruptions are followed by inter eruptive periods marked by a decrease in crater explosions and a lack of deformation. A full understanding of magmatic processes at Pacaya is required to assess potential impacts on other aspects of the volcano such as the unstable western flank. Co-eruptive flank motion appears to have initiated a new stage of volcanic rifting at Pacaya defined by repeated NW-SE dike intrusions. This creates a positive feedback relationship whereby magmatic forcing from eruptive dike intrusions induces flank motion</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030828','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030828"><span>High-precision U-Pb geochronology in the Minnesota River Valley subprovince and its bearing on the Neoarchean to Paleoproterozoic evolution of the southern Superior Province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schmitz, M.D.; Bowring, S.A.; Southwick, D.L.; Boerboom, Terrence; Wirth, K.R.</p> <p>2006-01-01</p> <p>High-precision U-Pb ages have been obtained for high-grade gneisses, late-kinematic to postkinematic granitic plutons, and a crosscutting mafic dike of the Archean Minnesota River Valley tectonic subprovince, at the southern ramparts of the Superior craton of North America. The antiquity of the Minnesota River Valley terranes is confirmed by a high-precision U-Pb zircon age of 3422 ?? 2 Ma for a tonalitic phase of the Morton Gneiss. Voluminous, late-kinematic monzogranites of the Benson (Ortonville granite) and Morton (Sacred Heart granite) blocks yield identical crystallization ages of 2603 ?? 1 Ma, illustrating the synchrony and rapidity of deep crustal melting and plutonism throughout the Minnesota River Valley terranes. Postkinematic, 2591 ?? 2 Ma syenogranites and aplitic dikes in both blocks effectively constrain the final penetrative deformation of the Minnesota River Valley subprovince. Monazite growth from 2609 to 2595 Ma in granulitic paragneisses of the Benson and Montevideo blocks is interpreted to record prograde to peak granulite facies metamorphic conditions associated with crustal thickening and magmatism. Neoarchean metamorphism and plutonism are interpreted to record the timing of collisional accretion and terminal suturing of the Mesoarchean continental Minnesota River Valley terranes to the southern margin of the Superior Province, along the western Great Lakes tectonic zone. Subsequent Paleoproterozoic rifting of this margin is recorded by voluminous basaltic dike intrusion, expressed in the Minnesota River Valley by major WNW-trending tholeiitic diabase dikes dated at 2067 ?? 1 Ma, only slightly younger than the structurally and geochemically similar 2077 ?? 4 Ma Fort Frances (Kenora-Kabetogama) dike swarm of northern Minnesota and adjoining Canada. ?? 2006 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.G51A0073W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.G51A0073W"><span>Bi-directional volcano-earthquake interaction at Mauna Loa Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walter, T. R.; Amelung, F.</p> <p>2004-12-01</p> <p>At Mauna Loa volcano, Hawaii, large-magnitude earthquakes occur mostly at the west flank (Kona area), at the southeast flank (Hilea area), and at the east flank (Kaoiki area). Eruptions at Mauna Loa occur mostly at the summit region and along fissures at the southwest rift zone (SWRZ), or at the northeast rift zone (NERZ). Although historic earthquakes and eruptions at these zones appear to correlate in space and time, the mechanisms and implications of an eruption-earthquake interaction was not cleared. Our analysis of available factual data reveals the highly statistical significance of eruption-earthquake pairs, with a random probability of 5-to-15 percent. We clarify this correlation with the help of elastic stress-field models, where (i) we simulate earthquakes and calculate the resulting normal stress change at volcanic active zones of Mauna Loa, and (ii) we simulate intrusions in Mauna Loa and calculate the Coulomb stress change at the active fault zones. Our models suggest that Hilea earthquakes encourage dike intrusion in the SWRZ, Kona earthquakes encourage dike intrusion at the summit and in the SWRZ, and Kaoiki earthquakes encourage dike intrusion in the NERZ. Moreover, a dike in the SWRZ encourages earthquakes in the Hilea and Kona areas. A dike in the NERZ may encourage and discourage earthquakes in the Hilea and Kaoiki areas. The modeled stress change patterns coincide remarkably with the patterns of several historic eruption-earthquake pairs, clarifying the mechanisms of bi-directional volcano-earthquake interaction for Mauna Loa. The results imply that at Mauna Loa volcanic activity influences the timing and location of earthquakes, and that earthquakes influence the timing, location and the volume of eruptions. In combination with near real-time geodetic and seismic monitoring, these findings may improve volcano-tectonic risk assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..350....7C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..350....7C"><span>Resonance oscillations of the Soufrière Hills Volcano (Montserrat, W.I.) magmatic system induced by forced magma flow from the reservoir into the upper plumbing dike</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Chin-Wu; Huang, Hsin-Fu; Hautmann, Stefanie; Sacks, I. Selwyn; Linde, Alan T.; Taira, Taka'aki</p> <p>2018-01-01</p> <p>Short-period deformation cycles are a common phenomenon at active volcanoes and are often attributed to the instability of magma flow in the upper plumbing system caused by fluctuations in magma viscosity related to cooling, degassing, and crystallization. Here we present 20-min periodic oscillations in ground deformation based on high-precision continuous borehole strain data that were associated with the 2003 massive dome-collapse at the Soufrière Hills Volcano, Montserrat (West Indies). These high-frequency oscillations lasted 80 min and were preceded by a 4-hour episode of rapid expansion of the shallow magma reservoir. Strain amplitude ratios indicate that the deformational changes were generated by pressure variations in the shallow magma reservoir and - with reversed polarity - the adjacent plumbing dike. The unusually short period of the oscillations cannot be explained with thermally induced variations in magma properties. We investigate the underlying mechanism of the oscillations via a numerical model of forced magma flow through a reservoir-dike system accounting for time-dependent dilation/contraction of the dike due to a viscous response in the surrounding host rock. Our results suggest that the cyclic pressure variations are modulated by the dynamical interplay between rapid expansion of the magma chamber and the incapacity of the narrow dike to take up fast enough the magma volumes supplied by the reservoir. Our results allow us to place first order constraints on the viscosity of crustal host rocks and consequently its fractional melt content. Hence, we present for the first time crustal-scale in situ measurements of rheological properties of mush zones surrounding magmatic systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29793778','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29793778"><span>Preforming of polydioxanone sheets for orbital wall fractures - A technical note.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kruber, Daniel; Hierl, Thomas; Doerfler, Hans-Martin; Huempfner-Hierl, Heike; Krause, Matthias</p> <p>2018-07-01</p> <p>Polydioxanone (PDS) sheets are commonly used in the treatment of orbital wall fractures. A potential drawback of PDS is that it may be difficult to adapt to the anatomy of the orbital walls. Therefore a study was conceived to test the feasibility of preforming PDS sheets. PDS sheet material was water-heated and preformed using a template based on a statistical anatomical model. Then the deformed sheet was cooled, stored and compared to the original model to investigate post-deformation changes. PDS sheet material could easily be deformed using a mould. No significant post-cooling shape changes were noticed. PDS sheet material can be preformed into complex geometric shapes. This could be a benefit in the treatment of orbital wall fractures. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptLT..98..264S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptLT..98..264S"><span>Experimental analysis of Nd-YAG laser cutting of sheet materials - A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, Amit; Yadava, Vinod</p> <p>2018-01-01</p> <p>Cutting of sheet material is considered as an important process due to its relevance among products of everyday life such as aircrafts, ships, cars, furniture etc. Among various sheet cutting processes (ASCPs), laser beam cutting is one of the most capable ASCP to create complex geometries with stringent design requirements in difficult-to-cut sheet materials. Based on the recent research work in the area of sheet cutting, it is found that the Nd-YAG laser is used for cutting of sheet material in general and reflective sheet material in particular. This paper reviews the experimental analysis of Nd-YAG laser cutting process, carried out to study the influence of laser cutting parameters on the process performance index. The significance of experimental modeling and different optimization approaches employed by various researchers has also been discussed in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..153...97P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..153...97P"><span>The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen P.</p> <p>2016-12-01</p> <p>The Eurasian ice-sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum (LGM), after the Antarctic and North American ice sheets. Despite its global significance, a comprehensive account of its evolution from independent nucleation centres to its maximum extent is conspicuously lacking. Here, a first-order, thermomechanical model, robustly constrained by empirical evidence, is used to investigate the dynamics of the EISC throughout its build-up to its maximum configuration. The ice flow model is coupled to a reference climate and applied at 10 km spatial resolution across a domain that includes the three main spreading centres of the Celtic, Fennoscandian and Barents Sea ice sheets. The model is forced with the NGRIP palaeo-isotope curve from 37 ka BP onwards and model skill is assessed against collated flowsets, marginal moraines, exposure ages and relative sea-level history. The evolution of the EISC to its LGM configuration was complex and asynchronous; the western, maritime margins of the Fennoscandian and Celtic ice sheets responded rapidly and advanced across their continental shelves by 29 ka BP, yet the maximum aerial extent (5.48 × 106 km2) and volume (7.18 × 106 km3) of the ice complex was attained some 6 ka later at c. 22.7 ka BP. This maximum stand was short-lived as the North Sea and Atlantic margins were already in retreat whilst eastern margins were still advancing up until c. 20 ka BP. High rates of basal erosion are modelled beneath ice streams and outlet glaciers draining the Celtic and Fennoscandian ice sheets with extensive preservation elsewhere due to frozen subglacial conditions, including much of the Barents and Kara seas. Here, and elsewhere across the Norwegian shelf and North Sea, high pressure subglacial conditions would have promoted localised gas hydrate formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992Tectp.212..163R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992Tectp.212..163R"><span>Crustal structure associated with Gondwana graben across the Narmada-Son lineament in India: An inference from aeromagnetics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rao, D. Atchuta; Babu, H. V. Ram; Sinha, G. D. J. Sivakumar</p> <p>1992-10-01</p> <p>Aeromagnetic data over an 80-km-wide belt along the ENE-trending Narmada-Son lineament (NSL), starting from Baroda in the west and continuing to the south of Jabalpur in the east, has been studied to understand the structural and tectonic framework of the region. The area is covered by generally E-W-trending steeply dipping and folded Archean phyllites and quartzites as basement, with Bijawars (Upper Precambrian), upper Vindhyans (Upper Proterozoic), and Gondwanas (Upper Carboniferous) overlying them. Overlapping them all are the Deccan trap (Cretaceous-Eocene) flows. Aeromagnetic linements and their disposition and pattern in this region suggest major dislocations in the crust. The region around Hoshangabad, which is the intersection point of the NSL and the northwestern extension of the Godavari lineament, appears to have been intensely disturbed. Spectral analysis of aeromagnetic profiles across the NSL belt brought out a deep magnetic interface within crust at depths varying from 4 km to about 20 km below the surface, perhaps corresponding to the discontinuity characterized by the interface of granitic and basaltic rocks. There is a significant downwarping of this interface under the Hoshangabad region, suggesting that this is perhaps related to the evolution of the Gondwana basin structure in this area. This warping of the magnetic interface may be a reflection of the crustal flexuring and rift faulting. Elsewhere in the world, concentrations of carbonatite complexes and dike swarms are known to occur in areas of crustal flexuring and rift faulting. The occurrence of carbonatite complexes in this region (e.g. at Amba Dongar and Barwaha, and dike swarms in the Dadiapada region) gives credence to the present inferences from the aeromagnetic study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/827555','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/827555"><span>Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-155) - Blind Slough Restoration Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wittpenn, Nancy A.</p> <p>2004-07-09</p> <p>This project proposes to restore tidal connection between the Columbia River Estuary and Blind Slough through the replacement and/or installation of culverts, installation of water control devices, breaching of dikes, and channel enhancement. These enhancements would restore connectivity to approximately ten (10) miles of slough channels previously isolated from tidal influence due to dikes, road crossings, and constrained culverts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-10-27/pdf/2010-27124.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-10-27/pdf/2010-27124.pdf"><span>75 FR 66083 - Iron Mask Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-10-27</p> <p>... following: (1) A 225-foot- high, 1,795-foot-long upper dam made of either zoned earth and rockfill or concrete-face earth and rockfill; (2) a 50-foot-high, 950-foot-long earth-filled upper saddle dike A; (3) a 20-foot-high, 400-foot-long earth-filled upper saddle dike B; (4) a 40-foot-high, 6,559-foot-long...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-09-02/pdf/2010-21969.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-09-02/pdf/2010-21969.pdf"><span>75 FR 53963 - Iron Mask Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-09-02</p> <p>...-long upper dam made of either zoned earth and rockfill or concrete-face earth and rockfill; (2) a 50-foot-high, 950-foot-long earth-filled upper saddle dike A; (3) a 20-foot-high, 400-foot-long earth-filled upper saddle dike B; (4) a 40-foot-high, 6,559-foot-long lower embankment made of zoned earth or...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10.1003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10.1003H"><span>Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halberstadt, Anna Ruth W.; Simkins, Lauren M.; Greenwood, Sarah L.; Anderson, John B.</p> <p>2016-05-01</p> <p>Studying the history of ice-sheet behaviour in the Ross Sea, Antarctica's largest drainage basin can improve our understanding of patterns and controls on marine-based ice-sheet dynamics and provide constraints for numerical ice-sheet models. Newly collected high-resolution multibeam bathymetry data, combined with two decades of legacy multibeam and seismic data, are used to map glacial landforms and reconstruct palaeo ice-sheet drainage. During the Last Glacial Maximum, grounded ice reached the continental shelf edge in the eastern but not western Ross Sea. Recessional geomorphic features in the western Ross Sea indicate virtually continuous back-stepping of the ice-sheet grounding line. In the eastern Ross Sea, well-preserved linear features and a lack of small-scale recessional landforms signify rapid lift-off of grounded ice from the bed. Physiography exerted a first-order control on regional ice behaviour, while sea floor geology played an important subsidiary role. Previously published deglacial scenarios for Ross Sea are based on low-spatial-resolution marine data or terrestrial observations; however, this study uses high-resolution basin-wide geomorphology to constrain grounding-line retreat on the continental shelf. Our analysis of retreat patterns suggests that (1) retreat from the western Ross Sea was complex due to strong physiographic controls on ice-sheet drainage; (2) retreat was asynchronous across the Ross Sea and between troughs; (3) the eastern Ross Sea largely deglaciated prior to the western Ross Sea following the formation of a large grounding-line embayment over Whales Deep; and (4) our glacial geomorphic reconstruction converges with recent numerical models that call for significant and complex East Antarctic ice sheet and West Antarctic ice sheet contributions to the ice flow in the Ross Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..248..424J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..248..424J"><span>Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel</p> <p>2015-03-01</p> <p>Lunar floor-fractured craters are a class of 170 lunar craters with anomalously shallow, fractured floors. Two end-member processes have been proposed for the floor formation: viscous relaxation, and subcrater magmatic intrusion and sill formation. Recent morphometric analysis with new Lunar Reconnaissance Orbiter Laser Altimeter (LOLA) and image (LROC) data supports an origin related to shallow magmatic intrusion and uplift. We find that the distribution and characteristics of the FFC population correlates strongly with crustal thickness and the predicted frequency distribution of overpressurization values of magmatic dikes. For a typical nearside lunar crustal thickness, dikes with high overpressurization values favor surface effusive eruptions, medium values favor intrusion and sill formation, and low values favor formation of solidified dikes concentrated lower in the crust. We develop a model for this process, make predictions for the morphologic, morphometric, volcanic, and geophysical consequences of the process and then compare these predictions with the population of observed floor-fractured craters. In our model, the process of magmatic intrusion and sill formation begins when a dike propagates vertically towards the surface; as the dike encounters the underdense brecciated region beneath the crater, the magmatic driving pressure is insufficient to continue vertical propagation, but pressure in the stalled dike exceeds the local lithostatic pressure. The dike then begins to propagate laterally forming a sill which does not propagate past the crater floor region because increased overburden pressure from the crater wall and rim crest pinch off the dike at this boundary; the sill then continues to inflate, further raising and fracturing the brittle crater floor. When the intrusion diameter to intrusion depth ratio is smaller than a critical value, the intrusion assumes a laccolith shape with a domed central region. When the ratio exceeds a critical value, the intrusion concentrates bending primarily at the periphery, resulting in a flat, tabular intrusion. We predict that this process will result in concentric fractures over the region of greatest bending. This location is close to the crater wall in large, flat-floored craters, as observed in the crater Humboldt, and interior to the crater over the domed floor in smaller craters, as observed in the crater Vitello. A variety of volcanic features are predicted to be associated with the solidification and degassing of the intrusion; these include: (1) surface lava flows associated with concentric fractures (e.g., in the crater Humboldt); (2) vents with no associated pyroclastic material, from the deflation of under-pressurized magmatic foam (e.g., the crater Damoiseau); and (3) vents with associated pyroclastic deposits from vulcanian eruptions of highly pressurized magmatic foam (e.g., the crater Alphonsus). The intrusion of basaltic magma beneath the crater is predicted to contribute a positive component to the Bouguer gravity anomaly; we assess the predicted Bouguer anomalies associated with FFCs and outline a process for their future interpretation. We conclude that our proposed mechanism serves as a viable formation process for FFCs and accurately predicts numerous morphologic, morphometric, and geophysical features associated with FFCs. These predictions can be further tested using GRAIL (Gravity Recovery and Interior Laboratory) data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARG34004P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARG34004P"><span>Thin sheets achieve optimal wrapping of liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paulsen, Joseph; Démery, Vincent; Davidovitch, Benny; Santangelo, Christian; Russell, Thomas; Menon, Narayanan</p> <p>2015-03-01</p> <p>A liquid drop can wrap itself in a sheet using capillary forces [Py et al., PRL 98, 2007]. However, the efficiency of ``capillary origami'' at covering the surface of a drop is hampered by the mechanical cost of bending the sheet. Thinner sheets deform more readily by forming small-scale wrinkles and stress-focussing patterns, but it is unclear how coverage efficiency competes with mechanical cost as thickness is decreased, and what wrapping shapes will emerge. We place a thin (~ 100 nm) polymer film on a drop whose volume is gradually decreased so that the sheet covers an increasing fraction of its surface. The sheet exhibits a complex sequence of axisymmetric and polygonal partially- and fully- wrapped shapes. Remarkably, the progression appears independent of mechanical properties. The gross shape, which neglects small-scale features, is correctly predicted by a simple geometric approach wherein the exposed area is minimized. Thus, simply using a thin enough sheet results in maximal coverage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5041/pdf/sir2013-5041.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5041/pdf/sir2013-5041.pdf"><span>Hydrogeology, groundwater seepage, nitrate distribution, and flux at the Raleigh hydrologic research station, Wake County, North Carolina, 2005-2007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McSwain, Kristen Bukowski; Bolich, Richard E.; Chapman, Melinda J.</p> <p>2013-01-01</p> <p>rom 2005 to 2007, the U.S. Geological Survey and the North Carolina Department of Environment and Natural Resources, Division of Water Quality, conducted a study to describe the geologic framework, measure groundwater quality, characterize the groundwater-flow system, and describe the groundwater/surface-water interaction at the 60-acre Raleigh hydrogeologic research station (RHRS) located at the Neuse River Waste Water Treatment Plant in eastern Wake County, North Carolina. Previous studies have shown that the local groundwater quality of the surficial and bedrock aquifers at the RHRS had been affected by high levels of nutrients. Geologic, hydrologic, and water-quality data were collected from 3 coreholes, 12 wells, and 4 piezometers at 3 well clusters, as well as from 2 surface-water sites, 2 multiport piezometers, and 80 discrete locations in the streambed of the Neuse River. Data collected were used to evaluate the three primary zones of the Piedmont aquifer (regolith, transition zone, and fractured bedrock) and characterize the interaction of groundwater and surface water as a mechanism of nutrient transport to the Neuse River. A conceptual hydrogeologic cross section across the RHRS was constructed using new and existing data. Two previously unmapped north striking, nearly vertical diabase dikes intrude the granite beneath the site. Groundwater within the diabase dike appeared to be hydraulically isolated from the surrounding granite bedrock and regolith. A correlation exists between foliation and fracture orientation, with most fractures striking parallel to foliation. Flowmeter logging in two of the bedrock wells indicated that not all of the water-bearing fractures labeled as water bearing were hydraulically active, even when stressed by pumping. Groundwater levels measured in wells at the RHRS displayed climatic and seasonal trends, with elevated groundwater levels occurring during the late spring and declining to a low in the late fall. Vertical gradients in the groundwater discharge area near the Neuse River were complex and were affected by fluctuations in river stage, with the exception of a well completed in a diabase dike. Water-quality data from the wells and surface-water sites at the RHRS were collected continuously as well as during periodic sampling events. Surface-water samples collected from a tributary were most similar in chemical composition to groundwater found in the regolith and transition zone. Nitrate (measured as nitrite plus nitrate, as nitrogen) concentrations in the sampled wells and tributary ranged from about 5 to more than 120 milligrams per liter as nitrogen. Waterborne continuous resistivity profiling conducted on the Neuse River in the area of the RHRS measured areas of low apparent resistivity that likely represent groundwater contaminated by high concentrations of nitrate. These areas were located on either side of a diabase dike and at the outfall of two unnamed tributaries. The diabase dike preferentially directed the discharge of groundwater to the Neuse River and may isolate groundwater movement laterally. Discrete temperature measurements made within the pore water beneath the Neuse River revealed seeps of colder groundwater discharging into warmer surface water near a diabase dike. Water-quality samples collected from the pore water beneath the Neuse River indicated that nitrate was present at concentrations as high as 80 milligrams per liter as nitrogen on the RHRS side of the river. The highest concentrations of nitrate were located within pore water collected from an area near a diabase dike that was identified as a suspected seepage area. Hydraulic head was measured and pore water samples were collected from two 140-centimeter-deep (55.1-inch-deep) multiport piezometers that were installed in bed sediments on opposite sides of a diabase dike. The concentration of nitrate in pore water at a suspected seepage area ranged from 42 to 82 milligrams per liter as nitrogen with a median concentration of 79 milligrams per liter as nitrogen. On the opposite side of the dike, concentrations of nitrate in pore water samples ranged from 3 to 91 milligrams per liter as nitrogen with a median concentration of 52 milligrams per liter. At one of the multiport piezometers the vertical gradient of hydraulic head between the Neuse River and the groundwater was too small to measure. At the multiport piezometer located in the suspected seepage area, an upward gradient of about 0.1 was present and explains the occurrence of higher concentrations of nitrate near the sediment/water interface. Horizontal seepage flux from the surficial aquifer to the edge of the Neuse River was estimated for 2006. Along a 130-foot flow path, the estimated seepage flux ranged from –0.52 to 0.2 foot per day with a median of 0.09 foot per day. The estimated advective horizontal mass flux of nitrate along a 300-foot reach of the Neuse River ranged from –10.9 to 5 pounds per day with a median of 2.2 pounds per day. The total horizontal mass flux of nitrate from the surficial aquifer to the Neuse River along the 130-foot flow path was estimated to be about 750 pounds for all of 2006. Seepage meters were deployed on the bed of the Neuse River in the areas of the multiport piezometers on either side of the diabase dike to estimate rates of vertical groundwater discharge and flux of nitrate. The average estimated daily seepage flux differed by two orders of magnitude between seepage areas. The potential vertical flux of nitrate from groundwater to the Neuse River was estimated at an average of 2.5 grams per day near one of the multiport piezometers and an average of 784 grams per day at the other. These approximations suggest that under some hydrologic conditions there is the potential for substantial quantities of nitrate to discharge from the groundwater to the Neuse River.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1037440','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1037440"><span>Introduction to Using Native Plant Community on Dredge Material Placement Areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-05-01</p> <p>following: • providing wildlife habitat • inhibiting invasive species establishment • enhancing, structural stability of dikes • providing...areas. Typically, a diked structure is constructed and then filled with dredged material over an extended period of time (i.e., 10–50 years) until...Bourne, Tosin Sekoni, and David Price ERDC/TN EWN-17-2 May 2017 2 DMPA/CDF and are more cost effective to establish than other structural</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA121607','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA121607"><span>The Influence of Channel Regulating Structures on Fish and Wildlife Habitat (GREAT-III).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-08-01</p> <p>supply and the beginning of river engineering. Although little is documented regarding the engineering art involved, the remains of irrigation, water...created downstream of each. Certain dike fields, regardless of design, have a higher rate of accretion than others. The state-of-the- art of dike...Scaphirhynchus: Characters, Distribution and Synonomy. Michigan Academy of Science, Arts ,and Letters. 39:169-208. Bednarik, A. F. and W. P. McCafferty</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1359/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1359/"><span>Bathymetric and hydraulic survey of the Matanuska River near Circle View Estates, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Conaway, Jeffrey S.</p> <p>2008-01-01</p> <p>An acoustic Doppler current profiler interfaced with a differentially corrected global positioning system was used to map bathymetry and multi-dimensional velocities on the Matanuska River near Circle View Estates, Alaska. Data were collected along four spur dikes and a bend in the river during a period of active bank erosion. These data were collected as part of a larger investigation into channel processes being conducted to aid land managers with development of a long-term management plan for land near the river. The banks and streambed are composed of readily erodible material and the braided channels frequently scour and migrate. Lateral channel migration has resulted in the periodic loss of properties and structures along the river for decades.For most of the survey, discharge of the Matanuska River was less than the 25th percentile of long-term streamflow. Despite this relatively low flow, measured water velocities were as high as 15 feet per second. The survey required a unique deployment of the acoustic Doppler current profiler in a tethered boat that was towed by a small inflatable raft. Data were collected along cross sections and longitudinal profiles. The bathymetric and velocity data document river conditions before the installation of an additional spur dike in 2006 and during a period of bank erosion. Data were collected along 1,700 feet of river in front of the spur dikes and along 1,500 feet of an eroding bank.Data collected at the nose of spur dikes 2, 3, and 4 were selected to quantify the flow hydraulics at the locations subject to the highest velocities. The measured velocities and flow depths were greatest at the nose of the downstream-most spur dike. The maximum point velocity at the spur dike nose was 13.3 feet per second and the maximum depth-averaged velocity was 11.6 feet per second. The maximum measured depth was 12.0 feet at the nose of spur dike 4 and velocities greater than 10 feet per second were measured to a depth of 10 feet.Data collected along an eroding bank provided details of the spatial distribution and variability in magnitude of velocities and flow depths while erosion was taking place. Erosion was concentrated in an area just downstream of the apex of a river bend. Measured velocities and flow depths were greater in the apex of the bend than in the area of maximum bank erosion. The maximum measured velocity was 12.9 feet per second at the apex and 11.2 feet per second in front of the eroding bank. The maximum measured depth was 10.2 feet at the apex and 5.2 feet in front of the eroding bank.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..179...24P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..179...24P"><span>Large-scale glacitectonic deformation in response to active ice sheet retreat across Dogger Bank (southern central North Sea) during the Last Glacial Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, Emrys; Cotterill, Carol; Johnson, Kirstin; Crombie, Kirstin; James, Leo; Carr, Simon; Ruiter, Astrid</p> <p>2018-01-01</p> <p>High resolution seismic data from the Dogger Bank in the central southern North Sea has revealed that the Dogger Bank Formation records a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonic deformation. These processes led to the development of a large thrust-block moraine complex which is buried beneath a thin sequence of Holocene sediments. This buried glacitectonic landsystem comprises a series of elongate, arcuate moraine ridges (200 m up to > 15 km across; over 40-50 km long) separated by low-lying ice marginal to proglacial sedimentary basins and/or meltwater channels, preserving the shape of the margin of this former ice sheet. The moraines are composed of highly deformed (folded and thrust) Dogger Bank Formation with the lower boundary of the deformed sequence (up to 40-50 m thick) being marked by a laterally extensive décollement. The ice-distal parts of the thrust moraine complex are interpreted as a "forward" propagating imbricate thrust stack developed in response to S/SE-directed ice-push. The more complex folding and thrusting within the more ice-proximal parts of the thrust-block moraines record the accretion of thrust slices of highly deformed sediment as the ice repeatedly reoccupied this ice marginal position. Consequently, the internal structure of the Dogger Bank thrust-moraine complexes can be directly related to ice sheet dynamics, recording the former positions of a highly dynamic, oscillating Weichselian ice sheet margin as it retreated northwards at the end of the Last Glacial Maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EL....11424003G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EL....11424003G"><span>Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gemmer, John; Sharon, Eran; Shearman, Toby; Venkataramani, Shankar C.</p> <p>2016-04-01</p> <p>The edges of torn plastic sheets and growing leaves often display hierarchical buckling patterns. We show that this complex morphology i) emerges even in zero strain configurations, and ii) is driven by a competition between the two principal curvatures, rather than between bending and stretching. We identify the key role of branch point (or “monkey saddle”) singularities in generating complex wrinkling patterns in isometric immersions, and show how they arise naturally from minimizing the elastic energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SolE....5...77S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SolE....5...77S"><span>Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarifakioglu, E.; Dilek, Y.; Sevin, M.</p> <p>2014-02-01</p> <p>Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in north-central Anatolia include locally coherent ophiolite complexes (∼ 179 Ma and ∼ 80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 256.9 ± 8.0 Ma, 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma indicating northern Tethys during the late Paleozoic through Cretaceous, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (∼ 67-63 Ma). All but the arc rocks occur in a shale-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the middle to late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant large ion lithophile elements (LILE) enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syenodioritic plutons exhibit high-K shoshonitic to medium- to high-K calc-alkaline compositions with strong enrichment in LILE, rare earth elements (REE) and Pb, and initial ɛNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syenodioritic plutons) in the southern part. The late Permian, Early to Late Jurassic, and Late Cretaceous amphibole-epidote schist, epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the early Triassic (or earlier). The latest Cretaceous-early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the northern Neotethys. The Ankara Mélange thus exhibits the record of ∼ 120-130 million years of oceanic magmatism in geological history of the northern Neotethys.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1985/4197/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1985/4197/report.pdf"><span>Evaluation of the effects of coal-mine reclamation on water quality in Big Four Hollow near Lake Hope, southeastern Ohio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nichols, V.E.</p> <p>1985-01-01</p> <p>A subsurface clay dike and mine-entrance hydraulic seals were constructed from July 1979 through May 1980 by the Ohio Department if Natural Resources, Division of Reclamation to reduce acidic mine drainage from abandoned drift-mine complex 88 into Big Four Hollow Creek. Big Four Hollow Creek flows into Sandy Run--the major tributary to Lake Hope. A data-collection program was established in 1979 by the U.S. Geological Survey to evaluate effects of drift-mine sealing on surface-water systems of the Big Four Hollow Creek and Sandy Run area just below the mine. Data collected by private consultants from 1970 through 1971 near the mouth of Big Four Hollow Creek (U.S. Geological Survey station 03201700) show that pH ranged from 2.7 to 4.8, with a median of 3.1. The calculated iron load was 50 pounds per day. Data collecetd near the mouth of Big Four Hollow Creek (station 03201700) from 1971 through 1979 (before dike construction) show the daily pH ranged from 2.1 to 6.7; the median was 3.6. The daily specific conduction ranged from 72 to 3,500 microsiements per centimeter at 25? Celsius and averaged 770. The estimated loads of chemical constituents were: Sulfate, 1,100 pounds per day: iron, 54 pounds per day: and manganese, 12 pounds per day. All postconstruction data collected at station 03201700 through the end of the project, May 1980 through June 30, 1983, show that the daily pH ranged from 2.4 to 7.7, with a median of 3.7. Daily specific conductance ranged from 87 to 3,200 microsiemens per centimeter and averaged 1,200. The estimated loads of chemical constituents for this period were: Sulfate, 1,000 pounds per day: iron, 44 pounds per day: and manganese, 16 pounds per day. Standard nonparametric statistical tests were performed on the data collected before and after reclamation. Differences at the 95-percent confidence level were found in the before- and after-reclamation data sets for specific conductance, aluminum, and manganese at station 03201700. Data collected during the first 6 months after reclamation indicated moderate improvement in water quality only because no highly mineralized water was leaking from the closed mine. Later, perhaps in Sepember 1980 increased hydraulic head behind the clay dike caused the mine water to seep out and degrade the stream-water quality. In order to investigate leakages, dye was injected into two wells that penetrated the closed mine complex 88. One injection revealed that the dye moved to a discharge point at a nearby mine entrance known to be connected to complex 88. No discharge of dye was detected as a result of dye injection into the other well during the project. Acidic mine water continues to seep from the closed mine complex 88. A definitive evaluation of the effects of reclamation on the area's water quality cannot be made until the hydrologic system stabilizes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196204','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196204"><span>Bedrock geologic map of the Miles Pond and Concord quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rankin, Douglas W.</p> <p>2018-04-20</p> <p>The bedrock geologic map of the Miles Pond and Concord quadrangles covers an area of approximately 107 square miles (276 square kilometers) in east-central Vermont and adjacent New Hampshire, north of and along the Connecticut River. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. The majority of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Silurian sedimentary, volcanic, and plutonic rocks. A major feature on the map is the Monroe fault, interpreted to be a west-directed, steeply dipping Late Devonian (Acadian) thrust fault. To the west of the Monroe fault, rocks of the Connecticut Valley-Gaspé trough dominate and consist primarily of metamorphosed Silurian and Devonian sedimentary rocks. To the north, the Victory pluton intrudes the Bronson Hill anticlinorium. The Bronson Hill anticlinorium consists of the metamorphosed Albee Formation, the Ammonoosuc Volcanics, the Comerford Intrusive Complex, the Highlandcroft Granodiorite, and the Joselin Turn tonalite. The Albee Formation is an interlayered, feldspathic metasandstone and pelite that is locally sulfidic. Much of the deformed metasandstone is tectonically pinstriped. In places, one can see compositional layering that was transposed by a steeply southeast-dipping foliation. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of siltstone, phyllite, graywacke, and grit. The Comerford Intrusive Complex crops out east of the Monroe fault and consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes from the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics east of the Monroe fault. The Highlandcroft Granodiorite and Joslin Turn tonalite plutons intruded during the Middle to Late Ordovician.West of the Monroe fault, the Connecticut Valley-Gaspé trough consists of the Silurian and Devonian Waits River and Gile Mountain Formations. The Waits River Formation is a carbonaceous muscovite-biotite-quartz (±garnet) phyllite containing abundant beds of micaceous quartz-rich limestone. The Gile Mountain Formation consists of interlayered metasandstone and graphitic (and commonly sulfidic) slate, along with minor calcareous metasandstone and ironstone. Graded bedding is common in the Gile Mountain Formation. Rocks of the Devonian New Hampshire Plutonic Suite intruded as plutons, dikes, and sills. The largest of these is the Victory pluton, which consists of weakly foliated, biotite granite and granodiorite. The Victory pluton also intruded a large part of the Albee Formation to the north.This report consists of a geologic map and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The geologic map is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012948','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012948"><span>Correlation of ash-flow tuffs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hildreth, W.; Mahood, G.</p> <p>1985-01-01</p> <p>Discrimination and correlation of ash-flow sheets is important in structurally complex, long-lived volcanic fields where such sheets provide the best keys to the regional stratigraphic framework. Three-dimensional complexities resulting from pulsatory eruptions, sectorial emplacement, mechanical sorting during outflow, thermal and compositional zoning of magmas, the physical zoning of cooling units, and structural and erosional disruption can make such correlation and discrimination difficult. When lithologic, magnetic, petrographic, chemical, and isotopic criteria for correlating ash-flow sheets are critically evaluated, many problems and pitfalls can be identified. Distinctive phenocrysts, pumice clasts, and lithic fragments are among the more reliable criteria, as are high-precision K-Ar ages and thermal remanent magnetization (TRM) directions in unaltered welded tuff. Chemical correlation methods should rely principally upon welded or nonwelded pumice blocks, not upon the ash-flow matrix, which is subject to fractionation, mixing, and contamination during emplacement. Compositional zoning of most large sheets requires that many samples be analyzed before phenocryst, glass or whole-rock chemical trends can be used confidently as correlation criteria.-Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1151d/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1151d/report.pdf"><span>Stratigraphy and structure of the western Kentucky fluorspar district</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Trace, R.D.; Amos, D.H.</p> <p>1984-01-01</p> <p>The western Kentucky fluorspar district is part of the larger Illinois-Kentucky fluorspar district, the largest producer of fluorspar in the United States. This report is based largely on data gathered from 1960 to 1974 during the U.S. Geological Survey-Kentucky Geological Survey cooperative geologic mapping program of Kentucky. It deals chiefly with the stratigraphy and structure of the district and, to a lesser extent, with the fluorspar-zinc-lead-barite deposits. Sedimentary rocks exposed in the district range in age from Early Mississippian (Osagean) to Quaternary. Most rocks exposed at the surface are Mississippian in age; two-thirds are marine fossiliferous limestones, and the remainder are shales, siltstones, and sandstones. Osagean deep-water marine silty limestone and chert are present at the surface in the southwestern corner of the district. Meramecian marine limestone is exposed at the surface in about half the area. Chesterian marine and fluvial to fluviodeltaic clastic sedimentary rocks and marine limestone underlie about one-third of the area. The total sequence of Mississippian rocks is about 3,000 ft thick. Pennsylvanian rocks are dominantly fluvial clastic sedimentary rocks that change upward into younger fluviodeltaic strata. Pennsylvanian strata of Morrowan and Atokan age are locally thicker than 600 ft along the eastern and southeastern margin and in the major grabens of the district where they have been preserved from erosion. Cretaceous and Tertiary sediments of the Mississippi embayment truncate Paleozoic formations in and near the southwestern corner of the district and are preserved mostly as erosional outliers. The deposits are Gulfian nonmarine gravels, sands, and clays as much as 170 ft thick and upper Pliocene fluvial continental deposits as thick as 45 ft. Pleistocene loess deposits mantle the upland surface of the district, and Quaternary fluvial and fluviolacustrine deposits are common and widespread along the Ohio and Cumberland Rivers and their major tributaries. Many mafic dikes and a few mafic sills are present. The mafic rocks are mostly altered mica peridotites or lamprophyres that are composed of carbonate minerals, serpentine, chlorite, and biotite and contain some hornblende, pyroxene, and olivine. Most of the dikes are in a north-north west-trending belt 6 to 8 mi wide and strike N. 20 0 -30 0 W. The dikes dip from 80 0 to 90 0 and are commonly 5 to 10 ft wide. Radioisotopic study indicates that the dikes are Early Permian in age. The district is just southeast of the intersection of the east-trending Rough Creek-Shawneetown and northeast-trending New Madrid fault systems. The district's principal structural features are a northwest-trending domal anticline, the Tolu Arch, and a series of steeply dipping to nearly vertical normal faults and fault zones that trend dominantly northeastward and divide the area into elongated northeast-trending grabens and horsts. Formation of these grabens and horsts was one of the major tectonic events in the district. Vertical displacement may be as much as 3,000 ft but commonly ranges from a few feet to a few hundred feet; no substantial horizontal movement is believed to have taken place. Many cross faults having only a few feet of displacement trend northwestward and are occupied at places by mafic dikes. Faulting was mostly post-Early Permian to pre-middle Cretaceous in age. Many theories have been advanced to explain the structural history of the district. A generally acceptable overall hypothesis that would account for all the structural complexities, however, is still lacking. Useful structural data, such as the structural differences between the grabens and the horsts, have been obtained, however, from the recently completed geologic mapping. Mapping also has more clearly shown the alinement of the Tolu Arch, the belt of dikes, and an unusually deep graben (the Griffith Bluff graben); this alinement suggests that possibl</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007RvGeo..45.3007P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007RvGeo..45.3007P"><span>Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Person, Mark; McIntosh, Jennifer; Bense, Victor; Remenda, V. H.</p> <p>2007-09-01</p> <p>While the geomorphic consequences of Pleistocene megafloods have been known for some time, it has been only in the past 2 decades that hydrogeologists and glaciologists alike have begun to appreciate the important impact that ice sheet-aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America. In this paper, we document the numerous lines of geochemical, isotopic, and geomechanical evidence of ice sheet hydrogeology across North America. We also review the mechanical, thermal, and hydrologic processes that control subsurface fluid migration beneath ice sheets. Finite element models of subsurface fluid flow, permafrost formation, and ice sheet loading are presented to investigate the coupled nature of transport processes during glaciation/deglaciation. These indicate that recharge rates as high as 10 times modern values occurred as the Laurentide Ice Sheet overran the margins of sedimentary basins. The effects of ice sheet loading and permafrost formation result in complex transient flow patterns within aquifers and confining units alike. Using geochemical and environmental isotopic data, we estimate that the volume of glacial meltwater emplaced at the margins of sedimentary basins overrun by the Laurentide Ice Sheet totals about 3.7 × 104 km3, which is about 0.2% of the volume of the Laurentide Ice Sheet. Subglacial infiltration estimates based on continental-scale hydrologic models are even higher (5-10% of meltwater generated). These studies in sum call into question the widely held notion that groundwater flow patterns within confined aquifer systems are controlled primarily by the water table configuration during the Pleistocene. Rather, groundwater flow patterns were likely much more complex and transient in nature than has previously been thought. Because Pleistocene recharge rates are believed to be highly variable, these studies have profound implications for water resource managers charged with determining sustainable pumping rates from confined aquifers that host ice sheet meltwater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914964Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914964Q"><span>Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quiquet, Aurélien; Roche, Didier M.</p> <p>2017-04-01</p> <p>Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012269','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012269"><span>Petrology, composition, and age of intrusive rocks associated with the Quartz Hill molybdenite deposit, southeastern Alaska.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hudson, T.; Smith, James G.; Elliott, R.L.</p> <p>1979-01-01</p> <p>A large porphyry molybdenum deposit (Quartz Hill deposit) was recently discovered in the heart of the Coast Range batholithic complex about 70 km E of Ketchikan, SE Alaska. Intrusive rocks associated with the mineral deposit form two composite epizonal to hypabyssal stocks and many dikes in country rocks. All observed metallization and alteration is within the Quartz Hill stock. Molybdenite forms fracture coatings and occurs in veins with quartz. Alteration is widespread and includes development of secondary quartz, pyrite, K-feldspar, biotite, white mica, chlorite, and zeolite. Field relations indicate that the stocks were emplaced after regional uplift and erosion of the Coast Range batholithic complex, and K-Ar data show that intrusion and alteration took place in late Oligocene time, about 27 to 30 Ma ago. Data from the Ketchikan quadrangle indicate that porphyry molybdenum metallization in the Coast Range batholithic complex is associated with regionally extensive but spotty, middle Tertiary or younger, felsic magmatism. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.T23B1411H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.T23B1411H"><span>Models of Deformation of Uppermost Oceanic Lithosphere: Comparison of Crustal Flexure in the Blönduós Area, Northern Iceland, and Structure of East Pacific Rise Crust at Hess Deep</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horst, A. J.; Karson, J. A.; Varga, R. J.; Gee, J. S.</p> <p>2007-12-01</p> <p>Models of the internal structure of oceanic crust have been constructed from studies of ophiolites and from more recent observations of tectonic windows into the upper crust. Spreading rate and/or magma supply are the central variables that control ridge processes and the ultimate architecture of ocean crust. In addition to ophiolites, Iceland also provides an important analog to study mid-ocean ridge processes and structure. Flexure zones in Iceland characterize the structure of Tertiary-Recent lava flows, and are areas wherein lavas dip regionally inward toward the axis of one of several ~N/S-trending rift zones. These rift zones are interpreted to represent fossil spreading centers which were abandoned during a series of eastward-directed ridge jumps. In the Hildará area, north-central Iceland, the eastern side of a regional flexure is characterized by westward-dipping lavas, approximately 6-8 Ma, which are cut by east-dipping normal faults and dikes. The upper-crustal structure within this flexure zone from slow spread (~20 mm/yr) crust exhibits remarkable similarities to the structure of the upper crust created at a fast-spreading (110 mm/yr) segment of the East Pacific Rise (EPR) observed at Hess Deep. In this modern ocean setting, ~1 Ma crust is characterized by west-dipping lavas above consistently east-dipping (away from the EPR) dikes and dike-subparallel fault zones. In both locations, paleomagnetic and structural data indicate that west-dipping lavas and east-dipping dikes result from tectonic rotations. In addition, cross-cutting dike relationships demonstrate that dike intrusion occurred both during and after normal fault- related tilting. These data indicate that fault-controlled tilting was initiated within the narrow neovolcanic zone of the ridge and is not associated with off-axis processes. Lavas at magmatically robust ridges commonly flow away from elevated ridge-crests. Measurement of anisotropy of magnetic susceptibility (AMS) of the lavas from the flexure in Iceland suggests a mean flow direction to the northeast, that is, away from the fossil-ridge axis, demonstrating that the fossil spreading center from which the lavas were extruded was located to the west. Despite the distinct differences in spreading rates, the high magma supply in both environments resulted in a very similar upper crustal architecture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Tectp.650...65H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Tectp.650...65H"><span>Hyperextension of continental to oceanic-like lithosphere: The record of late gabbros in the shallow subcontinental lithospheric mantle of the westernmost Mediterranean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hidas, Károly; Varas-Reus, Maria Isabel; Garrido, Carlos J.; Marchesi, Claudio; Acosta-Vigil, Antonio; Padrón-Navarta, José Alberto; Targuisti, Kamal; Konc, Zoltán</p> <p>2015-05-01</p> <p>We report gabbroic dikes in the plagioclase tectonite domains of the Ojén and Ronda massifs (Betic Cordillera, southern Spain), which record crystallization at low-pressure syn-, or slightly postkinematic to the late ductile history of the Betic Peridotite in the westernmost Mediterranean. We present mineral major and trace element compositional data of discordant gabbroic dikes in the Ojén massif and gabbroic patches in the Ronda massif, complemented by the whole rock and electron backscattered diffraction (EBSD) data of the Ojén occurrence. In the Ojén massif, gabbro occurs as 1-3 centimeter wide discordant dikes that crosscut the plagioclase tectonite foliation at high angle. These dikes are composed of cm-scale igneous plagioclase and clinopyroxene crystals that show shape preferred orientations subparallel to the lineation of the host peridotite and oblique to the trend of the dike. Intrusion of Ojén gabbro dikes is coherent with the stress field that formed the high temperature, ductile plagioclase tectonite foliation and then attests for a mantle igneous event prior to the intracrustal emplacement of the massif. In the Ronda massif, gabbroic rocks crystallized in subcentimeter wide anastomozing veins, or as interstitial patches in the host dunite. They are mostly composed of plagioclase and clinopyroxene. Plagioclase composition is bytownitic in the Ojén, and andesinic in the Ronda massif. Clinopyroxene in both places shows identical, light Rare-Earth Element (LREE) depleted trace element patterns. The calculated trace element composition of melts in exchange equilibrium with the studied igneous clinopyroxenes reflects LREE-enriched character coupled with negative Eu anomaly, and indicates that gabbro-forming melts in Ronda and Ojén share a common melt source with an island arc tholeiitic affinity. Geothermobarometric data and liquidus mineralogy indicate that gabbro crystallization occurred at shallow depths (0.2-0.5 GPa) in a 7-16 km thick lithospheric section. These data suggest that gabbro-forming melts in the Betic Peridotite record a mantle igneous event at very shallow depths and provide evidence for the hyperextension of the continental lithosphere compatible with extreme backarc basin extension induced by the slab rollback of the Cenozoic subduction system in the westernmost Mediterranean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007BVol...69..353D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007BVol...69..353D"><span>Transient deformation following the 30 January 1997 dike intrusion at Kīlauea volcano, Hawai'i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desmarais, Emily K.; Segall, Paul</p> <p>2007-02-01</p> <p>On 30 January 1997 an intrusion on Kīlauea volcano opened a new fissure within the East Rift Zone (ERZ) at Nāpau Crater, 3 km uprift from the ongoing eruptions at Pu’u ’Ō’ō. The fissure eruption lasted 22 h and opened a 5.1 km long, nearly vertical dike 1.9 m, extending from the surface to a depth of 2.4 km (Owen et al. 2000b). During the eruption, the lava pond at Pu’u ’Ō’ō drained, and eruptions ceased there. Pu’u ’Ō’ō eventually refilled in late February and eruptions resumed there on 28 March 1997. Continuous GPS data show a large transient following the 30 January 1997 dike intrusion. After lengthening 40 cm during the initial eruption, the baseline between two stations spanning the ERZ lengthened an additional 10 cm over the following 6 months. A coastal station KAEP also exhibited transient deformation, as it continued to move southward (5 cm) over the same 6-month period. The baseline between two stations spanning Kīlauea’s summit caldera contracted sharply during the eruption, but gradually recovered to slightly longer than its previous length 2 months after the intrusion. We use the extended network inversion filter (McGuire and Segall 2003) to invert continuous GPS data for volume change of a spherical pressure source under Kīlauea’s summit, opening distribution on a nearly vertical dike in the ERZ and potential slip on a decollement 9 km beneath the south flank. Following the 30 January intrusion, rift extension continued below the initial dike intrusion for the duration of the transient. Decollement slip, regardless of its assumed depth, is not required to fit the data. The modeled transient summit reinflation and rift opening patterns under Nāpau crater coincide with changes in observed behavior of Pu’u ’Ō’ō’s lava pond. Rift opening accelerated while Pu’u ’Ō’ō eruptions paused and began to decelerate after the lava pond reappeared nearly a month after the Nāpau eruption. The transient deformation is interpreted as resulting from shallow accommodation of the new dike volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1987/0500/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1987/0500/report.pdf"><span>Gravity profiles across the Uyaijah Ring structure, Kingdom of Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gettings, M.E.; Andreasen, G.E.</p> <p>1987-01-01</p> <p>The resulting structural model, based on profile fits to gravity responses of three-dimensional models and excess-mass calculations, gives a depth estimate to the base of the complex of 4.75 km. The contacts of the complex are inferred to be steeply dipping inward along the southwest margin of the structure. To the north and east, however, the basal contact of the complex dips more gently inward (about 30 degrees). The ring structure appears to be composed of three laccolith-shaped plutons; two are granitic in composition and make up about 85 percent of the volume of the complex, and one is granodioritic and comprises the remaining 15 percent. The source area for the plutons appears to be in the southwest quadrant of the Uyaijah ring structure. A northwest-trending shear zone cuts the northern half of the structure and contains mafic dikes that have a small but identifiable gravity-anomaly response. The structural model agrees with models derived from geological interpretation except that the estimated depth to which the structure extends is decreased considerably by the gravity results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA281632','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA281632"><span>Environmental Compliance Assessment and Management Program (ECAMP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-06-01</p> <p>square yard mg milligram yr year mi mile Chemicals CO carbon monoxide NO 2 nitrogen dioxide CO2 carbon dioxide NOx nitrogen oxides Hg mercury SO2 sulfur...installation intentionally shielded themselves from information which would have revealed a leak. (!)(3X)5)(7)(8) A.77. Facilities on Verify that facilities...released from the largest tank within the diked area, assuming a fuel tank. Verify that walls of diked areas are of earth , concrete, steel, or solid</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011734','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011734"><span>Spatially extensive uniform stress fields on Venus inferred from radial dike swarm geometries: The Aphrodite Terra example</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grosfils, Eric B.; Head, James W.</p> <p>1993-01-01</p> <p>The high resolution and near global coverage of Magellan radar images is facilitating attempts to systematically investigate the stresses that have deformed the venusian crust. Here we continue earlier efforts to utilize approximately 170 large, radially lineated structures interpreted as dike swarms to assess the orientation of the regional maximum horizontal compressive stress (MHCS) which existed in their vicinities during emplacement. Examination of swarms near the equator reveals a link to broad scale regional structures, such as Aphrodite Terra, across distances in excess of 1000 km, suggesting the existence of first order stress fields which affect areas of more than 10(exp 6) sq km in a uniform fashion. Focusing further upon the Aphrodite Terra region, the MHCS field in the surrounding lowlands inferred from radial swarms is oriented approximately normal to the slope of the highland topography. This stress configuration appears, at a simple level, to be incompatible with that expected during either upwelling or downwelling construction of the highlands. In addition, the relatively undeformed geometry of the radial structures within the highlands implies that these dike swarm features formed more recently than their highly deformed surroundings. We conclude that the differential stresses which existed during emplacement of the dike swarms within and adjacent to the Aphrodite Terra highlands are related to the gravitational relaxation of pre-existing topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/gq/1766/pdf/gq1766_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/gq/1766/pdf/gq1766_pamphlet.pdf"><span>Geologic map of the Lead Mountain 15’ quadrangle, San Bernardino County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Howard, Keith A.; Jagiello, Keith J.; Fitzgibbon, Todd T.; John, Barbara E.</p> <p>2013-01-01</p> <p>The Lead Mountain 15’ quadrangle in the Mojave Desert contains a record of Jurassic, Cretaceous, Tertiary, and Quaternary magmatism. Small amounts of Mesoproterozoic(?) augen gneiss and Paleozoic and Mesozoic(?) metasedimentary rocks are preserved in small patches; they are intruded by voluminous Jurassic plutons of quartz diorite to granite composition and by Late Cretaceous granite of the Cadiz Valley batholith. Jurassic intrusive rocks include part of the Bullion Mountain Intrusive Suite and also younger dikes inferred to be part of the Jurassic Independence dike swarm. A contact-metamorphosed aureole 2 km wide in the Jurassic plutonic rocks fringes the Cadiz Valley batholith. Early Miocene dacitic magmatism produced a dense swarm of dikes in the eastern Bullion Mountains and the volcanic-intrusive remnant of a volcano at Lead Mountain. Tilting of the dike swarm from inferred vertical orientations may have resulted from Miocene tectonic extension. Conglomerate of Pliocene and (or) Miocene age is also tilted. Younger volcanism is recorded by Pliocene basalt of the Deadman Lake volcanic field, basalt of Lead Mountain (approximately 0.36 Ma), and the even younger basalt of Amboy. Quaternary sedimentation built alluvial fans and filled playas in the map area. Faulting in the dextral eastern California shear zone produced several northwest-striking faults in the quadrangle, some of them active into the Pleistocene and some that may have many kilometers of right-lateral offset.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1047/srp/srp033/of2007-1047srp033.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1047/srp/srp033/of2007-1047srp033.pdf"><span>Jurassic magmatism in Dronning Maud Land: synthesis of results of the MAMOG project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Leat, P.T.; Curtis, M.L.; Riley, T.R.; Ferraccioli, F.</p> <p>2007-01-01</p> <p>The Jurassic Karoo large igneous province (LIP) of Antarctica, and its conjugate margin in southern Africa, is critical for investigating important questions about the relationship of basaltic LIPs to mantle plumes. Detailed aerogeophysical, structural, anisotropy of magnetic susceptibility (AMS), geochronological and geochemical investigations completed under the British Antarctic Survey’s MAMOG project have provided some of the answers. Across most of the area, magma volumes were small compared to those in southern Africa. Jurassic dikes intruding the Archean craton are sparse and the Jutulstraumen trough, a Jurassic rift, is interpreted, from aerogeophysical data, as largely amagmatic. The largest volumes of magma were emplaced along the margin of the craton and close to the Africa-Antarctica rift. Although dikes were emplaced by both vertical and horizontal flow, overwhelmingly magmas in Dronning Maud Land were locally derived, and not emplaced laterally from distant sources. Basaltic magmatism was protracted in Dronning Maud Land (several dike emplacement episodes between ~206 and 175 Ma), and the small magma volumes resulted in highly diverse magma compositions, including picrites and ferropicrites interpreted to have been derived from hot mantle in a mantle plume. The protracted magmatism before the locally ~177 Ma flood lava eruptions, and evidence for a radiating dike swarm, favor a model of mantle plume incubation for 20-30 million years before flood lava eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..283..176H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..283..176H"><span>Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Head, James W.; Wilson, Lionel</p> <p>2017-02-01</p> <p>We utilize a theoretical analysis of the generation, ascent, intrusion and eruption of basaltic magma on the Moon to develop new insights into magma source depths, supply processes, transport and emplacement mechanisms via dike intrusions, and effusive and explosive eruptions. We make predictions about the intrusion and eruption processes and compare these with the range of observed styles of mare volcanism, and related features and deposits. Density contrasts between the bulk mantle and regions with a greater abundance of heat sources will cause larger heated regions to rise as buoyant melt-rich diapirs that generate partial melts that can undergo collection into magma source regions; diapirs rise to the base of the anorthositic crustal density trap (when the crust is thicker than the elastic lithosphere) or, later in history, to the base of the lithospheric rheological trap (when the thickening lithosphere exceeds the thickness of the crust). Residual diapiric buoyancy, and continued production and arrival of diapiric material, enhances melt volume and overpressurizes the source regions, producing sufficient stress to cause brittle deformation of the elastic part of the overlying lithosphere; a magma-filled crack initiates and propagates toward the surface as a convex upward, blade-shaped dike. The volume of magma released in a single event is likely to lie in the range 102 km3 to 103 km3, corresponding to dikes with widths of 40-100 m and both vertical and horizontal extents of 60-100 km, favoring eruption on the lunar nearside. Shallower magma sources produce dikes that are continuous from the source region to the surface, but deeper sources will propagate dikes that detach from the source region and ascend as discrete penny-shaped structures. As the Moon cools with time, the lithosphere thickens, source regions become less abundant, and rheological traps become increasingly deep; the state of stress in the lithosphere becomes increasingly contractional, inhibiting dike emplacement and surface eruptions. In contrast to small dike volumes and low propagation velocities in terrestrial environments, lunar dike propagation velocities are typically sufficiently high that shallow sill formation is not favored; local low-density breccia zones beneath impact crater floors, however, may cause lateral magma migration to form laccoliths (e.g., Vitello Crater) and sills (e.g., Humboldt Crater) in floor-fractured craters. Dikes emplaced into the shallow crust may stall and produce crater chains due to active and passive gas venting (e.g., Mendeleev Crater Chain) or, if sufficiently shallow, may create a near-surface stress field that forms linear and arcuate graben, often with pyroclastic and small-scale effusive eruptions (e.g., Rima Parry V). Effusive eruptions are modulated by effusion rates, eruption durations, cooling and supply limitations to flow length, and pre-existing topography. Relatively low effusion rate, cooling-limited flows lead to small shield volcanoes (e.g., Tobias Mayer, Milicius); higher effusion rate, cooling-limited flows lead to compound flow fields (e.g., most mare basins) and even higher effusion rate, long-duration flows lead to thermal erosion of the vent, effusion rate enhancement, and thermal erosion of the substrate to produce sinuous rilles (e.g., Rimae Prinz). Extremely high effusion rate flows on slopes lead to volume-limited flow with lengths of many hundreds of kilometers (e.g., the young Imbrium basin flows). Explosive, pyroclastic eruptions are common on the Moon. The low pressure environment in propagating dike crack-tips can cause gas formation at great depths and throughout dike ascent; at shallow crustal depths both the smelting reaction and the recently documented abundant magmatic volatiles in mare basalt magmas contribute to significant shallow degassing and pyroclastic activity associated with the dike as it erupts at the surface. Dikes penetrating to the surface produce a wide range of explosive eruption types whose manifestations are modulated by lunar environmental conditions: (1) terrestrial strombolian-style eruptions map to cinder/spatter cone-like constructs (e.g., Isis and Osiris); (2) Hawaiian-style eruptions map to broad flat pyroclastic blankets (e.g., Taurus-Littrow Apollo 17 dark mantle deposits); (3) gas-rich ultraplinian-like venting can cause Moon-wide dispersal of gas and foam droplets (e.g., many isolated glass beads in lunar soils); (4) vulcanian-like eruptions caused by solidification of magma in the dike tip, buildup of gas pressure and explosive disruption, can form dark-halo craters with mixed country rock (e.g., Alphonsus Crater floor); (5) ionian-like eruptions can be caused by artificial gas buildup in wide dikes, energetic explosive eruption and formation of a dark pyroclastic ring (e.g., Orientale dark ring); (6) multiple eruptions from many gas-rich fissures can form regional dark mantle deposits (e.g., Rima Bode, Sinus Aestuum); and (7) long duration, relatively high effusion rate eruptions accompanied by continuing pyroclastic activity cause a central thermally eroded lava pond and channel, a broader pyroclastic 'spatter' edifice, an even broader pyroclastic glass deposit and, if the eruption lasts sufficiently long, an associated inner thermally eroded vent and sinuous rille channel (e.g., Cobra Head and Aristarchus Plateau dark mantle). The asymmetric nearside-farside distribution of mare basalt deposits is most plausibly explained by crustal thickness differences; intrusion is favored on the thicker farside crust and extrusion is favored on the thinner nearside crust. Second-order effects include regional and global thermal structure (areal variations in lithospheric thickness as a function of time) and broad geochemical anomalies (the Procellarum-KREEP Terrain). Differences in mare basalt titanium content as a function of space and time are testimony to a laterally and vertically heterogeneous mantle source region. The rapidly decreasing integrated flux of mare basalts is a result of the thermal evolution of the Moon; continued cooling decreased diapiric rise and mantle melting, thickened the lithosphere, and caused the global state of stress to be increasingly contractional, all factors progressively inhibiting the generation, ascent and eruption of basaltic magma. Late-stage volcanic eruptions are typically widely separated in time and characterized by high-volume, high-effusion rate eruptions producing extensive volume-limited flows, a predictable characteristic of deep source regions below a thick lithosphere late in lunar history. This improved paradigm for the generation, ascent, intrusion and eruption of basaltic magma provides the basis for the broader interpretation of the lunar volcanic record in terms of variations in eruption conditions in space and time, and their relation to mantle heterogeneity and a more detailed understanding of lunar thermal evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53A3068M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53A3068M"><span>Modeling of February 1993 Intrusion Seen by JERS-1 Satellite, Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, S.; Wauthier, C.; Fukushima, Y.; Poland, M. P.</p> <p>2016-12-01</p> <p>Interferometric Synthetic Aperture Radar (InSAR) is a valuable means of remotely assessing deformation on the surface of the earth. At Kilauea Volcano, Hawai'i many InSAR deformation maps (interferograms) have been studied in recent years to monitor deformation on the volcano. In February 1993, a diking event occurred that could be one of the first intrusions seen by InSAR satellites at Kilauea. This event has not received much attention due to little geodetic data spanning the event. Between October 1992 and March 1993, SAR images from the JERS-1 satellite captured 30 centimeters of surface deformation occurring along the East Rift Zone (ERZ) near Makaopuhi crater. Seismic activity was similar to other intrusions with more than 5,000 shallow (<5 km) earthquakes occurred in the area between the summit caldera and Makaopuhi crater from February 7-9, 1993 [Okubo & Nakata, 2003]. We used simple analytical half-space solutions (e.g., Mogi [1958], Okada [1992)]), as well as a more complex and mechanically robust numerical approach (3D-MBEM [Cayol and Cornet, 1997]) to model deformation sources active between October 1992 and March 1993. Non-linear inversions of the JERS-1 Interferogram show that the most likely source to account for the February 1993 observed deformation is a subvertical rectangular dike with an opening of 1.5 m reaching depths of 1.5 to 3 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003Geomo..52..317S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003Geomo..52..317S"><span>Historic fluvial development of the Alpine-foreland Tagliamento River, Italy, and consequences for floodplain management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spaliviero, Mathias</p> <p>2003-06-01</p> <p>The fluvial geomorphological development of the Tagliamento River and its flooding history is analysed using historical documents and maps, remote-sensed data and hydrological information. The river has been building a complex alluvial fan starting from the middle part of its alluvial course in the Venetia-Friuli alluvial plain. The riverbed is aggrading over its entire braided length. The transition from braiding to meandering near Madrisio has shifted downstream where the river width determined by the dikes becomes narrower, causing major problems. The flood hazard concentrates at those places and zones where flooding occurred during historical times. Prior to the agrarian and industrial revolution, land use was adjusted to the flooding regime of the river. Subsequent land-use pressure led to a confinement of the river by dikes to such an extent that the flood risk in the floodplain downstream of Madrisio has increased consistently, and represents nowadays a major territorial planning issue. The planned retention basins upstream of the middle Tagliamento will alleviate the problem, but not solve it in the medium and long term. Therefore, fluvial corridors in the lower-middle parts (from Pinzano to the sea) have been identified on the basis of the flooding history in relation to fluvial development during historical times. The result should be used for hydraulic simulation studies and land-use planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.G44A..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.G44A..03S"><span>Deformation interplay at Hawaii Island</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shirzaei, M.; Walter, T. R.</p> <p>2009-12-01</p> <p>Volcanoes are known to be closely related to the tectonic environment, including vent locations and eruptions resulting from faults and earthquakes. Similarly, adjacent volcanoes interact with each other in time and space, as suggested for the Hawaiian volcanoes Kilauea and Mauna Loa. New satellite radar data imply even more complex deformation interplay in Hawaii than previously thought, involving magma chamber pressure changes, dike intrusions, slow earthquakes and ground subsidence. The affected regions are the Mauna Loa and Kilauea volcano summits, their active rift zones, the island’s unstable southeast flank and even the capital city of Hilo. Based on the data acquired by the European satellite ENVISAT, we present in this work a five-year spatio-temporal analysis of the deformation signals recorded between 2003 and 2008. The data suggests that most of the deformation sources are acting in chorus. The magma intrusion at the Mauna Loa chamber and the intrusion into the Kilauea rift dike are correlated in time while also interacting with gravity-driven flank movement events. Some of the events occur silently underneath the Kilauea south flank, such as slow earthquakes that may largely affect all of the active magmatic systems and reverse their sign of correlation. This study of the interplay between multiple deformations and inherently coupled systems provides a better understanding of Hawaiian volcano activity and may lead to new methods for assessing the hazards that arise during volcano-tectonic activities elsewhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26196849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26196849"><span>New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N</p> <p>2015-12-30</p> <p>This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRB..120.2525C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRB..120.2525C"><span>Seismic source dynamics of gas-piston activity at Kı¯lauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chouet, Bernard; Dawson, Phillip</p> <p>2015-04-01</p> <p>Since 2008, eruptive activity at the summit of Kı¯lauea Volcano, Hawai`i has been confined to the new Overlook pit crater within the Halema`uma`u Crater. Among the broad range of magmatic processes observed in the new pit are recurring episodes of gas pistoning. The gas-piston activity is accompanied by seismic signals that are recorded by a broadband network deployed in the summit caldera. We use raw data recorded with this network to model the source mechanism of representative gas-piston events in a sequence that occurred on 20-25 August 2011 during a gentle inflation of the Kı¯lauea summit. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1-10,000 s. Most of the seismic wavefield produced by gas-pistoning originates in a source region ˜1 km below the eastern perimeter of the Halema`uma`u pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks featuring an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each gas-piston event is marked by a similar rapid inflation lasting a few minutes, trailed by a slower deflation ramp extending up to 15 min, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes accompanying the growth and collapse of a layer of foam at the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes : foam thickness (10-50 m), foam cell diameter (0.04-0.10 m), and gas-injection velocity (0.01-0.06 m s-1). Gas-piston activity occurs in a narrow pipe with diameter of 6 m connecting the Halema`uma`u pit crater to the subjacent dike system. The height of the magma column is estimated at ˜104 m at the start of the sequence based on the period of very long period (VLP) oscillations accompanying the onset of the gas-piston signal. Based on the change in the period of VLP oscillations and tilt evidence, the height of the magma column is inferred to have risen by up to ˜23 m by the end of the 5 day long sequence. A penny-shaped crack model of the dike geometry yields effective diameters of ˜1.2-2.9 km for the east dike and 0.7 km for the north dike. The shallower north dike segment is embedded in a relatively weak medium, compatible with expected mechanical properties in the hydrothermal environment of this dike.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186942','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186942"><span>Seismic source dynamics of gas-piston activity at Kı̄lauea Volcano, Hawai‘i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chouet, Bernard A.; Dawson, Phillip B.</p> <p>2015-01-01</p> <p>Since 2008, eruptive activity at the summit of Kı̄lauea Volcano, Hawai‘i has been confined to the new Overlook pit crater within the Halema‘uma‘u Crater. Among the broad range of magmatic processes observed in the new pit are recurring episodes of gas pistoning. The gas-piston activity is accompanied by seismic signals that are recorded by a broadband network deployed in the summit caldera. We use raw data recorded with this network to model the source mechanism of representative gas-piston events in a sequence that occurred on 20–25 August 2011 during a gentle inflation of the Kı̄lauea summit. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1–10,000 s. Most of the seismic wavefield produced by gas-pistoning originates in a source region ∼1 km below the eastern perimeter of the Halema‘uma‘u pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks featuring an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each gas-piston event is marked by a similar rapid inflation lasting a few minutes, trailed by a slower deflation ramp extending up to 15 min, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes accompanying the growth and collapse of a layer of foam at the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes : foam thickness (10–50 m), foam cell diameter (0.04–0.10 m), and gas-injection velocity (0.01–0.06 m s−1). Gas-piston activity occurs in a narrow pipe with diameter of 6 m connecting the Halema‘uma‘u pit crater to the subjacent dike system. The height of the magma column is estimated at ∼104 m at the start of the sequence based on the period of very long period (VLP) oscillations accompanying the onset of the gas-piston signal. Based on the change in the period of VLP oscillations and tilt evidence, the height of the magma column is inferred to have risen by up to ∼23 m by the end of the 5 day long sequence. A penny-shaped crack model of the dike geometry yields effective diameters of ∼1.2–2.9 km for the east dike and 0.7 km for the north dike. The shallower north dike segment is embedded in a relatively weak medium, compatible with expected mechanical properties in the hydrothermal environment of this dike.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919041P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919041P"><span>The evolution and geological footprint of the last Eurasian ice-sheet complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen; Auriac, Amandine; Heyman, Jakob</p> <p>2017-04-01</p> <p>During the last glaciation, Northern Eurasia was covered by three semi-independent ice sheets that between 26 and 19 ka BP (Clark et al., 2009) coalesced to form a single Eurasian ice-sheet complex (EISC) (Hughes et al., 2016). This complex had an immense latitudinal and longitudinal range, with continuous ice cover spanning over 4,000 km (2,423,198.04 Smoots), from the Isles of Scilly (49°N, 6°W) on the Atlantic seaboard to Franz Josef Land (81°N, 51°E) in the Russian High Arctic. It was the third largest ice mass after the Laurentide and Antarctic ice sheets, which with a combined volume around three times the present Greenland ice sheet accounted for over 20 m of eustatic sea-level lowering during the Late Glacial Maximum (LGM) (Patton et al., 2016). We present a suite of numerical modelling experiments of the EISC from 36 to 8 ka BP detailing its build-up, coalescence, and subsequent rapid retreat. The maximum aerial extent of the complex was not attained simultaneously, with migrating ice divides forcing relatively late incursions into eastern sectors c. 20-21 ka BP compared to c. 23-25 ka BP along western margins. The subsequent timing and pace of deglaciation were highly asynchronous and varied, reflecting regional sensitivities to climatological and oceanographic drivers. Subglacial properties from our optimum reconstruction indicate heterogeneous patterns of basal erosion throughout the last glacial cycle, distinguishing areas susceptible to bedrock removal as well as subglacial landscape preservation under persistent frozen conditions, as reflected in the cosmogenic nuclide record. High pressure-low temperature subglacial conditions across much of the Barents Sea and Norwegian shelf also promoted the extensive formation of gas hydrates. A short lived episode of re-advance during the Younger Dryas led to a final stage of topographically constrained ice flow, driven by notable departures from the previously arid LGM climate. The ice sheet complex along with its isostatic footprint had a major impact on fluvial hydrology of western Eurasia, damming the Baltic and White Sea proglacial lakes from c. 17.8 ka BP through to the Holocene and diverting many river systems. Acknowledegments This project is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259. Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, a M., 2009. The Last Glacial Maximum. Science 325, 710-714. doi:10.1126/science.1172873 Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1-45. doi:10.1111/bor.12142 Patton, H., Hubbard, A., Andreassen, K., Winsborrow, M., Stroeven, A.P., 2016. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. Quat. Sci. Rev. 153, 97-121. doi:10.1016/j.quascirev.2016.10.009</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..335..113W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..335..113W"><span>Eruption of magmatic foams on the Moon: Formation in the waning stages of dike emplacement events as an explanation of ;irregular mare patches;</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, Lionel; Head, James W.</p> <p>2017-04-01</p> <p>Volcanic eruptions on the Moon take place in conditions of low gravity and negligible atmospheric pressure, very different from those on Earth. These differences lead to characteristic lunar versions of hawaiian and strombolian explosive activity, and to the production of unusual eruption products neither predicted nor observed on Earth in the terminal stages of eruptions. These include the unusual mounds and rough (hummocky, blocky) floors of some small-shield summit pit crater floors, elongate depressions and mare flows (similar to those named ;irregular mare patches;, IMPs, by Braden et al., 2014). We examine the ascent and eruption of magma in the waning stages of the eruptive process in small-shield summit pit crater floors and show that many IMP characteristics can be plausibly explained by basaltic magma behavior as the rise rate of the ascending magma slows to zero, volatiles exsolve in the dike and lava lake to form a very vesicular foam, and the dike begins to close. Stresses in the very vesicular and porous lava lake crust produce fractures through which the foam extrudes at a rate determined by its non-Newtonian rheology. Waning-stage extrusion of viscous magmatic foams to the surface produces convex mounds whose physical properties inhibit typical impact crater formation and regolith development, creating an artificially young crater retention age. This mechanism for the production and extrusion of very vesicular magmatic foams is also applicable to waning-stage dike closure associated with pit craters atop dikes, and fissure eruptions in the lunar maria, providing an explanation for many irregular mare patches. This mechanism implies that IMPs and associated mare structures (small shields, pit craters and fissure flows) formed synchronously billions of years ago, in contrast to very young ages (less than 100 million years) proposed for IMPs by some workers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035898','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035898"><span>The May 2005 eruption of Fernandina volcano, Galápagos: The first circumferential dike intrusion observed by GPS and InSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chadwick, W.W.; Jonsson, Sigurjon; Geist, Dennis J.; Poland, M.; Johnson, Daniel J.; Batt, S.; Harpp, Karen S.; Ruiz, A.</p> <p>2011-01-01</p> <p>The May 2005 eruption of Fernandina volcano, Galápagos, occurred along circumferential fissures parallel to the caldera rim and fed lava flows down the steep southwestern slope of the volcano for several weeks. This was the first circumferential dike intrusion ever observed by both InSAR and GPS measurements and thus provides an opportunity to determine the subsurface geometry of these enigmatic structures that are common on Galápagos volcanoes but are rare elsewhere. Pre- and post- eruption ground deformation between 2002 and 2006 can be modeled by the inflation of two separate magma reservoirs beneath the caldera: a shallow sill at ~1 km depth and a deeper point-source at ~5 km depth, and we infer that this system also existed at the time of the 2005 eruption. The co-eruption deformation is dominated by uplift near the 2005 eruptive fissures, superimposed on a broad subsidence centered on the caldera. Modeling of the co-eruption deformation was performed by including various combinations of planar dislocations to simulate the 2005 circumferential dike intrusion. We found that a single planar dike could not match both the InSAR and GPS data. Our best-fit model includes three planar dikes connected along hinge lines to simulate a curved concave shell that is steeply dipping (~45–60°) toward the caldera at the surface and more gently dipping (~12–14°) at depth where it connects to the horizontal sub-caldera sill. The shallow sill is underlain by the deep point source. The geometry of this modeled magmatic system is consistent with the petrology of Fernandina lavas, which suggest that circumferential eruptions tap the shallowest parts of the system, whereas radial eruptions are fed from deeper levels. The recent history of eruptions at Fernandina is also consistent with the idea that circumferential and radial intrusions are sometimes in a stress-feedback relationship and alternate in time with one another.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018999','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018999"><span>Late Cretaceous remagnetization of Proterozoic mafic dikes, southern Highland Mountains, southwestern Montana: A paleomagnetic and 40Ar/39Ar study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harlan, S.S.; Geissman, J.W.; Snee, L.W.; Reynolds, R.L.</p> <p>1996-01-01</p> <p>Paleomagnetic results from Early Proterozoic metabasite sills and Middle Proterozoic diabase dikes from the southern Highland Mountains of southwestern Montana give well-defined, dual-polarity magnetizations that are statistically identical to those from a small Late Cretaceous pluton that cuts the dikes. The concordance of paleomagnetic directions from rocks of three widely separated ages indicates that the Proterozoic rocks were remagnetized, probably during Late Cretaceous time. Paleomagnetic, rock magnetic, and petrographic observations from the metabasite and diabase samples indicate that remanence is carried primarily by low-Ti magnetite. Combining virtual geomagnetic poles from metabasite sills, diabase dikes, and the Late Cretaceous pluton, we obtain a paleomagnetic pole at 85.5??N, 310.7??E (K = 19.9, A95 = 9.1??, N = 14 sites) that is similar to a reference pole from the 74 Ma Adel Mountain Volcanics of western Montana. Biotite and hornblende 40Ar/39Ar isotopic dates from host basement geneiss and a hornblende from a remagnetized metabasite sill yield ages of ca. 1800 Ma; these dates probably record cooling of the southern Highland Mountains following high-grade metamorphism at 1.9-1.8 Ga. The gneiss and metabasite age spectra show virtually no evidence of disturbance, indicating that the basement rocks were never heated to temperatures sufficient to cause even partial resetting of their argon systems. Thus, the overprint magnetization of the Highland Mountains rocks is not a thermoremanent magnetization acquired during conductive cooling of nearby Late Cretaceous plutons. Remagnetization of the metabasite sills and diabase dikes was probably caused by localized thermochemical and thermoviscous effects during circulation of Late Cretaceous hydrothermal fluids related to epithermal mineralization. The absence of significant disturbance to the 40Ar/39Ar age spectrum from the remagnetized metabasite hornblende indicates that some secondary magnetizations may go unrecognized and undated, even if 40Ar/39Ar dating is applied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22011020','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22011020"><span>Triggers for β-sheet formation at the hydrophobic-hydrophilic interface: high concentration, in-plane orientational order, and metal ion complexation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoernke, Maria; Falenski, Jessica A; Schwieger, Christian; Koksch, Beate; Brezesinski, Gerald</p> <p>2011-12-06</p> <p>Amyloid formation plays a causative role in neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Soluble peptides form β-sheets that subsequently rearrange into fibrils and deposit as amyloid plaques. Many parameters trigger and influence the onset of the β-sheet formation. Early stages are recently discussed to be cell-toxic. Aiming at understanding various triggers such as interactions with hydrophobic-hydrophilic interfaces and metal ion complexation and their interplay, we investigated a set of model peptides at the air-water interface. We are using a general approach to a variety of diseases such as Alzheimer's disease, Parkinson's disease, and type II diabetes that are connected to amyloid formation. Surface sensitive techniques combined with film balance measurements have been used to assess the conformation of the peptides and their orientation at the air-water interface (IR reflection-absorption spectroscopy). Additionally, the structures of the peptide layers were characterized by grazing incidence X-ray diffraction and X-ray reflectivity. The peptides adsorb to the air-water interface and immediately adopt an α-helical conformation. This helical intermediate transforms into β-sheets upon further triggering. The factors that result in β-sheet formation are dependent on the peptide sequence. In general, the interface has the strongest effect on peptide conformation compared to high concentrations or metal ions. Metal ions are able to prevent aggregation in bulk but not at the interface. At the interface, metal ion complexation has only minor effects on the peptide secondary structure, influencing the in-plane structure that is formed in two dimensions. At the air-water interface, increased concentrations or a parallel arrangement of the α-helical intermediates are the most effective triggers. This study reveals the role of various triggers for β-sheet formation and their complex interplay. Our main finding is that the hydrophobic-hydrophilic interface largely governs the conformation of peptides. Therefore, the present study implies that special care is needed when interpreting data that may be affected by different amounts or types of interfaces during experimentation. © 2011 American Chemical Society</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA120366','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA120366"><span>Detailed Project Report and Environmental Assessment. Section 111. Shores East of Diked Disposal Area, Lorain Harbor, Ohio.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-11-01</p> <p>STONE). &7 LAB 07 AORD LAB APRL 1978 LAB * 107/78.6118 PRESQUE ISLE PROJECT UNK ORD LAB CLEVELAND WEST BREAKWATER JU. LAB 103/78.6240 .R..ABILITATION...NOTES IS. KEY WORDS (Continue on revere side if neeemvr and identify by block number) beach erosion diked disposal areas shore erosion Lake Erie ...House Document No. 229, 83rd Congress, "Appendix VIII, Ohio Shoreline of Lake Erie Between Vermilion and Sheffield Lake Village, Beach Erosion Control</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA256272','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA256272"><span>Environmental Assessment: Lockport Approach Dike, Stage 2 Repairs, Will County, Illinois</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-03-01</p> <p>May 1990 with two subsequent events, the most recent in November 1990. In the interest of safety and integrity of project operation , the U.S. Army...and operation . The dike is experiencing ongoing erosion to its canal side due to canal level fluctuations and tow prop wash at the various water levels...Impact Statement, Operation and Maintenance of a Nine-Foot Channel in the Illinols Waterway, From the Junction of the Calumet-Sag Channel and the Chicago</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21266.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21266.html"><span>Wing Dike of Hardened Lava in New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-01-25</p> <p>This photograph from northwestern New Mexico shows a ridge roughly 30 feet about 10 meters tall that formed from lava filling an underground fracture then resisting erosion better than the material around it did. The dike extends from a volcanic peak (out of view here) called Shiprock in English and Tsé Bit'a'í, meaning "rock with wings," in the Navajo language. It offers an Earth analog for some larger hardened-lava walls on Mars http://photojournal.jpl.nasa.gov/catalog/PIA21266</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA120869','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA120869"><span>Master Plan for Public Use Development and Resource Management, Lake Traverse, Minnesota - South Dakota.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1979-05-01</p> <p>White Rock Dam Recreation Area 25 Reservation Highway Recreation Area 27 Brown’s Valley Dike Recreation Area 28 Potential Recreation Areas 28 Section...Development 35 White Rock Dam 35 Reservation Highway 39 Brown’s Valley Dike 39 Land Use Allocation 42 Project Operations ൲ Operations: Recreation--Intensive...Facilities 4 Proposed Facilities v i i u < *1 I_ • In I . .. PROJECT DAT ~PROJECT DATA LAKE TRAVERSE AND RESERVATION DAM Reservoir Flowage rights to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1212467','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1212467"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.</p> <p></p> <p>We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22243012','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22243012"><span>Forced tearing of ductile and brittle thin sheets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tallinen, T; Mahadevan, L</p> <p>2011-12-09</p> <p>Tearing a thin sheet by forcing a rigid object through it leads to complex crack morphologies; a single oscillatory crack arises when a tool is driven laterally through a brittle sheet, while two diverging cracks and a series of concertinalike folds forms when a tool is forced laterally through a ductile sheet. On the other hand, forcing an object perpendicularly through the sheet leads to radial petallike tears in both ductile and brittle materials. To understand these different regimes we use a combination of experiments, simulations, and simple theories. In particular, we describe the transition from brittle oscillatory tearing via a single crack to ductile concertina tearing with two tears by deriving laws that describe the crack paths and wavelength of the concertina folds and provide a simple phase diagram for the morphologies in terms of the material properties of the sheet and the relative size of the tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1212467-shape-terrestrial-plasma-sheet-near-earth-magnetospheric-tail-imaged-interstellar-boundary-explorer','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1212467-shape-terrestrial-plasma-sheet-near-earth-magnetospheric-tail-imaged-interstellar-boundary-explorer"><span>Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; ...</p> <p>2015-04-11</p> <p>We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>