Jones, Elizabeth M.; Venables, Hugh J.; Firing, Yvonne L.; Dittrich, Ribanna; Heiser, Sabrina; Dougans, Julie
2018-01-01
The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’. PMID:29760112
Henley, Sian F; Jones, Elizabeth M; Venables, Hugh J; Meredith, Michael P; Firing, Yvonne L; Dittrich, Ribanna; Heiser, Sabrina; Stefels, Jacqueline; Dougans, Julie
2018-06-28
The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Authors.
Late Pleistocene and Holocene sedimentary facies on the Ebro continental shelf
Diaz, J.; Nelson, C.H.; Barber, J.H.; Giro, S.
1990-01-01
Late Pleistocene-Holocene history of the Ebro continental shelf of northeastern Spain is recorded in two main sedimentary units: (1) a lower, transgressive unit that covers the shelf and is exposed on the outer shelf south of 40??40???N, and (2) an upper, progradational, prodeltaic unit that borders the Ebro Delta and extends southward along the inner shelf. The lower transgressive unit includes a large linear shoal found at a water depth of 90 m and hardground mounds at water depths of 70-80 m. Some patches of earlier Pleistocene prodelta mud remain also, exposed or covered by a thin veneer of transgressive sand on the northern outer shelf. This relict sand sheet is 2-3 m thick and contains 9000-12,500 yr old oyster and other shells at water depths of 78-88 m. The upper prodelta unit covers most of the inner shelf from water depths of 20-80 m and extends from the present Ebro River Delta to an area to the southwest where the unit progressively thins and narrows. Interpretation of high-resolution seismic reflection data shows the following facies occurring progressively offshore: (1) a thick stratified facies with thin progradational "foresets beds", (2) a faintly laminated facies with sparse reflectors of low continuity, and (3) a thin transparent bottomset facies underlain by a prominent flat-lying reflector. Deposition in the northern half of the prodelta began as soon as the shoreline transgressed over the mid-shelf, but progradation of the southern half did not begin until about 1000-3000 yrs after the transgression. A classic deltaic progradational sequence is shown in the Ebro prodelta mud by (1) gradation of seismic facies away from the delta, (2) coarsening-upward sequences near the delta and fining-upward sequences in the distal mud belt deposits, and (3) thin storm-sand layers and shell lags in the nearshore stratified facies. The boundaries of the prodeltaic unit are controlled by increased current speeds on the outer shelf (where the shelf narrows) and by development of the shoreface sand body resulting from shoaling waves on the inner shelf. ?? 1990.
Influence of the Yukon River on the Bering Sea
NASA Technical Reports Server (NTRS)
Dean, Kenneson G.; Mcroy, C. Peter
1988-01-01
Physical and biological oceanography of the northern Bering Sea including the influence of the Yukon River were studied. Satellite data acquired by the Advanced Very High Resolution Radiometer (AVHRR), the LANDSAT Multispectral Scanner (MSS) and the Thematic Mapper (TM) sensor were used to detect sea surface temperatures and suspended sediments. Shipboard measurements of temperature, salinity and nutrients were acquired through the Inner Shelf Transfer and Recycling (ISHTAR) project and were compared to digitally enhanced and historical satellite images. The satellite data reveal north-flowing, warm water along the Alaskan coast that is highly turbid with complex patterns of surface circulation near the Yukon River delta. To the west near the Soviet Union, cold water, derived from an upwelling, mixes with shelf water and also flows north. The cold and warm water coincide with the Anadyr, Bering Shelf and Alaskan coastal water masses. Generally, warm Alaskan coastal water forms near the coast and extends offshore as the summer progresses. Turbid water discharged by the Yukon River progresses in the same fashion but extends northward across the entrance to Norton Sound, attaining its maximum surface extent in October. The Anadyr water flows northward and around St. Lawrence Island, but its extent is highly variable and depends upon mesoscale pressure fields in the Arctic Ocean and the Bering Sea.
Shideler, G.L.
1981-01-01
A monitoring study of suspended sediment on the South Texas Continental Shelf indicates that a turbid benthic nepheloid layer is regionally persistent. A sequence of quasi-synoptic measurements of the water column obtained during six cruises in an 18-month period indicates substantial spatial and temporal variability in nepheloidlayer characteristics. Regionally, the thickness of the shelf nepheloid layer increases both seaward and in a convergent alongshelf direction. Greatest thicknesses occur over a muddy substrate, indicating a causal relationship; maximum observed local thickness is 35 m which occurs along the southern shelf break. Analyses of suspended particulate matter in shelf bottom waters indicate mean concentrations ranging from 49 ?? 104 to 111 ?? 104 particle counts/cc; concentrations persistently increase shoreward throughout the region. Bottom particulate matter is predominantly composed of inorganic detritus. Admixtures of organic skeletal particles, primarily diatoms, are generally present but average less than 10% of the total particulate composition. Texturally, the particulate matter in bottom waters is predominantly poorly sorted sediment composed of very fine silt (3.9-7.8 ??m). The variability in nepheloid-layer characteristics indicates a highly dynamic shelf feature. The relationship of nepheloid-layer characteristics to hydrographic and substrate conditions suggests a conceptual model whereby nepheloid-layer development and maintenance are the results of the resuspension of sea-floor sediment. Bottom turbulence is attributed primarily to vertical shear and shoaling progressive internal waves generated by migrating shelf-water masses, especially oceanic frontal systems, and secondarily to shoaling surface gravity waves. ?? 1981.
Moisture and shelf life in sugar confections.
Ergun, R; Lietha, R; Hartel, R W
2010-02-01
From hardening of marshmallow to graining of hard candies, moisture plays a critical role in determining the quality and shelf life of sugar-based confections. Water is important during the manufacturing of confections, is an important factor in governing texture, and is often the limiting parameter during storage that controls shelf life. Thus, an understanding of water relations in confections is critical to controlling quality. Water content, which is controlled during candy manufacturing through an understanding of boiling point elevation, is one of the most important parameters that governs the texture of candies. For example, the texture of caramel progresses from soft and runny to hard and brittle as the moisture content decreases. However, knowledge of water content by itself is insufficient to controlling stability and shelf life. Understanding water activity, or the ratio of vapor pressures, is necessary to control shelf life. A difference in water activity, either between candy and air or between two domains within the candy, is the driving force for moisture migration in confections. When the difference in water activity is large, moisture migration is rapid, although the rate of moisture migration depends on the nature of resistances to water diffusion. Barrier packaging films protect the candy from air whereas edible films inhibit moisture migration between different moisture domains within a confection. More recently, the concept of glass transition, or the polymer science approach, has supplemented water activity as a critical parameter related to candy stability. Confections with low moisture content, such as hard candy, cotton candy, and some caramels and toffees, may contain sugars in the amorphous or glassy state. As long as these products remain below their glass transition temperature, they remain stable for very long times. However, certain glassy sugars tend to be hygroscopic, rapidly picking up moisture from the air, which causes significant changes that lead to the end of shelf life. These products need to be protected from moisture uptake during storage. This review summarizes the concepts of water content, water activity, and glass transition and documents their importance to quality and shelf life of confections.
Shelf–ocean exchange and hydrography west of the Antarctic Peninsula: a review
2018-01-01
The West Antarctic Peninsula (WAP) is a highly productive marine ecosystem where extended periods of change have been observed in the form of glacier retreat, reduction of sea-ice cover and shifts in marine populations, among others. The physical environment on the shelf is known to be strongly influenced by the Antarctic Circumpolar Current flowing along the shelf slope and carrying warm, nutrient-rich water, by cold waters flooding into the northern Bransfield Strait from the Weddell Sea, by an extensive network of glaciers and ice shelves, and by strong seasonal to inter-annual variability in sea-ice formation and air–sea interactions, with significant modulation by climate modes like El Niño–Southern Oscillation and the Southern Annular Mode. However, significant gaps have remained in understanding the exchange processes between the open ocean and the shelf, the pathways and fate of oceanic water intrusions, the shelf heat and salt budgets, and the long-term evolution of the shelf properties and circulation. Here, we review how recent advances in long-term monitoring programmes, process studies and newly developed numerical models have helped bridge these gaps and set future research challenges for the WAP system. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’. PMID:29760109
NASA Astrophysics Data System (ADS)
Ghaisas, N. A.; Maiti, K.; White, J. R.
2017-12-01
Phosphorus (P) cycling in coastal ocean is predominantly controlled by river discharge and biogeochemistry of the sediments. In coastal Louisiana, sediment biogeochemistry is strongly influenced by seasonally fluctuating bottom water O2, which, in turn transitions the shelf sediments from being a sink to source of P. Sediment P-fluxes were 9.73 ± 0.76 mg / m2 /d and 0.67±0.16 mg/m2/d under anaerobic and aerobic conditions respectively, indicating a 14 times higher P-efflux from oxygen deprived sediments. A high sedimentary oxygen consumption rate of 889 ± 33.6 mg/m2/d was due to organic matter re-mineralization and resulted in progressively decreasing the water column dissolved O2 , coincident with a P-flux of 7.2 ± 5.5 mg/m2/d from the sediment. Corresponding water column flux of Fe total was 19.7 ± 7.80 mg/m2/d and the sediment-TP decreased from 545 mg/Kg to 513 mg/Kg. A simultaneous increase in pore water Fe and P concentrations in tandem with a 34.6% loss in sedimentary Fe-bound P underscores the importance of O2 on coupled Fe- P biogeochemistry. This study suggests that from a 14,025 sq. km hypoxia area, Louisiana shelf sediments can supply 1.33x105 kg P/day into the water column compared to 0.094 x 105 kg P/day during the fully aerobic water column conditions.
Shelf-Slope Exchanges near Submarine Canyons in the Southern Mid-Atlantic Bight
NASA Astrophysics Data System (ADS)
Wang, H.; Gong, D.
2016-02-01
Shelf-slope exchange processes are major physical drivers of biological productivity near the shelf-break. Observations from two Slocum ocean gliders in Fall 2013 are used to explore the driving mechanisms of cross-shelf-slope exchanges near Norfolk Canyon and Washington Canyon in the southern Mid-Atlantic Bight. Offshore excursion of bottom "cold pool" water, and shoreward intrusion of slope water at surface layer and thermocline depth occurred during northeasterly along-shelf winds. The saline intrusions of surface slope water resided between the cold pool and surface shelf water, and reached the bottom on the outer and mid-shelf, while the offshore excursion of cold pool water was found between the surface and intermediate slope-water over the canyon. Ekman transport calculation shows wind-driven cross-shelf transport can partially explain this interleaving pattern of intrusions. Scaling analysis of double diffusive processes demonstrate that they also likely played a role in the cross-shelf-slope exchange. A unique canyon upwelling event was captured in and around Washington Canyon during a period of southwesterly along-shelf wind and along-shelf flow to the northeast. The water mass distributions and isopycnal responses in both along-canyon and cross-canyon transects are consistent with scaling analysis and numerical studies of canyon upwelling. Temperature-Salinity properties of water masses in the canyon suggest active mixing between shelf and slope water masses near the canyon head. These results point to the importance of wind, double diffusion, and canyon topography on shelf-slope exchange in the MAB.
NASA Astrophysics Data System (ADS)
Marques, Gustavo; Stern, Alon; Harrison, Matthew; Sergienko, Olga; Hallberg, Robert
2017-04-01
Dense shelf water (DSW) is formed in coastal polynyas around Antarctica as a result of intense cooling and brine rejection. A fraction of this water reaches ice shelves cavities and is modified due to interactions with sub-ice-shelf melt water. This modified water mass contributes to the formation of Antarctic Bottom Water, and consequently, influences the large-scale ocean circulation. Here, we investigate the role of sub-ice-shelf melting in the formation and export of DSW using idealized simulations with an isopycnal ocean model (MOM6) coupled with a sea ice model (SIS2) and a thermodynamic active ice shelf. A set of experiments is conducted with variable horizontal grid resolutions (0.5, 1.0 and 2.0 km), ice shelf geometries and atmospheric forcing. In all simulations DSW is spontaneously formed in coastal polynyas due to the combined effect of the imposed atmospheric forcing and the ocean state. Our results show that sub-ice-shelf melting can significantly change the rate of dense shelf water outflows, highlighting the importance of this process to correctly represent bottom water formation.
Cyclonic entrainment of preconditioned shelf waters into a frontal eddy
NASA Astrophysics Data System (ADS)
Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.
2015-02-01
The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.
Nutrient Dynamics in the Northern South China Sea Shelf-sea (NoSoCS)
NASA Astrophysics Data System (ADS)
Wong, G. T.; Guo, X.
2011-12-01
The Northern South China Sea Shelf-sea (NoSoCS) is situated in the sub-tropics along the southern Chinese coast between the southern end of the Taiwan Strait and the Hainan Island. Samples were collected in four cross-shelf transects in summer, 2010 and two cross-shelf transects in winter, 2011 in this Shelf-sea. The shelf may be sub-divided into the inner shelf (<40 m, low water temperature, high chlorophyll concentration), the middle shelf (50-80 m), and the outer shelf (90-120 m, high water temperature, low nutrient and chlorophyll concentrations). The mixed layer depth and the top of the nutricline depth (at ~30 m in the summer and ~70 m in the winter) were shallower than the shelf break depth (~120 m) in both seasons. The relatively nutrient-rich upper nutricline water (>1 μM in NO3- and >0.1 μM in soluble reactive phosphate) stretched across the shelf at least to the middle shelf. Thus, vertical mixing, even to relatively shallow depths, on the shelf may supply nutrients to and play a critical role in determining the primary production in the mixed layer. At least three such processes were observed. Through the year, internal waves of various strengths generated at the Luzon Strait propagated westward along the bottom of the mixed layer and dissipated along the middle and outer shelf. The effects of these waves were especially conspicuous north of the Dongsha Atoll and their action enhances vertical mixing. In the summer, upwelling occurred in the inner/middle shelf off Dongshan in response to the along shore southwest monsoon and the topographic forcing by the ridge extending offshore from Dongshan to the Taiwan Bank. In the winter, surface cooling and the strong northeast monsoon led to complete overturn in the shelf. The maximum density, reaching 24.6, in the surface waters was found offshore in the inner and middle shelf. This density was equivalent to the density of the water at >100 m offshore. As a result, this dense water also appeared as a layer of bottom water that extended across the shelf to the shelf edge.
The exchange of Kuroshio and East China Sea shelf water
NASA Astrophysics Data System (ADS)
Chern, Ching-Sheng; Wang, Joe; Wang, Dong-Ping
1990-09-01
A detailed hydrographic study of the East China Sea shelf edge north of Taiwan revealed an intense cold eddy on the shelf break and a large low-salinity filament at the slope. The cold eddy which is induced by the upwelling of the subsurface Kuroshio water has been repeatedly documented in previous studies. The filament which is made of the mixed shelf and subsurface Kuroshio water, on the other hand, has not been recognized before. The shelf edge upwelling appears to be associated with the sharp bending of the Kuroshio north of Taiwan, while the outpouring of shelf water appears to be associated with the northeasterly storms. Both the eddy and the filament consist of large fractions of the subsurface Kuroshio water, and they may be important to the salt and nutrient budget on the East China Sea shelf.
Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break
NASA Astrophysics Data System (ADS)
Budillon, Giorgio; Castagno, Pasquale; Aliani, Stefano; Spezie, Giancarlo; Padman, Laurie
2011-10-01
We use hydrological and current meter data collected in the Ross Sea, Antarctica between 1995 and 2006 to describe the spatial and temporal variability of water masses involved in the production of Antarctic Bottom Water (AABW). Data were collected in two regions of known outflows of dense shelf water in this region; the Drygalski Trough (DT) and the Glomar-Challenger Trough (GCT). Dense shelf water just inshore of the shelf break is dominated by High Salinity Shelf Water (HSSW) in the DT and Ice Shelf Water (ISW) in the GCT. The HSSW in the northern DT freshened by ˜0.06 in 11 y, while the ISW in the northern GCT freshened by ˜0.04 in 8 y and warmed by ˜0.04 °C in 11 y, dominated by a rapid warming during austral summer 2001/02. The Antarctic Slope Front separating the warm Circumpolar Deep Water (CDW) from the shelf waters is more stable near GCT than near DT, with CDW and mixing products being found on the outer DT shelf but not on the outer GCT shelf. The different source waters and mixing processes at the two sites lead to production of AABW with different thermohaline characteristics in the central and western Ross Sea. Multi-year time series of hydrography and currents at long-term moorings within 100 km of the shelf break in both troughs confirm the interannual signals in the dense shelf water and reveal the seasonal cycle of water mass properties. Near the DT the HSSW salinities experienced maxima in March/April and minima in September/October. The ISW in the GCT is warmest in March/April and coolest between August and October. Mooring data also demonstrate significant high-frequency variability associated with tides and other processes. Wavelet analysis of near-bottom moored sensors sampling the dense water cascade over the continental slope west of the GCT shows intermittent energetic pulses of cold, dense water with periods from ˜32 h to ˜5 days.
Land-Sea Correlation of Holocene Records in NW Iberian Peninsula
NASA Astrophysics Data System (ADS)
Gonzalez-Alvare, R.; Costas, S.; Bernardez, P.; Frances, G.; Alejo, I.
2005-12-01
Holocene climate fluctuations in the temperate region of the Northeast Atlantic have been established by comparing marine and terrestrial proxies. This work is based on suction-cores collected in the Cies Islands lagoon (NW Spain) and vibro-cores from the adjacent continental shelf. The lower Holocene marine record (9400-7000 yr BP) consists on sandy transgressive facies overlying fluvial Pleistocene deposits. During this time the continental shelf was dominated by high energy processes linked to the progressive and fast sea level rise. The rate of sea level rise sharply decelerated at 7000 yr BP and a high productive marine environment was fully established, as revealed by planktonic foraminifera assemblages and biogeochemical markers. In the terrestrial areas, peat deposits were formed beginning around 6000 yr BP in the deeper parts of the paleo-relief that was developed above the granitic basement. The peat was deposited in a fresh-water shallow coastal lake under warm and humid conditions that are brought about by prevailing SW winds. From 4800 yr BP, a progressive rainfall decrease provoked the lowering of the lake level and a weaker fluvial influence on the adjacent shelf. The prevailing eastern winds caused significantly drier conditions between 4000 and 3200 yr BP. During this period the coastal lake dried and the peat layer was covered by aeolian deposits. At the continental shelf a strong stratification of the water column induced a fall in the productivity. The end of this period is marked by the increase of storm regimes caused by a shift to prevailing SW winds. The last 3000 years are characterized by humid and warm conditions, and the enhancement of upwelling regime and terrestrial sediment supply. In Cies Islands, a sand barrier-lagoon complex was developed as a consequence of both the sea level rise and the inundation of the lower areas in the island.
Interannual Variability of the Patagonian Shelf Circulation and Cross-Shelf Exchange
NASA Astrophysics Data System (ADS)
Combes, V.; Matano, R. P.
2016-02-01
Observational studies have already established the general mean circulation and hydrographic characteristics of the Patagonian shelf waters using data from in situ observation, altimetry and more recently from the Aquarius satellite sea surface salinity, but the paucity of those data in time or below the surface leave us with an incomplete picture of the shelf circulation and of its variability. This study discusses the variability of the Patagonian central shelf circulation and off-shelf transport using a high-resolution model experiment for the period 1979-2012. The model solution shows high skill in reproducing the best-known aspects of the shelf and deep-ocean circulations. This study links the variability of the central shelf circulation and off-shelf transport to the wind variability, southern shelf transport variability and large-scale current variability. We find that while the inner and central shelf circulation are principally wind driven, the contribution of the Brazil/Malvinas Confluence (BMC) variability becomes important in the outer shelf and along the shelf break. The model also indicates that whereas the location of the off-shelf transport is controlled by the BMC, its variability is modulated by the southern shelf transport. The variability of the subtropical shelf front, where the fresh southern shelf waters encounters the saline northern shelf waters, is also presented in this study.
NASA Astrophysics Data System (ADS)
Nozaki, Yoshiyuki; Kasemsupaya, Vimonrut; Tsubota, Hiroyuki
1989-11-01
Increasing attention of oceanographers has recently been paied on East Asian marginal seas regarding their role on the global environment, yet geochemical investigations have been few to date. We here report new data on the distribution of 228Ra and 226Ra in the surface water of the East China and the Yellow seas in an effort to constrain the time necessary for the coastal and shelf waters to exchange with offshore waters. Such information is needed in evaluating the exchange of heat and water across the air-sea interface that affects the local climate and the fate of pollutants, nutrients and weathering products supplied from the continent. Based on the Ra isotope signals, we have estimated that the shelf water component contributes ˜ 20 % of the Tsushima Current water passing through the Tsushima Strait and the mean residence time for the shelf water to mix with the Kuroshio surface water is ˜ 2.3 years. As many of materials derived from the continent such as heavy metals and the nutrients have their mean residence times less than a few months in the nearshore and shelf waters, they must largely deposit on the shelf sediments prior to the transport from the shelf to the open sea by mixing.
Note On The Ross Sea Shelf Water Downflow Processes (antarctica)
NASA Astrophysics Data System (ADS)
Bergamasco, A.; Defendi, V.; Spezie, G.; Budillon, G.; Carniel, S.
In the framework of the CLIMA Project of the Italian National Program for Research in Antarctica, three different experimental data sets were acquired along the continental shelf break; two of them (in 1997 and 2001) close to Cape Adare, the 1998 one in the middle of the Ross Sea (i.e. 75 S, 177 W). The investigations were chosen in order to explore the downslope flow of the bottom waters produced in the Ross Sea, namely the High Salinity Shelf Water (HSSW, the densest water mass of the southern ocean coming from its formation site in the polynya region in Terra Nova bay), and the Ice Shelf Water (ISW, originated below the Ross Ice Shelf and outflowing northward). Both bottom waters spill over the shelf edge and mix with the Circumpolar Deep Water (CDW) contributing to the formation of the Antarctic Bottom Waters (AABW). Interpreting temperature, salinity and density maps in terms of cascading processes, both HSSW and ISW overflows are evidenced during, respectively, 1997 and 1998. During the 2001 acquisition there is no presence of HSSW along the shelf break, nevertheless distribution captures the evidence of a downslope flow process.
Western Ross Sea continental slope gravity currents
NASA Astrophysics Data System (ADS)
Gordon, Arnold L.; Orsi, Alejandro H.; Muench, Robin; Huber, Bruce A.; Zambianchi, Enrico; Visbeck, Martin
2009-06-01
Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ˜100 to ˜400 m on proceeding downslope from ˜600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ˜35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (<-1 °C), salty (>34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (-1.9 °C; 34.79) and approaching 1.5 m s -1 at descent angles as large as ˜60° relative to the isobaths. Such events were most common during November-May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This difference, if real, may reflect the influence of the large iceberg C-19 over Drygalski Trough until its departure in mid-May 2003, when there was a marked decrease in the coldest, saltiest gravity current adjacent to Drygalski Trough. Northward transport of cold, saline, recently ventilated Antarctic Bottom Water observed in March 2004 off Cape Adare was ˜1.7 Sv, including ˜0.4 Sv of High Salinity Shelf Water.
Very large dune formation along the Ebro outer continental shelf (Western Mediterranean)
NASA Astrophysics Data System (ADS)
Lo Iacono, Claudio; Guillén, Jorge; Puig, Pere; Ribó, Marta; Ballesteros, Maria; Palanques, Albert; Farrán, Marcelli; Acosta, Juan
2010-05-01
Large and very large subaqueous dunes have been observed in a number of outer shelf regions around the world, tipically developing on fossil sand bodies and ridges. Dunes observed on outer shelves usually display large dimensions with maximum wavelength reaching up to 500 m and heights up to 20 m. Forcing mechanisms able to induce their formation have been described as strong bottom currents related to tidal variations and water masses flowing under geostrophic conditions, generally controlled and enhanced by local geomorphologic configurations. In this study, such bed features have been recognized, mapped and measured around the Columbretes Islands (Ebro continental shelf - Western Mediterranean) with the aim to reconstruct which are the potential forcing processes that could generate them in relation to the local settings of the area. Swath-bathymetry around the Columbretes Islands was collected using 30 kHz and 180 kHz Multi Beam echo-sounders for a 50-400 m water depth range. Bathymetric data revealed the presence of three main relict sand bodies along the outer shelf, for a 80-116 m depth range, above which asymmetrical, slightly asymmetrical and symmetrical large and very large 2D and 3D subaqueous dunes were observed. Dunes range from 150 to 760 m in wavelength and from tens of cm to 6 m in height. These bedforms are composed of sandy sediments, presumably coming from the degraded relict sand bodies on which they developed, mixed to the fine fractions coming from the recent draping holocenic sediments. The orientation of the dunes is SSW and progressively turns to W directions moving towards the southernmost sector of the area, following the trend of the shelf-edge. Observed dunes display a strong asymmetric profile for those occurring along the shelf-edge (Symmetry Index (SI): 2.6) and lose progressively their asymmetry towards the inner portion of the shelf (SI: 0.5), being 0.6 the minimum SI value to classify the dunes as asymmetric. The subaqueous dunes observed along the studied region are amongst the largest ever recognized on an outer shelf setting. Morphologic characters and the orientation towards SW and W directions suggest the Liguro-Provenzal-Catalan geostrophic current as the primary forcing factor in their formation. Contemporary hydrodynamic measurement at the Ebro continental shelf-edge show that near-bottom wave action is negligible in this area, whereas maximum shear stresses induced by currents are able to resuspend fine sand particles and prevent the relict transgressive deposits from being covered by mud. However, recorded nearbottom currents generate shear stresses below the critical value for transport the relict coarse sands found in the study area and form large bedforms. The comparison of successive bathymetric images and the relation wavelength/height suggest that the described very large dunes are inactive features over long periods, as observed in similar environments along several continental margins. Thus, the morphological configuration of the Columbretes outer shelf must have played a crucial role in enhancing the southward flowing bottom currents during energetic hydrodynamic events, giving them the potential to generate such bedforms.
NASA Astrophysics Data System (ADS)
Fewings, M. R.; Washburn, L.; Ohlmann, C.; Blanchette, C.; Caselle, J.; Gotschalk, C.
2008-12-01
We use seven-year time series of wind stress, water velocity, and temperature in 15-18 m water depth to describe the circulation and water temperature over the inner continental shelves of the Channel Islands and California mainland in the Santa Barbara Basin. This area is strongly influenced by the California Current upwelling system. In turn, the water circulation in the Santa Barbara Basin influences the local marine ecosystem by affecting the water temperature and the supply of nutrients and larval fish and invertebrates. Larvae and nutrients traveling from the coast to the open ocean and back again must somehow pass through the inner shelf. The water circulation over the inner continental shelf of the Northern Channel Islands has not been described. Due to the shallowness of the water, an inner shelf has different physical dynamics than either the surfzone or the middle and outer continental shelf. We discuss the relative importance of upwelling- favorable along-shelf winds and of cross-shelf winds as forcing mechanisms for coastal upwelling circulations over the inner shelf; test whether the cross-shelf wind stress and surface gravity waves are important for cross-shelf circulation in the Santa Barbara Basin; and describe the subtidal patterns of water temperature, stratification, and velocity around the Channel Islands and their relation to observed larval settlement patterns. Cross-shelf circulation and the movement of water masses into and out of the Basin have implications for settlement and recruitment of many coastal species, including the economically important kelp rockfish, kelp bass, and sea urchin. Understanding the circulation of the Santa Barbara Basin and its inner shelves is a precursor to determining the source locations of the planktonic larvae. That information on source locations is essential for the design, siting, and assessment of existing and future marine protected areas in California and elsewhere.
NASA Astrophysics Data System (ADS)
Jiang, Mingshun; Charette, Matthew A.; Measures, Christopher I.; Zhu, Yiwu; Zhou, Meng
2013-06-01
The seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (˜2 km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 years) to investigate the sediment Fe input and its transport. The model is spun-up for three years using climatological boundary and surface forcing and then run for the 2004-2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.
Downslope flow across the Ross Sea shelf break (Antarctica)
NASA Astrophysics Data System (ADS)
Bergamasco, A.; Budillon, G.; Carniel, S.; Defendi, V.; Meloni, R.; Paschini, E.; Sclavo, M.; Spezie, G.
2003-12-01
The analysis of some high-resolution hydrological data sets acquired during the 1997, 1998, 2001 and 2003 austral summers across the Ross Sea continental shelf break are here presented. The main focus of these cruises carried out in the framework of the Italian National Antarctic Program was the investigation of the downslope flow of the dense waters originated inside the Ross Sea. Such dense waters, flow near the bottom and, reaching the continental shelf break, ventilate the deep ocean. Two Antarctic continental shelf mechanisms can originate dense and deep waters. The former mechanism involves the formation, along the Victoria Land coasts, of a dense and saline water mass, the High Salinity Shelf Water (HSSW). The HSSW formation is linked to the rejection of salt into the water column as sea ice freezes, especially during winter, in the polynya areas, where the ice is continuously pushed offshore by the strong katabatic winds. The latter one is responsible of the formation of a supercold water mass, the Ice Shelf Water (ISW). The salt supplied by the HSSW recirculated below the Ross Ice Shelf, the latent heat of melting and the heat sink provided by the Ross Ice Shelf give rise to plumes of ISW, characterized by temperatures below the sea-surface freezing point. The dense shelf waters migrate to the continental shelf-break, spill over the shelf edge and descend the continental slope as a shelf-break gravity current, subject to friction and possibly enhanced by topographic channelling. Friction, in particular, breaks the constraint of potential vorticity conservation, counteracting the geostrophic tendency for along slope flow. The density-driven downslope motion or cascading entrains ambient water, namely the lower layer of the CDW, reaches a depth where density is the same and spreads off-slope. In fact, the cascading event is inhibited by friction without entrainment. The downslope processes are important for the ocean and climate system because they play a crucial role in the formation of oceanic deep water responsible for ocean/continental shelf exchange of organic carbon, suspended material and dissolved gases around Antarctica. In this context, this work presents the analysis of the 1997, 2001 and 2003 high-resolution surveys carried out in the western Ross Sea near Cape Adare, where the HSSW flows down the continental slope. The second study area was investigated during the 1998 survey of the Italian National Programme for Antarctic Research of the CLIMA Project, in order to follow the ISW overflow path at the shelf break in the central Ross Sea. A 3D primitive equation model was also implemented as a first step in the construction of a high-resolution process study model to explore the dynamical constraints involved in the downslope motion.
NASA Astrophysics Data System (ADS)
Nelson, J.; Seim, H.; Edwards, C. R.; Lockhart, S.; Moore, T.; Robertson, C. Y.; Amft, J.
2016-02-01
A winter 2012 field study off Long Bay (seaward of Myrtle Beach, South Carolina) investigated exchange processes along the shelf margin. Topics addressed included mechanisms of nutrient input (upper slope to outer shelf), phytoplankton blooms and community characteristics (mid-to-outer shelf), and possible export of shelf bloom material (transport to and across the shelf break to the upper slope). Observations utilized three moorings (mid-shelf, shelf break, upper slope), two gliders and ship operations (repeat cruises with profiling, water sampling and towed body surveys) along with satellite SST and ocean color imagery and near-by NOAA buoy records. Here we focus on the late January to early February period, when a mid-shelf bloom of Phaeocystis globosa (which forms large gelatinous colonies) was transported to the shelf break. The presence of Phaeocystis colonies resulted in strong spiking in chlorophyll (chl) fluorescence profiles. A partitioning approach was adapted to estimate chl in colonies (spikes) and small forms (baseline signal) and to account for an apparent difference in measured in vivo fluorescence per unit chl (lower in colonies). Up to 40-50% of chl in the bloom (surface to bottom on the mid-shelf) was estimated to be in the colonies. In late January, there a pronounced seaward slumping of relatively dense mid-shelf water along the bottom under warmer surface water derived from the inshore edge of a broad jet of Gulf Stream water flowing southwestward along the upper slope. We describe the evolution of this event and the conditions which set up this mechanism for episodic near-bed transport of fresh bloom material produced on the shelf to the upper slope off Long Bay. Down-slope transport may have been enhanced in this case by the high phytoplankton biomass in gelatinous colonies, which appeared to be settling in the water column on the shelf prior to the transport event.
Long-term observing system for the oceanic regime of Filchner-Ronne Ice Shelf, Antarctica
NASA Astrophysics Data System (ADS)
Østerhus, Svein; Schröder, Michael; Hellmer, Hartmunt; Darelius, Elin; Nicholls, Keith; Makinson, Keith
2014-05-01
Long term observations of the flow of dense waters from their area of formation to the abyss of the World Ocean, and the return flow of warm waters, are central to climate research. For the Weddell Sea an important component of such a system entails monitoring the formation of High Salinity Shelf Water (HSSW) on the continental shelf north of Ronne Ice Front, the transformation to Ice Shelf Water (ISW) beneath the floating Filchner-Ronne ice shelf, and the flux of ISW overflowing the shelf break to the deep Weddell Sea. Equally important is the return flow of warm water toward the Filchner-Ronne Ice Shelf system. AWI, BAS and UNI/UIB operate a number of monitoring stations in the southern Weddell Sea. The systems build upon techniques and methods developed over several decades and have a proven record of high data return. Here we present plans for extending, integrating and operating the existing long term observatories to increase our knowledge of the natural variability of the ocean-ice shelf system, and to allow early identification of possible changes of regional or global importance. The S2 observatory at the Filchner sill was established in 1977 and continues to deliver the longest existing marine time series from Antarctica. As a key site for monitoring the ISW overflow S2 is a part of the global net of monitoring sites under CLIVAR Southern Ocean Observing System (SOOS) and OceanSITES. The existing S2 observatory consists of a sub-surface mooring carrying sensors for current velocity, temperature, salinity and dissolved oxygen measurements. Observations at the Filchner sill also show a seasonal inflow of relatively warm water that is able to reach Filchner Ice Front. New model results indicate that this flow of water might increase in the future and we have deployed a number of instrumented moorings in the Filchner Depression to estimate the heat flux towards the ice shelf. In 1999 we established Site 5 on Ronne Ice Shelf using a hot-water drill to access the 402 m of water underlying the 763-m thick ice. Results from the multiyear time series show the sensitivity of the sub-ice shelf circulation to changes in conditions over the continental shelf and highlight the importance of monitoring the ice shelf cavity. We will reoccupy Site 5 in the 2014/15 season to deploy a suite of observing systems for long time monitoring of the circulation below Ronne Ice Shelf. The systems will consist of sub-ice shelf oceanographic moorings instrumented with high quality sensors. They will transmit in real-time and are designed to operate for more than 10 years. In 2015/16 we will extend the observing network by deploying observatories on Filchner Ice Shelf. The Filchner-Ronne Ice Shelf and S2 observatories will provide the first ever concurrent observations from the ice-shelf cavity where ISW is formed, and the sill where it starts its descent towards the deep Weddell Sea, and will provide a unique dataset allowing us to link processes and variability within the cavity directly to overflow properties and deep water formation.
Change in Dense Shelf Water and Adélie Land Bottom Water Precipitated by Iceberg Calving
NASA Astrophysics Data System (ADS)
Snow, K.; Rintoul, S. R.; Sloyan, B. M.; Hogg, A. McC.
2018-03-01
Antarctic Bottom Water supplies the deep limb of the global overturning circulation and ventilates the abyssal ocean. Antarctic Bottom Water has warmed, freshened, and contracted in recent decades, but the causes remain poorly understood. We use unique multiyear observations from the continental shelf and deep ocean near the Mertz Polynya to examine the sensitivity of this bottom water formation region to changes on the continental shelf, including the calving of a large iceberg. Postcalving, the seasonal cycle of Dense Shelf Water (DSW) density almost halved in amplitude and the volume of DSW available for export reduced. In the deep ocean, the density and volume of Adélie Land Bottom Water decreased sharply after calving, while oxygen concentrations remained high, indicating continued ventilation by DSW. This natural experiment illustrates how local changes in forcing over the Antarctic continental shelf can drive large and rapid changes in the abyssal ocean.
Exchange of Laptev Sea and Arctic Ocean halocline waters in response to atmospheric forcing
NASA Astrophysics Data System (ADS)
Bauch, D.; Dmitrenko, I. A.; Wegner, C.; HöLemann, J.; Kirillov, S. A.; Timokhov, L. A.; Kassens, H.
2009-05-01
Combined δ18O/salinity data reveal a distinctive water mass generated during winter sea ice formation which is found predominantly in the coastal polynya region of the southern Laptev Sea. Export of the brine-enriched bottom water shows interannual variability in correlation with atmospheric conditions. Summer anticyclonic circulation is favoring an offshore transport of river water at the surface as well as a pronounced signal of brine-enriched waters at about 50 m water depth at the shelf break. Summer cyclonic atmospheric circulation favors onshore or an eastward, alongshore water transport, and at the shelf break the river water fraction is reduced and the pronounced brine signal is missing, while on the middle Laptev Sea shelf, brine-enriched waters are found in high proportions. Residence times of bottom and subsurface waters on the shelf may thereby vary considerably: an export of shelf waters to the Arctic Ocean halocline might be shut down or strongly reduced during "onshore" cyclonic atmospheric circulation, while with "offshore" anticyclonic atmospheric circulation, brine waters are exported and residence times may be as short as 1 year only.
NASA Astrophysics Data System (ADS)
Darelius, E.; Sallée, J. B.
2018-04-01
The ice shelf water (ISW) found in the Filchner Trough, located in the southern Weddell Sea, Antarctica, is climatically important; it descends into the deep Weddell Sea contributing to bottom water formation, and it blocks warm off-shelf waters from accessing the Filchner ice shelf cavity. Yet the circulation of ISW within the Filchner Trough and the processes determining its exchange across the ice shelf front are to a large degree unknown. Here mooring records from the ice shelf front are presented, the longest of which is 4 years long. They show that the coldest (Θ =- 2.3∘C) ISW, which originates from the Ronne Trough in the west, exits the cavity across the western part of the ice shelf front during late austral summer and early autumn. The supercooled ISW escaping the cavity flows northward with a velocity of about 0.03 m/s. During the rest of the year, there is no outflow at the western site: the current is directed eastward, parallel to the ice shelf front, and the temperatures at the mooring site are slightly higher (Θ =- 2.0∘C). The eastern records show a more persistent outflow of ISW.
Water Masses and Nutrient Sources to the Gulf of Maine
Townsend, David W.; Pettigrew, Neal R.; Thomas, Maura A.; Neary, Mark G.; McGillicuddy, Dennis J.; O’Donnell, James
2016-01-01
The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013. PMID:27721519
Water Masses and Nutrient Sources to the Gulf of Maine.
Townsend, David W; Pettigrew, Neal R; Thomas, Maura A; Neary, Mark G; McGillicuddy, Dennis J; O'Donnell, James
2015-01-01
The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013.
The Carbon Budget of Coastal Waters of Eastern North America
NASA Astrophysics Data System (ADS)
Najjar, R.; Boyer, E. W.; Burdige, D.; Butman, D. E.; Cai, W. J.; Canuel, E. A.; Chen, R. F.; Friedrichs, M. A.; Griffith, P. C.; Herrmann, M.; Kemp, W. M.; Kroeger, K. D.; Mannino, A.; McCallister, S. L.; McGillis, W. R.; Mulholland, M. R.; Salisbury, J.; Signorini, S. R.; Tian, H.; Tzortziou, M.; Vlahos, P.; Wang, A. Z.; Zimmerman, R. C.; Pilskaln, C. H.
2015-12-01
Observations and the output of numerical and statistical models are synthesized to construct a carbon budget of the coastal waters of eastern North America. The domain extends from the head of tide to (roughly) the continental shelf break and from southern Florida to southern Nova Scotia. The domain area is 2% tidal wetlands, 19% estuarine open water, and 78% shelf water. Separate budgets are constructed for inorganic and organic carbon; for tidal wetlands, estuaries, and shelf waters; and for three main subregions: the Gulf of Maine, the Mid-Atlantic Bight, and the South Atlantic Bight. Net primary production for the study region is about 150 Tg C yr-1, with 12% occurring in tidal wetlands and 7% in estuaries. Though respiration and photosynthesis are nearly balanced in most systems and regions, tidal wetlands and shelf waters are each found to be net autotrophic whereas estuaries are net heterotrophic. The domain as a whole is a sink of 5 Tg C yr-1 of atmospheric CO2, with tidal wetlands and shelf waters taking up 10 Tg C yr-1 (split roughly equally) and estuaries releasing 5 Tg C yr-1 to the atmosphere. Carbon burial is about 3 Tg C yr-1, split roughly equally among tidal wetlands, estuaries, and shelf waters. Rivers supply 6-7 Tg C yr-1 to estuaries, about 2/3 of which is organic. Tidal wetlands supply an additional 4 Tg C yr-1 to estuaries, about half of which is organic. Carbon in organic and inorganic forms is exported from estuaries to shelf waters and from shelf waters to the open ocean. In summary, tidal wetlands and estuaries, though small in area, contribute substantially to the overall carbon budget of the region.
Inorganic carbon fluxes on the Mackenzie Shelf of the Beaufort Sea
NASA Astrophysics Data System (ADS)
Mol, Jacoba; Thomas, Helmuth; Myers, Paul G.; Hu, Xianmin; Mucci, Alfonso
2018-02-01
The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries dissolved inorganic carbon (DIC) and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world's oceans. Upwelling carries DIC and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of DIC are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) framework. A strong upwelling event prior to sampling on the Mackenzie Shelf took place, bringing CO2-rich (elevated pCO2) water from the UHL onto the shelf bottom. The maximum on-shelf DIC flux was estimated at 16.9×103 mol C d-1 m-2 during the event. The maximum on-shelf transport of DIC through the upwelling event was found to be 65±15×10-3 Tg C d-1. TA and the oxygen isotope ratio of water (δ18O-H2O) are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of carbon dioxide (CO2) in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis for understanding how it will respond to the aforementioned climate-induced changes.
NASA Astrophysics Data System (ADS)
Carreto, José I.; Montoya, Nora G.; Carignan, Mario O.; Akselman, Rut; Acha, E. Marcelo; Derisio, Carla
2016-08-01
The aim of this study was to investigate the biotic and abiotic factors controlling the spring phytoplankton blooms at the Patagonian shelf-break front (PSBF). Using a CHEMTAX analysis of HPLC pigment data and other methods, the biomass and spatial variability of plankton communities were studied in four sections (39-48°S) across the PSBF during October 2005. Environmental factors and the biomass and composition of plankton communities exhibited a marked spatial heterogeneity. The latitudinal and cross-shelf progression in the timing of the spring bloom initiation and the nutritive properties of the water masses (Subantarctic Shelf Waters and Malvinas Current Waters) seemed to be the key factors. Three plankton regions were distinguished: (a) Outer shelf (OS), (b) Shelf-break front (SBF) and (c) Malvinas Current (MC). At the highly stratified OS region, the post-bloom community showed low-biomasshigh-phytoplankton diversity formed mainly by small cells (haptophytes 30-62%, diatoms 17-49%, chlorophytes 0-34%, and prasinophytes 0-21% of total Chl a). High amounts of degraded fucoxanthin were found associated with the heterotrophic dinoflagellate, Protoperidinium capurroi. Grazing by this microheterotroph on the diatom population seemed to be the most important factor for the spring bloom decay at the OS. A remarkable quasi monospecific bloom (∼90%) of a nanodiatom (Thalassiosira bioculata var. raripora) associated with high Chl a (up to 20 mg m-3) occurred along (∼1000 km) the SBF and in the most northern extension of the MC. In the southern region, the bloom was developed under absent or incipient density stratification, increasing solar irradiance, high nitrate and phosphate availability, and low numbers of phytoplankton grazers. The average mixedlayer PAR irradiance (<2.0 mol quanta PAR m-2 d-1) and Si:N ratios (<0.2) were low, suggesting a diatom population limited by light and under progressive silicate limitation. The more stratified northern region of the SBF showed a later stage of the bloom development, but the large population of diatoms under Si limitation was not in senescence and losses from microzooplankton grazing were minor. The observed high proportion of Chl a below a shallow upper mixed layer (up to 85%) could directly reach the bed, favoring the development of epibenthic communities and the formation of seed diatom banks and organic iron-rich sediments. The upwelling along the SBF provides a large source of macronutrients and probably the dissolved iron needed to sustain the intense diatom bloom, but also diatom resting stages that could act as seeds for the next spring bloom. The macronutrient-rich MC region showed low chlorophyll (Chl a < 0.8 mg m-3) and a highly diverse phytoplankton community, mainly composed of small cells (diatoms 20-70%, haptophytes 20-40%, chlorophytes 2-25%, prasinophytes 2-18%, and cryptophytes 3-12% of total Chl a).
Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C; Daniels, Chris J; Inall, Mark; Davidson, Keith
2016-01-01
The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to shelf break and oceanic stations in the study area.
Phytoplankton Distribution in Relation to Environmental Drivers on the North West European Shelf Sea
Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C.; Daniels, Chris J.; Inall, Mark; Davidson, Keith
2016-01-01
The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to shelf break and oceanic stations in the study area. PMID:27736920
Cross-shelf transport into nearshore waters due to shoaling internal tides in San Pedro Bay, CA
Noble, Marlene A.; Burt Jones,; Peter Hamilton,; Xu, Jingping; George Robertson,; Rosenfeld, Leslie; John Largier,
2009-01-01
In the summer of 2001, a coastal ocean measurement program in the southeastern portion of San Pedro Bay, CA, was designed and carried out. One aim of the program was to determine the strength and effectiveness of local cross-shelf transport processes. A particular objective was to assess the ability of semidiurnal internal tidal currents to move suspended material a net distance across the shelf. Hence, a dense array of moorings was deployed across the shelf to monitor the transport patterns associated with fluctuations in currents, temperature and salinity. An associated hydrographic program periodically monitored synoptic changes in the spatial patterns of temperature, salinity, nutrients and bacteria. This set of measurements show that a series of energetic internal tides can, but do not always, transport subthermocline water, dissolved and suspended material from the middle of the shelf into the surfzone. Effective cross-shelf transport occurs only when (1) internal tides at the shelf break are strong and (2) subtidal currents flow strongly downcoast. The subtidal downcoast flow causes isotherms to tilt upward toward the coast, which allows energetic, nonlinear internal tidal currents to carry subthermocline waters into the surfzone. During these events, which may last for several days, the transported water remains in the surfzone until the internal tidal current pulses and/or the downcoast subtidal currents disappear. This nonlinear internal tide cross-shelf transport process was capable of carrying water and the associated suspended or dissolved material from the mid-shelf into the surfzone, but there were no observation of transport from the shelf break into the surfzone. Dissolved nutrients and suspended particulates (such as phytoplankton) transported from the mid-shelf into the nearshore region by nonlinear internal tides may contribute to nearshore algal blooms, including harmful algal blooms that occur off local beaches.
NASA Astrophysics Data System (ADS)
Burt, William; Thomas, Helmuth
2013-04-01
Radium (Ra) isotopes have become a common tool for investigating mixing rates on continental shelves, and more recently have been used to quantify the release of dissolved compounds enriched in pore-waters into the water column. We present results from Ra sampling of the Scotian Shelf region of the Canadian northwestern Atlantic Ocean, which reveal cross-shelf Ra distributions that are unique compared to other coastal regions. We explain the observations of lower 224Ra activities near the coast, relatively high activities at large distances offshore (>100km), and gradients in both offshore and onshore directions by inferring the regional geomorphology, as well as shelf bathymetry and circulation patterns. Ra gradients are used to calculate individual estimates of eddy diffusion in both the cross-shelf (KX) and vertical (KZ) directions using 1-D eddy diffusion models. Enhanced vertical mixing above offshore banks allows for Ra enrichments in offshore surface waters, while horizontal dispersion of this bank-related signal can transport Ra off the shelf break in surface waters, and towards the shore beneath the surface mixed layer. Similar onshore gradients in CO2 and nutrient species combined with Ra-derived KX values can yield onshore carbon and nutrient fluxes in subsurface waters, which in turn supply the CO2 outgassing from the Scotian Shelf. Our results thus provide constraints for cross-shelf transports of carbon and nutrients on the Scotian Shelf in order to guide mass balance or model based budget approaches in future studies.
Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica
NASA Astrophysics Data System (ADS)
De Rydt, Jan; Hilmar Gudmundsson, G.; Nagler, Thomas; Wuite, Jan; King, Edward C.
2018-02-01
We report on the recent reactivation of a large rift in the Brunt Ice Shelf, East Antarctica, in December 2012 and the formation of a 50 km long new rift in October 2016. Observations from a suite of ground-based and remote sensing instruments between January 2000 and July 2017 were used to track progress of both rifts in unprecedented detail. Results reveal a steady accelerating trend in their width, in combination with alternating episodes of fast ( > 600 m day-1) and slow propagation of the rift tip, controlled by the heterogeneous structure of the ice shelf. A numerical ice flow model and a simple propagation algorithm based on the stress distribution in the ice shelf were successfully used to hindcast the observed trajectories and to simulate future rift progression under different assumptions. Results show a high likelihood of ice loss at the McDonald Ice Rumples, the only pinning point of the ice shelf. The nascent iceberg calving and associated reduction in pinning of the Brunt Ice Shelf may provide a uniquely monitored natural experiment of ice shelf variability and provoke a deeper understanding of similar processes elsewhere in Antarctica.
Return of warm conditions in the southeastern Bering Sea: Phytoplankton - Fish.
Duffy-Anderson, Janet T; Stabeno, Phyllis J; Siddon, Elizabeth C; Andrews, Alex G; Cooper, Daniel W; Eisner, Lisa B; Farley, Edward V; Harpold, Colleen E; Heintz, Ron A; Kimmel, David G; Sewall, Fletcher F; Spear, Adam H; Yasumishii, Ellen C
2017-01-01
In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new warm stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean warming and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2-3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year warm stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious warm stanza effects by either utilizing high productivity waters associated with the strong, northerly Cold Pool, as a refuge from the warm, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the Cold Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the Cold Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which may have provided a high quality alternate prey. In 2016 a retracted Cold Pool precluded significant refuging in the north, though pollock foraging on available euphausiids over the southern shelf may have mitigated the effect of warm waters and reduced large availability of large copepods. This work presents the hypothesis that, in the short term, juvenile pollock can mitigate the drastic impacts of sustained warming. This short-term buffering, combined with recent observations (2017) of renewed sea ice presence over southeast Bering Sea shelf and a potential return to average or at least cooler ecosystem conditions, suggests that recent warm year stanza (2014-2016) effects to the pollock population and fishery may be mitigated.
NASA Astrophysics Data System (ADS)
McGann, M.; Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Barry, J.; Carvajal, C.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Parsons, D. R.; O'Reilly, T. C.; Rosenberger, K. J.; Wolfson-Schwehr, M.; Simmons, S.; Sumner, E.; Talling, P.; Xu, J.
2017-12-01
Submarine canyons are found along the slopes of most continental margins and turbidity currents are thought to be the primary mechanism responsible for transporting sediment through them to deep-sea fans. The initiation sites of these flows are difficult to locate with any degree of precision from lithology alone. Fortunately, the presence of allochthonous microscopic remains, such as benthic foraminifers, can aid in the identification of the source of the displaced sediments. In Monterey Canyon, offshore California, a Seafloor Instrument Node (SIN) and adjacent mooring in the Coordinated Canyon Experiment indicate that a February 2017 turbidity current reached 1840 m water depth. In April 2017, one push core was obtained on each of four sides of the SIN just outside its frame and six others from 30-100 m away. Each was cut into 1 cm slices, stained with rose Bengal, washed, and analyzed for their microscopic constituents. Material recovered included terrestrial debris (wood, leaves, seeds, highway safety spheres, and volcanic glass) as well as foraminiferal tests. Dead benthic foraminifers from the estuarine (0-10 m), inner shelf (0-50 m), outer shelf (50-150 m), slope break (150 m), upper bathyal (150-500 m), and middle bathyal (500-2000 m) biofacies were present, suggesting a staged progression of sediment downslope from the continental shelf and slope. Living (rose Bengal stained) foraminifers recovered represent estuarine (Ammonia tepida, Elphidium excavatum), inner shelf (Buccella frigida, B. tenerrima, Buliminella elegantissima, Cibicides fletcheri, Nonionella spp., Rotorbinella turbinata), and upper bathyal (Bolivina pacifica, B. spissa, Epistominella exigua, Uvigerina peregrina) species as well as an in-situ middle bathyal biofacies (Bolivina argentea, B. spissa, Buliminella tenuata, Epistominella pacifica, Globobulimina spp., Uvigerina peregrina, U. hispida). The presence of living allochthonous benthic foraminifers from these shallower biofacies suggests the flow that covered portions of the SIN frame and the surrounding area originated in the estuarine to shallow shelf environment. Because the shallow water species were still alive when deposited at 1840 m water depth, the sediment gravity flow was a rapid event that transported sediment down canyon to this deep-marine site.
NASA Astrophysics Data System (ADS)
Roberts, H. H.; Murray, S. P.
1983-06-01
Marine geology and physical oceanographic data collected during two field projects (˜4 months) on the Caribbean shelf of Nicaragua indicate a surprising dominance of carbonate deposition and reef growth on a shelf that is receiving an abnormally large volume of terrigenous sediments. High rainfall rates (˜400 500 cm/year), coupled with a warm tropical climate, encourage rapid denudation of the country's central volcanic highland and transport of large volumes of terrigenous sediment and fresh water to the coast. Estimates suggest that three times more fresh water and fifteen times more sediment are introduced per unit length of coastline than on the east coast of the United States. Distribution of the terrigenous facies, development of carbonate sediment suites, and the location and quality of viable reefs are strongly controlled by the dynamic interaction near the coasts of highly turbid fresh to brackish water effluents from thirteen rivers with clear marine waters of the shelf. Oceanic water from the central Caribbean drift current intersects the shelf and moves slowely in a dominant northwest direction toward the Yucatan Channel. A sluggish secondary gyre moves to the south toward Costa Rica. In contrast, the turbid coastal water is deflected to the south in response to density gradients, surface water slopes, and momentum supplied by the steady northeast trade winds. A distinct two-layered flow is commonly present in the sediment-rich coastal boundary zone, which is typically 10 20 km wide. The low-salinity upper layer is frictionally uncoupled from the ambient shelf water and therefore can expand out of the normally coherent coastal boundary zone during periods of abnormal flooding or times when instability is introduced into the northeast trades. Reef distribution, abruptness of the terrigenous-carbonate interface, and general shelf morphology reflect the long-term dynamic structure of the shelf waters. A smooth-bottomed ramp of siliciclastic sands to silts and clays mantles the inner shelf floor in a linear belt paralleling the coast. This belt generally corresponds to the western flank of the coastal boundary zone. Occurrence of reefs is generally confined to areas outside this zone. Terrigenous clays and silts of the inner shelf are abruptly (<20 km from the coast) replaced by Halimeda-rich sediment of the middle and outer shelf. Within the carbonate facies belt, reef complexes thrive as small, isolated masses; large, reef-capped platforms; reef fringes around islands; and shelfedge structures with vertical relief that can exceed 25 m. In general, the frequency and proliferation of reefs increase away from the turbid coastal boundary layer and toward the cooler and saltier water that upwells at the shelf margin.
Teleseismic Earthquake Signals Observed on an Ice Shelf
NASA Astrophysics Data System (ADS)
Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.
2015-12-01
The West Antarctic Rift System (WARS) is one of Earth's largest continental extension zones. Study of the WARS is complicated by the presence of the West Antarctic Ice Sheet, the Ross Ice Shelf, and the Ross Sea. Recent deployments of broadband seismographs in the POLENET project have allowed passive seismic techniques, such as receiver function analysis and surface wave dispersion, to be widely utilized to infer crustal and mantle velocity structure across much of the WARS and West Antarctica. However, a large sector of the WARS lies beneath the Ross Ice Shelf. In late 2014, 34 broadband seismographs were deployed atop the ice shelf to jointly study deep Earth structure and the dynamics of the ice shelf. Ice shelf conditions present strong challenges to broadband teleseismic imaging: 1) The presence of complicating signals in the microseism through long-period bands due to the influence of ocean gravity waves; 2) The strong velocity contrasts at the ice-water and water-sediment interfaces on either side of the water layer give rise to large amplitude reverberations; 3) The water layer screens S-waves or P-to-S phases originating from below the water layer. We present an initial analysis of the first teleseismic earthquake arrivals collected on the ice shelf at the end of the 2014 field season from a limited subset of these stations.
Davidson, Keith; Bolch, Christopher J. S.; Brand, Tim D.; Narayanaswamy, Bhavani E.
2012-01-01
Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the “Ellett Line” cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA), of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations) clearly discriminated between shelf and oceanic stations on the basis of DIN∶DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS) demonstrating spatial variability in its composition. Redundancy analysis (RDA) was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community), and both salinity and DIN∶DSi (diatoms alone). Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi limitation of growth at most stations and depths. PMID:22479533
Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA
Cohen, D.; Person, M.; Wang, P.; Gable, C.W.; Hutchinson, D.; Marksamer, A.; Dugan, Brandon; Kooi, H.; Groen, K.; Lizarralde, D.; Evans, R.L.; Day-Lewis, F. D.; Lane, J.W.
2010-01-01
While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km3 in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (104 km3) and passive margins globally (3 ?? 105 km3). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages. ?? 2009 National Ground Water Association.
Exchanges between the open Black Sea and its North West shelf
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Wobus, Fred; Zhou, Feng
2014-05-01
Exchanges between the vast NW shelf and the deep basin of the Black Sea play a significant role in maintaining the balance of nutrients, heat content and salinity of the shelf waters. Nearly 87 % of the Black Sea is entirely anoxic below 70 to 200m and contains high levels of hydrogen sulphide (Zaitsev et al, 2001), and this makes the shelf waters particularly valuable for maintaining the Black Sea ecosystem in good health. The increase in salinity of shelf waters occurs partially due to exchanges with more saline open sea waters and represents a threat to relics and endemic species. The shelf-break is commonly considered the bottle-neck of the shelf-deep sea exchanges (e.g. (Huthnance, 1995, Ivanov et al, 1997). Due to conservation of potential vorticity, the geostrophic currents flow along the contours of constant depth. However the ageostrophic flows (Ekman drift, mesoscale eddies, filaments, internal waves) are not subject to the same constraints. It has been shown that during the winter well mixed cold waters formed on the North West shelf propagate into the deep sea, providing an important mechanism for the replenishment of the Cold Intermediate Layer ( Staneva and Stanev, 1997). However, much less is known about exchanges in the warm season. In this study, the transports of water, heat and salt between the northwestern shelf and the adjacent deep basin of the Black Sea are investigated using a high-resolution three-dimensional primitive equation model, NEMO-SHELF-BLS (Shapiro et al, 2013). It is shown that during the period from April to August, 2005, both onshore and offshore cross-shelf break transports in the top 20 m were as high as 0.24 Sv on average, which was equivalent to the replacement of 60% of the volume of surface shelf waters (0 - 20 m) per month. Two main exchange mechanisms are studied: (i) Ekman transport, and (ii) transport by mesoscale eddies and associated meanders of the Rim Current. The Ekman drift causes nearly uniform onshore or offshore flow over a large section of the shelf break. Due to the short duration of strong wind effects (4-7 days) the horizontal extent of cross-shelf-break exchanges is limited to the outer shelf. The effect of Ekman drift is confined to the upper layers. In contrast, eddies and meanders penetrate deep down to the bottom, but they are restricted laterally. During the strong wind events of April 15 - 22 and July 1 - 4, some 0.66×1012 and 0.44×1012 m3of water were removed from the northwestern shelf respectively. In comparison, the single long-lived Sevastopol Eddy generated a much larger offshore transfer of 2.84×1012 m3 over the period April 23 to June 30, which is equivalent to 102% of the volume of northwestern shelf waters. This result is consistent with the data obtained from satellite derived information (Shapiro et al, 2010). The open Black Sea is generally warmer and more saline than the northwest shelf. Hence the exchanges contribute to the increase in both salinity and temperature of shelf waters. Over the study period, salt exchanges increased the average density of the shelf waters by 0.67 kg m-3 and reduced the density contrast between the shelf and deep sea, while lateral heat exchanges reduced the density of the shelf waters by 0.16 kg m-3 and thus enhanced density contrast across the shelf break. This study was supported by the EU (via PERSEUS grant FP7-OCEAN-2011-287600 and MyOcean SPA.2011.1.5-01 grant 283367), Ministry of Science and Technology of China (Grant 2011CB409803), the Natural Science Foundation of China (Grant 41276031), Zhejiang Association for International Exchange of Personnel, and the University of Plymouth Marine Institute Innovation Fund. References Huthnance, J. M., 1995. Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge, Prog Oceanogr, 35(4), 353-431, Ivanov L.I., Besiktepe S., Ozsoy E., 1997. In: E.Ozsoy and A.Mikaelyan (eds). Sensitivity to change: Black Sea , Baltic Sea and North Sea. NATO ASI Series, Vol. 27, Kluwer Academic Publishers, 253-264. Shapiro, G.I. , S.V. Stanichny, R.R. Stanychna, 2010. Anatomy of shelf-deep sea exchanges by a mesoscale eddy in the North West Black Sea as derived from remotely sensed data. Remote Sensing of Environment, 114 , 867-875. Shapiro, G., Luneva, M., Pickering, J., and Storkey, D., 2013. The effect of various vertical discretization schemes and horizontal diffusion parameterization on the performance of a 3-D ocean model: the Black Sea case study, Ocean Science, 9, 377-390. Staneva, J. V. and E. V. Stanev, 1997. Cold water mass formation in the Black Sea. Analysis on numerical model simulations. In: E. Ozsoy and A. Mikaelyan (eds.), Sensitivity to change: Black Sea, Baltic Sea and North Sea. NATO ASI Series, Vol. 27, Kluwer Academic Publishers, 375-393. Zaitsev Yu.P., B.G. Alexandrov, N.A. Berlinsky, A. Zenetos, 2001. Europe's biodiversity - biogeographical regions and seas. The Black Sea. European Environment Agency.
NASA Astrophysics Data System (ADS)
Coyle, Kenneth O.; Pinchuk, Alexei I.
2005-01-01
The cross-shelf distribution of major zooplankton species was examined on the northern Gulf of Alaska (GOA) shelf during the production season for four years, between October 1997 and October 2001. The zooplankton community on the northern GOA shelf consisted of oceanic and neritic species of the North Pacific subarctic species complex. Cross-shelf distribution of the major zooplankton species was influenced by their depth preferences, vertical migration behavior, salinity-temperature preferences, and by cross-shelf water-mass distribution and movement. The neritic community, dominated by Pseudocalanus spp., Metridia pacifica and Calanus marshallae, had highest abundances on the inner shelf, in the Alaska Coastal Current, and in the adjacent fjords in late spring and early summer. The oceanic community, which contained primarily Neocalanus cristatus and Eucalanus bungii, was observed in the Alaskan Stream and adjacent waters near the shelf break. A mid-shelf transition zone contained a mixture of oceanic and neritic species. Prince William Sound (PWS) contained a unique species complex of large mesopelagic copepods, amphipods and shrimp. Neocalanus flemingeri and Oithona similis were abundant in all four regions during spring and early summer. The transition zone commonly crossed much of the shelf between the shelf break and the ACC, but satellite images and CTD data indicate that occasionally a narrow shelf-break front can form, in which case distinct zooplankton species groups are observed on either side of the front. Satellite data also revealed numerous large and small eddies, which probably contribute to cross-shelf mixing in the transition zone.
NASA Astrophysics Data System (ADS)
Measures, C. I.; Brown, M. T.; Selph, K. E.; Apprill, A.; Zhou, M.; Hatta, M.; Hiscock, W. T.
2013-06-01
Dissolved trace element distributions near Elephant Island in the Drake Passage show extremely high levels of dissolved Fe and Mn in waters above the shelf. The entrainment of this enriched shelf water by the Fe-poor Antarctic Circumpolar Current (ACC) as it passes through the Shackleton Gap delivers an estimated 2.8×106 mol yr-1 dissolved Fe to the offshore waters of the Drake Passage. The magnitude and spatial distribution of dissolved Fe, Mn and Al over the shelf are consistent with a diagenetically produced sedimentary source, but are inconsistent with eolian or upwelling sources. The systematics of the Mn and Fe concentrations suggest that there are two distinct sources of dissolved Fe to the surface waters of this region. The highest Fe concentrations are associated with Bransfield Strait water, which can be identified by its characteristic temperature and salinity (T/S) properties both inside the Bransfield Strait and in the Bransfield Current outflow between Elephant and Clarence Islands. Most of the shelf area is dominated by a second water type with T/S properties that are typical of modified Antarctic Surface Water, which while also enriched has a lower Fe:Mn ratio. The predominantly linear relationships between the Fe and Mn concentrations at the stations in each of these water mass types suggest that the distribution of these elements is largely controlled by physical mixing processes and that biological removal of Fe on the shelf, while certainly occurring, is limited, perhaps as a result of rapid physical flushing processes and relatively slow biological growth rates. The consequent export of large quantities of this shelf-derived Fe into the ACC is likely responsible for the extensive regions of enhanced primary production seen in satellite imagery downstream of the Drake Passage.
The Deepwater Horizon oil spill and Gulf of Mexico shelf hypoxia
NASA Astrophysics Data System (ADS)
Rabalais, Nancy N.; Smith, Leslie M.; Turner, R. Eugene
2018-01-01
The oil/water/dispersant mixture from the 2010 Deepwater Horizon oil spill was juxtaposed on the Louisiana continental shelf with the annual development of oxygen-depleted bottom waters. There was uncertainty whether the oil from the spill might worsen the extent or severity of the seasonal hypoxic area formation in 2010. The surface and bottom water hydrocarbons in May were elevated compared to in June and July, while the bottom-water dissolved oxygen concentrations were higher in May and June compared to in July. The degradation of oil in the water column or sediments was not known. The results of an empirical orthogonal functions (EOF) analysis of the progression of hypoxia development in May, June and July 2010, and an analysis of conditions in July compared to a 27-year background database, indicated no difference in oxygen concentrations for May, June or July 2010, with or without oil data included, nor any difference in July 2010 compared to other years. The analysis instead indicated that, in all years compared, the hypoxic area increased with higher river discharge, higher nitrate-N load, an easterly (westward) wind and reduced wind speed. Although the analyses did not demonstrate that the oil spill affected, or did not affect, the size of the 2010 hypoxic zone, there was evidence that the 2010 hypoxia season did not differ from the long-term record.
NASA Astrophysics Data System (ADS)
Stone, H. B.; Banas, N. S.; Hickey, B. M.; MacCready, P.
2016-02-01
The Pacific Northwest coast is an unusually productive area with a strong river influence and highly variable upwelling-favorable and downwelling-favorable winds, but recent trends in hypoxia and ocean acidification in this region are troubling to both scientists and the general public. A new ROMS hindcast model of this region makes possible a study of interannual variability. This study of the interannual temperature and salinity variability on the Pacific Northwest coast is conducted using a coastal hindcast model (43°N - 50°N) spanning 2002-2009 from the University of Washington Coastal Modeling Group, with a resolution of 1.5 km over the shelf and slope. Analysis of hindcast model results was used to assess the relative importance of source water variability, including the poleward California Undercurrent, local and remote wind forcing, winter wind-driven mixing, and river influence in explaining the interannual variations in the shelf bottom layer (40 - 80 m depth, 10 m thick) and over the slope (150 - 250 m depth, <100 km from shelf break) at each latitude within the model domain. Characterized through tracking of the fraction of Pacific Equatorial Water (PEW) relative to Pacific Subarctic Upper Water (PSUW) present on the slope, slope water properties at all latitudes varied little throughout the time series, with the largest variability due to patterns of large north-south advection of water masses over the slope. Over the time series, the standard deviation of slope temperature was 0.09 ˚C, while slope salinity standard deviation was 0.02 psu. Results suggest that shelf bottom water interannual variability is not driven primarily by interannual variability in slope water as shelf bottom water temperature and salinity vary nearly 10 times more than those over the slope. Instead, interannual variability in shelf bottom water properties is likely driven by other processes, such as local and remote wind forcing, and winter wind-driven mixing. The relative contributions of these processes to interannual variability in shelf bottom water properties will be addressed. Overall, these results highlight the importance of shelf processes relative to large-scale influences on the interannual timescale in particular. Implications for variability in hypoxia and ocean acidification impacts will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, K.D.
1978-07-01
From 27 March to 20 June 1978, 7 cruises aboard U.S. Coast Guard cutters DECISIVE, VIGILANT, and VIGOROUS and the National Marine Fisheries Service research vessel ALBATROSS IV were made on outer continental shelf waters in regions from the mid-Atlantic to the Gulf of Maine and Scotian Shelf. A total of 13916 marine birds of at least 27 species were counted in 711.16 km/sup 2/ sampled from 730 fixed-area transects (300m wide by 10 minutes cruising time). An equal number of 10-minute total bird counts (no fixed area) were conducted at the same time. All of MBO cruises conducted inmore » 1978 have been transcribed onto computer data sheets and were proofed and verified. Seven of 24 MBO cruises made in 1977 have been transcribed. U.S. Fish and Wildlife Service Migratory Bird and Habitat Research Laboratory will keypunch the data. From a review of over 100 scientific papers and books, food habits of fulmars, shearwaters, storm-petrels, gannets, gulls, and alcids were referenced by bird species and author.« less
Tidal Impacts on Oceanographic and Sea-ice Processes in the Southern Ocean
NASA Astrophysics Data System (ADS)
Padman, L.; Muench, R. D.; Howard, S.; Mueller, R.
2008-12-01
We review recent field and modeling results that demonstrate the importance of tides in establishing the oceanographic and sea-ice conditions in the boundary regions of the Southern Ocean. The tidal component dominates the total oceanic kinetic energy throughout much of the circum-Antarctic seas. This domination is especially pronounced over the continental slope and shelf including the sub-ice-shelf cavities. Tides provide most of the energy that forces diapycnal mixing under ice shelves and thereby contributes to basal melting. The resulting Ice Shelf Water is a significant component of the Antarctic Bottom Water (AABW) filling much of the deep global ocean. Tides exert significant divergent forcing on sea ice along glacial ice fronts and coastal regions, contributing to creation and maintenance of the coastal polynyas where much of the High Salinity Shelf Water component of AABW is formed. Additional tidally forced ice divergence along the shelf break and upper slope significantly impacts area-averaged ice growth and upper-ocean salinity. Tidally forced cross- slope advection, and mixing by the benthic stress associated with tidal currents along the shelf break and upper slope, strongly influence the paths, volume fluxes and hydrographic properties of benthic outflows of dense water leaving the continental shelf. These outflows provide primary source waters for the AABW. These results confirm that general ocean circulation and coupled ocean/ice/atmosphere climate models must incorporate the impacts of tides.
Variability of trace-metal fluxes through the Strait of Gibraltar
NASA Astrophysics Data System (ADS)
van Geen, Alexander; Boyle, Edward
1990-10-01
Three water masses originating in the Atlantic and entering the Alboran Sea through the Strait of Gibraltar have recently been identified on the basis of salinity and Cu, Ni, Cd and Zn concentrations. The endmembers are (1) Atlantic surface water, (2) North Atlantic Central Water and (3) Spanish shelf water. Spanish shelf water is of particular relevance to the trace-metal composition of the inflow to the Mediterranean Sea because this water mass is highly enriched in Cu, Cd and Zn relative to Atlantic surface water. Here, a conservative mixing model is solved for the above Atlantic endmembers, (with the addition of (4) a Mediterranean deep-water endmember) by weighted least-squares and shown to be consistent with tracer data for 42 surface samples collected in April '86 within the Strait of Gibraltar. Sensitivity of the solution to errors in the data and the assumptions of the model are discussed in detail. Uncertainties in the proportions of metal-enriched Spanish shelf water and NACW are (at most) on the order of 6 and 16%, respectively, and often smaller depending on the composition of a given sample. The inversion shows that Spanish shelf water is present predominantly in the northern half of the Strait and contributes up to 55% to Alboran Sea surface samples. Determining a representative composition of the inflow is complicated, however, by rapid change in the proportion of the three Atlantic endmembers present in the Strait of Gibraltar: entrainment of Spanish shelf water through the Strait roughly doubles between April 11 and 17. We show that the timing of collection of these samples minimizes a potential bias in endmember distributions simply due to variable tidal currents. The increase in entrainment of Spanish shelf water from neap tide to spring tide could, therefore, reflect a significant shift to the north of source waters to the Atlantic inflow over the course of a week. The data show that entrainment of Spanish shelf water is a significant source of the increased Cu, Cd and Zn concentrations observed in the Mediterranean relative to open Atlantic surface water, and this source may even account for the greater part of the Mediterranean enrichments.
NASA Astrophysics Data System (ADS)
Syahailatua, Augy; Roughan, Moninya; Suthers, Iain M.
2011-03-01
Ichthyoplankton assemblages were compared between regions dominated by the oligotrophic East Australian Current (EAC) and the inner-shelf waters off southeastern Australia, to determine if the early life history of fish was related to the separation of the EAC from the coast, producing different water masses as well as characteristic taxa. Samples were collected at the surface and in sub-surface waters, at 50 and 100 m isobath stations, during two summer research voyages in November 1998 and January 1999. On both voyages the study region was characterized by coastal and EAC waters in the north (˜31°S), and in the south by topographically induced upwelling (˜31°S), associated with narrowing of the continental shelf and separation of the EAC from the coast. Among the 111 families of larval fish, we observed distinctive assemblages of ichthyoplankton associated with the two different water masses. A greater abundance of the Carangidae, Labridae, Lutjanidae, Microcanthidae, Myctophidae and Scombridae was associated with the nutrient poor EAC water mass, while the Callionymidae, Clupeidae, Platycephalidae and Sillaginidae were mostly found in the cooler and/or fresher inner-shelf water mass. We assessed these patterns with opportunistic samples from an unusual, wind-driven upwelling event in the north (˜31°S) earlier in the November voyage. The relative abundance of these 10 characteristic families distinguished this wind-driven upwelling event from the subsequent relaxation and predominance of the EAC assemblage at this location just 6 d later. Distinctive and abundant families such as larval clupeids, relative to larval carangids, could be a useful marker of inner-shelf, EAC and mixed water masses in the absence of robust hydrographic data. This and related studies indicate contrast in early life histories of Sardinops sagax and Trachurus spp., which appear to spawn respectively in the inner-shelf and outer-shelf waters. The post-flexion stages of S. sagax predominate in the outer-shelf and Tasman Front, while post-flexion Trachurus spp. predominate in inner-shelf water masses.
NASA Astrophysics Data System (ADS)
Sabatini, M. E.; Reta, R.; Lutz, V. A.; Segura, V.; Daponte, C.
2016-05-01
Surveys conducted during spring, summer and late winter in 2005-2006 over the southern Patagonian shelf have allowed the seasonal distribution of mesozooplankton communities in relation to water masses and circulation to be investigated. In this system, most of the shelf is dominated by a distinct low salinity plume that is related to the runoff from the Magellan Strait (MSW), while the outer shelf is highly influenced by the cold and salty Subantarctic water (SAW) of the boundary Malvinas Current. Separating these two, the Subantarctic Shelf water mass (SASW) extends over the middle shelf. Correspondingly, the structure of the MSW and SAW mesozooplankton communities was found to be clearly different, while the former and the SASW assemblages were barely separable. This relatively fresh water mass is actually a variant of Subantarctic water that enters into the region from the south and the shelf-break, and hence its mesozooplankton community was not significantly different from that of the SAW water mass. Dissimilar species abundance, in turn associated with different life histories and population development, was more important than species composition in defining the assemblages. Total mesozooplankton abundance increased about 2.5-fold from the beginning of spring to late summer, and then decreased at least two orders of magnitude in winter. Across all seasons copepods represented > 70-80% of total mesozooplankton over most of the shelf. Copepod species best represented through all seasons, in terms of both relative abundance and occurrence, were Drepanopus forcipatus and Oithona helgolandica. Although seasonal differences in abundance were striking, the spatial distribution of mesozooplankton was largely similar across seasons, with relatively higher concentrations occurring mainly in Grande Bay and surroundings. The well defined spatial patterns of mesozooplankton that appear from our results in conjunction with the southward wide extension of the shelf and the predicted current path and speed suggest that plankton production is locally enhanced in the Grande Bay area and has the potential to be exported downstream.
Large-Scale Ichthyoplankton and Water Mass Distribution along the South Brazil Shelf
de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique
2014-01-01
Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27′ and 34°51′S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients. PMID:24614798
Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.
de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique
2014-01-01
Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.
Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica
NASA Technical Reports Server (NTRS)
Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia
2011-01-01
Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.
Deep divers in shallow seas: Southern elephant seals on the Patagonian shelf
NASA Astrophysics Data System (ADS)
Campagna, Claudio; Piola, Alberto R.; Marin, Maria Rosa; Lewis, Mirtha; Zajaczkovski, Uriel; Fernández, Teresita
2007-10-01
Elephant seals are wide-ranging, pelagic, deep-diving (average of 400-600 m) predators that typically travel to open waters and continental shelf edges thousands of kilometers from their land breeding colonies. We report a less common pattern of foraging in the shallow waters of a continental shelf. Southern elephant seals, Mirounga leonina, that breed at Península Valdés (Argentina), face an extended (˜1,000,000 km 2; 400-700 km-wide, depending on track), shallow (<150 m) and seasonally productive plateau, the Patagonian shelf. Adults of both sexes usually cross it in rapid transit to other potential foraging grounds on the shelf edge or in the Argentine Basin, but 2-4 year-old juveniles spread over the plateau and spent months in shallow waters. This behavior was recorded for 9 seals (5 males and 4 females) of 23 satellite-tracked juveniles (springs of 2004 and 2005) and for 2 subadult males studied in previous seasons. Trips included travel trajectories and time spent in areas where swim speed decreased, suggesting foraging. Preferred locations of juvenile females were in the proximity of the shelf break, where stratified waters had relatively high phytoplankton concentrations, but young and subadult males used the relatively cold (7-8 °C), low-salinity (˜33.3) mid-shelf waters, with depths of 105-120 m and a poorly stratified water column. Three of the latter seals, instrumented with time-depth recorders, showed dives compatible with benthic feeding and no diel pattern of depths distribution. Regions of the mid-shelf were used in different seasons and were associated with low chlorophyll- a concentration at the time of the visit, suggesting that surface productivity does not overlap with putative quality habitat for benthic foragers. Benthic diving on the shallow mid-shelf would be a resource partitioning strategy advantageous for young males prior to greater energetic demands of a high growth rate and a large body size. Later in life, the more predictable, bathymetry-forced, shelf-break front may offer the food resources that explain the uninterrupted increase of this population over several decades.
Observations of seasonal exchange in the Celtic Sea slope region from underwater gilders
NASA Astrophysics Data System (ADS)
Porter, Marie; Inall, Mark; Smeed, David; Palmer, Matthew; Dumont, Estelle; Aleynik, Dmitry
2015-04-01
Between June 2012 and January 2013, four underwater gliders, profiling to a maximum depth of 1000m, occupied a transect between 47.6°N, 10.3°W and 48.4°N, 9.3°W, perpendicular to the Celtic Sea continental slope. Due to the significant and well-documented internal tide activity in this region and the relatively slow through-water speed of gliders it is first demonstrated that the chosen sampling methodology minimised aliasing of the internal tide. Gliders were flown along a repeat transect and care was taken to ensure that each location was sampled at a different phase of the tide on repeat occupations. Through monthly averaging of the transect data, the effects of the internal tide are minimised and the lower frequency processes made visible. In this presentation we highlight the importance of the lower frequency variability in contributing to cross-slope exchange. Analysis of monthly averaged glider transect data suggests two distinct regimes; 1) Summer, June - October, when the surface water was temperature stratified and, 2) Winter, from October to January, when the seasonal thermocline was mixed down to below the depth of the shelf break (200 m). During the stratified summer months a well-defined shelf break salinity front limits the exchange of water between the ocean and the shelf, preventing the spread of the more saline, sub-surface ocean water (centred at ~150m) onto the shelf. Nevertheless, some cross-slope flow is identified during these months: an intermediate depth salinity minimum (centred at ~600m) is observed to upwell (from 600m to 200-300m) up the slope, sometimes continuing onto the shelf. As the stratification is eroded during the winter months, subsurface upwelling switches to downwelling, and the intermediate depth salinity minimum (~600m) retreats away from the slope region removing it as a potential source of oceanic water on the shelf. Downwelling near to the slope does however allow for an intrusion of the shallower high salinity water onto the shelf reducing the control of the shelf break salinity front, although it has not been ascertained whether this extends further onto the shelf than the shelf break region.
On the dense water spreading off the Ross Sea shelf (Southern Ocean)
NASA Astrophysics Data System (ADS)
Budillon, G.; Gremes Cordero, S.; Salusti, E.
2002-07-01
In this study, current meter and hydrological data obtained during the X Italian Expedition in the Ross Sea (CLIMA Project) are analyzed. Our data show a nice agreement with previous data referring to the water masses present in this area and their dynamics. Here, they are used to further analyze the mixing and deepening processes of Deep Ice Shelf Water (DISW) over the northern shelf break of the Ross Sea. In more detail, our work is focused on the elementary mechanisms that are the most efficient in removing dense water from the shelf: either classical mixing effects or density currents that interact with some topographic irregularity in order to drop to deeper levels, or also the variability of the Antarctic Circumpolar Current (ACC) which, in its meandering, can push the dense water off the shelf, thus interrupting its geostrophic flow. We also discuss in detail the (partial) evidence of dramatic interactions of the dense water with bottom particulate, of geological or biological origin, thus generating impulsive or quasi-steady density-turbidity currents. This complex interaction allows one to consider bottom particular and dense water as a unique self-interacting system. In synthesis, this is a first tentative analysis of the effect of bottom particulate on the dense water dynamics in the Ross Sea.
Guerrero, Raul A; Piola, Alberto R; Fenco, Harold; Matano, Ricardo P; Combes, Vincent; Chao, Yi; James, Corinne; Palma, Elbio D; Saraceno, Martin; Strub, P Ted
2014-11-01
Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30'S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean. Satellite salinity sensors capture low-salinity detrainment events from shelves SW Atlantic low-salinity detrainments cause highest basin-scale variability In summer low-salinity detrainments cause extended low-salinity anomalies.
Guerrero, Raul A; Piola, Alberto R; Fenco, Harold; Matano, Ricardo P; Combes, Vincent; Chao, Yi; James, Corinne; Palma, Elbio D; Saraceno, Martin; Strub, P Ted
2014-01-01
Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30′S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean. Key Points Satellite salinity sensors capture low-salinity detrainment events from shelves SW Atlantic low-salinity detrainments cause highest basin-scale variability In summer low-salinity detrainments cause extended low-salinity anomalies PMID:26213672
Cascading of high salinity bottom waters from the Arabian/Persian Gulf to the northern Arabian Sea
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Wobus, Fred; Solovyev, Vladimir; Francis, Xavier; Hyder, Patrick; Chen, Feng; Asif, Muhammad
2017-04-01
Cascading (aka shelf convection) is a specific type of buoyancy driven current in which dense water is formed over the continental shelf and then descends down the slope to a greater depth. The cascades of dense water down continental slopes provide a mechanism for shelf-ocean exchange in many parts of the world's oceans (Shapiro et al, 2003). Dense water is formed on the shelf by a number of processes, with high evaporation, limited river discharge and low precipitation being the major processes in warm climates (Ivanov et al, 2004). The formation and outflow of high salinity waters in the near-bottom layer of the Arabian/Persian Gulf is an example of dense water cascading (Bower et al 2000). Despite of its importance for the self-cleaning and the state of the marine ecosystem in the Arabian/Persian Gulf, the properties of the outflow have so far mainly been analysed using climatologically averaged data or observations of a limited set of parameters (mainly temperature), see (Bower et al 2000). In this paper we study the dynamics of the flow using a comprehensive set of observational data (temperature, salinity velocity and turbidity profiles) obtained during the GRASP (Gulf Reconnaissance And Selective Profiling) observational campaign in the Gulf of Oman, which are complemented by the results of numerical modelling of the area using a number of 3D ocean models, and some ARGO T/S profiles. The GRASP measurements were carried out using an Aqualog climbing moored profiler, which was equipped with a Seabird CTD sensor, a Nortek Aquadopp current meter and a Seapoint turbidity meter. The Ocean circulation models used in the study include PGM4 and IND12 (UK Met Office); and AS20 and AG60 (University of Plymouth). All models are based on NEMO (Nucleus for European Modelling of the Ocean) codebase with a resolution from 9 km down to 1.8 km. The models were calibrated and validated against ARGO float profiles in the area. The study revealed the mesoscale and sub-mesoscale circulation patterns of the outflow, their spatial and temporal variability over time scales from a few days to seasonal. References Shapiro, G.I.; Huthnance, J.M.; Ivanov, V.V.. 2003 Dense water cascading off the continental shelf. Journal of Geophysical Research, 108 (C12). 3390.10.1029/2002JC001610 Ivanov, V.V.; Shapiro, G.I.; Huthnance, J.M.; Aleynik, D.L.; Golovin, P.N.. 2004 Cascades of dense water around the world ocean. Progress in Oceanography, 60 (1). 47-98.10.1016/j.pocean.2003.12.002 Bower, A. S., H. D. Hunt and J. Price, 2000. Character and Dynamics of the Red Sea and Persian Gulf Outflows. Journal of Geophysical Research - Oceans, Vol. 105, No. C3, pp. 6387-6414.
Ice shelf basal melt rates around Antarctica from simulations and observations
NASA Astrophysics Data System (ADS)
Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.
2016-02-01
We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735 ± 164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations.
NASA Astrophysics Data System (ADS)
Schaeffer, A.; Roughan, M.; Wood, J. E.
2014-08-01
Western boundary currents strongly influence the dynamics on the adjacent continental shelf and in particular the cross-shelf transport and uplift through the bottom boundary layer. Four years of moored in situ observations on the narrow southeastern Australian shelf (in water depths of between 65 and 140 m) were used to investigate bottom cross-shelf transport, both upstream (30°S) and downstream (34°S) of the separation zone of the East Australian Current (EAC). Bottom transport was estimated and assessed against Ekman theory, showing consistent results for a number of different formulations of the boundary layer thickness. Net bottom cross-shelf transport was onshore at all locations. Ekman theory indicates that up to 64% of the transport variability is driven by the along-shelf bottom stress. Onshore transport in the bottom boundary layer was more intense and frequent upstream than downstream, occurring 64% of the time at 30°S. Wind-driven surface Ekman transport estimates did not balance the bottom cross-shelf flow. At both locations, strong variability was found in bottom water transport at periods of approximately 90-100 days. This corresponds with periodicity in EAC fluctuations and eddy shedding as evidenced from altimeter observations, highlighting the EAC as a driver of variability in the continental shelf waters. Ocean glider and HF radar observations were used to identify the bio-physical response to an EAC encroachment event, resulting in a strong onshore bottom flow, the uplift of cold slope water, and elevated coastal chlorophyll concentrations.
The sources of Antarctic bottom water in a global ice ocean model
NASA Astrophysics Data System (ADS)
Goosse, Hugues; Campin, Jean-Michel; Tartinville, Benoı̂t
Two mechanisms contribute to the formation of Antarctic bottom water (AABW). The first, and probably the most important, is initiated by the brine released on the Antarctic continental shelf during ice formation which is responsible for an increase in salinity. After mixing with ambient water at the shelf break, this salty and dense water sinks along the shelf slope and invades the deepest part of the global ocean. For the second one, the increase of surface water density is due to strong cooling at the ocean-atmosphere interface, together with a contribution from brine release. This induces deep convection and the renewal of deep waters. The relative importance of these two mechanisms is investigated in a global coupled ice-ocean model. Chlorofluorocarbon (CFC) concentrations simulated by the model compare favourably with observations, suggesting a reasonable deep water ventilation in the Southern Ocean, except close to Antarctica where concentrations are too high. Two artificial passive tracers released at surface on the Antarctic continental shelf and in the open-ocean allow to show clearly that the two mechanisms contribute significantly to the renewal of AABW in the model. This indicates that open-ocean convection is overestimated in our simulation. Additional experiments show that the amount of AABW production due to the export of dense shelf waters is quite sensitive to the parameterisation of the effect of downsloping and meso-scale eddies. Nevertheless, shelf waters always contribute significantly to deep water renewal. Besides, increasing the P.R. Gent, J.C. McWilliams [Journal of Physical Oceanography 20 (1990) 150-155] thickness diffusion can nearly suppress the AABW formation by open-ocean convection.
A Gulf Stream-derived pycnocline intrusion on the Middle Atlantic Bight shelf
NASA Astrophysics Data System (ADS)
Gawarkiewicz, Glen; McCarthy, Robert K.; Barton, Kenneth; Masse, Ann K.; Church, Thomas M.
1990-12-01
Saline intrusions from the upper slope onto the outer shelf are frequently observed at the pycnocline along the shelfbreak front in the Middle Atlantic Bight during the summer. A brief cruise was conducted in July, 1986 between Baltimore and Washington Canyons to examine along-shelf variability of pycnocline salinity intrusions. A particularly saline intrusion of 35.8 Practical Salinity Units (PSU) was observed between 20 and 40 m in a water depth of 70 to 80 m. The along-shelf extent was at least 40 km. The cooler, sub-pycnocline outer shelf water was displaced 15 km shoreward of the shelfbreak. A Gulf Stream filament was present in the slope region prior to the hydrographic sampling, but was not visible in thermal imagery during the hydrographic sampling. Temperature-salinity characteristics of the intrusion suggest that it was a mixture of Gulf Stream water and slope water, possibly from the filament. The shoreward penetration of saline water was most pronounced at the pycnocline and penetrated the shelfbreak front, with salinities as high as 35.0 PSU reaching as far shoreward as the 35 m isobath. These pycnocline intrusions may be an important mechanism for the transport of Gulf Stream-derived water onto the shelf during the summer. The presence of filaments or other Gulf Stream-derived water on the upper slope may account for some of the along-front variability of the pycnocline salinity maximum that has previously been observed.
Multidecadal warming of Antarctic waters.
Schmidtko, Sunke; Heywood, Karen J; Thompson, Andrew F; Aoki, Shigeru
2014-12-05
Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt. Copyright © 2014, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Sancho, G.; Edman, R.; Frazier, B.; Bubley, W.
2016-02-01
Understanding the trophic dynamics and habitat utilization of apex predators is central to inferring their influence on different marine landscapes and to help design effective management plans for these animals. Tiger sharks (Galeocerdo cuvier) are abundant in shelf and offshore Gulf Stream waters of the western North Atlantic Ocean, and based on movements from individuals captured in Florida and Bahamas, seem to avoid coastal and shelf waters off South Carolina and Georgia. This contradicts reports of tiger sharks regularly being caught nearshore by anglers in these states, indicating that separate sub-populations may exist in the western North Atlantic. In the present study we captured Tiger Sharks in coastal waters off South Carolina in 2014 and 2015 in order to describe their movement patterns through acoustic and satellite tagging, and trophic dynamics through stable isotope analyses. Movement data show that these tiger sharks repeatedly visit particular inshore areas and mainly travel over the continental shelf, but rarely venture offshore beyond the continental shelf edge. Ongoing C and N stable isotope analyses of muscle, blood and skin tissues from adult and juvenile tiger sharks, as well as from potential prey species and primary producers, will help determine if their diets are based on inshore, shelf or offshore based food webs. Tiger sharks exploiting nearshore environments and shelf waters have much higher probabilities of interacting with humans than individuals occupying far offshore Gulf Stream habitats.
Return of warm conditions in the southeastern Bering Sea: Phytoplankton - Fish
Stabeno, Phyllis J.; Siddon, Elizabeth C.; Andrews, Alex G.; Cooper, Daniel W.; Eisner, Lisa B.; Farley, Edward V.; Harpold, Colleen E.; Heintz, Ron A.; Kimmel, David G.; Sewall, Fletcher F.; Spear, Adam H.; Yasumishii, Ellen C.
2017-01-01
In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new warm stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean warming and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2–3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year warm stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious warm stanza effects by either utilizing high productivity waters associated with the strong, northerly Cold Pool, as a refuge from the warm, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the Cold Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the Cold Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which may have provided a high quality alternate prey. In 2016 a retracted Cold Pool precluded significant refuging in the north, though pollock foraging on available euphausiids over the southern shelf may have mitigated the effect of warm waters and reduced large availability of large copepods. This work presents the hypothesis that, in the short term, juvenile pollock can mitigate the drastic impacts of sustained warming. This short-term buffering, combined with recent observations (2017) of renewed sea ice presence over southeast Bering Sea shelf and a potential return to average or at least cooler ecosystem conditions, suggests that recent warm year stanza (2014–2016) effects to the pollock population and fishery may be mitigated. PMID:28658253
West Florida Shelf: A natural laboratory for the study of ocean acidificiation
Hallock, Pamela; Robbins, Lisa L.; Larson, Rebekka A.; Beck, Tanya; Schwing, Patrick; Martinez-Colon, Michael; Gooch, Brad
2010-01-01
Declining oceanic pH and carbonate-ion concentrations are well-known consequences of increased atmospheric and surface-ocean partial pressure of carbon dioxide (pCO2). The possible subject of shifts in seawater carbonate chemistry on biocalcification and survival rates of marine organisms provides questions amenable to both experimental and field study (Kleypas and Langdon, 2006). To date, limited quantitative data exist with which to formalize and test hypotheses regarding such impacts, particularly in continental-shelf settings. The continental shelves of Florida provide an ideal natural laboratory in which to test latitudinal (and temperature and depth) shifts in habitat ranges of calcifying organisms. Both the east and west Florida shelves extend from warm temperate to subtropical latitudes; additionally, the west Florida shelf has very little siliciclastic influx to mask the carbonate production. This study utilizes the natural laboratory of the west and southwest Florida shelf (fig 1.1) to examine the transition from foramol (predominately foraminifera and molluscan) carbonate sediments, characteristic of the west-central Florida shelf, to chlorozoan (algal and coral) sediments characteristic of the southwest Florida shelf. The west Florida shelf is a mixed siliciclastic carbonate ramp that to the south transitions to the carbonate-dominated southwest Florida shelf (Enos, 1977; Brooks and others, 2003). The west Florida shelf is a distally steepened carbonate ramp that is ~250 kilometers (km) wide (Read, 1985). It is covered by a veneer of unconsolidated sediment consisting of mainly biogenic carbonate and quartz in the near shore, with subordinate amounts of phosphate. The sediment-distribution pattern is largely a function of proximity to source, with physical processes playing a minor role in distribution. The carbonate sand-and-gravel fraction is produced by organisms within the depositional basin of the west Florida shelf (Brooks and others, 2003). The southwest Florida shelf is a rimmed carbonate margin where organisms produce virtually all of the substrate; it also exhibits a greater sediment thickness as compared to the west Florida shelf (Enos, 1977). Temperature, which is usually associated with latitude, plays a major role in locations of foramol versus chlorozoan assemblages, but other factors beyond latitude influence temperature on the west and southwest Florida shelves. The potential of cooler, deep-water upwelling and transport over the bottom waters of the shelf may have a significant role in the species assemblage at the sediment/water interface and ultimately on location of foramol versus chlorozoan production. Deep water transported onto and over the shelf may also have environmental ramifications beyond temperature by bringing in water of different chemistry.
Benthic foraminiferal biogeography in NW European fjords: A baseline for assessing future change
NASA Astrophysics Data System (ADS)
Murray, John W.; Alve, Elisabeth
2016-11-01
The seaboard extending from northern Svalbard to Scotland is the only region of the world where fjords have been comprehensively studied for their live (stained) benthic foraminiferal faunas. These modern faunas provide essential baseline data for the interpretation of the postglacial and continuing environmental changes in those fjords and this is the first biogeographic synthesis. The data come from the surface sediment assemblages (mainly sampled in the 1990's) from all the available literature. Due to limited information of shallow water assemblages in the north, only the species occurrences in deeper water from below the halocline are considered. Amongst these, only "common species" species occurring in more than one fjord are included. There is a clear pattern of distribution with five groups of taxa: 5 widespread species found throughout the region; 53 species reaching their northern limit; 13 species reaching their southern limit; 11 deep-sea species; 1 recently introduced species. Although there is an abrupt change in temperature from Tanafjorden in northern Norway to Hornsund in southern Svalbard, the faunal change from N to S is progressive throughout the investigated region. The area of overlap of the northern and southern species corresponds with the previously recognised boundary between the Barents Sea Province and the Norwegian Coast Province based on shelf and upper slope invertebrate macrofaunal benthos and plankton. Temperature is the main abiotic control on the distributions. For the fjords which have shallow sills separating them from the open shelf it is likely that most of the foraminiferal colonisers of the deeper fjord basins are sourced from the shelf or slope via propagules. One species has recently been introduced from further south into the southern region probably through the discharge of ballast water from ships. The biodiversity of the pristine Svalbard fjords extends below what is considered to reflect acceptable ecological status for mainland Norway, illustrating the need to introduce new methods to determine possible deviations from the reference conditions as defined in the EU's Water Framework Directive (WFD; 2000/60/EC). Altogether 347 species have so far been recorded in Norwegian waters: 214 in fjords (60 above and 180 below the halocline of which 26 occur both above and below the halocline) and 266 on the shelf and slope (133 of which also occur in fjords).
NASA Astrophysics Data System (ADS)
van Geldern, Robert; Hayashi, Takeshi; Böttcher, Michael E.; Mottl, Michael J.; Barth, Johannes A. C.; Stadler, Susanne
2013-04-01
Scientific drillings in the 1970s revealed the presence of a large fresh water lens below the New Jersey Shelf. The origin and age of this fresh water body is still under debate. Groundwater flow models suggest that the water mainly originates from glacial melt water that entered the ground below large continental ice sheets during the last glacial maximum (LGM), whereas other studies suggest an age up to late Miocene. In this study, interstitial water was sampled during the Integrated Ocean Drilling Program (IODP) expedition 313 "New Jersey Shallow Shelf" (Mountain et al., 2010) and analyzed for water chemistry and stable isotope ratios (van Geldern et al, 2013). The pore fluid stable isotope values define a mixing line with end members that have oxygen and hydrogen isotope values of -7.0‰ and -41‰ for fresh water, and -0.8‰ and -6‰ for saltwater, respectively. The analyses revealed the following sources of fluids beneath the shelf: (1) modern rainwater, (2) modern seawater, and (3) a brine that ascends from deep sediments. The stable isotope composition of the water samples indicates modern meteoric recharge from New Jersey onshore aquifers as the fresh-water end member. This contradicts earlier views on the formation of the New Jersey fresh water lens, as it does not support the ice-age-origin theory. The salt-water end member is identical to modern New Jersey shelf seawater. Lower core parts of the drilling sites are characterized by mixing with a brine that originates from evaporites in the deep underground and that ascends via faults into the overlying sediments. The geochemical data from this study may provide the basis for an approach to construct a transect across the New Jersey shallow shelf since they fill a missing link in the shelf's geochemical profile. They also lay foundations for future research on hardly explored near-shore freshwater resources. References Mountain, G. and the Expedition 313 Scientists, 2010, Proceedings of the Integrated Ocean Drilling Program, Volume 313, Tokyo, available at: http://publications.iodp.org/proceedings/313/313toc.htm. van Geldern, R., Hayashi, T., Böttcher, M. E., Mottl, M. J., Barth, J. A. C., and Stadler, S., 2013, Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: Methane formation and fluid origin: Geosphere, v. 9, no. 1, p. in press.
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
NASA Astrophysics Data System (ADS)
Sparrow, K. J.; Kessler, J. D.
2017-12-01
In response to climate change, methane can be released to ocean sediments and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown if methane derived from these massive stores of frozen, ancient carbon reaches the atmosphere. We quantified the fraction of methane sourced from ancient carbon in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. While the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that modern sources of methane predominate in surface waters of relatively shallow mid-outer shelf stations. These results suggest that even if there is a heightened liberation of ancient methane as climate change proceeds, oceanic dispersion and oxidation processes can strongly limit its emission to the atmosphere.
Background/Objectives. The Palos Verdes Shelf (PVS) Superfund site is in over 50 meters of water on the continental shelf and slope off the coast of southern California (USA). The site includes over 25 km2 of sediments contaminated over several decades by municipal treatment pla...
NASA Astrophysics Data System (ADS)
Couto, Nicole; Martinson, Douglas G.; Kohut, Josh; Schofield, Oscar
2017-07-01
We use autonomous underwater vehicles to characterize the spatial distribution of Upper Circumpolar Deep Water (UCDW) on the continental shelf of the West Antarctic Peninsula (WAP) and present the first near-synoptic measurements of mesoscale features (eddies) containing UCDW on the WAP. Thirty-three subsurface eddies with widths on the order of 10 km were detected during four glider deployments. Each eddy contributed an average of 5.8 × 1016 J to the subpycnocline waters, where a cross-shelf heat flux of 1.37 × 1019 J yr-1 is required to balance the diffusive loss of heat to overlying winter water and to the near-coastal waters. Approximately two-thirds of the heat coming onto the shelf diffuses across the pycnocline and one-third diffuses to the coastal waters; long-term warming of the subpycnocline waters is a small residual of this balance. Sixty percent of the profiles that contained UCDW were part of a coherent eddy. Between 20% and 53% of the lateral onshore heat flux to the WAP can be attributed to eddies entering Marguerite Trough, a feature in the southern part of the shelf which is known to be an important conduit for UCDW. A northern trough is identified as additional important location for eddy intrusion.
NASA Astrophysics Data System (ADS)
Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.
2016-05-01
An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.
NASA Astrophysics Data System (ADS)
Gröger, Matthias; Maier-Reimer, Ernst; Mikolajewicz, Uwe; Segschneider, Joachim; Sein, Dimitry
2010-05-01
Despite their comparatively small extension on a global scale, shelf areas are of interest for several economic reasons and climatic processes related to nutrient cycling, sea food supply, and biological productivity. Moreover, they constitute an important interface for nutrients, pollutants and freshwater on their pathway from the continents to the open ocean. This modelling study aims to investigate the spatial and temporal variability of water mass exchange between the North Atlantic and the NW European shelf and their impact on nutrient/carbon cycling and biological productivity. For this, a new modeling approach has been set up which bridges the gap between pure shelf models where water mass transports across the model domain too strongly depend on the formulation of open boundaries and global models suffering under their too coarse resolution in shelf regions. The new model consists of the global ocean and carbon cycle model MPIOM/HAMOCC with strongly increased resolution in the North Sea and the North Atlantic coupled to the regional atmosphere model REMO. The model takes the full luni-solar tides into account. It includes further a 12 layer sediment module with the relevant pore water chemistry. The main focus lies on the governing mechanisms of water mass exchange across the shelf break and the imprint on shelf biogeochemistry. For this, artificial tracers with a prescribed decay rate have been implemented to distinguish waters arriving from polar and shelf regions and those that originate from the tropics. Experiments were carried out for the years 1948 - 2007. The relationship to larger scale circulation patterns like the position and variability of the subtropical and subpolar gyres is analyzed. The water mass exchange is analyzed with respect to the nutrient concentration and productivity on the European shelf areas. The implementation of tides leads to an enhanced vertical mixing which causes lower sea surface temperatures compared to simulations without tidal forcing. The simulated tidal currents exceed velocities of 30cm per second in the near bottom layer which leads to a strong resuspension of sediment particles. These effects are most pronounced along narrow and shallow topographic structures like e.g. the English Channel. Experiments with artificial tracers show that the composition of water column changes along with the induced climate warming.
NASA Astrophysics Data System (ADS)
Trahanovsky, K.; Whitledge, T. E.
2016-02-01
We examined nutrient and chlorophyll-a (chl) concentrations from bottle samples collected from 0-50 m depth in the Northern Gulf of Alaska along the Seward Line transect on 56 cruises from 1998-2010. We computed monthly average concentrations of macronutrients (N, P, and Si) and chlorophyll-a by depth at four major stations along the transect to describe the regular seasonal progression of the nutricline and typical water column distributions of chlorophyll-a in this seasonally productive, downwelling coastal zone. The across-shelf transect displayed two different patterns of seasonal progression clearly associated with the Alaska Coastal Current (ACC) and Alaskan Stream (AS) current systems. The annual cycle of nutrient drawdown and replenishment is remarkably consistent from year to year within each system and is well correlated with chl measurements. The spring bloom begins earlier and nutrient depletion is sustained longer in the near-shore ACC then in the AS system centered over the shelf break. Chlorophyll-a concentrations frequently peak at 10-20m depth in both systems during July through October, as nutrients remain depleted in the top 10m. Subsurface nutrients (20 - 50 m depth) begin to recover between July and August and then experience a secondary drawdown between August and October, consistent with higher chl levels observed during the fall bloom. Interannual variability in the progression of the nutricline and the relative contribution of subsurface chl to total chl is presented. Physical data demonstrate increasing stratification in this region due to climate change; the implications for nutrient dynamics and primary production are discussed.
NASA Astrophysics Data System (ADS)
Heim, W. A.; Coale, K. H.; Chiswell, H.; Olson, A.; Martenuk, S.; Bonnema, A.; Weiss-Penzias, P. S.
2017-12-01
Monomethylmercury (MMHg) production by anaerobic bacteria in sediments is considered to be a dominate source of MMHg to sediments and overlying surface water in the coastal environment. In this study, we measured total mercury (Hgt) and MMHg sediment and pore water concentrations and calculated diffusive sediment water exchange fluxes in samples collected on the coastal shelf in the California Current System. Sediment cores and overlying water were collected from 20 stations using a slow-entry multi-corer deployed during 4 oceanographic cruises over two years. The upper few centimeters of undisturbed cores were sectioned at the following depth increments: 0.5, 1, 1.5, 2, 3, 4, 5 cm. Pore waters were extracted via centrifugation and the Hgt and MMHg gradients were used to calculate fluxes into the overlying water column based upon molecular diffusion alone. Sediment concentrations for Hgt and MMHg ranged from 50 to 2338 pmoles g-1 and 0.1 to 9 pmoles g-1 respectively. Pore water and overlying water MMHg concentrations ranged from 0.1 to 2.2 pM and 0.03 to 0.3 pM respectively. Diffusional Hgt and MMHg sediment water fluxes ranged from 1.4 to 7.3 pmoles m-2 d-1 and -0.03 to 1.7 pmoles m-2 d-1 respectively. While the gradients in MMHg showed significant and widespread flux that would indicate an input into the waters of the shelf these fluxes were insufficient to sustain elevated concentrations at the sediment boundary layer, or at the depth of the shelf in general. Measurements made on the northwestern Atlantic shelf are in general an order of magnitude greater than those observed here. We suggest that the narrow eastern shelf of the California Current with little allochthonous inputs contrasts sharply with the broad shelf of the Eastern Seaboard with significant organic carbon, riverine and anthropogenic inputs. In general, the narrow shelf of the California Current seems to reflect the pelagic processes of the off shore regions for this element where water column production predominates the formation of the methylated forms.
NASA Astrophysics Data System (ADS)
Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.
2017-12-01
Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after observing a pond and river reemerge after apparently freezing during the 2016-17 melt season. Using the ponds/rivers endmember scheme helps us to constrain the role storage and transport play on stabilizing ice shelves. By extending this analysis to other ice tongues and shelves we can better understand their vulnerability to a warming world.
California State Waters Map Series: offshore of Pacifica, California
Edwards, Brian D.; Phillips, Eleyne L.; Dartnell, Peter; Greene, H. Gary; Bretz, Carrie K.; Kvitek, Rikk G.; Hartwell, Stephen R.; Johnson, Samuel Y.; Cochrane, Guy R.; Dieter, Bryan E.; Sliter, Ray W.; Ross, Stephanie L.; Golden, Nadine E.; Watt, Janet Tilden; Chinn, John L.; Erdey, Mercedes D.; Krigsman, Lisa M.; Manson, Michael W.; Endris, Charles A.; Cochran, Susan A.; Edwards, Brian D.
2015-01-01
The continental shelf in the map area is about 40 km wide, with water depths at the shelf break that range from about 80 to 120 m. Within California’s State Waters, the midshelf to inner shelf areas are characterized by a relatively flat, shallow (water depths of as much as 44 m) seafloor that dips gently (about 0.2° to 0.3°) westward. The seafloor is composed primarily of unconsolidated Holocene sediment (marine deposits), as well as some nearshore bedrock outcrops that consist primarily of rocks of the Tertiary Purisima Formation and also Cretaceous plutonic rocks (granite or granodiorite).
Seismic Imaging of Circumpolar Deep Water Exchange across the Shelf Break of the Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Gunn, K.; White, N.; Larter, R. D.; Falder, M.; Caulfield, C. C. P.
2016-02-01
The western Antarctic Peninsula is an area of recent extreme atmospheric warming. In the adjacent ocean, there is particular interest in on-shelf movement of Circumpolar Deep Water as a possible link to changing climate by affecting ice shelf processes. Here, we investigate on-shelf intrusions using two-dimensional seismic imaging of the water column which has vertical and horizontal resolutions of 10 m. 8 seismic profiles were acquired in February 2015 using the RRS James Clark Ross. These profiles traverse the shelf break and cross two bathymetric features, the Marguerite and Biscoe troughs, which may play a role in water exchange processes. Seismic data were acquired using two Generator-Injector air guns fired every 10 s with a pressure of 2000 psi. Reflections were recorded on a 2.4 km streamer of 192 receivers spaced every 12.5 m. Observed reflections in the processed records are caused by rapid changes of temperature ( 80%) and salinity ( 20%), delineating water masses of different properties. 13 XCTDs and XBTs plus a 38 kHz echo-sounder profile were simultaneously acquired along seismic profiles and used for calibration. Preliminary results show the top of the Winter Water layer as a bright reflection at 50-120 m depth across the entire survey, corresponding to temperatures ≤ -1°C. Curved, discontinuous, eddy-like reflections, also seen on echo-sounder profiles, are attributed to modified Upper Circumpolar Deep Water with temperatures ≥ 1.34°C. A warm core eddy, 11 km long and 220 m high, is visible 2 km inland of the shelf break. Pure Upper Circumpolar Deep Water of temperatures ≥ 1.80°C is aligned with weak but discernible, lens-shaped reflections. Eddy-like structures and the overall reflective morphology yield useful insights into shelf exchange processes, suggestive of three potential mechanisms: (i) topography controlled flow; (ii) an 'ice-pump' mechanism; and (iii) mesoscale eddies.
Shelf Circulation Induced by an Orographic Wind Jet
NASA Astrophysics Data System (ADS)
Ràfols, Laura; Grifoll, Manel; Jordà, Gabriel; Espino, Manuel; Sairouní, Abdel; Bravo, Manel
2017-10-01
The dynamical response to cross-shelf wind-jet episodes is investigated. The study area is located at the northern margin of the Ebro Shelf, in the Northwestern (NW) Mediterranean Sea, where episodes of strong northwesterly wind occur. In this case, the wind is channeled through the Ebro Valley and intensifies upon reaching the sea, resulting in a wind jet. The wind-jet response in terms of water circulation and vertical density structure is investigated using a numerical model. The numerical outputs agree with water current observations from a high-frequency radar. Additionally, temperature, sea level, and wind measurements are also used for the skill assessment of the model. For the wind-jet episodes, the numerical results show a well-defined two-layer circulation in the cross-shelf direction, with the surface currents in the direction of the wind. This pattern is consistent with sea level set-down due to the wind effect. The comparison of the vertical structure response for different episodes revealed that the increase of stratification leads to an onshore displacement of the transition from inner shelf to mid-shelf. In general, the cross-shelf momentum balance during a wind-jet episode exhibits a balance between the frictional terms and the pressure gradient in shallow waters, shifting to a balance between the Coriolis force and the wind stress terms in deeper waters.
Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water.
Darelius, E; Fer, I; Nicholls, K W
2016-08-02
The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing.
Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water
Darelius, E.; Fer, I.; Nicholls, K. W.
2016-01-01
The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659
Rosenberger, Kurt J.; Noble, Marlene A.; Norris, Benjamin
2014-01-01
An array of seven moorings housing current meters and oceanographic sensors was deployed for 6 months at 5 sites on the Continental Shelf and slope off Newport Beach, California, from July 2011 to January 2012. Full water-column profiles of currents were acquired at all five sites, and a profile of water-column temperature was also acquired at two of the five sites for the duration of the deployment. In conjunction with this deployment, the Orange County Sanitation District deployed four bottom platforms with current meters on the San Pedro Shelf, and these meters provided water-column profiles of currents. The data from this program will provide the basis for an investigation of the interaction between the deep water flow over the slope and the internal tide on the Continental Shelf.
Circumpolar Deep Water transport and current structure at the Amundsen Sea shelf break
NASA Astrophysics Data System (ADS)
Assmann, Karen M.; Wåhlin, Anna K.; Heywood, Karen J.; Jenkins, Adrian; Kim, Tae Wan; Lee, Sang Hoon
2017-04-01
The West Antarctic Ice Sheet has been losing mass at an increasing rate over the past decades. Ocean heat transport to the ice-ocean interface has been identified as an important contributor to this mass loss and the role it plays in ice sheet stability makes it crucial to understand its drivers in order to make accurate future projections of global sea level. While processes closer to the ice-ocean interface modulate this heat transport, its ultimate source is located in the deep basin off the continental shelf as a core of relatively warm, salty water underlying a colder, fresher shallow surface layer. To reach the marine terminating glaciers and the base of floating ice shelves, this warm, salty water mass must cross the bathymetric obstacle of the shelf break. Glacial troughs that intersect the Amundsen shelf break and deepen southwards towards the ice shelf fronts have been shown to play an important role in transporting warm, salty Circumpolar Deep Water (CDW) towards the ice shelves. North of the shelf break, circulation in the Amundsen Sea occupies an intermediate regime between the eastward Antarctic Circumpolar Current that impinges on the shelf break in the Bellingshausen Sea and the westward southern limb of the Ross Gyre that follows the shelf break in the Ross Sea. Hydrographic and mooring observations and numerical model results at the mouth of the central shelf break trough leading to Pine Island and Thwaites Glaciers show a westward wind-driven shelf break current overlying an eastward undercurrent that turns onto the shelf in the trough. It is thought that the existence of the latter feature facilitates the on-shelf transport of CDW. A less clearly defined shelf break depression further west acts as the main pathway for CDW to Dotson and eastern Getz Ice shelves. Model results indicate that a similar eastward undercurrent exists here driving the on-shelf transport of CDW. Two moorings on the upper slope east of the trough entrance show a persistent westward current in the CDW layer. We use hydrographic and ADCP sections to discuss the mechanisms that could be responsible for the formation of this feature and the implications for oceanic heat transport towards the western Amundsen ice shelves.
NASA Astrophysics Data System (ADS)
Muelbert, José H.; Acha, Marcelo; Mianzan, Hermes; Guerrero, Raúl; Reta, Raúl; Braga, Elisabete S.; Garcia, Virginia M. T.; Berasategui, Alejandro; Gomez-Erache, Mónica; Ramírez, Fernando
2008-07-01
The physical aspects of the Subtropical Shelf Front (STSF) for the Southwest Atlantic Continental Shelf were previously described. However, only scarce data on the biology of the front is available in the literature. The main goal of this paper is to describe the physical, chemical and biological properties of the STSF found in winter 2003 and summer 2004. A cross-section was established at the historically determined location of the STSF. Nine stations were sampled in winter and seven in summer. Each section included a series of conductivity-temperature-depth (CTD) stations where water samples from selected depths were filtered for nutrient determination. Surface samples were taken for chlorophyll a (Chl- a) determination and plankton net tows carried out above and below the pycnocline. Results revealed that winter was marked by an inner-shelf salinity front and that the STSF was located on the mid-shelf. The low salinity waters in the inner-shelf indicated a strong influence of freshwater, with high silicate (72 μM), suspended matter (45 mg l -1), phosphate (2.70 μM) and low nitrate (1.0 μM) levels. Total dissolved nitrogen was relatively high (22.98 μM), probably due to the elevated levels of organic compound contribution close to the continental margin. Surface Chl -a concentration decreased from coastal well-mixed waters, where values up to 8.0 mg m -3 were registered, to offshore waters. Towards the open ocean, high subsurface nutrients values were observed, probably associated to South Atlantic Central Waters (SACW). Zooplankton and ichthyoplankton abundance followed the same trend; three different groups associated to the inner-, mid- and outer-shelf region were identified. During summer, diluted waters extended over the shelf to join the STSF in the upper layer; the concentration of inorganic nutrients decreased in shallow waters; however, high values were observed between 40 and 60 m and in deep offshore waters. Surface Chl -a ranged 0.07-1.5 mg m -3; winter levels were higher. Three groups of zoo and ichthyoplankton, separated by the STSF, were also identified. Results of the study performed suggest that the influence of freshwater was stronger during winter and that abundance distribution of Chl -a, copepods and ichthyoplankton was related to the Plata Plume Waters (PPW), rather than to the presence of the STSF. During summer, when the presence of freshwater decreases, plankton interactions seem to take place in the STSF.
Passive samplers were used to determine water concentrations of persistent organic pollutants (POPs) in the surface sediments and near-bottom water of a marine Superfund site on the Palos Verdes Shelf, California, USA. Measured concentrations in the porewater and water column at...
Pliocene shallow water paleoceanography of the North Atlantic ocean based on marine ostracodes
Cronin, T. M.
1991-01-01
Middle Pliocene marine ostracodes from coastal and shelf deposits of North and Central America and Iceland were studied to reconstruct paleotemperatures of shelf waters bordering portions of the Western Boundary Current System (including the Gulf Loop Current, Florida Current, Gulf Stream and North Atlantic Drift). Factor analytic transfer functions provided Pliocene August and February bottom-water temperatures of eight regions from the tropics to the subfrigid. The results indicate: (1) meridional temperature gradients in the western North Atlantic were less steep during the Pliocene than either today or during Late Pleistocene Isotope Stage 5e; (2) tropical and subtropical shelf waters during the Middle Pliocene were as warm as, or slightly cooler than today; (3) slightly cooler water was on the outer shelf off the southeastern and mid-Atlantic coast of the U.S., possibly due to summer upwelling of Gulf Stream water; (4) the shelf north of Cape Hatteras, North Carolina may have been influenced by warm water incursions from the western edge of the Gulf Stream, especially in summer; (5) the northeast branch of the North Atlantic Drift brought warm water to northern Iceland between 4 and 3 Ma; evidence from the Iceland record indicates that cold East Greenland Current water did not affect coastal Iceland between 4 and 3 Ma; (6) Middle Pliocene North Atlantic circulation may have been intensified, transporting more heat from the tropics to the Arctic than it does today. ?? 1991.
Distribution and ventilation of water masses in the western Ross Sea inferred from CFC measurements
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Ianni, Carmela; Magi, Emanuele; Massolo, Serena; Budillon, Giorgio; Smethie, William M.
2015-03-01
During the CLIMA Project (R.V. Italica cruise PNRA XVI, January-February 2001), hydrographic and chlorofluorocarbons (CFCs) observations were obtained, particularly in the western Ross Sea. Their distribution demonstrated water mass structure and ventilation processes in the investigated areas. In the surface waters (AASW) the CFC saturation levels varied spatially: CFCs were undersaturated in all the areas (range from 80 to 90%), with the exception of few stations sampled near Ross Island. In particular, the Terra Nova Bay polynya, where high salinity shelf water (HSSW) is produced, was a low-saturated surface area (74%) with respect to CFCs. Throughout most of the shelf area, the presence of modified circumpolar deep water (MCDW) was reflected in a mid-depth CFC concentration minima. Beneath the MCDW, CFC concentrations generally increased in the shelf waters towards the seafloor. We estimated that the corresponding CFCs saturation level in the source water region for HSSW was about 68-70%. Waters with high CFC concentrations were detected in the western Ross Sea on the down slope side of the Drygalski Trough, indicating that AABW was being supplied to the deep Antarctic Basin. Estimates of ventilation ages depend strongly on the saturation levels. We calculated ventilation ages using the saturation level calibrated tracer ratio, CFC11/CFC12. We deduced a mean residence time of the shelf waters of about 6-7 years between the western Ross Sea source and the shelf break.
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Massolo, Serena; Bergamasco, Andrea; Castagno, Pasquale; Budillon, Giorgio
2010-05-01
Data from three Italian CLIMA project cruises between 1997 and 2003 were used to obtain sections of the hydrographic and chemical properties of the main water masses across the shelf break off Cape Adare (western Ross Sea, Antarctica). Dissolved oxygen, nitrate and phosphate data were combined on the basis of the Redfield ratio to obtain the quasi-conservative tracers NO (9[NO 3]+[O 2]), PO (135[PO 4]+[O 2]) and phosphate star PO4* ( PO4*=[PO 4]+[O 2]/175-1.95). In 1997 and 2003 the presence of the High Salinity Shelf Water at the bottom depth near the sill was traced by both physical and chemical measurements. In 2001 the Modified Shelf Water, characterized by warmer temperature and by a lower dissolved oxygen content than High Salinity Shelf Water, was observed at the shelf edge. The distribution of the chemical tracers together with the hydrographic observations showed recently formed Antarctic Bottom Water on the continental slope during all of the cruises. These observations were confirmed by the extended optimum multiparameter analysis. The calculated thickness of the new Antarctic Bottom Water, as well as the tracer content, were variable in time and in space. The estimated volume of the new Antarctic Bottom Water and the export of dissolved oxygen and nutrient associated with the overflowing water were different over the examined period. In particular, a lower (˜55%) export was evidenced in 2001 compared to 1997.
Brink, K H
2016-01-01
Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress.
NASA Technical Reports Server (NTRS)
2002-01-01
Warmer surface temperatures over just a few months in the Antarctic can splinter an ice shelf and prime it for a major collapse, NASA and university scientists report in the latest issue of the Journal of Glaciology. Using satellite images of tell-tale melt water on the ice surface and a sophisticated computer simulation of the motions and forces within an ice shelf, the scientists demonstrated that added pressure from surface water filling crevasses can crack the ice entirely through. The process can be expected to become more widespread if Antarctic summer temperatures increase. This true-color image from Landsat 7, acquired on February 21, 2000, shows pools of melt water on the surface of the Larsen Ice Shelf, and drifting icebergs that have split from the shelf. The upper image is an overview of the shelf's edge, while the lower image is displayed at full resolution of 30 meters (98 feet) per pixel. The labeled pond in the lower image measures roughly 1.6 by 1.6 km (1.0 x 1.0 miles). Full text of Press Release More Images and Animations Image courtesy Landsat 7 Science Team and NASA GSFC
NASA Technical Reports Server (NTRS)
Brown, R. C.; Wade, T. L.
1981-01-01
Samples were collected in the Chesapeake Bay entrance and contiguous shelf waters and were subsequently analyzed for particulate coprostanol and cholesterol concentrations. Surface coprostanol concentrations were fairly uniform, with a slight increase with depth. This increase with depth may be due to sewage-associated particulates settling as they leave the Bay, or the resuspension of contaminated sediment. Preliminary findings indicate sewage-associated materials are being transported from the Chesapeake Bay to shelf waters, where they may have a detrimental affect on living marine resources.
NASA Astrophysics Data System (ADS)
Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S. W.; Kitazato, H.
2014-02-01
Surface sediments from sites across the Indian margin of the Arabian Sea were analysed for their carbon and nitrogen compositions (elemental and stable isotopic), grain size distributions and biochemical indices of organic matter (OM) source and/or degradation state. Site locations ranged from the estuaries of the Mandovi and Zuari rivers to depths of ~ 2000 m on the continental slope, thus spanning nearshore muds and sands on the shelf and both the semi-permanent oxygen minimum zone (OMZ) on the upper slope (~ 200-1300 m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, and overwhelming predominance (80%+) of marine OM on the shelf and slope. Thus, riverine OM is heavily diluted by autochthonous marine OM and/or is efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from < 0.5 wt % in relict shelf sands to over 7 wt % at slope sites within the OMZ, decreasing to ≤ 1 wt % at 2000 m. Major variability (~ 5 wt %) was found at slope sites within the OMZ of similar depth and near-identical bottom-water oxygen concentration. A strong relationship between organic C and sediment grain size was seen for sediments within the OMZ, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, the results indicate that OM enrichment on the upper slope can be explained by physical controls (winnowing and/or dilution) on the shelf and progressive OM degradation with increasing oxygen exposure below the OMZ. Reduced oxygen exposure may contribute to OM enrichment at some sites within the OMZ, but hydrodynamic processes are the overriding control on sediment OM distribution.
Modeling the basal melting and marine ice accretion of the Amery Ice Shelf
NASA Astrophysics Data System (ADS)
Galton-Fenzi, B. K.; Hunter, J. R.; Coleman, R.; Marsland, S. J.; Warner, R. C.
2012-09-01
The basal mass balance of the Amery Ice Shelf (AIS) in East Antarctica is investigated using a numerical ocean model. The main improvements of this model over previous studies are the inclusion of frazil formation and dynamics, tides and the use of the latest estimate of the sub-ice-shelf cavity geometry. The model produces a net basal melt rate of 45.6 Gt year-1 (0.74 m ice year-1) which is in good agreement with reviewed observations. The melting at the base of the ice shelf is primarily due to interaction with High Salinity Shelf Water created from the surface sea-ice formation in winter. The temperature difference between the coldest waters created in the open ocean and the in situ freezing point of ocean water in contact with the deepest part of the AIS drives a melt rate that can exceed 30 m of ice year-1. The inclusion of frazil dynamics is shown to be important for both melting and marine ice accretion (refreezing). Frazil initially forms in the supercooled water layer adjacent to the base of the ice shelf. The net accretion of marine ice is 5.3 Gt year-1, comprised of 3.7 Gt year-1 of frazil accretion and 1.6 Gt year-1 of direct basal refreezing.
Impact of the Extreme Warming of 2012 on Shelfbreak Frontal Structure North of Cape Hatteras
NASA Astrophysics Data System (ADS)
Gawarkiewickz, G.
2014-12-01
Continental shelf circulation north of Cape Hatteras is complex, with southward flowing Middle Atlantic Bight shelf water intersecting the Gulf Stream and subducting offshore into the Gulf Stream. In May, 2012, a cruise was conducted in order to study the shelf circulation and acoustic propagation through fish schools in the area. An important aspect of the study was to use Autonomous Underwater Vehicles to map fish schools with a sidescan sonar. High-resolution hydrographic surveys to map the continental shelf water masses and shelfbreak frontal structure were sampled to relate oceanographic conditions to the fish school distributions. The cold pool water mass over the continental shelf in May 2012 was extremely warm, with temperature anomalies of up to 5 Degrees C relative to observations from the same area in May, 1996. The normal cross-shelf temperature gradients within the shelfbreak front were not present because of the warming. As a result, the shelf density field was much more buoyant than usual, which led to an accelerated shelfbreak jet. Moored velocity measurements at the 60 m isobath recorded alongshelf flow of as much as 0.6 m/s. The anticipated fish species were not observed over the continental shelf. Some comments on the forcing leading to the large scale warming will be presented, along with a brief discussion of the impact of the warming on the marine ecosystem in the northeast U.S.
NASA Astrophysics Data System (ADS)
Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.
2017-12-01
The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude magnetic anomalies, and deep bathymetry. The West Antarctic side displays high amplitude magnetic anomalies, lower densities and shallower water depths. The geologically-controlled bathymetry influences the access of water masses capable of basal melting into the ice shelf cavity with the deep troughs on the East Antarctic side facilitating melting.
NASA Astrophysics Data System (ADS)
Sun, Y.; Shi, J.; Yuan, X.
2016-02-01
Hydrographic surveys from 1981 to 2015, instrumented seal data from 2004 to 2014, and mooring data were used to reveal spatial and temporal variation of Shelf Water (SW) and the connection between SW and Antarctic Bottom Water (AABW) in Prydz Bay. The basic spatial pattern of the SW properties was presented and 5 subregions were distinguished based on the pattern and the topography. The change of water masses and the processes on the shelf are investigated in these subregions. A high salinity SW(S>34.6) is observed in the central and northern part of the Amery Basin in summer, which is like to be caused by the Circumpolar Deep Water (CDW) intrusion, and the eddy activities could be the primary impact to the CDW intrusion. There could be less CDW intrusion in winter because of the ice cover in this subregion, which is supported by the mooring in Prydz Bay Channel. A high salinity SW is observed near the Mackenzie polynya in winter, which is caused by brine rejection in ice production process. But the high salinity SW seems unlikely to form the overflow denser SW and locally form AABW. A dense water mass with low salinity, low temperature and high oxygen was observed on the shelf break in the 70.5°E section, which could be caused by the Ice Shelf Water (ISW) export from Amery Shelf. According to the hydrographic data, the dense water can form overflow DSW and flow downslope to west, which can be observed in the bottom of slope near 1500m in the 70°E section. The water will form AABW if it can flow downslope to the deep basin and keep mixing with CDW, suggesting a new type of DSW overflow in Prydz Bay.
How fast is the Patagonian shelf-break acidifying?
NASA Astrophysics Data System (ADS)
Orselli, Iole B. M.; Kerr, Rodrigo; Ito, Rosane G.; Tavano, Virginia M.; Mendes, Carlos Rafael B.; Garcia, Carlos A. E.
2018-02-01
Anthropogenic carbon (Cant) concentration is determined according to the TrOCA method, from carbonate system data and hydrographic parameters collected during two consecutive spring cruises (2007 and 2008) in the Argentinean Patagonian shelf-break zone between 36°S and 50°S. Cant has intruded the water column until intermediate depths, with no Cant below 1000 m, in the deeper waters (i.e., North Atlantic Deep Water and Antarctic Bottom Water) of the Northern sector of the study area (i.e., North of 38°S). The higher Cant concentration is observed in Subantarctic Shelf Water in the Southern region, whereas in the Northern sector both Tropical Water and South Atlantic Central Water are equally affected by Cant intrusion. The Antarctic Intermediate Water represents the depth-limit achieved by Cant penetration, reinforcing the role that this water mass plays as an important vehicle to transport Cant to the oceans interior. The estimated Cant average (± method precision) is 46.6 ± 5.3 μmol kg- 1, considering the full depth of the water column. The ocean acidification state (ΔpH) shows an average (± standard deviation) of - 0.11 ± 0.05, thus, indicating an annual pH reduction of - 0.0010 yr- 1 since the Industrial Revolution (c.a. 1750). The degree of aragonite saturation is lowered towards undersaturation levels of calcite. The Patagonian shelf and shelf-break zones-a strong CO2 sink region in the global ocean-are likely a key area for Cant intrusion in the southwestern South Atlantic Ocean.
Channelized bottom melting and stability of floating ice shelves
NASA Astrophysics Data System (ADS)
Rignot, E.; Steffen, K.
2008-01-01
The floating ice shelf in front of Petermann Glacier, in northwest Greenland, experiences massive bottom melting that removes 80% of its ice before calving into the Arctic Ocean. Detailed surveys of the ice shelf reveal the presence of 1-2 km wide, 200-400 m deep, sub-ice shelf channels, aligned with the flow direction and spaced by 5 km. We attribute their formation to the bottom melting of ice from warm ocean waters underneath. Drilling at the center of one of channel, only 8 m above sea level, confirms the presence of ice-shelf melt water in the channel. These deep incisions in ice-shelf thickness imply a vulnerability to mechanical break up and climate warming of ice shelves that has not been considered previously.
Entrainment and mixing of shelf/slope waters in the near-surface Gulf Stream
NASA Astrophysics Data System (ADS)
Lillibridge, J. L., III; Hitchcock, G.; Rossby, T.; Lessard, E.; Mork, M.; Golmen, L.
1990-08-01
An interdisciplinary study of the entrainment of shelf and slope waters in the Gulf Stream front was undertaken in October 1985 northeast of Cape Hatteras. Fifteen hydrographic transects of the Gulf Stream front and of the shelf water intrusion known as Ford water were completed in 2 1/2 days with a towed undulating profiler, the SeaSoar, equipped with a conductivity-temperature-depth probe and a fluorometer. Upstream sections within 50 km of the shelf break show entrainment of surface and subsurface waters along the northern edge of the high-velocity Gulf Stream. The low-salinity core, first observed at 70 m, is subducted to >100 m. The subsurface Ford water is also at a maximum in chlorophyll, fluorescence, and dissolved oxygen and contains a distinct diatom assemblage of nearshore species. Productivity rates in the Ford water may be equivalent to those in slope waters. Expendable current profilers yield an estimated transport for subsurface shelf waters of 1 to 5×105 m3 s-1 and indicate that vertical shear at the depth of maximum static stability is typically 2×10-2 s-1. A bulk Richardson number is estimated over vertical scales of several meters by combining SeaSoar density profiles with velocity shear from concurrent expendable current profiler deployments. The minimum values are generally >1, and only infrequently are they at or below the 0.25 threshold for shear instability. The presence of double-diffusive processes around the low-salinity core of Ford water is indicated by elevated conductivity Cox numbers. The stability parameter "Turner angle" shows that low-salinity Ford water and its associated T-S property front are sites of double-diffusive mixing, given general agreement between the distributions of Turner angle and Cox number. We conclude that double-diffusive processes are more important than shear flow instability in governing cross-isopycnal mixing. However, downstream transit times are so swift that no measurable change or decay occurs in the Ford water. This explains the occurrence of distinct shelf water phytoplankton species within the low-salinity waters downstream of Cape Hatteras.
Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana Shelf
NASA Astrophysics Data System (ADS)
Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.
2014-10-01
The Louisiana shelf in the northern Gulf of Mexico receives large amounts of freshwater and nutrients from the Mississippi/Atchafalaya River system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year except near the mouths of the Mississippi and Atchafalaya Rivers where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink while the well-developed pycnocline isolates autotrophic surface waters from the heterotrophic and hypoxic waters below. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e. primary production and water column respiration). In this experiment below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.
California State Waters Map Series: offshore of Salt Point, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Potential marine benthic habitats in the Offshore of Salt Point map area include unconsolidated continental shelf sediments, mixed continental shelf substrate, and hard continental shelf substrate. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species.
California State Waters Map Series—Offshore of Fort Ross, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chin, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-12-03
Potential marine benthic habitat types in the Offshore of Fort Ross map area include unconsolidated continental-shelf sediments, mixed continental-shelf substrate, and hard continental-shelf substrate. Rocky shelf outcrops and rubble are considered the primary habitat type for rockfish and lingcod, both of which are recreationally and commercially important species.
California State Waters Map Series—Offshore of Bodega Head, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chin, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-08-06
Potential marine benthic habitats in the Offshore of Bodega Head map area include unconsolidated continental-shelf sediments, mixed continental-shelf substrate, and hard continental-shelf substrate. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species.
NASA Astrophysics Data System (ADS)
Abookire, Alisa A.; Bailey, Kevin M.
2007-02-01
Dover sole ( Microstomus pacificus) and rex sole ( Glyptocephalus zachirus) are both commercially valuable, long-lived pleuronectids that are distributed widely throughout the North Pacific. While their ecology and life cycle have been described for southern stocks, few investigations have focused on these species at higher latitudes. We synthesized historical research survey data among critical developmental stages to determine the distribution of life cycle stages for both species in the northern Gulf of Alaska (GOA). Bottom trawl survey data from 1953 to 2004 (25 519 trawls) were used to characterize adult distribution during the non-spawning and spawning seasons, ichthyoplankton data from 1972 to 2003 (10 776 tows) were used to determine the spatial and vertical distribution of eggs and larvae, and small-meshed shrimp trawl survey data from 1972 to 2004 (6536 trawls) were used to characterize areas utilized by immature stages. During the non-spawning season, adult Dover sole and rex sole were widely distributed from the inner shelf to outer slope. While both species concentrated on the continental slope to spawn, Dover sole spawning areas were more geographically specific than rex sole. Although spawned in deep water, eggs of both species were found in surface waters near spawning areas. Dover sole larvae did not appear to have an organized migration from offshore spawning grounds toward coastal nursery areas, and our data indicated facultative settling to their juvenile habitat in winter. Rex sole larvae progressively moved cross-shelf toward shore as they grew from April to September, and larvae presumably settled in coastal nursery areas in the autumn. In contrast with studies in the southern end of their range, we found no evidence in the GOA that Dover or rex sole have pelagic larval stages longer than nine months; however, more sampling for large larvae is needed in winter offshore of the continental shelf as well as sampling for newly settled larvae over the shelf to verify an abbreviated pelagic larval stage for both species at the northern end of their range.
Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves
NASA Astrophysics Data System (ADS)
Wells, A.
2015-12-01
When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.
Internal tidal mixing as a control on continental margin ecosystems
NASA Astrophysics Data System (ADS)
Sharples, Jonathan; Moore, C. Mark; Hickman, Anna E.; Holligan, Patrick M.; Tweddle, Jacqueline F.; Palmer, Matthew R.; Simpson, John H.
2009-12-01
We show that a breaking internal tide at a shelf edge is a fundamental control on the structural and functional properties of ecosystems. Contrasts in vertical mixing of nitrate between the shelf and the open ocean correspond with horizontal and vertical changes in phytoplankton communities, with largest cells found in surface waters at the shelf edge. Intense fishing activity is commonly seen at continental shelf edges, targeting spawning fish stocks. We suggest that the internal tide, a globally ubiquitous physical process at steep shelf edge bathymetry, supports shelf edge fisheries by providing large-celled phytoplankton for first-feeding fish larvae. The repeatability of the internal tide removes fish from the need to time spawning with a spring bloom. Also, with large phytoplankton cells dominating particulate organic carbon export, the internal tides could be an important influence on spatial and temporal variability in patterns of global carbon sequestration in deep water and sediments.
Wind influence on a coastal buoyant outflow
NASA Astrophysics Data System (ADS)
Whitney, Michael M.; Garvine, Richard W.
2005-03-01
This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.
NASA Astrophysics Data System (ADS)
Crusius, John; Schroth, Andrew W.; Resing, Joseph A.; Cullen, Jay; Campbell, Robert W.
2017-06-01
Phytoplankton growth in the Gulf of Alaska (GoA) is limited by iron (Fe), yet Fe sources are poorly constrained. We examine the temporal and spatial distributions of Fe, and its sources in the GoA, based on data from three cruises carried out in 2010 from the Copper River (AK) mouth to beyond the shelf break. April data are the first to describe late winter Fe behavior before surface water nitrate depletion began. Sediment resuspension during winter and spring storms generated high "total dissolvable Fe" (TDFe) concentrations of 1000 nmol kg-1 along the entire continental shelf, which decreased beyond the shelf break. In July, high TDFe concentrations were similar on the shelf, but more spatially variable, and driven by low-salinity glacial meltwater. Conversely, dissolved Fe (DFe) concentrations in surface waters were far lower and more seasonally consistent, ranging from 4 nmol kg-1 in nearshore waters to 0.6-1.5 nmol kg-1 seaward of the shelf break during April and July, despite dramatic depletion of nitrate over that period. The reasonably constant DFe concentrations are likely maintained during the year across the shelf by complexation by strong organic ligands, coupled with ample supply of labile particulate Fe. The April DFe data can be simulated using a simple numerical model that assumes a DFe flux from shelf sediments, horizontal transport by eddy diffusion, and removal by scavenging. Given how global change is altering many processes impacting the Fe cycle, additional studies are needed to examine controls on DFe in the Gulf of Alaska.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gough, M.A.; Fauzi, R.; Mantoura, C.
The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterized terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial landmore » plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary ligin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. Preliminary mass balance calculations applied to the global ocean margin suggest riverine sources of both particulate lignin and cutin are important and that most (>95%) deposition of recognizable land plant biopolymers occurs in shelf seas. 74 refs., 7 figs., 5 tabs.« less
Shelf sea tidal currents and mixing fronts determined from ocean glider observations
NASA Astrophysics Data System (ADS)
Sheehan, Peter M. F.; Berx, Barbara; Gallego, Alejandro; Hall, Rob A.; Heywood, Karen J.; Hughes, Sarah L.; Queste, Bastien Y.
2018-03-01
Tides and tidal mixing fronts are of fundamental importance to understanding shelf sea dynamics and ecosystems. Ocean gliders enable the observation of fronts and tide-dominated flows at high resolution. We use dive-average currents from a 2-month (12 October-2 December 2013) glider deployment along a zonal hydrographic section in the north-western North Sea to accurately determine M2 and S2 tidal velocities. The results of the glider-based method agree well with tidal velocities measured by current meters and with velocities extracted from the TPXO tide model. The method enhances the utility of gliders as an ocean-observing platform, particularly in regions where tide models are known to be limited. We then use the glider-derived tidal velocities to investigate tidal controls on the location of a front repeatedly observed by the glider. The front moves offshore at a rate of 0.51 km day-1. During the first part of the deployment (from mid-October until mid-November), results of a one-dimensional model suggest that the balance between surface heat fluxes and tidal stirring is the primary control on frontal location: as heat is lost to the atmosphere, full-depth mixing is able to occur in progressively deeper water. In the latter half of the deployment (mid-November to early December), a front controlled solely by heat fluxes and tidal stirring is not predicted to exist, yet a front persists in the observations. We analyse hydrographic observations collected by the glider to attribute the persistence of the front to the boundary between different water masses, in particular to the presence of cold, saline, Atlantic-origin water in the deeper portion of the section. We combine these results to propose that the front is a hybrid front: one controlled in summer by the local balance between heat fluxes and mixing and which in winter exists as the boundary between water masses advected to the north-western North Sea from diverse source regions. The glider observations capture the period when the front makes the transition from its summertime to wintertime state. Fronts in other shelf sea regions with oceanic influence may exhibit similar behaviour, with controlling processes and locations changing over an annual cycle. These results have implications for the thermohaline circulation of shelf seas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermance, W.E.; Olaifa, J.O.; Shanmugam, G.
An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge.more » Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.« less
NASA Astrophysics Data System (ADS)
Bourrin, François; Many, Gaël; Durrieu de Madron, Xavier; Martín, Jacobo; Puig, Pere; Houpert, Loic; Testor, Pierre; Kunesch, Stéphane; Mahiouz, Karim; Béguery, Laurent
2015-10-01
Transfers of particulate matter on continental margins primarily occur during energetic events. As part of the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events) experiment, a glider equipped with optical sensors was deployed in the coastal area of the Gulf of Lions, NW Mediterranean in March 2011 to assess the spatio-temporal variability of hydrology, suspended particles properties and fluxes during energetic conditions. This deployment complemented a larger observational effort, a part of the MOOSE (Mediterranean Ocean Observing System of the Environment) network, composed of a coastal benthic station, a surface buoy and moorings on the continental slope. This set of observations permitted to measure the impact of three consecutive storms and a flood event across the entire continental shelf. Glider data showed that the sediment resuspension and transport observed at the coastal station during the largest storm (Hs>4 m) was effective down to a water depth of 80 m. The mid-shelf mud belt, located between 40 and 90 m depth, appears as the zone where the along-shelf flux of suspended sediment is maximum. Besides, the across-shelf flux of suspended sediment converges towards the outer limit of the mid-shelf mud belt, where deposition of suspended particles probably occurs and contributes to the nourishment of this area. Hydrological structures, suspended particles transport and properties changed drastically during stormy periods and the following flood event. Prior to the storms, the shelf waters were weakly stratified due in particular to the presence of cold dense water on the inner- and mid-shelf. The storms rapidly swept away this dense water, as well as the resuspended sediments, along the shelf and towards a downstream submarine canyon. The buoyant river plumes that spread along the shelf after the flooding period provoked a restratification of the water column on the inner- and mid-shelf. The analysis of glider's optical data at different wavelengths suggests that the coastal area and the bottom nepheloid layer during the largest storm are primarily composed of coarse particles, probably macroflocs, and that the size of particles decreases further offshore. A similar trend, albeit less contrasted, is observed after the flooding. This work provided a unique synoptic view across the entire shelf of the impact of a typical Mediterranean storm on bottom sediment erosion and particulate fluxes. Repeated glider transects across the south-western part of the Gulf of Lions shelf permitted for the first time to measure continuously the thermo-haline structures, the suspended particles concentrations and size, the current speed, and to estimate the particulate transport before, during and after typical Mediterranean storm events. Glider data complement and compare well with concomitant high frequency time series at fixed stations along the coast and in a downstream submarine canyon.
Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.
2015-01-01
Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.
Modeling the Spreading of Glacial Melt Water from the Amundsen and Bellingshausen Seas
NASA Astrophysics Data System (ADS)
Nakayama, Y.; Timmermann, R.; Rodehacke, C. B.; Schröder, M.; Hellmer, H. H.
2014-12-01
The ice shelves and glaciers of the West Antarctic Ice Sheet (WAIS) are rapidly thinning, especially in the Amundsen Sea (AS) and Bellingshausen Sea (BS). The high basal melting of these small ice shelves is caused by relatively warm Circumpolar Deep Water (CDW) that, based on observations, mainly intrudes via two submarine glacial troughs located at the eastern and central AS continental shelf break. When CDW reaches the grounding line of the fringing glaciers, it melts the glaciers and forms buoyant melt water plumes. As the glacial melt becomes part of the AS shelf circulation, it may cause a freshening of the shelf water locally as well as remotely in the Ross Sea (RS). To test whether the observed freshening of the RS is a consequence of the enhanced basal melting of AS ice shelves, we use Finite-Element Sea-ice/ice-shelf/Ocean Model (FESOM) with a horizontal resolution of 2-10 km on the AS and BS continental shelves. The model is forced with 6-hourly atmospheric data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR) for the period 1979-1988. The model results show bottom temperatures in the AS and BS close to observations, and basal melt rates of AS and BS ice shelves consistent with other observation-based estimates. Using several independent virtual passive tracers to identify pathways of the glacial melt, we find that the melt water from the ice shelves in the AS flows towards the Ross Ice Shelf front. After 10 years of simulation, about half of the melt water in the Ross Sea originates from the Getz Ice Shelf. Further, we investigate the sensitivity of the melt water transport into the RS associated with the strength of the basal melt water flux. When this flux is increased by 30%, the transport of glacial melt into the RS more than doubles, supporting the idea that the basal melting of AS and BS ice shelves is one of the main reasons for the freshening of the RS continental shelf.
Valiadi, Martha; Painter, Stuart C; Allen, John T; Balch, William M; Iglesias-Rodriguez, M Debora
2014-01-01
We investigated the distribution of bioluminescent dinoflagellates in the Patagonian Shelf region using "universal" PCR primers for the dinoflagellate luciferase gene. Luciferase gene sequences and single cell PCR tests, in conjunction with taxonomic identification by microscopy, allowed us to identify and quantify bioluminescent dinoflagellates. We compared these data to coincidental discrete optical measurements of stimulable bioluminescence intensity. Molecular detection of the luciferase gene showed that bioluminescent dinoflagellates were widespread across the majority of the Patagonian Shelf region. Their presence was comparatively underestimated by optical bioluminescence measurements, whose magnitude was affected by interspecific differences in bioluminescence intensity and by the presence of other bioluminescent organisms. Molecular and microscopy data showed that the complex hydrography of the area played an important role in determining the distribution and composition of dinoflagellate populations. Dinoflagellates were absent south of the Falkland Islands where the cold, nutrient-rich, and well-mixed waters of the Falklands Current favoured diatoms instead. Diverse populations of dinoflagellates were present in the warmer, more stratified waters of the Patagonian Shelf and Falklands Current as it warmed northwards. Here, the dinoflagellate population composition could be related to distinct water masses. Our results provide new insight into the prevalence of bioluminescent dinoflagellates in Patagonian Shelf waters and demonstrate that a molecular approach to the detection of bioluminescent dinoflagellates in natural waters is a promising tool for ecological studies of these organisms.
Nutrients in waters on the inner shelf between Cape Charles and Cape Hatteras
NASA Technical Reports Server (NTRS)
Wong, G. T. F.; Todd, J. F.
1981-01-01
The distribution of nutrients in the shelf waters of the southern tip of the Middle Atlantic Bight was investigated. It is concluded that the outflow of freshwater from the Chesapeake Bay is a potential source of nutrients to the adjacent shelf waters. However, a quantitative estimation of its importance cannot yet be made because (1) there are other sources of nutrients to the study area and these sources cannot yet be quantified and (2) the concentrations of nutrients in the outflow from Chesapeake Bay exhibit significant short-term and long-term temporal variabilities.
Exchanges between the shelf and the deep Black Sea: an integrated analysis of physical mechanisms
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Wobus, Fred; Zatsepin, Andrei; Akivis, Tatiana; Zhou, Feng
2017-04-01
This study provides an integrated analysis of exchanges of water, salt and heat between the north-western Black Sea shelf and the deep basin. Three contributing physical mechanisms are quantified, namely: Ekman drift, transport by mesoscale eddies at the edge of the NW Black Sea shelf and non-local cascading assisted by the rim current and mesoscale eddies. The semi-enclosed nature of the Black Sea together with its unique combination of an extensive shelf area in the North West and the deep central part make it sensitive to natural variations of fluxes, including the fluxes between the biologically productive shelf and predominantly anoxic deep sea. Exchanges between the shelf and deep sea play an important role in forming the balance of waters, nutrients and pollution within the coastal areas, and hence the level of human-induced eutrophication of coastal waters (MSFD Descriptor 5). In this study we analyse physical mechanisms and quantify shelf-deep sea exchange processes in the Black Sea sector using the NEMO ocean circulation model. The model is configured and optimized taking into account specific features of the Black Sea, and validated against in-situ and satellite observations. The study uses NEMO-BLS24 numerical model which is based on the NEMO codebase v3.2.1 with amendments introduced by the UK Met Office. The model has a horizontal resolution of 1/24×1/24° and a hybrid s-on-top-of-z vertical coordinate system with a total of 33 layers. The horizontal viscosity/diffusivity operator is rotated to reduce the contamination of vertical diffusion/viscosity by large values of their horizontal counterparts. The bathymetry is processed from ETOPO5 and capped to 1550m. Atmospheric forcing for the period 1989-2012 is given by the Drakkar Forcing Set v5.2. For comparison, the NCEP atmospheric forcing also used for 2005. The climatological runoff from 8 major rivers is included. We run the model individually for 24 calendar years without data assimilation. For the analysis of propagation of cold waters formed on the NW Black Sea shelf we use a passive tracer method. The tracer is treated as an artificial dye that "stains" a water parcel within the defined area as soon as it cooled below a 7°C temperature. To quantify the shelf-deep sea exchange, the transport of water, salt and heat between the NW shelf and deep-sea regions is calculated across an enclosed boundary (a "fence") approximating the 200 m isobath on the NW shelf plus two short segments connected to the coast. Partial transports are also calculated for the surface layer (top 20 m) and the under-surface layer (from 20 m to the bottom). The 20 m level is approximately equal to the Ekman depth in summer. It is also close to the depth of the biologically active euphotic layer. For validation of the NEMO-BLS24 configuration we present comparisons of the model with satellite-derived sea surface temperature measurements and with ship-derived cross-sections that show the vertical structure. We also compare the model to observations carried out during Black Sea cruises in 2004, 2007 and 2008. The model represents well the sea surface temperature, the depth of the upper mixed layer and the depth of the CIL, while overestimating the temperature in the core of the CIL by approx. 0.5 °C. Mechanism 1: exchanges due to a frontal eddy. Numerical simulations for the year 2005 (for which comprehensive remote sensed data is available) shows that a significant cross-shelf transport was generated by a long-lived anticyclonic eddy impinging on the shelf, sometimes assisted by a cyclonic meander of the Rim Current. Over 69 days between April 23 and June 30, 2005, a volume of 2.84×10^12 m3 of water (102% of the entire volume of the shelf waters) was transported out of the shelf and a similar amount onto the shelf (see details in Zhou et al. 2014). Mechanism 2: exchanges due to Ekman drift. During the short but intensive wind events of April 15 - 22 and July 1 - 4, 2005, 23% and 16% of shelf waters, were moved into the deep-sea region, respectively. Due to the high intensity of cross-shelf exchanges, the average renewal time for the NW shelf in the Black Sea was only 28 days in the summer of 2005 (Zhou et al. 2014). Mechanism 3: exchanges due to assisted cascading. Using the model run for 2003 as an example, we examine the fate of the tracer after 5.5 months of model integration. At 100m depth we identify four anti-cyclonic eddies: two eddies west of the Crimea peninsula, one north of Sinop and one west of Batumi. These eddies can be seen to assist cascading into the basin interior of cold waters formed on a shallow NW shelf to a depth greater than at which they were originally formed. The important result is that for many of the 24 studied years a significant proportion of dense shelf water does not cascade locally off the NW shelf, but is transported by the Rim Current over hundreds of kilometres before cascading into the deep basin in the southern and southeastern Black Sea. This work has been supported by EU FP7 PERSEUS, EU H2020 Sea Basin checkpoints Lot4 - Black Sea and a number of Chinese and Russian national projects. References Zhou, F., G. I. Shapiro, and F. Wobus, 2014: Cross-shelf exchange in the northwestern Black Sea. Journal of Geophysical Research: Oceans, 119, 2143-2164.
Stevens, C.H.; Stone, P.
2007-01-01
The Bird Spring Shelf in southeastern California, along with coeval turbidite basins to the west, records a complex history of late Paleozoic sedimentation, sea-level changes, and deformation along the western North American continental margin. We herein establish detailed correlations between deposits of the shelf and the flanking basins, which we then use to reconstruct the depositional history, paleogeography, and deformational history, including Early Permian emplacement of the regionally significant Last Chance allochthon. These correlations are based on fusulinid faunas, which are numerous both on the shelf and in the adjoining basins. Study of 69 fusulinid species representing all major fusulinid-bearing Pennsylvanian and Lower Permian limestone outcrops of the Bird Spring Shelf in southeastern California, including ten new species of the genera Triticites, Leptotriticites, Stewartina, Pseudochusenella, and Cuniculinella, forms the basis for our correlations. We group these species into six fusulinid zones that we correlate with fusulinid-bearing strata in east-central and southern Nevada, Kansas, and West Texas, and we propose some regional correlations not previously suggested. In addition, we utilize recent conodont data from these areas to correlate our Early Permian fusulinid zones with the standard Global Permian Stages, strengthening their chronostratigraphic value. Our detailed correlations between the fusulinid-bearing rocks of the Bird Spring Shelf and deep-water deposits to the northwest reveal relationships between the history of shelf sedimentation and evolution of basins closer to the continental margin. In Virgilian to early Asselian (early Wolfcampian) time (Fusulinid Zones 1 and 2), the Bird Spring Shelf was flanked on the west by the deep-water Keeler Basin in which calcareous turbidites derived from the shelf were deposited. In early Sakmarian (early middle Wolfcampian) time (Fusulinid Zone 3), the Keeler Basin deposits were uplifted and transported eastward on the Last Chance thrust. By middle Sakmarian (middle middle Wolfcampian) time (within Fusulinid Zone 4), emplacement of the Last Chance allochthon was complete, and subsidence caused by thrust loading had resulted in development of a new turbidite basin (Darwin Basin) along the former western part of the Bird Spring Shelf. At the same time, farther east into the craton, paralic facies began prograding westward, so that the youngest fusulinid-bearing limestones on the shelf in this area become progressively younger to the west. Eventually, in Artinskian to Kungurian (late Wolfcampian to Leonardian) time (Fusulinid Zones 5 and 6), deposition of fusulinid-bearing limestone on the shelf was restricted to a marginal belt between the prograding paralic facies to the east and the Darwin Basin to the west. Development of the Keeler Basin in Pennsylvanian to earliest Permian time was approximately coeval with collision between South America-Africa (Gondwana) and North America (Laurentia) on the Ouachita-Marathon orogenic belt. This basin developed inboard of a northwest-trending, sinistral fault zone that truncated the continental margin. Later, in the Early Permian, the Last Chance allochthon, which was part of a northeast-trending belt of deformation that extended into northeastern Nevada, was emplaced. This orogenic belt probably was driven by convergence at the continental margin to the northwest. This work adds significant detail to existing interpretations of the late Paleozoic as a time of major tectonic instability on the continental margin of southeastern California as it changed from a relatively passive margin that had characterized most of the Paleozoic to an active convergent margin that would characterize the Mesozoic. ?? 2007 The Geological Society of America. All rights reserved.
Ice Front at Venable Ice Shelf
2013-06-13
This photo, taken onboard the Chilean Navy P3 aircraft, shows the ice front of Venable Ice Shelf, West Antarctica, in October 2008. It is an example of a small-size ice shelf that is a large melt water producer.
NASA Astrophysics Data System (ADS)
Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.
2013-12-01
Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.
Connections between the growth of Arctica islandica and phytoplankton dynamics on the Faroe Shelf
NASA Astrophysics Data System (ADS)
Bonitz, Fabian; Andersson, Carin; Trofimova, Tamara
2017-04-01
In this study we use molluscan sclerochronological techniques in order to obtain closer insights into environmental and ecological dynamics of Faroe Shelf waters. The Faroe Shelf represents a special ecosystem with rich benthic and neritic communities, which also have great importance for many economically relevant fish stocks. Thus, a better understanding of seasonal and year-to-year phytoplankton and stratification dynamics would be useful because they also have implications for higher trophic levels. The water masses of the Faroe Shelf are fairly homogenous and isolated from off-shelf waters but at a certain depth, which is referred to as transition zone, seasonal stratification and horizontal exchange occur. Systematic observations and phytoplankton dynamic investigations have only been performed during the last 29 years but longer records are missing. Thus, we use the growth increment variability in long-lived Arctica islandica shells from the transition zone of the eastern Faroe Shelf to evaluate its potential to estimate on-shelf phytoplankton and stratification dynamics since previous studies have shown that the growth of A. islandica is highly dependent on food availability. We have built a shell-based master-chronology reaching back to the 17th century. Comparisons between the growth indices of our chronology and fluorescence data reveal significant positive relationships. In combination with an index that accounts for stratification even stronger correlations are obtained. This indicates that the growth of A. islandica is largely influenced by a combination of how much phytoplankton is produced and how much actually reaches the bottom, i.e. how well-mixed the water column is. Further significant positive correlations can also be found between the growth indices and other primary productivity data from the Faroe Shelf. In conclusion, our results suggest that the growth indices can be related to year-to-year changes in phytoplankton production and stratification on the Faroe Shelf and may allow past reconstructions of phytoplankton production.
Pathways of warm water to the Northeast Greenland outlet glaciers
NASA Astrophysics Data System (ADS)
Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula
2015-04-01
The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat transport towards the base of the 79°N-Glacier.
NASA Astrophysics Data System (ADS)
Islabão, C. A.; Mendes, C. R. B.; Detoni, A. M. S.; Odebrecht, C.
2017-12-01
The continental shelf in Southern Brazil is characterized by high biological productivity associated with horizontal and vertical density gradients due to the mixing of distinct water masses. Phytoplankton biomass and composition were evaluated in summer 2013 along an on-offshore transect off the mouth of the Patos Lagoon (Lat. 32°12S). Photosynthetic active radiation, temperature, salinity and fluorescence vertical profiles were carried out and Brünt-Väisäla frequency was estimated. Three water bodies were identified: the Subtropical Shelf Water along the entire transect, the Plata Plume Water on the middle shelf surface and the Tropical Water farther offshore. The water was sampled (N = 40) for the analyses of dissolved inorganic nutrients, phytoplankton cell density and composition. Phytoplankton present in the water was identified and quantified by the classical microscope sedimentation technique, complemented with CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment data. From the results obtained, chlorophyll a concentration was higher at both coastal stations (1.6-2.0 mg m-3) where the water column was homogeneous and diatoms dominated the stations. This group was replaced by dinoflagellates in stratified conditions on the shelf and farther offshore. Along the onshore-offshore gradient, two types of dinoflagellates were found: the peridinin-containing dinoflagellates Prorocentrum and Scrippsiella with a small contribution at the coastal stations, and the fucoxantin-containing small Gymnodiniales cells (< 15 μm) with more than 50% of the total chlorophyll a at the stations on the continental shelf, especially associated with the chlorophyll maximum at the base of the euphotic zone. The positive (negative) relationship between the biomass of dinoflagellates (diatoms) with the Brünt-Väisäla frequency, respectively, support the hypothesis that stratification is the most important environmental factor that determines the biomass of phytoplankton communities and distribution on the shelf and in coastal waters off Southern Brazil in summer. Picoplankton cells (Prochlorococcus and Synechococcus), recorded for the first time in the region under study, were predominant in the nutrient-poor and well-lit surface layers along the transect, indicating the importance of their low sedimentation rates (small size) and photo-adaptive strategies to survive on the upper layers of the water column.
2017-12-08
Off the northeastern edge of Antarctica’s Amery Ice Shelf lies Mackenzie Bay, which was painted with a ghostly blue-green mass in early February 2012. Similarly colored tendrils also streamed northward across the ocean, their flow sometimes interrupted by icebergs. Multiple factors might account for the ghostly shapes, including low-lying clouds or katabatic winds—downslope winds blowing toward the coast, which can freeze the water at the ocean surface. But an intriguing and perhaps more likely explanation involves processes occurring below the ice shelf. An ice shelf is a thick slab of ice often fed by glaciers attached to the coastline. The shelf floats on the ocean surface, with seawater circulating underneath. Like most ice shelves, the Amery is very thick in the upstream area near the shore. It thins significantly as it stretches northward away from the continent. Water at depth is subject to much greater pressure than water at the surface, and one effect of this intense pressure is that it effectively lowers the freezing point. So water circulating at depth beneath the Amery Ice Shelf may be slightly below the temperature at which it would normally begin to freeze. As some that water wells up along the underbelly of the shelf, the pressure is reduced and the water begins to freeze even though the temperature may not change. As it freezes, this deep-ocean water forms needle-like crystals known as frazil. The crystals are only 3 to 4 millimeters (0.12 to 0.16 inches) wide, but a sufficient concentration of frazil can change the appearance of the water. A frazil-rich plume probably accounts for the blue-green waters off the Amery Ice Shelf in the image above. Modeling of ocean circulation beneath the shelf indicates just such a plume emerging in that location. Frazil-rich water explains the plume, and wind transport of the surface water explains the long streams extending northward. As the sub-iceshelf water mixes with surface water around the Antarctic coastline, the frazil is gradually melted and the streams disappear. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured this natural-color image of Mackenzie Bay and the ice shelf on February 12, 2012. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Michon Scott with information from Helen A. Fricker, Scripps Institution of Oceanography; Robert Massom, Australian Antarctic Division; Ben Galton-Fenzi, University of Tasmania, Australia; and Florence Fetterer, Walt Meier, and Ted Scambos, National Snow and Ice Data Center. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram Instrument: EO-1 - ALI
Centuries of intense surface melt on Larsen C Ice Shelf
NASA Astrophysics Data System (ADS)
Bevan, Suzanne L.; Luckman, Adrian; Hubbard, Bryn; Kulessa, Bernd; Ashmore, David; Kuipers Munneke, Peter; O'Leary, Martin; Booth, Adam; Sevestre, Heidi; McGrath, Daniel
2017-12-01
Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula (AP), Larsen C Ice Shelf (LCIS) has become the focus of ongoing investigation regarding its future stability. The ice shelf experiences surface melt and commonly features surface meltwater ponds. Here, we use a flow-line model and a firn density model (FDM) to date and interpret observations of melt-affected ice layers found within five 90 m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal dry compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice measured in two boreholes in Cabinet Inlet, which is close to the Antarctic Peninsula mountains - a region affected by föhn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flow-line model shows that, whilst preconditioning of the snow began in the late 1960s, it was probably not until the early 1990s that the modern period of ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, at 61 m in one of our Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, at 69 m in a mid-shelf borehole, formed at the same time on the edge of the pond area. Further south, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west-east and north-south gradient in the past melt distribution resembles current spatial patterns of surface melt intensity.
Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability
NASA Astrophysics Data System (ADS)
Cochran, J. R.; Jacobs, S. S.; Tinto, K. J.; Bell, R. E.
2014-05-01
Ice shelves play key roles in stabilizing Antarctica's ice sheets, maintaining its high albedo and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry are important for assessing ocean-ice interactions and modeling ice response to climate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces a large volume of meltwater, but is close to being in overall mass balance. Here we invert NASA Operation IceBridge (OIB) airborne gravity data over the Abbot region to obtain sub-ice bathymetry, and combine OIB elevation and ice thickness measurements to estimate ice draft. A series of asymmetric fault-bounded basins formed during rifting of Zealandia from Antarctica underlie the Abbot Ice Shelf west of 94° W and the Cosgrove Ice Shelf to the south. Sub-ice water column depths along OIB flight lines are sufficiently deep to allow warm deep and thermocline waters observed near the western Abbot ice front to circulate through much of the ice shelf cavity. An average ice shelf draft of ~200 m, 15% less than the Bedmap2 compilation, coincides with the summer transition between the ocean surface mixed layer and upper thermocline. Thick ice streams feeding the Abbot cross relatively stable grounding lines and are rapidly thinned by the warmest inflow. While the ice shelf is presently in equilibrium, the overall correspondence between draft distribution and thermocline depth indicates sensitivity to changes in characteristics of the ocean surface and deep waters.
The role of horizontal exchanges on ventilation of the benthic boundary layer on the Black Sea shelf
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Wobus, Fred
2010-05-01
The state of the benthic component of the shelf ecosystem is strongly influenced by availability of dissolved oxygen. The chemical structure of the Black Sea waters is largely determined by the location and the strength of the pycnocline. Due to similarity in the mechanisms of vertical exchanges the oxycline and the chemocline occur at the same depth intervals as the halocline and pycnocline (Özsoy and Ünlüata, 1997). As the data for dissolved oxygen on the shelf is relatively sparse we assume that much abundant data on physical parameters (temperature and salinity) can be used as proxy in determining the location of the oxycline and hence the spatial extent of near-bottom waters depleted in oxygen. When the waters of the benthic boundary layers below the pycnocline are ‘locked' i.e. unable to mix vertically with surface then the biological pump and supply of oxygen are suppressed. However, the locked water can, in principle, move ‘horizontally', predominantly along the constant density levels and get ventilated via isopycnal exchanges. The isopycnals in the Black Sea have generally a dome-like structure, so that the isopycnal movements across the shelf break can ventilate bottom shelf waters with water masses from upper parts of the water column in the deep sea. We use the intra- and inter-annual variations in the near-bottom temperature as indicators for variability of physical conditions in the benthic boundary layer on the shelf. The physical reason for this is that interannual variations in the near-bottom temperature are directly related with the volume of cold waters (Ivanov et al., 2000) which are formed on the shelf and then exported into the deep sea, so that variations in temperature may indicate changes in the intensity of horizontal exchanges. In this paper we identified areas on the Black Sea margin where bottom waters can not be mixed vertically (‘locked' waters) during the winter months and locations to which the locked waters can move ‘horizontally'. The potential energy approach was used to identify the spatial and temporal variability of the areas and volumes occupied by the locked waters. This approach allows to assess a relative strength of the ability of locked waters to mix vertically with oxygen rich surface waters as compared to ‘horizontal' exchanges with the deep sea along isopycnic surfaces. Analysis of interannual variability of temperature showed that the period 1965-1983 was a warm period when the ‘summer' season ( May to November) temperatures of the benthic waters were higher than the average; to the contrary the period 1983-2001 (i.e. up to end of available data sets) was a cold period. Correlations between various time series of hydrographical and meteorological parameters were calculated to establish the relative importance of vertical versus horizontal exchanges in ventilation of the locked water masses. A low correlation (R=0.24) was obtained between the variation of the winter sea surface temperature on the shelf and the ‘summer' temperatures of locked waters. A higher correlation (R=0.56) was found between the summer temperatures of the Cold Intermediate Waters below the seasonal pycnocline in the deep sea (density range sigma-theta= 14.2-14.8) and the ‘summer' temperatures of the ‘locked' waters in the benthic boundary layer on the shelf. Analysis shows that the isopycnic exchanges with the deep sea are more important for ventilation of the benthic boundary layer on the shelf than winter convection on the shelf itself. This work was made possible via support from EU FP6 SESAME and EU FP7 MyOcean projects and NERC PhD studentship. References Özsoy, E. and Ünlüata, Ü., 1997. Oceanography of the Black Sea: a review of some recent results. Earth-Sci. Rev., 42(4): 231-272. Ivanov, L.I., Belokopytov, V.N., Özsoy, E. and Samodurov, A., 2000. Ventilation of the Black Sea pycnocline on seasonal and interannual time scales. Mediterr. Mar. Sci., 1/2: 61-74.
A Laboratory Model of a Cooled Continental Shelf
1993-06-01
26 Abstract A laboratory model of wintertime cooling over a continental shelf has a water surface cooled by air in an annular rotating...singular point where Froude number u/(g’hl)1/2 equaled a given value and flowed out along the bottom. In this formula, u is velocity of the water onto...support cross-shelf geostrophic currents. To accomplish this, an annular geometry was used. A cylindrical tank was fitted with a shallow but wide
We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column net metabolism and the formation of hypoxia (dissolved oxygen <2 ml O2 L-1) in the region. Rates of water column community respiration (R) and primary p...
Processes influencing seasonal hypoxia in the northern California Current System
Connolly, T. P.; Hickey, B. M.; Geier, S. L.; Cochlan, W. P.
2010-01-01
This paper delineates the role of physical and biological processes contributing to hypoxia, dissolved oxygen (DO) < 1.4 mL/L, over the continental shelf of Washington State in the northern portion of the California Current System (CCS). In the historical record (1950–1986) during the summer upwelling season, hypoxia is more prevalent and severe off Washington than further south off northern Oregon. Recent data (2003–2005) show that hypoxia over the Washington shelf occurred at levels previously observed in the historical data. 2006 was an exception, with hypoxia covering ~5000 km2 of the Washington continental shelf and DO concentrations below 0.5 mL/L at the inner shelf, lower than any known previous observations at that location. In the four years studied, upwelling of low DO water and changes in source water contribute to interannual variability, but cannot account for seasonal decreases below hypoxic concentrations. Deficits of DO along salinity surfaces, indicating biochemical consumption of DO, vary significantly between surveys, accounting for additional decreases of 0.5–2.5 mL/L by late summer. DO consumption is associated with denitrification, an indicator of biochemical sediment processes. Mass balances of DO and nitrate show that biochemical processes in the water column and sediments each contribute ~50% to the total consumption of DO in near-bottom water. At shorter than seasonal time scales on the inner shelf, along-shelf advection of hypoxic patches and cross-shelf advection of seasonal gradients are both shown to be important, changing DO concentrations by 1.5 mL/L or more over five days. PMID:20463844
NASA Astrophysics Data System (ADS)
Mendonça, L. F.; Souza, R. B.; Aseff, C. R. C.; Pezzi, L. P.; Möller, O. O.; Alves, R. C. M.
2017-02-01
The Southern Brazilian Continental Shelf (SBCS) is one of the more productive areas for fisheries in Brazilian waters. The water masses and the dynamical processes of the region present a very seasonal behavior that imprint strong effects in the ecosystem and the weather of the area and its vicinity. This paper makes use of the Regional Ocean Modeling System (ROMS) for studying the water mass distribution and circulation variability in the SBCS during the year of 2012. Model outputs were compared to in situ, historical observations and to satellite data. The model was able to reproduce the main thermohaline characteristics of the waters dominating the SBCS and the adjacent region. The mixing between the Subantarctic Shelf Water and the Subtropical Shelf Water, known as the Subtropical Shelf Front (STSF), presented a clear seasonal change in volume. As a consequence of the mixing and of the seasonal oscillation of the STSF position, the stability of the water column inside the SBCS also changes seasonally. Current velocities and associated transports estimated for the Brazil Current (BC) and for the Brazilian Coastal Current (BCC) agree with previous measurements and estimates, stressing the fact that the opposite flow of the BCC occurring during winter in the study region is about 2 orders of magnitude smaller than that of the BC. Seasonal maps of simulated Mean Kinetic Energy and Eddy Kinetic Energy demonstrate the known behavior of the BC and stressed the importance of the mean coastal flow off Argentina throughout the year.
California State Waters Map Series—Offshore of Pigeon Point, California
Cochrane, Guy R.; Watt, Janet T.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.
2015-12-15
Seafloor habitats in the Offshore of Pigeon Point map area lie within the Shelf (continental shelf) megahabitat. Significant rocky outcrops, which support kelp-forest communities in the nearshore and rocky-reef communities in deeper water, dominate the inner shelf waters. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
Surface temperatures and temperature gradient features of the US Gulf Coast waters
NASA Technical Reports Server (NTRS)
Huh, O. K.; Rouse, L. J., Jr.; Smith, G. W.
1977-01-01
Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field.
NASA Astrophysics Data System (ADS)
Liu, Y.; Weisberg, R. H.
2016-02-01
Interactions of the Loop Current (LC) system with the West Florida Shelf (WFS) are examined using 20+ years (1993 - 2015) of Ssalto/Duacs multi-mission altimetry data in the eastern Gulf of Mexico. Characteristic patterns of LC system sea surface height and surface geostrophic currents are extracted by an unsupervised neural network, Self-Organizing Map, along with their frequencies of occurrence. These current patterns suggest linkages with harmful algae bloom occurrences as recorded by in situ K. brevis cell counts. It is argued that LC system interactions with the shelf slope play an important role in WFS ecology through the upwelling of new inorganic nutrients across the shelf break. This is particularly important when the LC impinges on the southwest corner of the WFS slope, thereby impacting shallow water isobaths and setting the entire shelf circulation into motion. If such conditions persist, then deeper ocean waters with elevated nutrient content may broach the shelf and be transported landward. Resetting the nutrient state of the shelf by the coastal ocean circulation in response to deep-ocean forcing demonstrates the importance of physical oceanography in shelf ecology.
NASA Astrophysics Data System (ADS)
Eliasen, Sólvá Káradóttir; Hátún, Hjálmar; Larsen, Karin Margretha H.; Hansen, Bogi; Rasmussen, Till Andreas S.
2017-05-01
Marked inter-annual fluctuations in the primary production on the Faroe shelf propagate to higher trophic levels and influence commercial fish stocks. This has previously been demonstrated based on weekly chlorophyll samples from a coastal station, dating back to 1997. However, the spatial extent, for which the coastal samples are representative, has not been well defined, and potential bio-geographical segregations of the shelf have not been considered. By integrating 18 years of chlorophyll satellite data, supplemented by in-situ, model, and meteorological reanalysis data, we identify three regions with unique characteristics with regards to surface chlorophyll and vertical structure - the Central Shelf, the Outer Shelf and the Eastern Banks. The observed difference in timing of the spring bloom in these regions helps explain different spawning patterns of important fish stocks, and the spatial division of the Faroe Shelf should be considered when studying biology and hydrography in these waters. A positive correlation between annual means on the outer Faroe Shelf and parts of the outer northwest Scottish Shelf indicates similarities between these neighbouring regions. We suggest that this similarity arises from the commonality in nutrient composition of the water masses shared by these neighbouring regions.
Observed Oceanic Response over the Upper Continental Slope and Outer Shelf during Hurricane Ivan
2007-09-01
the slope and rise. In addition, they were presumed to be along-shelf and cross-shelf components of group veloci- generated by pulsations of the Loop ...hits. Fortunately, all of exchange of mass, momentum, heat , and water proper- the SEED moorings survived this powerful storm and ties across the shelf...15. SUBJECT TERMS SEED, continental shelf, Doppler, waves 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE
Performance and Health Risk Assessment of Commercial Off-the-Shelf Individual Water Purifiers
2006-05-26
Drinking Water Systems,” Journal of Environmental Health, 45(5), pp. 220-225 9. Farahbakhsh, K. and Smith, D.W., 2004. “Removal of Coliphages in...Commercial Off-the-Shelf Individual Water Purifiers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) William Bettin...individual water purifiers (IWP) for use by individual warfighters to provide emergency treatment of field drinking water . This project had three
Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications
NASA Astrophysics Data System (ADS)
Heim, B.; Abramova, E.; Doerffer, R.; Günther, F.; Hölemann, J.; Kraberg, A.; Lantuit, H.; Loginova, A.; Martynov, F.; Overduin, P. P.; Wegner, C.
2014-08-01
Enhanced permafrost warming and increased Arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. We used optical operational satellite data from the ocean colour sensor MERIS (Medium-Resolution Imaging Spectrometer) aboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigenous matter on the shallow Laptev Sea shelf. Despite the high cloud coverage in summer that is inherent to this Arctic region, time series from MERIS satellite data from 2006 on to 2011 could be acquired and were processed using the Case-2 Regional Processor (C2R) for optically complex surface waters installed in the open-source software ESA BEAM-VISAT. Since optical remote sensing using ocean colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS C2R parameters with surface water sampling data from the Russian-German ship expeditions LENA2008, LENA2010 and TRANSDRIFT-XVII taking place in August 2008 and August and September 2010 in the southern Laptev Sea. The shallow Siberian shelf waters are optically not comparable to the deeper, more transparent waters of the Arctic Ocean. The inner-shelf waters are characterized by low transparencies, due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of suspended particulate matter and coloured dissolved organic matter. We compared the field-based measurements with the satellite data that are closest in time. The match-up analyses related to LENA2008 and LENA2010 expedition data show the technical limits of matching in optically highly heterogeneous and dynamic shallow inner-shelf waters. The match-up analyses using the data from the marine TRANSDRIFT expedition were constrained by several days' difference between a match-up pair of satellite-derived and in situ parameters but are also based on the more stable hydrodynamic conditions of the deeper inner- and the outer-shelf waters. The relationship of satellite-derived turbidity-related parameters versus in situ suspended matter from TRANSDRIFT data shows that the backscattering coefficient C2R_bb_spm can be used to derive a Laptev-Sea-adapted SPM algorithm. Satellite-derived Chl a estimates are highly overestimated by a minimum factor of 10 if applied to the inner-shelf region due to elevated concentrations of terrestrial organic matter. To evaluate the applicability of ocean colour remote sensing, we include the visual analysis of lateral hydrographical features. The mapped turbidity-related MERIS C2R parameters show that the Laptev Sea is dominated by resuspension above submarine shallow banks and by frontal instabilities such as frontal meanders with amplitudes up to 30 km and eddies and filaments with horizontal scales up to 100 km that prevail throughout the sea-ice-free season. The widespread turbidity above submarine shallow banks indicates inner-shelf vertical mixing that seems frequently to reach down to submarine depths of a minimum of 10 m. The resuspension events and the frontal meanders, filaments and eddies indicate enhanced vertical mixing being widespread on the inner shelf. It is a new finding for the Laptev Sea that numerous frontal instabilities are made visible, and how highly time-dependent and turbulent the Laptev Sea shelf is. The meanders, filaments and eddies revealed by the ocean colour parameters indicate the lateral transportation pathways of terrestrial and living biological material in surface waters.
Transport processes near coastal ocean outfalls
Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.
2001-01-01
The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.
NASA Astrophysics Data System (ADS)
Roughan, M.
2016-02-01
The East Australian Current (EAC) flows as a jet over the narrow shelf of southeastern Australia, dominating shelf circulation, and shedding vast eddies at the highly variable separation point. These characteristics alone make it a dynamically challenging region to measure, model and predict. In recent years a significant effort has been placed on understanding continental shelf processes along the coast of SE Australia, adjacent to the EAC, our major Western Boundary Current. We have used a multi-pronged approach by combining state of the art in situ observations and data assimilation modelling. Observations are obtained from a network of moorings, HF Radar and ocean gliders deployed in shelf waters along SE Australia, made possible through Australia's Integrated Marine Observing System (IMOS). In addition, we have developed a high resolution reanalysis of the East Australian Current using ROMS and 4DVar data Assimilation. In addition to the traditional data streams (SST, SSH and ARGO) we assimilate the newly available IMOS observations in the region. These include velocity and hydrographic observations from the EAC transport array, 1km HF radar measurements of surface currents, CTD casts from ocean gliders, and temperature, salinity and velocity measurements from a network of shelf mooring arrays. We use these vast data sets and numerical modelling tools combined with satellite remote sensed data to understand spatio-temporal variability of shelf processes and water mass distributions on synoptic, seasonal and inter-annual timescales. We have quantified the cross shelf transport variability inshore of the EAC, the driving mechanisms, the seasonal cycles in shelf waters and to some extent variability in the biological (phytoplankton) response. I will present a review of some of the key results from a number of recent studies.
NASA Astrophysics Data System (ADS)
Bauch, D.; Cherniavskaia, E.
2018-03-01
Large gradients and inter annual variations on the Laptev Sea shelf prevent the use of uniform property ranges for a classification of major water masses. The central Laptev Sea is dominated by predominantly marine waters, locally formed polynya waters and riverine summer surface waters. Marine waters enter the central Laptev Sea from the northwestern Laptev Sea shelf and originate from the Kara Sea or the Arctic Ocean halocline. Local polynya waters are formed in the Laptev Sea coastal polynyas. Riverine summer surface waters are formed from Lena river discharge and local melt. We use a principal component analysis (PCA) in order to assess the distribution and importance of water masses within the Laptev Sea. This mathematical method is applied to hydro-chemical summer data sets from the Laptev Sea from five years and allows to define water types based on objective and statistically significant criteria. We argue that the PCA-derived water types are consistent with the Laptev Sea hydrography and indeed represent the major water masses on the central Laptev Sea shelf. Budgets estimated for the thus defined major Laptev Sea water masses indicate that freshwater inflow from the western Laptev Sea is about half or in the same order of magnitude as freshwater stored in locally formed polynya waters. Imported water dominates the nutrient budget in the central Laptev Sea; and only in years with enhanced local polynya activity is the nutrient budget of the locally formed water in the same order as imported nutrients.
NASA Astrophysics Data System (ADS)
Lugo-Fernández, A.; Gravois, M.; Green, R. E.; Montgomery, T.
2012-04-01
We examined freshwater and ocean circulation effects on the distribution of vertical quantum diffuse attenuation coefficients (Kq0) of photosyntheticaly available radiation (PAR) in waters of the northern Gulf of Mexico's Louisiana-Texas shelf. Mean Kq0 coefficients were estimated from 509 vertical profiles of PAR collected during 10 cruises spanning 30 months (1992-1994). Vertical profiles of density revealed that the shelf waters are divided into two periods: a stratified period with an upper layer 10 m thick of turbid waters (0.06≤Kq0≤1.18 m-1) and a lower layer of more transparent waters (0.01≤Kq0≤0.49 m-1). The second or non-stratified period consists of a homogenous layer ˜55 m thick and less turbid waters (0.03≤Kq0≤1.00 m-1). Horizontally, the distribution of Kq0 reveals nearshore coastal or case 2 waters followed by offshore oceanic or case 1 waters that separate near the 70-m isobath regardless of time and place. The Kq0 distribution reflects the freshwater influx from the Mississippi and Atchafalaya Rivers which causes a turbid surface trapped river plume, the shelf wind-driven circulation, and ensuing mixing. To investigate Kq0 we used two regression models involving salinity, suspended particulate matter (SPM), chlorophyll-a (Chl), and water depth. The best statistical model explained 57% to 85% of the observed Kq0 variability and involved the reciprocal of water depth, salinity, and SPM. However, a more bio-optically relevant model involving salinity, SPM, and Chl, explained only 32% to 64% of the observed Kq0 variability. Estimates of Kq0 for the upper layer indicate compensation depths of 30-92 m in waters deeper than 70 m which help account for the presence of coral communities on submerged banks near the shelf edge. The observed temporal and spatial distribution of Kq0 agrees qualitatively with that of satellite-derived values of the diffuse attenuation coefficient, Kd(4 9 0) over this shelf.
Microbial Communities in Sediments across the Louisiana Continental Shelf
The Louisiana continental Shelf (LCS) is a dynamic system that receives discharges from two large rivers. It has a stratified water column that is mixed by winter storms, hypoxic bottom water from spring to fall, and a muddy seafloor with highly mixed surficial sediments. Spatia...
Valiadi, Martha; Painter, Stuart C.; Allen, John T.; Balch, William M.; Iglesias-Rodriguez, M. Debora
2014-01-01
We investigated the distribution of bioluminescent dinoflagellates in the Patagonian Shelf region using “universal” PCR primers for the dinoflagellate luciferase gene. Luciferase gene sequences and single cell PCR tests, in conjunction with taxonomic identification by microscopy, allowed us to identify and quantify bioluminescent dinoflagellates. We compared these data to coincidental discrete optical measurements of stimulable bioluminescence intensity. Molecular detection of the luciferase gene showed that bioluminescent dinoflagellates were widespread across the majority of the Patagonian Shelf region. Their presence was comparatively underestimated by optical bioluminescence measurements, whose magnitude was affected by interspecific differences in bioluminescence intensity and by the presence of other bioluminescent organisms. Molecular and microscopy data showed that the complex hydrography of the area played an important role in determining the distribution and composition of dinoflagellate populations. Dinoflagellates were absent south of the Falkland Islands where the cold, nutrient-rich, and well-mixed waters of the Falklands Current favoured diatoms instead. Diverse populations of dinoflagellates were present in the warmer, more stratified waters of the Patagonian Shelf and Falklands Current as it warmed northwards. Here, the dinoflagellate population composition could be related to distinct water masses. Our results provide new insight into the prevalence of bioluminescent dinoflagellates in Patagonian Shelf waters and demonstrate that a molecular approach to the detection of bioluminescent dinoflagellates in natural waters is a promising tool for ecological studies of these organisms. PMID:24918444
Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf
NASA Astrophysics Data System (ADS)
Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.
2015-04-01
The Louisiana shelf, in the northern Gulf of Mexico, receives large amounts of freshwater and nutrients from the Mississippi-Atchafalaya river system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year, except near the mouths of the Mississippi and Atchafalaya rivers, where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e., primary production and water column respiration). With this experiment we show that below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes (advection and vertical diffusion) and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.
Direct evidence of warm water access to the Totten Glacier sub-ice shelf cavity
NASA Astrophysics Data System (ADS)
Orsi, A. H.; Rintoul, S. R.; Silvano, A.; van Wijk, E.; Pena-Molino, B.; Rosenberg, M. A.
2015-12-01
The Totten Glacier holds enough ice to raise global sea level by 3.5 m, is thinning according to (some) satellite data, and is grounded well below sea level on a retrograde bed and hence is potentially unstable. Basal melt driven by ocean heat flux has been linked to ice shelf thinning elsewhere in Antarctica, but no oceanographic measurements had been made near the Totten. In January 2015 the RSV Aurora Australis was the first ship to reach the Totten calving front. Observations from ship-board CTD, moorings and profiling floats provide direct confirmation that warm water reaches the ice shelf cavity. Warm water is present near the sea floor at every station deeper than 300 m depth, with maximum temperatures at mid-shelf >0.5°C. Mooring data confirm that the warm water is present year-round. A deep (>1100 m) channel at the calving front allows warm water (-0.4°C, >2°C above the local freezing point) to access the ice shelf cavity. The contrast between the oceanographic conditions near the Totten and near the Mertz Glacier is stark, although they are separated by only 30 degrees of longitude. East Antarctic ice shelves have often been assumed to behave in a similar manner and to be invulnerable to ocean change; these measurements suggest these assumptions need to be reconsidered.
A model study of sediment transport across the shelf break
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2017-04-01
A variety of dynamical processes can contribute to the transport of material (e.g., particulate matter) across the shelf break - the region separating the continental shelf from the continental slope. Among these processes are (i) the reflection of internal waves on the outer shelf and upper slope, and (ii) the instability of hydrographic fronts, roughly aligned with isobaths, that are often present at the shelf break. On the one hand, internal waves reflecting on a sloping boundary can produce bottom shear stresses that are large enough to resuspend non-cohesive sediments into the water column. On the other hand, eddies shed from unstable shelf break fronts can incorporate into their core particle-rich waters from the outer shelf and upper slope, and transport these waters offshore. Here we present numerical experiments with a three-dimensional numerical model of ocean circulation and sediment transport, which illustrate the joint effect of internal waves and eddies on sediment transport across the shelf break. The model is based on the primitive equations and terrain-following coordinates. The model domain is square and idealized, comprising a flat continental shelf, a constant continental slope, and a flat abyssal basin. The model grid has O(1 km) horizontal resolution, so that (sub)mesoscale eddies observed in the vicinity of shelf breaks, such as south of New England, can be represented in detail. Internal waves are excited through the specification of a periodic variation in the across-slope component of velocity at the offshore boundary of the domain, and eddies are generated from the baroclinic instability of a shelf break jet that is initially in strict thermal wind balance. Numerical experiments are conducted that are characterized by (i) different slopes of internal wave characteristics relative to the continental slope, representing sub-critical, critical, and super-critical regimes, and (ii) different values for the dimensionless ratios that emerge from the linear stability analysis of shelf break fronts. Emphasis is placed on the physical conditions that are conducive to the formation and maintenance of bottom and intermediate nepheloid layers - the particle-rich layers that are often observed near oceanic margins in the traces of optical instruments.
NASA Astrophysics Data System (ADS)
Cruz, Anna P. S.; Barbosa, Catia F.; Ayres-Neto, Arthur; Munayco, Pablo; Scorzelli, Rosa B.; Amorim, Nívea Santos; Albuquerque, Ana L. S.; Seoane, José C. S.
2018-02-01
In order to investigate the chemical and magnetic characteristics of sediments of the western boundary upwelling system of Southwest Atlantic we analyzed magnetic susceptibility, grain size distribution, total organic carbon, heavy mineral abundance, Fe associated with Mössbauer spectra, and Fe and Mn of pore water to evaluate the deposition patterns of sediments. Four box-cores were collected along a cross-shelf transect. Brazil Current and coastal plume exert a primary control at the inner and outer shelf cores, which exhibited similar depositional patterns characterized by a high abundance of heavy minerals (mean 0.21% and 0.08%, respectively) and very fine sand, whereas middle shelf cores presented low abundances of heavy minerals (mean 0.03%) and medium silt. The inner shelf was dominated by sub-angular grains, while in middle and outer shelf cores well-rounded grains were found. The increasing Fe3+:Fe2+ ratio from the inner to the outer shelf reflects farther distance to the sediment source. The outer shelf presented well-rounded minerals, indicating abrasive processes as a result of transport by the Brazil Current from the source areas. In the middle shelf, cold-water intrusion of the South Atlantic Central Water contributes to the primary productivity, resulting in higher deposition of fine sediment and organic carbon accumulation. The high input of organic carbon and the decreased grain size are indicative of changes in the hydrodynamics and primary productivity fueled by the western boundary upwelling system, which promotes loss of magnetization due to the induction of diagenesis of iron oxide minerals.
NASA Technical Reports Server (NTRS)
Druon, J.N.; Mannino, A.; Signorini, Sergio R.; McClain, Charles R.; Friedrichs, M.; Wilkin, J.; Fennel, K.
2009-01-01
Continental shelves are believed to play a major role in carbon cycling due to their high productivity. Particulate organic carbon (POC) burial has been included in models as a carbon sink, but we show here that seasonally produced dissolved organic carbon (DOC) on the shelf can be exported to the open ocean by horizontal transport at similar rates (1-2 mol C/sq m/yr) in the southern U.S. Mid-Atlantic Bight (MAB). The dissolved organic matter (DOM) model imbedded in a coupled circulation-biogeochemical model reveals a double dynamics: the progressive release of dissolved organic nitrogen (DON) in the upper layer during summer increases the regenerated primary production by 30 to 300%, which, in turns ; enhances the DOC production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a key element for better representing the ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export.
Effects of energy-related activities on the Atlantic Continental Shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manowitz, B
1975-01-01
Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)
We report sediment and bottom water respiration rates from 10 cruises from 2003-2007 on the Louisiana Continental Shelf (LSC) where summer hypoxia regularly occurs. Cruises were conducted during spring (5 cruises), summer (3 cruises) and fall (2 cruises). Cruise average sediment ...
Spatio-Temporal Evolution of Sound Speed Channels on the Chukchi Shelf
NASA Astrophysics Data System (ADS)
Eickmeier, J.; Badiey, M.; Wan, L.
2017-12-01
The physics of an acoustic waveguide are influenced by various boundary conditions as well as spatial and temporal fluctuations in temperature and salinity profiles the water column. The shallow water Canadian Basin Acoustic Propagation Experiment (CANAPE) experiment was designed to study the effect of oceanographic variability on the acoustic field. A pilot study was conducted in the summer of 2015, full deployment of acoustic and environmental moorings took place in 2016, and recovery will occur in late 2017. An example of strong oceanographic variability in the SW region is depicted in Figure 1. Over the course of 7 days, warm Bering Sea water arrived on the Chukchi Shelf and sank in the water column to between 25 m and 125 m depth. This warm water spread to a range of 10 km and a potential eddy of warm water formed causing an increase in sound speed between 15 km and 20 km range in Fig. 1(b). Due to the increased sound speed, a strong sound channel evolved between 100 m and 200 m for acoustic waves arriving from off the shelf, deep water sources. In Fig. 1(a), the initial formation of the acoustic channel is only evident in 50 m to 100 m of water out to a range of 5 km. Recorded environmental data will be used to study fluctuations in sound speed channel formation on the Chukchi Shelf. Data collected in 2015 and 2016 have shown sound duct evolution over 7 days and over a one-month period. Analysis is projected to show sound channel formation over a new range of spatio-temporal scales. This analysis will show a cycle of sound channels opening and closing on the shelf, where this cycle strongly influences the propagation path, range and attenuation of acoustic waves.
Interactions of phytoplankton, zooplankton and microorganisms
NASA Astrophysics Data System (ADS)
Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.
We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.
NASA Astrophysics Data System (ADS)
Dmitrenko, Igor A.; Kirillov, Sergei A.; Rudels, Bert; Babb, David G.; Pedersen, Leif T.; Rysgaard, Soeren; Kristoffersen, Yngve; Barber, David G.
2016-04-01
The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in North Eastern Greenland were collected from the land-fast ice in April-May 2015 as a part of the Arctic Science Partnership collaboration during the first research campaign at the Villum Research Station. They were complemented by (i) the ice-tethered profiler (ITP) and Acoustic Dopler Current Profiler (ADCP) mooring observations in ~300 m of the tidewater glacier outlet from the Flade Isblink Ice Cap and (ii) CTDs taken in June-July 2015 along the Wandel Sea continental slope during the Norwegian FRAM 2014-15 sea ice drift. The CTD profiles deeper than 100 m are used to reveal the origin of water masses and determine the extent to which these water masses have interacted with ambient water from the continental slope. The subsurface water layer from ~20-70 m depth is comprised of freshened water (30-32 psu) that is likely associated with the Pacific Water outflow from the Arctic Ocean through the western Fram Strait. The underlying halocline layer centered at ~80 m (~33 psu) separates the Pacific Water layer from a deeper (<140 m) layer of modified Polar Water that has interacted with the warm Atlantic Water outflow through Fram Strait. The Atlantic Water layer with temperature above 0°C is recorded below 140 m. Over the outer shelf, the halocline layer shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient Polar Water mass across the continental slope. Mooring data shows an enhanced shelf-slope interaction responding the storm event in 23-24 April 2015 with northerly winds exceeding 10 m/s. The on-shelf transport of a cold and turbid water from the upper continental slope results in enhanced interleaving within the depth range of the halocline layer (~70-100 m). Our observations of Pacific Water in the Wandel Sea subsurface layer are set in the context of upstream observations in the Beaufort Sea for 2002-2011 and downstream observations from the Northeast Water Polynya (1992-1993), and clearly show the modification of Pacific Water during its advection across the Arctic Ocean from the Bering Strait to Fram Strait. Moreover, the Wandel Sea shelf and continental slope water shows a different water mass structure indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the Western Fram Strait.
Dense Winter Water Mass Formation In The Northwestern Pacific Marginal Seas:
NASA Astrophysics Data System (ADS)
Talley, L.; Lobanov, V.; Tishchenko, P.; Shcherbina, A.; Rudnick, D.; Salyuk, A.; Sagalaev, S.; Ponomarev, V.; Zhabin, I.
Two separate winter water mass formation experiments were carried out in the north- western Pacific. The Japan/East Sea (JES) is well-ventilated to the bottom (3500 m depth), and is much better ventilated than the adjacent North Pacific at the same depth and density. Winter data from 1999 and 2000 show that the JES is one of the few sites in the world with deep winter convection, and that convection in the JES has many similarities to convection in the Mediterranean. It was shown previously that deep oxygen in the JES has been declining over many decades, suggesting that ventilation was more vigorous early in the 20th century than in recent decades. Nevertheless, the presence of significant oxygen and chlorofluorocarbons to the JES bottom suggests ongoing ventilation. In winter, 1999, a first late-winter survey of the northern JES included one hydrographic station with evidence of open-ocean convection to about 1100 meters in the cold air outbreak region south of Vladivostok, and weak evidence of brine rejection under ice formation in Peter the Great Bay (shelf near Vladivos- tok). Topography and the presence of a semi-permanent anticyclonic eddy and the subpolar front delineate the convection region, which is in the path of strong northerly winter winds. Persistently colder conditions in winter 2000, including Vladivostok air temperatures colder than any other year since 1976 and SST -2C below normal in the northern Japan Sea, showed widespread convection. Significant bottom water was created through brine rejection in Peter the Great Bay and was found the base of the continental slope south of Vladivostok. Ventilation of North Pacific Intermediate Water occurs in the Okhotsk Sea, through brine rejection during sea ice formation, in polynyas on the northwest shelf. Moored observations on the shelf during winter 1999-2000 showed the creation of dense shelf water at 26.95 sigma_theta and clear evidence of brine rejection through the winter. The 1999 deployment hydrographic survey shows cold, dense water from the shelf at 26.95 sigma_theta. The lower density shelf water in June 2000 compared with Septem- ber 1999 is consistent with the reduced severity of winter 2000. Outflow of the densest cold water of shelf origin in both the 1999 and 2000 CTD surveys was located slightly inshore of the axis of the deepest channel between Sakhalin and Kashevarov Bank.
Structure of the shelf and slope waters of the Antarctic Seas
NASA Astrophysics Data System (ADS)
Artamonova, Ksenia; Antipov, Nikolay; Gangnus, Ivan; Maslennikov, Vyacheslav
2015-04-01
The main objective of present work is to consider characteristics of shelf and slope waters in the Commonwealth, Ross, Amundson and Bellingshausen Seas. Data of Russian surveys led during the Antarctic summer of 2006 - 2014 on RV "Academic Fedorov"and "Academic Treshnikov"was analyzed. Distribution of temperature, salinity, dissolved oxygen, silicate, phosphates and nitrates in the water masses of the Commonwealth and Amundsen seas was shown. Significant differences in the structures of the shelf and slope waters of the seas were observed. A water structure at the oceanological sections of the Commonwealth Sea was constituted by the Antarctic Surface Water (AASW) with enough high concentration of silicate, nitrate nitrogen and phosphates compare with other areas of the World Ocean; the Upper Circumpolar Deep Water (UCDW) characterized by a minimum of the oxygen content, and a maximum of nutrient concentrations; The Lower Circumpolar Deep Water (LCDW) primary characterized by a salinity maximum and a minimum of nutritive salts as well; and the Antarctic Bottom water (AABW). It was shown that the local cold, salt and dense Antarctic Shelf water (ASW) formed in the shelf area of the Commonwealth Sea. The characteristics of ASW were defined. The ASW mixed with the CDW and their mixture (The Bottom Water of the Prydz Bay (BWPB)) moved down along the slope, and reached the bottom.The characteristics of the BWPB were analyzed. The BWPB was defined by higher content of dissolved oxygen (more 5.5 ml/l) and lower contents of biogenic elements (silicon - low 120 µМ, phosphates - low 2.35 µМ and nitrates - low 29 µМ) in the bottom layer at the slope compared with the Circumpolar Deep Water (CDW) characteristics. Interannual variability of characteristics of the water masses was observed on the repeated oceanological section along 70° E in the Commonwealth Sea. It was shown that characteristics and structure of the BWPB undergo appreciable changes year by year. The coldest (-1,5°С) and less salted (34,54‰) BWPB was observed in 2005, and in 2006 the temperature and salinity of this water were increased (-0,6°С; 34,60‰ - 34,63‰), and the thickness of a layer was much less. In 2007 as capacity of the BWPB layer, and its thermohaline characteristics (-1,2°C, 34,56 ‰) have shown again active moving down near to a bottom of the Antarctic continental slope. A water structure at the oceanological sections in the eastern Ross, Amundson and Bellingshausen Seas was constituted by the two basic water masses - the AASW and the CDW. The CDW was presented by the UCDW and LCDW. The characteristics of the UCDW and the LCDW were defined. A significant difference of the structures of these seas from the Commonwealth Sea is a free entrance to the shelf area of the CDW therefore formation of the Antarctic Shelf Water here was represented impossible.
NASA Astrophysics Data System (ADS)
Bishop, S. P.; Thompson, A. F.; Schodlok, M.
2016-02-01
The West Antarctic ice sheet is melting at unprecedented rates, which will impact global sea level rise. The ocean may be playing the dominant role in this ice melt through the upwelling of warm and salty Circumpolar Deep Water (CDW) in regions such as Pine Island Glacier (PIG). There is evidence that the Antarctic Slope Front at the continental shelf constrains shoreward transport of CDW by mesoscale eddies. However, little is known about the ocean-ice interaction and potential feedbacks that take place once this water is advected into ice shelf cavities. In this talk we use MITgcm to simulate an idealized setup of the PIG ice shelf cavity, similar to the setup in De Rydt et al. 2014, to understand the effects of ocean circulation and potential feedbacks of ice-shelf melt on the ocean circulation. To do this we run the model in two different configurations with and without a wind-driven current at the northern edge of the ice shelf and annually updating the geometry of the ice shelf based on the parameterized ice-shelf melt. Eddy heat and potential vorticity fluxes are diagnosed and presented for each of the simulations and compared with control simulations where the ice-shelf cavity is not modified. Results show high ice shelf melt during the first year with maximum values in excess of 60 meters near the grounding line, but settle to tens of meters during the following years.
Regional Changes in Icescape Impact Shelf Circulation and Basal Melting
NASA Astrophysics Data System (ADS)
Cougnon, E. A.; Galton-Fenzi, B. K.; Rintoul, S. R.; Legrésy, B.; Williams, G. D.; Fraser, A. D.; Hunter, J. R.
2017-11-01
Ice shelf basal melt is the dominant contribution to mass loss from Antarctic ice shelves. However, the sensitivity of basal melt to changes in icescape (grounded icebergs, ice shelves, and sea ice) and related ocean circulation is poorly understood. Here we simulate the impact of the major 2010 calving event of the Mertz Glacier Tongue (MGT), East Antarctica, and related redistribution of sea ice and icebergs on the basal melt rate of the local ice shelves. We find that the position of the grounded tabular iceberg B9B controls the water masses that reach the nearby ice shelf cavities. After the calving of the MGT and the removal of B9B, warmer water is present both within the MGT cavity and on the continental shelf driving a 57% increase of the deep MGT basal melting. Major changes in icescape influence the oceanic heat flux responsible for basal ice shelf melting.
Amazon water lenses and the influence of the North Brazil Current on the continental shelf
NASA Astrophysics Data System (ADS)
Prestes, Yuri O.; Silva, Alex Costa da; Jeandel, Catherine
2018-05-01
The exchange processes on the Amazon continental shelf in northern Brazil are subject to complex interactions that involve forcings derived from distinct sources. The Amazon shelf is a unique and highly dynamic environment in which considerable discharge of freshwater enters the Atlantic Ocean, producing extensive Amazon Water Lenses (AWL). In addition to the presence of the AWL, the shelf is influenced by the semidiurnal oscillations of the tides and the strong North Brazil Current (NBC), a boundary current of the western Atlantic. The present study was based primarily on the influence of the freshwater input and the NBC on the shelf and the Amazon Shelf Break (ASB) off the mouth of the Pará River. For this purpose, hydrographic and hydrodynamic data were obtained by moorings of the AMANDES Project (April-July 2008), located on the Amazon shelf and the ASB. Spectral analysis and the continuous wavelet transform were applied to define tidal (high frequency/short period) and subtidal (low frequency/long period) signals. The results indicated that on both the shelf and the break, the semidiurnal tides are responsible for the residual landward transport and are predominantly across-shelf. Low-frequency motions in the synoptic bands and the AWL are related to spatial changes in the velocity field, mainly on the ASB in the along-shelf direction. The flow of the NBC can be interpreted as an along-shelf low-frequency oscillation capable of altering the spatial configuration of the velocity field, although its influence is perceived only in the absence of the AWL.
NASA Astrophysics Data System (ADS)
Feddersen, F.; Giddings, S. N.; Kumar, N.; Grimes, D. J.; Pawlak, G. R.; Rivas, D.; Diaz, M.
2016-02-01
Per square km, the surfzone and inner-shelf are by far the most economically and ecologically important ocean regions, vital for recreation, food, and ecosystem services. Despite the importance of clean coastal waters to our economy and well-being, declining water quality threatens coastal ecosystem and human health worldwide. Healthy coasts are a significant priority to federal agencies, local government, and NGOs. In particular the San Diego US and Tijuana Mexico border region have unique and persistent water quality issues due to a range of pollution sources. Cross-shore exchange of tracers (e.g., pathogens, anthropogenic nutrients, harmful algal blooms - HABs, larvae) between the well-mixed surfzone and stratified inner-shelf is poorly understood. The surfzone, inner- and mid-shelf span drastically different dynamical regimes, with varying cross-shelf exchange mechanisms due to wave, wind, buoyancy, and tidal processes and intrinsic variability. The NSF funded CSIDE (Cross Surfzone/Inner-shelf Dye Exchange) experiment (Sept & Oct 2015) aims to increase our understanding of cross-shelf material exchange by performing 3 shoreline dye release experiments that are tracked for up to 20 km alongshore and over 48+ hrs. One dye release will be performed in Mexico and the dye transport tracked across the border. The dye will be tracked via a broad range of binational instrumentation. In this presentation, we present an overview of the CSIDE experiment, in particular the binational aspects of the study,
NASA Astrophysics Data System (ADS)
Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D.
2015-12-01
An L-shaped array of three-component short period seismic stations was deployed at the Ross Ice Shelf, Antarctica approximately 100 km south of the ice edge, near 180° longitude, from November 18 through 28, 2014. Polarization analysis of data from these stations clearly shows propagating waves from below the ice shelf for frequencies below 2 Hz. Energy above 2 Hz is dominated by Rayleigh and Love waves propagating from the north. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile, from which we derive a density profile. The derived shear wave velocity profiles differ within the firn for the inversions using Rayleigh and Love wave dispersion curves. This difference is attributed to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and ocean floor results in a characteristic dispersion curve pattern below 7 Hz. We investigate the observed structures in more detail by forward modeling of Rayleigh wave dispersion curves for representative firn, ice, water, sediment structures. Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. Our results show that the analysis of high frequency Rayleigh waves on an ice shelf has the ability to resolve ice shelf thickness, water column thickness, and the physical properties of the underlying ocean floor using passive-source seismic data.
Sediment metabolism on the Louisiana continental shelf - Eldridge
Rates of aerobic and anaerobic sediment metabolism were measured on the Louisiana Continental Shelf during 5 cruises in 2006 and 2007. On each cruise, 3-4 stations were occupied in regions of the shelf that experience summer bottom-water hypoxia. Net DIC, O2, N2, and nutrient f...
NASA Astrophysics Data System (ADS)
Chen, Z.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Wiens, D.; Aster, R. C.; Nyblade, A.
2017-12-01
Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of sea level rise. Long-period gravity wave impacts excite vibrations in ice shelves that may trigger tabular iceberg calving and/or ice shelf collapse events. Three kinds of seismic plate waves were continuously observed by broadband seismic arrays on the Ross Ice Shelf (RIS) and on the Pine Island Glacier (PIG) ice shelf: (1) flexural-gravity waves, (2) flexural waves, and (3) extensional Lamb waves, suggesting that all West Antarctic ice shelves are subjected to similar gravity wave excitation. Ocean gravity wave heights were estimated from pressure perturbations recorded by an ocean bottom differential pressure gauge at the RIS front, water depth 741 m, about 8 km north of an on-ice seismic station that is 2 km from the shelf front. Combining the plate wave spectrum, the frequency-dependent energy transmission and reflection at the ice-water interface were determined. In addition, Young's modulus and Poisson's ratio of the RIS are estimated from the plate wave motions, and compared with the widely used values. Quantifying these ice shelf parameters from observations will improve modeling of ice shelf response to ocean forcing, and ice shelf evolution.
Inter-annual variability of exchange processes at the outer Black Sea shelf
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Wobus, Fred; Yuan, Dongliang; Wang, Zheng
2014-05-01
The advection of cold water below the surface mixed layer has a significant role in shaping the properties of the Cold Intermediate Layer (CIL) in the Black Sea, and thus the horizontal redistribution of nutrients. The minimal temperature of the CIL in the southwest deep region of the sea in summer was shown to be lower than the winter surface temperature at the same location, indicating the horizontal advective nature of CIL formation in the area (Kolesnikov, 1953). In addition to advection in the deep area of the sea, the transport of cold waters from the northwest Black Sea shelf across the shelf break in winter was shown to contribute to the formation of the CIL (Filippov, 1968; Staneva and Stanev, 1997). However less is known of the exchanges between the CIL waters and the outer shelf areas in summer, when a surface mixed layer and the underlying seasonal thermocline are formed. Ivanov et al. (1997) suggested that the cross frontal exchange within the CIL is strongly inhibited, so that CIL waters formed in the deep sea (i.e. offshore of the Rim Current) do not replenish the CIL waters onshore of the Rim Current (also known as near-bottom shelf waters, or BSW), due to strong cross frontal gradients in potential vorticity (PV). To the contrary, Shapiro et al. (2011) analysed in-situ observations over the period of 1950-2001 and showed a high correlation between the CIL temperatures in the open sea and outer shelf. However, the statistical methods alone were not able to clearly establish the relation between the cause and the consequences. In this study we use a 3D numerical model of the Black Sea (NEMO-SHELF-BLS) to quantify the exchange of CIL waters between the open sea and the outer northwest Black Sea shelf and to assess its significance for the replenishment of BSW on the outer shelf. The model has a resolution of 1/16º latitude × 1/12º longitude and 33 levels in the vertical. In order to represent near-bottom processes better, the model uses a hybrid vertical discretisation (s-on-top-of-z) and other improved parameters of the model set-up as in Shapiro et al. (2013). The model was run for the period from 1979 to 2012 with water discharges from 8 main rivers, exchanges through Bosporus and meteo forcing from the Drakkar Forcing Set 5.2 (Brodeau et al, 2010). The model was spun-up from climatological temperature and salinity in January using a semi-diagnostic adjustment method. Each annual simulation started from the same initial state on 1 January without data assimilation. The data for the warm period from 1 May to 31 October of each year were used for the following analysis. The model has been validated against in-situ (based on 77867 stations) and night-time satellite monthly mean SST observations. The model also captures well the major features seen on snapshot satellite images. A simulated daily climatology was created by averaging the temperature values over the 34-year simulation. Anomalies were calculated as the deviations of the snapshot temperatures from their climatological values. The correlation between the temperature anomalies of BSW on the outer shelf and those in the CIL waters in the deep sea were computed as well as water transports between these water masses across the shelf break. The BSW on the outer shelf are defined as the waters between the density level σθ=14.2 kg m3 (i.e. the bottom of the surface mixed layer) and the seabed (max z=150 m at the shelf break). The corresponding data from open sea CIL waters in the northwest part of the deep Black Sea were taken from the depth range between σθ=14.2 and z=150 m. The computed Pierson correlation between summer temperatures of BSW and the deep sea CIL is R = 0.90. This significant correlation is in agreement with the analysis from observational data of Shapiro et al. (2011). In order to reveal a physical link between the BSW and CIL, the in-out transports of water with σθ ≥14.2 across the shelf break were computed for each day and then averaged over the warm periods of each year. Over the 34 year time span, the on-shelf and off-shelf transports between the CIL and BSW fluctuate in the range of 0.22 to 0.45 Sv, with the maximum values in 1996 and the minimum in 1990. The net cross-shelf transport is small, approximately 0.03 Sv, due to volume conservation, and is directed off-shore due to river discharges. The years with high values of transport correspond to the situation when a 'channel' of constant PV connecting the BSW and CIL exists, forming a conduit for the waters to move across the shelf break. In the years of reduced transport, there was a PV 'barrier', i.e. a band of significant PV gradient along the shelf break, which inhibits exchanges. The efficiency of the exchange can be represented by the average renewal time of BSW, which is defined as the ratio of BSW volume to the onshore transport. This value, as well as the volumes and the transports vary over the 34 years. The renewal time is within the range between 18 to 42 days. The short renewal time (31 days on average) compared to the seasonal time scales, suggests an efficient exchange between bottom waters on the outer shelf and the CIL in the deep sea during the warm season. This study was partially supported by the EU (via PERSEUS grant FP7-OCEAN-2011-287600 and MyOcean SPA.2011.1.5-01 grant 283367), Institute of Oceanology, Chinese Academy of Sciences and the University of Plymouth Marine Institute Innovation Fund. References Brodeau L., B. Barnier, A.-M. Treguier, T.Penduff, S.Gulev, 2010. An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Modelling, 31 (3-4), 88-104. Kolesnikov, A.G., 1953. Intra-annual variability of temperature, stability and vertical turbulent exchange of heat in the open area of the Black Sea. In: Proceedings of the Marine Hydrophysical Institute, issue 3. Filippov D.M., 1968. Water Circulation and Structure of the Black Sea. Nauka, Moscow, 136 pp. Ivanov, L. I., Besiktepe, S. and E. Özsoy, 1997. The Black Sea Cold Intermediate Layer, in: Özsoy, E. and A. Mikaelyan (editors), Sensitivity to Change: Black Sea, Baltic Sea and North Sea, NATO ASI Series (Partnership Sub-series, Environment, 27), Kluwer Academic Publishers, Dordrecht, 536 pp. Shapiro, G.I., F. Wobus, D.L. Aleynik, 2011. Seasonal and inter-annual temperature variability in the bottom waters over the western Black Sea shelf, Ocean Science 7, 585-596. Shapiro, G., Luneva, M., Pickering, J., and Storkey, D., 2013. The effect of various vertical discretization schemes and horizontal diffusion parameterization on the performance of a 3-D ocean model: the Black Sea case study, Ocean Science, 9, 377-390. Staneva, J. V. and E. V. Stanev, 1997. Cold water mass formation in the Black Sea. Analysis on numerical model simulations. In: E. Ozsoy and A. Mikaelyan (eds.), Sensitivity to change: Black Sea, Baltic Sea and North Sea. NATO ASI Series, Vol. 27, Kluwer Academic Publishers, 375-393.
Noble, M.A.; Xu, J. P.
2003-01-01
Two sets of moorings were deployed along a cross-shelf transect in central Santa Monica bay for four months in the winter of 1998-1999. Both sites had an array of instruments attached to tripods set on the seafloor to monitor currents over the entire water column, surface waves, near-bed temperature, water clarity and suspended sediment. A companion mooring had temperature sensors spaced approximately 10 m apart to measure temperature profiles between the surface and the seafloor. One array was deployed in 70 m of water at a site adjacent to the shelf break, just northwest of a major ocean outfall. The other was deployed on the mid shelf in 35 m of water approximately 6 km from the shelf break site. The subtidal currents in the region flowed parallel to the isobaths with fluctuating time scales around 10 days, a typical coastal-ocean pattern. However, during the falling phase of the barotropic spring tide, sets of large-amplitude, sheared cross-shore current pulses with a duration of 2-5 h were observed at the shelf break site. Currents in these pulses flowed exclusively offshore in a thin layer near the bed with amplitudes reaching 30-40 cm/s. Simultaneously, currents with amplitudes around 15-20 cm/s flowed exclusively onshore in the thicker layer between the offshore flow layer and the sea surface. The net offshore transport was about half the onshore transport. Near-surface isotherms were depressed 30-40 m. These pulses were likely internal bores generated by tidal currents. Bed stresses associated with these events exceeded 3 dynes/cm2. These amplitudes are large enough to resuspend and transport not only fine-grained material, but also medium to coarse sands from the shelf toward the slope. Consequently, the seafloor over the shelf break was swept clear of fine sediments. The data suggest that the internal bores dissipate and are reduced in amplitude as they propagate across this relatively narrow shelf. There is evidence that they reach the 35 m site, but other coastal ocean processes obscure their distinctive characteristics.
Comparative geochemistry of Indian margin (Arabian Sea) sediments: Estuary to continental slope.
NASA Astrophysics Data System (ADS)
Cowie, Greg; Mowbray, Stephen; Kurian, Siby; Sarkar, Amit; White, Carol; Anderson, Amy; Vergnaud, Bianca; Johnstone, Gisele; Brear, Samuel; Woulds, Clare; Naqvi, Wajih; Kitazato, Hiroshi
2014-05-01
Factors controlling the distribution of organic matter in the Arabian Sea have been the subject of much research and debate ever since organic-rich slope deposits were associated with the mid-water oxygen minimum zone (OMZ) However, the debate remains open, and numerous interacting factors have been invoked as important controls. A limitation of most previous studies is that they have been restricted to limited portions of the margin, and have not included molecular-level tracers that allow distinction of organic matter (OM) source and degradation state as factors in OM distribution. We report results from sites across the Indian margin of the Arabian Sea, which were analysed for carbon and nitrogen compositions (elemental and isotopic), grain size and indices of OM source and degradation state. Site locations ranged from the Mandovi/Zuari estuaries to depths of ~2000m on the continental slope, thus spanning both the semi-permanent OMZ on the upper slope (~200-1300m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, but overwhelming predominance (80%+) of marine OM on the shelf and slope, even in nearshore deposits. Thus, riverine OM is heavily diluted or efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from <0.5 wt% in relict shelf sands to a maximum of >7 wt% at upper slope sites within the OMZ, then decreasing to ≤1wt% at 2000m. However, major variability (~5 wt%) occured within the OMZ at sites with near-identical depths and bottom-water oxygen. A strong relationship between organic C and grain size was seen for OMZ sediments, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, results indicate that OM enrichment on the upper slope, where it occurs, can be explained by winnowing or other physical processes on the shelf combined with progressive OM degradation with increasing oxygen exposure below the OMZ. Reduced oxygen exposure may contribute to observed OM enrichment with the OMZ, but hydrodynamic processes are the overriding control on sediment OM distribution, even within the OMZ.
Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.
2017-12-01
Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.
Mixing in seasonally stratified shelf seas: a shifting paradigm.
Rippeth, Tom P
2005-12-15
Although continental shelf seas make up a relatively small fraction (ca 7%) of the world ocean's surface, they are thought to contribute significantly (20-50% of the total) to the open-ocean carbon dioxide storage through processes collectively known as the shelf sea pump. The global significance of these processes is determined by the vertical mixing, which drives the net CO(2) drawdown (which can occur only in stratified water). In this paper, we focus on identifying the processes that are responsible for mixing across the thermocline in seasonally stratified shelf seas. We present evidence that shear instability and internal wave breaking are largely responsible for thermocline mixing, a clear development from the first-order paradigm for the water column structure in continental shelf seas. The levels of dissipation observed are quantitatively consistent with the observed dissipation rates of the internal tide and near-inertial oscillations. It is perhaps because these processes make such a small contribution to the total energy dissipated in shelf seas that they are not well represented in current state-of-the-art numerical models of continental shelf seas. The results thus present a clear challenge to oceanographic models.
Passive sampling was used to deduce water concentrations of persistent organic pollutants (POPs) in the vicinity of a marine Superfund site on the Palos Verdes Shelf, California, USA. Pre-calibrated solid phase microextraction (SPME) fibers and polyethylene (PE) strips that were...
33 CFR 106.415 - Amendment and audit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Amendment and audit. 106.415 Section 106.415 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Plan (FSP) § 106.415 Amendment and...
We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column metabolism and the formation of hypoxia (dissolved oxygen <2 mg L-1) in the region. Water column community respiration rates (WR) were measured on 10 cr...
Shelf life prediction of apple brownies using accelerated method
NASA Astrophysics Data System (ADS)
Pulungan, M. H.; Sukmana, A. D.; Dewi, I. A.
2018-03-01
The aim of this research was to determine shelf life of apple brownies. Shelf life was determined with Accelerated Shelf Life Testing method and Arrhenius equation. Experiment was conducted at 25, 35, and 45°C for 30 days. Every five days, the sample was analysed for free fatty acid (FFA), water activity (Aw), and organoleptic acceptance (flavour, aroma, and texture). The shelf life of the apple brownies based on FFA were 110, 54, and 28 days at temperature of 25, 35, and 45°C, respectively.
Surface-water radon-222 distribution along the west-central Florida shelf
Smith, C.G.; Robbins, L.L.
2012-01-01
In February 2009 and August 2009, the spatial distribution of radon-222 in surface water was mapped along the west-central Florida shelf as collaboration between the Response of Florida Shelf Ecosystems to Climate Change project and a U.S. Geological Survey Mendenhall Research Fellowship project. This report summarizes the surface distribution of radon-222 from two cruises and evaluates potential physical controls on radon-222 fluxes. Radon-222 is an inert gas produced overwhelmingly in sediment and has a short half-life of 3.8 days; activities in surface water ranged between 30 and 170 becquerels per cubic meter. Overall, radon-222 activities were enriched in nearshore surface waters relative to offshore waters. Dilution in offshore waters is expected to be the cause of the low offshore activities. While thermal stratification of the water column during the August survey may explain higher radon-222 activities relative to the February survey, radon-222 activity and integrated surface-water inventories decreased exponentially from the shoreline during both cruises. By estimating radon-222 evasion by wind from nearby buoy data and accounting for internal production from dissolved radium-226, its radiogenic long-lived parent, a simple one-dimensional model was implemented to determine the role that offshore mixing, benthic influx, and decay have on the distribution of excess radon-222 inventories along the west Florida shelf. For multiple statistically based boundary condition scenarios (first quartile, median, third quartile, and maximum radon-222 inshore of 5 kilometers), the cross-shelf mixing rates and average nearshore submarine groundwater discharge (SGD) rates varied from 100.38 to 10-3.4 square kilometers per day and 0.00 to 1.70 centimeters per day, respectively. This dataset and modeling provide the first attempt to assess cross-shelf mixing and SGD on such a large spatial scale. Such estimates help scale up SGD rates that are often made at 1- to 10-meter resolution to a coarser but more regionally applicable scale of 1- to 10-kilometer resolution. More stringent analyses and model evaluation are required, but results and analyses presented in this report provide the foundation for conducting a more rigorous statistical assessment.
NASA Astrophysics Data System (ADS)
Lemay, Jonathan; Thomas, Helmuth; Craig, Susanne E.; Burt, William J.; Fennel, Katja; Greenan, Blair J. W.
2018-04-01
The understanding of the seasonal variability of carbon cycling on the Scotian Shelf in the NW Atlantic Ocean has improved in recent years; however, very little information is available regarding its short-term variability. In order to shed light on this aspect of carbon cycling on the Scotian Shelf we investigate the effects of Hurricane Arthur, which passed the region on 5 July 2014. The hurricane caused a substantial decline in the surface water partial pressure of CO2 (pCO2), even though the Scotian Shelf possesses CO2-rich deep waters. High-temporal-resolution data of moored autonomous instruments demonstrate that there is a distinct layer of relatively cold water with low dissolved inorganic carbon (DIC) slightly above the thermocline, presumably due to a sustained population of phytoplankton. Strong storm-related wind mixing caused this cold intermediate layer with high phytoplankton biomass to be entrained into the surface mixed layer. At the surface, phytoplankton begin to grow more rapidly due to increased light. The combination of growth and the mixing of low DIC water led to a short-term reduction in the partial pressure of CO2 until wind speeds relaxed and allowed for the restratification of the upper water column. These hurricane-related processes caused a (net) CO2 uptake by the Scotian Shelf region that is comparable to the spring bloom, thus exerting a major impact on the annual CO2 flux budget.
Using the nutrient ratio NO/PO as a tracer of continental shelf waters in the central Arctic Ocean
NASA Astrophysics Data System (ADS)
Wilson, Cara; Wallace, Douglas W. R.
1990-12-01
Historical nitrate, phosphate, and dissolved oxygen data from the central Arctic Ocean are examined with particular emphasis on the conservative parameters NO (9 * NO3 + O2) and PO (135 * PO4 + O2). The NO/PO ratio is shown to increase with depth in the Canada Basin, being ˜0.78 in Surface and Upper Halocline Waters and ˜1.0 in the Atlantic Layer and Deep Waters. Lower Halocline Water is marked by NO and PO minima and intermediate NO/PO. NO/PO ratios from the Arctic shelf seas are examined to determine possible source regions for the various water masses. The NO/PO ratio of Canada Basin Deep Water implies an upper bound of ˜11% shelf water contribution to this water mass. A slight oxygen maximum core in the Lower Halocline Water is identified at a salinity of S = 34.5 in the vicinity of the Alpha Ridge. This core appears to be diminished by diapycnal mixing and does not extend into the Beaufort Gyre.
NASA Astrophysics Data System (ADS)
Rapp, I.; Schlosser, C.; Gledhill, M.; Achterberg, E. P.
2016-02-01
Fe availability in surface waters determines primary production, N2 fixation and microbial community structure and thus plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling areas with oxygen minimum zones, such as the Mauritanian shelf region, are typically associated with elevated Fe concentrations with shelf sediments as key source of Fe to bottom and surface waters. The magnitude of vertical and horizontal Fe fluxes from shelf sediments to onshore and offshore surface waters are not well constrained and there are still large uncertainties concerning the stabilisation of Fe once released from sediments into suboxic and oxic waters. Supportive data of other trace metals can be used as an indicator of sediment release, scavenging processes and biological utilisation. Here we present soluble (<0.02 µm), dissolved (<0.2 µm) and total dissolvable (unfiltered) trace metal data collected at 10 stations on a 90 nautical mile transect across the Mauritanian shelf region in June 2014 (cruise Meteor 107). The samples were pre-concentrated using an automated off-line pre-concentration device and analysed simultaneously for Cd, Pb, Fe, Ni, Cu, Zn, Mn and Co using a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS). First results indicate the importance of benthic sources to the overall Fe budget in this region. Both dissolved Fe and Mn showed enhanced concentrations close to the shelf at depths between 40 and 180 m corresponding with low oxygen concentrations (<50 µmol L-1). Elevated soluble, dissolved, and total dissolvable Fe and Mn concentrations at an offshore station coincided with the location of a cyclonic Eddie that was characterised by an oxygen depleted water body. To further assess the accuracy of vertical and horizontal fluxes of Fe and other trace metals, we compare diffusivity estimates determined by a microstructure profiler and the scale length method (de Jong et al. 2012) with observed isotopic Ra data.
The Ree and ɛNd of 40-70 Ma old fish debris from the west-African platform
NASA Astrophysics Data System (ADS)
Grandjean, Patricia; Cappetta, Henri; Albarède, Francis
1988-04-01
REE concentrations and Nd isotopic compositions have been determined in Late Cretaceous-Early Cenozoic fish debris from West African and Israeli platform sediments and show a strong regional control independent of time, except for those from the Northern Morocco. It is suggested that, although diagenetic fluids do not contribute REE's directly to the phosphatic debris, they may significantly change the Ce anomaly and the ɛNd(T) value of the epicontinental seas, which, in turn, control the REE in marine phosphates. It is shown that, over the investigated period, the North Moroccan shelf seawater was progressively flushed by deep North-Atlantic water.
The Fraser Gyre: A cyclonic eddy off the coast of eastern Australia
NASA Astrophysics Data System (ADS)
Azis Ismail, Mochamad Furqon; Ribbe, Joachim; Karstensen, Johannes; Lemckert, Charles; Lee, Serena; Gustafson, Johann
2017-06-01
This paper examines the on-shelf circulation of the eastern Australian continental shelf for a region off southeast Queensland. We identify a characteristic seasonally reoccurring wind-driven cyclonic flow. It influences the cross-shelf exchange with the East Australian Current (EAC), which is the western boundary current of the South Pacific Ocean. We refer to this cyclonic circulation as the Fraser Gyre. It is located south of Fraser Island between about 25 °S and 27 °S. The region is adjacent to the intensification zone of the EAC where the current accelerates and establishes a swift, albeit seasonally variable southward boundary flow. Through the analysis of several data sets including remotely sensed sea surface temperature and sea surface height anomaly, satellite tracked surface drifters, ocean and atmospheric reanalysis data as well as geostrophic currents from altimetry, we find that the on-shelf Fraser Gyre develops during the southern hemisphere autumn and winter months. The gyre is associated with a longshore near-coast northward flow. Maximum northward on-shelf depth averaged velocities are estimated with about 0.15-0.26 ms-1. The flow turns eastward just to the south of Fraser Island and joins the persistent southward EAC flow along the shelf break. The annual mean net cross-shelf outward and inward flow associated with the gyre is about -1.17 ± 0.23 Sv in the north and 0.23 ± 0.13 Sv (1 Sv = 106 m3s-1) in the south. Mean seasonal water renewal time scales of the continental shelf are longest during austral winter with an average of about 3.3 days due to the Fraser Gyre retaining water over the shelf, however, monthly estimates range from 2 to 8 days with the longer timescale during the austral autumn and winter. The southerly wind during austral autumn and winter is identified as controlling the on shelf circulation and is the principal driver of the seasonally appearing Fraser Gyre. The conceptual model of the Fraser Gyre is consistent with general physical principals of the coastal shelf circulation. A southerly wind is associated with surface layer flow toward the coast, a near coast positive SSHa with a current in the direction of the wind, down-welling and export of shelf water. The Fraser Gyre influenced cross-shelf exchanges are possibly facilitating the offshore transport of fish larvae, sediments, nutrients, river discharges, and other properties across the shelf break and into the southward flowing EAC during the austral autumn and winter.
NASA Astrophysics Data System (ADS)
Chassefiere, Bernard
1990-09-01
Mass-physical properties of the surficial (upper 5 m) sediments on the Gulf of Lions continental margin were analysed, from more than 100 short (1 m) and longer (5 m) cores obtained during several cruises. Data include water content, unit weight, Atterberg limits (liquid limit, plastic limit, plasticity index), shear strength and compression index, and are used to determine: first, the mass property distribution, according to the main parameters influencing mass-physical properties; the relationships between these properties and the nepheloid layer on the shelf. The shoreline (lagoons) and inner shelf are characterized by low density and shear strength and high water content deposits, due to electrochemical flocculation of the sediment. The outer shelf is blanketed by higher density and shear strength and lower water content deposits generated by normal settling of suspended particles. On the inner shelf, during river peak discharges, a short-term thin bottom layer of "yogurt-like" [ FASS (1985) Geomarine Letters, 4, 147-152; FASS (1986) Continental Shelf Research, 6, 189-208] fluid-mud (unit weight lower than 1.3 mg m -3) is supplied, by a bottom nepheloid layer. During stormy periods, this "yogurt-like" layer (about 10 cm thick) partly disappears by resuspension of suspended particulate matter; this is advected, in the bottom nepheloid layer, over the shelf and the canyons within the upper slope.
Developments in Coastal Ocean Modeling
NASA Astrophysics Data System (ADS)
Allen, J. S.
2001-12-01
Capabilities in modeling continental shelf flow fields have improved markedly in the last several years. Progress is being made toward the long term scientific goal of utilizing numerical circulation models to interpolate, or extrapolate, necessarily limited field measurements to provide additional full-field information describing the behavior of, and providing dynamical rationalizations for, complex observed coastal flow. The improvement in modeling capabilities has been due to several factors including an increase in computer power and, importantly, an increase in experience of modelers in formulating relevant numerical experiments and in analyzing model results. We demonstrate present modeling capabilities and limitations by discussion of results from recent studies of shelf circulation off Oregon and northern California (joint work with Newberger, Gan, Oke, Pullen, and Wijesekera). Strong interactions between wind-forced coastal currents and continental shelf topography characterize the flow regimes in these cases. Favorable comparisons of model and measured alongshore currents and other variables provide confidence in the model-produced fields. The dependence of the mesoscale circulation, including upwelling and downwelling fronts and flow instabilities, on the submodel used to parameterize the effects of small scale turbulence, is discussed. Analyses of model results to provide explanations for the observed, but previously unexplained, alongshore variability in the intensity of coastal upwelling, which typically results in colder surface water south of capes, and the observed development in some locations of northward currents near the coast in response to the relaxation of southward winds, are presented.
NASA Astrophysics Data System (ADS)
Chen, Nianhong; Bianchi, Thomas S.; Bland, John M.
2003-06-01
In April 2000, we collected box cores from five stations along a cross-shelf transect on the Louisiana (LA) continental shelf. Novel esters of carotenols and chlorins (carotenoid chlorin esters, CCEs), which are highly specific grazing markers, were identified in surface and deep sediments (>10 cm) from the LA shelf. Chlorophyll- a inventory indicated that CCEs are one of the major decay products of chlorophyll- a in shelf sediments. Abundances of total CCEs (9-18%) in surface sediments along the cross-shelf transect were comparable to the abundance of pheophytin- a, pyropheophytin- a, and total steryl chlorin esters (SCEs). Prior work has identified four CCEs which have dehydrated fucoxanthin/fucoxanthinol as a substitute alcohol of phytol. We report on four newly identified CCEs associated with nondehydrated fuxocanthin/fucoxanthinol esterified to (pyro)pheophorbide- a. These nondehydrated CCEs were generally present in lower concentrations than their dehydrated counterparts, but were detectable by atmospheric pressure chemical ionization (APCI) mass spectrometry coupled with high-performance liquid chromatography (HPLC). We attributed differences between this study and previous work to the time allowed for predepositional decay and grazing processes to occur. The rapid sedimentation of CCEs in the shallow water column (ca. 10 m) on the LA shelf allowed for effective burial of all CCEs compared to the deeper water column regions sampled by previous work. This speculation is supported by the fact that the concentrations of CCEs with nondehydrated fucoxanthin/fucoxanthinol were extremely low in sediments from the site on the outer LA shelf with a deeper (253 m) water column. We also tentatively identified an additional CCE and its isomer as fucoxanthinol didehydrate pyropheophorbide- a ester. We suggest that the formation and transformation of CCEs are primarily controlled by the following three biologically mediated reactions: demethoxycarbonylation, dehydration, and deacetylation. Our laboratory copepod grazing experiment also confirmed that CCEs can be excellent class-specific biomarkers of zooplankton grazing on phytoplankton.
Shelf Sea Oxygen Dynamics: A year of Glider Measurements
NASA Astrophysics Data System (ADS)
Williams, C. A. J.; Palmer, M.; Mahaffey, C.; Jardine, J.
2016-02-01
Oxygen (O) is involved in most biogeochemical processes in the ocean, and dissolved oxygen (DO) is a well-established indicator for biological activity via the estimate of apparent oxygen utilisation (AOU). In the deep waters of the open ocean, the AOU provides a valuable insight into the ocean's biological carbon pump. However, in the physically dynamic and highly productive shallow shelf seas, interpretation of the O distribution and the magnitude of AOU is complex. Physical processes, such as diapycnal mixing, entrainment and horizontal advection act to ventilate waters below the thermocline and thus increase O and decrease AOU. In contrast, biological remineralisation of organic material below the thermocline will consume O and increase AOU. Here, we use 1 year of high-resolution data from >20 glider deployments in the seasonally stratified NW European Shelf Sea to identify and quantify the physical and biological processes that control the DO distribution and magnitude of AOU in shelf seas. A 200km transect between the shelf edge and the central Celtic Sea (CCS) was repeated between November 2014 and August 2015, thus capturing key periods in the seasonal cycling in shelf seas, specifically the onset of stratification, the spring bloom, stratified summer period and breakdown of stratification. The gliders collected data for DO, temperature, salinity, chlorophyll fluorescence, CDOM, backscatter and turbulence. In addition, direct measurements of turbulent dissipation from the Ocean Microstructure Glider deployed during the campaign provided estimates of mixing at CCS and the shelf break, allowing accurate quantification of the vertical fluxes of O. At the end of the stratified period the DO concentration was higher and AOU was lower at the shelf break (80 µM) compared to at CCS on shelf (>95 µM) (Fig 1). Estimates of vertical DO fluxes indicate that this horizontal variation in DO and AOU was partly attributed to enhanced mixing via internal waves at the shelf break ventilating waters below the thermocline, rather than decreased biological O consumption at the shelf break. Taking into consideration physical mixing processes, we provide a robust estimate of the biological O consumption over a seasonal cycle and highlight the need to consider the impact of physical processes on O dynamics in shallow shelf sea systems.
Sea ice and oceanic processes on the Ross Sea continental shelf
NASA Astrophysics Data System (ADS)
Jacobs, S. S.; Comiso, J. C.
1989-12-01
We have investigated the spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf, in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86% during winter with little month-to-month or interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn. Newly identified Pennell and Ross Passage polynyas near the continental shelf break appear to be maintained in part by divergence above a submarine bank and by upwelling of warmer water near the slope front. Warmer subsurface water enters the shelf region year-round and will retard ice growth and enhance heat flux to the atmosphere when entrained in the strong winter vertical circulation. Temperatures at 125-m depth on a mooring near the Ross Ice Shelf during July 1984 averaged 0.15°C above freezing, sufficient to support a vertical heat flux above 100 W/m2. Monthly average subsurface ocean temperatures along the Ross Ice Shelf lag the air temperature cycle and begin to rise several weeks before spring ice breakout. The coarse SMMR resolution and dynamic ice shelf coastlines can compromise the use of microwave sea ice data near continental boundaries.
Are Deltaic Subaqueous Clinothems One-Highstand Affairs?
NASA Astrophysics Data System (ADS)
Giosan, L.; Clift, P.; Henstock, T.; Ponton, C.; Limmer, D. R.
2009-12-01
Clinothems are basic building blocks of continental shelves, whether modern or ancient. In many cases large delta-building rivers directly construct subaqueous clinothems on the shelf that are offset offshore from the delta coast. Assuming that the sediment flux to the shelf and the sediment redistributing processes are suitable for subaqueous clinothem development, the evolution of any subaqueous clinothems depends primarily on the availability of accommodation space. As the eustatic sea level varies with the volume of global ice, one primary mechanism of creating accommodation space on shelves is erosion during lowstands. We discuss here possible mechanisms for clinothems to survive erosion during lowstands by examining new data from the Indus delta shelf offshore Pakistan. Theoretical considerations based on estimates of the relative importance of wave energy vs. fluvial sediment delivery suggest that the Indus delta should develop a mid-shelf subaqueous clinothem. Instead, the Indus shelf exhibits a compound clinoform morphology. A shallow delta front clinoform extends along the entire delta coast from the shoreline to the 10-25 m water depth. New seismic data confirm that a mid-shelf clinothem developed between 30 and 90 m water depth extending over 100 km offshore east of the Indus canyon but less than 30 km west of the canyon. The advanced position of the eastern mid-shelf clinothem might reflect either a prolonged sediment delivery from the Indus River in that area compared to the shelf west of the canyon or the presence of a relict pre-Holocene mid-shelf delta.
NASA Astrophysics Data System (ADS)
Wallhead, P. J.; Bellerby, R. G. J.; Silyakova, A.; Slagstad, D.; Polukhin, A. A.
2017-10-01
The impacts of oceanic CO2 uptake and global warming on the surface ocean environment have received substantial attention, but few studies have focused on shelf bottom water, despite its importance as habitat for benthic organisms and demersal fisheries such as cod. We used a downscaling ocean biogeochemical model to project bottom water acidification and warming on the western Eurasian Arctic shelves. A model hindcast produced 14-18 year acidification trends that were largely consistent with observational estimates at stations in the Iceland and Irminger Seas. Projections under SRES A1B scenario revealed a rapid and spatially variable decline in bottom pH by 0.10-0.20 units over 50 years (2.5%-97.5% quantiles) at depths 50-500 m on the Norwegian, Barents, Kara, and East Greenland shelves. Bottom water undersaturation with respect to aragonite occurred over the entire Kara shelf by 2040 and over most of the Barents and East Greenland shelves by 2070. Shelf acidification was predominantly driven by the accumulation of anthropogenic CO2, and was concurrent with warming of 0.1-2.7°C over 50 years. These combined perturbations will act as significant multistressors on the Barents and Kara shelves. Future studies should aim to improve the resolution of shelf bottom processes in models, and should consider the Kara Sea and Russian shelves as possible bellwethers of shelf acidification.
NASA Astrophysics Data System (ADS)
Juranek, L. W.; Feely, R. A.; Peterson, W. T.; Alin, S. R.; Hales, B.; Lee, K.; Sabine, C. L.; Peterson, J.
2009-12-01
We developed a multiple linear regression model to robustly determine aragonite saturation state (Ωarag) from observations of temperature and oxygen (R2 = 0.987, RMS error 0.053), using data collected in the Pacific Northwest region in late May 2007. The seasonal evolution of Ωarag near central Oregon was evaluated by applying the regression model to a monthly (winter)/bi-weekly (summer) water-column hydrographic time-series collected over the shelf and slope in 2007. The Ωarag predicted by the regression model was less than 1, the thermodynamic calcification/dissolution threshold, over shelf/slope bottom waters throughout the entire 2007 upwelling season (May-November), with the Ωarag = 1 horizon shoaling to 30 m by late summer. The persistence of water with Ωarag < 1 on the continental shelf has not been previously noted and could have notable ecological consequences for benthic and pelagic calcifying organisms such as mussels, oysters, abalone, echinoderms, and pteropods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, D.J.
1986-01-01
The West Flower Garden Bank is a coral reef on the Texas Continental shelf. The corals on the bank are vulnerable to sediment contamination and to excess turbidity in the overlying water column. Concern for the environmental impact on this and other banks in the region exposed to nearby hydrocarbon production prompted the Bureau of Land Management to fund a data collection effort on the Texas/Louisiana shelf which provided the data analyzed here. Data analyzed includes profiles of velocity, temperature and salinity taken around the Bank in Oct., 1980 and March, 1981. Fixed current meter moorings and a dye experimentmore » conducted in the bottom boundary layer provided additional input. The data reveals a very complicated flow regime around the bank, with some intensification of flow around and over the bank but no movement of water from the bottom of the surrounding shelf up onto the bank.« less
The Palos Verdes Superfund site is located in over 50 meters of water on the continental shelf and slope off the coast of southern California (USA). The site includes 27 km2 of seabed contaminated over several decades by municipal treatment plant effluent discharged via outfall ...
NASA Astrophysics Data System (ADS)
Pinchuk, Alexei I.; Eisner, Lisa B.
2017-01-01
Interest in the Arctic shelf ecosystems has increased in recent years as the climate has rapidly warmed and sea ice declined. These changing conditions prompted the broad-scale multidisciplinary Arctic Ecosystem integrated survey (Arctic Eis) aimed at systematic, comparative analyses of interannual variability of the shelf ecosystem. In this study, we compared zooplankton composition and geographical distribution in relation to water properties on the eastern Chukchi and northern Bering Sea shelves during the summers of 2012 and 2013. In 2012, waters of Pacific origin prevailed over the study area carrying expatriate oceanic species (e.g. copepods Neocalanus spp., Eucalanus bungii) from the Bering Sea outer shelf well onto the northeastern Chukchi shelf. In contrast, in 2013, zooplankton of Pacific origin was mainly distributed over the southern Chukchi shelf, suggesting a change of advection pathways into the Arctic. These changes also manifested in the emergence of large lipid-rich Arctic zooplankton (e.g. Calanus hyperboreus) on the northeastern Chukchi shelf in 2013. The predominant copepod Calanus glacialis was composed of two distinct populations originating from the Bering Sea and from the Arctic, with the Arctic population expanding over a broader range in 2013. The observed interannual variability in zooplankton distribution on the Chukchi Sea shelf may be explained by previously described systematic oceanographic patterns derived from long-term observations. Variability in oceanic circulation and related zooplankton distributions (e.g. changes in southwestward advection of C. hyperboreus) may impact keystone predators such as Arctic Cod (Boreogadus saida) that feed on energy-rich zooplankton.
Transport and thermohaline variability in Barrow Canyon on the Northeastern Chukchi Sea Shelf
NASA Astrophysics Data System (ADS)
Weingartner, Thomas J.; Potter, Rachel A.; Stoudt, Chase A.; Dobbins, Elizabeth L.; Statscewich, Hank; Winsor, Peter R.; Mudge, Todd D.; Borg, Keath
2017-05-01
We used a 5 year time series of transport, temperature, and salinity from moorings at the head of Barrow Canyon to describe seasonal variations and construct a 37 year transport hindcast. The latter was developed from summer/winter regressions of transport against Bering-Chukchi winds. Seasonally, the regressions differ due to baroclinicity, stratification, spatial, and seasonal variations in winds and/or the surface drag coefficients. The climatological annual cycle consists of summer downcanyon (positive and toward the Arctic Ocean) transport of ˜0.45 Sv of warm, freshwaters; fall (October-December) upcanyon transport of ˜-0.1 Sv of cooler, saltier waters; and negligible net winter (January-April) mass transport when shelf waters are saline and near-freezing. Fall upcanyon transports may modulate shelf freezeup, and negligible winter transports could influence winter water properties. Transport variability is largest in fall and winter. Daily transport probability density functions are negatively skewed in all seasons and seasonal variations in kurtosis are a function of transport event durations. The latter may have consequences for shelf-basin exchanges. The climatology implies that the Chukchi shelf circulation reorganizes annually: in summer ˜40% of the summer Bering Strait inflow leaves the shelf via Barrow Canyon, but from fall through winter all of it exits via the western Chukchi or Central Channel. We estimate a mean transport of ˜0.2 Sv; ˜50% less than estimates at the mouth of the canyon. Transport discrepancies may be due to inflows from the Beaufort shelf and the Chukchi shelfbreak, with the latter entering the western side of the canyon.
NASA Astrophysics Data System (ADS)
Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian
2013-07-01
Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.
Strong sensitivity of Pine Island ice-shelf melting to climatic variability.
Dutrieux, Pierre; De Rydt, Jan; Jenkins, Adrian; Holland, Paul R; Ha, Ho Kyung; Lee, Sang Hoon; Steig, Eric J; Ding, Qinghua; Abrahamsen, E Povl; Schröder, Michael
2014-01-10
Pine Island Glacier has thinned and accelerated over recent decades, significantly contributing to global sea-level rise. Increased oceanic melting of its ice shelf is thought to have triggered those changes. Observations and numerical modeling reveal large fluctuations in the ocean heat available in the adjacent bay and enhanced sensitivity of ice-shelf melting to water temperatures at intermediate depth, as a seabed ridge blocks the deepest and warmest waters from reaching the thickest ice. Oceanic melting decreased by 50% between January 2010 and 2012, with ocean conditions in 2012 partly attributable to atmospheric forcing associated with a strong La Niña event. Both atmospheric variability and local ice shelf and seabed geometry play fundamental roles in determining the response of the Antarctic Ice Sheet to climate.
NASA Astrophysics Data System (ADS)
Kourafalou, Villy; Androulidakis, Yannis
2013-04-01
Large river plumes are a major supplier of freshwater, sediments and nutrients in coastal and shelf seas. Novel processes controlling the transport and fate of riverine waters (and associated materials) will be presented, under flood conditions and in the presence of complex topography, ambient shelf circulation and slope processes, controlled by the interaction with rim currents. The Mississippi River (MR) freshwater outflow is chosen as a test case, as a major circulation forcing mechanism for the Northern Gulf of Mexico and a unique river plume for the intense interactions with a large scale ocean current, namely the Loop Current branch of the Gulf Stream, and associated eddy field. The largest MR outflow in history (45,000 m3/sec in 2011) is compared with the second largest outflow in the last 8 years (41,000 m3/sec in 2008). Realistically forced simulations, based on the Hybrid Coordinate Ocean Model (HYCOM) with careful treatment of river plume dynamics and nested to a data assimilated, basin-wide model, reveal the synergistic effect of enhanced discharge, winds, stratification of ambient shelf waters and offshore circulation over the transport of plume waters. The investigation targets a broader understanding of the dynamics of large scale river plumes in general, and of the MR plume in particular. In addition, in situ observations from ship surveys and satellite chl-a data showed that the mathematical simulations with high temporal resolution river outflow input may reproduce adequately the buoyant waters spreading over the Northern Gulf of Mexico shelf and offshore areas. The fate of the river plume is strongly determined and affected by deep basin processes. The strong impacts of the Loop Current system (and its frontal eddies) on river plume evolution are of particular importance under conditions of increased offshore spreading, which is presumed under large discharge rates and can cause loss of riverine materials to the basin interior. Flood conditions can increase both downstream (westward) and upstream (eastward) spreading. The high outflow rates enhance the anticyclonic bulge, strengthen the downstream coastal current toward the western Louisiana-Texas shelf. The substantial eastward spreading over the eastern Mississippi-Alabama-Florida shelf was highly correlated with the Loop Current northward extension. On the contrary, cyclonic eddies east of the Delta effectively block the offshore eastward spreading of the plume and may keep the river waters away from the eastern shelf. We show that the proximity of eddies to the shelf break is a sufficient condition for shelf-to-offshore interaction, which is facilitated by the steep bottom topography near the Delta.
Salinity variability along the eastern continental shelf of Canada and the United States, 1973-2013
NASA Astrophysics Data System (ADS)
Bisagni, James J.
2016-09-01
Continental shelf waters located off the east coast of Canada and the United States are part of a long shelf current system that is partly comprised of colder, less-saline waters originating from high latitudes, including waters from the North Atlantic sub-polar gyre, along with ice-melt and freshwater input from local rivers. A 41-year analysis (1973-2013) of near-surface salinity (NSS) using three hydrographic datasets (Bedford Institute of Oceanography "Climate", NOAA/ESDIM, and Canadian Marine Environmental Data Service (MEDS)) allowed an examination of NSS variability within 11 continental shelf sub-regions, extending from the southern Newfoundland Shelf of eastern Canada to the DelMarVa/Hatteras Shelf of the United States. Although the periods of record containing sufficient data vary between sub-regions, regional mean NSS values are lowest within the Gulf of St. Lawrence and highest on the DelMarVa/Hatteras shelf, with largest annual variability within the Gulf of St. Lawrence. After removal of outliers, long-term linear trends computed from annual mean NSS were detected along the Newfoundland Shelf (+0.011 y-1), Western Scotian Shelf (-0.007 y-1), Gulf of Maine (-0.014 y-1), Georges Bank (-0.011 y-1), and DelMarVa/Hatteras Shelf (+0.024 y-1). A long-term quadratic fit to annual mean NSS from the Eastern Scotian Shelf displays a salinity increase through 1992 of +0.026 y-1, decreasing thereafter until 2013 by -0.028 y-1. A quadratic fit for the Western Grand Banks displays a NSS increase through 2007 of +0.022 y-1, decreasing thereafter through 2013 by -0.006 y-1. Annual mean NSS from the Eastern Grand Banks, Tail of the Grand Banks, Gulf of St. Lawrence, and Middle Atlantic Bight display no long-term trends. Inter-annual variability (IAV) of NSS residuals shows similar small mean squared error (mse) of 0.02-0.04 for the four northern-most sub-regions (Newfoundland Shelf, Eastern, Tail and Western Grand Banks) and are correlated at 0-year lag. IAV of NSS residuals (mse) are larger for the Gulf of St. Lawrence (~0.19), Eastern and Western Scotian Shelf (~0.09-0.06), Gulf of Maine and Georges Bank (~0.08-0.06), Middle Atlantic Bight (~0.19), and maximal for the DelMarVa/Hatteras Shelf (~0.36), and are also correlated at 0-year lag, but are uncorrelated with the four northern-most sub-regions. Consideration of a simple "flux variation" model that includes along-shelf, altimeter-derived velocity anomalies measured upstream on the Western Scotian Shelf and the positive along-shelf mean salinity gradient between the Eastern Scotian Shelf and the DelMarVa/Hatteras Shelf, may explain the synchronous nature of NSS residuals for the southern-most 6 sub-regions. Furthermore, the flux variation model results in calculated NSS residuals that are within a factor of two of observed NSS residuals for the southern-most DelMarVa/Hatteras Shelf. Co-varying broad-scale coastal sea level and shelf break front position anomalies also support the flux variation model, as do CMV Oleander temperature anomalies across a limited Middle Atlantic Bight shelf region. Overall, the relationships between along-shelf observations of NSS and other shelf parameters support an existing wind-driven dynamical shelf model. Specifically, a flux variation model is able to describe IAV of NSS along a section of the Canadian and U.S shelf for periods greater than one year. In the future, this model may be able to provide useful indices of regime change as noted within the Northeast Shelf Large Marine Ecosystem by other workers.
Sediment fluxes of dissolved inorganic carbon (DIC), O2, nutrients, and N2 (denitrification) were measured on the Louisiana Continental Shelf during six cruises from 2005 to 2007. On each cruise, three to seven stations were occupied in regions of the shelf that experience summer...
Jones, B.H.; Noble, M.A.; Dickey, T.D.
2002-01-01
Moorings and towyo mapping were used to study the temporal and spatial variability of physical processes and suspended particulate material over the continental shelf of the Palos Verdes Peninsula in southwestern Los Angeles, California during the late summer of 1992 and winter of 1992-93. Seasonal evolution of the hydrographic structure is related to seasonal atmospheric forcing. During summer, stratification results from heating of the upper layer. Summer insolation coupled with the stratification results in a slight salinity increase nearsurface due to evaporation. Winter cooling removes much of the upper layer stratification, but winter storms can introduce sufficient quantities of freshwater into the shelf water column again adding stratification through the buoyancy input. Vertical mixing of the low salinity surface water deeper into the water column decreases the sharp nearsurface stratification and reduces the overall salinity of the upper water column. Moored conductivity measurements indicate that the decreased salinity persisted for at least 2 months after a major storm with additional freshwater inputs through the period. Four particulate groups contributed to the suspended particulate load in the water column: phytoplankton, resuspended sediments, and particles in treated sewage effluent were observed in every towyo mapping cruise; terrigenous particles are introduced through runoff from winter rainstorms. Terrigenous suspended particulate material sinks from the water column in <9 days and phytoplankton respond to the stormwater input of buoyancy and nutrients within the same period. The suspended particles near the bottom have spatially patchy distributions, but are always present in hydrographic surveys of the shelf. Temporal variations in these particles do not show a significant tidal response, but they may be maintained in suspension by internal wave and tide processes impinging on the shelf. ?? 2002 Elsevier Science Ltd. All rights reserved.
Variability and Dynamics of the Yucatan Upwelling: High-Resolution Simulations
NASA Astrophysics Data System (ADS)
Jouanno, J.; Pallàs-Sanz, E.; Sheinbaum, J.
2018-02-01
The Yucatan shelf in the southern Gulf of Mexico is under the influence of an upwelling that uplifts cool and nutrient rich waters over the continental shelf. The analysis of a set of high-resolution (Δx = Δy ≈ 2.8 km) simulations of the Gulf of Mexico shows two dominant modes of variability of the Yucatan upwelling system: (1) a low-frequency mode related to variations in position and intensity of the Loop Current along the shelf, with upwelling intensified when the Loop Current is strong and approaches to the Yucatan shelf break and (2) a high-frequency mode with peak frequency in the 6-10 days band related to wind-forced coastal waves that force vertical velocities along the eastern Yucatan shelf break. To first order, the strength and position of the Loop Current are found to control the intensity of the upwelling, but we show that high-frequency winds also contribute (˜17%) to a net input of cool waters (<22.5°C) on the Yucatan shelf. Finally, although more observational studies are needed to corroborate the topographic character of the Yucatan upwelling system, this study reveals the key role played by a notch along the Yucatan shelf break: a sensitivity simulation without the notch shows a 55% reduction of the upwelling.
Cheriton, Olivia M.; McPhee-Shaw, Erika E.; Storlazzi, Curt D.; Rosenberger, Kurt J.; Shaw, William J.; Raanan, Ben Y.
2014-01-01
Several sequential upwelling events were observed in fall 2012, using measurements from the outer half of the continental shelf in Monterey Bay, during which the infiltration of dense water onto the shelf created a secondary, near-bottom pycnocline. This deep pycnocline existed in concert with the near-surface pycnocline and enabled the propagation of near-bottom, cold, semidiurnal internal tidal bores, as well as energetic, high-frequency, nonlinear internal waves of elevation (IWOE). The IWOE occurred within 20 m of the bottom, had amplitudes of 8–24 m, periods of 6–45 min, and depth-integrated energy fluxes up to 200 W m−1. Iribarren numbers (<0.03) indicate that these IWOE were nonbreaking in this region of the shelf. These observations further demonstrate how regional upwelling dynamics and the resulting bulk, cross-margin hydrography is a first-order control on the ability of internal waves, at tidal and higher frequencies, to propagate through continental shelf waters.
NASA Astrophysics Data System (ADS)
Schaeffer, Amandine; Roughan, Moninya; Austin, Tim; Everett, Jason D.; Griffin, David; Hollings, Ben; King, Edward; Mantovanelli, Alessandra; Milburn, Stuart; Pasquer, Benedicte; Pattiaratchi, Charitha; Robertson, Robin; Stanley, Dennis; Suthers, Iain; White, Dana
2016-08-01
Since 2008, 26 glider missions have been undertaken along the continental shelf of southeastern Australia. Typically these missions have spanned the continental shelf on the inshore edge of the East Australian Current from 29.5-33.5°S. This comprehensive dataset of over 33,600 CTD profiles from the surface to within 10 m of the bottom in water depths ranging 25-200 m provides new and unprecedented high resolution observations of the properties of the continental shelf waters adjacent to a western boundary current, straddling the region where it separates from the coast. The region is both physically and biologically significant, and is also in a hotspot of ocean warming. We present gridded mean fields for temperature, salinity and density, but also dissolved oxygen and chlorophyll-a fluorescence indicative of phytoplankton biomass. This data will be invaluable for understanding shelf stratification, circulation, biophysical and bio-geochemical interactions, as well as for the validation of high-resolution ocean models or serving as teaching material.
Schaeffer, Amandine; Roughan, Moninya; Austin, Tim; Everett, Jason D; Griffin, David; Hollings, Ben; King, Edward; Mantovanelli, Alessandra; Milburn, Stuart; Pasquer, Benedicte; Pattiaratchi, Charitha; Robertson, Robin; Stanley, Dennis; Suthers, Iain; White, Dana
2016-08-30
Since 2008, 26 glider missions have been undertaken along the continental shelf of southeastern Australia. Typically these missions have spanned the continental shelf on the inshore edge of the East Australian Current from 29.5-33.5°S. This comprehensive dataset of over 33,600 CTD profiles from the surface to within 10 m of the bottom in water depths ranging 25-200 m provides new and unprecedented high resolution observations of the properties of the continental shelf waters adjacent to a western boundary current, straddling the region where it separates from the coast. The region is both physically and biologically significant, and is also in a hotspot of ocean warming. We present gridded mean fields for temperature, salinity and density, but also dissolved oxygen and chlorophyll-a fluorescence indicative of phytoplankton biomass. This data will be invaluable for understanding shelf stratification, circulation, biophysical and bio-geochemical interactions, as well as for the validation of high-resolution ocean models or serving as teaching material.
2013-06-13
This photo, aken onboard a National Science Foundation/NASA chartered Twin Otter aircraft, shows the ice front of Dibble Ice Shelf, East Antarctica, a significant melt water producer from the Wilkes Land region, East Antarctica.
NASA Astrophysics Data System (ADS)
Zhang, Jinyu; Steel, Ronald; Ambrose, William
2017-12-01
Shelf margins prograde and aggrade by the incremental addition of deltaic sediments supplied from river channel belts and by stored shoreline sediment. This paper documents the shelf-edge trajectory and coeval channel belts for a segment of Paleocene Lower Wilcox Group in the northern Gulf of Mexico based on 400 wireline logs and 300 m of whole cores. By quantitatively analyzing these data and comparing them with global databases, we demonstrate how varying sediment supply impacted the Wilcox shelf-margin growth and deep-water sediment dispersal under greenhouse eustatic conditions. The coastal plain to marine topset and uppermost continental slope succession of the Lower Wilcox shelf-margin sediment prism is divided into eighteen high-frequency ( 300 ky duration) stratigraphic sequences, and further grouped into 5 sequence sets (labeled as A-E from bottom to top). Sequence Set A is dominantly muddy slope deposits. The shelf edge of Sequence Sets B and C prograded rapidly (> 10 km/Ma) and aggraded modestly (< 80 m/Ma). The coeval channel belts are relatively large (individually averaging 11-13 m thick) and amalgamated. The water discharge of Sequence Sets B and C rivers, estimated by channel-belt thickness, bedform type, and grain size, is 7000-29,000 m3/s, considered as large rivers when compared with modern river databases. In contrast, slow progradation (< 10 km/Ma) and rapid aggradation (> 80 m/Ma) characterizes Sequence Sets D and E, which is associated with smaller (9-10 m thick on average) and isolated channel belts. This stratigraphic trend is likely due to an upward decreasing sediment supply indicated by the shelf-edge progradation rate and channel size, as well as an upward increasing shelf accommodation indicated by the shelf-edge aggradation rate. The rapid shelf-edge progradation and large rivers in Sequence Sets B and C confirm earlier suggestions that it was the early phase of Lower Wilcox dispersal that brought the largest deep-water sediment volumes into the Gulf of Mexico. Key factors in this Lower Wilcox stratigraphic trend are likely to have been a very high initial sediment flux to the Gulf because of the high initial release of sediment from Laramide catchments to the north and northwest, possibly aided by modest eustatic sea-level fall on the Texas shelf, which is suggested by the early, flat shelf-edge trajectory, high amalgamation of channel belts, and the low overall aggradation rate of the Sequence Sets B and C.
NASA Astrophysics Data System (ADS)
Kudela, Raphael M.; Garfield, Newell; Bruland, Kenneth W.
2006-12-01
The NSF-sponsored Coastal Ocean Processes Wind Events and Shelf Transport (WEST) experiment investigates the interplay between wind-driven transport and shelf productivity; while eastern boundary shelves are characterized by high productivity due to upward fluxes of nutrients into the euphotic zone, wind forcing also represents negative physical and biological controls via offshore transport and deep (light-limiting) mixing of primary producers. Although this interaction has been well documented for eastern boundary systems generally and for California specifically, one of the primary goals of WEST was to characterize more fully the interplay between positive and negative effects of wind stress, which result in the consistently elevated biological productivity in these shelf regions. During 3 month-long summer cruises (2000-2002) we observed extremes in upwelling/relaxation, using both in situ instrumentation and remotely sensed data. Relationships between optical and physical properties were examined, with emphasis on biogeochemical implications. During 2000, the WEST region was optically dominated by phytoplankton and covarying constituents. During 2001 and 2002, periods of more intense upwelling favorable winds, we observed a transition to optical properties dominated by detrital and inorganic materials. In all years, the continental shelf break provided a natural boundary between optically distinct shelf and open ocean waters. During 2002, we obtained discrete trace-metal measurements of particulate iron and aluminum; we develop a bio-optical proxy for acetic-acid leachable iron from backscatter and fluorescence, and demonstrate that particulate iron is not well correlated to traditional upwelling proxies such as macronutrients, temperature, and salinity. We conclude that the shelf break between ca. 100 and 200 m water depth serves as a natural break point between coastal and oceanic water masses in this region, and that the elevated biomass and productivity associated with this eastern boundary current regime is dominated by these iron rich, shallow shelf waters.
NASA Astrophysics Data System (ADS)
Lorenzo, Luisa M.; Arbones, Belén; Tilstone, Gavin H.; Figueiras, Francisco G.
2005-02-01
Hydrographic conditions, phytoplankton composition and biomass, photosynthetic parameters and primary production were determined in the Ría de Vigo and adjacent shelf waters during April-May 1997 and September 1998. The sampling was designed to find the seasonal downwelling-upwelling and upwelling-downwelling transition periods characteristic of spring and autumn phytoplankton blooms. There was upwelling relaxation event followed by downwelling during both spring and autumn cruises. Temperature and salinity distributions showed that ría and shelf waters formed two distinct domains, which were separated by a thermohaline front at the mouth of the ría. The phytoplankton composition was completely different in the two environments. Cyanobacteria dominated on the shelf and constituted 46-66% of total phytoplankton biomass, while large phytoplankton (diatoms and dinoflagellates) were more abundant in the ría, especially during upwelling relaxation. However, the high shelf-ría exchange induced by a strong downwelling event on 7 September 1998 removed large phytoplankton (mainly diatoms) from the water column in the ría. Chlorophyll-specific maximum photosynthetic rates ( PmB) were significantly higher in the ría domain during upwelling relaxation, when autotrophic microplankton dominated in the interior. Primary production varied from 0.63 to 2.6 g C m -2 day -1 during the spring cruise and between 0.32 and 2.09 g C m -2 day -1 during the autumn cruise, with the highest values in the ría during both cruises. Primary production was relatively constant on the shelf with no significant differences between cruises, whereas differences were significant in the ría, with higher values during upwelling relaxation periods and lower values during downwelling. Analysis of light saturation parameters and light absorbed by phytoplanton in the water column suggests that photosynthesis was not light-limited either on the shelf or in the ría. It is concluded that upwelling-downwelling cycles were the main driving force, through changes in autotrophic microplankton biomass in the ría, that caused the variability observed in the ría-shelf system.
NASA Astrophysics Data System (ADS)
Shank, G. C.; Liu, Q.; Patterson, L.; Kowalczuk, P.
2012-12-01
DOC, CDOM, and EEM PARAFAC analyses were used to examine DOM distribution along the Louisiana (LA) and Texas (TX) continental shelves in the northern Gulf of Mexico during cruises in May and August of the 2011 Mississippi basin flood year, and May, June, and August of the 2012 Mississippi basin drought year. For both 2011 and 2012, CDOM and DOC levels were well-correlated with salinity on the LA shelf. However, the mixing curves for each parameter were markedly different between 2011 and 2012 and CDOM:DOC ratios, indicative of terrestrial organic matter inputs, were much higher during 2011 than during 2012. EEM PARAFAC results confirmed a much higher terrestrial DOM signature in LA shelf waters for 2011, but also a higher terrestrial DOM signature for TX waters in 2012 as the drought in the western Gulf region subsided. CDOM:DOC ratios were anomalously high offshore of Atchafalaya Bay and the Breton-Chandeleur Sound complex indicating coastal wetlands augment the terrestrial DOM discharged through the Mississippi and Atchafalaya Rivers. At several sites along the LA and TX shelves during both 2011 and 2012, CDOM was higher near bottom than at mid-depth without concomitant DOC increases, possibly due to microbial processing of settling phytoplankton cells, sedimentary fluxes, and benthic algal activity which was especially prevalent along the TX shelf. Results from simulated solar radiation experiments indicate that shelf water CDOM readily photobleaches with losses of >50% likely in surface waters over the summer, while DOC photooxidation is at least an order of magnitude slower than CDOM photobleaching.;
NASA Astrophysics Data System (ADS)
Kaiser, K.; Benner, R.; Amon, R. M. W.
2017-01-01
Dissolved lignin phenols, chromophoric dissolved organic matter (CDOM) absorption, and fluorescence were analyzed along cross-slope mooring locations in the Barents, Laptev, and East Siberian Seas to gain a better understanding of terrigenous dissolved organic carbon (tDOC) dynamics in Arctic shelf seas and the Arctic Ocean. A gradient of river water and tDOC was observed along the continental shelf eastward into the East Siberian Sea. Correlations of carbon-normalized yields of lignin-derived phenols supplied by Siberian rivers with river water fractions and known water residence times yielded in situ decay constants of 0.18-0.58 yr-1. Calculations showed ˜50% of annual tDOC discharged by Siberian rivers was mineralized in estuaries and on Eurasian shelves per year indicating extensive removal of tDOC. Bioassay experiments and in situ decay constants indicated a reactivity continuum for tDOC. CDOM parameters and acid/aldehyde ratios of vanillyl (V) and syringyl (S) lignin phenols showed biomineralization was the dominant mechanism for the removal of tDOC. Characteristic ratios of p-hydroxy (P), S, and V phenols (P/V, S/V) also identified shelf regions in the Kara Sea and regions along the Western Laptev Sea shelf where formation of Low Salinity Halocline Waters (LSHW) and Lower Halocline Water (LHW) occurred. The efficient removal of tDOC demonstrates the importance of Eurasian margins as sinks of tDOC derived from the large Siberian Rivers and confirms tDOC mineralization has a major impact on nutrients budgets, air-sea CO2 exchange, and acidification in the Siberian Shelf Seas.
NASA Astrophysics Data System (ADS)
Kaiser, Karl; Amon, Rainer; Benner, Ronald
2017-04-01
Dissolved lignin phenols, chromophoric dissolved organic matter (CDOM) absorption, and fluorescence were analyzed along cross-slope mooring locations in the Barents, Laptev, and East Siberian Seas to gain a better understanding of terrigenous dissolved organic carbon (tDOC) dynamics in Arctic shelf seas and the Arctic Ocean. A gradient of river water and tDOC was observed along the continental shelf eastward into the East Siberian Sea. Correlations of carbon-normalized yields of lignin-derived phenols supplied by Siberian rivers with river water fractions and known water residence times yielded in situ decay constants of 0.18-0.58 per year. Calculations showed about 50% of annual tDOC discharged by Siberian rivers was mineralized in estuaries and on the Eurasian shelves per year indicating extensive removal of tDOC. Bioassay experiments and in situ decay constants indicated a reactivity continuum for tDOC. CDOM parameters and acid/aldehyde ratios of vanillyl (V) and syringyl (S) lignin phenols showed biomineralization was the dominant mechanism for the removal of tDOC. Characteristic ratios of p-hydroxy (P), S, and V phenols (P/V, S/V) also identified shelf regions in the Kara Sea and regions along the Western Laptev Sea shelf where formation of Low Salinity Halocline Waters (LSHW) and Lower Halocline Water (LHW) occurred. The efficient removal of tDOC demonstrates the importance of Eurasian margins as sinks of tDOC derived from the large Siberian Rivers and confirms tDOC mineralization has a major impact on nutrients budgets, air-sea CO2 exchange, and acidification in the Siberian Shelf Seas.
NASA Astrophysics Data System (ADS)
Wolanski, E.; Andutta, F.; Deleersnijder, E.; Li, Y.; Thomas, C. J.
2017-07-01
The 2015/16 ENSO event increased the temperature of waters surrounding northeast Australia to above 30 °C, with large patches of water reaching 32 °C, for over two months, which led to severe bleaching of corals of the Northern Great Barrier Reef (NGBR). This study provides evidence gained from remote-sensing data, oceanographic data and oceanographic modeling, that three factors caused this excessive heating, namely: 1) the shutdown of the North Queensland Coastal Current, which would otherwise have flushed and cooled the Northern Coral Sea and the NGBR through tidal mixing 2) the advection of warm (>30 °C) water from the Gulf of Carpentaria eastward through Torres Strait and then southward over the NGBR continental shelf, and 3) presumably local solar heating. The eastward flux of this warm water through Torres Strait was driven by a mean sea level difference on either side of the strait that in turn was controlled by the wind, which also generated the southward advection of this warm water onto the NGBR shelf. On the NGBR shelf, the residence time of this warm water was longer inshore than offshore, and this may explain the observed cross-shelf gradient of coral bleaching intensity. The fate of the Great Barrier Reef is thus controlled by the oceanography of surrounding seas.
Atlantic water variability on the SE Greenland continental shelf and its relationship to SST
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Straneo, F.; Rosing-Asvid, A.; Stenson, G.; Davidson, F. J.; Hammill, M.
2012-12-01
Interaction of warm, Atlantic-origin water (AW) and colder, polar origin water (PW) advecting southward in the East Greenland Current (EGC) influences the heat content of water entering Greenland's outlet glacial fjords. Here we use depth and temperature data derived from deep-diving seals to map out water mass variability across the continental shelf and to augment existing bathymetric products. We find two dominant modes in the vertical temperature structure: a cold mode, with the typical AW/PW layering observed in the EGC, and a warm mode, where AW is present throughout the water column. The prevalence of these modes varies seasonally and spatially across the continental shelf, implying distinct AW pathways. In addition, we find that satellite sea surface temperatures (SST) correlate significantly with temperatures in the upper 50 m (R=0.54), but this correlation decreases with depth (R=0.22 at 200 m), and becomes insignificant below 250 m. Thus, care must be taken in using SST as a proxy for heat content, as AW mainly resides in these deeper layers. Regional map showing the location of all seal tracks originating from Canada and Greenland (stars). Tracks passing inside (red) or outside (blue) the SE Greenland region (black) were subdivided into continental shelf regions (green boxes) near Sermilik Fjord (SF), Cape Farewell (CF) and Kangerdlugssuaq Fjord (KG). GEBCO bathymetry is contoured at 200, 1000, 2000, and 3000 m.
van Wijk, Esmee
2018-01-01
Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise. PMID:29675467
Silvano, Alessandro; Rintoul, Stephen Rich; Peña-Molino, Beatriz; Hobbs, William Richard; van Wijk, Esmee; Aoki, Shigeru; Tamura, Takeshi; Williams, Guy Darvall
2018-04-01
Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise.
Turner, R Eugene; Rabalais, Nancy N; Justić, Dubravko
2017-01-01
We quantified trends in the 1985 to 2015 summer bottom-water temperature on the northern Gulf of Mexico (nGOM) continental shelf for data collected at 88 stations with depths ranging from 3 to 63 m. The analysis was supplemented with monthly data collected from 1963 to 1965 in the same area. The seasonal summer peak in average bottom-water temperature varied concurrently with air temperature, but with a 2- to 5-month lag. The summer bottom-water temperature declined gradually with depth from 30 oC at stations closest to the shore, to 20 oC at the offshore edge of the study area, and increased an average 0.051 oC y-1 between1963 and 2015. The bottom-water warming in summer for all stations was 1.9 times faster compared to the rise in local summer air temperatures, and 6.4 times faster than the concurrent increase in annual global ocean sea surface temperatures. The annual rise in average summer bottom-water temperatures on the subtropical nGOM continental shelf is comparable to the few published temperature trend estimates from colder environments. These recent changes in the heat storage on the nGOM continental shelf will affect oxygen and carbon cycling, spatial distribution of fish and shrimp, and overall species diversity.
Water mass linkages between the Middle and South Atlantic bights
NASA Astrophysics Data System (ADS)
Pietrafesa, L. J.; Morrison, J. M.; McCann, M. P.; Churchill, J.; Böhm, E.; Houghton, R. W.
Time and frequency domain analyses are used to relate coastal meteorological data with 7 years of daily surface temperature and salinity collected at three coastal light stations; offshore of the mouth of Chesapeake Bay, Virginia, on Diamond Shoals, at Cape Hatteras, North Carolina and on Frying Pan Shoals, off Cape Fear, North Carolina. Salinity fluctuations at Diamond Shoals are highly correlated with alongshore wind stress, implying wind driven advection of the front between Virginia Coastal Water (VCW) and Carolina Coastal Water (CCW) across Diamond Shoals. The data collected at Diamond Shoals indicate that more than half the time there is significant encroachment of Mid Atlantic Bight water into the South Atlantic Bight around Cape Hatteras, contrary to the notion that VCW is entirely entrained into the Gulf Stream. In fact, VCW can appear as far south as Frying Pan Shoals, thereby extending across the entire North Carolina Capes inner to mid shelf. Temperature and salinity time series also indicate that water masses overlying Diamond Shoals respond quickly to cross-shelf winds. Cross-shelf wind stress is significantly correlated with surface water temperature at Diamond Shoals, for periods between 2 and 12 days. Changes in temperature can be brought about by wind-driven cross-shelf circulation and by wind-induced upwelling. Seasurface temperature satellite (AVHRR) imagery taken during the SEEP II confirm these concepts.
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
Sparrow, Katy J.; Kessler, John D.; Southon, John R.; Garcia-Tigreros, Fenix; Schreiner, Kathryn M.; Ruppel, Carolyn D.; Miller, John B.; Lehman, Scott J.; Xu, Xiaomei
2018-01-01
In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere. PMID:29349299
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
Sparrow, Katy J.; Kessler, John D.; Southon, John R.; Garcia-Tigreros, Fenix; Schreiner, Kathryn M.; Ruppel, Carolyn D.; Miller, John B.; Lehman, Scott J.; Xu, Xiaomei
2018-01-01
In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.
Chronicling ice shelf history in the sediments left behind
NASA Astrophysics Data System (ADS)
Rosenheim, B. E.; Subt, C.; Shevenell, A.; Guitard, M.; Vadman, K. J.; DeCesare, M.; Wellner, J. S.; Bart, P. J.; Lee, J. I.; Domack, E. W.; Yoo, K. C.; Hayes, J. M.
2017-12-01
Collapsing and retreating ice shelves leave unmistakable sediment sequences on the Antarctic margin. These sequences tell unequivocal stories of collapse or retreat through a typical progression of sub-ice shelf diamicton (marking the past positions of grounding lines), sequentially overlain by a granulated facies from beneath the ice shelf, ice rafted debris from the calving line, and finally open marine sediment. The timelines to these stories, however, are troublesome. Difficulties in chronicling these stories recorded in sediment have betrayed their importance to our understanding of a warming world in many cases. The difficulties involve the concerted lack of preservation/production of calcium carbonate tests from the water column above and admixture of relict organic material from older sources of carbon. Here, we summarize our advances in the last decade of overcoming difficulties associated with the paucity of carbonate and creating chronologies of ice shelf retreat into the deglacial history of Antarctica by exploiting the range of thermochemical stability in organic matter (Ramped PyrOx) from these sediment sequences. We describe our success in comparing Ramped PyrOx 14C dates with foraminiferal dates, the relationship between sediment facies and radiocarbon age spectrum, and our ability to push limits of dating sediments deposited underneath ice shelves. With attention to the caveats of recent dating developments, we summarize expectations that geologist should have when coring the Antarctic margins to discern deglacial history. Perhaps most important among these expectations is the ability to design coring expeditions without regard to our ability to date calcium carbonate microfossils within the cores, in essence removing suspense of knowing whether cores taken from crucial paleo ice channels and other bathymetric features will ultimately yield a robust chronology for its sedimentary sequence.
Cao, Xinang; Huang, Runze; Chen, Haiqiang
2017-11-02
Blueberry have a short shelf life when fully ripe and susceptible to contamination of various pathogens. Our study investigated the effect of pulsed light (PL) on inactivation of Salmonella on blueberries and its impact on shelf-life, quality attributes and health-benefit compounds of blueberries. Dry PL (6J/cm 2 ) and water-assisted PL (samples were agitated in water during PL treatment; 9J/cm 2 ) along with two controls, dry control (untreated) and water-assisted control (water washing without PL), were applied to blueberries with subsequent storages at room temperature (3days) or 5°C (7days). For Salmonella inactivation, dry PL treatment achieved 0.9 and 0.6 log reduction of Salmonella for spot and dip inoculation, respectively; while the water-assisted PL treatment reduced Salmonella by 4.4 log and 0.8 log for spot and dip inoculation, respectively. The water-assisted PL treatment resulted in Salmonella populations significantly lower than the dry control after storage regardless of the storage temperature and inoculation method. Neither dry nor water-assisted PL treatments improved the shelf life of blueberries even though direct inactivation of natural yeasts and molds were achieved. Surface lightness was instantly reduced after both dry and water-assisted PL treatments. Compared with the dry control, the two PL treatments did not reduce the firmness of blueberries. Weight loss was increased for the dry PL treated samples, but not for the water-assisted PL treatment for both storage conditions. Delayed anthocyanins accumulation and reduced total antioxidant activity were induced by both PL treatments at the end of storage at room temperature, while slight enhancement in total phenolics content was achieved by water-assisted PL treatment. In conclusion, the water-assisted PL treatment could effectively decontaminate Salmonella on blueberries while showed minimal or no impact on the shelf-life, quality attributes and health-benefit compounds of blueberries. PL processing parameters need to be further evaluated and optimized before possible application in the blueberry industry. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Mulholland, M.R.; Bernhardt, P. W.; Blanco-Garcia, J. L.; Mannino, A.; Hyde, K.; Mondragon, E.; Turk, K.; Moisander, P. H.; Zehr, J. P.
2012-01-01
We coupled dinitrogen (N2) fixation rate estimates with molecular biological methods to determine the activity and abundance of diazotrophs in coastal waters along the temperate North American Mid-Atlantic continental shelf during multiple seasons and cruises. Volumetric rates of N2 fixation were as high as 49.8 nmol N L(sup -1) d(sup -1) and areal rates as high as 837.9 micromol N m(sup -2) d(sup -1) in our study area. Our results suggest that N2 fixation occurs at high rates in coastal shelf waters that were previously thought to be unimportant sites of N2 fixation and so were excluded from calculations of pelagic marine N2 fixation. Unicellular N2-fixing group A cyanobacteria were the most abundant diazotrophs in the Atlantic coastal waters and their abundance was comparable to, or higher than, that measured in oceanic regimes where they were discovered. High rates of N2 fixation and the high abundance of diazotrophs along the North American Mid-Atlantic continental shelf highlight the need to revise marine N budgets to include coastal N2 fixation. Integrating areal rates of N2 fixation over the continental shelf area between Cape Hatteras and Nova Scotia, the estimated N2 fixation in this temperate shelf system is about 0.02 Tmol N yr(sup -1), the amount previously calculated for the entire North Atlantic continental shelf. Additional studies should provide spatially, temporally, and seasonally resolved rate estimates from coastal systems to better constrain N inputs via N2 fixation from the neritic zone.
Modeling interannual dense shelf water export in the region of the Mertz Glacier Tongue (1992-2007)
NASA Astrophysics Data System (ADS)
Cougnon, E. A.; Galton-Fenzi, B. K.; Meijers, A. J. S.; Legrésy, B.
2013-10-01
Ocean observations around the Australian-Antarctic basin show the importance of coastal latent heat polynyas near the Mertz Glacier Tongue (MGT) to the formation of Dense Shelf Water (DSW) and associated Antarctic Bottom Water (AABW). Here, we use a regional ocean/ice shelf model to investigate the interannual variability of the export of DSW from the Adélie (west of the MGT) and the Mertz (east of the MGT) depressions from 1992 to 2007. The variability in the model is driven by changes in observed surface heat and salt fluxes. The model simulates an annual mean export of DSW through the Adélie sill of about 0.07 ± 0.06 Sv. From 1992 to 1998, the export of DSW through the Adélie (Mertz) sills peaked at 0.14 Sv (0.29 Sv) during July to November. During periods of mean to strong polynya activity (defined by the surface ocean heat loss), DSW formed in the Adélie depression can spread into the Mertz depression via the cavity under the MGT. An additional simulation, where ocean/ice shelf thermodynamics have been disabled, highlights the fact that models without ocean/ice shelf interaction processes will significantly overestimate rates of DSW export. The melt rates of the MGT are 1.2 ± 0.4 m yr-1 during periods of average to strong polynya activity and can increase to 3.8 ± 1.5 m/yr during periods of sustained weak polynya activity, due to the increased presence of relatively warmer water interacting with the base of the ice shelf. The increased melting of the MGT during a weak polynya state can cause further freshening of the DSW and ultimately limits the production of AABW.
Novel Real-Time Diagnosis of the Freezing Process Using an Ultrasonic Transducer
Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng
2015-01-01
The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from −100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629
The Role of Basal Channels in Ice Shelf Calving.
NASA Astrophysics Data System (ADS)
Dow, C. F.; Lee, W. S.; Greenbaum, J. S.; Greene, C. A.; Blankenship, D. D.; Poinar, K.; Forrest, A.; Young, D. A.; Zappa, C. J.
2017-12-01
Increased rates of ice shelf break-up drives acceleration of grounded glacial ice into the ocean, resulting in sea-level rise. Ice shelves are vulnerable to thinning, which make them more susceptible to calving. Here, we examine basal channels under three ice shelves that locally thin the ice and drive formation of transverse ice shelf fractures. The basal channels also cause surface depressions due to hydrostatic buoyancy effects and can draw in surface water to form rivers. These rivers exacerbate thinning by surface melting and hydraulic loading, and can accelerate rifting when they flow into the transverse fractures. Our investigation focuses on Nansen Ice Shelf in the Ross Sea Embayment, East Antarctica. We use ice-sounding radar and single-beam laser altimeter data from two aerogeophysical campaigns conducted in 2011 and 2014, ice surface DEM reconstruction, and satellite imagery analysis, to examine the role of a substantial basal channel in the stability of this ice shelf. Nansen Ice Shelf calved two large icebergs totaling 214 km2 in area in April 2016. The transverse fracture that eventually rifted to form these icebergs initiated directly over the basal channel in 1987. In years when surface water formed on Nansen Ice Shelf, a river flowed into the transverse fracture. In November 2016, we identified a new fracture over the basal channel during in-situ data collection. We compare the Nansen Ice Shelf fractures with those at other vulnerable ice-shelf systems, including Petermann Glacier in Greenland and Totten Glacier in East Antarctica, to evaluate the role that basal channels may play in simultaneous basal and surface weakening and their consequent effect on ice-shelf rifting and stability.
NASA Astrophysics Data System (ADS)
Hu, X.; Wang, H.; Rabalais, N. N.
2016-02-01
Despite years of study, whether water column or benthic respiration controls oxygen consumption in the seasonally hypoxic Northern Gulf of Mexico (nGOM) waters remains contentious. Elucidating this control is essential for long-term nutrient management purposes. In this study, we examined stable carbon isotope composition (δ13C) of organic matter that was remineralized in subsurface water of the nGOM continental shelf using both shipboard incubations (water and sediment) and a three-endmember mixing model. Based on our 2014 data, sediment and water incubations yielded disparate δ13C signatures in the respiration produced CO2, with the sediment incubation generating substantially more 13C-enriched CO2 (-16 -21‰ in sediment vs. -27 -29‰ in water), though water column bulk particulate organic matter (POM) had δ13C ranging from -23‰ to -25‰. However, from the three-endmember mixing model, our calculated CO2-δ13C due to respiration in the entire surveyed nGOM shelf was -18.5‰. This value was consistent with the results obtained in previous annual shelfwide cruises (-17.2 -19.5‰). The close agreement between respirational CO2-δ13C from the mixing model and that from sediment incubation suggests that benthic process likely played a dominant role in subsurface respiration in the nGOM shelf. This result also indicates that hydrocarbon remineralization was likely insignificant on the ecosystem level after the 2010 Deepwater Horizon oil spill.
NASA Astrophysics Data System (ADS)
Nishizawa, A.; Kaneda, K.; Oikawa, M.; Horiuchi, D.; Fujioka, Y.; Okada, C.
2017-12-01
Several depressions found under the thick sediments in the East China Sea shelf have been considered as failed rift basins. Their formation age becomes progressively younger from NW to SE and the youngest rift basin is the Okinawa Trough, an active backarc basin of the Ryukyu (Nansei-Shoto) arc-trench system, to the southwest of Kyusyu, Japan. Its rifting is in progress and related hydrothermal activity is present in the trough. The knowledge of the crustal structure of the trough is fundamental to understand the current active tectonics and predict the future of the trough. We, Japan Coast Guard, have conducted extensive seismic reflection and refraction surveys in the Ryukyu region since 2008 and compiled the seismic structures of the Okinawa Trough. We will show the crustal structures along seven along-trough and ten across-trough seismic survey lines. The P-wave velocity models beneath the Okinawa Trough generally show a thinned continental/island arc crust consisting of upper, middle, and lower crusts. Moho depths below the trough were estimated mainly from Moho reflection (PmP) travel times. The crustal thickness of the trough is thinner than those of the East China Sea shelf and of the Ryukyu Islands. The depth of the Moho below the trough decreases from over 30 km in the north to about 13 km in the south, indicating a difference in degree of the rifting process. The position of the shallowest Moho along the across-trough lines in the northern trough does not necessarily correspond to the center of the trough defined as the deepest water depth, but it corresponds to the transition area between the East China Sea shelf and the Okinawa Trough. An M7.1 earthquake occurred at the transition area on Nov. 14, 2015 (JST) and many aftershocks were observed along the transition. This seismic activity demonstrated that the area is under rifting tectonics in the present.
Meat shelf-life and extension using collagen/gelatin coatings: a review.
Antoniewski, M N; Barringer, S A
2010-08-01
Different factors lead to the end of shelf-life for fresh meat products. The factors depend upon the animal including breed difference and muscle fiber type, external influences such as diet and stress, and post-harvest storage conditions including time, temperature, and packaging atmosphere. The characteristics that indicate the end of shelf-life for fresh meat products include water loss/purge accumulation, color deterioration due to myoglobin oxidation, rancidity due to lipid oxidation, and microbial spoilage. The characteristics can be measured and studied in the laboratory. Meat shelf-life is extended with the application of a surface coating because it provides a water and oxygen barrier. Collagen and gelatin coatings are used as a barrier on meat products to reduce purge, color deterioration, aroma deterioration, and spoilage, improve sensory scores, and act as an antioxidant.
Antarctic ice shelf potentially stabilized by export of meltwater in surface river.
Bell, Robin E; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J; Zappa, Christopher J; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang
2017-04-19
Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.
Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River
NASA Technical Reports Server (NTRS)
Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang
2017-01-01
Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.
A western boundary current eddy characterisation study
NASA Astrophysics Data System (ADS)
Ribbe, Joachim; Brieva, Daniel
2016-12-01
The analysis of an eddy census for the East Australian Current (EAC) region yielded a total of 497 individual short-lived (7-28 days) cyclonic and anticyclonic eddies for the period 1993 to 2015. This was an average of about 23 eddies per year. 41% of the tracked individual cyclonic and anticyclonic eddies were detected off southeast Queensland between about 25 °S and 29 °S. This is the region where the flow of the EAC intensifies forming a swift western boundary current that impinges near Fraser Island on the continental shelf. This zone was also identified as having a maximum in detected short-lived cyclonic eddies. A total of 94 (43%) individual cyclonic eddies or about 4-5 per year were tracked in this region. The census found that these potentially displaced entrained water by about 115 km with an average displacement speed of about 4 km per day. Cyclonic eddies were likely to contribute to establishing an on-shelf longshore northerly flow forming the western branch of the Fraser Island Gyre and possibly presented an important cross-shelf transport process in the life cycle of temperate fish species of the EAC domain. In-situ observations near western boundary currents previously documented the entrainment, off-shelf transport and export of near shore water, nutrients, sediments, fish larvae and the renewal of inner shelf water due to short-lived eddies. This study found that these cyclonic eddies potentially play an important off-shelf transport process off the central east Australian coast.
Davey, F.J.; Jacobs, S.S.
2007-01-01
Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.
Turgut, Altan; Orr, Marshall; Pasewark, Bruce
2007-05-01
Waveguide invariant theory is used to describe the frequency shifts of constant acoustic intensity level curves in broadband signal spectrograms measured at the New Jersey Shelf during the winter of 2003. The broadband signals (270-330 Hz) were transmitted from a fixed source and received at three fixed receivers, located at 10, 20, and 30 km range along a cross-shelf propagation track. The constant acoustic intensity level curves of the received signals indicate regular frequency shifts that can be well predicted by the change in water depth observed through tens of tidal cycles. A second pattern of frequency shifts is observed at only 30 km range where significant variability of slope-water intrusion was measured. An excellent agreement between observed frequency shifts of the constant acoustic intensity levels and those predicted by the change in tide height and slope water elevations suggests the capability of long-term acoustic monitoring of tide and slope water intrusions in winter conditions.
NASA Astrophysics Data System (ADS)
Nozaki, Yoshiyuki; Tsubota, Hlroyuki; Kasemsupaya, Vimonrut; Yashima, Mayumi; Naoko, Ikuta
1991-05-01
228Ra, 226Ra, 210Pb, and 210Po were measured in the surface waters of the East China and Yellow seas. Using mass balance equations for the Ra isotopes, we estimated the total flux of diffusion from sediments and desorption from suspended particles to be 0.1 dpm 226Ra cm -2 a -1 and 1 dpm 228Ra cm -2 a -1, and residence times to be 2-3 years for the waters on the East China Sea Shelf and 5-6 years for Yellow Sea waters. Box-model calculations yielded generally congruent scavenging residence times for 210Pb and 210Po in the waters of ~2 months on the shelf and ~7 months in the Kuroshio Current. These suggest that reactive heavy metals and pollutants discharged through rivers from the continent to the East Asian continental shelf are largely deposited on the bottom sediments prior to transport to the pelagic ocean by lateral mixing.
NASA Astrophysics Data System (ADS)
Davis, Kristen Alexis
The dynamics of internal waves shoaling on the Southeast Florida shelf and the resulting stratified turbulence in the shelf bottom boundary layer are investigated using observational studies completed during the summers of 2003-2005. This work is driven by a desire to understand the effects of internal wave-driven flow and the shoreward transport of cool, nutrient-rich water masses on cross-shelf exchange, vertical mixing, and mass transfer to benthic reef organisms. Shelf sea internal wave fields are typically highly variable and dominated by wind and tidal forces. However, this is not necessarily true for outer shelf regions or very narrow shelves where remote physical processes originating over the slope or deep ocean may exert a strong influence on the internal wave climate. During the summers of 2003 and 2004 observational studies were conducted to examine the effects of a western boundary current (the Florida Current), tides, and wind on the mean currents and internal wave field on the outer Southeast Florida shelf. We present evidence that suggests that the Florida Current plays as large a role in the determination of the high frequency internal wave field as tidal forces. These observations and analyses show that it is necessary to include the forcing from the Florida Current meanders and instabilities in order to predict accurately the episodic nature of the internal wave field on the Southeast Florida shelf. Deep ocean and continental shelf processes intersect at the shelf edge and influence the exchange of water masses and their associated characteristics including heat, nutrients, sediment, and larvae across the shelf. Thus, the dynamics of cross-shelf circulation have important consequences for organisms living on the shelf. In the second phase of this work, we investigate physical mechanisms controlling the exchange of water masses during the summer season across the Southeast Florida shelf. A time series of cross-shelf transport from May to August 2003 suggests that, during the summer months, instabilities in the Florida Current and nonlinear internal waves are the primary mechanisms driving cross-shelf transport on the outer shelf Surface tide, wind, and wave-driven transport were found to be small in comparison. Additionally, this data set highlights the importance of baroclinic processes to cross-shelf transport in this region. In the last phase of my research, I sought to investigate how boundary layer dynamics over a rough coral bed were modified by shoaling internal waves and to understand the implications for mixing and mass transfer to the bed. Results are presented from an observational study of the turbulent bottom boundary layer on the outer Southeast Florida shelf in July and August 2005. Turbulence in the reef bottom boundary layer is highly variable in time and is modified by near bed flow, shear, and stratification driven by shoaling internal waves. We examined turbulence in the bottom boundary layer during a typical internal wave event and found that in addition to the episodic onshore transport of cool, subthermocline water masses, with elevated nutrient concentrations, bottom-intensified currents from shoaling internal waves can increase turbulent dissipation and mixing in the reef bottom boundary layer. Additionally, we show that estimates of flux Richardson number, calculated directly from measurements of dissipation and buoyancy flux, support the dependence of R f on turbulent intensity, epsilon/nuN 2, a relationship that has only been previously shown in laboratory and numerical work. While the importance of surface gravity waves in generating turbulent mixing and controlling mass transfer on coral reefs has been well documented in the literature, this work represents the first time the appropriate field data have been collected for a detailed dynamic analysis of the physical effects and biological implications of internal waves on reef ecosystems. Results from these studies suggest that for reef communities exposed to continental shelf and slope processes, internal waves may play an important role in cross-shelf transport and mass transfer to benthic organisms and may be essential to modeling key biological processes, the connectivity of coral populations, or designing and managing marine reserves and fisheries.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... (Five Year Program). The Annual Progress Report is available for review at: www.boem.gov/Five-Year-Program-Annual-Progress-Report/ . Information on the Five Year Program is available online at http://www... final on August 27, 2012, after the required 60-day congressional review period. Section 18(e) of the...
Wind modulation of upwelling at the shelf-break front off Patagonia: Observational evidence
NASA Astrophysics Data System (ADS)
Carranza, M. M.; Gille, S. T.; Piola, A. R.; Charo, M.; Romero, S. I.
2017-03-01
The South-Atlantic Patagonian shelf is the largest chlorophyll-a (Chl-a) hot spot in Southern Ocean color images. While a persistent 1500 km long band of high Chl-a along the shelf-break front (SBF) is indicative of upwelling, the mechanisms that drive it are not entirely known. Along-front wind oscillations can enhance upwelling and provide a nutrient pumping mechanism at shelf-break fronts of western boundary currents. Here we assess wind-induced upwelling at the SBF off Patagonia from daily satellite Chl-a and winds, historical hydrographic observations, cross-shelf Chl-a fluorescence transects from two cruises, and in situ winds and water column structure from a mooring site. Satellite Chl-a composites segregated by along-front wind direction indicate that surface Chl-a is enhanced at the SBF with southerly winds and suppressed with northerly winds. Northerly winds also result in enhanced Chl-a further offshore (˜25-50 km). Synoptic transects as well as mean hydrographic sections segregated by along-front winds show isopycnals tilted upward for southerly winds. Spring observations from the mooring also suggest that southerly winds destratify the water column and northerly winds restratify, in agreement with Ekman transport interacting with the front. Moreover, changes in water column temperature lag along-front wind forcing by 2-4 days. Our results suggest that oscillations in along-front winds, on timescales typical of atmospheric storms (2-10 days), can significantly modulate the upwelling and Chl-a concentrations at the SBF off Patagonia, revealing the importance of wind-induced upwelling for shelf-slope exchange at shelf-break fronts of western boundary currents.
NASA Astrophysics Data System (ADS)
Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.
2014-10-01
Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of "shallow melting" is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of "deep melting", in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.
NASA Astrophysics Data System (ADS)
Kimura, Satoshi; Jenkins, Adrian; Regan, Heather; Holland, Paul R.; Assmann, Karen M.; Whitt, Daniel B.; Van Wessem, Melchoir; van de Berg, Willem Jan; Reijmer, Carleen H.; Dutrieux, Pierre
2017-12-01
Ice shelves in the Amundsen Sea Embayment have thinned, accelerating the seaward flow of ice sheets upstream over recent decades. This imbalance is caused by an increase in the ocean-driven melting of the ice shelves. Observations and models show that the ocean heat content reaching the ice shelves is sensitive to the depth of thermocline, which separates the cool, fresh surface waters from warm, salty waters. Yet the processes controlling the variability of thermocline depth remain poorly constrained. Here we quantify the oceanic conditions and ocean-driven melting of Cosgrove, Pine Island Glacier (PIG), Thwaites, Crosson, and Dotson ice shelves in the Amundsen Sea Embayment from 1991 to 2014 using a general circulation model. Ice-shelf melting is coupled to variability in the wind field and the sea-ice motions over the continental shelf break and associated onshore advection of warm waters in deep troughs. The layer of warm, salty waters at the calving front of PIG and Thwaites is thicker in austral spring (June-October) than in austral summer (December-March), whereas the seasonal cycle at the calving front of Dotson is reversed. Furthermore, the ocean-driven melting in PIG is enhanced by an asymmetric response to changes in ocean heat transport anomalies at the continental shelf break: melting responds more rapidly to increases in ocean heat transport than to decreases. This asymmetry is caused by the inland deepening of bathymetry and the glacial meltwater circulation around the ice shelf.
Drews, R; Pattyn, F; Hewitt, I J; Ng, F S L; Berger, S; Matsuoka, K; Helm, V; Bergeot, N; Favier, L; Neckel, N
2017-05-09
Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers' size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability.
Drews, R.; Pattyn, F.; Hewitt, I. J.; Ng, F. S. L.; Berger, S.; Matsuoka, K.; Helm, V.; Bergeot, N.; Favier, L.; Neckel, N.
2017-01-01
Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers' size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability. PMID:28485400
Radionuclide tracers of sediment-water interactions on the Amazon shelf
NASA Astrophysics Data System (ADS)
Moore, Willard S.; DeMaster, David J.; Smoak, Joseph M.; McKee, Brent A.; Swarzenski, Peter W.
1996-04-01
A comprehensive study of a variety of radionuclide tracers has been coupled with other geochemical investigations and with sedimentary and physical oceanographic measurements to elucidate processes and their characteristic time scales at the mouth of the Amazon River. This two-year field study on the Amazon continental shelf involved four cruises designed to provide information during different stages of the river hydrograph. Although the cruises were coordinated with river stage, other physical variables including spring-neap tidal stages, the flow of the North Brazil Current and trade-wind stress caused important effects on the shelf environment. Partitioning of uranium among dissolved, colloidal and particulate phases was investigated during AmasSeds. A detailed examination of uranium water-column behavior during low river discharge found that most (89%) of the uranium near the Amazon River mouth was associated with the particulate phase and that most (92%) of the riverine dissolved-phase uranium was in the colloidal size fraction (0.001-0.4 μm). A non-conservative uranium/salinity distribution was observed for dissolved uranium, indicating large-scale uranium removal from surface waters with salinities less than 20 ppt. Colloidal uranium was non-conservative across the entire salinity regime, exhibiting removal of colloidal uranium from waters with salinities less than 12 ppt and a significant input at higher salinities. A short-lived particle-reactive tracer, 234Th, was used to evaluate the rates of particle scavenging on the shelf. Suspended-sediment concentrations respond to each turn of the tide, thus limiting the time available for equilibrium to be established between the particles and the tracers. Experiments demonstrated that on the Amazon shelf the partitioning and distribution of trace elements are governed by particle dynamics (particle residence times < sorption times). The high suspended load, including fluid muds, retards the incorporation of adsorbed 234Th into the seabed. Once scavenged, 234Th remains part of the suspended-sediment and fluid-mud inventory for periods of at least 4-8 weeks. Another particle-reactive tracer, 210Pb, was used to evaluate the potential supply of reactive metals from offshore waters to the shelf. As open-ocean waters move into the Amazon mixing zone, in response to the estuarine-like circulation, they lose 210Ph through scavenging processes associated with delta formation. This oceanic input of 210Pb dominates other inputs to the Amazon shelf system. Based on 210Pb analyses from more than 40 ☐ and kasten cores, the flux of water moving shoreward and depositing 210Pb in the sediments was calculated to be on the order of 6 × 10 161y -1 ˜10 times the riverine flux from the Amazon. The distribution of 210Pb in the sediments suggests that if particle-reactive species (such as certain trace metals) are released in dissolved form on the shelf, they will be scavenged quickly in this turbid environment, with the largest inventories occurring in the foreset beds (although the highest concentrations occur in the bottomset beds). The large landward flow of water indicates that if particle-reactive species are released in the western equatorial Atlantic via aerosol transport or other mechanisms, there is a good chance that a sizeable portion will be buried in the Amazon delta. Fluxes of radium isotopes, 226Ra, 228Ra and 224Ra, from the bottom sediments were used to evaluate sediment resuspension across the shelf. The average flux of 226Ra from the Amazon shelf balanced the annual desorption of 226Ra from river-derived sediments; however, departures between the 226Ra flux and sediment necessary to support the flux occurred for different sampling periods. During falling and low discharge, less sediment entered the system than was required to support the sedimentary desorption 226Ra flux. During rising and high discharge, more sediment entered than was necessary to sustain the 226Ra flux. Considerable recycling of particles between the seabed and water column was required to wash away most of the desorbable 226Ra from the sediment. To support the sedimentary 228Ra flux, 3.4 × 10 16 g of sediment must be resuspended each year. Such mixing would resuspend the top 35 em of sediment over the entire shelf each year, or mix the surface layer (SL, the region of uniform sedimentary 210Pb depth profiles) to a depth of 90 cm annually. Such mixing would turn over the entire SL every 1-2 years. Desorption of sedimentary radium isotopes must be accompanied by the desorption of other exchangeable species including phosphate, cesium and cadmium. Correlations among phosphate and radium isotopes, infer that phosphate is being released from bottom sediments as the sediments are resuspended into the water column. As was the case for 226Ra, bottom sediment must be repeatedly suspended into the water column to release all of the exchangeable phosphate. The desorption of 224Ra from shelf sediments provides a tracer of the Amazon plume into the Atlantic. In July and September 1989, the ship crossed the Demerara retroflection 380 km from the Amazon shelf and excess 224Ra activities up to 8 dpm 100 kg -1 were measured. It was concluded that these waters were <5 days removed from the Amazon shelf. A sustained current of >80 em s -1 would be required to advect the water this distance in <5 days, an observation that agrees well with drogue releases during August 1989.
NASA Astrophysics Data System (ADS)
Dolgikh, G. I.; Novotryasov, V. V.; Yaroshchuk, I. O.; Permyakov, M. S.
2018-03-01
The results of field observations of an internal undular bore that were performed in a coastal zone of constant depth in the Sea of Japan are presented. A hydrodynamic model of undular bores is discussed according to which the recorded disturbances of the water medium are an experimental prototype of strongly nonlinear (intense) internal undular bores on the pycnocline of shelf waters of Peter the Great Bay with an intensity close to the limit.
NASA Astrophysics Data System (ADS)
Stone, Hally B.; Banas, Neil S.; MacCready, Parker
2018-01-01
The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin-scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N-50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well-explained (R2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large-scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large-scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale.
Banas, Neil S.; MacCready, Parker
2018-01-01
Abstract The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin‐scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N–50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well‐explained (R 2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large‐scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large‐scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale. PMID:29938149
Mounting evidence for intense ocean interaction with the Pine Island Glacier Ice Shelf
NASA Astrophysics Data System (ADS)
Bindschadler, R.; Holland, D.; Vaughan, D.; Vornberger, P.
2008-12-01
The spatial signature of thinning and acceleration of the Pine Island Glacier has led to the inference that these changes originate at the seaward end of the glacier, possibly within or under the ice shelf (Payne et al., 2004; Shepherd et al., 2004). We present new analyses resulting from both new and archived satellite imagery of the ice shelf that supports this inference and provides new insights into strong seasonal and intra- annual characters of ocean-ice shelf interaction. Strong longitudinal variations in both thickness and surface elevation measured by British Antarctic Survey airborne radars (Vaughan et al., 2006) have wavelengths that correspond roughly to the annual motion of the ice shelf. These could be caused by seasonal variations in flow speed, but such variations of flow speed have never been reported and are not seen in the most recent continuous GPS observations of the ice shelf. We suggest that these strong variations in ice thickness, as large as 200 meters in an average thickness of 600 meters, are caused by seasonal variations in the properties of the water circulating underneath the ice shelf. One likely explanation is that the dominant water mass reaching the deepest parts of the ice shelf alternates between cold High Salinity Shelf Water in the winter and warm Circumpolar Deep Water in the summer. Evidence for recent strengthening of the sub- shelf circulation is the sudden occurrence of three persistent polynyas immediately adjacent to the ice front. These are located in precisely the locations expected from modeled sub-shelf circulation (Payne et al., 2007). This mode was never observed in any satellite imagery prior to the 1999-2000 austral summer (data of 7 summers since 1973 were available), but has occurred in 7 of the 9 summers since and persists throughout the summer. Payne, A.J., A. Vieli, A.P. Shepherd, D.J. Wingham and E. Rignot, 2004. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans, Geophysical Research Letters, Vol. 31, No. 23: Art. No. L23401 DEC 9 2004 Payne, A.J., P.R. Holland, A.P. Shepherd, I.C. Rutt, A. Jenkins and I. Joughin, 2007. Numerical modeling of ocean-ice interactions under Pine Island Bay's ice shelf, Journal of Geophysical Research, Vol. 112, C10019, doi:10.1029/2006JC003733. Shepherd, A., D.J. Wingham and E. Rignot, 2004. Warm ocean is eroding West Antarctic Ice Sheet, Geophysical Research Letters, Vol. 31, Art. No. L23402 DEC 9 2004. Vaughan, D.G., H.F.J. Corr, F. Ferraccioli, N. Frearson, A. O'Hare, D. Mach, J.W. Holt, D.D. Blankenship, D. Morse, and D.A. Young, 2006. New boundary conditions for the West Antarctic ice sheet: Subglacial topography beneath Pine Island Glacier. Geophys. Res. Let., Vol. 33, No. 9, Art. No. L09501, May 3, 2006.
Results of Sustained Observations from SABSOON
NASA Astrophysics Data System (ADS)
Seim, H.; Nelson, J.
2001-12-01
A variety of meteorological and oceanographic data being collected on the continental shelf off Georgia by the South Atlantic Bight Synoptic Offshore Observational Network (SABSOON) permit an examination of episodic and seasonal phenomena operative on the shelf. Data are collected at offshore platforms and transmitted to shore in near-real time and made available on the project website. Examples of data collected since 1999 are presented that illustrate some of processes being addressed using the network. Maximum winds occur during remarkably energetic downbursts observed in spring and summer, associated with the passage of squalls over the coastal ocean. Peak wind speed at 50 m height exceed 40 ms and air temperature drops by 4 oC or more in less than 6 minutes, often accompanied by large changes in humidity and heavy rainfall, suggesting down draft of air from aloft. These events may play an important role in the offshore transport of continentally-derived material. Continuous ADCP measurements are being used to examine the seasonality of cross-shelf exchange and its relationship to the cross-shelf density gradient. The low-frequency cross-shelf circulation changes sign when the cross-shelf density gradient changes sign. Vertical stratification is surprisingly episodic, and maximum stratification has occurred in the winter and spring associated with appearance of long-salinity surface lens and may be associated with baroclinic instabilities. Strong stratification has also been observed in summer during Gulf Stream-derived intrusions onto the shelf, during which time the upper and lower layers become largely decoupled. Continuous optical measurements of above-water and in-water irradiance (PAR) show the mid-shelf surface sediments are often in the euphotic zone. Chlorophyll fluorescence (stimulated) shows strong light-dependent diurnal variability in near-surface waters and evidence of resuspension of benthic diatoms during storm events, particularly in the early fall. >http://www.skio.peachnet.edu/projects/sabsoon.html
Evolution of Meltwater on the McMurdo Ice Shelf, Antarctica During Two Summer Melt Seasons
NASA Astrophysics Data System (ADS)
Macdonald, G. J.; Banwell, A. F.; Willis, I.; Mayer, D. P.; Hansen, E. K.; MacAyeal, D. R.
2017-12-01
Ice shelves surround > 50% of Antarctica's coast and their response to climate change is key to the ice sheet's future and global sea-level rise. Observations of the development and drainage of 2750 lakes prior to the collapse of the Larsen B Ice Shelf, combined with our understanding of ice-shelf flexure/fracture, suggest that surface meltwater plays a key role in ice-shelf stability, although the present state of knowledge remains limited. Here, we report results of an investigation into the seasonal evolution of meltwater on the McMurdo Ice Shelf (MIS) during the 2015/16 and 2016/17 austral summers using satellite remote sensing, complemented by ground survey. Although the MIS is relatively far south (78° S), it experiences relatively high ablation rates in the west due to adiabatically warmed winds, making it a useful example of how meltwater could evolve on more southerly ice shelves in a warming climate. We calculate the areas and depths of ponded surface meltwater on the ice shelf at different stages of the two melt seasons using a modified NDWI approach and water-depth algorithm applied to both Landsat 8 and Worldview imagery. Data from two automatic weather stations on the ice shelf are used to drive a positive degree-day model to compare our observations of surface water volumes with modelled meltwater production. Results suggest that the spatial and temporal variations in surface meltwater coverage on the ice shelf vary not only with climatic conditions but also in response to other important processes. First, a rift that widens and propagates between the two melt seasons intercepts meltwater streams, redirecting flow and facilitating ponding elsewhere. Second, some lakes from previous years remain frozen over and become pedestalled, causing streams to divert around their perimeter. Third, surface debris conditions also cause large-scale spatial variation in melt rates and the flow and storage of water.
NASA Astrophysics Data System (ADS)
Naughten, Kaitlin A.; Meissner, Katrin J.; Galton-Fenzi, Benjamin K.; England, Matthew H.; Timmermann, Ralph; Hellmer, Hartmut H.; Hattermann, Tore; Debernard, Jens B.
2018-04-01
An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of warm water from offshore.
A Hydrographic and CFC Survey on the Adelie Land Shelf
NASA Astrophysics Data System (ADS)
Warner, M. J.; Rintoul, S. R.; Tilbrook, B.; Bullister, J. L.; Sonnerup, R. E.
2008-12-01
During 16 Dec 07 - 27 Jan 08, a hydrographic survey of the Antarctic shelf adjacent to Adelie Land was carried out as part of the joint Australian programs - Climate of Antarctica and the Southern Ocean (CASO) and Collaborative East Antarctic Marine Census (CEAMARC) - from aboard the RSV Aurora Australis. Over 80 CTD stations were occupied on the shelf or adjacent slope in the region between 139° 13' E and 145° E. In addition to hydrographic parameters, dissolved oxygen and nutrients, CFCs, dissolved inorganic carbon, and total alkalinity were measured at nearly all of these stations. Several features of the CFC distributions stand out in this formation region of Adelie Land Bottom Water (ALBW) and appear to be related to the bathymetry of the shelf. There are two depressions in this region, both deeper than 800 m - one on the western edge of the study region and the other adjacent to the Mertz Glacial Tongue on the eastern side of the study region. Throughout most of the study area, the presence of Highly-Modified Circumpolar Deep Water (HMCDW) is reflected in mid-depth CFC concentration minima. However, HMCDW is not present in the shallower region between the depressions. Beneath the HMCDW, CFC concentrations generally increase towards the seafloor. The bottom water CFC concentrations below 600 m in the easternmost of these basins are 5-10% higher than those of the westernmost depression. The bottom water dissolved oxygen concentrations are also higher by approximately 15 μmol kg-1 in bottom waters of the eastern depression. The circulation in the eastern depression is cyclonic and bottom waters can flow out of the basin through a trough in the shelf break near 143° E. Waters with high CFC concentrations were detected on the downslope side of the trough - indicating that ALBW was being supplied to the deep Australia-Antarctic Basin even during summer. The data from this expedition will be compared to previous CFC measurements from this region over the past decade.
NASA Technical Reports Server (NTRS)
Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.
1987-01-01
Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.
Coupled ocean-shelf ecosystem modelling of northern North Atlantic
NASA Astrophysics Data System (ADS)
Harle, J.; Holt, J. T.; Butenschön, M.; Allen, J. I.
2016-02-01
The biogeochemistry and ecosystems of the open-ocean and shelf seas are intimately connected. For example Northwest European continental shelf receives a substantial fraction of its nutrients from the wider North Atlantic and exports carbon at depth, sequestering it from atmospheric exchange. In the EC FP7 EuroBasin project (Holt et al 2014) we have developed a 1/12 degree basin-scale NEMO-ERSEM model with specific features relevant to shelf seas (e.g. tides and advanced vertical mixing schemes). This model is eddy resolving in the open-ocean, and resolves barotropic scales on-shelf. We use this model to explore the interaction between finely resolved physical processes and the ecosystem. Here we focus on shelf-sea processes and the connection between the shelf seas and open-ocean, and compare results with a 1/4 degree (eddy permitting) model that does not include shelf sea processes. We find tidal mixing fronts and river plume are well represented in the 1/12 degree model. Using approaches developed for the NW Shelf (Holt et al 2012), we provide estimates of across-shelf break nutrient fluxes to the seas surrounding this basin, and relate these fluxes and their interannual variability to the physical processes driving ocean-shelf exchange. Holt, J., et al, 2012. Oceanic controls on the primary production of the northwest European continental shelf: model experiments under recent past conditions and a potential future scenario. Biogeosciences 9, 97-117. Holt, J., et al, 2014. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to Fish and Coasts to Ocean. Progress in Oceanography doi:10.1016/j.pocean.2014.04.024.
Low-oxygen waters limited habitable space for early animals.
Tostevin, R; Wood, R A; Shields, G A; Poulton, S W; Guilbaud, R; Bowyer, F; Penny, A M; He, T; Curtis, A; Hoffmann, K H; Clarkson, M O
2016-09-23
The oceans at the start of the Neoproterozoic Era (1,000-541 million years ago, Ma) were dominantly anoxic, but may have become progressively oxygenated, coincident with the rise of animal life. However, the control that oxygen exerted on the development of early animal ecosystems remains unclear, as previous research has focussed on the identification of fully anoxic or oxic conditions, rather than intermediate redox levels. Here we report anomalous cerium enrichments preserved in carbonate rocks across bathymetric basin transects from nine localities of the Nama Group, Namibia (∼550-541 Ma). In combination with Fe-based redox proxies, these data suggest that low-oxygen conditions occurred in a narrow zone between well-oxygenated surface waters and fully anoxic deep waters. Although abundant in well-oxygenated environments, early skeletal animals did not occupy oxygen impoverished regions of the shelf, demonstrating that oxygen availability (probably >10 μM) was a key requirement for the development of early animal-based ecosystems.
Landcover Mapping of the McMurdo Ice Shelf Using Landsat and WorldView Image Data
NASA Astrophysics Data System (ADS)
Hansen, E. K.; Macdonald, G.; Mayer, D. P.; MacAyeal, D. R.
2016-12-01
Ice shelves bound approximately half of the Antarctic coast and act to buttress the glaciers that feed them. The collapse of the Larsen B Ice Shelf on the Antarctic Peninsula highlights the importance of processes at the surface for an ice shelf's stability. The McMurdo Ice Shelf is unique among Antarctic ice shelves in that it exists in a relatively warm climate zone and is thus more vulnerable to climate change than colder ice shelves at similar latitudes. However, little is known quantitatively about the surface cover types across the ice shelf, impeding the study of its hydrology and of the origins of its features. In particular, no work has been done linking field observations of supraglacial channels to shelf-wide surface hydrology. We will present the first satellite-derived multiscale landcover map of the McMurdo Ice Shelf based on Landsat 8 and WorldView-2 image data. Landcover types are extracted using supervised classification methods referenced to field observations. Landsat 8 provides coverage of the entire ice shelf ( 5,000 km2) at 30 m/pixel, sufficient to distinguish glacial ice, debris cover, and large supraglacial lakes. WorldView data cover a smaller area— 300 km2 at 2 m/pixel—and thus allow detailed mapping of features that are not spatially resolved by Landsat, such as supraglacial channels and small fractures across the ice shelf's surface. We take advantage of the higher resolution of WorldView-2 data to calculate the area of mid-summer surface water in channels and melt ponds within a detailed study area and use this as the basis for a spectral mixture model in order to estimate the total surface water area across the ice shelf. We intend to use the maps to guide strategic planning of future field research into the seasonal surface hydrology and climate stability of the McMurdo Ice Shelf.
Gómez-López, Vicente M; Ragaert, Peter; Ryckeboer, Jaak; Jeyachchandran, Visvalingam; Debevere, Johan; Devlieghere, Frank
2007-06-10
Minimally processed vegetables (MPV) have a short shelf-life. Neutral electrolysed oxidising water (NEW) is a novel decontamination method. The objective of this study was to test the potential of NEW to extend the shelf-life of a MPV, namely shredded cabbage. Samples of shredded cabbage were immersed in NEW containing 40 mg/L of free chlorine or tap water (control) up to 5 min, and then stored under equilibrium modified atmosphere at 4 degrees C and 7 degrees C. Proliferation of aerobic mesophilic bacteria, psychrotrophic bacteria, lactic acid bacteria and yeasts were studied during the shelf-life. Also pH and sensorial quality of the samples as well as O(2) and CO(2) composition of the headspace of the bags was evaluated. From the microbial groups, only psychrotrophic counts decreased significantly (P<0.05) due to the effect of NEW, but the counts in treated samples and controls were similar after 3 days of storage at 4 degrees C and 7 degrees C. Packaging configurations kept O(2) concentration around 5% and prevented CO(2) accumulation. pH increased from 6.1-6.2 to 6.4 during the shelf-life. No microbial parameter reached unacceptable counts after 14 days at 4 degrees C and 8 days of storage at 7 degrees C. The shelf-life of controls stored at 4 degrees C was limited to 9 days by overall visual quality (OVQ), while samples treated with NEW remained acceptable during the 14 days of the experiment. The shelf-life of controls stored at 7 degrees C was limited to 6 days by OVQ and browning, while that of samples treated with NEW were limited to 9 days by OVQ, browning and dryness. According to these results, a shelf-life extension of at least 5 days and 3 days in samples stored respectively at 4 degrees C and 7 degrees C can be achieved by treating shredded cabbage with NEW. NEW seems to be a promising method to prolong the shelf-life of MPV.
NASA Astrophysics Data System (ADS)
Sherrell, R. M.; Fitzsimmons, J. N.; Roccanova, J.; Schofield, O.; Meredith, M. P.
2016-02-01
The Western Antarctic Peninsula (WAP) shelf region is is a natural Fe fertilization zone where primary production exceeds that of the adjacent open Southern Ocean. Until recently, however, distributions of Fe and of other bioactive metals were completely lacking for the WAP, and the sources and delivery mechanisms of Fe to the euphotic zone were only speculated upon. We have previously presented surface water (2m) dissolved (dTM, <0.2µm) and particulate (pTM, >0.45µm) distributions for Fe and a suite of other bioactive metals over the WAP shelf, covering the Palmer LTER sampling grid for Jan. 2010, 2011 and 2012. We now report the first complete 3D distribution of dissolved and colloidal Fe (and Mn, Zn, Cu, Ni, Cd and Pb) over the LTER grid in Jan. 2015, allowing assessment of dFe size speciation, sources and transport pathways in this dynamic shelf system. Dissolved metals were analyzed by automated offline preconcentration (seaFAST-pico, ESI) followed by sector-field ICP-MS. We confirm previous findings of low ( 0.1nM) dFe in surface waters on the mid-outer shelf in the northern portion of the grid, and now find that concentrations at this level or below persist through the euphotic zone. However, dFe increases rapidly with depth, with low surface values underlain by substantially higher concentrations even at 50m. Inner shelf surface waters are generally substantially > 0.1nM, suggesting Fe replete conditions in this region. Vertical profiles reveal that dFe generally increases with depth, much moreso in the inner shelf (dFe up to 5.0nM) than the outer shelf. A general N-S gradient in dFe is also evident, with concentrations higher in the southern WAP, especially in Marguerite Bay. In addition, shelf stations often show a dFe maximum suggesting remineralization from sinking biogenic particles. These findings for dFe and for the other metals, will be used to help unravel the biogeochemical workings of natural Fe fertilization in this region.
Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers
NASA Astrophysics Data System (ADS)
Zoccarato, Luca; Pallavicini, Alberto; Cerino, Federica; Fonda Umani, Serena; Celussi, Mauro
2016-12-01
Deep-sea environments host the largest pool of microbes and represent the last largely unexplored and poorly known ecosystems on Earth. The Ross Sea is characterized by unique oceanographic dynamics and harbors several water masses deeply involved in cooling and ventilation of deep oceans. In this study the V9 region of the 18S rDNA was targeted and sequenced with the Ion Torrent high-throughput sequencing technology to unveil differences in protist communities (>2 μm) correlated with biogeochemical properties of the water masses. The analyzed samples were significantly different in terms of environmental parameters and community composition outlining significant structuring effects of temperature and salinity. Overall, Alveolata (especially Dinophyta), Stramenopiles and Excavata groups dominated mesopelagic and bathypelagic layers, and protist communities were shaped according to the biogeochemistry of the water masses (advection effect and mixing events). Newly-formed High Salinity Shelf Water (HSSW) was characterized by high relative abundance of phototrophic organisms that bloom at the surface during the austral summer. Oxygen-depleted Circumpolar Deep Water (CDW) showed higher abundance of Excavata, common bacterivores in deep water masses. At the shelf-break, Antarctic Bottom Water (AABW), formed by the entrainment of shelf waters in CDW, maintained the eukaryotic genetic signature typical of both parental water masses.
Faccia, Michele; Mastromatteo, Marianna; Conte, Amalia; Del Nobile, Matteo Alessandro
2012-11-01
In this work the effects of addition of different amounts of sodium chloride, during cheese making, on shelf life of mozzarella cheese were evaluated. The mozzarella cheese quality decay was assessed during storage at 9 °C by monitoring microbiological, sensory and physico-chemical changes in the product. Results showed that Pseudomonas spp. growth was responsible for cheese unacceptability, whereas the sensory quality did not limit cheese shelf life. In particular, the highest shelf life values were obtained for mozzarella without salt and with the lowest salt concentration (0·23 g NaCl), and amounted to about 5 and 4 d, respectively. On the contrary, high salt concentrations affected product shelf life, probably as a consequence of progressive solubilisation of cheese casein, due to the phenomenon of 'salting in'.
Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits.
Chen, Jiao; Liu, Xixia; Li, Fenfang; Li, Yixing; Yuan, Debao
2017-01-01
Avocado is an important tropical fruit with high commercial value, but has a relatively short storage life. In this study, the effects of cold shock treatment (CST) on shelf life of naturally ripened and ethylene-ripened avocado fruits were investigated. Fruits were immersed in ice water for 30 min, then subjected to natural or ethylene-induced ripening. Fruit color; firmness; respiration rate; ethylene production; and the activities of polygalacturonase (PG), pectin methylesterase (PME), and endo-β-1,4-glucanase were measured. Immersion in ice water for 30 min effectively delayed ripening-associated processes, including peel discoloration, pulp softening, respiration rate, and ethylene production during shelf life. The delay in fruit softening by CST was associated with decreased PG and endo-β-1,4-glucanase activities, but not PME activity. This method could potentially be a useful postharvest technology to extend shelf life of avocado fruits.
Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits
Li, Fenfang; Li, Yixing
2017-01-01
Avocado is an important tropical fruit with high commercial value, but has a relatively short storage life. In this study, the effects of cold shock treatment (CST) on shelf life of naturally ripened and ethylene-ripened avocado fruits were investigated. Fruits were immersed in ice water for 30 min, then subjected to natural or ethylene-induced ripening. Fruit color; firmness; respiration rate; ethylene production; and the activities of polygalacturonase (PG), pectin methylesterase (PME), and endo-β-1,4-glucanase were measured. Immersion in ice water for 30 min effectively delayed ripening-associated processes, including peel discoloration, pulp softening, respiration rate, and ethylene production during shelf life. The delay in fruit softening by CST was associated with decreased PG and endo-β-1,4-glucanase activities, but not PME activity. This method could potentially be a useful postharvest technology to extend shelf life of avocado fruits. PMID:29253879
Glimpses of Arctic Ocean shelf-basin interaction from submarine-borne radium sampling
NASA Astrophysics Data System (ADS)
Kadko, David; Aagaard, Knut
2009-01-01
Evidence of shelf-water transfer from temperature, salinity, and 228Ra/ 226Ra sampling from the nuclear submarine USS L. Mendel Rivers SCICEX cruise in October, 2000 demonstrates the heterogeneity of the Arctic Ocean with respect to halocline ventilation. This likely reflects both time-dependent events on the shelves and the variety of dispersal mechanisms within the ocean, including boundary currents and eddies, at least one of which was sampled in this work. Halocline waters at the 132 m sampling depth in the interior Eurasian Basin are generally not well connected to the shelves, consonant with their ventilation within the deep basins, rather than on the shelves. In the western Arctic, steep gradients in 228Ra/ 226Ra ratio and age since shelf contact are consistent with very slow exchange between the Chukchi shelf and the interior Beaufort Gyre. These are the first radium measurements from a nuclear submarine.
Ocean-Forced Ice-Shelf Thinning in a Synchronously Coupled Ice-Ocean Model
NASA Astrophysics Data System (ADS)
Jordan, James R.; Holland, Paul R.; Goldberg, Dan; Snow, Kate; Arthern, Robert; Campin, Jean-Michel; Heimbach, Patrick; Jenkins, Adrian
2018-02-01
The first fully synchronous, coupled ice shelf-ocean model with a fixed grounding line and imposed upstream ice velocity has been developed using the MITgcm (Massachusetts Institute of Technology general circulation model). Unlike previous, asynchronous, approaches to coupled modeling our approach is fully conservative of heat, salt, and mass. Synchronous coupling is achieved by continuously updating the ice-shelf thickness on the ocean time step. By simulating an idealized, warm-water ice shelf we show how raising the pycnocline leads to a reduction in both ice-shelf mass and back stress, and hence buttressing. Coupled runs show the formation of a western boundary channel in the ice-shelf base due to increased melting on the western boundary due to Coriolis enhanced flow. Eastern boundary ice thickening is also observed. This is not the case when using a simple depth-dependent parameterized melt, as the ice shelf has relatively thinner sides and a thicker central "bulge" for a given ice-shelf mass. Ice-shelf geometry arising from the parameterized melt rate tends to underestimate backstress (and therefore buttressing) for a given ice-shelf mass due to a thinner ice shelf at the boundaries when compared to coupled model simulations.
NASA Astrophysics Data System (ADS)
Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.
2011-12-01
Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage, which point to specific scenarios involving e.g. changes in the food web that can be related to warmer surface water temperatures. Such warming of shelf waters may be related with an overshooting Atlantic Meridional Overturning Circulation (AMOC) and strong injection of warmer North Atlantic Deep Water into the Southern Ocean water masses at Termination I as reported by [2]. Such finding may highlight the effects of AMOC changes on Antarctic ice shelf extent and coastal ecosystems. [1] Hillenbrand et al., 2010. J. Quat. Sci. 25 (3), 280-295. [2] Barker et al., 2010. Nature Geosci. 3, 567-571.
Schaeffer, Amandine; Roughan, Moninya; Austin, Tim; Everett, Jason D.; Griffin, David; Hollings, Ben; King, Edward; Mantovanelli, Alessandra; Milburn, Stuart; Pasquer, Benedicte; Pattiaratchi, Charitha; Robertson, Robin; Stanley, Dennis; Suthers, Iain; White, Dana
2016-01-01
Since 2008, 26 glider missions have been undertaken along the continental shelf of southeastern Australia. Typically these missions have spanned the continental shelf on the inshore edge of the East Australian Current from 29.5–33.5°S. This comprehensive dataset of over 33,600 CTD profiles from the surface to within 10 m of the bottom in water depths ranging 25–200 m provides new and unprecedented high resolution observations of the properties of the continental shelf waters adjacent to a western boundary current, straddling the region where it separates from the coast. The region is both physically and biologically significant, and is also in a hotspot of ocean warming. We present gridded mean fields for temperature, salinity and density, but also dissolved oxygen and chlorophyll-a fluorescence indicative of phytoplankton biomass. This data will be invaluable for understanding shelf stratification, circulation, biophysical and bio-geochemical interactions, as well as for the validation of high-resolution ocean models or serving as teaching material. PMID:27575831
NASA Astrophysics Data System (ADS)
Meng, Feifei; Dai, Minhan; Cao, Zhimian; Wu, Kai; Zhao, Xiaozheng; Li, Xiaolin; Chen, Junhui; Gan, Jianping
2017-12-01
We examined the distribution and seasonality of dissolved organic carbon (DOC) based on a large data set collected from the northern South China Sea (NSCS) shelf under complex circulation schemes influenced by river plume, coastal upwelling, and downwelling. The highest surface values of ˜117 μmol L-1 were observed nearshore in summer suggesting high DOC supplies from the river inputs, whereas the lowest surface values of ˜62 μmol L-1 were on the outer shelf in winter due to entrainment of DOC-poor subsurface water under strengthened vertical mixing. While the summer coastal upwelling brought lower DOC from offshore depth to the nearshore surface, the winter coastal downwelling delivered higher surface DOC to the midshelf deep waters from the inner shelf fueled by the China Coastal Current (CCC) transporting relatively high DOC from the East China Sea to the NSCS. The intensified winter downwelling generated a cross-shelf DOC transport of 3.1 × 1012 g C over a large shelf area, which induced a significant depression of the NSCS DOC inventory in winter relative to in autumn. In addition to the variable physical controls, net biological production of DOC was semiquantified in both the river plume (2.8 ± 3.0 μmol L-1) and coastal upwelling (3.1 ± 1.3 μmol L-1) in summer. We demonstrated that the NSCS shelf had various origins of DOC including riverine inputs, inter-shelf transport and in situ production. Via cross-shelf transport, the accumulated DOC would be exported to and stored in the deep ocean, suggesting that continental shelves are a potentially effective carbon sink.
A long term glider study of shelf sea oxygen dynamics
NASA Astrophysics Data System (ADS)
Williams, Charlotte; Palmer, Matthew; Mahaffey, Claire; Davis, Clare
2017-04-01
Oxygen is involved in most biogeochemical processes in the ocean, and dissolved oxygen (DO) is a well-established indicator for biological activity via the estimate of apparent oxygen utilisation (AOU). In the deep waters of the open ocean, the AOU provides a valuable insight into the ocean's biological carbon pump. However, in the physically dynamic and highly productive shallow shelf seas, interpretation of the oxygen distribution and the magnitude of AOU is complex. Physical processes, such as diapycnal mixing, entrainment and horizontal advection act to ventilate waters below the thermocline and thus increase oxygen and decrease AOU. In contrast, biological remineralisation of organic material below the thermocline will consume oxygen and increase AOU. We aim to address the following: 1. Does AOU change seasonally in a shelf sea in response to seasonal changes in productivity? 2. How important is turbulence in redistributing oxygen in a shelf sea? Using 9 months of high-resolution data from >20 glider deployments in the seasonally stratified NW European Shelf Sea we identify and quantify the physical and biological processes that control the DO distribution and magnitude of AOU in shelf seas. A 200km transect between the shelf edge and the central Celtic Sea (CCS) was repeated between November 2014 and August 2015, thus capturing key periods in the seasonal cycling in shelf seas, specifically the onset of stratification, the spring bloom, stratified summer period and breakdown of stratification. The gliders collected data for DO, temperature, salinity, chlorophyll fluorescence, CDOM, backscatter and turbulence. In addition, direct measurements of turbulent dissipation from the Ocean Microstructure Glider deployed during the campaign provided estimates of mixing at CCS and the shelf break, allowing accurate quantification of the vertical fluxes of oxygen. We find that oxygen decreases ubiquitously across the shelf as soon as stratification takes hold, though BML oxygen decreases at a slower rate during summer compared to spring at the shelf break and also across the inner shelf. This appears to be due to a stronger oxycline and potentially more efficient, sporadic mixing of oxygen across the thermocline during summer. Biological oxygen consumption is greater at the shelf break than on shelf even when accounting for enhanced oxygen diapycnal fluxes at the shelf break. Gliders prove to be a good tool in monitoring long term oxygen changes in shelf seas and we find that accurate estimation of AOU in the shelf sea requires inclusion of mixing processes.
Spatial Extent of Wave-Supported Fluid Mud on the Waipaoa Continental Margin
NASA Astrophysics Data System (ADS)
Hale, R. P.; Ogston, A. S.; Walsh, J. P.; Orpin, A. R.
2013-12-01
Data from acoustic and optical sensors provide a powerful tool to connect near-bed water-column processes with the deposits they generate. Ideally, the product of water-column and seabed interactions can then be applied more broadly to understand systems as a whole, in both space and time. Recent observational research has allowed for an improved understanding of shelf sediment-transport dynamics in many coastal systems, including the dynamic Waipaoa Sedimentary System (WSS), on the east coast of the north island of New Zealand. This narrow shelf (~20 km) on an active continental margin is subject to strong environmental forcings in the form of high waves (>5 m), strong currents (>50 cm/s), and frequent floods of the Waipaoa River, which delivers an average of 15 MT of sediment to Poverty Bay and the coastal environment each year. A year-long study of the WSS during 2010-2011 combined observational data from instrumented tripods at three locations on the continental shelf, with repeat sediment cores collected in four-month intervals, to identify and assess the mechanisms of cross- and off-shelf sediment transport. Observational data identified that cross-shelf sediment transport is stochastic, typically driven by high-wave events, with 40% of the net annual cross-shelf flux for one tripod location occurring during a single wave-supported fluid mud (WSFM) in July 2010. Fortunately, this event was recorded in the instrument data, and the resulting deposit was plainly visible in x-radiograph images. This particular WSFM was observed in x-radiographs collected as deep as ~50 m, and as far as ~28 km from the mouth of the Waipaoa River, and is more prevalent on the northern portion of the shelf. A critical water depth is not the only criteria for WSFM deposition, as some shallower areas on the southern shelf, which were subject to high bed stress, show no evidence of WSFM in this event, while cores collected in deeper areas (e.g. lower bed stress) on the northern shelf did observe WSFM. Interestingly, several cores on the southern shelf do appear to preserve evidence of previous wave-reworking of the seabed. It appears that the presence of a river plume and associated sediment, as well as the direction in which it is advected, are instrumental in WSFM generation.
Fate of internal waves on a shallow shelf
NASA Astrophysics Data System (ADS)
Davis, Kristen; Arthur, Robert; Reid, Emma; Decarlo, Thomas; Cohen, Anne
2017-11-01
Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a shelf-slope region of a coral atoll in the South China Sea. The spatially-continuous view of the near-bottom temperature field provided by the DTS offers a perspective of physical processes previously available only in laboratory settings or numerical models. These processes include internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, internal ``tide pools'' (dense water left behind after the retreat of an internal wave), and internal run-down (near-bottom, offshore-directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf - whether they are transmitted into shallow waters or reflected back offshore - is mediated by local water column density and shear structure, with important implications for nearshore distributions of energy, heat, and nutrients. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for field work supported by Academia Sinica and for K.D. and E.R. from NSF.
NASA Astrophysics Data System (ADS)
Gaughan, Daniel J.
2007-04-01
The Leeuwin Current (LC), an oligotrophic, warm current that flows south (poleward) along the shelf-break off the west coast of Australia and then east along the south coast, is recognized as a key factor affecting fisheries production in the region, but the mechanisms for this influence have not been determined. Recruitment strength of the globally significant western rock lobster ( Panulirus cygnus) stock is correlated to interannual variations in the strength of the LC. While this relationship has been based on a 2-decade time-series of P. cygnus recruitment data, the important teleost species of the region rarely have recruitment data for more than a few years; yet this group is nonetheless economically, socially and politically important. Furthermore, there is little knowledge of the egg- and larval-stage dynamics for the majority of these teleosts. Previous and new information on those aspects of the LC system that could theoretically impact on recruitment of shelf teleosts were identified to provide a basis for developing a conceptual model of how the LC could affect recruitment. The potential impacts of the LC system, which entrains shelf water, were examined with reference to retention/loss of teleost eggs and larvae and positive/negative influences on feeding conditions for larvae. Owing to the lack of early-life-history information for many teleosts in Western Australia, this was undertaken for generalized shelf species whose eggs are spawned on the shelf and whose larvae must settle on the shelf to access favourable nursery habitat. The results indicate that the LC system most likely contributes a net negative impact on success of teleost eggs and larvae. Larvae of shelf teleosts entrained and trapped in the warm-core (WC) eddies that form from the LC and then propagate offshore would contribute little to recruitment. Given that larval teleosts predominantly feed on copepods and that these were much less abundant in the WC eddy than is typical of shelf waters, the general larval feeding conditions in the WC eddy were inferior to those on the shelf. Any larvae that escaped from the eddy that were able to orientate towards the shelf and had sustained swimming capabilities would incur significant energetic penalties when attempting to return to the shelf. Furthermore, flow of the LC onto the shelf could dilute the concentrations of phytoplankton and zooplankton, negatively impacting feeding conditions for larvae that remain on the shelf. Clarification of the timing and geographical locations of interactions between the LC and shelf waters relative to spawning behaviour of shelf teleosts is required before the potential negative impacts on recruitment can be adequately quantified. However, because fisheries management issues cannot (always) await detailed understanding of biophysical effects on recruitment, the conceptual model of potential effects was developed here to provide immediate improvements for interpretation of stock assessment information, for which recruitment variability is often a key uncertainty. Finally, an improved understanding of the effects of mesoscale oceanography on fish stocks will increase the ability for fisheries managers to discuss climate-change implications with stakeholders.
Geometric controls of the flexural gravity waves on the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Sergienko, O. V.
2017-12-01
Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.
Breakup of Pack Ice, Antarctic Ice Shelf
1991-09-18
STS048-152-007 (12-18 Sept 1991) --- The periphery of the Antarctic ice shelf and the Antarctic Peninsula were photographed by the STS 48 crew members. Strong offshore winds, probably associated with katabatic winds from the interior of the continent, are peeling off the edges of the ice shelf into ribbons of sea ice, icebergs, bergy bits and growlers into the cold waters of the circum-Antarctic southern ocean.
Modified, Packaged Tortillas Have Long Shelf Life
NASA Technical Reports Server (NTRS)
Bourland, Charles; Glaus-Late, Kimberly
1995-01-01
Tortillas made from modified recipe and sealed in low-pressure nitrogen in foil pouches in effort to increase their shelf life at room temperature. Preliminary tests show that shelf life of these tortillas at least five months; in contrast, commercial tortillas last only few days. Part of water in recipe replaced with glycerin. Particularly necessary to avoid Clostridium botulinum, which grows in anaerobic environments and produces deadly toxin that causes botulism.
West Florida Shelf Response to Hurricane Irma
NASA Astrophysics Data System (ADS)
Liu, Y.; Weisberg, R. H.; Chen, J.; Merz, C. R.; Law, J.; Zheng, L.
2017-12-01
Hurricane Irma impacted the west Florida continental shelf (WFS) as it transited the state of Florida during September 10-12, 2017, making landfall first at Cudjoe Key and then again at Naples, as a Category 2 hurricane. The WFS response to Hurricane Irma is analyzed using a combination of in situ observations and numerical model simulations. The observations include water column velocity (by Acoustic Doppler Current Profilers), sea surface temperature and meteorological records from three moorings on the shelf, surface currents by high-frequency radars, and coastal tide gauge records. The West Florida Coastal Ocean Model (WFCOM) employed downscales from the deep Gulf of Mexico, across the shelf and into the estuaries by nesting the unstructured grid FVCOM in the Gulf of Mexico HYCOM. Both the observations and the model simulations revealed strong upwelling and vertical mixing followed by downwelling as the storm passed by. This was accompanied by a rapid drop in sea surface temperature of approximately 4ºC and large decreases in sea level with associated negative surges, causing drying in the Florida Bay, Charlotte Harbor, Tampa Bay estuaries and the Big Bend region. The transport and exchange of water between the shelf and the estuaries and between the shelf and the Florida Keys reef track during the hurricane may have important implications for ecosystem studies within the region.
Nearshore Phytoplankton Production on the Louisiana Continental Shelf
NASA Astrophysics Data System (ADS)
Fung, M.; Lehrter, J. C.
2017-12-01
Net heterotrophy has been observed across much of the Louisiana continental shelf (LCS) where hypoxic conditions occur. Recent studies suggest that cross-shelf transport of nearshore organic matter derived from phytoplankton production subsidizes this heterotrophy. To investigate this theory, we conducted two cruises in spring and summer of 2017 to assess the spatial and temporal patterns of primary production (PP) and respiration (R). We focused on nearshore waters across the area of the shelf where hypoxia is most frequently observed. Overall, PP rates were highest (median = 35 mmol O2 m-3 d-1) in nearshore surface waters (sites with <15 m depth and riverine plume locations), but temporal and spatial differences were seen in both the magnitude of PP and R. Nearshore waters in spring had the highest production rates (median = 52.3 mmol O2 m-3 d-1) and were an order of magnitude greater than production in offshore waters (>15 m depth), while summer production rates in the nearshore and offshore areas were comparable. Similarly, spring nearshore respiration rates (11.2 mmol O2 m-3 d-1) were an order of magnitude larger than offshore, and summer respiration rates in the nearshore and offshore areas were comparable. P/R was greatest nearshore in the spring (4.7) and lowest offshore in the summer (0.9). These results suggest that nearshore production is potentially a significant source of organic matter for the observed heterotrophy over most of the LCS, supporting the theory that shelf-wide hypoxia may be largely driven by nearshore production.
Observations of Nonlinear Internal Wave Runup into the Surfzone
NASA Astrophysics Data System (ADS)
Sinnett, G.; Feddersen, F.; Pawlak, G. R.; Lucas, A.; Terrill, E. J.
2016-12-01
Nonlinear internal waves (NLIW) have been observed in the shallow innershelf environment, sometimes transporting cold nutrient rich water upslope. Inner-shelf water properties have been linked to the internal wave field, but the eventual fate and potential impact of NLIWs in water shallower than 15 m has rarely been observed. Here, we detail some of the first shallow water observations of NLIW events made using an array of 75 thermistors and 5 ADCPs, spanning water from 18 m depth all the way to the coast. A total of 31 significant NLIW events (defined as a temperature decrease of at least 1 oC at a rate greater than 0.07 oC/min in 7 m depth) were observed between October 7th and November 19th, 2014. The dense thermistor array tracked the arrival of surges of cold water associated with NLIW events. These events propagated onshore through a variety of background conditions at a range of phase speeds (0.008 to 0.1 m/s) and angles (63O to 33O ), sometimes extending all the way to the surfzone. Occasionally, a NLIW event left a residual signature in the surfzone and shallow innershelf, changing the mean temperature by as much as 1 oC in 1 m water depth. Enhanced NLIW activity was observed over multiday periods, consisting of temperature oscillations on semidiurnal, 6-hour and 10-minute time scales. Here, we analyze the phase speed, propagation angle and runup extent under a variety of different background conditions. We report on the evolution and characteristics of these coupled innershelf / surfzone NLIW events as they propagate upslope into very shallow waters, and potential impacts to the sensitive nearshore region.
Meridional fluxes of dissolved organic matter in the North Atlantic Ocean
NASA Technical Reports Server (NTRS)
Walsh, John J.; Carder, Kendall L.; Mueller-Karger, Frank E.
1992-01-01
Biooptical estimates of gelbstoff and a few platinum measurements of dissolved organic carbon (DOCpt) are used to construct a budget of the meridional flux of DOC and dissolved organic nitrogen (DON) across 36 deg 25 min N in the North Atlantic from previous inverse models of water and element transport. Distinct southward subsurface fluxes of dissolved organic matter within subducted shelf water, cabelled slope water, and overturned basin water are inferred. Within two cases of a positive gradient of DOCpt between terrestrial/shelf and offshore stocks, the net equatorward exports of O2 and DOCpt from the northern North Atlantic yield molar ratios of 2.1 to 9.1, compared to the expected Redfield O2/C ratio of 1.3. It is concluded that some shelf export of DOC, with a positive gradient between coastal and oceanic stocks, as well as falling particles, are required to balance carbon, nitrogen, and oxygen budgets of the North Atlantic.
NASA Astrophysics Data System (ADS)
Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing
2016-04-01
The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge deltas since the Late Oligocene in the study area, and this is consistent with relative sea level changes constrained by interplay of tectonic subsidence or global sea level change and sediment supply. The shelf-edge delta sandy deposits and the associated prodelta turbidite fan systems are the most important oil/gas bearing reservoirs in the continental slope area.
NASA Astrophysics Data System (ADS)
Nelson, C. B.; King, K.
2015-12-01
The largest ice shelf in Antarctic, Ross Ice Shelf, was investigated over the years of (1970-2015). Near the basal stress boundary between the ice shelf and the West Antarctic ice sheet, ice velocity ranges from a few meters per year to several hundred meters per year in ice streams. Most of the drainage from West Antarctica into the Ross Ice Shelf flows down two major ice streams, each of which discharges more than 20 km3 of ice each year. Along with velocity changes, the warmest water below parts of the Ross Ice Shelf resides in the lowest portion of the water column because of its high salinity. Vertical mixing caused by tidal stirring can thus induce ablation by lifting the warm water into contact with the ice shelf. This process can cause melting over a period of time and eventually cause breakup of ice shelf. With changes occurring over many years a validation is needed for the Antarctic Snow Accumulation and Ice Discharge (ASAID) basal stress boundary created in 2003. After the 2002 Larsen B Ice Shelf disintegration, nearby glaciers in the Antarctic Peninsula accelerated up to eight times their original speed over the next 18 months. Similar losses of ice tongues in Greenland have caused speed-ups of two to three times the flow rates in just one year. Rapid changes occurring in regions surrounding Antarctica are causing concern in the polar science community to research changes occurring in coastal zones over time. During the research, the team completed study on the Ross Ice Shelf located on the south western coast of the Antarctic. The study included a validation of the ABSB vs. the natural basal stress boundary (NBSB) along the Ross Ice Shelf. The ASAID BSB was created in 2003 by a team of researchers headed by National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), with an aim of studying coastal deviations as it pertains to the mass balance of the entire continent. The point data file was aimed at creating a replica of the natural BSB. Select cloud free Landsat satellite imagery from satellites 1 through 7 was used to detect changes occurring over the span of 19 years. The last major interest in the study included documenting the deviations or incorrect placements of the ABSB vs. NBSB. ENVI 4.7 as well as ENVI 5.0 image manipulation software was used in the geo-rectifying and the geo-referencing process.
Kang, Sun-Chul; Kim, Min-Jeong; Park, In-Sik; Choi, Ung-Kyu
2008-03-01
This study was conducted to investigate the effect of modified atmosphere packaging (MAP) in combination with BN/PE film on the shelf life and quality of fresh-cut iceberg lettuce during cold storage. The total mesophilic population in the sample packed in BN/PE film under MAP conditions was dramatically reduced in comparison with that of PE film, PE film under MAP conditions, and BN/PE film. The O2 concentration in the BN/PE film under MAP conditions decreased slightly as the storage period progressed. The coloration of the iceberg lettuce progressed the slowest when it was packaged in BN/PE film under MAP conditions, followed by BN/PE film, PE film, and PE film under MAP conditions. The shelf life of fresh-cut iceberg lettuce packaged in the BN/PE film under MAP conditions was extended by more than 2 days at 10 degrees as compared with that of the BN/PE film in which the extension effect was more than 2 days longer than that of PE, PET, and OPP films.
Turbulent heat exchange between water and ice at an evolving ice-water interface
NASA Astrophysics Data System (ADS)
Ramudu, E.; Hirsh, B.; Olson, P.; Gnanadesikan, A.
2016-02-01
Experimental results are presented on the time evolution of ice subject to a turbulent shear flow in a layer of water of uniform depth. Our study is motivated by observations in the ocean cavity beneath Antarctic ice shelves, where shoaling of Circumpolar Deep Water into the cavity has been implicated in the accelerated melting of the ice shelf base. Measurements of inflow and outflow at the ice shelf front have shown that not all of the heat entering the cavity is delivered to the ice shelf, suggesting that turbulent transfer to the ice represents an important bottleneck. Given that a range of turbulent transfer coefficients has been used in models it is important to better constrain this parameter. We measure as a function of time in our experiments the thickness of the ice, temperatures in the ice and water, and fluid velocity in the shear flow, starting from an initial condition in which the water is at rest and the ice has grown by conduction above a cold plate. The strength of the applied turbulent shear flow is represented in terms of a Reynolds number Re, which is varied over the range 3.5 × 103 ≤ Re ≤ 1.9 × 104. Transient partial melting of the ice occurs at the lower end of this range of Re and complete transient melting of the ice occurs at the higher end of the range. Following these melting transients, the ice reforms at a rate that is independent of Re. We fit to our experimental measurements of ice thickness and temperature a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. Comparison with the Pine Island Glacier Ice Shelf yields qualitative agreement between the transient ice melting rates predicted by our model and the shelf melting rate inferred from the field observations.
Mechanisms of flow and water mass variability in Denmark Strait
NASA Astrophysics Data System (ADS)
Moritz, Martin; Jochumsen, Kerstin; Quadfasel, Detlef; Mashayekh Poul, Hossein; Käse, Rolf H.
2017-04-01
The dense water export through Denmark Strait contributes significantly to the lower limb of the Atlantic Meridional Overturning Circulation. Overflow water is transported southwestward not only in the deep channel of the Strait, but also within a thin bottom layer on the Greenland shelf. The flow on the shelf is mainly weak and barotropic, exhibiting many recirculations, but may eventually contribute to the overflow layer in the Irminger Basin by spilling events in the northern Irminger Basin. Especially the circulation around Dohrn Bank and the Kangerdlussuaq Trough contribute to the shelf-basin exchange. Moored observations show the overflow in Denmark Strait to be stable during the last 20 years (1996-2016). Nevertheless, flow variability was noticed on time scales of eddies and beyond, i.e. on weekly and interannual scales. Here, we use a combination of mooring data and shipboard hydrographic and current data to address the dominant modes of variability in the overflow, which are (i) eddies, (ii) barotropic pulsations of the plume, (iii) lateral shifts of the plume core position, and (iv) variations in vertical extension, i.e. varying overflow thickness. A principle component analysis is carried out and related to variations in sea surface height and wind stress, derived from satellite measurements. Furthermore, a test for topographic waves is performed. Shelf contributions to the overflow core in the Irminger Basin are identified from measurements of temperature and salinity, as well as velocity, which were obtained during recent cruises in the region. The flow and water mass pattern obtained from the observational data is compared to simulations in a high resolution regional model (ROMS), where tracer release experiments and float deployments were carried out. The modelling results allow a separation between different atmospheric forcing modes (NAO+ vs NAO- situations), which impact the water mass distribution and alter the dense water pathways on the Greenland shelf. Finally, the results are discussed with respect to other regional model studies on the circulation in the northern Irminger Basin.
Seasonal uranium distributions in the coastal waters off the Amazon and Mississippi Rivers
Swarzenski, P.W.; McKee, B.A.
1998-01-01
The chemical reactivity of uranium was investigated across estuarine gradients from two of the world's largest river systems: the Amazon and Mississippi. Concentrations of dissolved (<0.45 ??m) uranium (U) were measured in surface waters of the Amazon shelf during rising (March 1990), flood (June 1990) and low (November 1991) discharge regimes. The dissolved U content was also examined in surface waters collected across estuarine gradients of the Mississippi outflow region during April 1992, August 1993, and November (1993). All water samples were analyzed for U by isotope dilution inductively coupled plasma mass spectrometry (ICP-MS). In Amazon shelf surface waters uranium increased nonconservatively from about 0.01 ??g l-1 at the river's mouth to over 3 ??g l-1 at the distal site, irrespective of river discharge stage. Observed large-scale U removal at salinities generally less than 15 implies a) that riverine dissolved U was extensively adsorbed by freshly-precipitated hydrous metal oxides (e.g., FeOOH, MnO2) as a result of flocculation and aggregation, and b) that energetic resuspension and reworking of shelf sediments and fluid muds on the Amazon shelf released a chemically reactive particle/colloid to the water column which can further scavenge dissolved U across much of the estuarine gradient. In contrast, the estuarine chemistry of U is inconclusive within surface waters of the Mississippi shelf-break region. U behavior is most likely controlled less by traditional sorption and/or desorption reactions involving metal oxides or colloids than by the river's variable discharge regime (e.g., water parcel residence time during estuarine mixing, nature of particulates, sediment storage and resuspension in the confined lower river), and plume dispersal. Mixing of the thin freshwater lens into ambient seawater is largely defined by wind-driven rather than physical processes. As a consequence, in the Mississippi outflow region uranium predominantly displays ConserVative behavior; removal is evident only during anomalous river discharge regimes. 'Products-approach' mixing experiments conducted during the Flood of 1993 suggest the importance of small particles and/or colloids in defining a depleted U versus salinity distribution.
NASA Astrophysics Data System (ADS)
Puig, Pere; Greenan, Blair J. W.; Li, Michael Z.; Prescott, Robert H.; Piper, David J. W.
2013-04-01
To investigate the processes by which sediment is transported through a submarine canyon incised in a glaciated margin, the bottom boundary layer quadrapod RALPH was deployed at 276-m depth in the West Halibut Canyon (off Newfoundland) during winter 2008-2009. Two main sediment transport processes were identified throughout the deployment. Firstly, periodic increases of near-bottom suspended-sediment concentrations (SSC) were recorded associated with the up-canyon propagation of the semidiurnal internal tidal bore along the canyon axis, carrying fine sediment particles resuspended from deeper canyon regions. The recorded SSC peaks, lasting less than one hour, were observed sporadically and were linked to bottom intensified up-canyon flows concomitant with sharp drops in temperature. Secondly, sediment transport was also observed during events of intensified down-canyon current velocities that occurred during periods of sustained heat loss from surface waters, but were not associated with large storms. High-resolution velocity profiles throughout the water column during these events revealed that the highest current speeds (~1 m s-1) were centered several meters above the sea floor and corresponded to the region of maximum velocities of a gravity flow. Such flows had associated low SSC and cold water temperatures and have been interpreted as dense shelf water cascading events channelized along the canyon axis. Sediment transport during these events was largely restricted to bedload and saltation, producing winnowing of sands and fine sediments around larger gravel particles. Analysis of historical hydrographic data suggests that the origin of such gravity flows is not related to the formation of coastal dense waters advected towards the canyon head. Rather, the dense shelf waters appear to be generated around the outer shelf, where convection during winter is able to reach the sea floor and generate a pool of near-bottom dense water that cascades into the canyon during one or two tidal cycles. A similar transport mechanism can occur in other submarine canyons along the eastern Canadian margin, as well in other canyoned regions elsewhere, where winter convection generally reaches the shelf-edge.
Does Arctic sea ice reduction foster shelf-basin exchange?
Ivanov, Vladimir; Watanabe, Eiji
2013-12-01
The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of salt flux leads to a threefold increase of shelf-slope volume flux below the warm core of Atlantic water. This threefold increase would be a sufficient substitute for a similar amount of dense water that currently forms in the Greenland, Iceland, and Norwegian (GIN) seas but is expected to decrease in a warming climate.
Effect of winds and waves on salt intrusion in the Pearl River estuary
NASA Astrophysics Data System (ADS)
Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng
2018-02-01
Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.
Brachiopod δ18O values do reflect ambient oceanography: Lacepede Shelf, southern Australia
NASA Astrophysics Data System (ADS)
James, Noel P.; Bone, Yvonne; Kurtis Kyser, T.
1997-06-01
Although commonly used as proxies for attributes of ancient ocean waters, the δ18O values of brachiopods from modern seas are little studied. To evaluate the utility of brachiopods as recorders of regional oceanography, modern shells from the Lacepede Shelf (25 000 km2) of southern Australia were analyzed for δ18O, and the results were compared to the values of ambient seawater. Southern Ocean waters cover this area of extensive cool-water carbonate deposition, but there are distinct sectors of seasonal upwelling and lesser fluvial outflow. δ18O values of brachiopods across the environmental spectrum from 40 to 300 m water depth are in general isotopic equilibrium with surrounding seawater. Nevertheless, δ18O values from individual sample sites vary as much as 0.60‰. The area of cold-water upwelling in particular is clearly delimited by a group of high δ18O values. The range of values across this one shelf, on the order of 2.5‰, is similar to the range of values postulated on the basis of similar results for secular changes in many ancient oceans.
NASA Astrophysics Data System (ADS)
Carlotti, F.; Jouandet, M.-P.; Nowaczyk, A.; Harmelin-Vivien, M.; Lefèvre, D.; Richard, P.; Zhu, Y.; Zhou, M.
2015-07-01
This paper presents results on the spatial and temporal distribution patterns of mesozooplankton in the naturally fertilized region to the east of the Kerguelen Islands (Southern Ocean) visited at early bloom stage during the KEOPS2 survey (15 October to 20 November 2011). The aim of this study was to compare the zooplankton response in contrasted environments localized over the Kerguelen Plateau in waters of the east shelf and shelf edge and in productive oceanic deep waters characterized by conditions of complex circulation and rapidly changing phytoplankton biomass. The mesozooplankton community responded to the spring bloom earlier on the plateau than in the oceanic waters, where complex mesoscale circulation stimulated initial more or less ephemeral blooms before a broader bloom extension. Taxonomic compositions showed a high degree of similarity across the whole region, and the populations initially responded to spring bloom with a large production of larval forms increasing abundances, without biomass changes. Taxonomic composition and stable isotope ratios of size-fractionated zooplankton indicated the strong domination of herbivores, and the total zooplankton biomass values over the survey presented a significant correlation with the integrated chlorophyll concentrations in the mixed layer. The biomass stocks observed at the beginning of the KEOPS2 cruise were around 1.7 g C m-2 above the plateau and 1.2 g C m-2 in oceanic waters. Zooplankton biomass in oceanic waters remained on average below 2 g C m-2 over the study period, except for one station in the Polar Front zone (F-L), whereas zooplankton biomasses were around 4 g C m-2 on the plateau at the end of the survey. The most remarkable feature during the sampling period was the stronger increase in abundance in the oceanic waters (25 × 103 to 160 × 103 ind m-2) than on the plateau (25 × 103 to 90 × 103 ind m-2). The size structure and taxonomic distribution patterns revealed a cumulative contribution of various larval stages of dominant copepods and euphausiids particularly in the oceanic waters, with clearly identifiable stages of progress during a Lagrangian time series survey. The reproduction and early stage development of dominant species were sustained by mesoscale-related initial ephemeral blooms in oceanic waters, but growth was still food-limited and zooplankton biomass stagnated. In contrast, zooplankton abundance and biomass on the shelf were both in a growing phase, at slightly different rates, due to growth under sub-optimal conditions. Combined with our observations during the KEOPS1 survey (January-February 2005), the present results deliver a consistent understanding of patterns in mesozooplankton abundance and biomass from early spring to summer in the poorly documented oceanic region east of the Kerguelen Islands.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...
Diel Vertical Migration Thresholds of Karenia brevis (Dinophyceae).
Light and nutrient availability change throughout dinoflagellate diel vertical migration (DVM) and/or with subpopulation location in the water column along the west Florida shelf. Typically, the vertical depth of the shelf is greater than the distance a subpopulation can vertical...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...
NASA Astrophysics Data System (ADS)
D'Sa, E. J.; Goes, J. I.; Gomes, H.; Mouw, C.
2014-06-01
The absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) are reported for the inner shelf, slope waters and outer shelf regions of the eastern Bering Sea during the summer of 2008, when a warm, thermally stratified surface mixed layer lay over a cold pool (< 2 °C) that occupied the entire middle shelf. CDOM absorption at 355 nm (ag355) and its spectral slope (S) in conjunction with excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) revealed large variability in the characteristics of CDOM in different regions of the Bering Sea. PARAFAC analysis aided in the identification of three humic-like (components one, two and five) and two protein-like (a tyrosine-like component three, and a tryptophan-like component four) components. In the extensive shelf region, average absorption coefficients at 355 nm (ag355, m-1) and DOC concentrations (μM) were highest in the inner shelf (0.342 ± 0.11 m-1, 92.67 ± 14.60 μM) and lower in the middle (0.226 ± 0.05 m-1, 78.38 ± 10.64 μM) and outer (0.185 ± 0.05 m-1, 79.24 ± 18.01 μM) shelves, respectively. DOC concentrations, however were not significantly different, suggesting CDOM sources and sinks to be uncoupled from DOC. Mean spectral slopes S were elevated in the middle shelf (24.38 ± 2.25 μm-1) especially in the surface waters (26.87 ± 2.39 μm-1) indicating high rates of photodegradation in the highly stratified surface mixed layer, which intensified northwards in the northern middle shelf likely contributing to greater light penetration and to phytoplankton blooms at deeper depths. The fluorescent humic-like components one, two, and five were most elevated in the inner shelf most likely from riverine inputs. Along the productive "green belt" in the outer shelf/slope region, absorption and fluorescence properties indicated the presence of fresh and degraded autochthonous DOM. Near the Unimak Pass region of the Aleutian Islands, low DOC and ag355 (mean 66.99 ± 7.94 μM; 0.182 ± 0.05 m-1) and a high S (mean 25.95 ± 1.58 μm-1) suggested substantial photobleaching of the Alaska Coastal Water, but high intensities of humic-like and protein-like fluorescence suggested sources of fluorescent DOM from coastal runoff and glacier meltwaters during the summer. The spectral slope S vs. ag355 relationship revealed terrestrial and oceanic end members along with intermediate water masses that were modeled using nonlinear regression equations that could allow water mass differentiation based on CDOM optical properties. Spectral slope S was negatively correlated (r2 = 0.79) with apparent oxygen utilization (AOU) for waters extending from the middle shelf into the deep Bering Sea indicating increasing microbial alteration of CDOM with depth. Although our data show that the CDOM photochemical environment of the Bering Sea is complex, our current information on its optical properties will aid in better understanding of the biogeochemical role of CDOM in carbon budgets in relation to the annual sea ice and phytoplankton dynamics, and to improved algorithms of ocean color remote sensing for this region.
Physical basis for a thick ice shelf in the Arctic Basin during the penultimate glacial maximum
NASA Astrophysics Data System (ADS)
Gasson, E.; DeConto, R.; Pollard, D.; Clark, C.
2017-12-01
A thick ice shelf covering the Arctic Ocean during glacial stages was discussed in a number of publications in the 1970s. Although this hypothesis has received intermittent attention, the emergence of new geophysical evidence for ice grounding in water depths of up to 1 km in the central Arctic Basin has renewed interest into the physical plausibility and significance of an Arctic ice shelf. Various ice shelf configurations have been proposed, from an ice shelf restricted to the Amerasian Basin (the `minimum model') to a complete ice shelf cover in the Arctic. Attempts to simulate an Arctic ice shelf have been limited. Here we use a hybrid ice sheet / shelf model that has been widely applied to the Antarctic ice sheet to explore the potential for thick ice shelves forming in the Arctic Basin. We use a climate forcing appropriate for MIS6, the penultimate glacial maximum. We perform a number of experiments testing different ice sheet / shelf configurations and compare the model results with ice grounding locations and inferred flow directions. Finally, we comment on the potential significance of an Arctic ice shelf to the global glacial climate system.
Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment
NASA Astrophysics Data System (ADS)
Brüchert, Volker; Bröder, Lisa; Sawicka, Joanna E.; Tesi, Tommaso; Joye, Samantha P.; Sun, Xiaole; Semiletov, Igor P.; Samarkin, Vladimir A.
2018-01-01
The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic-carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling; intact sediment core incubations; 35S-sulfate tracer experiments; pore-water dissolved inorganic carbon (DIC); δ13CDIC; and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope and allows us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 84 % of the depth-integrated carbon mineralization. Oxygen uptake rates and anaerobic carbon mineralization rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC / NH4+ ratios in pore waters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end-member calculations, the terrestrial organic carbon contribution varied between 32 and 36 %, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using isotope end-member apportionment over the outer shelf of the Laptev and East Siberian seas suggests that about 16 Tg C yr-1 is respired in the outer shelf seafloor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3 Tg C yr-1 is degraded by anaerobic processes, with a terrestrial organic carbon contribution ranging between 0.3 and 0.5 Tg yr-1.
Benthic exchange and biogeochemical cycling in permeable sediments.
Huettel, Markus; Berg, Peter; Kostka, Joel E
2014-01-01
The sandy sediments that blanket the inner shelf are situated in a zone where nutrient input from land and strong mixing produce maximum primary production and tight coupling between water column and sedimentary processes. The high permeability of the shelf sands renders them susceptible to pressure gradients generated by hydrodynamic and biological forces that modulate spatial and temporal patterns of water circulation through these sediments. The resulting dynamic three-dimensional patterns of particle and solute distribution generate a broad spectrum of biogeochemical reaction zones that facilitate effective decomposition of the pelagic and benthic primary production products. The intricate coupling between the water column and sediment makes it challenging to quantify the production and decomposition processes and the resultant fluxes in permeable shelf sands. Recent technical developments have led to insights into the high biogeochemical and biological activity of these permeable sediments and their role in the global cycles of matter.
Increased fluxes of shelf-derived materials to the central Arctic Ocean
Kipp, Lauren E.; Charette, Matthew A.; Moore, Willard S.; Henderson, Paul B.; Rigor, Ignatius G.
2018-01-01
Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters. PMID:29326980
NASA Astrophysics Data System (ADS)
Rignot, Eric
2017-04-01
With unabated climate warming, massive sea level rise from the melting of ice sheets in Greenland and Antarctica looms at the horizon. This is unfortunately an experiment that we can afford to run only once. Satellite and airborne sensors have significantly helped reveal the magnitude of the mass balance of the ice sheets, where the changes take place, when they started, how they change with time and the nature of the physical processes controlling them. These observations have constrained the maturation of numerical modeling techniques for projecting changes in these ice sheets, including the coupling of ocean and ice sheet models, yet significant uncertainties remain to make these projections directly policy relevant and many challenges remain. I will review the state of balance of the ice sheets as we know it today and the fundamental processes that will drive fast ice sheet retreat and sea level change: ice-ocean interaction and iceberg calving. Ice-ocean interaction are dominated by the wind-forced intrusion of warm, salty, subsurface waters toward the ice sheet periphery to melt ice from below at rates orders of magnitude greater than at the surface. In Greenland, these rates are difficult to observe, but model simulations indicate rates of ice melt along vertical calving faces of meters per day, along with undercutting of the ice faces. Constraining the temperature of the ocean waters from high resolution models and observations, however, remains a significant challenge. I will describe the progress we have made in addressing one major issue which is the mapping of fjord bathymetry around Greenland to define the pathways for warm waters. In Antarctica, the rates of melt are measured from remote sensing data but averaged over long periods, so that we are dependent on in-situ observations to understand the interaction of ocean waters with ice within the sub-ice-shelf cavities. I will describe progress made in mapping the bathymetry of the ice shelves and how the results have impacted our understanding of these interactions. In terms of calving, there is a range of processes acting upon the glacier and ice shelf faces, proceeding from the surface and mostly from below, that are still not sufficiently well explored. I will discuss processes elucidated in Greenland (undercutting and rotation of ice blocks near floatation) and those that are not well known in Antarctica.
West Florida shelf circulation and temperature budget for the 1998 fall transition
NASA Astrophysics Data System (ADS)
He, Ruoying; Weisberg, Robert H.
2003-05-01
Mid-latitude continental shelves undergo a fall transition as the net heat flux changes from warming to cooling. Using in situ data and a numerical model we investigate the circulation on the west Florida shelf (WFS) for the fall transition of 1998. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind, air pressure, and heat flux fields, plus river inflows. After comparison with observations the model is used to draw inferences on the seasonal and synoptic scale features of the shelf circulation. By running twin experiments, one without and the other with an idealized Loop Current (LC), we explore the relative importance of local versus deep-ocean forcing. We find that local forcing largely controls the inner-shelf circulation, including changes from the Florida Panhandle in the north to regions farther south. The effects of the LC in fall 1998 are to reinforce the mid-shelf currents and to increase the across-shelf transports in the bottom Ekman layer, thereby accentuating the shoreward transport of cold, nutrient rich water of deep-ocean origin. A three-dimensional analysis of the temperature budget reveals that surface heat flux largely controls both the seasonal and synoptic scale temperature variations. Surface cooling leads to convective mixing that rapidly alters temperature gradients. One interesting consequence is that upwelling can result in near-shore warming as warmer offshore waters are advected landward. The temperature balances on the shelf are complex and fully three-dimensional.
Ice-shelf melting around Antarctica
NASA Astrophysics Data System (ADS)
Rignot, E.; Jacobs, S.
2008-12-01
The traditional view on the mass balance of Antarctic ice shelves is that they loose mass principally from iceberg calving with bottom melting a much lower contributing factor. Because ice shelves are now known to play a fundamental role in ice sheet evolution, it is important to re-evaluate their wastage processes from a circumpolar perspective using a combination of remote sensing techniques. We present area average rates deduced from grounding line discharge, snow accumulation, firn depth correction and ice shelf topography. We find that ice shelf melting accounts for roughly half of ice-shelf ablation, with a total melt water production of 1027 Gt/yr. The attrition fraction due to in-situ melting varies from 9 to 90 percent around Antarctica. High melt producers include the Ronne, Ross, Getz, Totten, Amery, George VI, Pine Island, Abbot, Dotson/Crosson, Shackleton, Thwaites and Moscow University Ice Shelves. Low producers include the Larsen C, Princess Astrid and Ragnhild coast, Fimbul, Brunt and Filchner. Correlation between melt water production and grounding line discharge is low (R2 = 0.65). Correlation with thermal ocean forcing from the ocean are highest in the northern parts of West Antarctica where regressions yield R2 of 0.93-0.97. Melt rates in the Amundsen Sea exhibit a quadratic sensitivity to thermal ocean forcing. We conclude that ice shelf melting plays a dominant role in ice shelf mass balance, with a potential to change rapidly in response to altered ocean heat transport onto the Antarctic continental shelf.
Circulation in the Chesapeake Bay entrance region: Estuary-shelf interaction
NASA Technical Reports Server (NTRS)
Boicourt, W. C.
1981-01-01
Current meters and temperature-salinity recorders confirm the assumption that the upper layers of the continental shelf waters off Chesapeake Bay can be banded in summer, such that the coastal boundary layer (consisting of the Bay outflow) and the outer shelf flow southward while the inner shelf flows to the north, driven by the prevailing southerly winds. These measurements show that the estuary itself may also be banded in its lower reaches such that the inflow is confined primarily to the deep channel, while the upper layer outflow is split into two flow maxima on either side of this channel.
Circulation in the Hudson Shelf Valley: MESA Physical Oceanographic Studies in New York Bight, 1
NASA Astrophysics Data System (ADS)
Mayer, Dennis A.; Han, Gregory C.; Hansen, Donald V.
1982-11-01
Over 900 days of current velocity data were obtained at mainly two locations in the inner and outer Hudson Shelf Valley (HSV). The large cross-axis depth gradients in the HSV, together with the strong winter cyclones and the baroclinic density distribution over the shelf, are primarily responsible for the major circulation features observed in the valley. CSTD data from 12 cruises and meteorological data from JFK International Airport and an environmental buoy were collected concurrently with the current meter data. Although the mean cross-shelf pressure gradient is generally seaward in the Middle Atlantic Bight, it is shoreward in the HSV below the level of the adjacent continental shelf (shelf horizon), thus imposing a bias toward upvalley flow. The average velocity below the surrounding shelf horizon in the HSV is upvalley or shoreward (west-northwestward ≈ 290° T) in the range of 2-5 cm/s. The circulation in the HSV is seasonal and individual events can drastically alter the mean picture. The several day average upvalley flow can sometimes approach 20 cm/s when intense winter cyclones pass over the bight and can sometimes also be directed downvalley depending upon the path of the winter cyclone. A topographically controlled barotropic flow commonly opposes the dominant (southeast-ward) wind direction even near the surface in the winter. In the context of circulation on the open shelf, upvalley (downvalley) flow events generated by winter cyclones are associated with reduced (enhanced) southwestward flow or flow reversals that are northeastward in the lower half of the water column at LTM, a typical mid/shelf site (Mayer et al., 1979). Current meter data suggest that whether or not reversals occur on the open shelf depends upon the interannual variability of the winter wind regime. Upvalley flow events are not confined only to the winter (unstratified) season but are stronger in the winter and can last for several days and longer. During the summer (stratified) season the maximum horizontal KE in the upper part of the water column shifts from the meteorological forcing band, characteristic of winter, to diurnal inertial and semidiurnal frequencies. In the diurnal band there appears to be a strong relationship between the diurnal wind and currents near the surface in the HSV as well as on the open shelf (LTM). The structure of the semidiurnal motions in the inner valley where the depth gradients are larger than in the outer valley has a significant depth dependence unlike most regions on the shelf, i.e., during all times of the year the semidiurnal tidal ellipse is anticlockwise in the lower 20 m of the water column.
Tracing river runoff and DOC over the East Siberian Shelf using in situ CDOM measurements
NASA Astrophysics Data System (ADS)
Pugach, Svetlana; Semiletov, Igor; Pipko, Irina
2010-05-01
The Great Siberian Rivers integrate meteorological and hydrological changes in their watersheds and play a significant role in the physical and biogeochemical regime of the Arctic Ocean through transport of fresh water (FW) and carbon into the sea. Since 1994, the Laboratory of Arctic Research POI in cooperation with the IARC UAF investigate the fresh water and carbon fluxes in the Siberian Arctic land-shelf system with the special emphasize in the East Siberian Arctic shelf (ESAS) which represents the widest and shallowest continental shelf in the World Ocean, yet it is still poorly explored. The East Siberian Sea is influenced by water exchange from the eastern Laptev Sea (where local shelf waters are diluted mostly by Lena River discharge) and by inflow of Pacific waters from the Chukchi Sea. This region is characterized by the highest rate of coastal erosion and significant volume of the riverine discharge and exhibits the largest gradients in all oceanographic parameters observed for the entire Arctic Ocean. Here we demonstrate a connection among Chromophoric (or Colored) Dissolved Organic Matter (CDOM) which represents the colored fraction of Dissolved Organic Carbon (DOC), salinity, and pCO2. Our data have documented strong linear correlations between salinity and CDOM in the near shore zone strongly influenced by riverine runoff. Correlation coefficient between CDOM and salinity in surface waters was equal to -0.94, -0.94 and -0.95 for surface water stations in September of 2003, 2004, and 2005, respectively. Combined analysis of CDOM and DOC data demonstrated a high degree of correlation between these parameters (r=0.96). Such close connection between these characteristics of waters in this region makes it possible to restore the distribution of DOC according to our original CDOM data of the profiling systems, such as CTD-Seabird equipped by WETStar CDOM fluorimeter. It is shown that the CDOM can be used as a conservative tracer to follow the transport and fate of FW across the Arctic shelf through a combination of remote sensing and field observations. This work accomplished under auspice of the Russian Academy of Sciences, NOAA, US National Science Foundation, and Russian Foundation for Basic Research. Future work will be targeted towards a key, unresolved issue of climate change in the Arctic which can be cast as a scientific question that is fundamentally cross-disciplinary and synthetic: How does the Arctic hydrological and carbon cycle respond to global change?
This dataset contains the research described in the following publication:Brown, C.A., D. Sharp, and T. Mochon Collura. 2016. Effect of Climate Change on Water Temperature and Attainment of Water Temperature Criteria in the Yaquina Estuary, Oregon (USA). Estuarine, Coastal and Shelf Science. 169:136-146, doi: 10.1016/j.ecss.2015.11.006.This dataset is associated with the following publication:Brown , C., D. Sharp, and T. MochonCollura. Effect of Climate Change on Water Temperature and Attainment of Water Temperature Criteria in the Yaquina Estuary, Oregon (USA). ESTUARINE, COASTAL AND SHELF SCIENCE. Elsevier Science Ltd, New York, NY, USA, 169: 136-146, (2016).
Relative sea-level rise around East Antarctica during Oligocene glaciation
NASA Astrophysics Data System (ADS)
Stocchi, Paolo; Escutia, Carlota; Houben, Alexander J. P.; Vermeersen, Bert L. A.; Bijl, Peter K.; Brinkhuis, Henk; Deconto, Robert M.; Galeotti, Simone; Passchier, Sandra; Pollard, David; Brinkhuis, Henk; Escutia, Carlota; Klaus, Adam; Fehr, Annick; Williams, Trevor; Bendle, James A. P.; Bijl, Peter K.; Bohaty, Steven M.; Carr, Stephanie A.; Dunbar, Robert B.; Flores, Jose Abel; Gonzàlez, Jhon J.; Hayden, Travis G.; Iwai, Masao; Jimenez-Espejo, Francisco J.; Katsuki, Kota; Kong, Gee Soo; McKay, Robert M.; Nakai, Mutsumi; Olney, Matthew P.; Passchier, Sandra; Pekar, Stephen F.; Pross, Jörg; Riesselman, Christina; Röhl, Ursula; Sakai, Toyosaburo; Shrivastava, Prakash Kumar; Stickley, Catherine E.; Sugisaki, Saiko; Tauxe, Lisa; Tuo, Shouting; van de Flierdt, Tina; Welsh, Kevin; Yamane, Masako
2013-05-01
During the middle and late Eocene (~ 48-34Myr ago), the Earth's climate cooled and an ice sheet built up on Antarctica. The stepwise expansion of ice on Antarctica induced crustal deformation and gravitational perturbations around the continent. Close to the ice sheet, sea level rose despite an overall reduction in the mass of the ocean caused by the transfer of water to the ice sheet. Here we identify the crustal response to ice-sheet growth by forcing a glacial-hydro isostatic adjustment model with an Antarctic ice-sheet model. We find that the shelf areas around East Antarctica first shoaled as upper mantle material upwelled and a peripheral forebulge developed. The inner shelf subsequently subsided as lithosphere flexure extended outwards from the ice-sheet margins. Consequently the coasts experienced a progressive relative sea-level rise. Our analysis of sediment cores from the vicinity of the Antarctic ice sheet are in agreement with the spatial patterns of relative sea-level change indicated by our simulations. Our results are consistent with the suggestion that near-field processes such as local sea-level change influence the equilibrium state obtained by an ice-sheet grounding line.
Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas
Clarke, Andrew; Crame, J. Alistair
2010-01-01
Ecologists have long been fascinated by the flora and fauna of extreme environments. Physiological studies have revealed the extent to which lifestyle is constrained by low temperature but there is as yet no consensus on why the diversity of polar assemblages is so much lower than many tropical assemblages. The evolution of marine faunas at high latitudes has been influenced strongly by oceanic cooling during the Cenozoic and the associated onset of continental glaciations. Glaciation eradicated many shallow-water habitats, especially in the Southern Hemisphere, and the cooling has led to widespread extinction in some groups. While environmental conditions at glacial maxima would have been very different from those existing today, fossil evidence indicates that some lineages extend back well into the Cenozoic. Oscillations of the ice-sheet on Milankovitch frequencies will have periodically eradicated and exposed continental shelf habitat, and a full understanding of evolutionary dynamics at high latitude requires better knowledge of the links between the faunas of the shelf, slope and deep-sea. Molecular techniques to produce phylogenies, coupled with further palaeontological work to root these phylogenies in time, will be essential to further progress. PMID:20980314
Causes and consequences of hypoxia on the Western Black Sea Shelf
NASA Astrophysics Data System (ADS)
Friedrich, Jana; Gomoiu, Marian-Trajan; Naeher, Sebastian; Secrieru, Dan; Teaca, Adrian
2013-04-01
The Black Sea, containing the world's largest natural anoxic basin since ca 7500 years (Jones & Gagnon 1994), suffers from combined effects of anthropogenic eutrophication, overfishing and climate variability (Oguz & Gilbert 2007). We discuss causes for hypoxia in western shelf waters. Freshwater runoff by the large rivers Danube, Dniester and Dnieper results in strong thermohaline stratification that limits bottom water ventilation on the north-western shelf during warm seasons. This makes the western shelf generally prone to oxygen deficiency. During autumn and winter, the thermohaline stratification is eroded by frequent storms and the water column is re-oxygenated. The causal chain of anthropogenic eutrophication since the 1970s led to seasonal hypoxia on the western shelf for more than 20 years causing the catastrophic decline of key shelf habitats (Mee et al. 2005). More frequent and intense algal blooms, red tides (i.e. Noctiluca, Prorocentrum cordatum) and changes in species composition in phytoplankton resulted in deposition of surplus organic matter on the seafloor increasing the oxygen demand, with serious consequences for pelagic and benthic ecosystem structure and functioning. During hypoxia, release of reduced substances like ammonia and phosphate from the sediment to the water fuelled eutrophication internally (Friedrich et al. 2002). The combination of existing data with those gained during EU FP7 HYPOX on the Romanian shelf enables to assess the development of bottom water hypoxia and changes in benthic community and hence, the current state and trends in recovery of the Romanian Black Sea shelf ecosystem. Mud worms are the winners of eutrophication and hypoxia, whereas filter feeders like Mytilus galloprovincialis and Acanthocardia paucicostata are the losers. The western shelf benthic ecosystem showed a significant reduction in species diversity, a reduction of biofilter strength due to the loss of filter-feeder populations and flourishing of opportunistic species such as worms. Following the economic collapse of eastern European countries during the 1990s, riverine nutrient loads decreased and the ecosystem is showing signs of slow recovery, such as a decrease in the frequency and duration of hypoxic events. However, nutrient fluxes from the sediments did not decrease significantly (Friedrich et al. 2010). We observe slight recovery of the macrobenthic community structure in terms of species numbers in the Romanian pre-Danubian sector. Opportunistic species, e.g., ascidians, worms and fast growing filamentous algae are currently filling ecologic niches left by the past ecosystem collapse. References Friedrich, J., Cociasu, A., & Mee, L. D. (2010). Historical legacy of Danube River nutrient discharge and eutrophication in the North-Western Black Sea - Nutrient recycling in the shelf sediments. Danube News, 12(22), 7-9. Friedrich J., Dinkel C., Friedl G., Pimenov N., Wijsman J., Gomoiu M.T., Cociasu A., Popa L. & Wehrli B. (2002). Benthic Nutrient Cycling and Diagenetic Pathways in the North-western Black Sea. Estuarine, Coastal and Shelf Science, 54, 369-383. Jones G.A. & Gagnon A.R. (1994). Radiocarbon chronology of Black Sea sediments. Deep Sea Research Part I: Oceanographic Research Papers, 41, 531-557. Mee L.D., Friedrich J. & Gomoiu M.-T. (2005). Restoring the Black Sea in times of uncertainty. Oceanography, 18, 32-43. Oguz, T. and Gilbert, D. (2007). Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960-2000: Evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep-Sea Research I: doi:10.1016/j.dsr.200609.200010.
NASA Astrophysics Data System (ADS)
D'Sa, E. J.; Goes, J. I.; Gomes, H.; Mouw, C.
2013-12-01
The absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) are reported for the inner shelf, slope waters and outer shelf regions of the eastern Bering Sea during the summer of 2008, when a warm, thermally stratified surface mixed layer lay over a Cold Pool (< 2 °C) that occupied the entire middle shelf. CDOM absorption at 355 nm (ag355) and its spectral slope (S) in conjunction with excitation emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) revealed large variability in the characteristics of CDOM in different regions of the Bering Sea. PARAFAC analysis aided in the identification of three humic-like (components 1, 2 and 5) and two protein-like (a tyrosine-like component 3, and a tryptophan-like component 4) components. In the extensive shelf region, average absorption coefficients at 355 nm (ag355 m-1) and DOC concentrations (μM) were highest in the inner shelf (0.342 ± 0.11 m-1, 92.67 ± 14.60 μM) and lower in the middle (0.226 ± 0.05 m-1, 78.38 ± 10.64 μM) and outer (0.176 ± 0.05 m-1, 80.73 ± 18.11 μM) shelves, respectively. Mean spectral slopes S were elevated in the middle shelf (24.38 ± 2.25 μm-1) especially in the surface waters (26.87 ± 2.39 μm-1) indicating high rates of photodegradation in the highly stratified surface mixed layer, which intensified northwards in the northern middle shelf likely contributing to greater light penetration and to phytoplankton blooms at deeper depths. The fluorescent humic-like components 1, 2, and 5 were most elevated in the inner shelf most likely from riverine inputs. Measurements at depth in slope waters (> 250 m) revealed low values of ag355 (0.155 ± 0.03 m-1) and S (15.45 ± 1.78 μm-1) indicative of microbial degradation of CDOM in deep waters. DOC concentrations, however were not significantly different suggesting CDOM sources and sinks to be uncoupled from DOC. Along the productive "green belt" in the outer shelf/slope region, absorption and fluorescence properties indicated the presence of fresh and degraded autochthonous DOM. Near the Unimak Pass region of the Aleutian Islands, low DOC and ag355 (mean 66.99 ± 7.94 μM; 0.182 ± 0.05 m-1) and a high S (mean 25.95 ± 1.58 μm-1) suggested substantial photobleaching of the Alaska Coastal Waters, but high intensities of humic-like and protein-like fluorescence suggested sources of fluorescent DOM from coastal runoff and glacier melt waters during the summer. Although our data show that the CDOM photochemical environment of the Bering Sea is complex, our current information on its optical properties will aid in better understanding of the biogeochemical role of CDOM in carbon budgets in relation to the annual sea ice and phytoplankton dynamics, and to improved algorithms of ocean color remote sensing for this region.
Knebel, Harley J.
1974-01-01
A deductive approach to the problem of determining the movement and effects of spilled oil over the Outer Continental Shelf requires that the potential paths of oil be determined first, in order that critical subareas may be defined for later studies. The paths of spilled oil, in turn, depend primarily on the temporal and spatial variability of four factors: the thermohaline structure of the waters, the circulation of the water, the winds, and the distribution of suspended matter. A review of the existent data concerning these factors for the Baltimore Canyon Trough area (a relatively well studied segment of the Continental Shelf) reveals that the movement and dispersal of potential oil spills cannot be reliably predicted. Variations in the thermohaline structure of waters and in the distribution of suspended matter are adequately known; the uncertainty is due to insufficient wind and storm statistics and to the lack of quantitative understanding of the relationship between the nontidal drift and its basic driving mechanisms. Similar inadequacies should be anticipated for other potentially leasable areas of the shelf because an understanding of the movement of spilled oil has not been the underlying aim of most previous studies.
Food supply mechanisms for cold-water corals along a continental shelf edge
NASA Astrophysics Data System (ADS)
Thiem, Øyvind; Ravagnan, Elisa; Fosså, Jan Helge; Berntsen, Jarle
2006-05-01
In recent years it has been documented that deep-water coral reefs of the species Lophelia pertusa are a major benthic habitat in Norwegian waters. However, basic information about the biology and ecology of this species is still unknown. Lophelia live and thrive under special environmental conditions of which factors such as temperature, water depth, water movement and food supply are important. The present work explores the hypothesis that Lophelia forms reefs in places where the encounter rate of food particles is sufficiently high and stable over long periods of time for continuous growth. This is done by relating the distribution of reefs with the results of numerical ocean modelling. Numerical simulations have been performed with an idealized bottom topography similar to what is found outside parts of the Norwegian coast. In the simulations the model is first forced with an along slope jet and then with an idealized atmospheric low pressure. The model results show that the encounter rates between the particles and the water layer near the seabed are particularly high close to the shelf break. This may indicate that many Lophelia reefs are located along the shelf edges because the supply of food is particularly good in these areas. A sensitivity study of the particle supply in the area close to the seabed for increasing latitude has also been done. This shows that the Ekman transport in the benthic layer tends to create a steady supply of food for benthic organisms near the shelf edge away from the equator.
NASA Astrophysics Data System (ADS)
Schmitz, B.; Speijer, R. P.; Aubry, M.-P.
1996-04-01
The dramatic global extinction of 35% 50% of benthic foraminifera species in the deep sea in the latest Paleocene and associated negative excursions in δ13C and δ18O may be related to spreading of warm, saline bottom water from subtropical Tethyan shallow regions over the sea floor worldwide. Our study of neritic sections in Egypt shows that in the southern shallow Tethys, a prominent long-term change in bottom-water chemistry, sedimentation, and benthic foraminifera fauna was initiated at the time when the deep-sea benthic extinction event (BEE) took place. Bottom-water δ13C values on the Tethyan shelf show a sudden 3.0‰ negative shift at this event; however, contrary to the deep sea, in which the δ13C excursion was of short duration, Tethyan δ13C values did not fully return to preboundary values, but remained depressed by ˜1.5‰ for at least 1 m.y. The δ13C values at the Egyptian shelf during the BEE are much lower than would be expected if this was a source region for global deep water. The δ18O values indicate no significant change in bottom-water salinity or temperature at the BEE. The long-lasting environmental changes that began on the Egyptian shelf at the BEE may be related to, for example, gateway reorganization along the Tethyan seaway. Paleogeographic changes possibly also triggered a change in the loci of global deep-water formation; however, these loci must be sought in another part of the Tethys.
Ocean circulation and properties in Petermann Fjord, Greenland
NASA Astrophysics Data System (ADS)
Johnson, H. L.; Münchow, A.; Falkner, K. K.; Melling, H.
2011-01-01
The floating ice shelf of Petermann glacier interacts directly with the ocean and is thought to lose at least 80% of its mass through basal melting. Based on three opportunistic ocean surveys in Petermann Fjord we describe the basic oceanography: the circulation at the fjord mouth, the hydrographic structure beneath the ice shelf, the oceanic heat delivered to the under-ice cavity, and the fate of the resulting melt water. The 1100 m deep fjord is separated from neighboring Hall Basin by a sill between 350 and 450 m deep. Fjord bottom waters are renewed by episodic spillover at the sill of Atlantic water from the Arctic. Glacial melt water appears on the northeast side of the fjord at depths between 200 m and that of the glacier's grounding line (about 500 m). The fjord circulation is fundamentally three-dimensional; satellite imagery and geostrophic calculations suggest a cyclonic gyre within the fjord mouth, with outflow on the northeast side. Tidal flows are similar in magnitude to the geostrophic flow. The oceanic heat flux into the fjord appears more than sufficient to account for the observed rate of basal melting. Cold, low-salinity water originating in the surface layer of Nares Strait in winter intrudes far under the ice. This may limit basal melting to the inland half of the shelf. The melt rate and long-term stability of Petermann ice shelf may depend on regional sea ice cover and fjord geometry, in addition to the supply of oceanic heat entering the fjord.
Manganese, Iron, and sulfur cycling in Louisiana continental shelf sediments
Sulfate reduction is considered the primary pathway for organic carbon remineralization on the northern Gulf of Mexico Louisiana continental shelf (LCS) where bottom waters are seasonally hypoxic, yet limited information is available on the importance of iron and manganese cyclin...
Mapping Mesophotic Reefs Along the Brazilian Continental Margin
NASA Astrophysics Data System (ADS)
Bastos, A.; Moura, R.; Amado Filho, G.; Ferreira, L.; Boni, G.; Vedoato, F.; D'Agostini, D.; Lavagnino, A. C.; Leite, M. D.; Quaresma, V.
2017-12-01
Submerged or drowned reefs constitute an important geological record of sea level variations, forming the substrate for the colonization of modern benthic mesophotic communities. Although mapping mesophotic reefs has increased in the last years, their spatial distribution is poorly known and the worldwide occurrence of this reef habitat maybe underestimated. The importance in recognizing the distribution of mesophotic reefs is that they can act as a refuge for corals during unsuitable environmental conditions and a repository for shallow water corals. Here we present the result of several acoustic surveys that mapped and discovered new mesophotic reefs along the Eastern and Equatorial Brazilian Continental Margin. Seabed mapping was carried out using multibeam and side scan sonars. Ground truthing was obtained using drop camera or scuba diving. Mesophotic reefs were mapped in water depths varying from 30 to 100m and under distinct oceanographic conditions, especially in terms of river load input and shelf width. Reefs showed distinct morphologies, from low relief banks and paleovalleys to shelf edge ridges. Extensive occurrence of low relief banks were mapped along the most important coralline complex province in the South Atlantic, the Abrolhos Shelf. These 30 to 40m deep banks, have no more than 3 meters in height and may represent fringing reefs formed during sea level stabilization. Paleovalleys mapped along the eastern margin showed the occurrence of coralgal ledges along the channel margins. Paleovalleys are usually deeper than 45m and are associated with outer shelf rhodolith beds. Shelf edge ridges (80 to 120m deep) were mapped along both margins and are related to red algal encrusting irregular surfaces that have more than 3m in height, forming a rigid substrate for coral growth. Along the Equatorial Margin, off the Amazon mouth, shelf edge patch reefs and rhodolith beds forming encrusting surfaces and shelf edge ridges were mapped in water depths greater than 100m. Thus, the occurrence of mesophotic reefs along the Brazilian Margin is influenced by transgressive morphological features, which could be used as a surrogate for mesophotic reef distribution. The extensive occurrence of rhodolith beds on the outer shelf characterizes most of these reefs.
Decadal variability on the Northwest European continental shelf
NASA Astrophysics Data System (ADS)
Jones, Sam; Cottier, Finlo; Inall, Mark; Griffiths, Colin
2018-02-01
Decadal scale time series of the shelf seas are important for understanding both climate and process studies. Despite numerous investigations of long-term temperature variability in the shelf seas, studies of salinity variability are few. Salt is a more conservative tracer than temperature in shallow seas, and it can reveal changes in local hydrographic conditions as well as transmitted basin-scale changes. Here, new inter-annual salinity time series on the northwest European shelf are developed and a 13 year high resolution salinity record from a coastal mooring in western Scotland is presented and analysed. We find strong temporal variability in coastal salinity on timescales ranging from tidal to inter-annual, with the magnitude of variability greatest during winter months. There is little seasonality and no significant decadal trend in the coastal time series of salinity. We propose 4 hydrographic states to explain salinity variance in the shelf area west of Scotland based on the interaction between a baroclinic coastal current and wind-forced barotropic flow: while wind forcing is important, we find that changes in the buoyancy-driven flow are more likely to influence long-term salinity observations. We calculate that during prevailing westerly wind conditions, surface waters in the Sea of the Hebrides receive a mix of 62% Atlantic origin water to 38% coastal sources. This contrasts with easterly wind conditions, during which the mix is 6% Atlantic to 94% coastal sources on average. This 'switching' between hydrographic states is expected to impact nutrient transport and therefore modify the level of primary productivity on the shelf. This strong local variability in salinity is roughly an order of magnitude greater than changes in the adjacent ocean basin, and we infer from this that Scottish coastal waters are likely to be resilient to decadal changes in ocean climate.
NASA Astrophysics Data System (ADS)
Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria
2016-05-01
Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial variability of surface ocean pCO2 to be mapped from satellite data in the southern region.
Stefels, Jacqueline; van Leeuwe, Maria A; Jones, Elizabeth M; Meredith, Michael P; Venables, Hugh J; Webb, Alison L; Henley, Sian F
2018-06-28
The Southern Ocean is a hotspot of the climate-relevant organic sulfur compound dimethyl sulfide (DMS). Spatial and temporal variability in DMS concentration is higher than in any other oceanic region, especially in the marginal ice zone. During a one-week expedition across the continental shelf of the West Antarctic Peninsula (WAP), from the shelf break into Marguerite Bay, in January 2015, spatial heterogeneity of DMS and its precursor dimethyl sulfoniopropionate (DMSP) was studied and linked with environmental conditions, including sea-ice melt events. Concentrations of sulfur compounds, particulate organic carbon (POC) and chlorophyll a in the surface waters varied by a factor of 5-6 over the entire transect. DMS and DMSP concentrations were an order of magnitude higher than currently inferred in climatologies for the WAP region. Particulate DMSP concentrations were correlated most strongly with POC and the abundance of haptophyte algae within the phytoplankton community, which, in turn, was linked with sea-ice melt. The strong sea-ice signal in the distribution of DMS(P) implies that DMS(P) production is likely to decrease with ongoing reductions in sea-ice cover along the WAP. This has implications for feedback processes on the region's climate system.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.
2017-12-01
We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.
NASA Astrophysics Data System (ADS)
Zhang, H.
2016-02-01
Nutrients regeneration in pore water is one of the important ways to supply nutrients of upper water column in the shelf. The pore water in sediment of the central Chukchi Sea continental shelf, showed a typical benthic distribution of nutrients at water-sediment interface, in where physical and bioturbation was weak. The nutrient samples in multi-tubular short column sediment and water column were obtained from the Forth Chinese National Arctic Research Expedition, to measure the nutrient concentrations of pore water, overlying water and water column. The results show that, the typical distribution can be separated into three layers. The first layer is the exponential increasing layer (I), in which the concentrations of nutrients increased rapidly with depth. Then was the steady layer (II), the sediment demineralization was equal to the nutrient transference and nutrients' concentrations were substantially constant at this stage. The third layer was a slowly descending layer (III), in which NO3- and PO43- were reduced by bacteria and lost oxygen ions due to organic materials degradation depleting oxygen. By a two-layer mode and the Fick's first law of diffusion, diffusive fluxes of silicate, phosphate and nitrate in R06 station of the Chukchi Sea shelf can be calculated, and the fluxes were 1.660 mmol/(m2 · d), 0.008 mmol/(m2 · d) and 0.117 mmol/(m2 · d), respectively. The diffusive fluxes of silicate for CC1, R06, C07 and S23 stations were 3.101 mmol/(m2 · d), 1.660 mmol/(m2 · d), 1.307 mmol/(m2 · d) and mmol/(m2 · d), respectively, which show obvious distribution characteristics with latitude. Distribution of N * in the pore water suggested that a strong denitrification process in sedimentary environment of the Chukchi Sea shelf, which is an important sink for nitrate.
NASA Astrophysics Data System (ADS)
Donat-Magnin, Marion; Jourdain, Nicolas C.; Spence, Paul; Le Sommer, Julien; Gallée, Hubert; Durand, Gaël.
2017-12-01
It has been suggested that the coastal Southern Ocean subsurface may warm over the 21st century in response to strengthening and poleward shifting winds, with potential adverse effects on West Antarctic glaciers. However, using a 1/12° ocean regional model that includes ice-shelf cavities, we find a more complex response to changing winds in the Amundsen Sea. Simulated offshore subsurface waters get colder under strengthened and poleward shifted winds representative of the SAM projected trend. The buoyancy-driven circulation induced by ice-shelf melt transports this cold offshore anomaly onto the continental shelf, leading to cooling and decreased melt below 450 m. In the vicinity of ice-shelf fronts, Ekman pumping contributes to raise the isotherms in response to changing winds. This effect overwhelms the horizontal transport of colder offshore waters at intermediate depths (between 200 and 450 m), and therefore increases melt rates in the upper part of the ice-shelf cavities, which reinforces the buoyancy-driven circulation and further contributes to raise the isotherms. Then, prescribing an extreme grounding line retreat projected for 2100, the total melt rates simulated underneath Thwaites and Pine Island are multiplied by 2.5. Such increase is explained by a larger ocean/ice interface exposed to CDW, which is then amplified by a stronger melt-induced circulation along the ice draft. Our main conclusions are that (1) outputs from ocean models that do not represent ice shelf cavities (e.g., CMIP5 models) should not be directly used to predict the thermal forcing of future ice shelf cavities; (2) coupled ocean/ice sheet models with a velocity-dependent melt formulation are needed for future projections of glaciers experiencing a significant grounding line retreat.
NASA Astrophysics Data System (ADS)
Choi, Dong-Lim; Shin, Dong-Hyeok; Kum, Byung-Cheol; Jang, Seok; Cho, Jin-Hyung; Jou, Hyeong-Tae; Jang, Nam-Do
2018-06-01
High-resolution multichannel seismic data were collected to identify depositional sequences on the southwestern shelf of the Ulleung Basin, where a unidirectional ocean current is dominant at water depths exceeding 130 m. Four aggradational stratigraphic sequences with a 100,000-year cycle were recognized since marine isotope stage (MIS) 10. These sequences consist only of lowstand systems tracts (LSTs) and falling-stage systems tracts (FSSTs). Prograding wedge-shaped deposits are present in the LSTs near the shelf break. Oblique progradational clinoforms of forced regressive deposits are present in the FSSTs on the outer continental shelf. Each FSST has non-uniform forced regressional stratal geometries, reflecting that the origins of sediments in each depositional sequence changed when sea level was falling. Slump deposits are characteristically developed in the upper layer of the FSSTs, and this was used as evidence to distinguish the sequence boundaries. The subsidence rates around the shelf break reached as much as 0.6 mm/year since MIS 10, which contributed to the well-preserved depositional sequence. During the Quaternary sea-level change, the water depth in the Korea Strait declined and the intensity of the Tsushima Current flowing near the bottom of the inner continental shelf increased. This resulted in greater erosion of sediments that were delivered to the outer continental shelf, which was the main cause of sediment deposition on the deep, low-angled outer shelf. Therefore, a depositional sequence formation model that consists of only FSSTs and LSTs, excluding highstand systems tracts (HSTs) and transgressive systems tracts (TSTs), best explains the depositional sequence beneath this shelf margin dominated by a geostrophic current.
Ocean-shelf interaction and exchange (Fridtjof Nansen Medal Lecture)
NASA Astrophysics Data System (ADS)
Huthnance, John M.
2016-04-01
A brief review will be given of physical processes where shallow shelf seas border the deep ocean, including waves that travel and propagate responses around the ocean boundary. Some implications for ocean-shelf exchange of water and its physical and biochemical contents will be discussed, along with an outline of some studies estimating these exchanges. There will be an emphasis on the north-west European shelf edge. A recent study is the project FASTNEt: "Fluxes across sloping topography of the North East Atlantic". This aims to resolve seasonal, interannual and regional variations. Novel and varied measurements have been made in three contrasting sectors of shelf edge: the Celtic Sea south-west of Britain, the Malin-Hebrides shelf west of Scotland and the West Shetland shelf north of Scotland. Previous studies established the existence of flow along the continental slope in these areas, more persistently poleward in northern sectors. Modelling aims to diagnose and estimate the contribution of various processes to transports and to exchange along and across the slope. Estimates obtained so far will be presented; overall transport from drifters and moored current meters; effective "diffusivity" from drifter dispersion and salinity surveys; other estimates of velocity variance contributing to exchange. In addition to transport by the along-slope flow, possible process contributions which may be estimated include internal waves and their Stokes drift, tidal pumping, eddies and Ekman transports, in a wind-driven surface layer and in a bottom boundary layer. Overall estimates of exchange across the shelf edge here are large by global standards, several m**2/s (Sverdrups per 1000 km). However, the large majority of this exchange is in tides and other motion of comparably short period, and is only effective for water properties or contents that evolve on a time-scale of a day or less.
NASA Astrophysics Data System (ADS)
Choi, Dong-Lim; Shin, Dong-Hyeok; Kum, Byung-Cheol; Jang, Seok; Cho, Jin-Hyung; Jou, Hyeong-Tae; Jang, Nam-Do
2017-11-01
High-resolution multichannel seismic data were collected to identify depositional sequences on the southwestern shelf of the Ulleung Basin, where a unidirectional ocean current is dominant at water depths exceeding 130 m. Four aggradational stratigraphic sequences with a 100,000-year cycle were recognized since marine isotope stage (MIS) 10. These sequences consist only of lowstand systems tracts (LSTs) and falling-stage systems tracts (FSSTs). Prograding wedge-shaped deposits are present in the LSTs near the shelf break. Oblique progradational clinoforms of forced regressive deposits are present in the FSSTs on the outer continental shelf. Each FSST has non-uniform forced regressional stratal geometries, reflecting that the origins of sediments in each depositional sequence changed when sea level was falling. Slump deposits are characteristically developed in the upper layer of the FSSTs, and this was used as evidence to distinguish the sequence boundaries. The subsidence rates around the shelf break reached as much as 0.6 mm/year since MIS 10, which contributed to the well-preserved depositional sequence. During the Quaternary sea-level change, the water depth in the Korea Strait declined and the intensity of the Tsushima Current flowing near the bottom of the inner continental shelf increased. This resulted in greater erosion of sediments that were delivered to the outer continental shelf, which was the main cause of sediment deposition on the deep, low-angled outer shelf. Therefore, a depositional sequence formation model that consists of only FSSTs and LSTs, excluding highstand systems tracts (HSTs) and transgressive systems tracts (TSTs), best explains the depositional sequence beneath this shelf margin dominated by a geostrophic current.
NASA Astrophysics Data System (ADS)
Smith, Craig R.; Mincks, Sarah; DeMaster, David J.
2008-11-01
The impact of the highly seasonal Antarctic primary production cycle on shelf benthic ecosystems remains poorly evaluated. Here we describe a times-series research project on the West Antarctic Peninsula (WAP) shelf designed to evaluate the seafloor deposition, and subsequent ecological and biogeochemical impacts, of the summer phytoplankton bloom along a transect crossing the Antarctic shelf near Anvers Island. During this project, entitled Food for Benthos on the Antarctic Continental Shelf (FOODBANCS), we deployed replicate sediment traps 150-170 m above the seafloor (total water-column depth of 590 m) on the central shelf from December 1999 to March 2001, recovering trap samples every 3-4 months. In addition, we used a seafloor time-lapse camera system, as well as video surveys conducted at 3-4 months intervals, to monitor the presence and accumulation of phytodetritus at the sediment-water interface. The fluxes of particulate organic carbon and chlorophyll- a into sediment traps (binned over 3-4 month intervals) showed patterns consistent with seasonal variability, with average summer fluxes during the first year exceeding winter fluxes by a factor of ˜2-3. However, inter-annual variability in summer fluxes was even greater than seasonal variability, with 4-10-fold differences in the flux of organic carbon and chlorophyll- a between the summer seasons of 1999-2000 and 2000-2001. Phytodetrital accumulation at the shelf floor also exhibited intense inter-annual variability, with no visible phytodetritus from essentially December 1999 to November 2000, followed by pulsed accumulation of 1-2 cm of phytodetritus over a ˜30,000 km 2 shelf area by March 2001. Comparisons with other studies suggest that the levels of inter-annual variability we observed are typical of the Antarctic shelf over decadal time scales. We conclude that fluxes of particulate organic carbon, chlorophyll- a and phytodetritus to WAP-shelf sediments vary intensely on seasonal to inter-annual time scales, yielding dramatic temporal variability in the flux of food for detritivores to the Antarctic shelf floor.
Carbon Cycling and pH regulation on the Scotian Shelf, NW Atlantic
NASA Astrophysics Data System (ADS)
Thomas, Helmuth
2015-04-01
This presentation intends to describe the biogeochemical context for ocean acidification studies on the Scotian Shelf. The seasonality of the dominant processes, regulating surface ocean CO2 conditions, including pH, will be assessed as well as cross-shelf transports of CO2, acidity and nutrient, the latter ones exerting the "subsurface control" of CO2 air-sea fluxes and surface pH. Methods summary: The seasonal variability of inorganic carbon in the surface waters of the Scotian Shelf region of the Canadian northwestern Atlantic Ocean was assessed using hourly measurements of the partial pressure of CO2 (pCO2), and hydrographic variables obtained by an autonomous moored instrument (44.3°N and 63.3°W). These measurements were complemented by seasonal shipboard sampling of dissolved inorganic carbon (DIC), total alkalinity (TA), and pCO2, at the mooring site, and over the larger spatial scale. The Scotian Shelf is a 700 km long section of the continental shelf off Nova Scotia. Bounded by the Laurentian Channel to the northeast, and by the Northeast Channel and the Gulf of Maine to the southwest, it varies in width from 120 to 240 km covering roughly 120,000 km2 with an average depth of 90 m . Convective mixin in winter time and coastal upwelling and the associated favorable wind conditions on the Scotian Shelf have long been recognized. Strong winds of speeds greater than 10 m s-1, blowing to the northeast, and persisting for several days force relatively cold, saline, water toward the surface, displacing the warmer, fresher water offshore. Upwelling events have frequently been observed in the region in winter, and modeling studies have reproduced these observed events. Furthermore, these events may play a role in initiating and sustaining the spring phytoplankton bloom by displacing nutrient-depleted surface water and bring nutrient-rich waters up to the surface. Biological processes were found to be the dominant control on mixed-layer DIC, with the delivery of carbon-rich subsurface waters also playing an important role. The region acts as a net source of CO2 to the atmosphere at the annual scale, with a reversal of this trend occurring only during the diatom dominated spring phytoplankton bloom, when a pronounced undersaturation of the surface waters is reached for a short period. During that time, the pH is at its annual maximum (pH≈8.15), while the Aragonite saturation state reaches its minimum just before the onset of the spring bloom in late March. After of the spring bloom period, the competing effects of temperature and biology influence surface pCO2 in roughly equal magnitude. During that time carbon fixation is driven by the smaller phytoplankton size classes, which can grow in warmer, nutrient poor conditions. In the Scotian Shelf region the summertime population these numerically abundant small cells accounts for approximately 10-20% of annual carbon uptake. The regional mean surface water pH is roughly 7.8 in April and increases to greater than 8.0 in September; subsurface pH is approximately 7.6 throughout the region and indicates a seasonal decrease due to the respiration of organic matter at depth. The surface aragonite saturation state increases from less than 2.0 to values as high as 3.2 between April and September; the region as a whole exhibits relatively low saturation states, however values approaching 1.0 were only observed in the Cabot Strait at depths below roughly 100m. Subsurface onshore gradients of CO2 and nutrient species yield onshore carbon, nutrient and hydrogen ion (H+) fluxes in subsurface waters, which in turn regulate surface pH and fuel the CO2 outgassing from the Scotian Shelf.
Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy
Warner, John C.; Schwab, William C.; List, Jeffrey; Safak, Ilgar; Liste, Maria; Baldwin, Wayne E.
2017-01-01
Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on Oct 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system and observation analysis from a series of geologic surveys and oceanographic instrument deployments focused on a region offshore of Fire Island, NY. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis. Modeled sediment redistribution along Fire Island showed erosion across the crests of inner shelf sand ridges and sedimentation in adjacent troughs, consistent with the geologic observations.
Terrestrial plant biopolymers in marine sediments
NASA Astrophysics Data System (ADS)
Gough, Mark A.; Fauzi, R.; Mantoura, C.; Preston, Martin
1993-03-01
The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterised terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial land plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary lignin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations ( ca. 0.5 μgg-1 in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. To account for these observations, preferential offshore transport of finer and more degraded material is proposed. Nonspecific oxidation products dominated the gas chromatograms of NEA sediments, which appear to originate from marine sources of sedimentary organic carbon. Preliminary mass balance calculations applied to the global ocean margin suggest riverine sources of both particulate lignin and cutin are important and that most (>95%) deposition of recognisable land plant biopolymers occurs in shelf seas.
Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy
NASA Astrophysics Data System (ADS)
Warner, John C.; Schwab, William C.; List, Jeffrey H.; Safak, Ilgar; Liste, Maria; Baldwin, Wayne
2017-04-01
Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on October 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system that covered spatial scales ranging from the entire US east coast (1000 s of km) to local domains (10 s of km). Additionally, the modeled response for the region offshore of Fire Island, NY was compared to observational analysis from a series of geologic surveys from that location. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis. Modeled sediment redistribution along Fire Island showed erosion across the crests of inner shelf sand ridges and sedimentation in adjacent troughs, consistent with the geologic observations.
Subglacial discharge-driven renewal of tidewater glacier fjords
NASA Astrophysics Data System (ADS)
Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.
2017-08-01
The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.
Quantification of Changes for the Milne Ice Shelf, Nunavut, Canada, 1950 -- 2009
NASA Astrophysics Data System (ADS)
Mortimer, Colleen Adel
This study presents a comprehensive overview of the current state of the Milne Ice Shelf and how it has changed over the last 59 years. The 205 +/-1 km2 ice shelf experienced a 28% (82 +/-0.8 km 2) reduction in area between 1950 -- 2009, and a 20% (2.5 +/-0.9km 3 water equivalent (w.e.)) reduction in volume between 1981 -- 2008/2009, suggesting a long-term state of negative mass balance. Comparison of mean annual specific mass balances (up to -0.34 m w.e. yr-1) with surface mass balance measurements for the nearby Ward Hunt Ice Shelf suggest that basal melt is a key contributor to total ice shelf thinning. The development and expansion of new and existing surface cracks, as well as ice-marginal and epishelf lake development, indicate significant ice shelf weakening. Over the next few decades it is likely that the Milne Ice Shelf will continue to deteriorate.
Guo, Q; Piyasena, P; Mittal, G S; Si, W; Gong, J
2006-04-01
The effectiveness of radio frequency (RF) cooking on the inactivation of Escherichia coli in ground beef and its effect on the shelf stability of ground beef were investigated with a comparison to hot water-bath cooking. E. coli K12 was used as a target bacterium instead of E. coli O157:H7. The ground beef samples inoculated with E. coli K12 (ampr) were heated until the centre temperature of each sample reached 72 degrees C. These samples were then stored at 4 degrees C for up to 30 days. The enumeration of E. coli K12, background E. coli and coliform counts in ground beef samples was carried out for shelf-life study. Although both methods significantly reduced E. coli K12 (ampr), E. coli and coliform counts and extended the shelf-life, RF cooking had a shorter cooking time, and more uniform heating. Thus, RF cooking of meat has a high potential as a substitute for the hot water-bath cooking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brody, A.L.
1959-10-31
Results are reported from a study of the refrigerated shelf life of a number of irradiated foods. Data are included on shrimp, asparagus, snap beans, strawberries, sour cherries, blueberries, and lima beans. Surface irradiation did not retard ripening or cause significant organoleptic changes on hard ripe Elberta peaches, Kiefer or Bartlett pears, or Wealthy apples. The skin color of Double Red Delicious apples was adversely affected by refrigerated storage subsequent to irradiation. (C.H.)
Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica
NASA Astrophysics Data System (ADS)
Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre
2013-04-01
Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of significant mean upward motion within the cove strongly suggests that the upwelling takes place within the highly fractured ice along the southern shear margin of the ice shelf. If so, the upwelling water is likely to contribute to both the volume of apparent "basal" melting and to the weakness of that shear margin.
Dispersal and transport of river sediment on the Catalan Shelf (NW Mediterranean Sea).
NASA Astrophysics Data System (ADS)
Grifoll, Manel; Gracia, Vicente; Espino, Manuel; Sánchez-Arcilla, Agustín
2014-05-01
A three-dimensional coupled hydrodynamics-sediment transport model for the Catalan shelf (NW Mediterranean Sea) is implemented and used to represent the fluvial sediment transport and depositional patterns. The modelling system COAWST (Warner et al., 2010) allows to exchange field from the water circulation model ROMS and the wave model SWAN including combined wave-current bed stress and both sediment transport mechanisms: bed and suspended load. Two rivers surrounding Barcelona harbour are considered in the numerical experiments. Different temporal and spatial scales are modelled in order to evaluate physical mechanisms such as: fine deposits formation in the inner-shelf, harbour siltation or sediment exporting to the outer shelf. Short-time simulations in a high-resolution mesh have been used to reproduce the initial stages of the sediment dispersal. In this case, sediment accumulation occurs confined in an area attached to the coastline. A subsequent reworking is observed due to the wave-induced bottom stresses which resuspend fine material exported then towards the mid-shelf by seawards fluxes. The long-term water circulation simulations explains the observed fine deposits over the shelf. The results provide knowledge of sediment transport processes in the near-shore area of a micro-tidal domain. REFERENCES: Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., 2010, Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system: Ocean Modeling, v. 35, no. 3, p. 230-244.
Wave-driven sediment mobilization on a storm-controlled continental shelf (Northwest Iberia)
Oberle, Ferdinand; Storlazzi, Curt D.; Hanebuth, Till
2014-01-01
Seafloor sediment mobilization on the inner Northwest Iberian continental shelf is caused largely by ocean surface waves. The temporal and spatial variability in the wave height, wave period, and wave direction has a profound effect on local sediment mobilization, leading to distinct sediment mobilization scenarios. Six grain-size specific sediment mobilization scenarios, representing seasonal average and storm conditions, were simulated with a physics-based numerical model. Model inputs included meteorological and oceanographic data in conjunction with seafloor grain-size and the shelf bathymetric data. The results show distinct seasonal variations, most importantly in wave height, leading to sediment mobilization, specifically on the inner shelf shallower than 30 m water depth where up to 49% of the shelf area is mobilized. Medium to severe storm events are modeled to mobilize up to 89% of the shelf area above 150 m water depth. The frequency of each of these seasonal and storm-related sediment mobilization scenarios is addressed using a decade of meteorological and oceanographic data. The temporal and spatial patterns of the modeled sediment mobilization scenarios are discussed in the context of existing geological and environmental processes and conditions to assist scientific, industrial and environmental efforts that are directly affected by sediment mobilization. Examples, where sediment mobilization plays a vital role, include seafloor nutrient advection, recurrent arrival of oil from oil-spill-laden seafloor sediment, and bottom trawling impacts.
NASA Astrophysics Data System (ADS)
Jin, Xiaobo; Liu, Chuanlian
2017-05-01
Coccoliths, combined with sediment grain size, carbonate calcium and organic matters content, were analyzed to assess the ecological and taphonomical influences on coccolith distribution patterns in surface sediments in the continental shelf of the Yellow and East China Seas. Coccolith abundances ranged from 0 to 2.08×109 coccoliths g-1 sediment. The increasing abundance from the coastal inner shelf to the seaward middle shelf generally reflects the ecological fact that living coccolithophores are more abundant in the mesotrophic shelf waters than in the eutrophic coastal waters, although their deposits are still controlled by taphonomical effects, such as bottom (tidal) currents and calcite preservation conditions. Most abundant coccoliths are found in the fine-grained sediments of southwestern Cheju Island, where both ecology and taphonomy favor coccolith preservation. Still, large densities of coccoliths (>108 coccoliths g-1 sediment) are also found in coarse-grained relict sediments in the middle shelf. Coccolith assemblages were predominated by Gephyrocapsa oceanica and Emiliania huxleyi. The relative abundance of E. huxleyi, in addition to ecological reasons, may relate to selective post-mortem dissolution, since small E. huxleyi coccoliths are more susceptible to dissolution. Coccolith calcite has minor contributions (<1% to 12%) to total sediment CaCO3, and the main parts are attributed to terrigenous CaCO3 debris and relict shell fragments.
Antarctic ice discharge due to warm water intrusion into shelf cavities
NASA Astrophysics Data System (ADS)
Winkelmann, R.; Reese, R.; Albrecht, T.; Mengel, M.; Asay-Davis, X.
2017-12-01
Ocean-induced melting below ice shelves is the dominant driver for mass loss from the Antarctic Ice Sheet at present. Observations show that many Antarctic ice shelves are thinning which reduces their buttressing potential and can lead to increased ice discharge from the glaciers upstream. Melt rates from Antarctic ice shelves are determined by the temperature and salinity of the ambient ocean. In many parts, ice shelves are shielded by clearly defined density fronts which keep relatively warm Northern water from entering the cavity underneath the ice shelves. Projections show that a redirection of coastal currents might allow these warmer waters to intrude into ice shelf cavities, for instance in the Weddell Sea, and thereby cause a strong increase in sub-shelf melt rates. Using the Potsdam Ice-shelf Cavity mOdel (PICO), we assess how such a change would influence the dynamic ice loss from Antarctica. PICO is implemented as part of the Parallel Ice Sheet Model (PISM) and mimics the vertical overturning circulation in ice-shelf cavities. The model is capable of capturing the wide range of melt rates currently observed for Antarctic ice shelves and reproduces the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. Based on regional observations of ocean temperatures, we use PISM-PICO to estimate an upper limit for ice discharge resulting from the potential erosion of ocean fronts around Antarctica.
Antarctic ice shelf potentially stabilized by export of meltwater in surface river
NASA Astrophysics Data System (ADS)
Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang
2017-04-01
Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks—interconnected streams, ponds and rivers—on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf’s meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica—contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.
The stratigraphy of the southern Pab Range, Pakistan
NASA Astrophysics Data System (ADS)
White, H. J.
The Cretaceous strata exposed in the southern Pab Range, southeast Baluchistan, Pakistan is investigated. It records the precollision deposition history of the Indo-Pakistani continental shelf. The strata comprise two depositional successions, namely, The Early to Late Cretaceous Sembar-Goru-Parh sequence and the Maestrichtian Mughal Kot-Pab sequence. The former began with deposition of black shales on the continental slope (Sembar Formation), succeeded by calcareous shale, marl and micstone of outer shelf origin (Goru Formation), and ended with inner shelf platform carbonates (Parh Limestone). These deep to shallow water lithofacies prograted westward over the continental shelf of the north-advancing Subcontinent. The Mughal Kot-Pab propagation contains the first significant influx of terrigenous sand reaching the western portion of the continental shelf. Deposition environments in the Mughal Kot Formation include inner shelf, prodelta, delta front and distributary channel. A thick succession of shoreface cycles comprises the Pab sandstone.
Violent storms within the sea: Dense water formation episodes in the Mediterranean.
NASA Astrophysics Data System (ADS)
Salat, J.
2009-09-01
The Mediterranean is a semi enclosed basin which receives surface water from the Atlantic Ocean. Most of this water is returned into the Ocean with higher density, spreading at more than 1000 m depth (the rest is transported by the atmosphere and the rivers to the Ocean surface). In terms of water budget, the Mediterranean is considered an evaporation basin, but the loss of water is neither the only process that increases the water density nor it is a steady or uniform process. The factors affecting the water density, temperature and salinity, are driven by mass and heat exchanges with the atmosphere. Those exchanges may be by direct contact or mediated by the land. Therefore, changes in water density depend on the water circulation and local weather conditions, both with seasonal and geographical constraints. As the compressibility of water is very low, stratification is expected and horizontal motion is the predominant in the sea interior. Among the few processes that may introduce a vertical component in the water motion are surface heat loss or evaporation that increase the surface water density triggering convective cells. Such processes will be enhanced by surface cooling or by dry continental winds, and counterbalanced by rain, river runoff, solar heating and condensation. Therefore dense water formation are more likely to occur when sea surface temperature is higher than the surface air temperature. There are several scales of convective motions in the ocean, starting from the formation of the surface mixed layer during summer, by night cooling, breezes, and occasional wind storms. During autumn and winter, the vertical scale of the mixing is increasing by steps, through wind storms and progressive cooling, to easily reach the bottom over the continental shelves, typically not deeper than 150 m. However, as the Gibraltar sill is relatively shallow (~350 m) in relation to the average Mediterranean basin (2000-3000 m), the stratification of the deeper layers is weak. Therefore, where and when the surface layer becomes well mixed, typically in winter, in the northern regions, conditions are given (pre-conditioning phase) to the occurrence of dense water formation episodes. Those episodes require the participation of strong cold and dry winds which force an intense evaporation. In the NW Mediterranean, such forcing may act over the continental shelves, like that of the Gulf of Lions, or over deep open seas, typically the central part east of Catalonia and south of Provence. Over the shelf, surface water is expected to be fresher because of the runoff (e.g. the Rhône). Along the continental margin the water circulation, geostrophically adapted, is cyclonic and the stratification in the centre is lower, then density reached may be higher in the central part than on the shelf. However, cooling will be more effective over the shelf as the heat content of the water column is lower because it is much shorter. Once density over the shelf is high enough, the bottom water overflows and violently sinks along the slope in relatively narrow areas through what has been called a cascading event. In the central part, dense water formed sinks almost vertically in funnels not larger than a few kilometres in diameter, and is accompanied by a compensating rise of water from great depth on all sides. In such open sea winter convection events, the dense water can sink some 800 m within a matter of hours and may reach the bottom level, >2500 m deep, within a couple of days. Such short and violent episodes, cascading or open sea convection, of a few days' duration supply enough water to feed the lower layer to compensate the outflow through the Strait of Gibraltar for several weeks. The repeated events in some few points across the Mediterranean, like those above mentioned, are maintaining the Mediterranean circulation and the water exchanges with the Ocean. The overall amount of dense water formed however is highly variable from one year to another according to the forcings involved and perturbations of the water circulation.
NASA Astrophysics Data System (ADS)
Chaput, J.; Aster, R. C.; Baker, M. G.; Gerstoft, P.; Bromirski, P. D.; Nyblade, A.; Stephen, R. A.; Wiens, D.
2017-12-01
Ice shelf collapse can herald subsequent grounded ice instability. However, robust understanding of external mechanisms capable of triggering rapid changes remains elusive. Improved understanding therefore requires improved remote and in-situ measurements of ice shelf properties. Using nearly three years of continuous data from a recently deployed 34-station broadband seismic array on the Ross Ice Shelf, we analyze persistent temporally varying, anisotropic near-surface resonant wave modes at frequencies above 1 Hz that are highly sensitive to small changes in elastic shelf properties to depths of tens of m. We further find that these modes exhibit both progressive (on the scale of months) and rapid (on the scale of hours) changes in frequency content. The largest and most rapid excursions are associated with forcing from local storms, and with a large regional ice shelf melt event in January 2016. We hypothesize that temporally variable behavior of the resonance features arises from wind slab formation during storms and/or to porosity changes, and to the formation of percolation-related refrozen layers and thinning in the case of surface melting. These resonance variations can be reproduced and inverted for structural changes using numerical wave propagation models, and thus present an opportunity for 4-D structural monitoring of shallow ice shelf elasticity and structure using long-duration seismic recordings.
NASA Astrophysics Data System (ADS)
Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert; Babb, David G.; Toudal Pedersen, Leif; Rysgaard, Søren; Kristoffersen, Yngve; Barber, David G.
2017-12-01
The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.
Modeling water mass formation in the Mertz Glacier Polynya and Adélie Depression, East Antarctica
NASA Astrophysics Data System (ADS)
Marsland, S. J.; Bindoff, N. L.; Williams, G. D.; Budd, W. F.
2004-11-01
High rates of sea ice growth and brine rejection in the Mertz Glacier Polynya drive the production of dense continental shelf waters in the Adélie Depression. We consider the rate of outflow of waters having sufficient density to sink into the neighboring abyssal ocean and form Adélie Land Bottom Water (ALBW). Along with Weddell and Ross Sea Bottom Waters, the ALBW is an important source of Antarctic Bottom Water. The relevant processes are modeled using a variant of the Max Planck Institute Ocean Model (MPIOM) under daily NCEP-NCAR reanalysis forcing for the period 1991-2000. The orthogonal curvilinear horizontal grid allows for the construction of a global domain with high resolution in our region of interest. The modeled Mertz Glacier Polynya is realistic in location and extent, exhibiting low ice thickness (<0.4 m) and low ice fraction (<50%). The net surface ocean to atmosphere heat flux exceeds 200 W m2 and is dominated by sensible heat exchange. In wintertime (May through September inclusive), 7.5 m of sea ice forms over the Adélie Depression at a rate of 4.9 cm d-1: this results in annual average volumetric production of 99 km3 of sea ice. The associated brine release drives dense shelf water formation. The off-shelf flow of dense water exhibits strong interannual variability in response to variability in both atmospheric forcing and ocean preconditioning. Averaged over the period 1991-2000 the off shelf flow of dense water is 0.15 Sv: for a period of strong outflow (1993-1997), this increases to 0.24 Sv. Most of the outflow occurs during July through October, at a rate of 0.40 (0.63) Sv over the period 1991-2000 (1993-1997). The peak mean monthly outflow can exceed 1 Sv.
NASA Astrophysics Data System (ADS)
Tremblay, J.-É.; Raimbault, P.; Garcia, N.; Lansard, B.; Babin, M.; Gagnon, J.
2014-09-01
The concentrations and elemental stoichiometry of particulate and dissolved pools of carbon (C), nitrogen (N), phosphorus (P) and silicon (Si) on the Canadian Beaufort Shelf during summer 2009 (MALINA program) were assessed and compared with those of surface waters provided by the Mackenzie river as well as by winter mixing and upwelling of upper halocline waters at the shelf break. Neritic surface waters showed a clear enrichment in dissolved and particulate organic carbon (DOC and POC, respectively), nitrate, total particulate nitrogen (TPN) and dissolved organic nitrogen (DON) originating from the river. Silicate as well as bulk DON and DOC declined in a near-conservative manner away from the delta's outlet, whereas nitrate dropped non-conservatively to very low background concentrations inside the brackish zone. By contrast, the excess of soluble reactive P (SRP) present in oceanic waters declined in a non-conservative manner toward the river outlet, where concentrations were very low and consistent with P shortage in the Mackenzie River. These opposite gradients imply that the admixture of Pacific-derived, SRP-rich water is necessary to allow phytoplankton to use river-derived nitrate and to a lesser extent DON. A coarse budget based on concurrent estimates of primary production shows that river N deliveries support a modest fraction of primary production when considering the entire shelf, due to the ability of phytoplankton to thrive in the subsurface chlorophyll maximum beneath the thin, nitrate-depleted river plume. Away from shallow coastal bays, local elevations in the concentration of primary production and dissolved organic constituents were consistent with upwelling at the shelf break. By contrast with shallow winter mixing, nutrient deliveries by North American rivers and upwelling relax surface communities from N limitation and permit a more extant utilization of the excess SRP entering through the Bering Strait. In this context, increased nitrogen supply by rivers and upwelling potentially alters the vertical distribution of the excess P exported into the North Atlantic.
Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf
The Louisiana shelf, in the northern Gulf of Mexico, receives large amounts of freshwater and nutrients from the Mississippi–Atchafalaya river system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical–biogeochemical mo...
Tsunami and infragravity waves impacting Antarctic ice shelves
NASA Astrophysics Data System (ADS)
Bromirski, P. D.; Chen, Z.; Stephen, R. A.; Gerstoft, P.; Arcas, D.; Diez, A.; Aster, R. C.; Wiens, D. A.; Nyblade, A.
2017-07-01
The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50-300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (˜70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.
Influence of San Gabriel submarine canyon on narrow-shelf sediment dynamics, southern California
Karl, Herman A.
1980-01-01
A conceptual model attributes the PTC to modification of shelf circulation patterns by San Gabriel Canyon. Surface waves diverge over the canyon head resulting in differential wave set up at the shore face. This forces back turbid nearshore water for a distance of a few kilometers toward the canyon. At some point on the shelf, seaward nearshore flow overlaps offshore currents generated or modified by internal waves focused onto the shelf by the canyon and/or turbulent eddies produced by flow separation in currents moving across the canyon axis. At times, these subtle processes overprint tidal and wind-driven currents and thereby create the PTC. The model suggests that canyons heading several kilometers from shore can have a regulatory effect on narrow-shelf sediment dynamics.
The nepheloid bottom layer and water masses at the shelf break of the western Ross Sea
NASA Astrophysics Data System (ADS)
Capello, Marco; Budillon, Giorgio; Cutroneo, Laura; Tucci, Sergio
2009-06-01
In the austral summers of 2000/2001 and 2002/2003 the Italian CLIMA Project carried out two oceanographic cruises along the northwestern margin of the Ross Sea, where the Antarctic Bottom Water forms. Here there is an interaction between the water masses on the sea floor of the outer shelf and slope with a consequent evolution of benthic nepheloid layers and an increase in total particulate matter. We observed three different situations: (a) the presence of triads (bottom structures characterized by a concomitant jump in turbidity, temperature, and salinity data) and high re-suspension phenomena related to the presence of the Circumpolar Deep Water and its mixing with cold, salty shelf waters associated with gravity currents; (b) the absence of triads with high re-suspension, implying that when the gravity currents are no longer active the benthic nepheloid layer may persist until the suspended particles settle to the sea floor, suggesting that the turbidity data can be used to study recent gravity current events; and (c) the absence of turbidity and sediment re-suspension phenomena supports the theory that a steady situation had been re-established and the current interaction no longer occurred or had finished sometime before.
Late Quaternary transgressive large dunes on the sediment-starved Adriatic shelf
Correggiari, A.; Field, M.E.; Trincardi, F.
1996-01-01
The Adriatic epicontinental basin is a low-gradient shelf where the late-Quaternary transgressive systems tract (TST) is composed of thin parasequences of backbarrier, shoreface and offshore deposits. The facies and internal architecture of the late-Quaternary TST in the Adriatic epicontinental basin changed consistently from early transgression to late transgression reflecting: (1) fluctuations in the balance between sediment supply and accommodation increase, and (2) a progressive intensification of the oceanographic regime, driven by the transgressive widening of the basin to as much as seven times its lowstand extent. One of the consequences of this trend is that high-energy marine bedforms such as sand ridges and sand waves characterize only areas that were flooded close to the end of the late-Quaternary sea-level rise, when the wind fetch was maximum and bigger waves and stronger storm currents could form. We studied the morphology, sediment composition and sequence-stratigraphical setting of a field of asymmetric bedforms (typically 3 m high and 600 m in wavelength) in 20-24 m water depth offshore the Venice Lagoon in the sediment-starved North Adriatic shelf. The sand that forms these large dunes derived from a drowned transgressive coastal deposit reworked by marine processes. Early cementation took place over most of the dune crests limiting their activity and preventing their destruction. Both the formation and deactivation of this field of sand dunes occurred over a short time interval close to the turn-around point that separates the late-Quaternary sea-level rise and the following highstand and reflect rapid changes in the oceanographic regime of the basin.
NASA Astrophysics Data System (ADS)
Kellogg, M. Lisa; Smyth, Ashley R.; Luckenbach, Mark W.; Carmichael, Ruth H.; Brown, Bonnie L.; Cornwell, Jeffrey C.; Piehler, Michael F.; Owens, Michael S.; Dalrymple, D. Joseph; Higgins, Colleen B.
2015-03-01
The publisher regrets to inform that the article by Kellogg and colleagues (M. Lisa Kellogg, Ashley R. Smyth, Mark W. Luckenbach, Ruth H. Carmichael, Bonnie L. Brown, Jeffrey C. Cornwell, Michael F. Piehler, Michael S. Owens, D. Joseph Dalrymple, Colleen B. Higgins, Use of oysters to mitigate eutrophication in coastal waters, Estuarine, Coastal and Shelf Science, Volume 151, Pages 156-168, http://dx.doi.org/10.1016/j.ecss.2014.09.025.
Sub-micron particles in northwest Atlantic shelf water
NASA Astrophysics Data System (ADS)
Longhurst, A. R.; Koike, I.; Li, W. K. W.; Rodriguez, J.; Dickie, P.; Kepay, P.; Partensky, F.; Bautista, B.; Ruiz, J.; Wells, M.; Bird, D. F.
1992-01-01
The existence of numerous (1.0 × 10 7 ml -1) sub-micron particles has been confirmed in northwest Atlantic shelf water. These particles were counted independently by two different resistive-pulse instruments, and their existence confirmed by our ability to reduce their numbers by ultracentrifugation, serial dilution and surface coagulation in a bubbling column. There are important implications for the dynamics of DOM in seawater if, as seems probable, these particles represent a fraction of "dissolved" organic material in seawater.
NASA Astrophysics Data System (ADS)
Shank, G. Christopher; Evans, Anne
2011-07-01
The distribution and photoreactivity of chromophoric dissolved organic matter (CDOM) in the northern Gulf of Mexico along the Louisiana coastal shelf were examined during three cruises in summer 2007, fall 2007, and summer 2008. The influence of the Mississippi River plume was clearly evident as CDOM levels (defined as a305) and dissolved organic carbon (DOC) concentrations were well-correlated with salinity during all cruises. Elevated CDOM and CDOM:DOC ratios of surface samples collected offshore of Atchafalaya Bay and the Breton-Chandeleur Sound complex indicated emanations of organic-rich waters from coastal wetlands are also an important source to nearshore shelf waters. Generally, CDOM and DOC levels were highest in surface waters and decreased with depth, but during summer 2007 and summer 2008, CDOM levels in near-bottom samples were occasionally higher than at mid-depths without concomitant increases in DOC. CDOM photobleaching was measured during 24 irradiations using a SunTest XLS+ solar simulator with photobleaching rate coefficients ( k305) ranging from 0.011 to 0.32 h -1. For fall 2007 and summer 2008, higher k305 values were generally observed in samples with higher initial CDOM levels. However, samples collected during summer 2007 did not exhibit a similar pattern nor were there differences in photobleaching rates between surface and bottom samples. Spectral slope coefficients ( S275-295 or S350-400) and DOC levels were largely unchanged after 24 h irradiations. Modeled CDOM photobleaching for northern Gulf of Mexico mid-shelf waters predicts that during the summer when solar irradiance is high and the water column becomes stratified, nearly 90% of the CDOM in the upper 1 m may be lost to photobleaching, with losses up to 20% possible even at 10 m depth.
NASA Astrophysics Data System (ADS)
Morales, Carmen E.; Anabalón, Valeria; Bento, Joaquim P.; Hormazabal, Samuel; Cornejo, Marcela; Correa-Ramírez, Marco A.; Silva, Nelson
2017-11-01
In eastern boundary current systems (EBCSs), submesoscale to mesocale variability contributes to cross-shore exchanges of water properties, nutrients, and plankton. Data from a short-term summer survey and satellite time series (January-February 2014) were used to characterize submesoscale variability in oceanographic conditions and phytoplankton distribution across the coastal upwelling and coastal transition zones north of Punta Lavapié, and to explore cross-shelf exchanges of diatom taxa. A thermohaline front (FRN-1) flanked by a mesoscale anticyclonic intrathermocline eddy (ITE-1), or mode-water eddy, persisted during the time series and the survey was undertaken during a wind relaxation event. At the survey time, ITE-1 contributed to an onshore intrusion of warm oceanic waters (southern section) and an offshore advection of cold coastal waters (northern section), with the latter forming a cold, high chlorophyll-a filament. In situ phytoplankton and diatom biomasses were highest at the surface in FRN-1 and at the subsurface in ITE-1, whereas values in the coastal zone were lower and dominated by smaller cells. Diatom species typical of the coastal zone and species dominant in oceanic waters were both found in the FRN-1 and ITE-1 interaction area, suggesting that this mixture was the result of both offshore and onshore advection. Overall, front-eddy interactions in EBCSs could enhance cross-shelf exchanges of coastal and oceanic plankton, as well as sustain phytoplankton growth in the slope area through localized upward injections of nutrients in the frontal zone, combined with ITE-induced advection and vertical nutrient inputs to the surface layer.
NASA Astrophysics Data System (ADS)
Coyle, Kenneth O.; Pinchuk, Alexei I.; Eisner, Lisa B.; Napp, Jeffrey M.
2008-08-01
The southeastern Bering Sea sustains one of the largest fisheries in the United States, as well as wildlife resources that support valuable tourist and subsistence economies. The fish and wildlife populations in turn are sustained by a food web linking primary producers to apex predators through the zooplankton community. Recent shifts in climate toward warmer conditions may threaten these resources by altering productivity and trophic relationships in the ecosystem on the southeastern Bering Sea shelf. We examined the zooplankton community near the Pribilof Islands and on the middle shelf of the southeastern Bering Sea in summer of 1999 and 2004 to document differences and similarities in species composition, abundance and biomass by region and year. Between August 1999 and August 2004, the summer zooplankton community of the middle shelf shifted from large to small species. Significant declines were observed in the biomass of large scyphozoans ( Chrysaora melanaster), large copepods ( Calanus marshallae), arrow worms ( Sagitta elegans) and euphausiids ( Thysanoessa raschii, T. inermis) between 1999 and 2004. In contrast, significantly higher densities of the small copepods ( Pseudocalanus spp., Oithona similis) and small hydromedusae ( Euphysa flammea) were observed in 2004 relative to 1999. Stomach analyses of young-of-the-year (age 0) pollock ( Theragra chalcogramma) from the middle shelf indicated a dietary shift from large to small copepods in 2004 relative to 1999. The shift in the zooplankton community was accompanied by a 3-fold increase in water-column stability in 2004 relative to 1999, primarily due to warmer water above the thermocline, with a mean temperature of 7.3 °C in 1999 and 12.6 °C in 2004. The elevated water-column stability and warmer conditions may have influenced the zooplankton composition by lowering summer primary production and selecting for species more tolerant of a warm, oligotrophic environment. A time series of temperature from the middle shelf indicates that the warmer conditions in 2004 are part of a trend rather than an expression of interannual variability. These results suggest that if climate on the Bering Sea shelf continues to warm, the zooplankton community may shift from large to small taxa which could strongly impact apex predators and the economies they support.
NASA Astrophysics Data System (ADS)
März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah
2014-05-01
Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening of pore waters in continental margin settings has been reported in association with dissociating gas hydrate deposits (Hesse, 2003), but neither seismic profiles nor sediment records showed any indications for the presence of gas hydrates at the Gulf of Alaska sites. An alternative and intriguing explanation for these almost brackish waters in the glaciomarine shelf and slope deposits is the presence of glacial meltwater that could either be "fossil" (stored in the glaciomarine sediments since the last glacial termination) or "recent" (i.e., actively flowing from currently melting glaciers of the St. Elias Mountain Range along permeable layers within the shelf deposits). As these relatively fresh waters are found at three distinct drill sites, it can be assumed that they are distributed all along the Gulf of Alaska shelf and slope, and similar findings have been reported at other glaciated continental margins, e.g., off East Greenland (DeFoor et al., 2011) and Antarctica (Mann and Gieskes, 1975; Chambers, 1991; Lu et al., 2010). While a recent review has highlighted the importance of fresh and brackish water reservoirs in continental shelf deposits worldwide (Post et al., 2013), we suggest that climatic and depositional processes affecting glaciated continental margins (e.g., the release of huge amounts of fresh water from ice sheets and glaciers during glacial terminations, and the rapid deposition of unconsolidated sediments on the adjacent shelf) are particularly favourable for the storage and/or flow of meltwater below the present sea floor. Adkins JF, McIntyre K, Schrag DP (2002) The salinity, temperature, and d18O of the glacial deep ocean. Science 298, 1769-1773. Chambers SR (1991) Solute distributions and stable isotope chemistry of interstitial waters from Prydz Bay, Antarctica. Proceedings of the Ocean Drilling Program 119, 375-392. DeFoor W, Person M, Larsen HC, Lizarralde D, Cohen D, Dugam B (2011) Ice sheet-derived submarine groundwater discharge on Greenland's continental shelf. Water Resources Research 47, W07549. Hesse R (2003) Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade? Earth-Science Reviews 61, 149-179. Lu Z, Rickaby REM, Wellner J, Georg B, Charnley N, Anderson JB, Hensen C (2010) Pore fluid modeling approach to identify recent meltwater signals on the West Antarctic Peninsula. Geochemistry, Geophysics, Geosystems 11, doi: 10.1029/2009GC002949. Mann R, Gieskes JM (1975) Interstitial water studies, Leg 28. Deep Sea Drilling Project Initial Reports 28, 805-814. Post VEA, Groen J, Kooi H, Person M, Ge S, Edmunds M (2013) Offshore fresh groundwater reserves as a global phenomenon. Nature 504, 71-78.
The influence of surface waves on water circulation in a mid-Atlantic continental shelf region
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Talay, T. A.
1974-01-01
The importance of wave-induced currents in different weather conditions and water depths (18.3 m and 36.6 m) is assessed in a mid-Atlantic continental-shelf region. A review of general circulation conditions is conducted. Factors which perturb the general circulation are examined using analytic techniques and limited experimental data. Actual wind and wave statistics for the region are examined. Relative magnitudes of the various currents are compared on a frequency of annual occurrence basis. Results indicated that wave-induced currents are often the same order of magnitude as other currents in the region and become more important at higher wind and wave conditions. Wind-wave and ocean-swell characteristics are among those parameters which must be monitored for the analytical computation of continental-shelf circulation.
Physico-chemical properties of ready to eat, shelf-stable pasta during storage.
Carini, E; Curti, E; Cassotta, F; Najm, N E O; Vittadini, E
2014-02-01
The changes in physico-chemical properties of RTE shelf stable pasta were studied during storage with a multianalytical and multidimensional approach (with special focus on water status) to understand the ageing process in this product. Pasta hardness and amylopectin recrystallisation increased, macroscopic water status indicators and proton molecular translational mobility remained constant, and significant changes were measured in the proton rotational molecular mobility indicators ((1)H FID, (1)H T2) during storage. Since the main changes observed in RTE pasta during storage were similar to those observed in other cereal-based products, it would be interesting to verify the effect of the anti-staling methods commonly used in the cereal processing industry in improving RTE pasta shelf-stability. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lehrter, J. C.; Fung, M.
2017-12-01
Nutrients loads delivered by the Mississippi River to the Louisiana continental shelf (LCS) stimulate phytoplankton production of organic matter and coupled community respiration. These processes ultimately consume oxygen in bottom waters and promote the development of hypoxia and anoxia on the LCS. Several recent studies have emphasized the importance of nearshore (<15 m depth) phytoplankton production and respiration as a principal driver of heterotrophy and oxygen concentration patterns across this shelf. However, no studies to date have measured these nearshore rates. Other studies have invoked a more classical pattern of surface water primary production fueling water-column and bottom water respiration directly beneath through vertical deposition of organic matter. Yet, patterns of heterotrophy that have been observed across most of the LCS do not seem to support this hypothesis. In this study, we investigated these two different ideas by measuring primary production and respiration rates in distinct water masses at stations spanning salinity and depth gradients on the LCS in spring and summer of 2017. Over the course of this study, we have consistently observed highest primary production and respiration rates in nearshore waters of the Louisiana Coastal Current. This narrow band of low salinity water deriving from the Mississippi and Atchafalaya rivers exhibits maximum production rates exceeding 200 mmol C m-3 d-1 and maximum P/R > 10. Other water masses investigated, which included: surface water at offshore locations (> 15 m depth), sub-surface chlorophylla maxima, mid-water O2 minima and maxima, and bottom water, had average production and respiration rates that were 4-10 fold lower than in the nearshore zone and P/R < 1. These results and a scaling analysis demonstrate the potential for organic matter subsidies from the Louisiana Coastal Current to fuel respiration across the wider shelf and downcoast of the river inputs. Further, the results support recent physical and modeling analyses indicating that mid-water O2 minima and maxima observed on the LCS are primarily derived from lateral advection as opposed to developing in place as a result of excess primary production, sinking, and respiration.
Reconnaissance Marine Geophysical Survey for the Shallow Water Acoustics Program
2013-09-30
Swift, D.J.P. (Ed.), Shelf Sand and Sandstone Bodies: Geometry, Facies and Sequence Stratigraphy, Wiley, Hoboken, New Jersey, Spec. Publs. Int. Ass...sequences, their component system tra cts, and bounding surfaces. In Swift, D.J.P. (Ed.), Shelf Sand and Sandstone Bodies: Geometry, Facies and Sequence
PILOT IN SITU CAPPING PROJECT FOR PALOS VERDES SHELF CONTAMINATED SEDIMENTS
The Palos Verdes Shelf Pilot Capping Project will evaluate the short-term results of capping the DDT- and PCB-contaminated sediment with clean sediment. It will also determine how these results are affected by variables such as cap material, placement method and water depth. The ...
To investigate the relative importance of microphytobenthos (MPB) oxygen (O2) production on a river-dominated shelf, we made sediment core incubation measurements of MPB O2 production and sediment O2 consumption, and compared these to water-column measures of primary production ...
IMPACTS OF GLOBAL CHANGE ON UV EXPOSURE IN COASTAL SHELF REGIONS OF THE SOUTHEASTERN UNITED STATES
Global change has a variety of impact on UV exposure in coastal shelf regions of the southeastern United States. Changes in solar UV reaching the water surface have been caused by human alterations of atmospheric composition such as depletion of the ozone layer.
Ocean Transport Pathways to a World Heritage Fringing Coral Reef: Ningaloo Reef, Western Australia.
Xu, Jiangtao; Lowe, Ryan J; Ivey, Gregory N; Jones, Nicole L; Zhang, Zhenlin
2016-01-01
A Lagrangian particle tracking model driven by a regional ocean circulation model was used to investigate the seasonally varying connectivity patterns within the shelf circulation surrounding the 300 km long Ningaloo Reef in Western Australia (WA) during 2009-2010. Forward-in-time simulations revealed that surface water was transported equatorward and offshore in summer due to the upwelling-favorable winds. In winter, however, water was transported polewards down the WA coast due to the seasonally strong Leeuwin Current. Using backward-in-time simulations, the subsurface transport pathways revealed two main source regions of shelf water reaching Ningaloo Reef: (1) a year-round source to the northeast in the upper 100 m of water column; and (2) during the summer, an additional source offshore and to the west of Ningaloo in depths between ~30 and ~150 m. Transient wind-driven coastal upwelling, onshore geostrophic transport and stirring by offshore eddies were identified as the important mechanisms influencing the source water origins. The identification of these highly time-dependent transport pathways and source water locations is an essential step towards quantifying how key material (e.g., nutrients, larvae, contaminants, etc.) is exchanged between Ningaloo Reef and the surrounding shelf ocean, and how this is mechanistically coupled to the complex ocean dynamics in this region.
Ocean Transport Pathways to a World Heritage Fringing Coral Reef: Ningaloo Reef, Western Australia
Xu, Jiangtao; Lowe, Ryan J.; Ivey, Gregory N.; Jones, Nicole L.; Zhang, Zhenlin
2016-01-01
A Lagrangian particle tracking model driven by a regional ocean circulation model was used to investigate the seasonally varying connectivity patterns within the shelf circulation surrounding the 300 km long Ningaloo Reef in Western Australia (WA) during 2009–2010. Forward-in-time simulations revealed that surface water was transported equatorward and offshore in summer due to the upwelling-favorable winds. In winter, however, water was transported polewards down the WA coast due to the seasonally strong Leeuwin Current. Using backward-in-time simulations, the subsurface transport pathways revealed two main source regions of shelf water reaching Ningaloo Reef: (1) a year-round source to the northeast in the upper 100 m of water column; and (2) during the summer, an additional source offshore and to the west of Ningaloo in depths between ~30 and ~150 m. Transient wind-driven coastal upwelling, onshore geostrophic transport and stirring by offshore eddies were identified as the important mechanisms influencing the source water origins. The identification of these highly time-dependent transport pathways and source water locations is an essential step towards quantifying how key material (e.g., nutrients, larvae, contaminants, etc.) is exchanged between Ningaloo Reef and the surrounding shelf ocean, and how this is mechanistically coupled to the complex ocean dynamics in this region. PMID:26790154
Inorganic geochemistry of surface sediments of the Ebro shelf and slope, northwestern Mediterranean
Gardner, J.V.; Dean, W.E.; Alonso, B.
1990-01-01
Distributions of major, minor, and trace elements in surface sediment of the continental shelf and upper slope of the northeastern Spanish continental margin reflect the influences of discharge from the Ebro River and changes in eustatic sea levels. Multivariate factor analysis of sediment geochemistry was used to identify five groupings of samples (factors) on the shelf and slope. The first factor is an aluminosilicate factor that represents detrital clastic material. The second factor is a highly variable amount of excess SiO2 and probably represents a quartz residuum originating from winnowing of relict detrital sediments. A carbonate factor (Factor 3) has no positive correlation with other geochemical parameters but is associated with the sand-size fraction. The carbonate in these sediments consists of a mixture of biogenic calcite and angular to subangular detrital grains. Organic carbon is associated with the aluminosilicate factor (Factor 1) but also factors out by itself (Factor 4); this suggests that there may be two sources of organic matter, terrestrial and marine. The fifth factor comprises upper slope sediments that contain high concentrations of manganese. The most likely explanation for these high manganese concentrations is precipitation of Mn oxyhydroxides at the interface between Mn-rich, oxygen-deficient, intermediate waters and oxygenated surface waters. During eustatic low sea levels of the glacial Pleistocene, the Ebro Delta built across the outer continental shelf and deposited sediment with fairly high contents of organic carbon and continental components. The period of marine transgression from eustatic low (glacial) to eustatic high (interglacial) sea levels was characterized by erosion of the outer shelf delta and surficial shelf sediments and the transport of sediment across the slope within numerous canyons. Once eustatic high sea level was reached, delta progradation resumed on the inner shelf. Today, coarse-grained sediment (silt and sand) is transported to the continental shelf by Ebro River and is distributed along the inner shelf by currents generated by dominant northeasterly winds. Clay-size material is deposited on the mid- and outer-shelf. However, erosion and delta progradation during the last glacial period, and fine-grained Holocene sedimentation, have probably produced a distribution of sediment on a diachronous surface. ?? 1990.
Dharmasena, Muthu; Barron, Felix; Fraser, Angela; Jiang, Xiuping
2015-01-01
Non-dairy probiotic products have the advantage of being lactose-free and can be manufactured to sustain the growth of probiotics. In this study, coconut water and oatmeal were used with the probiotic, Lactobacillus plantarum Lp 115-400B (L. plantarum) as a starter culture. Two separate treatments were carried out probiotic (P) and probiotic and prebiotic (PP) added. In both treatments, oatmeal-coconut water matrix was inoculated with 7 log CFU/g of L. plantarum and fermented at 27 °C for 10 h. For the PP treatment, 1 g of inulin/100 mL of the product was added additionally. The fermented products were then refrigerated (4 °C) and the viability of L. plantarum, pH, total acidity, and apparent viscosity of the matrix were monitored at selected time intervals. The shelf life to reach was defined by maintenance of L. plantarum count of 7 log CFU/g product. Refrigerated shelf life was determined to be seven-weeks for the P treatment and five-weeks for PP treatment. A significant reduction of pH was observed at the end of the considered shelf life; conversely, the apparent viscosity of the product did not change significantly. PMID:28231208
NASA Astrophysics Data System (ADS)
Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.
2016-02-01
Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.
Dharmasena, Muthu; Barron, Felix; Fraser, Angela; Jiang, Xiuping
2015-08-10
Non-dairy probiotic products have the advantage of being lactose-free and can be manufactured to sustain the growth of probiotics. In this study, coconut water and oatmeal were used with the probiotic, Lactobacillus plantarum Lp 115-400B ( L. plantarum ) as a starter culture. Two separate treatments were carried out probiotic (P) and probiotic and prebiotic (PP) added. In both treatments, oatmeal-coconut water matrix was inoculated with 7 log CFU/g of L. plantarum and fermented at 27 °C for 10 h. For the PP treatment, 1 g of inulin/100 mL of the product was added additionally. The fermented products were then refrigerated (4 °C) and the viability of L. plantarum , pH, total acidity, and apparent viscosity of the matrix were monitored at selected time intervals. The shelf life to reach was defined by maintenance of L. plantarum count of 7 log CFU/g product. Refrigerated shelf life was determined to be seven-weeks for the P treatment and five-weeks for PP treatment. A significant reduction of pH was observed at the end of the considered shelf life; conversely, the apparent viscosity of the product did not change significantly.
Seasonal seafloor oxygen dynamics on the Romanian Black Sea Shelf
NASA Astrophysics Data System (ADS)
Friedrich, Jana; Balan, Sorin; van Beusekom, Justus E.; Naderipour, Celine; Secrieru, Dan
2017-04-01
The Black Sea suffers from the combined effects of anthropogenic eutrophication, overfishing and climate forcing. As a result, its broad and shallow western shelf in particular has a history of ecosystem collapse during the 1970s to the mid-1990s, which followed a slow recovery since the late 1990s due to reduction in anthropogenic pressures. Because of eutrophication, increased oxygen consumption caused recurrent widespread seasonal seafloor hypoxia in a system that is already naturally prone to decrease in bottom water oxygen during summer. On the shelf, reduced bottom water ventilation is a strong natural driver for seafloor hypoxia, due to strong seasonal thermohaline stratification as a result of freshwater inflow from the large rivers Danube, Dniester and Dniepro. To understand the present seasonal dynamics of seafloor oxygen on the Romanian shelf, a seafloor mooring was deployed in 2010 and 2016 during summer and autumn, for three and six months, respectively. The mooring, consisting of an Aanderaa SEAGUARD sensor package attached to an acoustic release, was deployed in 30 m water depth in the Portita region - north of Constanta and south of the Danube River Mouths. The in-situ time series of seafloor oxygen, temperature, turbidity, salinity, and current velocities and directions, combined with CTD profiles, benthic oxygen consumption rates based on ex-situ incubations of sediment cores, and pelagic oxygen respiration rates provide a set of information that allows biological and hydrophysical controls on seafloor oxygen to be identified. We observed the built-up of the thermohaline stratification during late spring and early summer, accompanied by steady decrease in bottom water oxygen. Superimposed settling of particles to the seafloor eventually led to the formation of seafloor hypoxia in late summer. Anticyclonic currents resemble diurnal tidal cycles, albeit low in magnitude. The effects of a strong rainstorm and a Danube flood event in late September were visible in a short-term increase in bottom water oxygen. The autumn storm events over the Black Sea led to seafloor ventilation and stepwise increase of bottom water oxygen on the shelf, which continues during the stormy winter season.
NASA Astrophysics Data System (ADS)
Durán, Ruth; Canals, Miquel; Lastras, Galderic; Micallef, Aaron; Amblas, David; Pedrosa-Pàmies, Rut; Sanz, José Luis
2013-11-01
The Blanes submarine canyon (BC) deeply incises the Catalan continental shelf in the NW Mediterranean Sea. As a consequence of the closeness (only 4 km) of its head to the coastline and the mouth of the Tordera River, the canyon has a direct influence on the shelf dispersal system as it collects large amounts of sediment, mainly during high-energy events. Multibeam bathymetry, backscatter imagery and very-high resolution seismic reflection profiles have allowed characterizing the morphology of the continental shelf around the canyon head, also identifying sediment sources and transport pathways into the canyon. The morphological data have also been used to reconstruct the evolution of the continental shelf during the last sea-level transgression so that the current understanding of shelf-to-canyon sediment exchanges through time could be improved. The continental shelf surrounding the BC consists of both depositional and erosional or non-depositional areas. Depositional areas display prominent sediment bodies, a generally smooth bathymetry and variable backscatter. These include: (i) an area of modern coarse-grained sediment accumulation that comprises the inner shelf; (ii) a modern fine-grained sedimentation area on the middle shelf offshore Tossa de Mar; and (iii) a modern sediment depleted area that covers most of the middle and outer shelf to the west of the canyon head. Erosional and non-depositional areas display a rough topography and high backscatter, and occur primarily to the east of the canyon head, where the arrival of river-fed inputs is very small. In agreement with this pattern, the continental shelf north and west of the canyon head likely is the main source of shelf sediment into the canyon. To the north, a pattern of very high backscatter extends from the coastline to the canyon head, suggesting the remobilization and off-shelf export of fines. Additionally, relict near-shore sand bodies developed over the Barcelona shelf that extend to the canyon head rim constitute a source of coarse sediment. High-energy processes, namely river floods and coastal storms, are the main controls over the river-shelf-canyon sediment exchange. River floods increase the delivery of terrigenous particles to the coastal system. Storms, mainly from the east, remobilize the sediment temporarily accumulated on the shelf towards the canyon head, so that the finer fractions are preferentially removed and a coarse lag is normally left on the shelf floor. Exceptionally, very strong storms also remove the coarse fractions from the shelf drive them into the canyon. Processes like dense shelf water cascading, which is much more intense in canyons to the north of BC, and the Northern Current also contribute to the transport of suspended sediment from far distant northern sources. During the last post-glacial transgression the BC had a strong influence on the evolution of the inner continental margin, as it interrupted the shelf sediment dispersal system by isolating the shelves to its north and south, named La Planassa and Barcelona shelves, respectively. The detailed study of the geomorphology and uppermost sediment cover of the continental shelf surrounding the Blanes submarine canyon yields insight into the past and present shelf sediment dynamics and the shelf-to-canyon sediment exchanges. The continental shelf near the canyon head consists of mosaic where erosional, or non-depositional, and depositional zones coexist. East of the canyon and offshore Tossa de Mar, the modern sediment deposition is mostly confined to the inner and middle shelf, whilst most of the La Planassa shelf is sediment depleted with numerous relict morphosedimentary features cropping out. Rocky outcrops, narrow ridges and relict coarse sand deposits suggesting erosion or non-deposition of fine sediments in modern times occupy the middle and outer shelf floor east and northeast of the canyon head. In contrast, north and west of the canyon head, the middle and outer shelf comprises several large relict sand bodies that point out to long-term deposition. However, the lack of modern sediments on top of these bodies supports active erosion or by-pass in present times. The morphology of the continental shelf near the canyon head records the imprint of the main factors controlling the shelf sediment-dispersal system and provides evidence for the main sources and transport pathways of sediment from the shelf into the canyon. The depletion of fine sediments on the continental shelf, as evidenced by backscatter data, suggests that the Blanes Canyon acts as a sediment trap collecting the finest fractions resuspended primarily from the adjacent shelf to the north. The main processes that control the shelf-to-canyon transfer of sediment are eastern storms, which enhance the off-shelf export of mainly fine sediment from the shelf. Particularly severe storms are also able to remobilize and transport coarse sediment from the shelf and also from the relict sand bodies into the canyon. Other processes, such as DSWC and the Northern Current, contribute to a lesser extent to the transport of sediment along the shelf and into the canyon. During the last post-glacial transgression, the BC played a crucial role in the shaping of the continental shelf surrounding it by cutting the littoral drift of sediment between the shelf areas to the north and south, thus severely modifying the across- and along-shelf sediment pathways. As a result, to the east of the canyon, the poor development of transgressive deposits indicates the prevalence of erosion and non-deposition associated to a limited sediment supply and an effective action of the littoral drift leading to a south-westward transport of sediment towards the canyon head. To the north and west of the canyon the morphology of the continental shelf changed significantly during the sea-level rise. At the early stage of the transgression, the sediment supplied by the Tordera River was discharged directly into the canyon, thus preventing deposition over the shelf. Later, the progressive sea-level rise favoured the development of large depositional bodies on the Barcelona shelf favoured by the increase of accommodation space and the augmenting distance between the river mouth and the canyon head. A drastic change in the configuration of the shelf occurred when the sea-level raised enough to flood the entire continental shelf. The along-shelf sediment transport between the shelf areas to the north and south of the canyon head was then restored and new sediment bodies were formed between the coastline and the canyon tip. At present, these sediment bodies constitute the primary source of coarse sediment into the BC. These results confirm that the Blanes submarine canyon head is highly dynamic and sensitive to a variety of processes that enhance the transport of sediment from the shelf into the canyon, particularly during major storms.
NASA Astrophysics Data System (ADS)
Caburlotto, A.; de Santis, L.; Lucchi, R. G.; Giorgetti, G.; Damiani, D.; Macri', P.; Tolotti, R.; Presti, M.; Armand, L.; Harris, P.
2004-12-01
The George Vth Land represents the ending of one of the largest subglacial basin (Wilkes Basin) of the East Antarctic Ice Sheet (EAIS). Furthermore, its coastal areas are zone of significant production of High Salinity Shelf Water (HSSW). Piston and gravity cores and high resolution echo-sounding (3.5 kHz) and Chirp profiles collected in the frame of the joint Australian and Italian WEGA (WilkEs Basin GlAcial History) project provide new insights into the Quaternary history of the EAIS and the HSSW across this margin: from the sediment record filling and draping valleys and banks along the continental shelf, to the continuous sedimentary section of the mound-channel system on the continental rise. The discovery of a current-lain sediment drift (Mertz Drift, MD) provides clues to understanding the age of the last glacial erosive events, as well as to infer flow-pathways of bottom-water masses changes. The MD shows disrupted, fluted reflectors due to glacial advance during the LGM (Last Glacial Maximum) in shallow water, while undisturbed sediment drift deposited at greater water depth, indicates that during the LGM the ice shelf was floating over the deep sector of the basin. The main sedimentary environment characterising the modern conditions of the continental rise is dominated by the turbiditic processes with a minor contribution of contour currents action. Nevertheless, some areas (WEGA Channel) are currently characterised by transport and settling of sediment through HSSW, originating in the shelf area. This particular environment likely persisted since pre-LGM times. It could indicate a continuous supply of sedimentary material from HSSW during the most recent both glacial and interglacial cycles. This would be consistent with the results obtained in the continental shelf suggesting that the Ice Sheet was not grounding over some parts of the continental shelf. Furthermore, the comparison of the studied area with other Antarctic margins indicate that, contrary to what happens on the Antarctic Peninsula margin, the relation between the Quaternary sedimentation and the glacial - interglacial cycles are less evident in the lithofacies observed on the continental rise area. This characteristic suggests a different glacial dynamic along the Wilkes Land continental margin that is less sensitive to the small climatic changes, with respect to the western (Antarctic Peninsula) margin.
NASA Astrophysics Data System (ADS)
Perner, Kerstin; Moros, Matthias; Simon, Margit; Berben, Sarah; Griem, Lisa; Dokken, Trond; Wacker, Lukas; Jansen, Eystein
2017-04-01
The region offshore North Iceland is known to be sensitive to broad scale climatic and oceanographic changes in the North Atlantic Ocean. Changes in surface and subsurface water conditions link to the varying influence of Polar-sourced East Icelandic Current (EIC) and Atlantic-sourced North Irminger Icelandic Current (NIIC). Cold/fresh Polar waters from the East Greenland Current feed the surface flowing EIC, while warm/saline Subpolar Mode Waters (SPMW) from the Irminger Current (IC) feed the subsurface flowing NIIC. Here, we present a new and well-dated multi-proxy record that allows high-resolution reconstruction of surface and subsurface water mass changes on the western North Iceland shelf. An age-depth model for the last Millennium has been developed based on the combined information from radionuclide measurements (137Cs, 210Pb) dating, 25 AMS 14C radiocarbon dates, and identified Tephra horizons. Our dating results provide further support to previous assumptions that North of Iceland a conventional reservoir age correction application of 400 years (ΔR=0) is inadequate (e.g., Eikíksson et al., 2000; Wanamaker Jr. et al., 2012). The combined evidence from radionuclide dating and the identified Tephra horizons point to a ΔR of c. 360 years during the last Millennium. Our benthic and planktic foraminiferal assemblage and stable oxygen isotope (18O) record of Neogloboquadrina pachyderma s. (NPS) resolve the last Millennium at a centennial to multi-decadal resolution. Comparison of abundance changes of the Atlantic Water related species Cassidulina neoteretis and NPS, as well as the 18O record agree well with the instrumental data time series from the monitoring station Hunafloi nearby. This provides further support that our data is representative of relative temperature and salinity changes in surface and subsurface waters. Hence, this new record allows a more detailed investigation on the timing of Polar (EIC) and Atlantic (NIIC, IC) Water contribution to the North Iceland shelf that links to large-scale atmospheric and oceanic changes in the North Atlantic region. We find, during the time of the Medieval Climate Anomaly (MCA), an increased influence of Atlantic waters on surface water conditions, suggesting a stronger inflow of the NIIC, and thus of SPMW from the IC. This influence decreases markedly at the transition from the MCA to the Little Ice Age (LIA) and remains weak during the 20th Century, which likely relates to an enhanced inflow of cold/fresh Polar surface waters to the North Iceland shelf. During the MCA and LIA subsurface water conditions remain predominantly influenced by SPMW from the IC. However, from c. 1950 AD towards the present, this influence and thus likely subsurface water temperatures, decrease on the western North Iceland shelf.
Anekella, Kartheek; Orsat, Valérie
2014-06-01
Study the shelf-life quality changes in raspberry juice with encapsulated lactobacilli (Lactobacillus rhamnosus NRRL B-4495 and Lactobacillus acidophilus NRRL B-442) obtained by spray drying and understand the various factors involved. Raspberry powder was obtained from spray drying lactobacilli and raspberry juice with maltodextrin as an additive. Shelf life of the powder was analyzed over a period of 30 d. Acid and bile tolerance and antibiotic resistance was compared before and after spray drying. Water activity, survival, and scanning electron microscope images were also measured during the shelf life. A combination of processing conditions: inlet temperature (°C), maltodextrin to juice solids ratio and inlet feed rate (ml/min) during spray drying had a significant role on the survival of lactobacilli during shelf life. Refrigerated storage provided a higher shelf-life stability with regards to CFU/g (as high as 84% on day 0 and 98% retention by the end of 30 d) compared to room temperature storage. Probiotic properties during shelf life are affected by the processing conditions and encapsulated food matrix. Thus, understanding these aspects in vitro during shelf life gives us a brief insight into the future of non-dairy probiotics.
Evolution of Nonlinear Internal Waves in China Seas
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.
1997-01-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.
NASA Astrophysics Data System (ADS)
Nelson, James R.; Guarda, Sonia
1995-05-01
Visible absorption spectra of particulate and dissolved materials were characterized on the continental shelf off the southeastern United States (the South Atlantic Bight), emphasizing cross-shelf and seasonal variability. A coastal front separates turbid coastal waters from clearer midshelf waters. Spatial and seasonal patterns were evident in absorption coefficients for phytoplankton, detritus, and colored dissolved organic matter (CDOM); spectral shape parameters for CDOM and detritus; and phytoplankton chlorophyll-specific absorption. The magnitude of CDOM absorption reflected seasonal differences in freshwater discharge and the salinity of the midshelf waters. In the spring of 1993 (high discharge), CDOM absorption at 443 nm was >10 times that of total particulate absorption between 12 and 50 km offshore (0.28-0.69 m-1 versus 0.027-0.062 m-1) and up to 10 times the CDOM absorption measured in the previous summer (low discharge). Phytoplankton chlorophyll-specific absorption in the blue increased with distance from shore (from <0.03 m2 mg-1 in inner shelf waters to ˜0.1 m2 mg-1 at the most seaward stations in summer) and, for similar chlorophyll concentrations, was higher in summer than in the winter-spring. These spatial and seasonal patterns in phytoplankton chlorophyll-specific absorption can be attributed to a shift in phytoplankton species composition (from predominantly diatoms inshore to a cyanobacteria-dominated assemblage midshelf in summer), pigment packaging, and higher carotenoid:chlorophyll with distance from shore.
Intrusions of Kuroshio and Shelf Waters on Northern Slope of South China Sea in Summer 2015
NASA Astrophysics Data System (ADS)
Li, Denghui; Zhou, Meng; Zhang, Zhaoru; Zhong, Yisen; Zhu, Yiwu; Yang, Chenghao; Xu, Mingquan; Xu, Dongfeng; Hu, Ziyuan
2018-06-01
The northern slope region of the South China Sea (SCS) is a biological hot spot characterized by high primary productivity and biomasses transported by cross-shelf currents, which support the spawning and growth of commercially and ecologically important fish species. To understand the physical and biogeochemical processes that promote the high primary production of this region, we conducted a cruise from June 10 and July 2, 2015. In this study, we used fuzzy cluster analysis and optimum multiparameter analysis methods to analyze the hydrographic data collected during the cruise to determine the compositions of the upper 55-m water masses on the SCS northern slope and thereby elucidate the cross-slope transport of shelf water (SHW) and the intrusions of Kuroshio water (KW). We also analyzed the geostrophic currents derived from acoustic Doppler current profiler measurements and satellite data. The results reveal the surface waters on the northern slope of the SCS to be primarily composed of waters originating from South China Sea water (SCSW), KW, and SHW. The SCSW dominated a majority of the study region at percentages ranging between 60% and 100%. We found a strong cross-slope current with speeds greater than 50 cm s-1 to have carried SHW into and through the surveyed slope area, and KW to have intruded onto the slope via mesoscale eddies, thereby dominating the southwestern section of the study area.
Outlet Glacier-Ice Shelf-Ocean Interactions: Is the Tail Wagging the Dog?
NASA Astrophysics Data System (ADS)
Parizek, B. R.; Walker, R. T.; Rinehart, S. K.
2009-12-01
While the massive interior regions of the Antarctic and Greenland Ice Sheets are presently ``resting quietly", the lower elevations of many outlet glaciers are experiencing dramatic adjustments due to changes in ice dynamics and/or surface mass balance. Oceanic and/or atmospheric forcing in these marginal regions often leads to mass deficits for entire outlet basins. Therefore, coupling the wagging tail of ice-ocean interactions with the vast ice-sheet reservoirs is imperative for accurate assessments of future sea-level rise. To study ice-ocean dynamic processes, we couple an ocean-plume model that simulates ice-shelf basal melting rates based on temperature and salinity profiles combined with plume dynamics associated with the geometry of the ice-shelf cavity (following Jenkins, 1991 and Holland and Jenkins, 1999) with a two-dimensional, isothermal model of outlet glacier-ice shelf flow (as used in Alley et al., 2007; Walker et al., 2008; Parizek et al., in review). Depending on the assigned temperature and salinity profiles, the ocean model can simulate both water-mass end-members: either cold High Salinity Shelf Water (HSSW) or relatively warm Circumpolar Deep Water (CDW), as well as between-member conditions. Notably, the coupled system exhibits sensitivity to the initial conditions. In particular, melting concentrated near the grounding line has the greatest effect in forcing grounding-line retreat. Retreat is further enhanced by a positive feedback between the ocean and ice, as the focused melt near the grounding line leads to an increase in the local slope of the basal ice, thereby enhancing buoyancy-driven plume flow and subsequent melt rates.
Early Spring Phytoplankton Dynamics in the Western Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Arrigo, Kevin R.; van Dijken, Gert L.; Alderkamp, Anne-Carlijn; Erickson, Zachary K.; Lewis, Kate M.; Lowry, Kate E.; Joy-Warren, Hannah L.; Middag, Rob; Nash-Arrigo, Janice E.; Selz, Virginia; van de Poll, Willem
2017-12-01
The Palmer Long-Term Ecological Research program has sampled waters of the western Antarctic Peninsula (wAP) annually each summer since 1990. However, information about the wAP prior to the peak of the phytoplankton bloom in January is sparse. Here we present results from a spring process cruise that sampled the wAP in the early stages of phytoplankton bloom development in 2014. Sea ice concentrations were high on the shelf relative to nonshelf waters, especially toward the south. Macronutrients were high and nonlimiting to phytoplankton growth in both shelf and nonshelf waters, while dissolved iron concentrations were high only on the shelf. Phytoplankton were in good physiological condition throughout the wAP, although biomass on the shelf was uniformly low, presumably because of heavy sea ice cover. In contrast, an early stage phytoplankton bloom was observed beneath variable sea ice cover just seaward of the shelf break. Chlorophyll a concentrations in the bloom reached 2 mg m-3 within a 100-150 km band between the SBACC and SACCF. The location of the bloom appeared to be controlled by a balance between enhanced vertical mixing at the position of the two fronts and increased stratification due to melting sea ice between them. Unlike summer, when diatoms overwhelmingly dominate the phytoplankton population of the wAP, the haptophyte Phaeocystis antarctica dominated in spring, although diatoms were common. These results suggest that factors controlling phytoplankton abundance and composition change seasonally and may differentially affect phytoplankton populations as environmental conditions within the wAP region continue to change.
NASA Astrophysics Data System (ADS)
Yılmaz, Ayşen; Çoban-Yıldız, Yeşim; Telli-Karakoç, Fatma; Bologa, Alexandru
2006-08-01
The multilayered surface waters of the Black Sea contain aerobic, suboxic and anoxic layers that support both photoautotrophic (PP) and chemoautotrophic (ChP) biological production. During the R/V Knorr cruise in May-June 2001, phytoplankton biomass (represented as chlorophyll- a), photoautotrophic and chemoautotrophic production (ChP) rates were determined in the western Black Sea. Integrated chlorophyll- a concentrations in the euphotic zone were as low as 2.2 mg m -2 in the central gyre, while they were as high as 19.9 mg m -2 in the NW shelf region. Integrated photoautotrophic production rates ranged from 112 to 355 mg C m -2 d -1. The lowest values were determined in the central gyre and the highest values were found at the shelf-break station near the Bosphorus, the NW shelf/shelf-break area and in the Sevastopol eddy. Primary production and chlorophyll- a data revealed that post-bloom conditions existed during this sampling period. Bioassay experiments showed that under optimum light conditions, photoautotrophic production was nitrogen-limited. ChP increased in the redox transition zone and coincided with the lower boundary of the fine particle layer. The maximum values were shallower (at σθ=16.25) in the central gyre and deeper (at σθ=16.5) in the shelf-break region near Sakarya Canyon. Integrated ChP rates were 63 and 1930 mg C m -2 d -1, which were equivalent to 30% and 89% of the overall water-column production for the central gyre and Sakarya Canyon regions, respectively.
Temporal variability of near-bottom dissolved oxygen during upwelling off central Oregon
NASA Astrophysics Data System (ADS)
Adams, Katherine A.; Barth, John A.; Chan, Francis
2013-10-01
In the productive central-Oregon coastal upwelling environment, wind-driven upwelling, tides, and topographic effects vary across the shelf, setting the stage for varied biogeochemical responses to physical drivers. Current, temperature, salinity, and dissolved oxygen (DO) measurements from three moorings deployed during the upwelling seasons of 2009-2011 off the central-Oregon coast are analyzed over three time bands (interannual, subtidal, tidal) to explore the relationship between mid (70 m) and inner-shelf (15 m) upwelling dynamics and the associated effect on DO. Topographic effects are observed in each time band due to the Heceta and Stonewall Bank complex. Seasonal cumulative hypoxia (DO < 1.4 mL L-1) calculations identify two regions, a well-ventilated inner shelf and a midshelf vulnerable to hypoxia (98 ± 15 days annually). On tidal timescales, along-shelf diurnal (K1) velocities are intensified over the Bank, 0.08 m s-1 compared with 0.03 m s-1 to the north. Interannual variability in the timing of spring and fall transitions, defined using glider-measured continental slope source water temperature, is observed on the midshelf. Interannual source water DO concentrations vary on the order of 0.1 mL L-1. Each spring and summer, DO decline rates are modulated by physical and biological processes. The net observed decrease is about 30% of the expected draw down due to water-column respiration. Physical processes initiate low-oxygen conditions on the shelf through coastal upwelling and subsequently prevent the system via advection and mixing from reaching the potential anoxic levels anticipated from respiration rates alone.
Rare earth elements in pore waters from Cabo Friós western boundary upwelling system
NASA Astrophysics Data System (ADS)
Smoak, J. M.; Silva-Filho, E. V.; Rousseau, T.; Albuquerque, A. L.; Caldeira, P. P.; Moreira, M.
2015-12-01
Rare earth elements (REE) are a group of reactive trace elements in aqueous media, they have a coherent chemical behavior with however a subtle and gradual shift in physicochemical properties allowing their use as tracers of sources and processes. Uncertainties on their oceanic inputs and outputs still remains [Arsouze et al., 2009; Siddall et al., 2008; Tachikawa et al., 2003]. The water-sediment interface were early on identified as a relevant REE source due to the high distribution coefficient between sediments and pore waters [Elderfield and Sholkovitz, 1987] and substantially higher concentration then the water column [Abbott et al., 2015; Haley et al., 2004; Sholkovitz et al., 1989; Soyol-Erdene and Huh, 2013]. Here we present a cross shelf transect of 4 short pore waters REE profiles on a 680 km2 mud bank located in the region of Cabo Frio, Brazil. This study reveals similar trends at the four sites: a REE production zone reflected by a maximum in concentration at the top of the sediment evolving with depth toward a REE consumption zone reflected by a minimum in REE concentrations. PAAS normalized patterns shows 1) a progressive depletion in LREE with depth with HREE/LREE ratios comprised between 1.1 and 1.6 in the 2 first centimeters evolving gradually to ratios comprised between 2.8 and 4.7 above 7 cm 2) A sharp gradient in negative Ce anomaly with Ce/Ce* values reaching 0.3. With maximum Nd concentrations comprised between 780 and 1200 pmol.kg and considering that seawater Nd concentrations of Brazilian shelf bottom waters are comprised between 24 and 50 pmol.Kg-1 we apply the Fick´s First Law of diffusion and estimate that 340 +/- 90 nmol. m-2 Y-1 of Nd is released in the Cabo frio´s mudbank. This flux is in the same order of magnitude of recent estimates by [Abbott et al., 2015] in the slope of Oregon´s margin. Unraveling processes responsible for the REE production zone will help to refine the global REE fluxes estimates.
Circulation in the SAV, Shelf of Veracruz, Mexico
NASA Astrophysics Data System (ADS)
Zavala-Hidalgo, J.; Martinez-Lopez, B.; Fernandez-Eguiarte, A.; de Buen, R.; Rojas, J.
2007-05-01
Data from current meter, hydrographic measurements, and numerical modeling are analyzed to determine the circulation patterns in the Sistema Arrecifal Veracruzano (SAV), Veracruz, Mexico, region. Results show that the main forcing in the region is the along-coast wind stress component. Tides contribute with one order of magnitude less energy, during the fall-winter period. Two main regimes are identified: one between the coast and the 20 m isobath, with waters of large turbidity and small influence from rivers, and the other between the 20 m isobath and the external shelf, with clearer waters. Stratified water column with low temperature upwelled waters near the bottom are observed when southeasterly winds are present. Downwelling and southeastward currents are associated with northerly winds linked with northers.
NASA Astrophysics Data System (ADS)
Kourafalou, V. H.; Androulidakis, Y. S.; Kang, H.; Smith, R. H.; Valle-Levinson, A.
2018-07-01
The Pulley Ridge and Dry Tortugas coral reefs are among the most pristine, but also fragile, marine ecosystems of the continental United States. Understanding connectivity processes between them and with surrounding shelf and deep areas is fundamental for their management. This study focuses on the physical processes related to the connectivity of these reefs. Unprecedented in situ time series were used at these specific reef locations, together with satellite observations and numerical simulations, to investigate the dynamics controlling local circulation on the Southwestern Florida Shelf (SWFS) under oceanic influence. The approach of the Loop Current and Florida Current (LC/FC) system to the SWFS slope can induce 0.5 to 1 m/s offshore flows impacting the Pulley Ridge and Dry Tortugas reefs. On the other hand, when the LC/FC system retreats from the slope, onshore flows can carry open-sea waters over the coral reefs. Local formation of cyclonic eddies is possible near the Dry Tortugas reefs in the LC approach case and passage of upstream LC Frontal Eddies is possible in the LC retreat case. Offshore currents ∼1 m/s over the SWFS slope were also found during periods of anticyclonic LC Eddy separation. A novel finding is the shedding and northward propagation of mesoscale anticyclonic eddies from the core of the LC along the West Florida Shelf. Eddy shedding may have a broader effect on the dynamics of the shelf around the study reef areas. Long periods of LC/FC domination over these coral reefs (reaching several weeks to months) are characterized by strong (∼1 m/s) along-shelf currents and continuous upwelling processes, which may weaken the slope stratification and bring colder, deeper waters over the shelf-break and toward the shallower shelf region.
NASA Astrophysics Data System (ADS)
Detoni, A. M. S.; Yunes, J. S., Sr.; Ciotti, Á. M.; Calil, P. H. R.; Tavano, V. M.
2016-02-01
Trichodesmium can accumulate high biomass, particularly in the oligotrophic regions of North and Tropical Atlantic, and North Pacific. Large Trichodesmium slicks have been reported in the South Atlantic as well, associated with the Brazil Currrent (BC) that flows southwards over the continental shelf-break. Regional variations of the width of the Brazilian continental shelf, as well as changes in the bottom topography, generate cyclonic and anti-cyclonic eddies as BC crosses the southeastern Brazil. Thus, the general conditions of the BC - characterized as a warm, saline and oligotrophic current - are expected to change not only with latitude but also by the influence of mesoscale instabilities. In this study, three oceanographic cruises were carried out to characterize the distribution of Trichodesmium along the southeastern Brazilian continental shelf-break and their relationship with temperature and upper layer nutrients concentrations. As in other oceanic regions, high concentrations of Trichodesmium (maximum 212.6 × 105 trichomes L-1) were observed in waters with temperatures between 22° C to 25° C, low nitrogen (< 2.4 μM), and moderate phosphate concentrations (> 0.08 μM), where wind speeds were low (< 11 m s-1). Generally, slicks were present where phosphate concentration in the upper 25 m was slightly higher than that of adjacent waters. Wind and hydrographic observations suggested that wind divergence at micro-regions (approximately 625 km2), as well as shelf-break dynamics can drive sporadic shelf-break upwelling, favouring Trichodesmium growth between 23° S to 28° S. Although shelf-break upwelling may occur along the entire domain of the BC flow, Trichodesmium densities were low at latitudes between 28° S to 33° S likely a result of the lower sea surface temperature.
Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea continental shelf
NASA Astrophysics Data System (ADS)
Castagno, Pasquale; Falco, Pierpaolo; Dinniman, Michael S.; Spezie, Giancarlo; Budillon, Giorgio
2017-02-01
The intrusion of Circumpolar Deep Water (CDW) is the primary source of heat, salt and nutrients onto Antarctica's continental shelves and plays a major role in the shelf physical and biological processes. Different studies have analyzed the processes responsible for the transport of CDW across the Ross Sea shelf break, but until now, there are no continuous observations that investigate the timing of the intrusions. Also, few works have focused on the effect of the tides that control these intrusions. In the Ross Sea, the CDW intrudes onto the shelf in several locations, but mostly along the troughs. We use hydrographic observations and a mooring placed on the outer shelf in the middle of the Drygalski Trough in order to characterize the spatial and temporal variability of CDW inflow onto the shelf. Our data span from 2004 to the beginning of 2014. In the Drygalski Trough, the CDW enters as a 150 m thick layer between 250 and 400 m, and moves upward towards the south. At the mooring location, about 50 km from the shelf break, two main CDW cores can be observed: one on the east side of the trough spreading along the west slope of Mawson Bank from about 200 m to the bottom and the other one in the central-west side from 200 m to about 350 m depth. A signature of this lighter and relatively warm water is detected by the instruments on the mooring at bottom of the Drygalski Trough. High frequency periodic CDW intrusion at the bottom of the trough is related to the diurnal and spring/neap tidal cycles. At lower frequency, a seasonal variability of the CDW intrusion is noticed. A strong inflow of CDW is observed every year at the end of December, while the CDW inflow is at its seasonal minimum during the beginning of the austral fall. In addition an interannual variability is also evident. A change of the CDW intrusion before and after 2010 is observed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-07
... for all Mobile Offshore Drilling Units and Floating Outer Continental Shelf Facilities (as defined in... Commander. Vessels requiring Coast Guard inspection include Mobile Offshore Drilling Units (MODUs), Floating... engage directly in oil and gas exploration or production in the offshore waters of the Eighth Coast Guard...
Stratigraphy and depositional sequences of the US Atlantic shelf and slope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poag, C.W.; Valentine, P.C.
1985-01-01
Litho-, bio-, and seismostratigraphic analyses of Georges Bank basin, Baltimore Canyon trough, and Blake Plateau basin reveal common aspects of stratigraphic framework and depositional history. Synrift graben-fill is inferred to be chiefly coarse terrigenous siliciclastics of Triassic-Early Jurassic age, as thick as 5 km. Following widespread erosion, restricted marine carbonates and evaporites formed initial post-rift deposits during an Early-Middle Jurassic transition to sea floor spreading. As sea floor spreading proceeded, shallow-water limestones and shelf-edge reefs built up, culminating in a discontinuous, margin-rimming reefal bank during the Late Jurassic-Early Cretaceous. During the Early Cretaceous, thick siliciclastics buried the shelf-edge barrier northmore » of Cape Hatteras, whereas shallow-water carbonates persisted in the Blake Plateau basin. Late Cretaceous deposits became increasingly finer-grained as they accumulated beneath a deepening shelf-sea; maximum thickness is more than 2 km. Cretaceous deposition was terminated by marginwide erosion and followed by widespread carbonate deposition in the Paleogene. Neogene and Quaternary deposition was chiefly siliciclastic, characterized by deltaic progradation. Cenozoic sediment thickness reaches 2 km in the Baltimore Canyon trough.« less
Ocean interactions with the base of Amery Ice Shelf, Antarctica
NASA Technical Reports Server (NTRS)
Hellmer, Hartmut H.; Jacobs, Stanley S.
1992-01-01
Using a two-dimensional ocean themohaline circulation model, we varied the cavity shape beneath Amery Ice Shelf in an attempt to reproduce the 150-m-thick marine ice layer observed at the 'G1' ice core site. Most simulations caused melting rates which decrease the ice thickness by as much as 400 m between grounding line and G1, but produce only minor accumulation at the ice core site and closer to the ice front. Changes in the sea floor and ice topographies revealed a high sensitivity of the basal mass balance to water column thickness near the grounding line, to submarine sills, and to discontinuities in ice thickness. Model results showed temperature/salinity gradients similar to observations from beneath other ice shelves where ice is melting into seawater. Modeled outflow characteristics at the ice front are in general agreement with oceanographic data from Prydz Bay. We concur with Morgan's inference that the G1 core may have been taken in a basal crevasse filled with marine ice. This ice is formed from water cooled by ocean/ice shelf interactions along the interior ice shelf base.
NASA Astrophysics Data System (ADS)
Huber, B. A.; Orsi, A. H.; Zielinski, N. J.; Durkin, W. J., IV; Clark, P.; Wiederwohl, C. L.; Rosenberg, M. A.; Gwyther, D.; Greenbaum, J. S.; Lavoie, C.; Shevenell, A.; Leventer, A.; Blankenship, D. D.; Gulick, S. P. S.; Domack, E. W.
2014-12-01
Diverse interactions of winds, currents and ice around Antarctica dictate how, where and when the world's densest waters form and massive floating ice shelves and glaciers melt, as well as control sea surface gas exchange and primary productivity. Compelled by recent rate estimates of East Antarctic Ice Sheet mass loss, we contrast the paths and mixing histories of oceanic waters reaching the continental ice edge off the Sabrina and Adelie coasts relying on the unique set of synoptic shipboard measurements from NBP1402 (swath bathymetry, ADCP, underway CTD). Analysis of historical hydrography and sea ice concentration fields within the Mertz Polynya indicates the apparent effect of evolving ocean-ice-atmosphere interactions on the characteristics of local Shelf Water (SW) sources to current outflow of newly formed Antarctic Bottom Water (AABW). A polynya dominated water mass structure similar to that observed off the Adelie Coast before the removal of the Mertz Ice Tongue was expected to the west of the Dalton Ice Tongue (DIT). However, we found no evidence of dense SW off Sabrina Coast, which may lessen the region's preconceived influence to global meridional overturning. Present sea ice production within the eastern Dalton Polynya is overshadowed by freshwater input to relatively stable interior upper waters. The Antarctic Coastal Current (ACoC) picks up distinct meltwater contributions along the DIT western flank and in front of the Moscow University Ice Shelf (MUIS) and Totten Glacier (TG). Unlike over other highly influential margins to global sea level rise, there is no evidence of local cross-shelf inflow and mixing of warm Circumpolar Deep Water. Relatively cold thermocline waters from the continental slope enter the eastern trough off Sabrina Coast, and they are swiftly steered poleward by complex underlying topography. Meltwater export from beneath the MUIS and TG is observed at newly discovered trenches that effectively constrain sub-cavity inflow to low salinity near-freezing waters drawn from intermediate levels of the adjacent westward flowing ACoC. Winds, currents and ice interactions observed off Sabrina Coast during NBP1402 are most likely widespread, in view of reported decadal freshening of upper waters over the Antarctic continental shelf and their localized AABW outflows.
NASA Astrophysics Data System (ADS)
Tamaki, Akio; Mandal, Sumit; Agata, Yoshihiro; Aoki, Ikumi; Suzuki, Toshikazu; Kanehara, Hisao; Aoshima, Takashi; Fukuda, Yasushi; Tsukamoto, Hideshi; Yanagi, Tetsuo
2010-01-01
The position of meroplanktonic larvae in the water column with depth-dependent current velocities determines horizontal transport trajectories. For those larvae occurring in inner shelf waters, little is known about how combined diel and tidally-synchronized vertical migration patterns shift ontogenetically. The vertical migration of larvae of Nihonotrypaea harmandi (Decapoda: Thalassinidea: Callianassidae) was investigated in mesotidal, inner shelf waters of western Kyushu, Japan in July-August 2006. The larval sampling at seven depth layers down to 60 m was conducted every 3 h for 36 h in a 68.5-m deep area 10 km off a major coastal adult habitat. Within a 61-65-m deep area 5-7.5 km off the adult habitat, water temperature, salinity, chlorophyll a concentration, and photon flux density were measured, and water currents there were characterized from harmonic analysis of current meter data collected in 2008. The water column was stratified, with pycnocline, chlorophyll a concentration maximum, and 2% of photon flux density at 2 m, recorded at around 22-24 m. The stratified residual currents were detected in their north component, directed offshore and onshore in the upper and lower mixed layers, respectively. More than 87% of larvae occurred between 20 m and 60 m, producing a net onshore transport of approximately 1.3 km d -1. At the sunset flooding tide, all zoeal-stage larvae ascended, which could further promote retention (1.4-km potential onshore transport in 3 h). The actual onshore transport of larvae was detected by observing their occurrence pattern in a shallow embayment area with the adult habitat for 24 h in October 1994. However, ontogenetic differences in the vertical migration pattern in inner shelf waters were also apparent, with the maximum mean positions of zoeae deepening with increasing stages. Zoeae I and II performed a reverse diel migration, with their minimum and maximum depths being reached around noon and midnight, respectively. Zoeae IV and V descended continuously. Zoeae III had behaviors that were intermediate to those of the earlier- and later-stage zoeae. Postlarvae underwent a normal diel migration (nocturnal ascent) regardless of tides, with the deepest position (below 60 m and/or on the bottom) during the day. These findings give a new perspective towards how complex vertical migration patterns in meroplanktonic larvae enable their retention in inner shelf waters before the final entry of postlarvae into their natal populations.
Wind-driven coastal upwelling and westward circulation in the Yucatan shelf
NASA Astrophysics Data System (ADS)
Ruiz-Castillo, Eugenio; Gomez-Valdes, Jose; Sheinbaum, Julio; Rioja-Nieto, Rodolfo
2016-04-01
The wind-driven circulation and wind-induced coastal upwelling in a large shelf sea with a zonally oriented coast are examined. The Yucatan shelf is located to the north of the Yucatan peninsula in the eastern Gulf of Mexico. This area is a tropical shallow body of water with a smooth sloping bottom and is one of the largest shelves in the world. This study describes the wind-driven circulation and wind-induced coastal upwelling in the Yucatan shelf, which is forced by easterly winds throughout the year. Data obtained from hydrographic surveys, acoustic current profilers and environmental satellites are used in the analysis. Hydrographic data was analyzed and geostrophic currents were calculated in each survey. In addition an analytical model was applied to reproduce the currents. The results of a general circulation model were used with an empirical orthogonal function analysis to study the variability of the currents. The study area is divided in two regions: from the 40 m to the 200 m isobaths (outer shelf) and from the coast to the 40 m isobath (inner shelf). At the outer shelf, observations revealed upwelling events throughout the year, and a westward current with velocities of approximately 0.2 m s-1 was calculated from the numerical model output and hydrographic data. In addition, the theory developed by Pedlosky (2007) for a stratified fluid along a sloping bottom adequately explains the current's primary characteristics. The momentum of the current comes from the wind, and the stratification is an important factor in its dynamics. At the inner shelf, observations and numerical model output show a wind-driven westward current with maximum velocities of 0.20 m s-1. The momentum balance in this region is between local acceleration and friction. A cold-water band is developed during the period of maximum upwelling.
Oceanographic Influences on Ice Shelves and Drainage in the Amundsen Sea
NASA Astrophysics Data System (ADS)
Minzoni, R. T.; Anderson, J. B.; Majewski, W.; Yokoyama, Y.; Fernandez, R.; Jakobsson, M.
2016-12-01
Marine sediment cores collected during the IB OdenSouthern Ocean 2009-2010 cruise are used to reconstruct the Holocene history of the Cosgrove Ice Shelf, which today occupies Ferrero Bay, a large embayment of eastern Pine Island Bay. Detailed sedimentology, geochemistry, and micropaleontology of cores, in conjunction with subbottom profiles, reveal an unexpected history of recession. Presence of planktic foraminifera at the base of Kasten Core-15 suggests an episode of enhanced circulation beneath a large ice shelf that covered the Amundsen Sea during the Early Holocene, and relatively warm water incursion has been interpreted as a potential culprit for major recession and ice mass loss by 10.7 cal kyr BP from radiocarbon dating. Fine sediment deposition and low productivity throughout the Mid Holocene indicate long-lived stability of the Cosgrove Ice Shelf in Ferrero Bay, despite regional warming evident from ice core data and ice shelf loss in the Antarctic Peninsula. High productivity and diatom abundance signify opening of Ferrero Bay and recession of the Cosgrove Ice Shelf to its present day configuration by 2.0 cal kyr BP. This coincides with deglaciation of an island near Canisteo Peninsula according to published cosmogenic exposure ages. Presence of benthic foraminifera imply that warm deep water influx beneath the extended Cosgrove Ice Shelf was a mechanism for under-melting the ice shelf and destabilizing the grounding line. Major ice shelf recession may also entail continental ice mass loss from the eastern sector of the Amundsen Sea during the Late Holocene. Oceanographic forcing remains a key concern for the current stability of the Antarctic Ice Sheet, especially along the tidewater margins of West Antarctica. Ongoing work on diatom and foraminiferal assemblages of the Late Holocene in Ferrero Bay and other fjord settings will improve our understanding of recent oceanographic changes and their potential influence on ice shelves and outlet glaciers that contribute to the mass balance of the West Antarctic Ice Sheet.
Mean Lagrangian drift in continental shelf waves
NASA Astrophysics Data System (ADS)
Drivdal, M.; Weber, J. E. H.
2012-04-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.
NASA Astrophysics Data System (ADS)
D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.
2015-02-01
The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner- and mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a decline in seawater pH (pHsw) of ~0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that, compared to the mid-shelf corals, the δ11Bcarb compositions of inner-shelf corals subject to river discharge events have higher and more variable values, and hence higher inferred pHsw values. These higher δ11Bcarb values of inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from reduced aragonite saturation state and higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low-pH river water (pHrw) discharged into near-shore environments. Importantly, however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw, demonstrating the overriding importance of local reef-water quality and reduced aragonite saturation state on coral reef health.
NASA Astrophysics Data System (ADS)
D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.
2014-07-01
The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner as well as mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a~decline in seawater pH (pHsw) of ~ 0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that compared to the mid-shelf corals, the δ11Bcarb compositions for inner shelf corals subject to river discharge events, have higher and more variable values and hence higher inferred pHsw values. These higher δ11Bcarb values for inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low pH river water (pHrw) discharged into near-shore environments. Importantly however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw values and hence higher seawater aragonite saturation states, demonstrating the over-riding importance of local reef-water quality on coral reef health.
NASA Astrophysics Data System (ADS)
Cossa, Daniel; Durrieu de Madron, Xavier; Schäfer, Jörg; Lanceleur, Laurent; Guédron, Stéphane; Buscail, Roselyne; Thomas, Bastien; Castelle, Sabine; Naudin, Jean-Jacques
2017-02-01
Despite the ecologic and economical importance of coastal areas, the neurotoxic bioaccumulable monomethylmercury (MMHg) fluxes within the ocean margins and exchanges with the open sea remain unassessed. The aim of this paper is to address the questions of the abundance, distribution, production and exchanges of methylated mercury species (MeHgT), including MMHg and dimethylmercury (DMHg), in the waters, atmosphere and sediments of the Northwestern Mediterranean margin including the Rhône River delta, the continental shelf and its slope (Gulf of Lions) and the adjacent open sea (North Gyre). Concentrations of MeHgT ranged from <0.02 to 0.48 pmol L-1 with highest values associated with the oxygen-deficient zone of the open sea. The methylated mercury to total mercury proportion (MeHgT/HgT) increased from 2% to 4% in the Rhône River to up to 30% (averaging 18%) in the North Gyre waters, whereas, within the shelf waters, MeHgT/HgT proportions were the lowest (1-3%). We calculate that the open sea is the major source of MeHgT for the shelf waters, with an annual flux estimated at 0.68 ± 0.12 kmol a-1 (i.e., equivalent to 12% of the HgT flux). This MeHgT influx is more than 80 times the direct atmospheric deposition or the in situ net production, more than 40 times the estimated "maximum potential" annual efflux from shelf sediment, and more than 7 times that of the continental sources. In the open sea, ratios of MMHg/DMHg in waters were always <1 and minimum in the oxygen deficient zones of the water column, where MeHg concentrations are maximum. This observation supports the idea that MMHg could be a degradation product of DMHg produced from inorganic divalent Hg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugna, G.C.; Chanton, J.P.; Cable, P.H.
1996-12-01
Methane concentrations in groundwater (wells, sinkholes, and springs) averaged 61 {+-} 9 {mu}M, while concentrations in nearshore and continental shelf waters within the study area averaged 62 {+-} 7 nM and 27 {+-} 5 nM, respectively. We tested the hypothesis that the three orders of magnitude difference between groundwater and seawater concentration would make CH{sub 4} an indicator of submarine groundwater discharge to surficial waters. Methane budgets for nearshore and continental shelf water columns were consistent with the hypothesis that groundwater seepage or seawater recirculation through the seabed is the dominant source of CH{sub 4} relative to benthic diffusive flux,more » riverine flux, and in situ water column production. Seepage/recirculation appears to account for approximately 83-99% of the total CH{sub 4} input into the water column within the study area. Utilizing measured porewater CH{sub 4} concentrations, the calculated amounts of seepage required to support the observed benthic fluxes were comparable to seepage rates measured in the field. Nearshore seepage meter transacts showed a strong and direct correlation between the integrated quantity of groundwater seepage along a shoreline and the inventory of CH{sub 4} in those waters. Our study further showed a similar correlation between {sup 222}Rn (another potential groundwater tracer) and CH{sub 4} in offshore waters supporting the hypothesis of a common benthic source for these constituents. 67 refs., 10 figs., 2 tabs.« less
Analysis of wind-driven ambient noise in a shallow water environment with a sandy seabed.
Knobles, D P; Joshi, S M; Gaul, R D; Graber, H C; Williams, N J
2008-09-01
On the New Jersey continental shelf ambient sound levels were recorded during tropical storm Ernesto that produced wind speeds up to 40 knots in early September 2006. The seabed at the position of the acoustic measurements can be approximately described as coarse sand. Differences between the ambient noise levels for the New Jersey shelf measurements and deep water reference measurements are modeled using both normal mode and ray methods. The analysis is consistent with a nonlinear frequency dependent seabed attenuation for the New Jersey site.
Novel biodiversity baselines outpace models of fish distribution in Arctic waters
NASA Astrophysics Data System (ADS)
Christiansen, Jørgen S.; Bonsdorff, Erik; Byrkjedal, Ingvar; Fevolden, Svein-Erik; Karamushko, Oleg V.; Lynghammar, Arve; Mecklenburg, Catherine W.; Møller, Peter D. R.; Nielsen, Julius; Nordström, Marie C.; Præbel, Kim; Wienerroither, Rupert M.
2016-02-01
During a recent marine biological expedition to the Northeast Greenland shelf break (latitudes 74-77 °N), we made the first discovery of Atlantic cod ( Gadus morhua), beaked redfish ( Sebastes mentella) and capelin ( Mallotus villosus). Our novel observations shift the distribution range of Atlantic cod >1000 km further north in East Greenland waters. In light of climate change, we discuss physical forcing and putative connections between the faunas of the Northeast Greenland shelf and the Barents Sea. We emphasise the importance of using real data in spread scenarios for understudied Arctic seas.
Novel biodiversity baselines outpace models of fish distribution in Arctic waters.
Christiansen, Jørgen S; Bonsdorff, Erik; Byrkjedal, Ingvar; Fevolden, Svein-Erik; Karamushko, Oleg V; Lynghammar, Arve; Mecklenburg, Catherine W; Møller, Peter D R; Nielsen, Julius; Nordström, Marie C; Præbel, Kim; Wienerroither, Rupert M
2016-02-01
During a recent marine biological expedition to the Northeast Greenland shelf break (latitudes 74-77 °N), we made the first discovery of Atlantic cod (Gadus morhua), beaked redfish (Sebastes mentella) and capelin (Mallotus villosus). Our novel observations shift the distribution range of Atlantic cod >1000 km further north in East Greenland waters. In light of climate change, we discuss physical forcing and putative connections between the faunas of the Northeast Greenland shelf and the Barents Sea. We emphasise the importance of using real data in spread scenarios for understudied Arctic seas.
Modeling South Pacific Ice-Ocean Interactions in the Global Climate System
NASA Technical Reports Server (NTRS)
Holland, David M.; Jenkins, Adrian; Jacobs, Stanley S.
2001-01-01
The objective of this project has been to improve the modeling of interactions between large Antarctic ice shelves and adjacent regions of the Southern Ocean. Our larger goal is to gain a better understanding of the extent to which the ocean controls ice shelf attrition, thereby influencing the size and dynamics of the Antarctic Ice Sheet. Melting and freezing under ice shelves also impacts seawater properties, regional upwelling and sinking and the larger-scale ocean circulation. Modifying an isopycnal coordinate general circulation model for use in sub-ice shelf cavities, we found that the abrupt change in water column thickness at an ice shelf front does not form a strong barrier to buoyancy-driven circulation across the front. Outflow along the ice shelf base, driven by melting of the thickest ice, is balanced by deep inflow. Substantial effort was focused on the Filchner-Ronne cavity, where other models have been applied and time-series records are available from instruments suspended beneath the ice. A model comparison indicated that observed changes in the production of High Salinity Shelf Water could have a major impact on circulation within the cavity. This water propagates into the cavity with an asymmetric seasonal signal that has similar phasing and shape in the model and observations, and can be related to winter production at the sea surface. Even remote parts of the sub-ice shelf cavity are impacted by external forcing on sub-annual time scales. This shows that cavity circulations and products, and therefore cavity shape, will respond to interannual variability in sea ice production and longer-term climate change. The isopycnal model gives generally lower net melt rates than have been obtained from other models and oceanographic data, perhaps due to its boundary layer formulation, or the lack of tidal forcing. Work continues on a manuscript describing the Ross cavity results.
California State Waters Map Series: offshore of Tomales Point, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Potential marine benthic habitats in the Offshore of Tomales Point map area range from unconsolidated continental-shelf sediment, to rocky continental-shelf substrate, to unconsolidated estuary sediments. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species. Dynamic bedforms, such as the sand waves at the mouth of Tomales Bay, are considered potential foraging habitat for juvenile lingcod and possibly migratory fishes, as well as for forage fish such as Pacific sand lance.
NASA Technical Reports Server (NTRS)
Marshall, H. G.
1981-01-01
The Chesapeake Bay plume was identified and plotted in relation to the presence and high concentrations of phytoplankton assemblages. Seasonal differences occurred within the plume during the collection period, with Skeletonema costatum and an ultraplankton component the dominant forms. Patchiness was found along the transects, with variations in composition and concentrations common on consecutive day sampling within the plume in its movement along the shelf. The presence of 236 species is noted, with their presence indicated for plume and shelf stations during the March, June, and October 1980 collections.
NASA Astrophysics Data System (ADS)
Neira, Francisco J.; Lyle, Jeremy M.; Keane, John P.
2009-03-01
The spawning habitat of Emmelichthys nitidus (Emmelichthyidae) in south-eastern Australia is described from vertical ichthyoplankton samples collected along the shelf region off eastern through to south-western Tasmania during peak spawning in October 2005-06. Surveys covered eastern waters in 2005 (38.8-43.5°S), and both eastern and southern waters in 2006 (40.5°S around to 43.5°S off the south-west). Eggs ( n = 10,393) and larvae ( n = 378) occurred along eastern Tasmania in both years but were rare along southern waters south and westwards of 43.5°S in 2006. Peak egg abundances (1950-2640 per m -2) were obtained off north-eastern Tasmania (40.5-41.5°S) between the shelf break and 2.5 nm inshore from the break. Eggs were up to 5-days old, while nearly 95% of larvae were at the early preflexion stage, i.e. close to newly emerged. Average abundances of aged eggs pooled across each survey declined steadily from day-1 to day-5 eggs both in 2005 (97-18) and 2006 (175-34). Moreover, day-1 egg abundances were significantly greater 2.5 nm at either side of the break, including at the break, than in waters ≥5 nm both inshore and offshore from the break. These results, complemented with egg and larval data obtained in shelf waters off New South Wales (NSW; 35.0-37.7°S) in October 2002-03, indicate that the main spawning area of E. nitidus in south-eastern Australia lies between 35.5°S off southern NSW and 43.5°S off south-eastern Tasmania, and that spawning activity declines abruptly south and westwards of 43.5°S around to the south-west coast. In addition, quotient analyses of day-1 egg abundances point to a preferred spawning habitat contained predominantly within a 5 nm corridor along the shelf break, where waters are 125-325 m deep and median temperatures 13.5-14.0 °C. Spawning off eastern Tasmania is timed with the productivity outburst typical of the region during the austral spring, and the temperature increase from the mixing between the southwards advancing, warm East Australian Current and cooler subantarctic water over the shelf. Overall, ichthyoplankton data, coupled with reproductive information from adults trawled off Tasmania, indicate that E. nitidus constitutes a suitable species for the application of the daily egg production method (DEPM) to estimate spawning biomass. This finding, together with evidence in support of a discrete eastern spawning stock extending from southern NSW to southern Tasmania, strengthens the need for DEPM-based biomass estimates of E. nitidus prior to further fishery expansion.
NASA Astrophysics Data System (ADS)
Kubryakov, A. A.; Stanichny, S. V.; Zatsepin, A. G.
2018-03-01
The propagation of the Danube River plume has strong interannual variability that impacts the local balance of nutrients and the thermohaline structure in the western Black Sea. In the present study, we use a particle-tracking model based on satellite altimetry measurements and wind reanalysis data, as well as satellite measurements (SeaWiFS, MODIS), to investigate the interannual variability in the Danube plume pathways during the summer from 1993 to 2015. The wind conditions largely define the variability in the Danube water propagation. Relatively low-frequency variability (on periods of a week to months) in the wind stress curl modulates the intensity of the geostrophic Rim Current and related mesoscale eddy dynamics. High-frequency offshore wind-drift currents transport the plume across isobaths and provide an important transport link between shelf and offshore circulation. Inherent plume dynamics play an additional role in the near-mouth transport of the plume and its connection with offshore circulation. During the years with prevailing northeast winds ( 30% of studied cases), which are usually accompanied by increased wind curl over the Black Sea and higher Danube discharge, an alongshore southward current at the NorthWestern Shelf (NWS) is formed near the western Black Sea coast. Advected southward, the Danube waters are entrained in the Rim Current jet, which transports them along the west coast of the basin. The strong Rim Current, fewer eddies and downwelling winds substantially decrease the cross-shelf exchange of nutrients. During the years with prevailing southeastern winds ( 40%), the Rim Current is less intense. Mesoscale eddies effectively trap the Danube waters, transporting them to the deep western part of the basin. The low- and high-frequency southeastern wind-drift currents contribute significantly to cross-isobath plume transport and its connection with offshore circulation. During several years ( 15%), the Danube waters moved eastward to the west coast of Crimea. They were transported on the north periphery of the mesoscale anticyclones due to prevailing eastward wind-drift currents. During the years with hot summers, a monsoon effect induced the formation of a strong anticyclonic wind cell over the NorthWestern Shelf (NWS), and the plume moved northward ( 15%). Anticyclonic wind circulation leads to the Ekman convergence of brackish surface waters in the centre of the shelf and the formation of a baroclinic geostrophic anticyclone north of the NWS. This anticyclone traps the Danube waters and forces them to remain on the shelf for a long period of time. The impact of the propagation of the plume on the variability in chlorophyll a chlorophyll a in the NWS and the western Black Sea is analysed in this study based on satellite data.
Extreme Marine Warming Across Tropical Australia During Austral Summer 2015-2016
NASA Astrophysics Data System (ADS)
Benthuysen, Jessica A.; Oliver, Eric C. J.; Feng, Ming; Marshall, Andrew G.
2018-02-01
During austral summer 2015-2016, prolonged extreme ocean warming events, known as marine heatwaves (MHWs), occurred in the waters around tropical Australia. MHWs arose first in the southeast tropical Indian Ocean in November 2015, emerging progressively east until March 2016, when all waters from the North West Shelf to the Coral Sea were affected. The MHW maximum intensity tended to occur in March, coinciding with the timing of the maximum sea surface temperature (SST). Large areas were in a MHW state for 3-4 months continuously with maximum intensities over 2°C. In 2016, the Indonesian-Australian Basin and areas including the Timor Sea and Kimberley shelf experienced the longest and most intense MHW from remotely sensed SST dating back to 1982. In situ temperature data from temperature loggers at coastal sites revealed a consistent picture, with MHWs appearing from west to east and peaking in March 2016. Temperature data from moorings, an Argo float, and Slocum gliders showed the extent of warming with depth. The events occurred during a strong El Niño and weakened monsoon activity, enhanced by the extended suppressed phase of the Madden-Julian Oscillation. Reduced cloud cover in January and February 2016 led to positive air-sea heat flux anomalies into the ocean, predominantly due to the shortwave radiation contribution with a smaller additional contribution from the latent heat flux anomalies. A data-assimilating ocean model showed regional changes in the upper ocean circulation and a change in summer surface mixed layer depths and barrier layer thicknesses consistent with past El Niño events.
Seasonal change of phytoplankton (spring vs. summer) in the southern Patagonian shelf
NASA Astrophysics Data System (ADS)
Gonçalves-Araujo, Rafael; de Souza, Márcio Silva; Mendes, Carlos Rafael Borges; Tavano, Virginia Maria; Garcia, Carlos A. E.
2016-08-01
As part of the Patagonian Experiment (PATEX) project two sequential seasons (spring/summer 2007-2008) were sampled in the southern Patagonian shelf, when physical-chemical-biological (phytoplankton) data were collected. Phytoplankton biomass and community composition were assessed through both microscopic and high-performance liquid chromatography/chemical taxonomy (HPLC/CHEMTAX) techniques and related to both in situ and satellite data at spatial and seasonal scales. Phytoplankton seasonal variation was clearly modulated by water column thermohaline structure and nutrient dynamics [mainly dissolved inorganic nitrogen (DIN) and silicate]. The spring phytoplankton community showed elevated biomass and was dominated by diatoms [mainly Corethron pennatum and small (<20 μm) cells of Thalassiosira spp.], associated with a deeper and more weakly stratified upper mixed layer depth (UMLD) and relatively low nutrient concentrations, which were probably a result of consumption by the diatom bloom. In contrast, the phytoplankton community in summer presented lower biomass and was mainly dominated by haptophytes (primarily Emiliania huxleyi and Phaeocystis antarctica) and dinoflagellates, associated with shallower and well-stratified upper mixed layers with higher nutrient concentrations, likely due to lateral advection of nutrient-rich waters from the Malvinas Current. The gradual establishment of a strongly stratified and shallow UMLD as season progressed, was an important factor leading to the replacement of the spring diatom community by a dominance of calcifying organisms, as shown in remote sensing imagery and confirmed by microscopic examination. Furthermore, in spring, phaeopigments a (degradation products of chlorophyll a) relative to chlorophyll a, were twice that of summer, indicating the diatom bloom was under higher grazing pressure.
Buchner, Sonya; Kinnear, Marise; Crouch, Ian J; Taylor, Janet; Minnaar, Amanda
2011-12-01
Pears are exported in large quantities from South Africa, resulting in large revenues. Minimisation of quality losses once the fruit has reached the export destination is as important as following strict export and distribution protocols. Kafirin can form edible films. In this study an edible coating made from 20 g kg(-1) kafirin coating solution was applied as a postharvest treatment to retard quality deterioration of 'Packham's Triumph' pears during storage at the typical ripening temperature (20 °C). Changes in physicochemical and sensory quality were monitored over a period of 24 days. The kafirin coating was unable to retard the onset of ripening but decreased the respiration rate and retarded the progression of senescence. However, moisture loss was exacerbated in the kafirin-coated fruit during ripening at 20 °C, especially towards the end of the shelf-life. The kafirin coating extended the eat-ripe quality of the pears by 1-2 weeks. However, the appearance of the fruit was unacceptable after 14 days of storage in terms of wrinkled skin. Further work is needed to improve the water barrier properties of the kafirin coating by incorporating a wax or triglyceride into the coating formulation or more simply by applying a kafirin coating to waxed fruit. Copyright © 2011 Society of Chemical Industry.
Patterns in larval fish assemblages under the influence of the Brazil current
NASA Astrophysics Data System (ADS)
Katsuragawa, M.; Dias, J. F.; Harari, J.; Namiki, C.; Zani-Teixeira, M. L.
2014-10-01
The present work investigates the composition of larval fish assemblages in the area under the influence of the Brazil Current (BC) off the Southeastern Brazilian Bight. Ichthyoplankton was sampled during two oceanographic cruises (November-December/1997 - spring; May/2001 - autumn) with bongo nets oblique tows. Seasonal variation and a coastal-ocean pattern in the distribution of larval fish was observed and was influenced by the dynamics of the water masses, Coastal Water (CW), Tropical Water (TW) and South Atlantic Central Water (SACW), the last two of which were transported by the BC. During spring, the shelf assemblage was dominated by larvae of small pelagic fishes, such as Sardinella brasiliensis, Engraulis anchoita and Trachurus lathami, and was associated with the enrichment of shallow water by the SACW upwelling. In autumn, the abundance of coastal species larvae was reduced, and the shelf assemblage was dominated by Bregmaceros cantori. A transitional assemblage occurred during the spring, and comprised mesopelagic and coastal species. In both seasons, the oceanic assemblage was dominated by the mesopelagic families, Myctophidae, Sternopthychidae and Phosichthyidae. The oceanographic conditions also demonstrated clear differences between the northern and southern subareas, particularly in the shelf zone. This was especially the case during autumn when a latitudinal gradient in larval fish assemblages became more pronounced.
Variability of High-Resolution Sea Surface Heights on a Broad, Shallow Continental Shelf
NASA Astrophysics Data System (ADS)
Crout, R. L.; Rice, A. E.
2017-12-01
Recent satellite altimeter technologies and processing methodologies are allowing investigation of the dynamics of the continental shelf as never before. The region seaward of 20 km from the coast is a region where winds, tides, currents, river discharge, and bathymetry interact. All of these are important parameters to understand when applying coastal altimetry to coastal sea level monitoring. Processing of 8 years (July 2008 to July 2016) of Jason-2 altimeter 20 Hz data from the L2 AVISO-PISTACH experimental products yields nearly 300 crossings of the broad continental shelf to the southeast of Delaware Bay from Cape May, NJ. Removal of a mean surface yields individual crossings that, plotted together, form an envelope that shows high water level variability near the coast. Water level changes near the coast begin at a hinge point that occurs approximately 50 km from shore in less than 30 meters of water. Comparison of individual Jason-2 passes with regional weather patterns, cold front passages, local winds, tides, surface currents, river discharge, and regional oceanography provides information regarding the forcing factors for these regional water levels. The water levels farther than 20 km from shore show similar patterns to the low pass filtered tide data at Cape May, NJ and respond primarily to regional forcing.
Inflow of shelf waters into the Mississippi Sound and Mobile Bay estuaries in October 2015
NASA Astrophysics Data System (ADS)
Cambazoglu, Mustafa Kemal; Soto, Inia M.; Howden, Stephan D.; Dzwonkowski, Brian; Fitzpatrick, Patrick J.; Arnone, Robert A.; Jacobs, Gregg A.; Lau, Yee H.
2017-07-01
The exchange of coastal waters between the Mississippi Sound (MSS), Mobile Bay, and Mississippi Bight is an important pathway for oil and pollutants into coastal ecosystems. This study investigated an event of strong and persistent inflow of shelf waters into MSS and Mobile Bay during October 2015 by combining in situ measurements, satellite ocean color data, and ocean model predictions. Navy Coastal Ocean Model predicted high-salinity shelf waters continuously flowing into the estuarine system and forecasted low-salinity waters trapped inside the estuaries which did not flush out until the passage of tropical cyclone Patricia's remnants in late October. The October 2015 chlorophyll-a anomaly was significantly low inside and outside the MSS for the 2003 to 2015 time series. Similar low-chlorophyll-a anomalies were only seen in 2003. The October 2015 mean in situ salinities were up to 8 psu higher than mean from 2007 to 2015, and some estuarine stations showed persistent salinities above 30 psu for almost a month in agreement with model predictions. October 2015 was associated with low fall seasonal discharge, typical of fall season, and wind which was persistently out of the east to southeast [45-180]°. These persistent wind conditions were linked to the observed anomalous conditions.
Bernardi Aubry, Fabrizio; Falcieri, Francesco Marcello; Chiggiato, Jacopo; Boldrin, Alfredo; Luna, Gian Marco; Finotto, Stefania; Camatti, Elisa; Acri, Francesco; Sclavo, Mauro; Carniel, Sandro; Bongiorni, Lucia
2018-03-14
Dense waters (DW) formation in shelf areas and their cascading off the shelf break play a major role in ventilating deep waters, thus potentially affecting ecosystem functioning and biogeochemical cycles. However, whether DW flow across shelves may affect the composition and structure of plankton communities down to the seafloor and the particles transport over long distances has not been fully investigated. Following the 2012 north Adriatic Sea cold outbreak, DW masses were intercepted at ca. 460 km south the area of origin and compared to resident ones in term of plankton biomass partitioning (pico to micro size) and phytoplankton species composition. Results indicated a relatively higher contribution of heterotrophs in DW than in deep resident water masses, probably as result of DW-mediated advection of fresh organic matter available to consumers. DWs showed unusual high abundances of Skeletonema sp., a diatom that bloomed in the north Adriatic during DW formation. The Lagrangian numerical model set up on this diatom confirmed that DW flow could be an important mechanism for plankton/particles export to deep waters. We conclude that the predicted climate-induced variability in DW formation events could have the potential to affect the ecosystem functioning of the deeper part of the Mediterranean basin, even at significant distance from generation sites.
NASA Astrophysics Data System (ADS)
Lastras, G.; Acosta, J.; Muñoz, A.; Canals, M.
2011-05-01
In the framework of the Vulnerable Marine Ecosystems (VME) of the High Seas of the South West Atlantic, large areas of the Argentine Continental Margin (ACM) between 44°30'S and 48°S have been swath-mapped for the first time, obtaining full data coverage of the seafloor in this region between the outermost continental shelf and the middle slope down to 1600 m water depth. The slope is characterized by the presence of smooth terraces (Nagera, Perito Moreno and Piedra Buena) that widen towards the south, limited by morphological steps with evident signs of erosion in the form of scours. These terraces form part of the Argentine contourite depositional systems, generated by the interaction of the northwards flowing Antarctic water masses with the seafloor. Within the studied area, seven canyons and their multiple branches dissect the upper and middle continental slopes, from west to east, across the terraces and the steps. These canyons, which belong to the Patagonia submarine canyon system and are collected at a depth of ~ 3.5 km by a slope-parallel, SSW-NNE-oriented channel known as the Almirante Brown transverse canyon, display a large variety of morphologies. These include incisions from just a dozen of metres to 650 m, straight to highly meandering sections with sharp bends, well-developed levees and walls that reach 35° in slope gradient, hanging branches, conspicuous axial incisions and multiple knickpoints. Only the northernmost canyon indents in the continental shelf, whereas the others start at the limit between the upper and middle slopes, and are often fed by small, straight, leveed gullies. The action of both across-slope processes represented by submarine canyons and along-slope processes represented by terracing and scouring conform the ACM as a peculiar mixed margin, with the presence of both contour and gravity currents at the same place at the same time. We propose that at present, along-slope erosion and transport mainly occurs along the Perito Moreno terrace, whereas across-slope processes are much more dominant in the Nagera terrace. Erosive bedforms such as crescent scours, generated by contour currents, contribute to the progressive bottom-up erosion of the Nagera terrace and act as an initial collector of across-slope transported sediment, that later, due to flow focusing and recurrence, incise and interconnect creating definitive canyons that progress upslope by retrogressive erosion until their head indents the shelf break. Changes in the balance between across-slope and along-slope transport would imply a disequilibrium in the combination of processes leading to canyon formation, producing canyon abandonment, and partial or total filling. These changes could be produced by a variation in the depth of the main interfaces of Antarctic water masses leading to either an increase or a decrease in the erosion and transport capacity of contour currents, and/or by an enhancement of across-slope transport related to an increase of sediment availability.
Gardner, James V.; Mayer, Larry A.; Hughes-Clarke, John E.; Dartnell, Peter; Sulak, Kenneth J.
2001-01-01
A zone of deep-water reefs is thought to extend from the mid and outer shelf south of Mississippi and Alabama to at least the northwestern Florida shelf off Panama City, Florida (Figure 1, 67kb). The reefs off Mississippi and Alabama are found in water depths of 60 to 120 m (Ludwick and Walton, 1957; Gardner et al., in press) and were the focus of a multibeam echosounder (MBES) mapping survey by the U.S. Geological Survey (USGS) in 2000 (Gardner et al., 2000; in press). If this deep-water-reef trend does exist along the northwestern Florida shelf, then it is critical to determine the accurate geomorphology and type of the reefs that occur because of their importance as benthic habitats for fisheries. Precisely georeferenced high-resolution mapping of bathymetry is a fundamental first step in the study of areas suspected to be critical habitats. Morphology is thought to be critical to defining the distribution of dominant demersal plankton/planktivores communities. Fish faunas of shallow hermatypic reefs have been well studied, but those of deep ahermatypic reefs have been relatively ignored. The ecology of deep-water ahermatypic reefs is fundamentally different from hermatypic reefs because autochthonous intracellular symbiotic zooxanthellae (the carbon source for hermatypic corals) do not form the base of the trophic web in ahermatypic reefs. Instead, exogenous plankton, transported to the reef by currents, serves as the primary carbon source. Thus, one of the principle uses of the morphology data will be to identify whether any reefs found are hermatypic or ahermatypic in origin. Community structure and trophodynamics of demersal fishes of the outer continental of the northeastern Gulf of Mexico presently are the focus of a major USGS reseach project. A goal of the project is to answer questions concerning the relative roles played by morphology and surficial geology in controling biological differentiation. Deep-water reefs are important because they are fish havens, key spawning sites, and are critical early larval and juvenile habitats for economically important sport/food fishes. It is known that deep-water reefs function as a key source for re-population (via seasonal and ontogenetic migration) of heavily impacted inshore reefs. The deep-water reefs south of Mississippi and Alabama support a lush fauna of ahermatypic hard corals, soft corals, black corals, sessile crinoids and sponges, that together form a living habitat for a well-developed fish fauna. The fish fauna comprises typical Caribbean reef fishes and Carolinian shelf fishes, plus epipelagic fishes, and a few deep-sea fishes. The base of the megafaunal invertebrate food web is plankton, borne by essentially continuous semi-laminar currents generated by eddies, spawned off the Loop Current, that periodically travel across the shelf edge. A few, sidescan-sonar surveys have been made of areas locally identified as Destin Pinnacles, Steamboat Lumps Marine Reserve (Koenig et al., 2000; Scanlon, et al., 2000; 2001), Twin Ridges (Briere, et al., 2000; Scanlon, et al., 2000), and Madison-Swanson Marine Reserve (Koenig et al., 2000; Scanlon, et al., 2000; 2001). However, no quantitative and little qualitative information about the geomorphology and surficial geology can be gained from these data. Existing bathymetry along the northwestern Florida shelf suggests the existence of areas of possible isolated deep-water reefs. NOAA bathymetric maps NOS NH16-9 and NG16-12 show geomorphic expressions that hint of the presence of reefs in isolated areas rather than in a continuous zone. There has been no systematic, high-resolution bathymetry collected in this area, prior to this cruise. After the successful mapping of the deep-water reefs on the Mississippi and Alabama shelf (Gardner et al., 2000; in press), a partnership composed of the USGS, Minerals Management Service, and NOAA was formed to continue the deep-reef mapping to the northwest Florida mid shelf and upper slope. This cruise is the first fruit of that partnership.
NASA Astrophysics Data System (ADS)
Thorne, L. H.; Foley, H.; Webster, D.; Baird, R.; Swaim, Z.; Read, A.
2016-02-01
Short-finned pilot whales (Globicephala macrorhynchus) are deep-diving predators that feed on squid and regularly exploit prey at depths of more than 500 m. Detailed information on the habitat use of pilot whales in the Northwest Atlantic is lacking, which complicates management of the species, particularly for efforts to mitigate bycatch and depredation in the pelagic longline fishery. To address this limitation, we tracked the horizontal and vertical movements of short-finned pilot whales with LIMPET satellite-linked transmitters off Cape Hatteras, North Carolina, in 2014. We deployed 14 satellite tags and 4 satellite-linked depth recording tags, with deployments of 2 to 194 days (mean=57 days). Using randomly-generated temporally-matched pseudo-absences with modeled distance constraints and mixed-effects generalized additive models (GAMMs), we evaluated pilot whale movement relative to environmental variables (distance to shelf break, sea surface temperature SST), location of Gulf Stream, bathymetric slope, and depth). Pilot whales showed two types of behavior, showing a strong affinity for either the shelf break or waters of the Gulf Stream. Slope, distance to shelf break, and SST were significant predictors of habitat use (p<<0.001 for all variables, R2=0.40). Pilot whales demonstrated a preference for waters close to the shelf break, with warmer SST values (peak preference 25°C) and medium to high bathymetric slopes (peak preference 40 percent rise). We observed seasonal patterns in pilot whale movements, with whales diving to deeper depths in late summer and fall months than in spring months (Wilcoxon test, p<<0.001). Diving behavior was also significantly influenced by SST; pilot whales took longer and deeper dives in warmer waters (Pearson's correlation coefficients >0.40, p<<0.001). We use these results to develop spatial maps of pilot whale habitat relative to seasonal and environmental factors in order to identify areas and times of high risk for interactions between pilot whales and longline gear.
Adams, Maurice V.; John, C.B.; Kelly, R.F.; LaPointe, A.E.; Meurer, R.W.
1975-01-01
An important function of the Geological Survey is the evaluation and management of the mineral resources of the Outer Continental Shelf, particularly with respect to oil and gas, salt, and sulfur. Production of oil and gas from the Outer Continental Shelf of the United States has increased substantially over the past 20 years and represents an increasing percentage of total United States production. As discovery of major onshore production of oil and gas has become more difficult, the search has moved into the surrounding waters where submerged sedimentary formations are conducive to the accumulation of oil and gas. Increased energy demands of recent years have accelerated the pace of offshore operations with a corresponding improvement in technology as exploration and development have proceeded farther from shore and into deeper water. While improved technology and enforcement of more stringent regulations have made offshore operations safer, it is unrealistic to believe that completely accident-free operations can ever be achieved. Only slightly more than six percent of the world's continental terrace is adjacent to the United States, but less than one percent has been explored for oil and gas. Since the lead time for the development of offshore oil and gas resources can be as much as a decade, they do not provide an immediate energy supply but should be viewed in the light of a near-term source with a potential of becoming a medium-range source of supply pending the development of alternative energy sources. Revenues from the Outer Continental Shelf are deposited to the general fund of the United States Treasury. A major portion of these funds is allocated to the Land and Water Conservation Fund, the largest Federal grant-in-aid program of assistance to States, counties, and cities for the acquisition and development of public parks, open space, and recreation lands and water.
Investigating the ocean generated acoustic/seismic wavefields in NE Atlantic
NASA Astrophysics Data System (ADS)
Le Pape, F.; Bean, C. J.; Craig, D.; Jousset, P.; Donne, S. E.; Möllhoff, M.
2017-12-01
In this study, we look at the comparison of 3D simulations of acoustic and seismic waves propagation with OBS data recorded across the shelf offshore Ireland and out into the Rockall Trough. Real and synthetic observations are combined to characterize both acoustic and seismic wavefields in the marine environment and particularly study secondary microseisms propagation from deep to shallow water to the land. Whereas the recorded OBS data show a strong change in the energy of "noise events" in the primary microseism band from the shelf to the land, the secondary microseism band is associated with stronger signal in the deep water compared to the shelf area. Furthermore, the data also highlight seasonal variations in the seismic and acoustic wavefields likely related to changes in noise source locations. The 3D simulations of acoustic and seismic waves propagation in the Rockall Trough look promising to reconcile deep ocean, shelf and land seismic observations as well as the effect of the water column and sediments thickness on "seismic ambient noise" generation and propagation. For instance, the simulations reveal interesting results on the acoustic/seismic coupling and its implication on the secondary microseisms source origin. This project is part of the Irish Centre for Research in Applied Geoscience (ICRAG), funded under the SFI Research Centres Programme and is co-funded under the European Regional Development Fund.
The formation of a cold-core eddy in the East Australian Current
NASA Astrophysics Data System (ADS)
Macdonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.
2016-02-01
Cold-core eddies (CCEs) frequently form in western boundary currents and can affect continental shelf processes. It is not always clear, however, if baroclinic or barotropic instabilities contribute more to their formation. The Regional Ocean Modelling System (ROMS) is used to investigate the ocean state during the formation of a CCE in the East Australian Current (EAC) during October 2009. The observed eddy initially appeared as a small billow (approx. 50 km in length) that perturbed the landward edge of the EAC. The billow grew into a mesoscale CCE (approx. 100 km in diameter), diverting the EAC around it. A ROMS simulation with a realistic wind field reproduced a similar eddy. This eddy formed from negative vorticity waters found on the continental shelf south of the EAC separation point. A sensitivity analysis is performed whereby the impact of 3 different wind forcing scenarios, upwelling, downwelling, and no winds, are investigated. A CCE formed in all wind scenarios despite the wind induced changes in hydrographic conditions in the continental shelf and slope waters. As such, the source of energy for eddy formation did not come from the interactions of wind with the continental shelf waters. Analysis of strain and energy transformation confirms this by showing that the prevailing source of CCE energy was kinetic energy of the offshore EAC. These results clearly link the formation of the CCE to the swift flowing EAC and barotropic instabilities.
NASA Astrophysics Data System (ADS)
Li, Yun; Ji, Rubao; Fratantoni, Paula S.; Chen, Changsheng; Hare, Jonathan A.; Davis, Cabell S.; Beardsley, Robert C.
2014-04-01
In this study, we examine the importance of regional wind forcing in modulating advective processes and hydrographic properties along the Northwest Atlantic shelf, with a focus on the Nova Scotian Shelf (NSS)-Gulf of Maine (GoM) region. Long-term observational data of alongshore wind stress, sea level slope, and along-shelf flow are analyzed to quantify the relationship between wind forcing and hydrodynamic responses on interannual time scales. Additionally, a simplified momentum balance model is used to examine the underlying mechanisms. Our results show significant correlation among the observed interannual variability of sea level slope, along-shelf flow, and alongshore wind stress in the NSS-GoM region. A mechanism is suggested to elucidate the role of wind in modulating the sea level slope and along-shelf flow: stronger southwesterly (northeastward) winds tend to weaken the prevailing southwestward flow over the shelf, building sea level in the upstream Newfoundland Shelf region, whereas weaker southwesterly winds allow stronger southwestward flow to develop, raising sea level in the GoM region. The wind-induced flow variability can influence the transport of low-salinity water from the Gulf of St. Lawrence to the GoM, explaining interannual variations in surface salinity distributions within the region. Hence, our results offer a viable mechanism, besides the freshening of remote upstream sources, to explain interannual patterns of freshening in the GoM.
The Mississippi and Atchafalaya Rivers annually discharge 674 km3 of freshwater, 86 x 109 moles nitrogen, 5 x 109 moles phosphorus, and 325 x 109 moles organic carbon to the Louisiana shelf. The seasonal input and transport of these materials causes large temporal and spatial va...
Natsuike, Masafumi; Saito, Rui; Fujiwara, Amane; Matsuno, Kohei; Yamaguchi, Atsushi; Shiga, Naonobu; Hirawake, Toru; Kikuchi, Takashi; Nishino, Shigeto; Imai, Ichiro
2017-01-01
The eastern Bering Sea has a vast continental shelf, which contains various endangered marine mammals and large fishery resources. Recently, high numbers of toxic A. tamarense resting cysts were found in the bottom sediment surface of the eastern Bering Sea shelf, suggesting that the blooms have recently occurred. However, little is known about the presence of A. tamarense vegetative cells in the eastern Bering Sea. This study's goals were to detect the occurrence of A. tamarense vegetative cells on the eastern Bering Sea shelf and to find a relationship between environmental factors and their presence. Inter-annual field surveys were conducted to detect A. tamarense cells and environmental factors, such as nutrients, salinity, chlorophyll a, and water temperature, along a transect line on the eastern Bering Sea shelf during the summers of 2004, 2005, 2006, 2009, 2012, and 2013. A. tamarense vegetative cells were detected during every sampling year, and their quantities varied greatly from year to year. The maximum cell densities of A. tamarense observed during the summers of 2004 and 2005 were much higher than the Paralytic shellfish poisoning warning levels, which are greater than 100-1,000 cells L-1, in other subarctic areas. Lower quantities of the species occurred during the summers of 2009, 2012, and 2013. A significant positive correlation between A. tamarense quantity and water temperature and significant negative correlations between A. tamarense quantity and nutrient concentrations (of phosphate, silicate, and nitrite and nitrate) were detected in every sampling period. The surface- and bottom-water temperatures varied significantly from year to year, suggesting that water temperatures, which have been known to affect the cell growth and cyst germination of A. tamarense, might have affected the cells' quantities in the eastern Bering Sea each summer. Thus, an increase in the Bering Sea shelf's water temperature during the summer will increase the frequency and scale of toxic blooms and the toxin contamination of plankton feeders. This poses serious threats to humans and the marine ecosystem.
Studies on thermophysical properties at New Jersey Shallow Shelf (IODP Expedition 313)
NASA Astrophysics Data System (ADS)
Fehr, A.; Pechnig, R.; Inwood, J.; LOFI, J.; Bosch, F. P.; Clauser, C.
2011-12-01
The IODP drilling expedition 313 New Jersey Shallow Shelf was proposed for obtaining deep sub-seafloor samples and downhole logging measurements in the crucial inner shelf region.The inner to central shelf off-shore New Jersey is an ideal location for studying the history of sea-level changes and its relationship to sequence stratigraphy and onshore/offshore groundwater flows. The region features rapid depositional rates, tectonic stability, and well-preserved, cosmopolitan age control fossils suitable for characterizing the sediments of this margin throughout the time interval of interest. Past sea-level rise and fall is documented in sedimentary layers deposited during Earth's history. In addition, the inner shelf is characterised by relatively fresh pore water intervals alternating vertically with saltier intervals (Mountain et al., 2010). Therefore, three boreholes were drilled in the so-called New Jersey/Mid-Atlantic transect during IODP Expedition 313 New Jersey Shallow Shelf. Numerous questions have arisen concerning the age and origin of the brackish waters recovered offshore at depth. Here we present an analysis of thermophysical properties to be used as input parameters in constructing numerical models for future groundwater flow simulations. Our study is based mainly on Nuclear Magnetic Resonance (NMR) measurements for inferring porosity and permeability, and thermal conductivity. We performed NMR measurements on samples from boreholes M0027A, M0028A and M0029A and thermal conductivity measurements on the whole round cores prior to the Onshore Party. These results are compared with data from alternative laboratory measurements and with petrophysical properties inferred from downhole logging data.
New surface-based observations of the environment beneath Pine Island Glacier ice shelf
NASA Astrophysics Data System (ADS)
Bindschadler, Robert; Truffer, Martin; Stanton, Tim; Peters, Leo; Shortt, Mike; Pomraning, Dale; Stockel, Jim; Shaw, Bill; Steinarson, Einar; Anandakrishnan, Sridhar; Wilson, Kiya; Holland, David; Bushuk, Mitch; Behar, Alberto; Cocaud, Cedric; Stam, Christina
2013-04-01
Extensive surface, sub-shelf cavity and seabed observations of the Pine Island Glacier (PIG) ice shelf environment were collected by a surface field team during the 2012-13 austral summer. Three sites aligned along a central, flow-aligned surface valley were occupied for about one week each during which two hot-water holes were drilled at each site. In one hole, a mast-mounted set of oceanographic sensors recorded water temperature, current and salinity in the few meters immediately below the ice-shelf bottom. In the other hole, a similarly instrumented profiler was deployed to make quasi-daily vertical transects of the sub-shelf cavity by rising and sinking along a cable suspended in the cavity. These instruments are already returning data that provide direct rates of heat and momentum transfer in the boundary layer, basal melt rates and the temporal variation of water movements on daily and longer time scales. Shallow cores of the sea bed and a photographic record of the drill holes, ocean cavity and sea bed were also collected at two of the drill sites. The geophysics program was spatially much broader and consisted of phase-sensitive radars to measure basal melt rates and active seismic instrumentation to explore the character of the sea bed. Continuous profiling between the drill sites established the previously discovered ("Autosub") sea bed ridge is asymmetric with a steeper downstream face. Spot measurements upstream of the drill sites were reached by helicopter and refined the shape of the ocean cavity where extensive melt rates were measured. The field work is concluding as this abstract is being submitted, so most results are not yet available, but will be included in the presentation as first results emerge.
Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea
Reimnitz, E.; Dethleff, D.; Nurnberg, D.
1994-01-01
The winter ice-regime of the 500 km) from the mainland than in the Beaufort Sea. As a result, the annual freeze-up does not incorporate old, deep-draft ice, and with a lack of compression, such deep-draft ice is not generated in situ, as on the Beaufort Sea shelf. The Laptev Sea has as much as 1000 km of fetch at the end of summer, when freezing storms move in and large (6 m) waves can form. Also, for the first three winter months, the polynya lies inshore at a water depth of only 10 m. Turbulence and freezing are excellent conditions for sediment entrainment by frazil and anchor ice, when compared to conditions in the short-fetched Beaufort Sea. We expect entrainment to occur yearly. Different from the intensely ice-gouged Beaufort Sea shelf, hydraulic bedforms probably dominate in the Laptev Sea. Corresponding with the large volume of ice produced, more dense water is generated in the Laptev Sea, possibly accompanied by downslope sediment transport. Thermohaline convection at the midshelf polynya, together with the reduced rate of bottom disruption by ice keels, may enhance benthic productivity and permit establishment of open-shelf benthic communities which in the Beaufort Sea can thrive only in the protection of barrier islands. Indirect evidence for high benthic productivity is found in the presence of walrus, who also require year-round open water. By contrast, lack of a suitable environment restricts walrus from the Beaufort Sea, although over 700 km farther to the south. We could speculate on other consequences of the different ice regimes in the Beaufort and Laptev Seas, but these few examples serve to point out the dangers of exptrapolating from knowledge gained in the North American Arctic to other shallow Arctic shelf settings. ?? 1994.
Poag, C. Wylie
1991-01-01
An extinct, > 5000-km-long Jurassic carbonate platform and barrier reef system lies buried beneath the Atlantic continental shelf and slope of the United States. A revised stratigraphic framework, a series of regional isopach maps, and paleogeographic reconstructions are used to illustrate the 42-m.y. history of this Bahama-Grand Banks gigaplatform from its inception in Aalenian(?) (early Middle Jurassic) time to its demise and burial in Berriasian-Valanginian time (early Early Cretaceous). Aggradation-progradation rates for the gigaplatform are comparable to those of the familiar Capitan shelf margin (Permian) and are closely correlated with volumetric rates of siliciclastic sediment accumulation and depocenter migration. Siliciclastic encroachment behind the carbonate tracts appears to have been an important impetus for shelf-edge progradation. During the Early Cretaceous, sea-level changes combined with eutrophication (due to landward soil development and seaward upwelling) and the presence of cooler upwelled waters along the outer shelf appear to have decimated the carbonate producers from the Carolina Trough to the Grand Banks. This allowed advancing siliciclastic deltas to overrun the shelf edge despite a notable reduction in siliciclastic accumulation rates. However, upwelling did not extend southward to the Blake-Bahama megabank, so platform carbonate production proceeded there well into the Cretaceous. Subsequent stepwise carbonate abatement characterized the Blake Plateau Basin, whereas the Bahamas have maintained production to the present. The demise of carbonate production on the northern segments of the gigaplatform helped to escalate deep-water carbonate deposition in the Early Cretaceous, but the sudden augmentation of deep-water carbonate reservoirs in the Late Jurassic was triggered by other agents, such as global expansion of nannoplankton communities. ?? 1991.
Cascading off the West Greenland Shelf: A numerical perspective
NASA Astrophysics Data System (ADS)
Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin; Petrie, Brian; Azetsu-Scott, Kumiko; Lee, Craig M.
2017-07-01
Cascading of dense water from the shelf to deeper layers of the adjacent ocean basin has been observed in several locations around the world. The West Greenland Shelf (WGS), however, is a region where this process has never been documented. In this study, we use a numerical model with a 1/4° resolution to determine (i) if cascading could happen from the WGS; (ii) where and when it could take place; (iii) the forcings that induce or halt this process; and (iv) the path of the dense plume. Results show cascading happening off the WGS at Davis Strait. Dense waters form there due to brine rejection and slide down the slope during spring. Once the dense plume leaves the shelf, it gradually mixes with waters of similar density and moves northward into Baffin Bay. Our simulation showed events happening between 2003-2006 and during 2014; but no plume was observed in the simulation between 2007 and 2013. We suggest that the reason why cascading was halted in this period is related to: the increased freshwater transport from the Arctic Ocean through Fram Strait; the additional sea ice melting in the region; and the reduced presence of Irminger Water at Davis Strait during fall/early winter. Although observations at Davis Strait show that our simulation usually overestimates the seasonal range of temperature and salinity, they agree with the overall variability captured by the model. This suggests that cascades have the potential to develop on the WGS, albeit less dense than the ones estimated by the simulation.
NASA Astrophysics Data System (ADS)
Kadko, D. C.; Aagaard, K.
2006-12-01
Observations suggest that the central Arctic Ocean is surprisingly energetic and variable, given the weak mean flow and the very strong halocline, which isolates the surface from the deeper ocean. One source of variability is numerous, generally anticyclonic eddies, many of which are centered in the halocline and likely generated within the boundary current. These and other eddies may be an important means of transporting properties in regions of weak mean flow, since they are found far from their origin, show anomalous water properties, and have a life time of years, mixing only slowly with ambient waters. Tracers additional to temperature and salinity will likely prove useful in identifying eddy sources and ages. Here we report radium isotope, temperature, and salinity data obtained from the USS L. Mendel Rivers - PACSUBICEX 3-00 SCICEX Accommodation cruise in October, 2000. The radium activity ratios are linked to shelf sources, and provide estimates of time elapsed since the waters left the shelf. The generally decreasing 228Ra/226Ra ratio in the halocline observed across the Canada Basin from Barrow to the North Pole is consistent with distance from Pacific shelf sources. Additionally, isolated anomalously high 228Ra/226Ra ratios within both the Canada and Eurasian basins suggest water parcels that have been rapidly (relative to the 5.77 year 228Ra half-life) transported from the shelves into the interior. The density field indicates that eddies are the means of this efficient transport of shelf properties into the central Arctic Ocean.
Multibeam mapping of the West Florida Shelf, Gulf of Mexico
Gardner, James V.; Dartnell, Peter; Sulak, Kenneth J.
2002-01-01
A zone of deep-water reefs is thought to extend from the mid and outer shelf south of Mississippi and Alabama to at least the northwestern Florida shelf off Panama City, Florida (Figure 1). The reefs off Mississippi and Alabama are found in water depths of 60 to 120 m (Ludwick and Walton, 1957; Gardner et al., 2001, in press) and were the focus of a multibeam echosounder (MBES) mapping survey by the U.S. Geological Survey (USGS) in 2000 (Gardner et al., 2000, Gardner et al., 2001, in press). If this deep-water-reef trend does exist along the northwestern Florida shelf, then it is critical to determine the accurate geomorphology and reef type that occur because of their importance as benthic habitats for fisheries. Georeferenced high-resolution mapping of bathymetry is a fundamental first step in the study of areas suspected to be critical habitats. Morphology is thought to be critical to defining the distribution of dominant demersal plankton/planktivores communities. Fish faunas of shallow hermatypic reefs have been well studied, but those of deep ahermatypic reefs have been relatively ignored. The ecology of deep-water ahermatypic reefs is fundamentally different from hermatypic reefs because autochthonous intracellular symbiotic zooxanthellae (the carbon source for hermatypic corals) do not form the base of the trophic web in ahermatypic reefs. Instead, exogenous plankton, transported to the reef by currents, serves as the primary carbon source. Thus, one of the principle uses of the morphology data will be to identify whether any reefs found are hermatypic or ahermatypic in origin.
NASA Astrophysics Data System (ADS)
Durán, Ruth; Canals, Miquel; Sanz, José Luis; Lastras, Galderic; Amblas, David; Micallef, Aaron
2014-01-01
The northern Catalan continental shelf, in the northwestern Mediterranean Sea, extends along 200 km from the Cap de Creus submarine canyon to the Llobregat Delta, in the vicinity of the city of Barcelona. In this paper we present the results of a systematic investigation of this area by means of very high-resolution multibeam bathymetry to fully assess its morphological variability. The causative factors and processes determining such variability are subsequently interpreted. The shelf is divided in three segments by two prominent submarine canyons: the northernmost Roses Shelf is separated from the intermediate La Planassa Shelf by the La Fonera Canyon, while the boundary between the La Planassa Shelf and the southernmost Barcelona Shelf is marked by the Blanes Canyon. These two canyons are deeply incised in the continental margin, with their heads located at only 0.8 and 5 km from the shore, respectively. The seafloor character reflects the influence of external controlling factors on the geomorphology and sediment dynamics of the northern continental shelf of Catalonia. These factors are the geological setting, the volume and nature of sediment input, and the type and characteristics of processes leading to sediment redistribution, such as dense shelf water cascading (DSWC) and eastern storms. The interaction of all these factors determines sediment dynamics and allows subdividing the northern Catalan continental shelf into three segments: the erosional-depositional Roses Shelf to the north, the non-depositional La Planassa Shelf in the middle, and the depositional Barcelona Shelf to the south. Erosional features off the Cap de Creus Peninsula and an along-shelf subdued channel in the outer shelf illustrate prevailing sediment dynamics in the Roses segment, which is dominated by erosional processes, local sediment accumulations and the southward bypass of sediment. The rocky character of the seafloor immediately north of the Blanes Canyon head demonstrates that neither significant sediment inputs from the Tordera River nor from the northern sources reach the southern part of the La Planassa Shelf. Palaeo-shorelines depict a number of paleodeltas with steep delta fronts on the drowned Barcelona Shelf.
Authigenesis of trace metals in energetic tropical shelf environments
Breckel, E.J.; Emerson, S.; Balistrieri, L.S.
2005-01-01
We evaluated authigenic changes of Fe, Mn, V, U, Mo, Cd and Re in suboxic, periodically remobilized, tropical shelf sediments from the Amazon continental shelf and the Gulf of Papua. The Cd/Al, Mo/Al, and U/Al ratios in Amazon shelf sediments were 82%, 37%, and 16% less than those in Amazon River suspended sediments, respectively. Very large depletions of U previously reported in this environment were not observed. The Cd/Al ratios in Gulf of Papua sediments were 76% lower than measurements made on several Papua New Guinea rivers, whereas U/Al ratios in the shelf sediments were enriched by approximately 20%. Other metal/Al ratios in the Papua New Guinea river suspended sediments and continental shelf sediments were not distinguishably different. Comparison of metal/Al ratios to grain size distributions in Gulf of Papua samples indicates that our observations cannot be attributed to differences in grain size between the river suspended sediments and continental shelf sediments. These two shelves constitute a source of dissolved Cd to the world ocean equal to 29-100% of the dissolved Cd input from rivers, but only 3% of the dissolved Mo input and 4% of the dissolved U input. Release of Cd, Mo, and U in tropical shelf sediments is likely a result of intense Fe and Mn oxide reduction in pore waters and resuspension of the sediments. Since we do not observe depletions of particulate Fe and Mn in the shelf sediments most of these dissolved metals must reoxidize in the overlying waters and reprecipitate. As Cd exhibits the largest losses on these tropical shelves, we examined the ability of newly formed Fe and Mn oxides to adsorb dissolved Cd using a geochemical diffuse double-layer surface complexation model and found the oxide surfaces are relatively ineffective at readsorbing Cd in seawater due to surface-site competition by Mg and Ca. If the remobilization and reoxidation of Fe and Mn occurs frequently enough before sediment is buried significant amounts of Cd may be removed from the oxide surfaces. Because a much greater percentage of Mn than Fe becomes remobilized in these shelf sediments, metals closely associated with Mn oxides (like Cd) are more likely to show losses during deposition. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.
2015-02-01
Ocean fronts represent productive regions of the ocean, but predator-prey interactions within these features are poorly understood partially due to the coarse-scale and biases of net-based sampling methods. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to sample across a front near the Georges Bank shelf edge on two separate sampling days in August 2010. Salinity characterized the transition from shelf to slope water, with isopycnals sloping vertically, seaward, and shoaling at the thermocline. A frontal feature defined by the convergence of isopycnals and a surface temperature gradient was sampled inshore of the shallowest zone of the shelf-slope front. Zooplankton and larval fishes were abundant on the shelf side of the front and displayed taxon-dependent depth distributions but were rare in the slope waters. Supervised automated particle counting showed small particles with high solidity, verified to be zooplankton (copepods and appendicularians), aggregating near surface above the front. Salps were most abundant in zones of intermediate chlorophyll-a fluorescence, distinctly separate from high abundances of other grazers and found almost exclusively in colonial form (97.5%). Distributions of gelatinous zooplankton differed among taxa but tended to follow isopycnals. Fine-scale sampling revealed distinct habitat partitioning of various planktonic taxa, resulting from a balance of physical and biological drivers in relation to the front.
NASA Astrophysics Data System (ADS)
Pritchard, Mark; Weller, Robert A.
2005-03-01
During July-August 2001, oceanographic variability on the New England inner continental shelf was investigated with an emphasis on temporal scales shorter than tidal periods. Mooring and ship survey data showed that subtidal variation of inner shelf stratification was in response to regional Ekman upwelling and downwelling wind driven dynamics. High-frequency variability in the vertical structure of the water column at an offshore mooring site was linked to the baroclinic internal tide and the onshore propagation of nonlinear solitary waves of depression. Temperature, salinity, and velocity data measured at an inshore mooring detected a bottom bore that formed on the flood phase of the tide. During the ebb tide, a second bottom discontinuity and series of nonlinear internal waves of elevation (IWOE) formed when the water column became for a time under hydraulic control. A surface manifestation of these internal wave crests was also observed in aircraft remote sensing imagery. The coupling of IWOE formation to the offshore solitary waves packets was investigated through internal wave breaking criterion derived in earlier laboratory studies. Results suggested that the offshore solitons shoaled on the sloping shelf, and transformed from waves of depression to waves of elevation. The coupling of inshore bore formation to the offshore solitary waves and the possible impact of these periodic features on mixing on the inner shelf region are discussed.
NASA Astrophysics Data System (ADS)
Galperin, Boris; Mellor, George L.
1990-09-01
The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.
NASA Astrophysics Data System (ADS)
Kalén, Ola; Assmann, Karen M.; Wåhlin, Anna K.; Ha, Ho Kyung; Kim, Tae Wan; Lee, Sang Hoon
2016-01-01
The glaciers that drain the West Antarctic Ice Sheet into the Amundsen Sea are accelerating and experiencing increased basal melt of the floating ice shelves. Warm and salty deep water has been observed to flow southward in deep troughs leading from the shelf break to the inner shelf area where the glaciers terminate. It has been suggested that the melting induced by this warm water is responsible for the acceleration of the glaciers. Here we investigate the structure of the currents and the associated heat flow on the shelf using in-situ observations from 2008 to 2014 in Dotson Trough, the main channel in the western part of the Amundsen Sea shelf, together with output from a numerical model. The model is generally able to reproduce the observed velocities and temperatures in the trough, albeit with a thicker warm bottom layer. In the absence of measurements of sea surface height we define the barotropic component of the flow as the vertical average of the velocity. It is shown that the flow is dominated by warm barotropic inflows on the eastern side and colder and fresher barotropic outflows on the western side. The transport of heat appears to be primarily induced by this clockwise barotropic circulation in the trough, contrary to earlier studies emphasizing a bottom-intensified baroclinic inflow as the main contributor.
Benthic nitrogen turnover processes in coastal sediments at the Danube Delta
NASA Astrophysics Data System (ADS)
Bratek, Alexander; Dähnke, Kirstin; Neumann, Andreas; Möbius, Jürgen; Graff, Florian
2017-04-01
The Black Sea Shelf has been exposed to strong anthropogenic pressures from intense fisheries and high nutrient inputs and eutrophication over the past decades. In the light of decreasing riverine nutrient loads and improving nutrient status in the water column, nutrient regeneration in sediments and biological N-turnover in the Danube Delta Front have an important effect on nutrient loads in the shelf region. In May 2016 we determined pore water nutrient profiles in the Danube River Delta-Black Sea transition zone, aiming to assess N-regeneration and elimination based on nutrient profiles and stable N- isotope changes (nitrate and ammonium) in surface water masses and in pore water. We aimed to investigate the magnitude and isotope values of sedimentary NH4+ and NO3- and their impact on the current N-budget in Black Sea Shelf water. Based on changes in the stable isotope ratios of NO3- and NH4+, we aimed to differentiate diffusion and active processing of ammonium as well as nitrate sources and sinks in bottom water. First results show that the concentration of NH4+ in pore water increases with depth, reaching up to 1500 µM in deeper sediment layers. We find indications for high fluxes of ammonium to the overlying water, while stable isotope profiles of ammonium suggest that further processing, apart from mere diffusion, acts on the pore water ammonium pool. Nitrate concentration and stable isotope profiles show rapid consumption in deeper anoxic sediment layers, but also suggest that nitrate regeneration in bottom water increases the dissolved nitrate pool. Overall, the isotope and concentration data of pore water ammonium clearly mirror a combination of turnover processes and diffusion.
Ice-Shelf Tidal Flexure and Subglacial Pressure Variations
NASA Technical Reports Server (NTRS)
Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut
2013-01-01
We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.
California State Waters map series—Offshore of Scott Creek, California
Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Watt, Janet T.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.
2015-11-16
Seafloor habitats in the Offshore of Scott Creek map area, which lie within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deeper water. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are the northernmost known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
High particle export over the continental shelf of the west Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Buesseler, Ken O.; McDonnell, Andrew M. P.; Schofield, Oscar M. E.; Steinberg, Deborah K.; Ducklow, Hugh W.
2010-11-01
Drifting cylindrical traps and the flux proxy 234Th indicate more than an order of magnitude higher sinking fluxes of particulate carbon and 234Th in January 2009 than measured by a time-series conical trap used regularly on the shelf of the west Antarctic Peninsula (WAP). The higher fluxes measured in this study have several implications for our understanding of the WAP ecosystem. Larger sinking fluxes result in a revised export efficiency of at least 10% (C flux/net primary production) and a requisite lower regeneration efficiency in surface waters. High fluxes also result in a large supply of sinking organic matter to support subsurface and benthic food webs on the continental shelf. These new findings call into question the magnitude of seasonal and interannual variability in particle flux and reaffirm the difficulty of using moored conical traps as a quantitative flux collector in shallow waters.
California State Waters Map Series: offshore of Bolinas, California
Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Manson, Michael W.; Sliter, Ray W.; Endris, Charles A.; Watt, Janet T.; Ross, Stephanie L.; Kvitek, Rikk G.; Phillips, Eleyne L.; Bruns, Terry R.; Chin, John L.; Cochrane, Guy R.; Cochran, Susan A.
2015-08-05
Seafloor habitats in the Offshore of Bolinas map area, which lies within the Shelf (continental shelf) megahabitat, range from, in the nearshore, sandy seafloor in the southeast and significant rocky outcrops that support kelp-forest communities in the northwest to, in deeper water, rocky-reef communities. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock in the northeast supports large forests of “bull kelp,” which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of greenling and rockfish.
Direct observations of American eels migrating across the continental shelf to the Sargasso Sea
Béguer-Pon, Mélanie; Castonguay, Martin; Shan, Shiliang; Benchetrit, José; Dodson, Julian J.
2015-01-01
Since inferring spawning areas from larval distributions in the Sargasso Sea a century ago, the oceanic migration of adult American eels has remained a mystery. No adult eel has ever been observed migrating in the open ocean or in the spawning area. Here, we track movements of maturing eels equipped with pop-up satellite archival tags from the Scotian Shelf (Canada) into the open ocean, with one individual migrating 2,400 km to the northern limit of the spawning site in the Sargasso Sea. The reconstructed routes suggest a migration in two phases: one over the continental shelf and along its edge in shallow waters; the second in deeper waters straight south towards the spawning area. This study is the first direct evidence of adult Anguilla migrating to the Sargasso Sea and represents an important step forward in the understanding of routes and migratory cues. PMID:26505325
Robb, James M.
1983-01-01
Because of the need for knowledge of an offshore area that is undergoing exploration for oil and gas resources, since 1975 the U.S. Bureau of Land Management (BLM) has funded studies of the environmental characteristics of the Mid-Atlantic Outer Continental Shelf. This volume briefly summarizes a final report to the BLM on the results of U.S. Geological Survey investigations stemming from data acquired during 1978 and 1979. The parent final report contains complete accounts of those investigations. The subjects of the studies range from the geologic effects of water currents and their capabilities of erosion and transportation, to delineation of potentially hazardous geologic characteristics of the area. Nine specific studies address the complexities of water currents, the nature of materials suspended in the sea waters, rates of mixing-in of material deposited on the bottom, and the sites of probable deposition of such materials, as well as sites and mechanisms of possible submarine landsliding or unstable bottom (engineering characteristics) of the Continental Slope and shelf.
Marine reservoir age variability and water mass distribution in the Iceland Sea
NASA Astrophysics Data System (ADS)
Eiríksson, Jón; Larsen, Gudrún; Knudsen, Karen Luise; Heinemeier, Jan; Símonarson, Leifur A.
2004-11-01
Lateglacial and Holocene tephra markers from Icelandic source volcanoes have been identified in five sediment cores from the North Icelandic shelf and correlated with tephra layers in reference soil sections in North Iceland and the GRIP ice core. Land-sea correlation of tephra markers, that have been radiocarbon dated with terrestrial material or dated by documentary evidence, provides a tool for monitoring reservoir age variability in the region. Age models developed for the shelf sediments north of Iceland, based on offshore tephrochronology on one hand and on calibrated AMS 14C datings of marine molluscs on the other, display major deviations during the last 4500 years. The inferred temporal variability in the reservoir age of the regional water masses exceeds by far the variability expected from the marine model calculations. The observed reservoir ages are generally considerably higher, by up to 450 years, than the standard model ocean. It is postulated that the intervals with increased and variable marine reservoir age reflect incursions of Arctic water masses derived from the East Greenland Current to the Iceland Sea and the North Icelandic shelf.
Geochemistry of the Amazon Estuary
Smoak, Joseph M.; Krest, James M.; Swarzenski, Peter W
2006-01-01
The Amazon River supplies more freshwater to the ocean than any other river in the world. This enormous volume of freshwater forces the estuarine mixing out of the river channel and onto the continental shelf. On the continental shelf, the estuarine mixing occurs in a very dynamic environment unlike that of a typical estuary. The tides, the wind, and the boundary current that sweeps the continental shelf have a pronounced influence on the chemical and biological processes occurring within the estuary. The dynamic environment, along with the enormous supply of water, solutes and particles makes the Amazon estuary unique. This chapter describes the unique features of the Amazon estuary and how these features influence the processes occurring within the estuary. Examined are the supply and cycling of major and minor elements, and the use of naturally occurring radionuclides to trace processes including water movement, scavenging, sediment-water interaction, and sediment accumulation rates. The biogeochemical cycling of carbon, nitrogen, and phosphorus, and the significances of the Amazon estuary in the global mass balance of these elements are examined.
Chantarasataporn, Patomporn; Tepkasikul, Preenapha; Kingcha, Yutthana; Yoksan, Rangrong; Pichyangkura, Rath; Visessanguan, Wonnop; Chirachanchai, Suwabun
2014-09-15
Water-based chitosans in the forms of oligochitosan (OligoCS) and nanowhisker chitosan (CSWK) are proposed as a novel food preservative based on a minced pork model study. The high surface area with a positive charge over the neutral pH range (pH 5-8) of OligoCS and CSWK lead to an inhibition against Gram-positive (Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus) and Gram-negative microbes (Salmonella enteritidis and Escherichia coli O157:H7). In the minced pork model, OligoCS effectively performs a food preservative for shelf-life extension as clarified from the retardation of microbial growth, biogenic amine formation and lipid oxidation during the storage. OligoCS maintains almost all myosin heavy chain protein degradation as observed in the electrophoresis. The present work points out that water-based chitosan with its unique morphology not only significantly inhibits antimicrobial activity but also maintains the meat quality with an extension of shelf-life, and thus has the potential to be used as a food preservative. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bai, Yi-Peng; Guo, Xiao-Nao; Zhu, Ke-Xue; Zhou, Hui-Ming
2017-12-15
The present study investigated the combined effects of aqueous ozone treatment and modified atmosphere packaging (MAP) on prolonging the shelf-life of semi-dried buckwheat noodles [SBWN; moisture content (22.5±0.5%)] at 25°C. Firstly, the different concentrations of ozonated water were used to make SBWN. Subsequently, SBWN prepared with ozonated water were packaged under six different conditions and stored for 11days. Changes in microbial, chemical-physical, textural properties and sensorial qualities of SWBN were monitored during storage. Microbiological results indicated that adopting 2.21mg/L of ozonated water resulted in a 1.8 log 10 CFU/g reduction of the initial microbial loads in SBWN. In addition, MAP suppressed the microbial growth with a concomitant reduction in the rates of acidification and quality deteriorations of SBWN. Finally, the shelf-life of sample packed under N 2 :CO 2 =30:70 was extended to 9days, meanwhile textural and sensorial characteristics were maintained during the whole storage period. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brooks, G.R.; Holmes, C.W.
1990-01-01
Depositional patterns and sedimentary processes influencing modern southwest Florida carbonate slope development have been identified based upon slope morphology, seismic facies and surface sediment characteristics. Three slope-parallel zones have been identified: (1) an upper slope progradational zone (100-500 m) characterized by seaward-trending progradational clinoforms and sediments rich in shelf-derived carbonate material, (2) a lower gullied slope zone (500-800 m) characterized by numerous gullies formed by the downslope transport of gravity flows, and (3) a base-of-slope zone (> 800 m) characterized by thin, lens-shaped gravity flow deposits and irregular topography interpreted to be the result of bottom currents and slope failure along the basal extensions of gullies. Modern slope development is interpreted to have been controlled by the offshelf transport of shallow-water material from the adjacent west Florida shelf, deposition of this material along a seaward advancing sediment front, and intermittent bypassing of the lower slope by sediments transported in the form of gravity flows via gullies. Sediments are transported offshelf by a combination of tides and the Loop Current, augmented by the passage of storm frontal systems. Winter storm fronts produce cold, dense, sediment-laden water that cascades offshelf beneath the strong, eastward flowing Florida Current. Sediments are eventually deposited in a relatively low energy transition zone between the Florida Current on the surface and a deep westward flowing counter current. The influence of the Florida Current is evident in the easternmost part of the study area as eastward prograding sediments form a sediment drift that is progressively burying the Pourtales Terrace. The modern southwest Florida slope has seismic reflection and sedimentological characteristics in common with slopes bordering both the non-rimmed west Florida margin and the rimmed platform of the northern Bahamas, and shows many similarities to the progradational Miocene section along the west Florida slope. As with rimmed platform slopes, development of non-rimmed platform slopes can be complex and controlled by a combination of processes that result in a variety of configurations. Consequently, the distinction between the two slope types based solely upon seismic and sedimentological characteristics may not be readily discernible. ?? 1990.
Geoengineering Marine Ice Sheets
NASA Astrophysics Data System (ADS)
Wolovick, M.
2017-12-01
Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting at the grounding line. Rapid melting near the grounding line causes ice shelf thinning, loss of buttressing, flow acceleration, grounding line retreat, and ultimately mass loss and sea-level rise. If the grounding line enters a section of overdeepened bed the ice sheet may even enter a runaway collapse via the marine ice sheet instability. The warm water that triggers this process resides offshore at depth and accesses the grounding line through deep troughs in the continental shelf. In Greenland, warm water transport is further constricted through narrow fjords. Here, I propose blocking warm water transport through these choke points with an artificial sill. Using a simple width- and depth-averaged model of ice stream flow coupled to a buoyant-plume model of ocean melting, I find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing the grounding line at depth. Blocking of warm water from the sub-ice cavity causes ice shelf thickening, increased buttressing, and grounding line readvance. The increase in buttressing is greatly magnified if the thickened ice shelf regrounds on a bathymetric high or on the artificial sill itself. In some experiments for Thwaites Glacier the grounding line is able to recover from a severely retreated state over 100 km behind its present-day position. Such a dramatic recovery demonstrates that it is possible, at least in principle, to stop and reverse an ongoing marine ice sheet collapse. If the ice shelf regrounds on the artificial sill itself, erosion of the sill beneath the grounded ice could reduce the effectiveness of the intervention. However, experiments including sill erosion suggest that even a very weak sill (1 kPa) could delay a collapse for centuries. The scale of the artificial sills in Greenlandic fjords is comparable to existing large public works, while in Antarctica they are one to two orders of magnitude larger. However, this is still small in comparison to the global disruption that would be caused by a collapse of West Antarctica. Marine-terminating ice streams are high-leverage points in the climate system, where global impacts can be achieved through local intervention.
NASA Astrophysics Data System (ADS)
Franz, Jasmin; Krahmann, Gerd; Lavik, Gaute; Grasse, Patricia; Dittmar, Thorsten; Riebesell, Ulf
2012-04-01
The tropical South East Pacific is characterized by strong coastal upwelling on the narrow continental shelf and an intense oxygen minimum zone (OMZ) in the intermediate water layer. These hydrographic properties are responsible for a permanent supply of intermediate water masses to the surface rich in nutrients and with a remarkably low inorganic N:P stoichiometry. To investigate the impact of OMZ-influenced upwelling waters on phytoplankton growth, elemental and taxonomical composition we measured hydrographic and biogeochemical parameters along an east-west transect at 10°S in the tropical South East Pacific, stretching from the upwelling region above the narrow continental shelf to the well-stratified oceanic section of the eastern boundary regime. New production in the area of coastal upwelling was driven by large-sized phytoplankton (e.g. diatoms) with generally low N:P ratios (<16:1). While nitrate and phosphate concentrations were at levels not limiting phytoplankton growth along the entire transect, silicate depletion prohibited diatom growth further off-shore. A deep chlorophyll a maximum consisting of pico-/nano- (Synechococcus, flagellates) and microphytoplankton occurred within a pronounced thermocline in subsurface waters above the shelf break and showed intermediate N:P ratios close to Redfield proportions. High PON:POP (>20:1) ratios were observed in the stratified open ocean section of the transect, coinciding with the abundance of two strains of the pico-cyanobacterium Prochlorococcus; a high-light adapted strain in the surface layer and a low-light adapted strain occurring along the oxic-anoxic transition zone below the thermocline. Excess phosphate present along the entire transect did not appear to stimulate growth of nitrogen-fixing phytoplankton, as pigment fingerprinting did not indicate the presence of diazotrophic cyanobacteria at any of our sampling stations. Instead, a large fraction of the excess phosphate generated within the oxygen minimum zone was consumed by non-Redfield production of large phytoplankton in shelf surface waters.
NASA Astrophysics Data System (ADS)
Dejardin, Rowan; Kender, Sev; Allen, Claire S.; Leng, Melanie J.; Swann, George E. A.; Peck, Victoria L.
2018-01-01
It is widely held that benthic foraminifera exhibit species-specific calcification depth preferences, with their tests recording sediment pore water chemistry at that depth (i.e. stable isotope and trace metal compositions). This assumed depth-habitat-specific pore water chemistry relationship has been used to reconstruct various palaeoenvironmental parameters, such as bottom water oxygenation. However, many deep-water foraminiferal studies show wide intra-species variation in sediment living depth but relatively narrow intra-species variation in stable isotope composition. To investigate this depth-habitat-stable-isotope relationship on the shelf, we analysed depth distribution and stable isotopes of living
(Rose Bengal stained) benthic foraminifera from two box cores collected on the South Georgia shelf (ranging from 250 to 300 m water depth). We provide a comprehensive taxonomic analysis of the benthic fauna, comprising 79 taxonomic groupings. The fauna shows close affinities with shelf assemblages from around Antarctica. We find live
specimens of a number of calcareous species from a range of depths in the sediment column. Stable isotope ratios (δ13C and δ18O) were measured on stained specimens of three species, Astrononion echolsi, Cassidulinoides porrectus, and Buccella sp. 1, at 1 cm depth intervals within the downcore sediment sequences. In agreement with studies in deep-water settings, we find no significant intra-species variability in either δ13Cforam or δ18Oforam with sediment living depth on the South Georgia shelf. Our findings add to the growing evidence that infaunal benthic foraminiferal species calcify at a fixed depth. Given the wide range of depths at which we find living
, infaunal
species, we speculate that they may actually calcify predominantly at the sediment-seawater interface, where carbonate ion concentration and organic carbon availability is at a maximum.
Peculiarities of spreading of acoustic waves over a shelf with decreasing depth
NASA Astrophysics Data System (ADS)
Dolgikh, G. I.; Budrin, S. S.; Ovcharenko, V. V.; Plotnikov, A. A.
2016-09-01
We analyze experimental data collected in Vityaz Bay of the Sea of Japan during study of the peculiarities of spreading of hydroacoustic waves over a shelf with decreasing depth. We found that the waves propagate over a shelf with depths greater than half of the hydroacoustic wave according to the law of cylindrical divergence with least losses of the wave energy. If the depths are shallower than half of the hydroacoustic wave, they spread along the water-bottom boundary as Rayleigh waves of decaying and undamped types with significant absorption of the wave energy by the bottom.
Gardner, James V.; Hughes-Clarke, John E.; Meyer, Larry A.
2002-01-01
The mid to outer continental shelf off Mississippi-Alabama and off northwest Florida were the focus of US Geological Survey (USGS) multibeam echosounder (MBES) mapping cruises in 2000 and 2001, respectively. These areas were mapped to investigate the extent of "deep-water reefs" first suggested by Ludwick and Walton (1957). The reefs off Mississippi and Alabama were initially described in water depths of 60 to 120 m (Ludwick and Walton, 1957) but the 2000 mapping found reef and hardgrounds to be much more extensive than previously thought (Gardner et al., 2001). The persistent trend of reef-like features along the outer shelf of Mississippi-Alabama suggested the trend might continue along the northwest Florida mid and outer shelf so a MBES-mapping effort was mounted in 2001 to test this suggestion. It is critical to determine the accurate location, geomorphology, and types of the ridges and reefs that occur in this region to understand the Quaternary history of the area and to assess their importance as benthic habitats for fisheries. The 2001 survey found a series of shelf-depth platforms with ridges (possibly reefs) constructed on their surfaces (Gardner et al., 2002). The area known as the "head of De Soto Canyon" is the large unmapped region between the 2000 and 2001 mapped areas. The head of De Soto Canyon is an outer shelf zone with a relatively steep western wall and a much gentler eastern wall. It was unknown prior to this cruise whether the reefs of the Mississippi-Alabama shelf continue eastward into the head of De Soto Canyon and connect with the ridges and reefs mapped on the northwest Florida outer shelf. The existence of carbonate-cemented latest Quaternary to Holocene sandstones along the western wall of the head of De Soto Canyon (Shipp and Hopkins, 1978; Benson et al., 1997; W.W. Schroeder, personnel comm., 2002) is of interest because of the potential benthic habitats they may represent. Precisely georeferenced high-resolution mapping of bathymetry is a fundamental first step in the study of an area suspected to be critical benthic habitats. Morphology is thought to be critical to define the distribution of dominant demersal plankton/planktivores communities. Community structure and trophodynamics of demersal fishes of the outer continental shelf of the northeastern Gulf of Mexico presently are focuses of a major USGS research project. A goal of the project is to answer questions concerning the relative roles played by morphology and surficial geology in controlling biological differentiation. Deep-water ridges, reefs, and outcrops are important because they are fish havens and key spawning sites, and are critical habitats for larval, juvenile, and economically important sport/food fishes.
NASA Astrophysics Data System (ADS)
Sabatés, A.; Olivar, M. P.; Salat, J.; Palomera, I.; Alemany, F.
2007-08-01
The Mediterranean is globally considered an oligotrophic sea. However, there are some places or certain seasons in which mechanisms that enhance fertility may occur. These mechanisms and related processes are especially relevant when they take place during the period of larval development. This study analyzes how environmental conditions occurring in the NW Mediterranean, at local and seasonal scales, contribute to determine the temporal and spatial patterns of fish reproductive activity in the region. The structure of the bathymetry, types of bottoms, diversity of adult fish habitats, as well as mechanisms conditioning the primary production of the region determine the location of spawning, whereas physical processes (e.g., shelf-slope density front and associated current, continental water inflows, winter mixing, stratification of the water column) determine the final distribution patterns of fish eggs and larvae. High larval concentrations occur over the edge of the continental shelf in relation to the presence of the shelf-slope front and its associated convergence. However, this pattern is subject to considerable spatio-temporal variability, due to frontal mesoscale activity. High larval abundance can also be observed near the coast in zones with topographic irregularities that can greatly modify circulation favouring penetration of slope waters into the shelf. Finally, larvae of large pelagic migratory species are mainly distributed in areas under the influence of recent Atlantic Water (AW) and near the frontal system between these inflowing AW and the more saline waters of the northern basin. A pronounced seasonal variability regarding both the number of species and the number of fish larvae in the plankton can be observed throughout the year. The two dominant species, sardine and anchovy, have non-overlapping spawning periods, autumn-winter and spring-summer, respectively. The diversity of feeding patterns as well as the fact that different fish species have different spawning periods might reduce inter- and intra-specific competition for food resources in this area. Most NW Mediterranean fish reproduce during the spring-summer stratification period, when the phytoplankton biomass values at the upper layers of the water column are lower than in winter. The development of the Deep Chlorophyll Maximum in this period and the high zooplankton biomass associated to it offers an important food source for the larvae. Additionally, during this period the inputs of continental waters in certain areas are one of the fertilization mechanisms of surface waters and some species, as anchovy, takes advantage of this situation. Autumn-winter is the period with lower ichthyoplankton diversity, being dominated by sardine, which reproduces on the continental shelf. The mixing of the water column during winter is one of the mechanisms that enhances productivity on continental shelves. Moreover, there are no intense currents on the shelf and the circulation is usually anticyclonic, favouring larval retention in this zone. Fish species show reproductive strategies and larval fish behaviour that allow them to take advantage of the available resources throughout the seasonal cycle. These strategies, together with the high ecological efficiency of oligotrophic systems, contribute to the relatively high yield of Mediterranean fisheries.
NASA Astrophysics Data System (ADS)
Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander
2017-05-01
Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.
Hydrodynamically-driven distribution of lanternfish larvae in the Southeast Brazilian Bight
NASA Astrophysics Data System (ADS)
Namiki, Cláudia; Katsuragawa, Mario; Napolitano, Dante Campagnoli; Zani-Teixeira, Maria de Lourdes; Mattos, Rafael Augusto de; Silveira, Ilson Carlos Almeida da
2017-06-01
This study analyzes the influence of the Brazil Current and Ekman transport on the distribution of lanternfish larvae in the Southeast Brazilian Bight during summer and winter. Larvae of 19 taxa of lanternfish were identified, and Diaphus spp. and M. affine were the most abundant. Three water masses were present in the area: Coastal Water, Tropical Water and South Atlantic Central Water. Lanternfish larvae were associated with the Tropical Water in both seasons. During summer, species of Lampanyctinae were associated with the shallowest layers and Myctophinae in the deepest layers. In winter most species of both subfamilies were associated with intermediate depths, probably because greater mixing of water masses occurred at the surface and 100 m depth, limiting their distribution. During both cruises, the presence of lanternfish larvae in the continental shelf was related to the pattern of Tropical Water intrusion, which was mostly driven by the mesoscale activity of the Brazil Current and its interaction with the continental shelf.
Ocean forcing of Ice Sheet retreat in central west Greenland from LGM to the early Holocene
NASA Astrophysics Data System (ADS)
Jennings, Anne E.; Andrews, John T.; Ó Cofaigh, Colm; Onge, Guillaume St.; Sheldon, Christina; Belt, Simon T.; Cabedo-Sanz, Patricia; Hillaire-Marcel, Claude
2017-08-01
Three radiocarbon dated sediment cores from trough mouth fans on the central west Greenland continental slope were studied to determine the timing and processes of Greenland Ice Sheet (GIS) retreat from the shelf edge during the last deglaciation and to test the role of ocean forcing (i.e. warm ocean water) thereon. Analyses of lithofacies, quantitative x-ray diffraction mineralogy, benthic foraminiferal assemblages, the sea-ice biomarker IP25, and δ18 O of the planktonic foraminifera Neogloboquadrina pachyderma sinistral from sediments in the interval from 17.5-10.8 cal ka BP provide consistent evidence for ocean and ice sheet interactions during central west Greenland (CWG) deglaciation. The Disko and Uummannaq ice streams both retreated from the shelf edge after the last glacial maximum (LGM) under the influence of subsurface, warm Atlantic Water. The warm subsurface water was limited to depths below the ice stream grounding lines during the LGM, when the GIS terminated as a floating ice shelf in a sea-ice covered Baffin Bay. The deeper Uummannaq ice stream retreated first (ca. 17.1 cal ka BP), while the shallower Disko ice stream retreated at ca. 16.2 cal ka BP. The grounding lines were protected from accelerating mass loss (calving) by a buttressing ice shelf and by landward shallowing bathymetry on the outer shelf. Calving retreat was delayed until ca. 15.3 cal ka BP in the Uummannaq Trough and until 15.1 cal ka BP in the Disko Trough, during another interval of ocean warming. Instabilities in the Laurentide, Innuitian and Greenland ice sheets with outlets draining into northern Baffin Bay periodically released cold, fresh water that enhanced sea ice formation and slowed GIS melt. During the Younger Dryas, the CWG records document strong cooling, lack of GIS meltwater, and an increase in iceberg rafted material from northern Baffin Bay. The ice sheet remained in the cross-shelf troughs until the early Holocene, when it retreated rapidly by calving and strong melting under the influence of atmosphere and ocean warming and a steep reverse slope toward the deep fjords. We conclude that ocean warming played an important role in the palaeo-retreat dynamics of the GIS during the last deglaciation.
Marta-Almeida, Martinho; Mendes, Renato; Amorim, Fabiola N; Cirano, Mauro; Dias, João M
2016-11-15
On 5 November 2015, the Fundão tailings dam collapsed and its content first reached River Doce and then the Atlantic Ocean by 22 November. This study focuses on the oceanic time and space patterns of river discharge dispersion. By using an ocean model together with nLw(555) and RGB images from MODIS sensors, the river plume was followed for 2months after the arrival of the tailings at the ocean. The results show the huge effect of this accident and reveal that riverine waters may have dispersed hundreds of kilometres, reaching regions as far as the shelf in front of the city of Rio de Janeiro. The movement of the freshwater was essentially to the south in accordance with the seasonal wind regime. Episodic frontal systems, leading to wind reversion, and oceanic mesoscale features contribute to the offshore dispersion of the plume. The region more often in contact with the riverine waters was located at the inner shelf between the river mouth and the city of Vitória, turning to the outer shelf and shelf break at lower latitudes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
do Nascimento Silva, Luzia Liniane; Gomes, Moab Praxedes; Vital, Helenice
2018-05-01
Submerged reefs, referred to as the Açu Reefs, have been newly observed on both sides of the Açu Incised Valley on the northeastern equatorial Brazilian outer shelf. This study aims to understand the roles of shelf physiography, its antecedent morphologies, and its inter reef sedimentation on the different development stages of the biogenic reef during last deglacial sea-level rise. The data sets consist of side-scan sonar imagery, one sparker seismic profile, 76 sediment samples, and underwater photography. Seven backscatter patterns (P1 to P7) were identified and associated with eleven sedimentary carbonate and siliciclastic facies. The inherited relief, the mouth of the paleo incised valley, and the interreef sediment distribution play major controls on the deglacial reef evolution. The reefs occur in a depth-limited 25-55 m water depth range and in a 6 km wide narrow zone of the outer shelf. The reefs crop out in a surface area over 100 km2 and occur as a series of NW-SE preferentially orientated ridges composed of three parallel ridge sets at 45, 35, and 25 m of water depth. The reefs form a series of individual, roughly linear ridges, tens of km in length, acting as barriers in addition to scattered reef mounds or knolls, averaging 4 m in height and grouped in small patches and aggregates. The reefs, currently limited at the transition between the photic and mesophotic zones, are thinly covered by red algae and scattered coral heads and sponges. Taking into account the established sea-level curves from the equatorial Brazilian northeastern shelf / Rochas Atoll and Barbados, the shelf physiography, and the shallow bedrock, the optimal conditions for reef development had to occur during a time interval (11-9 kyr BP) characterized by a slowdown of the outer shelf flooding, immediately following Meltwater Pulse-1B. This 2 kyr short interval provided unique conditions for remarkable reef backstepping into distinct parallel ridge sets. Furthermore, the Açu Reefs have trapped relict siliciclastic sediments within the three sets of reefs, west of the Açu Incised Valley and adjacent coasts. Lines evidence of easterly nearshore currents carried sediments from the old Açu Incised Valley and adjacent coasts. These incipiently drowned reefs influence the water circulation patterns of the modern shelf system, its carbonate sedimentation, and sediment transport. This study provides a new example of reef occurrence which might be more commonly observed on similar equatorial continental shelves.
Uncovering the glacial history of the Irish continental shelf (Invited)
NASA Astrophysics Data System (ADS)
Dunlop, P.; Benetti, S.; OCofaigh, C.
2013-12-01
In 1999 the Irish Government initiated a €32 million survey of its territorial waters known as the Irish National Seabed Survey (INSS). The INSS is amongst the largest marine mapping programmes ever undertaken anywhere in the world and provides high-resolution multibeam, backscatter and seismic data of the seabed around Ireland. These data have been used to provide the first clear evidence for extensive glaciation of the continental shelf west and northwest of Ireland. Streamlined drumlins on the mid to outer shelf record former offshore-directed ice flow towards the shelf edge and show that the ice sheet was grounded in a zone of confluence where ice flowing onto the shelf from northwest Ireland merged with ice flowing across the Malin Shelf from southwest Scotland. The major glacial features on the shelf are well developed nested arcuate moraine systems that mark the position of the ice sheet margin and confirm that the former British Irish Ice Sheet was grounded as far as the shelf edge around 100 km offshore of west Donegal at the last glacial maximum. Distal to the moraines, on the outermost shelf, prominent zones of iceberg plough marks give way to the Barra/Donegal fan and a well developed system of gullies and canyons which incise the continental slope. Since 2008 several scientific cruises have retrieved cores from the shelf and slope to help build a more detailed understanding of glacial events in this region. This presentation will provide an overview of the glacial history of the Irish shelf and will discuss ongoing research programmes that are building on the initial research findings to produce a better understanding of the nature and timing of ice sheet events in this region.
Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...
Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...
Duan, Zhen-Hua; Liu, Hua-Zhong; Luo, Ping; Gu, Yi-Peng; Li, Yan-Qun
2018-03-14
Preservative effect of melanin-free extract of Sepia esculenta ink (MFESI) on Sparus latus fillet has been verified in our previous work. This study aims to further approach the mechanism of MFESI for extending the shelf-life of fish fillet during cold storage. Tilapia fillets were treated with different dosage of MFESI (0, 15, 25 and 35 mg/ml) and packed with preservative film for succedent cold-storage at 4 °C for scheduled time. Contents of total volatile basic nitrogen and sulfydryl and carbanyl groups were measured for evaluating protein oxidation. Malondialdehyde contents were measured for estimating lipid peroxidation and loss of water was used to determine water-holding capacity of fillet. The data indicated that MFESI not only possessed certain degree of antioxidant capacity in vitro, also lengthened shelf-life of tilapia fillet in cold-storage condition. Apart from 15 mg/ml, both 25 and 35 mg/ml of MFESI obviously prevented lipid and protein from oxidation and reduced loss of water from tilapia fillets, and the latter was more effective than the former. MFESI can repress lipid peroxidation and protein oxidation and reduce water loss, maintain the tilapia fillets quality and, thus, it could be an effective and natural preservative for extending the shelf-life of tilapia fillets during cold storage.
Sources, extent and history of methane seepage on the continental shelf off northern Norway
NASA Astrophysics Data System (ADS)
Sauer, Simone; Lepland, Aivo; Chand, Shyam; Schubert, Carsten J.; Eichinger, Florian; Knies, Jochen
2014-05-01
Active natural hydrocarbon gas seepage was recently discovered in the Hola area on the continental shelf off Vesterålen, northern Norway. We conducted acoustic and geochemical investigations to assess the modern and past extent, source and pathways of the gas seepage . Water column echosounder surveys showed bubble plumes up to several tens of metres above the seafloor. Analyses of dissolved methane in the water column indicated slightly elevated concentrations (50 nM) close to the seafloor. To identify fluxes and origin of methane in the sediments we analysed sediment pore water chemistry, the isotopic composition of methane and of dissolved inorganic carbon (d13CCH4, d2HCH4, d13CDIC) in three closely spaced (
PALADYN v1.0, a comprehensive land surface-vegetation-carbon cycle model of intermediate complexity
NASA Astrophysics Data System (ADS)
Willeit, Matteo; Ganopolski, Andrey
2016-10-01
PALADYN is presented; it is a new comprehensive and computationally efficient land surface-vegetation-carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies. The model treats in a consistent manner the interaction between atmosphere, terrestrial vegetation and soil through the fluxes of energy, water and carbon. Energy, water and carbon are conserved. PALADYN explicitly treats permafrost, both in physical processes and as an important carbon pool. It distinguishes nine surface types: five different vegetation types, bare soil, land ice, lake and ocean shelf. Including the ocean shelf allows the treatment of continuous changes in sea level and shelf area associated with glacial cycles. Over each surface type, the model solves the surface energy balance and computes the fluxes of sensible, latent and ground heat and upward shortwave and longwave radiation. The model includes a single snow layer. Vegetation and bare soil share a single soil column. The soil is vertically discretized into five layers where prognostic equations for temperature, water and carbon are consistently solved. Phase changes of water in the soil are explicitly considered. A surface hydrology module computes precipitation interception by vegetation, surface runoff and soil infiltration. The soil water equation is based on Darcy's law. Given soil water content, the wetland fraction is computed based on a topographic index. The temperature profile is also computed in the upper part of ice sheets and in the ocean shelf soil. Photosynthesis is computed using a light use efficiency model. Carbon assimilation by vegetation is coupled to the transpiration of water through stomatal conductance. PALADYN includes a dynamic vegetation module with five plant functional types competing for the grid cell share with their respective net primary productivity. PALADYN distinguishes between mineral soil carbon, peat carbon, buried carbon and shelf carbon. Each soil carbon type has its own soil carbon pools generally represented by a litter, a fast and a slow carbon pool in each soil layer. Carbon can be redistributed between the layers by vertical diffusion and advection. For the vegetated macro surface type, decomposition is a function of soil temperature and soil moisture. Carbon in permanently frozen layers is assigned a long turnover time which effectively locks carbon in permafrost. Carbon buried below ice sheets and on flooded ocean shelves is treated differently. The model also includes a dynamic peat module. PALADYN includes carbon isotopes 13C and 14C, which are tracked through all carbon pools. Isotopic discrimination is modelled only during photosynthesis. A simple methane module is implemented to represent methane emissions from anaerobic carbon decomposition in wetlands (including peatlands) and flooded ocean shelf. The model description is accompanied by a thorough model evaluation in offline mode for the present day and the historical period.
NASA Astrophysics Data System (ADS)
Sergienko, O. V.
2013-09-01
Recent surveys of floating ice shelves associated with Pine Island Glacier (Antarctica) and Petermann Glacier (Greenland) indicate that there are channels incised upward into their bottoms that may serve as the conduits of meltwater outflow from the sub-ice-shelf cavity. The formation of the channels, their evolution over time, and their impact on ice-shelf flow are investigated using a fully-coupled ice-shelf/sub-ice-shelf ocean model. The model simulations suggest that channels may form spontaneously in response to meltwater plume flow initiated at the grounding line if there are relatively high melt rates and if there is transverse to ice-flow variability in ice-shelf thickness. Typical channels formed in the simulations have a width of about 1-3 km and a vertical relief of about 100-200 m. Melt rates and sea-water transport in the channels are significantly higher than on the smooth flat ice bottom between the channels. The melt channels develop through melting, deformation, and advection with ice-shelf flow. Simulations suggest that both steady state and cyclic state solutions are possible depending on conditions along the lateral ice-shelf boundaries. This peculiar dynamics of the system has strong implications on the interpretation of observations. The richness of channel morphology and evolution seen in this study suggests that further observations and theoretical analysis are imperative for understanding ice-shelf behavior in warm oceanic conditions.
Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage
NASA Astrophysics Data System (ADS)
Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.
2017-12-01
Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.
NASA Astrophysics Data System (ADS)
Liu, Y.; Weisberg, R. H.; Lenes, J. M.; Zheng, L.; Hubbard, K.; Walsh, J. J.
2017-12-01
Gulf of Mexico Loop Current (LC) interactions with the West Florida Shelf (WFS) slope play an important role in shelf ecology through the upwelling of new inorganic nutrients across the shelf break. This is particularly the case when the LC impinges upon the shelf slope in the southwest portion of the WFS near the Dry Tortugas. By contacting shallow water isobaths at this "pressure point" the LC forcing sets the entire shelf into motion. Characteristic patterns of LC interactions with the WFS and their occurrences are identified from altimetry data using unsupervised neural network, self-organizing map. The duration of the occurrences of such LC patterns is used as an indicator of offshore forcing of anomalous upwelling. Consistency is found between the altimetry-derived offshore forcing and the occurrence and severity of WFS coastal blooms of the toxic dinoflagellate, Karenia brevis: years without major blooms tend to have prolonged LC contact at the "pressure point," whereas years with major blooms tend not to have prolonged offshore forcing. Resetting the nutrient state of the shelf by the coastal ocean circulation in response to deep-ocean forcing demonstrates the importance of physical oceanography in shelf ecology. A satellite altimetry-derived seasonal predictor for major K. brevis blooms is also proposed.
NASA Astrophysics Data System (ADS)
Liu, Yonggang; Weisberg, Robert H.; Lenes, Jason M.; Zheng, Lianyuan; Hubbard, Katherine; Walsh, John J.
2016-08-01
Gulf of Mexico Loop Current (LC) interactions with the West Florida Shelf (WFS) slope play an important role in shelf ecology through the upwelling of new inorganic nutrients across the shelf break. This is particularly the case when the LC impinges upon the shelf slope in the southwest portion of the WFS near the Dry Tortugas. By contacting shallow water isobaths at this "pressure point" the LC forcing sets the entire shelf into motion. Characteristic patterns of LC interactions with the WFS and their occurrences are identified using unsupervised neural network, self-organizing map, from 23 years (1993-2015) of altimetry data. The duration of the occurrences of such LC patterns is used as an indicator of offshore forcing of anomalous upwelling. Consistency is found between the altimetry-derived offshore forcing and the occurrence and severity of WFS coastal blooms of the toxic dinoflagellate, Karenia brevis: years without major blooms tend to have prolonged LC contact at the "pressure point," whereas years with major blooms tend not to have prolonged offshore forcing. Resetting the nutrient state of the shelf by the coastal ocean circulation in response to deep-ocean forcing demonstrates the importance of physical oceanography in shelf ecology. A satellite altimetry-derived seasonal predictor for major K. brevis blooms is also proposed.
Watt, Janet Tilden; Johnson, Samuel Y.; Hartwell, Stephen R.; Roberts, Michelle
2015-01-01
Sea level was approximately 120 to 130 m lower during the Last Glacial Maximum (about 21 ka). This approximate depth corresponds to the modern shelf break, a lateral change from the gently dipping (0.8° to 1.0°) outer shelf to the slightly more steeply dipping (about 1.5° to 2.5°) upper slope in the central and northern parts of the map area. South of Point San Luis in San Luis Bay, deltaic deposits offshore of the mouth of the Santa Maria River (11 km south of the map area) have prograded across the shelf break and now form a continuous low-angle (about 0.8°) ramp that extends to water depths of more than 160 m. The shelf break defines the landward boundary of slope deposits. North of Estero Bay, the shelf break is characterized by a distinctly sharp slope break that is mapped as a landslide headscarp above landslide deposits. Multibeam imagery and seismic-reflection profiles across this part of the shelf break show evidence of slope failure, such as slumping, sliding, and soft-sediment deformation, along the entire length of the scarp. Notably, this shelf-break scarp corresponds to a west splay of the Hosgri Fault that dies out just north of the scarp, suggesting that faulting is controlling the location (and instability) of the shelf break in this area.
Lohrenz, Steven E.; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt
2008-01-01
The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490) and chlorophyll (chlor_a) from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies) identified on the basis of sea surface height anomaly (SSHA). Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels off Texas and Louisiana were speculated to be due to the presence of fine grain sediment or dissolved materials that remained in the water column following the storm, and may also have been associated with enhanced phytoplankton biomass stimulated by the intense vertical mixing and offshore delivery of shelf water and associated nutrients. This latter view was supported by observations of high chlor_a in association with regions of cyclonic circulation. PMID:27879927
Lohrenz, Steven E; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt
2008-07-10
The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490) and chlorophyll (chlor_a) from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies) identified on the basis of sea surface height anomaly (SSHA). Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels off Texas and Louisiana were speculated to be due to the presence of fine grain sediment or dissolved materials that remained in the water column following the storm, and may also have been associated with enhanced phytoplankton biomass stimulated by the intense vertical mixing and offshore delivery of shelf water and associated nutrients. This latter view was supported by observations of high chlor_a in association with regions of cyclonic circulation.
Seabed topography beneath Larsen C Ice Shelf from seismic soundings
NASA Astrophysics Data System (ADS)
Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.
2013-08-01
Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines were collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-shelf oceanic circulation may be affected by ice draft and sub-shelf cavity thickness. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general <10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-shelf ocean circulation models.
Albuquerque, Ana Luiza S; Belém, André L; Zuluaga, Francisco J B; Cordeiro, Livia G M; Mendoza, Ursula; Knoppers, Bastiaan A; Gurgel, Marcio H C; Meyers, Philip A; Capilla, Ramsés
2014-05-14
Physical and biogeochemical processes in continental shelves act synergistically in both transporting and transforming suspended material, and ocean dynamics control the dispersion of particles by the coastal zone and their subsequent mixing and dilution within the shelf area constrained by oceanic boundary currents, followed by their gradual settling in a complex sedimentary scenario. One of these regions is the Cabo Frio Upwelling System located in a significantly productive area of Southeastern Brazil, under the control of the nutrient-poor western boundary Brazil Current but also with a wind-driven coastal upwelling zone, inducing cold-water intrusions of South Atlantic Central Water on the shelf. To understand these synergic interactions among physical and biogeochemical processes in the Cabo Frio shelf, a series of four experiments with a total of 98 discrete samples using sediment traps was performed from November 2010 to March 2012, located on the 145 m isobath on the edge of the continental shelf. The results showed that lateral transport might be relevant in some cases, especially in deep layers, although no clear seasonal cycle was detected. Two main physical-geochemical coupling scenarios were identified: singular downwelling events that can enhance particles fluxes and are potentially related to the Brazil Current oscillations; and events of significant fluxes related to the intrusion of the 18°C isotherm in the euphotic zone. The particulate matter settling in the Cabo Frio shelf area seems to belong to multiple marine and terrestrial sources, in which both Paraiba do Sul River and Guanabara Bay could be potential land-sources, although the particulate material might subject intense transformation (diagenesis) during its trajectory to the shelf edge.
NASA Astrophysics Data System (ADS)
Luo, Xin; Jiao, Jiu Jimmy; Liu, Yi; Zhang, Xiaolang; Liang, Wenzhao; Tang, Danling
2018-01-01
The biogeochemical processes in the continental shelf systems are usually extensively influenced by coastal upwelling and submarine groundwater discharge (SGD). Using eastern Hainan upwelling shelf system as an example, this study fully investigates SGD and coastal upwelling and their effects on the coastal nutrient loadings to the mixing layer of eastern Hainan shelf. Based on the spatial distributions of 223Ra and 228Ra, water residence time is estimated to be 16.9 ± 8.9 days. Based on the mass balance models of 226Ra and 228Ra, the total SGD of the eastern Hainan shelf is estimated to be 0.8 × 108 and 1.4 × 108 m3 d-1, respectively. The groundwater borne dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphate (DIP) are estimated to be up to 1121.8 and 20.4 μM m2 d-1. The coastal upwelling delivers 2741.8 μM m2 d-1 DIN and 217.7 μM m2 d-1 DIP into the mixing layer, which are predominant in all the exogenous nutrient inputs. The groundwater borne DIN will support a maximum new production of 7.5 mM C m2 d-1, about up to 24.0% of the total new production in the study area. SGD-derived nutrient could be significant as a missing DIN to support the new production in the mixing layer of eastern Hainan shelf. The findings contribute to a better understanding of biogeochemical processes under the influences of SGD and coastal upwelling in the study area and other similar coastal upwelling systems.
The 20th-century development and expansion of Louisiana shelf hypoxia, Gulf of Mexico
Osterman, L.E.; Poore, R.Z.; Swarzenski, P.W.; Senn, D.B.; DiMarco, Steven F.
2009-01-01
Since systematic measurements of Louisiana continental-shelf waters were initiated in 1985, hypoxia (oxygen content <2 mg L-1) has increased considerably in an area termed the dead zone. Monitoring and modeling studies have concluded that the expansion of the Louisiana shelf dead zone is related to increased anthropogenically derived nutrient delivery from the Mississippi River drainage basin, physical and hydrographical changes of the Louisiana Shelf, and possibly coastal erosion of wetlands in southern Louisiana. In order to track the development and expansion of seasonal low-oxygen conditions on the Louisiana shelf prior to 1985, we used a specific low-oxygen foraminiferal faunal proxy, the PEB index, which has been shown statistically to represent the modern Louisiana hypoxia zone. We constructed a network of 13 PEB records with excess 210Pb-derived chronologies to establish the development of low-oxygen and hypoxic conditions over a large portion of the modern dead zone for the last 100 years. The PEB index record indicates that areas of low-oxygen bottom water began to appear in the early 1910s in isolated hotspots near the Mississippi Delta and rapidly expanded across the entire Louisiana shelf beginning in the 1950s. Since ???1950, the percentage of PEB species has steadily increased over a large portion of the modern dead zone. By 1960, subsurface low-oxygen conditions were occurring seasonally over a large part of the geographic area now known as the dead zone. The long-term trends in the PEB index are consistent with the 20th-century observational and proxy data for low oxygen and hypoxia. ?? 2009 US Government.
Chilean Tsunami Rocks the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.
2016-12-01
The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.
Seismic Excitation of the Ross Ice Shelf by Whillans Ice Stream Stick-Slip Events
NASA Astrophysics Data System (ADS)
Wiens, D.; Pratt, M. J.; Aster, R. C.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.; Diez, A.; Cai, C.; Anthony, R. E.; Shore, P.
2015-12-01
Rapid variations in the flow rate of upstream glaciers and ice streams may cause significant deformation of ice shelves. The Whillans Ice Stream (WIS) represents an extreme example of rapid variations in velocity, with motions near the grounding line consisting almost entirely of once or twice-daily stick-slip events with a displacement of up to 0.7 m (Winberry et al, 2014). Here we report observations of compressional waves from the WIS slip events propagating hundreds of kilometers across the Ross Ice Shelf (RIS) detected by broadband seismographs deployed on the ice shelf. The WIS slip events consist of rapid basal slip concentrated at three high friction regions (often termed sticky-spots or asperities) within a period of about 25 minutes (Pratt et al, 2014). Compressional displacement pulses from the second and third sticky spots are detected across the entire RIS up to about 600 km away from the source. The largest pulse results from the third sticky spot, located along the northwestern grounding line of the WIS. Propagation velocities across the ice shelf are significantly slower than the P wave velocity in ice, as the long period displacement pulse is also sensitive to velocities of the water and sediments beneath the ice shelf. Particle motions are, to the limit of resolution, entirely within the horizontal plane and roughly radial with respect to the WIS sticky-spots, but show significant complexity, presumably due to differences in ice velocity, thickness, and the thickness of water and sediment beneath. Study of this phenomenon should lead to greater understanding of how the ice shelf responds to sudden forcing around the periphery.
NASA Technical Reports Server (NTRS)
Petty, Alek A.; Markus, Thorsten; Kurtz, Nathan T.
2017-01-01
Antarctic sea ice is a crucial component of the global climate system. Rapid sea ice production regimes around Antarctica feed the lower branch of the Southern Ocean overturning circulation through intense brine rejection and the formation of Antarctic Bottom Water (e.g., Orsi et al. 1999; Jacobs 2004), while the northward transport and subsequent melt of Antarctic sea ice drives the upper branch of the overturning circulation through freshwater input (Abernathy et al. 2016). Wind-driven trends in Antarctic sea ice (Holland Kwok 2012) have likely increased the transport of freshwater away from the Antarctic coastline, significantly altering the salinity distribution of the Southern Ocean (Haumann et al. 2016). Conversely, weaker sea ice production and the lack of shelf water formation over the Amundsen and Bellingshausen shelf seas promote intrusion of warm Circumpolar Deep Water onto the continental shelf and the ocean-driven melting of several ice shelves fringing the West Antarctic Ice Sheet (e.g., Jacobs et al. 2011; Pritchard et al. 2012; Dutrieux et al. 2014). Sea ice conditions around Antarctica are also increasingly considered an important factor impacting local atmospheric conditions and the surface melting of Antarctic ice shelves (e.g., Scambos et al. 2017). Sea ice formation around Antarctica is responsive to the strong regional variability in atmospheric forcing present around Antarctica, driving this bimodal variability in the behavior and properties of the underlying shelf seas (e.g., Petty et al. 2012; Petty et al. 2014).
Glider observations of the Dotson Ice Shelf outflow and its connection to the Amundsen Sea Polynya
NASA Astrophysics Data System (ADS)
Miles, T. N.; Schofield, O.; Lee, S. H.; Yager, P. L.; Ha, H. K.
2016-02-01
The Amundsen Sea is one of the most productive polynyas in the Antarctic per unit area and is undergoing rapid changes including a reduction in sea ice duration, thinning ice sheets, retreat of glaciers and the potential collapse of the Thwaites Glacier in Pine Island Bay. A growing body of research has indicated that these changes are altering the water mass properties and associated biogeochemistry within the polynya. Unfortunately difficulties in accessing the remote location have greatly limited the amount of in situ data that has been collected. In this study data from a Teledyne-Web Slocum glider was used to supplement ship-based sampling along the Dotson Ice Shelf (DIS). This autonomous underwater vehicle revealed a detailed view of a meltwater laden outflow from below the western flank of the DIS. Circumpolar Deep Water intruding onto the shelf drives glacial melt and the supply of macronutrients that, along with ample light, supports the large phytoplankton blooms in the Amundsen Sea Polynya. Less well understood is the source of micronutrients, such as iron, necessary to support this bloom to the central polynya where chlorophyll concentrations are highest. This outflow region showed decreasing optical backscatter with proximity to the bed indicating that particulate matter was sourced from the overlying glacier rather than resuspended sediment. This result suggests that particulate iron, and potentially phytoplankton primary productivity, is intrinsically linked to the magnitude and duration of sub-glacial melt from Circumpolar Deep Water intrusions onto the shelf.
Glider observations of the Dotson Ice Shelf outflow
NASA Astrophysics Data System (ADS)
Miles, Travis; Lee, Sang Hoon; Wåhlin, Anna; Ha, Ho Kyung; Kim, Tae Wan; Assmann, Karen M.; Schofield, Oscar
2016-01-01
The Amundsen Sea is one of the most productive polynyas in the Antarctic per unit area and is undergoing rapid changes including a reduction in sea ice duration, thinning ice sheets, retreat of glaciers and the potential collapse of the Thwaites Glacier in Pine Island Bay. A growing body of research has indicated that these changes are altering the water mass properties and associated biogeochemistry within the polynya. Unfortunately difficulties in accessing the remote location have greatly limited the amount of in situ data that has been collected. In this study data from a Teledyne-Webb Slocum glider was used to supplement ship-based sampling along the Dotson Ice Shelf (DIS). This autonomous underwater vehicle revealed a detailed view of a meltwater laden outflow from below the western flank of the DIS. Circumpolar Deep Water intruding onto the shelf drives glacial melt and the supply of macronutrients that, along with ample light, supports the large phytoplankton blooms in the Amundsen Sea Polynya. Less well understood is the source of micronutrients, such as iron, necessary to support this bloom to the central polynya where chlorophyll concentrations are highest. This outflow region showed decreasing optical backscatter with proximity to the bed indicating that particulate matter was sourced from the overlying glacier rather than resuspended sediment. This result suggests that particulate iron, and potentially phytoplankton primary productivity, is intrinsically linked to the magnitude and duration of sub-glacial melt from Circumpolar Deep Water intrusions onto the shelf.
Grounding Zone and Tidal Response of the Amery Ice Shelf, East Antarctica
NASA Technical Reports Server (NTRS)
Fricker, Helen A.; Sandwell, David; Coleman, Richard; Minster, Bernard
2005-01-01
This report summarizes the main findings of the research project. Unfortunately, it turned out that there was not a great deal of SAR data over the Amery Ice Shelf that we were able to work with on the project; nevertheless, we did make considerable progress on this project, with both the existing SAR data and new field measurements that were collected under this grant. In total we had constructed two SAR interferograms (SSIs), and four SSIs. The latter were combined them to construct two differential SAR interferograms (DSIs;). DSIs are useful because the contribution to the SAR phase from horizontal ice motion is eliminated, since the time difference between the first and second pass within both image pairs used to make the DSI is the same for each pair. The SSIs and DSIs have revealed several interesting glaciological features, and have added to our knowledge of the Amery Ice Shelf (AIS).
NASA Astrophysics Data System (ADS)
Våge, Kjetil; Håvik, Lisbeth; Papritz, Lukas; Spall, Michael; Moore, Kent
2017-04-01
The Deep Western Boundary Current constitutes the lower limb of the Atlantic Meridional Overturning Circulation, and, as such, is a crucial component of the Earth's climate system. The largest and densest contribution to the current stems from the overflow plume that passes through Denmark Strait. A main source of Denmark Strait Overflow Water (DSOW) is the East Greenland Current (EGC). The DSOW transported by the EGC originates from the Atlantic inflow into the Nordic Seas. This is then transformed into Atlantic-origin Overflow Water while progressing northward through the eastern part of the Nordic Seas. Here we show, using measurements from autonomous gliders deployed from fall 2015 to spring 2016, that the Atlantic-origin Overflow Water transported toward Denmark Strait by the EGC was re-ventilated while transiting the western Iceland Sea in winter. In summer, this region is characterized by an upper layer of cold, fresh Polar Surface Water that is thought to prevent convection. But in fall and winter this fresh water mass is diverted toward the Greenland shelf by enhanced northerly winds, which results in a water column that is preconditioned for convection. Severe heat loss from the ocean to the atmosphere offshore of the ice edge subsequently causes the formation of deep mixed layers. This further transforms the Atlantic-origin Overflow Water and impacts the properties of the DSOW, and hence the deepest and densest component of the lower limb of the Atlantic Meridional Overturning Circulation.
Testing of Commercial Hollow Fiber Membranes for Space Suit Water Membrane Evaporator
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Hanford, Anthony
2009-01-01
Three commercial-off-the-shelf (COTS) hollow fiber (HoFi) membrane evaporators, modified for low pressure, were tested in a vacuum chamber at pressures below 33 pascals as potential space suit water membrane evaporator (SWME) heat rejection technologies. Water quality was controlled in a series of 25 tests, first simulating potable water reclaimed from waste water and then changing periodically to simulate the ever concentrating make-up of the circulating coolant over that is predicted over the course of 100 EVAs. Two of the systems, comprised of non-porous tubes with hydrophilic molecular channels as the water vapor transport mechanism, were severely impacted by the increasing concentrations of cations in the water. One of the systems, based on hydrophobic porous polypropylene tubes was not affected by the degrading water quality, or the presence of microbes. The polypropylene system, called SWME 1, was selected for further testing. An inverse flow configuration was also tested with SWME 1, with vacuum exposure on the inside of the tubes, provided only 20% of the performance of the standard configuration. SWME 1 was also modified to block 50% and 90% of the central tube layers, and tested to investigate performance efficiency. Performance curves were also developed in back-pressure regulation tests, and revealed important design considerations arising from the fully closed valve. SWME 1 was shown to be insensitive to air bubbles injected into the coolant loop. Development and testing of a full-scale prototype based on this technology and these test results is in progress.
NASA Astrophysics Data System (ADS)
Tilstone, Gavin H.; Lotliker, Aneesh A.; Miller, Peter I.; Ashraf, P. Muhamed; Kumar, T. Srinivasa; Suresh, T.; Ragavan, B. R.; Menon, Harilal B.
2013-08-01
The use of ocean colour remote sensing to facilitate the monitoring of phytoplankton biomass in coastal waters is hampered by the high variability in absorption and scattering from substances other than phytoplankton. The eastern Arabian Sea coastal shelf is influenced by river run-off, winter convection and monsoon upwelling. Bio-optical parameters were measured along this coast from March 2009 to June 2011, to characterise the optical water type and validate three Chlorophyll-a (Chla) algorithms applied to Moderate Resolution Imaging Spectroradiometer on Aqua (MODIS-Aqua) data against in situ measurements. Ocean Colour 3 band ratio (OC3M), Garver-Siegel-Maritorena Model (GSM) and Generalized Inherent Optical Property (GIOP) Chla algorithms were evaluated. OC3M performed better than GSM and GIOP in all regions and overall, was within 11% of in situ Chla. GSM was within 24% of in situ Chla and GIOP on average was 55% lower. OC3M was less affected by errors in remote sensing reflectance Rrs(λ) and by spectral variations in absorption coefficient (aCDOM(λ)) of coloured dissolved organic material (CDOM) and total suspended matter (TSM) compared to the other algorithms. A nine year Chla time series from 2002 to 2011 was generated to assess regional differences between OC3M and GSM. This showed that in the north eastern shelf, maximum Chla occurred during the winter monsoon from December to February, where GSM consistently gave higher Chla compared to OC3M. In the south eastern shelf, maximum Chla occurred in June to July during the summer monsoon upwelling, and OC3M yielded higher Chla compared to GSM. OC3M currently provides the most accurate Chla estimates for the eastern Arabian Sea coastal waters.
NASA Astrophysics Data System (ADS)
Ashjian, C. J.; Campbell, R. G.; George, J. C.; Moore, S. E.; Okkonen, S. R.; Sherr, B. F.; Sherr, E. B.
2006-12-01
The annual migration of bowhead whales (Balaena mysticetus) past Barrow, Alaska has provided subsistence hunting opportunities to Native whalers for centuries. Bowheads regularly feed along the Arctic coast near Barrow in autumn, presumably to utilize recurrent aggregations of their zooplankton prey (e.g., copepods, euphausiids). Oceanographic field-sampling on the narrow continental shelf near Barrow and in Elson Lagoon was conducted during mid-August to mid-September of 2005 and 2006 to describe the different water mass types and plankton communities, to identify exchange of water and material between the shelf and lagoon and offshore, and to identify biological and physical mechanisms of plankton aggregation. High spatial resolution profiles of temperature, salinity, fluorescence, optical backscatter, and C-DOM were collected using an Acrobat undulating towed vehicle in the lagoon and across the shelf from near-shore to the ~150 m isobath. Discrete sampling for nutrients, chlorophyll a, and phytoplankton, and microzooplankton and mesozooplankton abundance and composition was conducted in distinct water types and across frontal boundaries identified from the high-resolution data. The distributions of bowhead whales were documented using aerial surveys. Inter-annual and shorter-term (days to weeks) variability in the distribution of water masses and intrinsic biological properties was observed. Distinct hydrographic and biological-chemical regions were located across the shelf that may contribute to the formation of bowhead whale prey aggregations. The lagoon system is an important interface between the ocean and land and may be critical to the formation of nearshore bowhead whale prey aggregations. Results from the field sampling will be coupled to biological-physical modeling and retrospective analyses to understand the response of this complex environment-whale-human system to climate variability.
Export of Dissolved Lignin from Coastal Wetlands to the Louisiana Shelf
NASA Astrophysics Data System (ADS)
Bianchi, T. S.; Dimarco, S. F.; Smith, R. W.; Schreiner, K. M.
2008-12-01
Here we report on spatial and temporal changes in the concentration and composition of dissolved lignin- phenols in surface and bottom waters off the Louisiana coast (USA). Samples were collected at 7 stations on 2 cruises (April, and July, 2008) along a transect that spanned from inside Terrebonne Bay, Louisiana (12 m water depth) to the outer-most station on the inner Louisiana shelf (21 m water depth). The highest average concentration of dissolved organic carbon (DOC) and dissolved lignin, during both cruises, occurred at the interface between Terrebonne Bay and the inner shelf. Average DOC and dissolved lignin concentrations were significantly higher in April than in July across most stations. Based on hydrologic data, these higher concentrations clearly reflect a combined mixing of DOM from plume waters to the west and local marsh inputs. The cinnamyl/vanillyl (C/V) and syringyl/vanillyl (S/V) ratios indicated that the predominant source of lignin was from non-woody angiosperms - likely the dominant species of wetland plants Spartina alterniflora and S. patens (Spartina spp.) that border the entire bay. The high vanillic acid to vanillin (Ad/Al)v ratios for all stations were typical of that found near estuarine boundaries, where biologically- and photochemically-mediated lignin decay processes are important. This preliminary data indicates that wetlands provide another source of dissolved organic matter (DOM) to the Louisiana shelf that likely contributes to microbial food resources and hence hypoxia, especially in the context of the instability and extensive erosion of these marshes over the past ca. 50 years. This has important implications for the current management plan to reduce hypoxia in the GOM, particularly in those regions that extend west of the nutrient-rich highly productive near-field zones of Atchafalaya-Mississippi river plumes.
Hernández-Ávila, Iván
2014-01-01
The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200–2000 m depth) than on the upper continental shelf (60–200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges. PMID:24671156
NASA Astrophysics Data System (ADS)
Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.
2017-12-01
Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of ice stream behavior. The crustal boundary governs the interaction between these systems exerts a fundamental control on the stability of the Ross Ice Shelf.
Kumar, Rakesh; Tamboli, Vajir; Sharma, Rameshwar; Sreelakshmi, Yellamaraju
2018-09-01
Several Penjar accessions of tomato grown in the Mediterranean exhibit prolonged shelf life and harbor alcobaca mutation. To uncover the metabolic basis underlying shelf life, we compared four Penjar accessions to Ailsa Craig. Three accessions bore alcobaca mutation, whereas the fourth was a novel NAC-NOR allele. Cuticle composition of Penjars varied widely during fruit ripening. All Penjars exhibited delayed ripening, prolonged on-vine and off-vine shelf life, low ethylene emission, and carotenoid levels. Metabolic profiling revealed shifts in Krebs cycle intermediates, amino acids, and γ-aminobutyric acid levels indicating the attenuation of respiration in Penjars during post-harvest storage. Penjar fruits also showed concerted downregulation of several cell-wall modifying genes and related metabolites. The high ABA and sucrose levels at the onset of senescence in Penjar fruits likely contribute to reduced water loss. Our analyses reveal that the attenuation of various metabolic processes by NAC-NOR mutation likely prolongs the shelf life of Penjar fruits. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hydroelastic analysis of ice shelves under long wave excitation
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.
2015-05-01
The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.
Hydroelastic analysis of ice shelves under long wave excitation
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.
2015-08-01
The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.
NASA Astrophysics Data System (ADS)
Lapham, Laura; Marshall, Kathleen; Magen, Cédric; Lyubchich, Viacheslav; Cooper, Lee W.; Grebmeier, Jacqueline M.
2017-10-01
Current estimates of methane (CH4) flux suggest that Arctic shelves may be a significant source of atmospheric CH4, a potent greenhouse gas. However, little information is known about the CH4 flux from most Arctic shelves, other than the East Siberian Arctic Shelf. We report here dissolved CH4 concentrations in the water column and within surface sediments of the Northern Chukchi Sea. We hypothesized that this area contains high concentrations of CH4 because it receives nutrient rich waters through the Bering Strait, promoting primary production that enhances an organic-rich material flux to the seafloor and eventual microbial methanogenesis in the sediments. In August 2012, as part of the Chukchi Sea Offshore Monitoring in Drilling Area (COMIDA) project, fourteen stations were sampled on Hanna Shoal, a shallow feature on the shelf, and ten stations across the undersea Barrow Canyon. On Hanna Shoal, water column CH4 concentrations ranged from 14 to 74 nM, and surface concentrations were up to 15 times supersaturated in CH4 compared to equilibrium with the average atmospheric concentrations (3 nM). CH4 concentrations at the sediment-water interface were around 1,500 nM, and typically increased with depth in the sediment. At the head of Barrow Canyon, water column CH4 concentrations ranged from 5 to 46 nM, with the highest concentrations in the deepest waters that were sampled (118 m). Overall, the calculated fluxes to the atmosphere ranged from 1 to 80 μmol CH4 m-2 d-1 for Hanna Shoal and 4 to 17 μmol CH4 m-2 d-1 across the Barrow Canyon stations. Although there was a large range in these fluxes, the average atmospheric flux (20 μmol CH4 m-2 d-1) across Hanna Shoal was 12 times lower than the flux reported from the East Siberian Arctic Shelf in summer. We conclude that while there is a positive flux of CH4 to the atmosphere, this part of the Chukchi Sea is not a significant source of atmospheric CH4 compared to the East Siberian Sea shelf.
NASA Astrophysics Data System (ADS)
Eriksen, D. Ø.; Sidhu, R.; Strålberg, E.; Iden, K. I.; Hylland, K.; Ruus, A.; Røyset, O.; Berntssen, M. H. G.; Rye, H.
2006-01-01
Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals.
Biological, Physical and Chemical Data From Gulf of Mexico Gravity and Box Core MRD05-04
Osterman, Lisa E.; Campbell, Pamela L.; Swarzenski, Peter W.; Ricardo, John P.
2010-01-01
This paper presents the benthic foraminiferal census data, magnetic susceptibility measurements, vanadium and organic geochemistry (carbon isotope, sterols, and total organic carbon) data from the MRD05-04 gravity and box cores. The MRD05-04 cores were obtained from the Louisiana continental shelf in an on-going initiative to examine the geographic and temporal extent of hypoxia, low-oxygen bottom-water content, and geochemical transport. The development of low-oxygen bottom water conditions in coastal waters is dependent upon a new source of bio-available nutrients introduced into a well-stratified water column. A number of studies have concluded that the development of the current seasonal hypoxia (dissolved oxygen < 2 mg L-1) in subsurface waters of the northern Gulf of Mexico is related to increased transport of nutrients (primarily nitrogen, but possibly also phosphorous) by the Mississippi River. However, the development of earlier episodes of seasonal low-oxygen subsurface water on the Louisiana shelf may be related to Mississippi River discharge.
NASA Astrophysics Data System (ADS)
Ferrón, S.; Ho, D. T.; Hales, B. R.
2010-12-01
A Fluorescein/SF6 deliberate tracer release experiment was conducted in benthic boundary layer (BBL) waters of the outer shelf of Oregon, as part of a multi-disciplinary research project that aims to study cross-shelf carbon transport and biogeochemical reaction rates within the BBL. The purpose of the tracers release was to examine physical transport processes, the rate of turbulent mixing and to provide a Lagrangian frame of reference for tracking other chemical species (pCO2, O2, CH4, DIC, DOC, POC, NO3-, NH4+, Fe). The tracers were injected on May 2009 during moderate upwelling favorable conditions with weak near-bottom currents, along a 4-km N-S line near the shelf streak at the 150 m isobath. Tracers distribution in the patch were tracked for over 5 days by tow-yo surveys using a winch-controlled pumping profiling vehicle that incorporated several in situ instruments such as CTD sensors, a 1200 kHz ADCP and a dye fluorometer for Fluorescein. Dissolved SF6 concentrations were analyzed on board from the underway water stream pumped from the towed vehicle by using an automated high-resolution chromatographic system equipped with an electron capture detector (ECD). The work presented here focuses on the estimation of the effective vertical diffusivity (Kz) in the BBL of the Oregon Shelf from the change in moment of the tracers’ vertical distribution, calculated using a 1D advection-diffusion model.
Beaudoin, Bruce C.; ten Brink, Uri S.; Stern, Tim A.
1992-01-01
Coincident reflection and refraction data, collected in the austral summer of 1988/89 by Stanford University and the Geophysical Division of the Department of Scientific and Industrial Research, New Zealand, imaged the crust beneath the Ross Ice Shelf, Antarctica. The Ross Ice Shelf is a unique acquisition environment for seismic reflection profiling because of its thick, floating ice cover. The ice shelf velocity structure is multilayered with a high velocity‐gradient firn layer constituting the upper 50 to 100 m. This near surface firn layer influences the data character by amplifying and frequency modulating the incoming wavefield. In addition, the ice‐water column introduces pervasive, high energy seafloor, intra‐ice, and intra‐water multiples that have moveout velocities similar to the expected subseafloor primary velocities. Successful removal of these high energy multiples relies on predictive deconvolution, inverse velocity stack filtering, and frequency filtering. Removal of the multiples reveals a faulted, sedimentary wedge which is truncated at or near the seafloor. Beneath this wedge the reflection character is diffractive to a two‐way traveltime of ∼7.2 s. At this time, a prominent reflection is evident on the southeast end of the reflection profile. This reflection is interpreted as Moho indicating that the crust is ∼21-km thick beneath the profile. These results provide seismic evidence that the extensional features observed in the Ross Sea region of the Ross Embayment extend beneath the Ross Ice Shelf.
Terdecadal Observations of Western Boundary Currents in the Coral Sea
NASA Astrophysics Data System (ADS)
Steinberg, C. R.; Burrage, D. M.
2016-02-01
Since 1985, a 30 year time series of current and temperature data has been collected by AIMS and since 2007 in partnership with Australia's Integrated Marine Observing System. The data derive from a current meter mooring pair along the continental shelf slope monitoring currents in the Coral Sea adjacent to the Great Barrier Reef. The array was deployed to provide direct measurements of flow on the continental shelf and slope and estimates of geostrophic current anomalies to compare with satellite altimeter derived currents. The two locations are located near Jewell Reef at 14o S in 360m and near Myrmidon Reef at 18 o S in 200m water depth. Initially point Rotary Current Meters were used but were replaced by Acoustic Doppler Current Profilers from the late 1990s so the observations have evolved from a few points in the water column to true current profiles. The northern mooring is located in the region where the Southern Equatorial Current impacts on the North Queensland shelf causing it to bifurcate into the equatorward Gulf of Papua Current and the poleward East Australian Current. Embedded in these are eddies that cause pulsing and at times current reversals that can significantly affect across shelf intrusions and cross shelf exchange. Being located in the sub-tropics the observations have captured multiple extreme tropical cyclone events and seasonal internal wave activity. The data is being used in conjunction with satellite altimetry to validate hindcasts of a number of hydrodynamic models.
NASA Astrophysics Data System (ADS)
Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger
2016-04-01
In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.
Effect of the method of process on the control of microbial growth by water activity in foods
NASA Technical Reports Server (NTRS)
Labuzu, T. D.
1972-01-01
Two methods for preparation of intermediate moisture foods (IMF) were investigated; water absorption and water desorption technique. Results indicate that shelf stability of IMF systems might be enhanced by preparing foods by rehumidifying dehydrated foods to optimum water activity rather than drying food to reduce the water activity.
Early diagenesis and trace element accumulation in North American Arctic margin sediments
NASA Astrophysics Data System (ADS)
Kuzyk, Zou Zou A.; Gobeil, Charles; Goñi, Miguel A.; Macdonald, Robie W.
2017-04-01
Concentrations of redox-sensitive elements (S, Mn, Mo, U, Cd, Re) were analyzed in a set of 27 sediment cores collected along the North American Arctic margin (NAAM) from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of the elements were used to evaluate early diagenesis in sediments along this section and to estimate the importance of this margin as a sink for key elements in the polar and global oceans. Distributions of Mn, total S and reduced inorganic S demonstrated that diagenetic conditions and thus sedimentary carbon turnover in the NAAM is organized regionally: undetectable or very thin layers (<0.5 cm) of surface Mn enrichment occurred in the Bering-Chukchi shelves; thin layers (1-5 cm) of surface Mn enrichment occurred in Barrow Canyon and Lancaster Sound; and thick layers (5-20 cm) of surface Mn enrichment occurred in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Inventories of authigenic S below the Mn-rich layer decreased about fivefold from Bering-Chukchi shelf and Barrow Canyon to Lancaster Sound and more than ten-fold from Bering-Chukchi shelf to Beaufort Shelf, Canadian Archipelago and Davis Strait. The Mn, total S and reduced inorganic S distributions imply strong organic carbon (OC) flux and metabolism in the Bering-Chukchi shelves, lower aerobic OC metabolism in Barrow Canyon and Lancaster Sound, and deep O2 penetration and much lower OC metabolism in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Accumulation rates of authigenic S, Mo, Cd, Re, and U displayed marked spatial variability along the NAAM reflecting the range in sedimentary redox conditions. Strong relationships between the accumulation rates and vertical carbon flux, estimated from regional primary production values and water depth at the coring sites, indicate that the primary driver in the regional patterns is the supply of labile carbon to the seabed. Thus, high primary production combined with a shallow water column (average 64 m) leads to high rates of authigenic trace element accumulation in sediments from the Bering-Chukchi shelves. High to moderate primary production combined with deep water (average 610 m) leads to moderate rates of authigenic trace element accumulation in sediments from Lancaster Sound. Low to very low primary production combined with moderate water depths (average 380 m) leads to low rates of authigenic trace element accumulation in sediments in the Beaufort Shelf, Davis Strait and Canadian Archipelago. Authigenic Mo accumulation rates show a significant relationship with vascular plant input to the sediments, implying that terrestrial organic matter contributes significantly to metabolism in Arctic margin sediments. Our results suggest that the broad and shallow shelf of the Chukchi Sea, which has high productivity sustained by imported nutrients, contributes disproportionately to global biogeochemical cycles.