Sample records for shell gaps studied

  1. Central depression in nuclear density and its consequences for the shell structure of superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanasjev, A.V.; Laboratory of Radiation Physics, Institute of Solid State Physics, University of Latvia, LV 2169 Salaspils, Miera str. 31; Frauendorf, S.

    The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean-field theory. A large depression leads to the shell gaps at the proton Z=120 and neutron N=172 numbers, whereas a flatter density distribution favors N=184 and leads to the appearance of a Z=126 shell gap and to the decrease of the size of the Z=120 shell gap. The correlations between the magic shell gaps and the magnitude of the central depression are discussed for relativistic and nonrelativistic mean field theories.

  2. Spherical silicon-shell photonic band gap structures fabricated by laser-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, H.; Yang, Z. Y.; Lu, Y. F.

    2007-02-01

    Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.

  3. Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2011-05-01

    A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.

  4. The effects of the chemical composition and strain on the electronic properties of GaSb/InAs core-shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, Feng; Wang, Dan; Tang, Li-Ming, E-mail: lmtang@hnu.edu.cn

    2014-09-07

    The effects of the chemical composition and strain on the electronic properties of [111] zinc-blende (ZB) and [0001] wurtzite (WZ) GaSb/InAs core-shell nanowires (NWs) with different core diameters and shell thicknesses are studied using first-principles methods. The band structures of the [111] ZB GaSb/InAs core-shell NWs underwent a noticeable type-I/II band alignment transition, associated with a direct-to-indirect band gap transition under a compressive uniaxial strain. The band structures of the [0001] WZ GaSb/InAs core-shell NWs preserved the direct band gap under either compressive or tensile uniaxial strains. In addition, the band gaps and the effective masses of the carriers couldmore » be tuned by their composition. For the core-shell NWs with a fixed GaSb-core size, the band gaps decreased linearly with an increasing InAs-shell thickness, caused by the significant downshift of the conduction bands. For the [111] ZB GaSb/InAs core-shell NWs, the calculated effective masses indicated that the transport properties could be changed from hole-dominated conduction to electron-dominated conduction by changing the InAs-shell thickness.« less

  5. Resource Letter NSM-1: New insights into the nuclear shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, David Jarvis; Hamilton, J. H.

    2011-01-01

    This Resource Letter provides a guide to the literature on the spherical shell model as applied to nuclei. The nuclear shell model describes the structure of nuclei starting with a nuclear core developed by the classical neutron and proton magic numbers N,Z=2,8,20,28,50,82, 126, where gaps occur in the single-particle energies as a shell is filled, and the interactions of valence nucleons that reside beyond that core. Various modern extensions of this model for spherical nuclei are likewise described. Significant extensions of the nuclear shell model include new magic numbers for spherical nuclei and now for deformed nuclei as well. Whenmore » both protons and neutrons have shell gaps at the same spherical or deformed shapes, they can reinforce each other to give added stability to that shape and lead to new magic numbers. The vanishings of the classical spherical shell model energy gaps and magic numbers in new neutron-rich nuclei are described. Spherical and deformed shell gaps are seen to be critical for the existence of elements with Z > 100.« less

  6. Vibration isolation design for periodically stiffened shells by the wave finite element method

    NASA Astrophysics Data System (ADS)

    Hong, Jie; He, Xueqing; Zhang, Dayi; Zhang, Bing; Ma, Yanhong

    2018-04-01

    Periodically stiffened shell structures are widely used due to their excellent specific strength, in particular for aeronautical and astronautical components. This paper presents an improved Wave Finite Element Method (FEM) that can be employed to predict the band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing, which is a typical periodically stiffened shell structure, was employed to verify the validation and efficiency of the Wave FEM. Good agreement has been found between the Wave FEM and the classical FEM for different boundary conditions. One effective wave selection method based on the Wave FEM has thus been put forward to filter the radial modes of a shell structure. Furthermore, an optimisation strategy by the combination of the Wave FEM and genetic algorithm was presented for periodically stiffened shell structures. The optimal out-of-plane band gap and the mass of the whole structure can be achieved by the optimisation strategy under an aerodynamic load. Results also indicate that geometric parameters of stiffeners can be properly selected that the out-of-plane vibration attenuates significantly in the frequency band of interest. This study can provide valuable references for designing the band gaps of vibration isolation.

  7. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  8. Atomistic tight-binding computations of the structural and optical properties of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2018-05-01

    A study of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals is carried out using atomistic tight-binding theory and the configuration interaction method to provide information for applications in bioimaging, biolabeling, display devices and near-infrared electronic instruments. The calculations yield the dependences of the internal and external passivated shells on the natural behaviours of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals. The reduction of the optical band gaps is observed with increasing numbers of monolayers in the external ZnS shell due to quantum confinement. Interestingly, the optical band gaps of CdTe/CdS/ZnS core/shell/shell nanocrystals are greater than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. In the presence of an external ZnS-coated shell, electron-hole wave function overlaps, oscillation strengths, ground-state exchange energies and Stokes shift are improved, whereas ground-state coulomb energies and fine-structure splitting are reduced. The oscillation strengths, Stokes shift and fine-structure splitting are reduced with the increase in external ZnS shell thickness. The oscillation strengths, Stokes shift and fine-structure splitting of CdTe/CdS/ZnS core/shell/shell nanocrystals are larger than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. Reduction of the atomistic electron-hole interactions is observed with increasing external ZnS shell size. The strong electron-hole interactions are more probed in CdTe/CdS/ZnS core/shell/shell nanocrystals than in CdTe/CdSe/ZnS core/shell/shell nanocrystals.

  9. Analysis of the finescale timing of repeated signals: does shell rapping in hermit crabs signal stamina?

    PubMed

    Briffa; Elwood

    2000-01-01

    Hermit crabs, Pagurus bernhardus, sometimes exchange shells after a period of shell rapping, when the initiating or attacking crab brings its shell rapidly and repeatedly into contact with the shell of the noninitiator or defender in a series of bouts. Bouts are separated by pauses, and raps within bouts are separated by very short periods called 'gaps'. Since within-contest variation is missed when signals are studied by averaging performance rates over entire contests, we analysed the fine within-bout structure of this repeated, aggressive signal. We found that the pattern is consistent with high levels of fatigue in initiators. The duration of the gaps between individual raps increased both within bouts and from bout to bout, and we conclude that this activity is costly to perform. Furthermore, long pauses between bouts is correlated with increased vigour of rapping in the subsequent bout, which suggests that the pause allows for recovery from fatigue induced by rapping. These between-bout pauses may be assessed by noninitiators and provide a signal of stamina. Copyright 2000 The Association for the Study of Animal Behaviour.

  10. Harnessing the bistable composite shells to design a tunable phononic band gap structure

    NASA Astrophysics Data System (ADS)

    Li, Yi; Xu, Yanlong

    2018-02-01

    By proposing a system composed of an array of bistable composite shells immersed in air, we develop a new class of periodic structure to control the propagation of sound. Through numerical investigation, we find that the acoustic band gap of this system can be switched on and off by triggering the snap through deformation of the bistable composite shells. The shape of cross section and filling fraction of unit cell can be altered by different number of bistable composite shells, and they have strong impact on the position and width of the band gap. The proposed concept paves the way of using the bistable structures to design a new class of metamaterials that can be enable to manipulate sound.

  11. Type I band alignment in GaAs{sub 81}Sb{sub 19}/GaAs core-shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, T.; Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072; Wei, M. J.

    2015-09-14

    The composition and band gap of the shell that formed during the growth of axial GaAs/GaAs{sub 81}Sb{sub 19}/ GaAs heterostructure nanowires have been investigated by transmission electron microscopy combined with energy dispersion spectroscopy, scanning tunneling spectroscopy, and density functional theory calculations. On the GaAs{sub 81}Sb{sub 19} intermediate segment, the shell is found to be free of Sb (pure GaAs shell) and transparent to the tunneling electrons, despite the (110) biaxial strain that affects its band gap. As a result, a direct measurement of the core band gap allows the quantitative determination of the band offset between the GaAs{sub 81}Sb{sub 19}more » core and the GaAs shell and identifies it as a type I band alignment.« less

  12. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  13. Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight

    ERIC Educational Resources Information Center

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…

  14. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xinqin; Cui, Yingqi; Zeng, Qun

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe){sub x}@(CdSe){sub y} and their Zn-substituted complexes of x = 2–4 and y = 16–28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals,more » as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn–Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition–structure–property relationship for the design of core-shell CdSe and ZnSe nanoclusters.« less

  15. Larger sized wire arrays on 1.5 MA Z-pinch generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronova, A. S., E-mail: alla@unr.edu; Kantsyrev, V. L., E-mail: alla@unr.edu; Weller, M. E., E-mail: alla@unr.edu

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes frommore » mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)« less

  16. Structural and electronic properties of CdSe/ZnS and ZnS/CdSe core/shell nanowires via first principles study

    NASA Astrophysics Data System (ADS)

    Rehman, Shafiq Ur; Li, H. M.; Ding, Z. J.

    2018-05-01

    First principles calculations have been performed to predict the structural stability and electronic structures of hydrogen passivated wurtzite CdSe/ZnS and ZnS/CdSe core/shell nanowires (CSNWs) in the [0001] direction. The calculated binding energy shows that ZnS/CdSe CSNWs are more stable than CdSe/ZnS CSNWs and the stability of ZnS/CdSe CSNWs increases with increasing the thickness of ZnS shell. The modulated electronic band gap demonstrates an increase when the size of both CSNWs is reduced, as a result of the quantum confinement effect. The core-to-shell chemical composition of atoms shows that a strong composition effect also exists in these CSNWs, which in turn affects their electronic properties. Our simulated results show that the photoemission spectra of the CSNWs can be significantly improved by tuning the energy gap of CSNWs.

  17. Optical phonon modes of III-V nanoparticles and indium phosphide/II-VI core-shell nanoparticles: A Raman and infrared study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia Speranta

    The prospects for realizing efficient nanoparticle light emitters in the visible/near IR for communications and bio-medical applications have benefited from progress in chemical fabrication of nanoparticles. III-V semiconductor nanopaticles such as GaP and InP are promising materials for the development of "blue" and "green" emitters, respectively, due to their large effective bandgaps. Enhanced emission efficiency has been achieved for core-shell nanoparticles, since inorganic shell materials increase electronic tunability and may decrease surface defects that often occur for nanoparticles capped with organic molecules. Also, the emission wavelength of InP nanoparticle cores can be tuned from green to red by changing the shell material in InP/II-VI core-shell nanoparticles. Investigations of phonon modes in nanocrystals are of both fundamental and applied interest. In the former case the optical phonon modes, such as surface/interface modes, are dependent on the nanoparticle dimensions, and also can provide information about dynamical properties of the nanoparticles and test the validity of various theoretical approaches. In the latter case the vibronic properties of nanoparticle emitters are controlled by confined phonons and modifications of the electron-phonon interaction by the confinement. Thus, the objective of the present thesis is the detailed study of the phonon modes of III-V nanoparticles (GaP and InP) and InP/II-VI core-shell nanoparticles by IR absorption and Raman scattering spectroscopies, and an elucidation of their complex vibrational properties. With the exception of three samples (two GaP and one InP), all samples were synthesized by a novel colloidal chemistry method, which does not requires added surfactant, but rather treatment of the corresponding precursors in octadecene noncoordinative solvent. Sample quality was characterized by ED, TEM and X-ray diffraction. Based on a comparison with a dielectric continuum model, the observed features in the IR and Raman results are assigned to the surface optical (SO) modes of the corresponding nanoparticles (InP and GaP), and to SO/interface modes for InP/II-VI core-shell nanoparticles. For the latter systems, an evaluation of the ratio of the shell material thickness to the core radius is achieved. Reasonable agreement is obtained between the Raman and FIR results, as well as with the calculations. (Abstract shortened by UMI.)

  18. Electronic, Optical, and Thermal Properties of Reduced-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Shouting

    Reduced-dimensional materials have attracted tremendous attention because of their new physics and exotic properties, which are of great interests for fundamental science. More importantly, the manipulation and engineering of matter on an atomic scale yield promising applications for many fields including nanoelectronics, nanobiotechnology, environments, and renewable energy. Because of the unusual quantum confinement and enhanced surface effect of reduced-dimensional materials, traditional empirical models suffer from necessary but unreliable parameters extracted from previously-studied bulk materials. In this sense, quantitative, parameter-free approaches are highly useful for understanding properties of reduced-dimensional materials and, furthermore, predicting their novel applications. The first-principles density functional theory (DFT) is proven to be a reliable and convenient tool. In particular, recent progress in many-body perturbation theory (MBPT) makes it possible to calculate excited-state properties, e.g., quasiparticle (QP) band gap and optical excitations, by the first-principles approach based on DFT. Therefore, during my PhD study, I employed first-principles calculations based on DFT and MBPT to systematically study fundamental properties of typical reduced-dimensional semiconductors, i.e., the electronic structure, phonons, and optical excitations of core-shell nanowires (NWs) and graphene-like two-dimensional (2D) structures of current interests. First, I present first-principles studies on how to engineer band alignments of nano-sized radial heterojunctions, Si/Ge core-shell NWs. Our calculation reveals that band offsets in these one-dimensional (1D) nanostructures can be tailored by applying axial strain or varying core-shell sizes. In particular, the valence band offset can be efficiently tuned across a wide range and even be diminished via applied strain. Two mechanisms contribute to this tuning of band offsets. Furthermore, varying the size of Si/Ge core-shell NWs and corresponding quantum confinement is shown to be efficient for modifying both valence and conduction band offsets simultaneously. Our proposed approaches to control band offsets in nano-sized heterojunctions may be of practical interest for nanoelectronic and photovoltaic applications. Additionally, I also studied the lattice vibrational modes of Si/Ge core-shell N-Ws. Our calculations show that the internal strain induced by the lattice mismatch between core and shell plays an important role in significantly shifting the frequency of characteristic optical modes of core-shell NWs. In particular, our simulation demonstrates that these frequency shifts can be detected by Raman-scattering experiments, giving rise to a convenient and nondestructive way to obtain structural information of core-shell materials. Meanwhile, another type of collective modes, the radial breathing modes (RBM), is identified in Si-core/Ge-shell NWs and their frequency dependence is explained by an elastic media model. Our studied vibrational modes and their frequency evolution are useful for thermoelectric applications based on core-shell nanostructures. Then I studied optical properties and exciton spectra of 2D semiconducting carbon structures. The energy spectra and wavefunctions of excitons in the 2D graphene derivatives, i.e., graphyne and graphane, are found to be strongly modified by quantum confinement, making them qualitatively different from the usual Rydberg series. However, their parity and optical selection rules are preserved. Thus a one-parameter hydrogenic model is applied to quantitatively explain the ab initio exciton spectra, and allows one to extrapolate the electron-hole binding energy from optical spectroscopies of 2D semiconductors without costly simulations. Meanwhile, our calculated optical absorption spectrum and enhanced spin singlet-triplet splitting project graphyne, an allotrope of graphene, as a good candidate for intriguing energy and biomedical applications. Lastly, we report first-principles results on electronic structures of 2D graphene-like system, i.e., silicene. For planar and simply buckled silicene structures, we confirm their zero-gap nature and show a significant renormalization of their Fermi velocity by including many-electron effects. However, the other two recently proposed silicene structures exhibit a finite band gap, indicating that they are gapped semiconductors instead of expected Dirac-fermion semimetals. This finite band gap of the latter two structures is preserved even with the Ag substrate included. The gap opening is explained by the symmetry breaking of the buckled structures. Moreover, our GW calculation reveals enhanced many-electron effects in these 2D structures. Finally the band gap of the latter two structures can be tuned in a wide range by applying strain.

  19. In situ passivation of GaAsP nanowires.

    PubMed

    Himwas, C; Collin, S; Rale, P; Chauvin, N; Patriarche, G; Oehler, F; Julien, F H; Travers, L; Harmand, J-C; Tchernycheva, M

    2017-12-08

    We report on the structural and optical properties of GaAsP nanowires (NWs) grown by molecular-beam epitaxy. By adjusting the alloy composition in the NWs, the transition energy was tuned to the optimal value required for tandem III-V/silicon solar cells. We discovered that an unintentional shell was also formed during the GaAsP NW growth. The NW surface was passivated by an in situ deposition of a radial Ga(As)P shell. Different shell compositions and thicknesses were investigated. We demonstrate that the optimal passivation conditions for GaAsP NWs (with a gap of 1.78 eV) are obtained with a 5 nm thick GaP shell. This passivation enhances the luminescence intensity of the NWs by 2 orders of magnitude and yields a longer luminescence decay. The luminescence dynamics changes from single exponential decay with a 4 ps characteristic time in non-passivated NWs to a bi-exponential decay with characteristic times of 85 and 540 ps in NWs with GaP shell passivation.

  20. Analysis of different techniques to improve sound transmission loss in cylindrical shells

    NASA Astrophysics Data System (ADS)

    Oliazadeh, Pouria; Farshidianfar, Anooshiravan

    2017-02-01

    In this study, sound transmission through double- and triple-walled shells is investigated. The structure-acoustic equations based on Donnell's shell theory are presented and transmission losses calculated by this approach are compared with the transmission losses obtained according to Love's theory. An experimental set-up is also constructed to compare natural frequencies obtained from Donnell and Love's theories with experimental results in the high frequency region. Both comparisons show that Donnell's theory predicts the sound transmission characteristics and vibrational behavior better than Love's theory in the high frequency region. The transmission losses of the double- and triple-walled construction are then presented for various radii and thicknesses. Then the effects of air gap size as an important design parameter are studied. Sound transmission characteristics through a circular cylindrical shell are also computed along with consideration of the effects of material damping. Modest absorption is shown to greatly reduce the sound transmission at ring frequency and coincidence frequency. Also the effects of five common gases that are used for filling the gap are investigated.

  1. Atomistic tight-binding theory of excitonic splitting energies in CdX(X = Se, S and Te)/ZnS core/shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak; Pinsook, Udomsilp

    2017-01-01

    Using the atomistic tight-binding theory (TB) and a configuration interaction description (CI), we numerically compute the excitonic splitting of CdX(X = Se, S and Te)/ZnS core/shell nanocrystals with the objective to explain how types of the core materials and growth shell thickness can provide the detailed manipulation of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting, beneficial for the active application of quantum information. To analyze the splitting of the excitonic states, the optical band gaps, ground-state wave function overlaps and atomistic electron-hole interactions tend to be numerically demonstrated. Based on the atomistic computations, the single-particle and excitonic gaps are mainly reduced with the increasing ZnS shell thickness owing to the quantum confinement. In the range of the higher to lower energies, the order of the single-particle gaps is CdSe/ZnS, CdS/ZnS and CdTe/ZnS core/shell nanocrystals, while one of the excitonic gaps is CdS/ZnS, CdSe/ZnS and CdTe/ZnS core/shell nanocrystals because of the atomistic electron-hole interaction. The strongest electron-hole interactions are mainly observed in CdSe/ZnS core/shell nanocrystals. In addition, the computational results underline that the energies of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting are generally reduced with the increasing ZnS growth shell thickness as described by the trend of the electron-hole exchange interaction. The high-to-low splitting of the excitonic states is demonstrated in CdSe/ZnS, CdTe/ZnS and CdS/ZnS core/shell nanocrystals because of the fashion in the electron-hole exchange interaction and overlaps of the electron-hole wave functions. As the resulting calculations, it is expected that CdS/ZnS core/shell nanocrystals are the best candidates to be the source of entangled photons. Finally, the comprehensive information on the excitonic splitting can enable the use of suitable core/shell nanocrystals for the entangled photons in the application of quantum information.

  2. Effect of Surface Functionalization on Structural and Optical Properties of Luminescent LaF₃:Sm Nanoparticles.

    PubMed

    Ansari, Anees A

    2018-02-01

    Samarium (Sm3+)-doped LaF3 nanoparticles (NPs) subsequently encapsulated with inert crystalline LaF3 and amorphous silica layers were prepared by polyol and sol-gel chemical process, respectively. These surface modified core/shell/SiO2-nanostructured were characterized by X-ray diffraction (XRD), FE-transmission electron microscopy (TEM), thermal analysis, FTIR, UV/Vis absorption, bang gap energy and photoluminescence spectroscopy. The FETEM, EDX and FTIR spectral studies clearly revealed that the silica layer has been formed surrounding the core-NPs. Comparative spectral analysis indicated that core/shell/SiO2-NPs revealed high solubility in aqueous and non-aqueous solvents. The decrease in band gap energy after surface growth of an inert LaF3 and silica shells is directly correlated to the increase in grain size. On comparing the emission intensity, a significant enhancement was observed after inert layer coating, whereas, it suppress after silica encapsulation due to the non-radiative transitions. The increase luminescent intensity after inert shell growth indicates that a significant amount of non-radiative centers existing on the surface of core/shell nanoparticles can be eliminated by the shielding effect of LaF3 shells. These observed results indicate that the as-prepared core/shell/SiO2-NPs could be highly useful in broad photonic based applications such as optical sensor/optical bio-probe and light emitting diode.

  3. Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography.

    PubMed

    Verheijen, Marcel A; Algra, Rienk E; Borgström, Magnus T; Immink, George; Sourty, Erwan; Enckevort, Willem J P van; Vlieg, Elias; Bakkers, Erik P A M

    2007-10-01

    We have investigated the morphology of heterostructured GaP-GaAs nanowires grown by metal-organic vapor-phase epitaxy as a function of growth temperature and V/III precursor ratio. The study of heterostructured nanowires with transmission electron microscopy tomography allowed the three-dimensional morphology to be resolved, and discrimination between the effect of axial (core) and radial (shell) growth on the morphology. A temperature- and precursor-dependent structure diagram for the GaP nanowire core morphology and the evolution of the different types of side facets during GaAs and GaP shell growth were constituted.

  4. ZnSe based semiconductor core-shell structures: From preparation to application

    NASA Astrophysics Data System (ADS)

    Sun, Chengcheng; Gu, Yarong; Wen, Weijia; Zhao, Lijuan

    2018-07-01

    Inorganic core-shell semiconductor materials have attracted increasing interest in recent years because of the unique structure, stable chemical properties and high performance in devices. With special properties such as a direct band-gap and excellent photoelectrical characteristics, ZnSe based semiconductor core-shell structures are promising materials for applications in such fields as photocatalysts, light-emitting diodes, solar cells, photodetectors, biomedical science and so on. However, few reviews on ZnSe based semiconductor core-shell structures have been reported so far. Therefore this manuscript mainly focuses on the research activities on ZnSe based semiconductor core-shell composites including various preparation methods and the applications of these core-shell structures, especially in photocatalysts, light emitting, solar cells and photodetectors. The possibilities and limitations of studies on ZnSe based semiconductor core-shell composites are also highlighted.

  5. A Study of Multi-Λ Hypernuclei Within Spherical Relativistic Mean-Field Approach

    NASA Astrophysics Data System (ADS)

    Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, B.; Patra, S. K.

    2017-12-01

    This research article is a follow up of an earlier work by M. Ikram et al., reported in Int. J. Mod. Phys. E 25, 1650103 (2016) where we searched for Λ magic numbers in experimentally confirmed doubly magic nucleonic cores in light to heavy mass region (i.e., 16 O-208 P b) by injecting Λ's into them. In the present manuscript, working within the state of the art relativistic mean field theory with the inclusion of Λ N and ΛΛ interaction in addition to nucleon-meson NL 3∗ effective force, we extend the search of lambda magic numbers in multi- Λ hypernuclei using the predicted doubly magic nucleonic cores 292120, 304120, 360132, 370132, 336138, 396138 of the elusive superheavy mass regime. In analogy to well established signatures of magicity in conventional nuclear theory, the prediction of hypernuclear magicities is made on the basis of one-, two- Λ separation energy ( S Λ, S 2Λ) and two lambda shell gaps ( δ 2Λ) in multi- Λ hypernuclei. The calculations suggest that the Λ numbers 92, 106, 126, 138, 184, 198, 240, and 258 might be the Λ shell closures after introducing the Λ's in the elusive superheavy nucleonic cores. The appearance of new lambda shell closures apart from the nucleonic ones predicted by various relativistic and non-relativistic theoretical investigations can be attributed to the relatively weak strength of the spin-orbit coupling in hypernuclei compared to normal nuclei. Further, the predictions made in multi- Λ hypernuclei under study resembles closely the magic numbers in conventional nuclear theory suggested by various relativistic and non-relativistic theoretical models. Moreover, in support of the Λ shell closure, the investigation of Λ pairing energy and effective Λ pairing gap has been made. We noticed a very close agreement of the predicted Λ shell closures with the survey made on the pretext of S Λ, S 2Λ, and δ 2Λ except for the appearance of magic numbers corresponding to Λ = 156 which manifest in Λ effective pairing gap and pairing energy. Also, the lambda single-particle spectrum is analyzed to mark the energy shell gap for further strengthening the predictions made on the basis of separation energies and shell gaps. Lambda and nucleon spin-orbit interactions are analyzed to confirm the reduction in magnitude of Λ spin-orbit interaction compared to the nucleonic case, however the interaction profile is similar in both the cases. Lambda and nucleon density distributions have been investigated to reveal the impurity effect of Λ hyperons which make the depression of central density of the core of superheavy doubly magic nuclei. Lambda skin structure is also seen.

  6. Lifetime Measurement of Nickel-58 Using RDM with GRETINA

    NASA Astrophysics Data System (ADS)

    Loelius, Charles

    2014-09-01

    The structure of nuclei near the doubly magic 56Ni has provided a sensitive probe of configuration mixing across the N=Z=28 shell gap. The shell model description of nuclei in this region is well established, with the gxpf1 interaction accurately reproducing the energy levels and transition strengths of Nuclei in the vicinity of 56Ni. However, there remain open questions as to the effects of higher lying orbitals beyond the pf shell. These can be addressed by a study of the B(E2)'s of nuclei in near the shell gap, particularly the B(E2;4+ -->2+) where effects of high l orbitals may be enhanced. 58Ni provides a strong candidate for study, as the only previous B(E2;4+ -->2+) measurement using the Doppler Shift Attenuation Method resulted in a B(E2) three times larger than that predicted by theory. In order to determine the possible effects of higher lying orbitals, a second measurement of the lifetime of 58Ni was undertaken at the National Superconducting Cyclotron Laboratory using the the Gamma-Ray Energy Tracking in Beam Nuclear Array (GRETINA) and the Recoil Distance Method (RDM). Preliminary results of this measurement will be presented.

  7. Influence of dimensionality and interface type on optical and electronic properties of CdS/ZnS core-shell nanocrystals—A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocevski, V., E-mail: vancho.vk@gmail.com, E-mail: vancho.kocevski@physics.uu.se; Eriksson, O.; Gerard, C.

    2015-10-28

    Semiconducting nanocrystals (NCs) have become one of the leading materials in a variety of applications, mainly due to their size tunable band gap and high intensity emission. Their photoluminescence (PL) properties can be notably improved by capping the nanocrystals with a shell of another semiconductor, making core-shell structures. We focus our study on the CdS/ZnS core-shell nanocrystals that are closely related to extensively studied CdSe/CdS NCs, albeit exhibiting rather different photoluminescence properties. We employ density functional theory to investigate the changes in the electronic and optical properties of these nanocrystals with size, core/shell ratio, and interface structure between the coremore » and the shell. We have found that both the lowest unoccupied eigenstate (LUES) and the highest occupied eigenstate (HOES) wavefunction (WF) are localized in the core of the NCs, with the distribution of the LUES WF being more sensitive to the size and the core/shell ratio. We show that the radiative lifetimes are increasing, and the Coulomb interaction energies decrease with increasing NC size. Furthermore, we investigated the electronic and optical properties of the NCs with different interfaces between the core and the shell and different core types. We find that the different interfaces and core types have rather small influence on the band gaps and the absorption indexes, as well as on the confinement of the HOES and LUES WFs. Also the radiative lifetimes are found to be only slightly influenced by the different structural models. In addition, we compare these results with the previous results for CdSe/CdS NCs, reflecting the different PL properties of these two types of NCs. We argue that the difference in their Coulomb interaction energies is one of the main reasons for their distinct PL properties.« less

  8. One-dimensional carrier confinement in “Giant” CdS/CdSe excitonic nanoshells

    DOE PAGES

    Razgoniaeva, Natalia; Moroz, Pavel; Yang, Mingrui; ...

    2017-05-23

    Here, the emerging generation of quantum dot optoelectronic devices offers an appealing prospect of a size-tunable band gap. The confinement-enabled control over electronic properties, however, requires nanoparticles to be sufficiently small, which leads to a large area of interparticle boundaries in a film. Such interfaces lead to a high density of surface traps which ultimately increase the electrical resistance of a solid. To address this issue, we have developed an inverse energy-gradient core/shell architecture supporting the quantum confinement in nanoparticles larger than the exciton Bohr radius. The assembly of such nanostructures exhibits a relatively low surface-to-volume ratio, which was manifestedmore » in this work through the enhanced conductance of solution-processed films. The reported core/shell geometry was realized by growing a narrow gap semiconductor layer (CdSe) on the surface of a wide-gap core material (CdS) promoting the localization of excitons in the shell domain, as was confirmed by ultrafast transient absorption and emission lifetime measurements. The band gap emission of fabricated nanoshells, ranging from 15 to 30 nm in diameter, has revealed a characteristic size-dependent behavior tunable via the shell thickness with associated quantum yields in the 4.4–16.0% range.« less

  9. One-dimensional carrier confinement in “Giant” CdS/CdSe excitonic nanoshells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razgoniaeva, Natalia; Moroz, Pavel; Yang, Mingrui

    Here, the emerging generation of quantum dot optoelectronic devices offers an appealing prospect of a size-tunable band gap. The confinement-enabled control over electronic properties, however, requires nanoparticles to be sufficiently small, which leads to a large area of interparticle boundaries in a film. Such interfaces lead to a high density of surface traps which ultimately increase the electrical resistance of a solid. To address this issue, we have developed an inverse energy-gradient core/shell architecture supporting the quantum confinement in nanoparticles larger than the exciton Bohr radius. The assembly of such nanostructures exhibits a relatively low surface-to-volume ratio, which was manifestedmore » in this work through the enhanced conductance of solution-processed films. The reported core/shell geometry was realized by growing a narrow gap semiconductor layer (CdSe) on the surface of a wide-gap core material (CdS) promoting the localization of excitons in the shell domain, as was confirmed by ultrafast transient absorption and emission lifetime measurements. The band gap emission of fabricated nanoshells, ranging from 15 to 30 nm in diameter, has revealed a characteristic size-dependent behavior tunable via the shell thickness with associated quantum yields in the 4.4–16.0% range.« less

  10. B(E2)↑ Measurements for Radioactive Neutron-Rich Ge Isotopes: Reaching the N=50 Closed Shell

    NASA Astrophysics Data System (ADS)

    Padilla-Rodal, E.; Galindo-Uribarri, A.; Baktash, C.; Batchelder, J. C.; Beene, J. R.; Bijker, R.; Brown, B. A.; Castaños, O.; Fuentes, B.; del Campo, J. Gomez; Hausladen, P. A.; Larochelle, Y.; Lisetskiy, A. F.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego, J. P.; Varner, R. L.; Yu, C.-H.

    2005-03-01

    The B(E2;0+1→2+1) values for the radioactive neutron-rich germanium isotopes 78,80Ge and the closed neutron shell nucleus 82Ge were measured at the HRIBF using Coulomb excitation in inverse kinematics. These data allow a study of the systematic trend between the subshell closures at N=40 and 50. The B(E2) behavior approaching N=50 is similar to the trend observed for heavier isotopic chains. A comparison of the experimental results with a shell model calculation demonstrates persistence of the N=50 shell gap and a strong sensitivity of the B(E2) values to the effective interaction.

  11. Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array.

    PubMed

    Rai, Satish C; Wang, Kai; Ding, Yong; Marmon, Jason K; Bhatt, Manish; Zhang, Yong; Zhou, Weilie; Wang, Zhong Lin

    2015-06-23

    A high-performance broad band UV/visible photodetector has been successfully fabricated on a fully wide bandgap ZnO/ZnS type-II heterojunction core/shell nanowire array. The device can detect photons with energies significantly smaller (2.2 eV) than the band gap of ZnO (3.2 eV) and ZnS (3.7 eV), which is mainly attributed to spatially indirect type-II transition facilitated by the abrupt interface between the ZnO core and ZnS shell. The performance of the device was further enhanced through the piezo-phototronic effect induced lowering of the barrier height to allow charge carrier transport across the ZnO/ZnS interface, resulting in three orders of relative responsivity change measured at three different excitation wavelengths (385, 465, and 520 nm). This work demonstrates a prototype UV/visible photodetector based on the truly wide band gap semiconducting 3D core/shell nanowire array with enhanced performance through the piezo-phototronic effect.

  12. Nuclear tetrahedral symmetry: possibly present throughout the periodic table.

    PubMed

    Dudek, J; Goźdź, A; Schunck, N; Miśkiewicz, M

    2002-06-24

    More than half a century after the fundamental, spherical shell structure in nuclei had been established, theoretical predictions indicated that the shell gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TD(d) ("double-tetrahedral") symmetry group. Strong shell-gap structure is enhanced by the existence of the four-dimensional irreducible representations of TD(d); it can be seen as a geometrical effect that does not depend on a particular realization of the mean field. Possibilities of discovering the TD(d) symmetry in experiment are discussed.

  13. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    NASA Astrophysics Data System (ADS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  14. Cross-shell excitations in Si 31

    DOE PAGES

    Tai, P. -L.; Tabor, S. L.; Lubna, R. S.; ...

    2017-07-28

    The Si-31 nucleus was produced through the O-18(18O, an) fusion-evaporation reaction at E-lab = 24 MeV. Evaporated a particles from the reaction were detected and identified in the Microball detector array for channel selection. Multiple gamma-ray coincidence events were detected in Gammasphere. The energy and angle information for the alpha particles was used to determine the Si-31 recoil kinematics on an event-by-event basis for a more accurate Doppler correction. A total of 22 new states and 52 new gamma transitions were observed, including 14 from states above the neutron separation energy. The positive-parity states predicted by the shell-model calculations inmore » the sd model space agree well with experiment. The negative-parity states were compared with shell-model calculations in the psdpf model space with some variations in the N = 20 shell gap. The best agreement was found with a shell gap intermediate between that originally used for A approximate to 20 nuclei and that previously adapted for P-32,P-34. This variation suggests the need for a more universal cross-shell interaction.« less

  15. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap.

    PubMed

    Oh, Jeong-Wook; Lim, Dong-Kwon; Kim, Gyeong-Hwan; Suh, Yung Doug; Nam, Jwa-Min

    2014-10-08

    The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes.

  16. Cross-sectional aspect ratio modulated electronic properties in Si/Ge core/shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nuo; Lu, Ning; Yao, Yong-Xin

    2013-02-28

    Electronic structures of (4, n) and (m, 4) (the NW has m layers parallel to the {1 1 1} facet and n layers parallel to {1 1 0}) Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with cross-sectional aspect ratio (m/n) from 0.36 to 2.25 are studied by first-principles calculations. An indirect to direct band gap transition is observed as m/n decreases, and the critical values of m/n and diameter for the transition are also estimated. The size of the band gap also depends on the aspect ratio. These results suggest that m/n plays an important role inmore » modulating the electronic properties of the NWs.« less

  17. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes.

    PubMed

    Kim, Sungwoo; Kim, Taehoon; Kang, Meejae; Kwak, Seong Kwon; Yoo, Tae Wook; Park, Lee Soon; Yang, Ilseung; Hwang, Sunjin; Lee, Jung Eun; Kim, Seong Keun; Kim, Sang-Wook

    2012-02-29

    Highly stable and luminescent InP/GaP/ZnS QDs with a maximum quantum yield of 85% were synthesized by in situ method. The GaP shell rendered passivation of the surface and removed the traps. TCSPC data showed an evidence for the GaP shell. InP/GaP/ZnS QDs show better stability than InP/ZnS. We studied the optical properties of white QD-LEDs corresponding to various QD concentrations. Among various concentrations, the white QD-LEDs with 0.5 mL of QDs exhibited a luminous efficiency of 54.71 lm/W, Ra of 80.56, and CCT of 7864 K. © 2012 American Chemical Society

  18. An Explosive Bomb-Inspired Method to Prepare Collapsed and Ruptured Fe2 O3 /Nitrogen-Doped Carbon Capsules as Catalyst Support.

    PubMed

    Wu, Jie; Zhang, Hui; Feng, Yan; Zhang, Xiao; Yao, Tongjie; Lian, Yongfu

    2017-12-01

    Compared with integrated capsules, ruptured ones have better mass diffusion and transport properties due to large gaps in the shells. However, most studies focus on integrated capsules, whereas little attention has been paid to the ruptured counterparts. Herein, an explosive bomb-inspired method was employed to prepare collapsed and ruptured Fe 2 O 3 /nitrogen-doped carbon (CR-Fe 2 O 3 /NC) capsules by using polystyrene (PS) nanoparticles (NPs) as a hard template, and polypyrrole (PPy) with embedded Prussian blue (PB) NPs as the shell. During pyrolysis, PB is converted into Fe 2 O 3 , and PPy is carbonized to form NC. Importantly, the PS core decomposes into gas molecules, leading to high pressure inside of the capsule, which explodes the thin shell into pieces. The roles of shell thickness and amount of Fe 2 O 3 on determining the spherical or collapsed, and integrated or ruptured morphology were revealed. Taking advantage of structural merits, including large gaps, thin shells, low density, and high surface area, CR-Fe 2 O 3 /NC capsules were used as supports for Pd NPs. These capsules exhibited better catalytic activity than that of integrated ones. Due to the magnetic properties, they could be reused at least five times. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electronic and Optical Properties of Core/Shell Pb16X16/Cd52X52 (X =S, Se, Te) Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tamukong, Patrick; Mayo, Michael; Kilina, Svetlana

    2015-03-01

    The electronic and optoelectronic properties of semiconductor quantum dots (QDs) are mediated by surface defects due to the presence of dangling bonds producing trap states within the HOMO-LUMO energy gap, and contributing to fluorescence quenching. Surface capping ligands are generally used to alleviate this problem and increase the quantum yields of QDs. An alternative way is to synthesize core-shell QD structures; i.e., a QD core with a shell of another semiconductor material. We have investigated the effects of Cd52X52 shells on the photoexcited dynamics of Pb16X16 (X =S, Se, Te) QDs. The thin (~ 0.50 nm) shells were found to result largely in type I core/shell structures and a blue shift of the absorption spectra. Our studies revealed fairly strong core-shell hybridization in the electronic states close to the conduction band (CB) edge for Pb16S16andPb16Se16 cores, whereas for the Pb16Te16 core, such CB states were largely shell-like in nature. Nonadiabatic DFT-based dynamics, coupled with the surface hopping method, was used to study the effects of the core and shell compositions on energy relaxation rates in these systems.

  20. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell.

    PubMed

    Dana, Jayanta; Maiti, Sourav; Tripathi, Vaidehi S; Ghosh, Hirendra N

    2018-02-16

    Shell thickness dependent band-gap engineering of quasi type II core-shell material with higher carrier cooling time, lower interfacial defect states, and longer charge carrier recombination time can be a promising candidate for both photocatalysis and solar cell. In the present investigation, colloidal CdSe@CdS core-shells with different shell thickness (2, 4 and 6 monolayer CdS) were synthesized through hot injection method and have been characterized by high resolution transmission electron microscope (HRTEM) followed by steady state absorption and luminescence techniques. Ultrafast transient absorption (TA) studies suggest longer carrier cooling, lower interfacial surface states, and slower carrier recombination time in CdSe@CdS core-shell with increasing shell thickness. By TA spectroscopy, the role of CdS shell in power conversion efficiency (PCE) has been explained in detail. The measured PCE was found to initially increase and then decrease with increasing shell thickness. Shell thickness has been optimized to maximize the efficiency after correlating the shell controlled carrier cooling and recombination with PCE values and a maximum PCE of 3.88 % was obtained with 4 monolayers of CdS shell, which is found to be 57 % higher than compared to bare CdSe QDs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Catalytic converter for purifying exhaust gases of internal combustion engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, A.; Oya, H.

    1980-06-24

    A catalytic converter for purifying the exhaust gases of internal combustion engines is comprised of a cylindrical shell comprising a pair of half shells which form an inlet chamber, a catalyst chamber, and an outlet chamber, a catalyst element provided in the catalyst chamber, a cylindrical sealing member provided in the inlet chamber, and a damper member provided between the cylindrical shell and the sealing member. The sealing member engages to the cylindrical shell for sealing the gap between the cylindrical shell and the catalyst element.

  2. A systematic study of superheavy nuclei for Z = 114 and beyond using the relativistic mean field approach

    NASA Astrophysics Data System (ADS)

    Patra, S. K.; Wu, Cheng-Li; Praharaj, C. R.; Gupta, Raj K.

    1999-05-01

    We have studied the structural properties of even-even, neutron deficient, Z = 114-126, superheavy nuclei in the mass region A ˜ 270-320, using an axially deformed relativistic mean field model. The calculations are performed with three parameter sets (NL1, TM1 and NL-SH), in order to see the dependence of the structural properties on the force used. The calculated ground state shapes are found to be parameter dependent. For some parameter sets, many of the nuclei are degenerate in their ground state configuration. Special attention is given to the investigation of the magic structures (spherical shell closures) in the superheavy region. We find that some known magic numbers are absent and new closed shells are predicted. Large shell gaps appear at Z = 80, 92, (114), 120 and 138, N = 138, (164), (172), 184, (198), (228) and 258, irrespective of the parameter sets used. The numbers in parenthesis are those which correspond to relatively smaller gaps. The existence of new magic numbers in the valley of superheavy elements is discussed. It is suggested that nuclei around Z = 114 and N = 164 ˜ 172 could be considered as candidates for the next search of superheavy nuclei. The existence of superheavy islands around Z = 120 and N = 172 or N = 184 double shell closure is also discussed.

  3. Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.

  4. Surface passivation and self-regulated shell growth in selective area-grown GaN-(Al,Ga)N core-shell nanowires.

    PubMed

    Hetzl, Martin; Winnerl, Julia; Francaviglia, Luca; Kraut, Max; Döblinger, Markus; Matich, Sonja; Fontcuberta I Morral, Anna; Stutzmann, Martin

    2017-06-01

    The large surface-to-volume ratio of GaN nanowires implicates sensitivity of the optical and electrical properties of the nanowires to their surroundings. The implementation of an (Al,Ga)N shell with a larger band gap around the GaN nanowire core is a promising geometry to seal the GaN surface. We investigate the luminescence and structural properties of selective area-grown GaN-(Al,Ga)N core-shell nanowires grown on Si and diamond substrates. While the (Al,Ga)N shell allows a suppression of yellow defect luminescence from the GaN core, an overall intensity loss due to Si-related defects at the GaN/(Al,Ga)N interface has been observed in the case of Si substrates. Scanning transmission electron microscopy measurements indicate a superior crystal quality of the (Al,Ga)N shell along the nanowire side facets compared to the (Al,Ga)N cap at the top facet. A nucleation study of the (Al,Ga)N shell reveals a pronounced bowing of the nanowires along the c-direction after a short deposition time which disappears for longer growth times. This is assigned to an initially inhomogeneous shell nucleation. A detailed study of the proceeding shell growth allows the formulation of a strain-driven self-regulating (Al,Ga)N shell nucleation model.

  5. In vivo imaging of the morphology and changes in pH along the gastrointestinal tract of Japanese medaka by photonic band-gap hydrogel microspheres.

    PubMed

    Du, Xuemin; Lei, Ngai-Yu; Hu, Peng; Lei, Zhang; Ong, Daniel Hock-Chun; Ge, Xuewu; Zhang, Zhicheng; Lam, Michael Hon-Wah

    2013-07-17

    Colloidal crystalline microspheres with photonic band-gap properties responsive to media pH have been developed for in vivo imaging purposes. These colloidal crystalline microspheres were constructed from monodispersed core-shell nano-size particles with poly(styrene-co-acrylic acid) (PS-co-PAA) cores and poly(acrylic acid-co-N-isopropylacrylamide) (PAA-co-PNIPAM) hydrogel shells cross-linked by N,N'-methylenebisacrylamide. A significant shift in the photonic band-gap properties of these colloidal crystalline microspheres was observed in the pH range of 4-5. This was caused by the discontinuous volume phase transition of the hydrogel coating, due to the protonation/deprotonation of its acrylic acid moieties, on the core-shell nano-sized particles within the microspheres. The in vivo imaging capability of these pH-responsive photonic microspheres was demonstrated on a test organism - Japanese medaka, Oryzia latipes - in which the morphology and change in pH along their gastrointestinal (GI) tracts were revealed under an ordinary optical microscope. This work illustrates the potential of stimuli-responsive photonic band-gap materials in tissue-/organ-level in vivo bio-imaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Self consistent field theory of virus assembly

    NASA Astrophysics Data System (ADS)

    Li, Siyu; Orland, Henri; Zandi, Roya

    2018-04-01

    The ground state dominance approximation (GSDA) has been extensively used to study the assembly of viral shells. In this work we employ the self-consistent field theory (SCFT) to investigate the adsorption of RNA onto positively charged spherical viral shells and examine the conditions when GSDA does not apply and SCFT has to be used to obtain a reliable solution. We find that there are two regimes in which GSDA does work. First, when the genomic RNA length is long enough compared to the capsid radius, and second, when the interaction between the genome and capsid is so strong that the genome is basically localized next to the wall. We find that for the case in which RNA is more or less distributed uniformly in the shell, regardless of the length of RNA, GSDA is not a good approximation. We observe that as the polymer-shell interaction becomes stronger, the energy gap between the ground state and first excited state increases and thus GSDA becomes a better approximation. We also present our results corresponding to the genome persistence length obtained through the tangent-tangent correlation length and show that it is zero in case of GSDA but is equal to the inverse of the energy gap when using SCFT.

  7. Joint and Interdependent Requirements: A Case Study in Solving the Naval Surface Fire Support Capabilities Gap

    DTIC Science & Technology

    2007-05-17

    inch long ra projectiles against Viet Cong positions to ranges over 35 miles – 60,000 yards - inland. Additionally, a 5- inch rocket assisted projectile...ship. The 100 mile rocket assisted shell was approximately twenty inches too long to work within the existing handling system. The 278 mile rocket... assisted shell was fourteen inches too long for the Iowa class ship’s ammunition handling equi However, if shortened to seventy-six inches, this

  8. High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2014-01-01

    Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.

  9. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.

    PubMed

    Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee

    2015-11-07

    We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.

  10. X-ray Power Increase from Symmetrized Wire-Array z-Pinch Implosions on Saturn.*

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Allshouse, G. O.; Marder, B. M.; Nash, T. J.; Mock, R. C.; Douglas, M. R.; Spielman, R. B.; Seaman, J. F.; McGurn, J. S.; Jobe, D.; Gilliland, T. L.; Vargas, M.; Struve, K. W.; Stygar, W. A.; Hammer, J. H.; Degroot, J. S.; Eddleman, J. L.; Peterson, D. L.; Whitney, K. G.; Thornhill, J. W.; Pulsifer, P. E.; Apruzese, J. P.; Mosher, D.; Maron, Y.

    1996-11-01

    A systematic experimental study of annular aluminum wire z-pinches on the Saturn accelerator at Sandia National Laboratories shows that, for the first time, many of the measured spatial characteristics and x-ray powers can be correlated to 1D and 2D, radiation-magneto-hydrodynamic code (RMHC) simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual wire plasmas to that of a continuous plasma shell when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4±0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray power has been more than tripled over that generated in the wire-plasma regime. In the full paper, measured characteristics in the plasma-shell regime are compared with 2D, 1- and 20-mm axial length simulations of the implosion using a multi-photon-group Lagrangian RMHC^1 and a three-temperature Eulerian RMHC,^2 respectively. ^1J.H. Hammer, et al., Phys. Plasmas 3, 2063 (1996). ^2D.L. Peterson, et al., Phys. Plasmas 3, 368 (1996). Work supported by U.S. DOE Contract No. DE-AC04-94AL85000.

  11. In-gap corner states in core-shell polygonal quantum rings.

    PubMed

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-10

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

  12. In-gap corner states in core-shell polygonal quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-01

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

  13. Fano-like resonance phenomena by flexural shell modes in sound transmission through two-dimensional periodic arrays of thin-walled hollow cylinders

    NASA Astrophysics Data System (ADS)

    Kosevich, Yuriy A.; Goffaux, Cecile; Sánchez-Dehesa, Jose

    2006-07-01

    It is shown that the n=2 and 3 flexural shell vibration modes of thin-walled hollow cylinders result in Fano-like resonant enhancement of sound wave transmission through or reflection from two-dimensional periodic arrays of these cylinders in air. The frequencies of the resonant modes are well described by the analytical theory of flexural (circumferential) modes of thin-walled hollow cylinders and are confirmed by finite-difference time-domain simulations. When the modes are located in the band gaps of the phononic crystal, an enhancement of the band-gap widths is produced by the additional restoring forces caused by the flexural shell deformations. Our conclusions provide an alternative method for the vibration control of airborne phononic crystals.

  14. Electrical insulation system for the shell-vacuum vessel and poloidal field gap in the ZTH machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reass, W.A.; Ballard, E.O.

    1989-01-01

    The electrical insulation systems for the ZTH machine have many unusual design problems. The poloidal field gap insulation must be capable of conforming to poloidal and toroidal contours, provide a 25 kV hold off, and sufficiently adhere to the epoxy back fill between the overlapping conductors. The shell-vacuum vessel system will use stretchable and flexible insulation along with protective hats, boots and sleeves. The shell-vacuum vessel system must be able to withstand a 12.5 kV pulse with provision for thermal insulation to limit the effects of the 300{degrees}C vacuum vessel during operation and bakeout. Methodology required to provide the electricalmore » protection along with testing data and material characteristics will be presented. 7 figs.« less

  15. Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.

    PubMed

    Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A

    2018-05-25

    The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.

  16. Highly aqueous soluble CaF2:Ce/Tb nanocrystals: effect of surface functionalization on structural, optical band gap, and photoluminescence properties.

    PubMed

    Ansari, Anees A; Parchur, Abdul K; Kumar, Brijesh; Rai, S B

    2016-12-01

    The design of nanostructured materials with highly stable water-dispersion and luminescence efficiency is an important concern in nanotechnology and nanomedicine. In this paper, we described the synthesis and distinct surface modification on the morphological structure and optical (optical absorption, band gap energy, excitation, emission, decay time, etc.) properties of highly crystalline water-dispersible CaF 2 :Ce/Tb nanocrystals (core-nanocrystals). The epitaxial growth of inert CaF 2 and silica shell, respectively, on their surface forming as CaF 2 :Ce/Tb@CaF 2 (core/shell) and CaF 2 :Ce/Tb@CaF 2 @SiO 2 (core/shell/SiO 2 ) nanoarchitecture. X-ray diffraction and transmission electron microscope image shows that the nanocrystals were in irregular spherical phase, highly crystalline (~20 nm) with narrow size distribution. The core/shell nanocrystals confirm that the surface coating is responsible in the change of symmetrical nanostructure, which was determined from the band gap energy and luminescent properties. It was found that an inert inorganic shell formation effectively enhances the luminescence efficiency and silica shell makes the nanocrystals highly water-dispersible. In addition, Ce 3+ /Tb 3+ -co-doped CaF 2 nanocrystals show efficient energy transfer from Ce 3+ to Tb 3+ ion and strong green luminescence of Tb 3+ ion at 541 nm( 5 D 4 → 7 F 5 ). Luminescence decay curves of core and core/shell nanocrystals were fitted using mono and biexponential equations, and R 2 regression coefficient criteria were used to discriminate the goodness of the fitted model. The lifetime values for the core/shell nanocrystals are higher than core-nanocrystals. Considering the high stable water-dispersion and intensive luminescence emission in the visible region, these luminescent core/shell nanocrystals could be potential candidates for luminescent bio-imaging, optical bio-probe, displays, staining, and multianalyte optical sensing. A newly designed CaF 2 :Ce/Tb nanoparticles via metal complex decomposition rout shows high dispersibility in aqueous solvents with enhanced photoluminescence. The epitaxial growth of inert CaF 2 shell and further amorphous silica, respectively, enhanced their optical and luminescence properties, which is highly usable for luminescent biolabeling, and optical bioprobe etc.

  17. Low-Z shore of the "island of inversion" and the reduced neutron magicity toward 28O

    NASA Astrophysics Data System (ADS)

    Doornenbal, P.; Scheit, H.; Takeuchi, S.; Utsuno, Y.; Aoi, N.; Li, K.; Matsushita, M.; Steppenbeck, D.; Wang, H.; Baba, H.; Ideguchi, E.; Kobayashi, N.; Kondo, Y.; Lee, J.; Michimasa, S.; Motobayashi, T.; Otsuka, T.; Sakurai, H.; Takechi, M.; Togano, Y.; Yoneda, K.

    2017-04-01

    The two odd-even fluorine isotopes F,2927 were studied via in-beam γ -ray spectroscopy at the RIKEN Radioactive Isotope Beam Factory. A secondary beam of 30Ne was used to induce one-proton and one-proton-two-neutron removal reactions on carbon and polyethylene targets at midtarget energies of 228 MeV/u . Excited states were observed at 915(12) keV for 27F and at 1080(18) keV for 29F. Both were assigned a 1 /21+ spin and parity. The low transition energy for 29F largely disagrees with shell model predictions restricted to the s d model space. Calculations using effective interactions that include the neutron p f shell indicate that the N =20 gap is quenched for 29F, thus extending the "island of inversion" to isotopes with proton number Z =9 . Variations of the N =20 gap further reveal a strong correlation to the 1 /21+ level energy in 29F and suggest a persistent reduced neutron gap for 28O.

  18. Liquid-liquid phase separation and core-shell structure of ternary Al-In-Sn immiscible alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Bo, Lin; Wang, Lin; Li, Shanshan

    2018-04-01

    In this study, the liquid-liquid phase separation of four kinds of ternary immiscible Al-In-Sn melts was investigated with resistivity and thermodynamics method. The nonlinear changes in ρ-T and DSC curves of Al-In-Sn immiscible alloys above monotectic reaction temperature revealed the occurrence of liquid-liquid phase separation of Al-In-Sn melts. The monotectic temperature, liquid phase separation temperature and immiscible gap of ternary Al-In-Sn alloys were lower than those of binary Al-In alloy. With the Al content decreasing, the immiscible gap of Al-In-Sn alloy decreased. The composition of Al80In10Sn10, Al70In15Sn15, Al60In20Sn20 and Al50In25Sn25 was located in the immiscible zone of Al-In-Sn system. Due to the differences of Stokes effect, Marangoni convection and immiscible gap, the solidification morphology of four kinds of Al-In-Sn monotectic alloy was different. The core–shell structure of Al-In-Sn monotectic alloy can form within a certain range of composition.

  19. In-gap corner states in core-shell polygonal quantum rings

    PubMed Central

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-01

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states. PMID:28071750

  20. Mass Measurements Demonstrate a Strong N = 28 Shell Gap in Argon

    DOE PAGES

    Meisel, Z.; George, S.; Ahn, S.; ...

    2015-01-15

    We present results from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. We report the first mass measurements of 48Ar and 49Ar and find atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively. These masses provide strong evidence for the closed shell nature of neutron number N = 28 in argon, which is therefore the lowest even-Z element exhibiting the N = 28 closed shell. The resulting trend in binding-energy differences, which probes the strength of the N = 28 shell, compares favorably with shell-model calculations in the sd-pf shell using SDPF-Umore » and SDPF-MU Hamiltonians.« less

  1. Glycerol capped PbS/CdS core/shell nanoparticles at different molar ratio and its application in biosensors: An optical properties study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, D., E-mail: ddasphy014@gmail.com; Hussain, A. M. P.

    2016-05-06

    Glycerol capped PbS/CdS core/shell type nanoparticles fabricated with two different molar ratios are characterized for study of structural and optical properties. The X-ray diffraction (XRD) pattern exhibits cubic phased polycrystalline nanocrystals. The calculated grain sizes from Williamson-Hall plot were found to be around 6 nm with increased strain. HRTEM investigation confirms the formation of core/shell nanostructures and the sizes of the particles were found to be around 7 nm which is in good agreement with the results of the W-H plot. An increase of band gap with the decrease in precursor concentration is confirmed from the blue shift in the absorption spectramore » and also from Tauc plot. A clear blue shifted intense emission is observed in the photoluminescence spectra with decrease in particle size. Intense luminescence from the core/shell nanostructure may be applied in bio labelling and biosensors.« less

  2. Microscopic description of quadrupole collectivity in neutron-rich nuclei across the N = 126 shell closure

    NASA Astrophysics Data System (ADS)

    Rodríguez-Guzmán, R.; Robledo, L. M.; Sharma, M. M.

    2015-06-01

    The quadrupole collectivity in Nd, Sm, Gd, Dy, Er, Yb, Hf and W nuclei with neutron numbers 122 ≤ N ≤ 156 is studied, both at the mean field level and beyond, using the Gogny energy density functional. Besides the robustness of the N = 126 neutron shell closure, it is shown that the onset of static deformations in those isotopic chains with increasing neutron number leads to an enhanced stability and further extends the corresponding two-neutron drip lines far beyond what could be expected from spherical calculations. Independence of the mean-field predictions with respect to the particular version of the Gogny energy density functional employed is demonstrated by comparing results based on the D1S and D1M parameter sets. Correlations beyond mean field are taken into account in the framework of the angular momentum projected generator coordinate method calculation. It is shown that N = 126 remains a robust neutron magic number when dynamical effects are included. The analysis of the collective wave functions, average deformations and excitation energies indicate that, with increasing neutron number, the zero-point quantum corrections lead to dominant prolate configurations in the 0{1/+}, 0{2/+}, 2{1/+} and 2{2/+} states of the studied nuclei. Moreover, those dynamical deformation effects provide an enhanced stability that further supports the mean-field predictions, corroborating a shift of the r-process path to higher neutron numbers. Beyond mean-field calculations provide a smaller shell gap at N = 126 than the mean-field one in good agreement with previous theoretical studies. However, the shell gap still remains strong enough in the two-neutron drip lines.

  3. Studies of Copper, Silver, and Gold Cluster Anions: Evidence of Electronic Shell Structure.

    NASA Astrophysics Data System (ADS)

    Pettiette, Claire Lynn

    A new Ultraviolet Magnetic Time-of-Flight Photoelectron Spectrometer (MTOFPES) has been developed for the study of the electronic structure of clusters produced in a pulsed supersonic molecular beam. This is the first technique which has been successful in probing the valence electronic states of metal clusters. The ultraviolet photoelectron spectra of negative cluster ions of the noble metals have been taken at several different photon energies. These are presented along with the electron affinity and HOMO-LUMO gap measurements for Cu_6^- to Cu_ {41}^-, using 4.66 eV and 6.42 eV detachment energies; Ag_3^- to Ag_{21}^-, using 6.42 eV detachment energy; and Au_3^ - to Au_{21}^-, using 6.42 eV and 7.89 eV detachment energies. The spectra provide the first detailed probes of the s valence electrons of the noble metal clusters. In addition, the 6.42 eV and 7.89 eV spectra probe the first one to two electron volts of the molecular orbitals of the d valence electrons of copper and gold clusters. The electron affinity and HOMO-LUMO gap measurements of the noble metal clusters agree with the predictions of the ellipsoidal shell model for mono-valent metal clusters. In particular, cluster numbers 8, 20, and 40--which correspond to the spherical shell closings of this model--have low electron affinities and large HOMO-LUMO gaps. The spectra of the gold cluster ions indicate that the molecular orbital energies of the cluster valence electrons are more widely spaced for gold than for copper or silver. This is to be expected for the heavy atom clusters when relativistic effects are taken into account.

  4. PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications

    PubMed Central

    Zaiats, Gary; Yanover, Diana; Vaxenburg, Roman; Tilchin, Jenya; Sashchiuk, Aldona; Lifshitz, Efrat

    2014-01-01

    Lead-based (IV–VI) colloidal quantum dots (QDs) are of widespread scientific and technological interest owing to their size-tunable band-gap energy in the near-infrared optical region. This article reviews the synthesis of PbSe-based heterostructures and their structural and optical investigations at various temperatures. The review focuses on the structures consisting of a PbSe core coated with a PbSexS1–x (0 ≤ x ≤ 1) or CdSe shell. The former-type shells were epitaxially grown on the PbSe core, while the latter-type shells were synthesized using partial cation-exchange. The influence of the QD composition and the ambient conditions, i.e., exposure to oxygen, on the QD optical properties, such as radiative lifetime, Stokes shift, and other temperature-dependent characteristics, was investigated. The study revealed unique properties of core/shell heterostructures of various compositions, which offer the opportunity of fine-tuning the QD electronic structure by changing their architecture. A theoretical model of the QD electronic band structure was developed and correlated with the results of the optical studies. The review also outlines the challenges related to potential applications of colloidal PbSe-based heterostructures. PMID:28788244

  5. Computational reconstruction and fluid dynamics of in vivo thrombi from the microcirculation

    NASA Astrophysics Data System (ADS)

    Mirramezani, Mehran; Tomaiuolo, Maurizio; Stalker, Timothy; Shadden, Shawn

    2016-11-01

    Blood flow and mass transfer can have significant effects on clot growth, composition and stability during the hemostatic response. We integrate in vivo data with CFD to better understand transport processes during clot formation. By utilizing electron microscopy, we reconstructed the 3D thrombus structure formed after a penetrating laser injury in a mouse cremaster muscle. Random jammed packing is used to reconstruct the microenvironment of the platelet aggregate, with platelets modeled as ellipsoids. In our 3D model, Stokes flow is simulated to obtain the velocity field in the explicitly meshed gaps between platelets and the lumen surrounding the thrombus. Based on in vivo data, a clot is composed of a core of highly activated platelets covered by a shell of loosely adherent platelets. We studied the effects of clot size (thrombus growth), gap distribution (consolidation), and vessel blood flow rate on mean intrathrombus velocity. The results show that velocity is smaller in the core as compared to the shell, potentially enabling higher concentration of agonists in the core contributing to its activation. In addition, our results do not appear to be sensitive to the geometry of the platelets, but rather gap size plays more important role on intrathrombus velocity and transport.

  6. Effect of Slag-Steel Reaction on the Initial Solidification of Molten Steel during Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lou, Zhican; Zhang, Haihui

    2018-03-01

    With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.

  7. Effect of Slag-Steel Reaction on the Initial Solidification of Molten Steel during Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lou, Zhican; Zhang, Haihui

    2018-06-01

    With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.

  8. Higher Order π-Conjugated Polycyclic Hydrocarbons with Open-Shell Singlet Ground State: Nonazethrene versus Nonacene.

    PubMed

    Huang, Rui; Phan, Hoa; Herng, Tun Seng; Hu, Pan; Zeng, Wangdong; Dong, Shao-Qiang; Das, Soumyajit; Shen, Yongjia; Ding, Jun; Casanova, David; Wu, Jishan

    2016-08-17

    Higher order acenes (i.e., acenes longer than pentacene) and extended zethrenes (i.e., zethrenes longer than zethrene) are theoretically predicted to have an open-shell singlet ground state, and the radical character is supposed to increase with extension of molecular size. The increasing radical character makes the synthesis of long zethrenes and acenes very challenging, and so far, the longest reported zethrene and acene derivatives are octazethrene and nonacene, respectively. In addition, there is a lack of fundamental understanding of the differences between these two closely related open-shell singlet systems. In this work, we report the first synthesis of a challenging nonazethrene derivative, HR-NZ, and its full structural and physical characterizations including variable temperature NMR, ESR, SQUID, UV-vis-NIR absorption and electrochemical measurements. Compound HR-NZ has an open-shell singlet ground state with a moderate diradical character (y0 = 0.48 based on UCAM-B3LYP calculation) and a small singlet-triplet gap (ΔES-T = -5.2 kcal/mol based on SQUID data), thus showing magnetic activity at room temperature. It also shows amphoteric redox behavior, with a small electrochemical energy gap (1.33 eV). Its electronic structure and physical properties are compared with those of Anthony's nonacene derivative JA-NA and other zethrene derivatives. A more general comparison between higher order acenes and extended zethrenes was also conducted on the basis of ab initio electronic structure calculations, and it was found that zethrenes and acenes have very different spatial localization of the unpaired electrons. As a result, a faster decrease of singlet-triplet energy gap and a faster increase of radical character with increase of the number of benzenoid rings were observed in zethrene series. Our studies reveal that spatial localization of the frontier molecular orbitals play a very important role on the nature of radical character as well as the excitation energy.

  9. Molecular Structure of a 9-MDa Icosahedral Pyruvate Dehydrogenase Subcomplex Containing the E2 and E3 Enzymes Using Cryoelectron Microscopy*

    PubMed Central

    Milne, Jacqueline L. S.; Wu, Xiongwu; Borgnia, Mario J.; Lengyel, Jeffrey S.; Brooks, Bernard R.; Shi, Dan; Perham, Richard N.; Subramaniam, Sriram

    2006-01-01

    The pyruvate dehydrogenase multienzyme complexes are among the largest multifunctional catalytic machines in cells, catalyzing the production of acetyl CoA from pyruvate. We have previously reported the molecular architecture of an 11-MDa subcomplex comprising the 60-mer icosahedral dihydrolipoyl acetyltransferase (E2) decorated with 60 copies of the heterotetrameric (α2β2) 153-kDa pyruvate decarboxylase (E1) from Bacillus stearothermophilus (Milne, J. L. S., Shi, D., Rosenthal, P. B., Sunshine, J. S., Domingo, G. J., Wu, X., Brooks, B. R., Perham, R. N., Henderson, R., and Subramaniam, S. (2002) EMBO J. 21, 5587–5598). An annular gap of ~90 Å separates the acetyltransferase catalytic domains of the E2 from an outer shell formed of E1 tetramers. Using cryoelectron microscopy, we present here a three-dimensional reconstruction of the E2 core decorated with 60 copies of the homodimeric 100-kDa dihydrolipoyl dehydrogenase (E3). The E2E3 complex has a similar annular gap of ~75 Å between the inner icosahedral assembly of acetyltransferase domains and the outer shell of E3 homodimers. Automated fitting of the E3 coordinates into the map suggests excellent correspondence between the density of the outer shell map and the positions of the two best fitting orientations of E3. As in the case of E1 in the E1E2 complex, the central 2-fold axis of the E3 homodimer is roughly oriented along the periphery of the shell, making the active sites of the enzyme accessible from the annular gap between the E2 core and the outer shell. The similarities in architecture of the E1E2 and E2E3 complexes indicate fundamental similarities in the mechanism of active site coupling involved in the two key stages requiring motion of the swinging lipoyl domain across the annular gap, namely the synthesis of acetyl CoA and regeneration of the dithiolane ring of the lipoyl domain. PMID:16308322

  10. Governance of Offshore IT Outsourcing at Shell Global Functions IT-BAM Development and Application of a Governance Framework to Improve Outsourcing Relationships

    NASA Astrophysics Data System (ADS)

    de Jong, Floor; van Hillegersberg, Jos; van Eck, Pascal; van der Kolk, Feiko; Jorissen, Rene

    The lack of effective IT governance is widely recognized as a key inhibitor to successful global IT outsourcing relationships. In this study we present the development and application of a governance framework to improve outsourcing relationships. The approach used to developing an IT governance framework includes a meta model and a customization process to fit the framework to the target organization. The IT governance framework consists of four different elements (1) organisational structures, (2) joint processes between in- and outsourcer, (3) responsibilities that link roles to processes and (4) a diverse set of control indicators to measure the success of the relationship. The IT governance framework is put in practice in Shell GFIT BAM, a part of Shell that concluded to have a lack of management control over at least one of their outsourcing relationships. In a workshop the governance framework was used to perform a gap analysis between the current and desired governance. Several gaps were identified in the way roles and responsibilities are assigned and joint processes are set-up. Moreover, this workshop also showed the usefulness and usability of the IT governance framework in structuring, providing input and managing stakeholders in the discussions around IT governance.

  11. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  12. Predictable Particle Engineering: Programming the Energy Level, Carrier Generation, and Conductivity of Core-Shell Particles.

    PubMed

    Yuan, Conghui; Wu, Tong; Mao, Jie; Chen, Ting; Li, Yuntong; Li, Min; Xu, Yiting; Zeng, Birong; Luo, Weiang; Yu, Lingke; Zheng, Gaofeng; Dai, Lizong

    2018-06-20

    Core-shell structures are of particular interest in the development of advanced composite materials as they can efficiently bring different components together at nanoscale. The advantage of this structure greatly relies on the crucial design of both core and shell, thus achieving an intercomponent synergistic effect. In this report, we show that decorating semiconductor nanocrystals with a boronate polymer shell can easily achieve programmable core-shell interactions. Taking ZnO and anatase TiO 2 nanocrystals as inner core examples, the effective core-shell interactions can narrow the band gap of semiconductor nanocrystals, change the HOMO and LUMO levels of boronate polymer shell, and significantly improve the carrier density of core-shell particles. The hole mobility of core-shell particles can be improved by almost 9 orders of magnitude in comparison with net boronate polymer, while the conductivity of core-shell particles is at most 30-fold of nanocrystals. The particle engineering strategy is based on two driving forces: catechol-surface binding and B-N dative bonding and having a high ability to control and predict the shell thickness. Also, this approach is applicable to various inorganic nanoparticles with different components, sizes, and shapes.

  13. Interfacial effect on the structural and optical properties of pure SnO2 and dual shells (ZnO; SiO2) coated SnO2 core-shell nanospheres for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Selvi, N.; Sankar, S.; Dinakaran, K.

    2014-12-01

    Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.

  14. Coulomb Excitation of the 64Ni Nucleus and Application of Inverse Kinematics

    NASA Astrophysics Data System (ADS)

    Greaves, Beau; Muecher, Dennis; Ali, Fuad A.; Drake, Tom; Bildstein, Vinzenz; Berner, Christian; Gernhaeuser, Roman; Nowak, K.; Hellgartner, S.; Lutter, R.; Reichert, S.

    2017-09-01

    In this contribution, we present new data on the semi-magic 64Ni nucleus, close to the N =40 harmonic oscillator shell gap. Recent studies suggest a complicated existence of shape coexistence in 68Ni, likely caused by type-II shell evolutions. The region studied here thus might define the ``shore'' of the region of more deformed nuclei in the Island of Inversion below 68Ni. At the Maier-Leibnitz-Laboratory (MLL) in Munich, a beam of 64Ni was excited using Coulomb excitation. The high-granularity MINIBALL HPGe array and a segmented silicon strip detector were used to identify gamma decays in 64Ni. Doppler-shifted attenuation method (DSAM) analysis was applied to the experimental data acquired to resolve the low-lying excited states and acquire a lifetime measurement based on Geant4 simulations of the first excited 2 + state, clarifying the previously conflicting results. Furthermore, we show DSAM data following transfer reactions in inverse kinematics. This new method has the potential to provide insight into tests of ab-initio shell model calculations in the sd-pf shell and for the study of nuclear reaction rates. Supported under NSERC SAPIN-2016-00030.

  15. Dawning of the N =32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes

    NASA Astrophysics Data System (ADS)

    Leistenschneider, E.; Reiter, M. P.; Ayet San Andrés, S.; Kootte, B.; Holt, J. D.; Navrátil, P.; Babcock, C.; Barbieri, C.; Barquest, B. R.; Bergmann, J.; Bollig, J.; Brunner, T.; Dunling, E.; Finlay, A.; Geissel, H.; Graham, L.; Greiner, F.; Hergert, H.; Hornung, C.; Jesch, C.; Klawitter, R.; Lan, Y.; Lascar, D.; Leach, K. G.; Lippert, W.; McKay, J. E.; Paul, S. F.; Schwenk, A.; Short, D.; Simonis, J.; Somà, V.; Steinbrügge, R.; Stroberg, S. R.; Thompson, R.; Wieser, M. E.; Will, C.; Yavor, M.; Andreoiu, C.; Dickel, T.; Dillmann, I.; Gwinner, G.; Plaß, W. R.; Scheidenberger, C.; Kwiatkowski, A. A.; Dilling, J.

    2018-02-01

    A precision mass investigation of the neutron-rich titanium isotopes Ti-5551 was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N =32 shell closure, and the overall uncertainties of the Ti-5552 mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N =32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N =32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.

  16. Reversible patterning of spherical shells through constrained buckling

    NASA Astrophysics Data System (ADS)

    Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.

    2017-07-01

    Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.

    One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less

  18. Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk

    2015-09-07

    Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less

  19. Raman spectroscopy and time-resolved photoluminescence of BN and BxCyNz nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J.; Han, Wei-Qiang; Walukiewicz, W.

    2004-01-21

    We report Raman and time-resolved photoluminescence spectroscopic studies of multiwalled BN and B{sub x}C{sub y}N{sub z} nanotubes. The Raman spectroscopy shows that the as-grown B{sub x}C{sub y}N{sub z} charge recombination, respectively. Comparison of the photoluminescence of BN nanotubes to that decay process is characterized by two time constants that are attributed to intra- and inter-BN sheet nanotubes as predicted by theory. nanotubes are radially phase separated into BN shells and carbon shells. The photoluminescence of hexagonal BN is consistent with the existence of a spatially indirect band gap in multi-walled BN.

  20. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.

    PubMed

    Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J

    2009-09-22

    Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.

  1. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet

    2018-05-01

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  2. Majorana states in prismatic core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Manolescu, Andrei; Sitek, Anna; Osca, Javier; Serra, Llorenç; Gudmundsson, Vidar; Stanescu, Tudor Dan

    2017-09-01

    We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i.e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i.e., thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.

  3. Persistence of the Z =28 Shell Gap Around 78Ni: First Spectroscopy of 79Cu

    NASA Astrophysics Data System (ADS)

    Olivier, L.; Franchoo, S.; Niikura, M.; Vajta, Z.; Sohler, D.; Doornenbal, P.; Obertelli, A.; Tsunoda, Y.; Otsuka, T.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Z.; Flavigny, F.; Giacoppo, F.; Gottardo, A.; Hadyńska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Louchart, C.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Ogata, K.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Werner, V.; Wu, J.; Xu, Z.

    2017-11-01

    In-beam γ -ray spectroscopy of 79Cu is performed at the Radioactive Isotope Beam Factory of RIKEN. The nucleus of interest is produced through proton knockout from a 80Zn beam at 270 MeV /nucleon . The level scheme up to 4.6 MeV is established for the first time and the results are compared to Monte Carlo shell-model calculations. We do not observe significant knockout feeding to the excited states below 2.2 MeV, which indicates that the Z =28 gap at N =50 remains large. The results show that the 79Cu nucleus can be described in terms of a valence proton outside a 78Ni core, implying the magic character of the latter.

  4. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    PubMed

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  5. Band gap variations in ferritin-templated nanocrystals

    NASA Astrophysics Data System (ADS)

    Colton, John; Erickson, Stephen; Smith, Trevor; Watt, Richard

    2014-03-01

    Ferritin is a 12 nm diameter protein shell with an 8 nm ``cage'' inside that can be used as a template for nanoparticle formation. The native particle is an iron oxide, ferrihydrite, but can be altered or replaced. We have used optical absorption spectroscopy to study the band gap of the ferrihydrite nanoparticles as they age (and become more crystalline), and as they respond to surface interactions with ions in solution. We will also present results of particle composition variations due to incorporation of oxo-anions into the interior of the nanoparticles and substitution of iron with other metals such as cobalt and manganese.

  6. Open-shell characters and second hyperpolarizabilities of one-dimensional graphene nanoflakes composed of trigonal graphene units.

    PubMed

    Yoneda, Kyohei; Nakano, Masayoshi; Fukui, Hitoshi; Minami, Takuya; Shigeta, Yasuteru; Kubo, Takashi; Botek, Edith; Champagne, Benoît

    2011-06-20

    The impact of topology on the open-shell characters and the second hyperpolarizabilities (γ) has been addressed for one-dimensional graphene nanoflakes (GNFs) composed of the smallest trigonal graphene (phenalenyl) units. The main results are: 1) These GNFs show not only diradical but also multiradical characters when increasing the number of linked units. 2) GNFs composed of an equivalent number of units can exhibit a wide range of open-shell characters-from nearly closed-shell to pure multiradical characters-depending on the linking pattern of the trigonal units. 3) This wide variation in open-shell characters is explained by their resonance structures and/or by their (HOMO-i)-(LUMO+i) gaps deduced from the orbital correlations. 4) The change in the linking structure of the units can effectively control their open-shell characters as well as their γ values, of which the longitudinal components are significantly enhanced for the singlet GNFs having intermediate open-shell characters. 5) Singlet alternately linked (AL) systems present intermediate multiradical characters even in the case of a large number of units, which creates a significant enhancement of γ with increasing the size, whereas nonalternately linked (NAL) systems, which present pure multiradical characters, possess much smaller γ values. Finally 6) by switching from the singlet to the highest spin states, the γ values of NAL systems hardly change, whereas those of AL systems exhibit large reductions. These fascinating structure-property relationships between the topology of the GNFs, their open-shell characters, and their γ values not only deepen the understanding of open-shell characters of GNFs but aim also at stimulating further design studies to achieve giant NLO responses based on open-shell graphene-like materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structure of neutron-rich nuclei around the N = 50 shell-gap closure

    NASA Astrophysics Data System (ADS)

    Faul, T.; Duchêne, G.; Thomas, J.-C.; Nowacki, F.; Huyse, M.; Van Duppen, P.

    2010-04-01

    The structure of neutron-rich nuclei in the vicinity of 78Ni have been investigated via the β-decay of 71,73,75Cu isotopes (ISOLDE, CERN). Experimental results have been compared with shell-model calculations performed with the ANTOINE code using a large (2p3/21f5/22p1/21g9/2) valence space and a 56/28Ni28 core.

  8. Multi-domain electromagnetic absorption of triangular quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners’ symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected.

  9. Multi-domain electromagnetic absorption of triangular quantum rings.

    PubMed

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-03

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners' symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected.

  10. Auger Up-Conversion of Low-Intensity Infrared Light in Engineered Quantum Dots

    DOE PAGES

    Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.; ...

    2016-11-29

    One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less

  11. Core excitations across the neutron shell gap in 207Tl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, E.; Podolyák, Zs.; Grawe, H.

    2015-05-05

    The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less

  12. Small size yet big action: a simple sulfate anion templated a discrete 78-nuclearity silver sulfur nanocluster with a multishell structure.

    PubMed

    Cheng, Li-Ping; Wang, Zhi; Wu, Qiao-Yu; Su, Hai-Feng; Peng, Tao; Luo, Geng-Geng; Li, Yan-An; Sun, Di; Zheng, Lan-Sun

    2018-03-07

    A discrete 78-nucleus silver-sulfur nanocluster with a sulfate-centered multishell structure was isolated and characterized. Its crystal structure revealed 18 and 60 Ag atoms in the inner and outer shell, respectively. The inner shell of 18-nuclearity Ag atoms is a very rare convex polyhedron featuring an elongated triangular orthobicupola. The incorporation of a sulfate anion and multishell arrangement in the nanocluster led to a dramatic decrease in the band gap (E g = 1.40 eV). Our study showed that simple anions can also induce the formation of high-nuclearity silver clusters with excellent optical properties.

  13. Design of Contact Electrodes for Semiconductor Nanowire Solar Energy Harvesting Devices.

    PubMed

    Lin, Tzuging; Ramadurgam, Sarath; Yang, Chen

    2017-04-12

    Transparent, low-resistive contacts are critical for efficient solar energy harvesting devices. It is important to reconsider the material choices and electrode design as devices move from 2D films to 1D nanostructures. In this paper, we study the effectiveness of indium tin oxide (ITO) and metals, such as Ag and Cu, as contacts in 2D and 1D systems. Although ITO has been studied extensively and developed into an effective transparent contact for 2D devices, our results show that effectiveness does not translate to 1D systems. Particularly with consideration of resistance requirement, nanowires with metal shells as contacts enable better absorption within the semiconductor as compared to ITO. Furthermore, there is a strong dependence of contact performance on the semiconductor band gap and diameter of nanowires. We found that metal contacts outperform ITO for nanowire devices, regardless of the sheet resistance constraint, in the regime of diameters less than 100 nm and band-gaps greater than 1 eV. These metal shells optimized for best absorption are significantly thinner than ITO, which enables for the design of devices with high nanowire number density and consequently higher device efficiencies.

  14. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells.

    PubMed

    Sahin, Mehmet

    2018-05-23

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Somnath; Singh, A. K.; Hagemann, G. B.

    In this paper, high-spin states in 124Xe have been populated using the 80Se( 48Ca, 4n) reaction at a beam energy of 207 MeV and high-multiplicity, γ-ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin rotational bands with moments of inertia similar to those observed in neighboring nuclei have been observed. The experimental results are compared with calculations within the framework of the Cranked Nilsson-Strutinsky model. Finally, it is suggested that the configurations of the bands involve excitations of protons across the Z = 50 shell gap coupled to neutrons within the N = 50 - 82 shell ormore » excited across the N = 82 shell closure.« less

  16. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.

    PubMed

    Shi, Wenwu; Chopra, Nitin

    2012-10-24

    Fabrication of oxide nanowire heterostructures with controlled morphology, interface, and phase purity is critical for high-efficiency and low-cost photocatalysis. Here, we have studied the formation of copper oxide-cobalt nanowire heterostructures by sputtering and subsequent air annealing to result in cobalt oxide (Co(3)O(4))-coated CuO nanowires. This approach allowed fabrication of standing nanowire heterostructures with tunable compositions and morphologies. The vertically standing CuO nanowires were synthesized in a thermal growth method. The shell growth kinetics of Co and Co(3)O(4) on CuO nanowires, morphological evolution of the shell, and nanowire self-shadowing effects were found to be strongly dependent on sputtering duration, air-annealing conditions, and alignment of CuO nanowires. Finite element method (FEM) analysis indicated that alignment and stiffness of CuO-Co nanowire heterostructures greatly influenced the nanomechanical aspects such as von Mises equivalent stress distribution and bending of nanowire heterostructures during the Co deposition process. This fundamental knowledge was critical for the morphological control of Co and Co(3)O(4) on CuO nanowires with desired interfaces and a uniform coating. Band gap energies and phenol photodegradation capability of CuO-Co(3)O(4) nanowire heterostructures were studied as a function of Co(3)O(4) morphology. Multiple absorption edges and band gap tailings were observed for these heterostructures, indicating photoactivity from visible to UV range. A polycrystalline Co(3)O(4) shell on CuO nanowires showed the best photodegradation performance (efficiency ~50-90%) in a low-powered UV or visible light illumination with a sacrificial agent (H(2)O(2)). An anomalously high efficiency (~67.5%) observed under visible light without sacrificial agent for CuO nanowires coated with thin (∼5.6 nm) Co(3)O(4) shell and nanoparticles was especially interesting. Such photoactive heterostructures demonstrate unique sacrificial agent-free, robust, and efficient photocatalysts promising for organic decontamination and environmental remediation.

  17. Green synthesis of CuInS2/ZnS core-shell quantum dots by facile solvothermal route with enhanced optical properties

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, Sushama M.; Kondawar, Subhash B.; Koinkar, Pankaj

    2018-03-01

    We report an eco-friendly green synthesis of highly luminescent CuInS2/ZnS core-shell quantum dots (QDs) with average particle size ∼ 3.9 nm via solvothermal process. The present study embodies the intensification of CuInS2/ZnS QDs properties by the shell growth on the CuInS2 QDs. The as-prepared CuInS2 core and CuInS2/ZnS core-shell QDs have been characterized using a range of optical and structural techniques. By adopting a low temperature growth of CuInS2 core and high temperature growth of CuInS2/ZnS core-shell growth, the tuning of absorption and photoluminescence emission spectra were observed. Optical absorption and photoluminescence spectroscopy probe the effect of ZnS passivation on the electronic structure of the CuInS2 dots. In addition, QDs have been scrutinized using ultra violet photoelectron spectroscopy (UPS) to explore their electronic band structure. The band level positions of CuInS2 and CuInS2/ZnS QDs suffices the demand of non-toxic acceptor material for electronic devices. The variation in electronic energy levels of CuInS2 core with the coating of wide band gap ZnS shell influence the removal of trap assisted recombination on the surface of the core. QDs exhibited tunable emission from red to orange region. These studies reveal the feasibility of QDs in photovoltaic and light emitting diodes.

  18. What can aquatic gastropods tell us about phenotypic plasticity? A review and meta-analysis

    PubMed Central

    Bourdeau, P E; Butlin, R K; Brönmark, C; Edgell, T C; Hoverman, J T; Hollander, J

    2015-01-01

    There have been few attempts to synthesise the growing body of literature on phenotypic plasticity to reveal patterns and generalities about the extent and magnitude of plastic responses. Here, we conduct a review and meta-analysis of published literature on phenotypic plasticity in aquatic (marine and freshwater) gastropods, a common system for studying plasticity. We identified 96 studies, using pre-determined search terms, published between 1985 and November 2013. The literature was dominated by studies of predator-induced shell form, snail growth rates and life history parameters of a few model taxa, accounting for 67% of all studies reviewed. Meta-analyses indicated average plastic responses in shell thickness, shell shape, and growth and fecundity of freshwater species was at least three times larger than in marine species. Within marine gastropods, species with planktonic development had similar average plastic responses to species with benthic development. We discuss these findings in the context of the role of costs and limits of phenotypic plasticity and environmental heterogeneity as important constraints on the evolution of plasticity. We also consider potential publication biases and discuss areas for future research, indicating well-studied areas and important knowledge gaps. PMID:26219231

  19. Additional compound semiconductor nanowires for photonics

    NASA Astrophysics Data System (ADS)

    Ishikawa, F.

    2016-02-01

    GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.

  20. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm < λ < 780 nm) irradiation is used to evaluate the photocatalytic activity of the composites. Compared with pure TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  1. Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianwei, E-mail: jwl189@163.com; Zhao, Xinsheng; Liu, Xinjuan

    The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the bandmore » gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin.« less

  2. Unitary Fermi gas in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Chang, S. Y.; Bertsch, G. F.

    2007-08-01

    We present an ab initio calculation of small numbers of trapped, strongly interacting fermions using the Green’s function Monte Carlo method. The ground-state energy, density profile, and pairing gap are calculated for particle numbers N=2 22 using the parameter-free “unitary” interaction. Trial wave functions are taken in the form of correlated pairs in a harmonic oscillator basis. We find that the lowest energies are obtained with a minimum explicit pair correlation beyond that needed to exploit the degeneracy of oscillator states. We find that the energies can be well fitted by the expression aTFETF+Δmod(N,2) where ETF is the Thomas-Fermi energy of a noninteracting gas in the trap and Δ is the pairing gap. There is no evidence of a shell correction energy in the systematics, but the density distributions show pronounced shell effects. We find the value Δ=0.7±0.2ω for the pairing gap. This is smaller than the value found for the uniform gas at a density corresponding to the central density of the trapped gas.

  3. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity.

    PubMed

    Xie, Shilei; Lu, Xihong; Zhai, Teng; Gan, Jiayong; Li, Wei; Xu, Ming; Yu, Minghao; Zhang, Yuan-Ming; Tong, Yexiang

    2012-07-17

    We report the synthesis of Zn(x)Cd(1-x)S@ZnO nanorod arrays via a facile two-step process and the implementation of these core-shell nanorods as an environmental friendly and recyclable photocatalyst for methyl orange degradation. The band gap of Zn(x)Cd(1-x)S@ZnO core-shell nanorods can be readily tunable by adjusting the ratio of Zn/Cd during the synthesis. These Zn(x)Cd(1-x)S@ZnO core-shell nanorods exhibit a high photocatalytic activity and good stability in the degradation of the methyl orange. Moreover, these films grown on FTO substrates make the collection and recycle of the photocatalyst easier. These findings may open new opportunities for the design of effective, stable, and easy-recyclable photocatalytic materials.

  4. Demonstration of a Three-dimensional Negative Index Medium Operated at Multiple-angle Incidences by Monolithic Metallic Hemispherical Shells

    NASA Astrophysics Data System (ADS)

    Yeh, Ting-Tso; Huang, Tsung-Yu; Tanaka, Takuo; Yen, Ta-Jen

    2017-04-01

    We design and construct a three-dimensional (3D) negative index medium (NIM) composed of gold hemispherical shells to supplant an integration of a split-ring resonator and a discrete plasmonic wire for both negative permeability and permittivity at THz gap. With the proposed highly symmetric gold hemispherical shells, the negative index is preserved at multiple incident angles ranging from 0° to 85° for both TE and TM waves, which is further evidenced by negative phase flows in animated field distributions and outweighs conventional fishnet structures with operating frequency shifts when varying incident angles. Finally, the fabrication of the gold hemispherical shells is facilitated via standard UV lithographic and isotropic wet etching processes and characterized by μ-FTIR. The measurement results agree the simulated ones very well.

  5. The effect of oxide shell thickness on the structural, electronic, and optical properties of Si-SiO{sub 2} core-shell nano-crystals: A (time dependent)density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazemi, Sanaz, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir; Soleimani, Ebrahim Asl; Pourfath, Mahdi, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir

    2016-04-14

    Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (∼5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO{sub 2} core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Si{sup n+}, n = 0–4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. Inmore » this work, Si-SiO{sub 2} NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO{sub 2} transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.« less

  6. 1p3/2 proton-hole state in 132Sn and the shell structure along N = 82.

    PubMed

    Taprogge, J; Jungclaus, A; Grawe, H; Nishimura, S; Doornenbal, P; Lorusso, G; Simpson, G S; Söderström, P-A; Sumikama, T; Xu, Z Y; Baba, H; Browne, F; Fukuda, N; Gernhäuser, R; Gey, G; Inabe, N; Isobe, T; Jung, H S; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kubo, T; Kurz, N; Kwon, Y K; Li, Z; Sakurai, H; Schaffner, H; Steiger, K; Suzuki, H; Takeda, H; Vajta, Zs; Watanabe, H; Wu, J; Yagi, A; Yoshinaga, K; Benzoni, G; Bönig, S; Chae, K Y; Coraggio, L; Covello, A; Daugas, J-M; Drouet, F; Gadea, A; Gargano, A; Ilieva, S; Kondev, F G; Kröll, T; Lane, G J; Montaner-Pizá, A; Moschner, K; Mücher, D; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Wendt, A

    2014-04-04

    A low-lying state in 131In82, the one-proton hole nucleus with respect to double magic 132Sn, was observed by its γ decay to the Iπ=1/2- β-emitting isomer. We identify the new state at an excitation energy of Ex=1353  keV, which was populated both in the β decay of 131Cd83 and after β-delayed neutron emission from 132Cd84, as the previously unknown πp3/2 single-hole state with respect to the 132Sn core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N=82 isotones below 132Sn. The results evidence a surprising absence of proton subshell closures along the chain of N=82 isotones. The consequences of this finding for the evolution of the N=82 shell gap along the r-process path are discussed.

  7. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    DOEpatents

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  8. Developing Test Apparatus and Measurements of AC Loss of High Temperature Superconductors

    DTIC Science & Technology

    2012-11-01

    temperature of the coil is not raised significantly. The second system, a larger machine, designed with a long term prospective to serve a test bed for...four sample chambers inside the vacuum gap, LN2 – cooled sample holder (currently only one is in use), the laminated back iron, and the outer shell...machine. accommodate a variety of different small coils and linear tapes. This assembly is surrounded by the laminated back iron and the outer shell

  9. Effect of core-shell structure on optical properties of Au-Cu2O nanoparticles

    NASA Astrophysics Data System (ADS)

    Sai, Cong Doanh; Ngac, An Bang

    2018-03-01

    Solid Au-Cu2O core-shell nanoparticles were synthesized using gold nanoparticles of 16.6 nm in size as the core. The core-shell structure of the synthesized particles was confirmed and characterized by TEM and HRTEM images. Due to their similar crystal structure, the (111) planes of Cu2O are nucleated and grown epitaxially on the {111} facets of Au nanoparticles with the lattice mismatch of about 4.3% resulting in a polycrystallized Cu2O shell covering the Au nanocore. Due to the quantum confinement effect, the band gap energy Eg of the synthesized Cu2O shells is blue-shifted from 2.35 to 2.70 eV as the shell thickness decreases from of 24.6±3.6 to 9.0±1.7 nm. The localized SPR (Surface Plasmon Resonance) peak of the Au nanocore undergoes a large red shift of the order of a hundred of nm due to both the high refractive index and the increase of the thickness of Cu2O shell. Theoretical models within the Drude framework significantly underestimate the experimental data and predict a wrong rate of change of the SPR peak position with respect to the shell thickness.

  10. Process Development of Gallium Nitride Phosphide Core-Shell Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Chuang, Chen

    Dilute Nitride GaNP is a promising materials for opto-electronic applications due to its band gap tunability. The efficiency of GaNxP1-x /GaNyP1-y core-shell nanowire solar cell (NWSC) is expected to reach as high as 44% by 1% N and 9% N in the core and shell, respectively. By developing such high efficiency NWSCs on silicon substrate, a further reduction of the cost of solar photovoltaic can be further reduced to 61$/MWh, which is competitive to levelized cost of electricity (LCOE) of fossil fuels. Therefore, a suitable NWSC structure and fabrication process need to be developed to achieve this promising NWSC. This thesis is devoted to the study on the development of fabrication process of GaNxP 1-x/GaNyP1-y core-shell Nanowire solar cell. The thesis is divided into two major parts. In the first parts, previously grown GaP/GaNyP1-y core-shell nanowire samples are used to develop the fabrication process of Gallium Nitride Phosphide nanowire solar cell. The design for nanowire arrays, passivation layer, polymeric filler spacer, transparent col- lecting layer and metal contact are discussed and fabricated. The property of these NWSCs are also characterized to point out the future development of Gal- lium Nitride Phosphide NWSC. In the second part, a nano-hole template made by nanosphere lithography is studied for selective area growth of nanowires to improve the structure of core-shell NWSC. The fabrication process of nano-hole templates and the results are presented. To have a consistent features of nano-hole tem- plate, the Taguchi Method is used to optimize the fabrication process of nano-hole templates.

  11. Amplitude fluctuations driven by the density of electron pairs within nanosize granular structures inside strongly disordered superconductors: evidence for a shell-like effect.

    PubMed

    Ghosh, Sanjib; Mandal, Sudhansu S

    2013-11-15

    Motivated by the recent observation of the shell effect in a nanoscale pure superconductor by Bose et al. [Nat. Mater. 9, 550 (2010)], we explore the possible shell-like effect in a strongly disordered superconductor as it is known to produce nanosize superconducting puddles (SPs). We find a remarkable change in the texture of the pairing amplitudes that is responsible for forming the SP, upon monotonic tuning of the average electron density, , and keeping the disorder landscape unaltered. Both the spatially averaged pairing amplitude and the quasiparticle excitation gap oscillate with . This oscillation is due to a rapid change in the low-lying quasiparticle energy spectra and thereby a change in the shapes and positions of the SPs. We establish a correlation between the formation of SPs and the shell-like effect. The experimental consequences of our theory are also discussed.

  12. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.

    PubMed

    Wang, X; Shih, K; Li, X Y

    2010-01-01

    A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H(2) generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x=0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1 g L(-1). The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmol g(-1) L(-1) h(-1) and a quantum yield of 16.1% under visible light (165 W Xe lamp, lambda>420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.

  13. Structure and Formation Mechanism of Black TiO 2 Nanoparticles

    DOE PAGES

    Tian, Mengkun; Mahjouri-Samani, Masoud; Eres, Gyula; ...

    2015-10-27

    The remarkable properties of black TiO 2 are due to its disordered surface shell surrounding a crystalline core. However, the chemical composition and the atomic and electronic structure of the disordered shell and its relationship to the core remain poorly understood. Using advanced transmission electron microscopy methods, we show that the outermost layer of black TiO 2 nanoparticles consists of a disordered Ti 2O 3 shell. The measurements show a transition region that connects the disordered Ti 2O 3 shell to the perfect rutile core consisting first of four to five monolayers of defective rutile, containing clearly visible Ti interstitialmore » atoms, followed by an ordered reconstruction layer of Ti interstitial atoms. Our data suggest that this reconstructed layer presents a template on which the disordered Ti 2O 3 layers form by interstitial diffusion of Ti ions. In contrast to recent reports that attribute TiO 2 band-gap narrowing to the synergistic action of oxygen vacancies and surface disorder of nonspecific origin, our results point to Ti 2O 3, which is a narrow-band-gap semiconductor. In conclusion, as a stoichiometric compound of the lower oxidation state Ti 3+ it is expected to be a more robust atomic structure than oxygen-deficient TiO 2 for preserving and stabilizing Ti 3+ surface species that are the key to the enhanced photocatalytic activity of black TiO 2.« less

  14. Observation of high-spin bands with large moments of inertia in Xe 124

    DOE PAGES

    Nag, Somnath; Singh, A. K.; Hagemann, G. B.; ...

    2016-09-07

    In this paper, high-spin states in 124Xe have been populated using the 80Se( 48Ca, 4n) reaction at a beam energy of 207 MeV and high-multiplicity, γ-ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin rotational bands with moments of inertia similar to those observed in neighboring nuclei have been observed. The experimental results are compared with calculations within the framework of the Cranked Nilsson-Strutinsky model. Finally, it is suggested that the configurations of the bands involve excitations of protons across the Z = 50 shell gap coupled to neutrons within the N = 50 - 82 shell ormore » excited across the N = 82 shell closure.« less

  15. A facile method for synthesis of well-coated ZnO@graphene core/shell structure by self-assembly of amine-functionalized ZnO and graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlong; Song, Lixin; Zhang, Yuzhi; Wang, Panpan; Liu, Yangqiao; Wu, Lingnan; Zhang, Tao

    2016-06-01

    The core/shell structure was formed by GO self-assembled with amine-functionalized commercial ZnO (CZO) and preparative hexagonal ZnO (HZO), respectively. Graphene-coated CZO and HZO were obtained after being reduced in Ar at 500 °C. The mechanism of the coating procedure was investigated by measuring their respective zeta potential values. Our characterizations demonstrate that graphene on HZO has better quality and fewer layers. An obvious band gap decrease of ZnO was observed for coating with graphene. Photoluminescence spectra of ZnO@graphene core/shell composites display the fluorescence quenching property, which indicates its good application prospect in optoelectronics, photocatalytic and other fields.

  16. Color superconductivity from the chiral quark-meson model

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen; Tripolt, Ralf-Arno; Wambach, Jochen

    2018-05-01

    We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral phase transition in the quark-meson model where the interactions between quarks are generated by pion and sigma exchanges. Starting from the Nambu-Gorkov propagator in real-time formulation we obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the zero temperature limit using a model input spectral function. We find that these components of the gap display a complicated structure with the real part being strongly suppressed above 2Δ0, where Δ0 is its on-shell value. We find Δ0 ≃ 40MeV close to the chiral phase transition.

  17. Crossover between few and many fermions in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Grining, Tomasz; Tomza, Michał; Lesiuk, Michał; Przybytek, Michał; Musiał, Monika; Moszynski, Robert; Lewenstein, Maciej; Massignan, Pietro

    2015-12-01

    The properties of a balanced two-component Fermi gas in a one-dimensional harmonic trap are studied by means of the coupled-cluster method. For few fermions we recover the results of exact diagonalization, yet with this method we are able to study much larger systems. We compute the energy, the chemical potential, the pairing gap, and the density profile of the trapped clouds, smoothly mapping the crossover between the few-body and many-body limits. The energy is found to converge surprisingly rapidly to the many-body result for every value of the interaction strength. Many more particles are instead needed to give rise to the nonanalytic behavior of the pairing gap, and to smoothen the pronounced even-odd oscillations of the chemical potential induced by the shell structure of the trap.

  18. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487; Shi, Wenwu

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titaniamore » or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.« less

  19. Monolithic photonic crystals created by partial coalescence of core-shell particles.

    PubMed

    Lee, Joon-Seok; Lim, Che Ho; Yang, Seung-Man; Kim, Shin-Hyun

    2014-03-11

    Colloidal crystals and their derivatives have been intensively studied and developed during the past two decades due to their unique photonic band gap properties. However, complex fabrication procedures and low mechanical stability severely limit their practical uses. Here, we report stable photonic structures created by using colloidal building blocks composed of an inorganic core and an organic shell. The core-shell particles are convectively assembled into an opal structure, which is then subjected to thermal annealing. During the heat treatment, the inorganic cores, which are insensitive to heat, retain their regular arrangement in a face-centered cubic lattice, while the organic shells are partially fused with their neighbors; this forms a monolithic structure with high mechanical stability. The interparticle distance and therefore stop band position are precisely controlled by the annealing time; the distance decreases and the stop band blue shifts during the annealing. The composite films can be further treated to give a high contrast in the refractive index. The inorganic cores are selectively removed from the composite by wet etching, thereby providing an organic film containing regular arrays of air cavities. The high refractive index contrast of the porous structure gives rise to pronounced structural colors and high reflectivity at the stop band position.

  20. Excitons in Core-Shell Nanowires with Polygonal Cross Sections.

    PubMed

    Sitek, Anna; Urbaneja Torres, Miguel; Torfason, Kristinn; Gudmundsson, Vidar; Bertoni, Andrea; Manolescu, Andrei

    2018-04-11

    The distinctive prismatic geometry of semiconductor core-shell nanowires leads to complex localization patterns of carriers. Here, we describe the formation of optically active in-gap excitonic states induced by the interplay between localization of carriers in the corners and their mutual Coulomb interaction. To compute the energy spectra and configurations of excitons created in the conductive shell, we use a multielectron numerical approach based on the exact solution of the multiparticle Hamiltonian for electrons in the valence and conduction bands, which includes the Coulomb interaction in a nonperturbative manner. We expose the formation of well-separated quasidegenerate levels, and focus on the implications of the electron localization in the corners or on the sides of triangular, square, and hexagonal cross sections. We obtain excitonic in-gap states associated with symmetrically distributed electrons in the spin singlet configuration. They acquire large contributions due to Coulomb interaction, and thus are shifted to much higher energies than other states corresponding to the conduction electron and the vacancy localized in the same corner. We compare the results of the multielectron method with those of an electron-hole model, and we show that the latter does not reproduce the singlet excitonic states. We also obtain the exciton lifetime and explain selection rules which govern the recombination process.

  1. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system.

    PubMed

    Rana, S; Rawat, J; Sorensson, M M; Misra, R D K

    2006-07-01

    The present study describes and makes a relative comparison of the antimicrobial function of undoped and neodymium-doped titania coated-nickel ferrite composite nanoparticles processed by uniquely combining the reverse micelle and chemical hydrolysis approaches. This methodology facilitates the formation of undoped and doped photocatalytic titania shells and a magnetic ferrite core. The ferrite core is needed to help in the removal of particles from the sprayed surface using a small magnetic field. Doping of the titania shell with neodymium significantly enhances the photocatalytic and anti-microbial function of the core-shell composite nanoparticles without influencing the magnetic characteristics of the nickel ferrite core. The increased performance is believed to be related to the inhibition of electron-hole recombination and a decrease in the band gap energy of titania. The retention of magnetic strength ensures controlled movement of the composite nanoparticles by the magnetic field, facilitating their application as removable anti-microbial photocatalyst nanoparticles. The consistent behavior of the composite nanoparticles points to the viability of the synthesis process adopted.

  2. Characterization of memory and measurement history in photoconductivity of nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Fairfield, Jessamyn A.; Dadosh, Tali; Drndic, Marija

    2010-10-01

    Photoconductivity in nanocrystal films has been previously characterized, but memory effects have received little attention despite their importance for device applications. We show that the magnitude and temperature dependence of the photocurrent in CdSe/ZnS core-shell nanocrystal arrays depends on the illumination and electric field history. Changes in photoconductivity occur on a few-hour timescale, and subband gap illumination of nanocrystals prior to measurements modifies the photocurrent more than band gap illumination. The observed effects can be explained by charge traps within the band gap that are filled or emptied, which may alter nonradiative recombination processes and affect photocurrent.

  3. Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster.

    PubMed

    Ngan, Vu Thi; Pierloot, Kristine; Nguyen, Minh Tho

    2013-04-21

    The electronic structure of Mn@Si14(+) is determined using DFT and CASPT2/CASSCF(14,15) computations with large basis sets. The endohedrally Mn-doped Si cationic cluster has a D3h fullerene-like structure featuring a closed-shell singlet ground state with a singlet-triplet gap of ~1 eV. A strong stabilizing interaction occurs between the 3d(Mn) and the 2D-shell(Si14) orbitals, and a large amount of charge is transferred from the Si14 cage to the Mn dopant. The 3d(Mn) orbitals are filled by encapsulation, and the magnetic moment of Mn is completely quenched. Full occupation of [2S, 2P, 2D] shell orbitals by 18 delocalized electrons confers the doped Mn@Si14(+) cluster a spherically aromatic character.

  4. Growth and characterization of dilute nitride GaN{sub x}P{sub 1−x} nanowires and GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowires on Si (111) by gas source molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukrittanon, S.; Kuang, Y. J.; Dobrovolsky, A.

    2014-08-18

    We have demonstrated self-catalyzed GaN{sub x}P{sub 1−x} and GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowire growth by gas-source molecular beam epitaxy. The growth window for GaN{sub x}P{sub 1−x} nanowires was observed to be comparable to that of GaP nanowires (∼585 °C to ∼615 °C). Transmission electron microscopy showed a mixture of cubic zincblende phase and hexagonal wurtzite phase along the [111] growth direction in GaN{sub x}P{sub 1−x} nanowires. A temperature-dependent photoluminescence (PL) study performed on GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowires exhibited an S-shape dependence of the PL peaks. This suggests that at low temperature, the emission stems from N-related localizedmore » states below the conduction band edge in the shell, while at high temperature, the emission stems from band-to-band transition in the shell as well as recombination in the GaN{sub x}P{sub 1−x} core.« less

  5. Growth and Characterisation of GaAs/AlGaAs Core-shell Nanowires for Optoelectronic Device Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Nian

    III-V semiconductor nanowires have been investigated as key components for future electronic and optoelectronic devices and systems due to their direct band gap and high electron mobility. Amongst the III-V semiconductors, the planar GaAs material system has been extensively studied and used in industries. Accordingly, GaAs nanowires are the prime candidates for nano-scale devices. However, the electronic performance of GaAs nanowires has yet to match that of state-of-the-art planar GaAs devices. The present deficiency of GaAs nanowires is typically attributed to the large surface-to- volume ratio and the tendency for non-radiative recombination centres to form at the surface. The favoured solution of this problem is by coating GaAs nanowires with AlGaAs shells, which replaces the GaAs surface with GaAs/AlGaAs interface. This thesis presents a systematic study of GaAs/AlGaAs core-shell nanowires grown by metal organic chemical vapour deposition (MOCVD), including understanding the growth, and characterisation of their structural and optical properties. The structures of the nanowires were mainly studied by scanning electron microscopy and transmis- sion electron microscopy (TEM). A procedure of microtomy was developed to prepare the cross-sectional samples for the TEM studies. The optical properties were charac- terised by photoluminescence (PL) spectroscopy. Carrier lifetimes were measured by time-resolved PL. The growth of AlGaAs shell was optimised to obtain the best optical properties, e.g. the strongest PL emission and the longest minority carrier lifetimes. (Abstract shortened by ProQuest.).

  6. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less

  7. Type II shell evolution in A = 70 isobars from the N ≥ 40 island of inversion

    NASA Astrophysics Data System (ADS)

    Morales, A. I.; Benzoni, G.; Watanabe, H.; Tsunoda, Y.; Otsuka, T.; Nishimura, S.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; de Angelis, G.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoybjor, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Sakurai, H.; Sahin, E.; Sohler, D.; Schaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Valiente-Dobón, J. J.; Wieland, O.; Yalcinkaya, M.

    2017-02-01

    The level structures of 70Co and 70Ni, populated from the β decay of 70Fe, have been investigated using β-delayed γ-ray spectroscopy following in-flight fission of a 238U beam. The experimental results are compared to Monte-Carlo Shell-Model calculations including the pf +g9/2 +d5/2 orbitals. The strong population of a (1+) state at 274 keV in 70Co is at variance with the expected excitation energy of ∼1 MeV from near spherical single-particle estimates. This observation indicates a dominance of prolate-deformed intruder configurations in the low-lying levels, which coexist with the normal near spherical states. It is shown that the β decay of the neutron-rich A = 70 isobars from the new island of inversion to the Z = 28 closed-shell regime progresses in accordance with a newly reported type of shell evolution, the so-called Type II, which involves many particle-hole excitations across energy gaps.

  8. Tensor force effect on the evolution of single-particle energies in some isotopic chains in the relativistic Hartree-Fock approximation

    NASA Astrophysics Data System (ADS)

    López-Quelle, M.; Marcos, S.; Niembro, R.; Savushkin, L. N.

    2018-03-01

    Within a nonlinear relativistic Hartree-Fock approximation combined with the BCS method, we study the effect of the nucleon-nucleon tensor force of the π-exchange potential on the spin- and pseudospin-orbit doublets along the Ca and Sn isotopic chains. We show how the self-consistent tensor force effect modifies the splitting of both kinds of doublets in an interdependent form, leading, quite generally, to opposite effects in the accomplishment of the spin and pseudospin symmetries (the one is restored, the other one deteriorates and vice versa). The ordering of the single-particle energy levels is crucial to this respect. Also, we observe a mutual dependence on the evolution of the shell closure gap Z = 50 and the energy band outside the core, along the Sn chain, as due to the tensor force. In fact, when the shell gap is quenched the outside energy band is enlarged, and vice versa. A reduction of the strength of the pion tensor force with respect to its experimental value from the nucleon-nucleon scattering is needed to get results closer to the experiment. Pairing correlations act to some extent in the opposite direction of the tensor term of the one-pion-exchange force.

  9. The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2014-03-01

    Sound transmission through a system of double shells, lined with poroelastic material in the presence of external mean flow, is studied. The porous material is modeled as an equivalent fluid because shear wave contributions are known to be insignificant. This is achieved by accounting for the energetically most dominant wave types in the calculations. The transmission characteristics of the sandwich construction are presented for different incidence angles and Mach numbers over a wide frequency range. It is noted that the transmission loss exhibits three dips on the frequency axis as opposed to flat panels where there are only two such frequencies—results are discussed in the light of these observations. Flow is shown to decrease the transmission loss below the ring frequency, but increase this above the ring frequency due to the negative stiffness and the damping effect added by the flow. In the absence of external mean flow, porous material provides superior insulation for most part of the frequency band of interest. However, in the presence of external flow, this is true only below the ring frequency—above this frequency, the presence of air gap in sandwich constructions is the dominant factor that determines the acoustic performance. In the absence of external flow, an air gap always improves sound insulation.

  10. Kinematic arguments against single relativistic shell models for GRBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, E.E.; Ramirez, E.; Sumner, M.C.

    1997-09-01

    Two main types of models have been suggested to explain the long durations and multiple peaks of Gamma Ray Bursts (GRBs). In one, there is a very quick release of energy at a central site resulting in a single relativistic shell that produces peaks in the time history through its interactions with the ambient material. In the other, the central site sporadically releases energy over hundreds of seconds forming a peak with each burst of energy. The authors show that the average envelope of emission and the presence of gaps in GRBs are inconsistent with a single relativistic shell. Theymore » estimate that the maximum fraction of a single shell that can produce gamma-rays in a GRB with multiple peaks is 10{sup {minus}3}, implying that single relativistic shells require 10{sup 3} times more energy than previously thought. They conclude that either the central site of a GRB must produce {approx}10{sup 51} erg/s{sup {minus}1} for hundreds of seconds, or the relativistic shell must have structure on a scales the order of {radical}{epsilon}{Gamma}{sup {minus}1}, where {Gamma} is the bulk Lorentz factor ({approximately}10{sup 2} to 10{sup 3}) and {epsilon} is the efficiency.« less

  11. Gaps in nuclear spectra as traces of seniority changes in systems of both neutrons and protons

    NASA Astrophysics Data System (ADS)

    Zamick, Larry

    2016-03-01

    There has been a great deal of attention given to the low-lying energy spectrum in a nucleus because of the abundance of experimental data. Likewise, perhaps to a lesser extent but still significant, the high end for a given configuration has been examined. Here, using single j shell calculations as a guide, we examine the middle part of the spectrum resulting from single j shell calculations. Seniority arguments are used to partially explain the midshell behaviors even though in general seniority is not a good quantum number for mixed systems of neutrons and protons.

  12. Laser spectroscopy of phonons and rotons in superfluid helium doped with Dy atoms

    NASA Astrophysics Data System (ADS)

    Moroshkin, P.; Borel, A.; Kono, K.

    2018-03-01

    We report the results of a high-resolution laser-spectroscopy study of dysprosium atoms injected into superfluid 4He. A special attention is paid to the transitions between the inner 4 f and 5 d electronic shells of Dy. The characteristic gap is observed between the zero-phonon line and the phonon wing in the experimental excitation spectrum that arises due to the peculiar structure of the phonon-roton spectrum of superfluid He. This observation resolves the longstanding discrepancy between the studies of bulk superfluid He and He nanodroplets.

  13. Estimation of past intermittent methane seep activity using radiocarbon dating of Calyptogena shells in the eastern Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Yagasaki, K.; Ashi, J.; Yokoyama, Y.; Miyairi, Y.; Kuramoto, S.

    2013-12-01

    Radioisotope carbon dating samples from the deep ocean has always been a difficult phenomenon due to the carbon offset present. This research presents a way of utilizing such method to date shell samples in order to study past fault activities. The research presented will be based on the preliminary data collected thus far. The Nankai and the Tokai regions are common areas for cold seeps, where seepage of hydrogen sulfide and methane rich fluid occurs. These various substances encourage the growth of Calyptogena colonies to flourish at these sites. Cold seeps generally occur at tectonically active continental margins and are mostly ephemeral. This suggests that the cold seep events are possibly influenced by the tectonic activity during the plate divergence. In 1997, a submersible dive by Shinkai 2000 discovered an unusually large Calyptogena colony ranging over 200 m2 off Daini Tenryu Knoll. Majority of the shells were fossilized with few live shells remaining. It is assumed that past tectonic events in the region may have caused a high flux of methane fluid or gas to be released, making it possible to support such a vast scale colony to survive until their eventual death. Previous attempt to reconstruct the cold seep activity history through amino acid racemisation dating revealed two different age grouped shells. Further data using a different method is required to prove its reliability, as acid racemization dating technique can easily be affected by seawater temperature changes and microbial activity. This consequently alters the protein structure of the sample and its overall age. As 14C radioisotope dating is not affected by temperature change, it will provide additional information to the accuracy of the acid racemisation dating of the shell. However, the possibility of contamination is likely due to the shells incorporating older carbon from the sediments during their early stages of growth. The old carbon value can be calculated by subtracting the formerly alive shell age away from the fossilsed shell age. Preliminary results of radiocarbon dating indicate a distinct age gap of several hundred years between the formerly alive shells (~ 1126calAD -1276calAD) and the fossil shells (~ 671calAD - 797calAD).

  14. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    NASA Astrophysics Data System (ADS)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material. Experiments further examined shell thickness and particle concentration (chapter 6) dependencies on ~530 nm CSnp dielectrophoretic and electrorotational responses with ~30nm and ~80 nm shell thicknesses and at particle concentration count rates of 5000 +/- 500, 10000 +/- 500, and 15000 +/- 500 counts per second. Using similar experimental conditions, both dielectrophoretic and electrorotational CSnp responses were compiled versus frequency, shell thickness, and particle concentration. Knowledge gained from this study includes a unique resonance-like dielectrophoretic and electrorotational spectrum, which is significantly distinct from other cells and particles. CSnp dielectric properties were then calculated by parametrically fitting parameters to an existing core-shell model. The optimum conductivity and relative permittivity for the core and the shell are 1E-15 S/m, 1, 0.6 S/m, and 90, respectively. These properties can be exploited to rapidly assemble these unique core-shell particles for future structural color production in fabrics, vehicle, and wall painting.

  15. Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study.

    PubMed

    Flores, Efracio Mamani; Gouvea, Rogério Almeida; Piotrowski, Maurício Jeomar; Moreira, Mário Lucio

    2018-02-14

    The engineering of semiconductor materials for the development of solar cells is of great importance today. Two topics are considered to be of critical importance for the efficiency of Grätzel-type solar cells, the efficiency of charge separation and the efficiency of charge carrier transfer. Thus, one research focus is the combination of semiconductor materials with the aim of reducing charge recombination, which occurs by spatial charge separation. From an experimental point of view, the combining of materials can be achieved by decorating a core with a shell of another material resulting in a core-shell system, which allows control of the desired photoelectronic properties. In this context, a computational simulation is mandatory for the atomistic understanding of possible semiconductor combinations and for the prediction of their properties. Considering the construction of ZnO/ZnX (X = S, Se or Te) interfaces, we seek to investigate the electronic influence of the shell (ZnX) on the core (ZnO) and, consequently, find out which of the interfaces would present the appropriate properties for (Grätzel-type) solar cell applications. To perform this study, we have employed density functional theory (DFT) calculations, considering the Perdew-Burke-Ernzerhof (PBE) functional. However, it is well-known that plain DFT fails to describe strong electronic correlated materials where, in general, an underestimation of the band gap is obtained. Thus, to obtain the correct description of the electronic properties, a Hubbard correction was employed, i.e. PBE+U calculations. The PBE+U methodology provided the correct electronic structure properties for bulk ZnO in good agreement with experimental values (99.4%). The ZnO/ZnX interfaces were built and were composed of six ZnO layers and two ZnX layers, which represents the decoration process. The core-shell band gap was 2.2 eV for ZnO/ZnS, ∼1.71 eV for ZnO/ZnSe and ∼0.95 eV for ZnO/ZnTe, which also exhibited a type-II band alignment. Bader charge analysis showed an accumulation of charges in the 6th layer of ZnO for the three ZnO/ZnX interfaces. On the basis of these results, we have proposed that ZnO/ZnS and ZnO/ZnSe core-shell structures can be applied as good candidates (with better efficiency) for photovoltaic devices.

  16. High resolution observations of Cassiopeia A at meter wavelengths. [pulsar source in supernova remnant

    NASA Technical Reports Server (NTRS)

    Hutton, L. K.; Clark, T. A.; Erickson, W. C.; Resch, G. M.; Vandenberg, N. R.; Knowles, S. H.; Youmans, A. B.

    1974-01-01

    Very long baseline interferometric (VLBI) observations of the supernova remnant Cassiopeia A, at 74 MHz with a 12,000-wavelength baseline and at 111 MHz with a 18,500-wavelength baseline, are reported. The fringe amplitudes are strongly varying on a time scale of about 15 to 30 minutes. The location of the extra source must lie outside the supernova remnant shell possibly associated with a concentration of emission north of the shell, or lying outside the gap in the northeastern side of the shell. The flux and spectral index deduced for the compact source depend on the assumed size, with a range of 100 Jy to 500 Jy at 74 MHz. If the source is associated with the supernova explosion, it must have been traveling at least 5000 km s/2.

  17. Coupling single giant nanocrystal quantum dots to the fundamental mode of patch nanoantennas through fringe field

    DOE PAGES

    Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; ...

    2015-09-23

    Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results andmore » further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.« less

  18. Permanganate-based synthesis of manganese oxide nanoparticles in ferritin

    NASA Astrophysics Data System (ADS)

    Olsen, Cameron R.; Smith, Trevor J.; Embley, Jacob S.; Maxfield, Jake H.; Hansen, Kameron R.; Peterson, J. Ryan; Henrichsen, Andrew M.; Erickson, Stephen D.; Buck, David C.; Colton, John S.; Watt, Richard K.

    2017-05-01

    This paper investigates the comproportionation reaction of MnII with {{{{MnO}}}4}- as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that {{{{MnO}}}4}- serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese loading into ferritin was studied under acidic, neutral, and basic conditions and the ratios of MnII and permanganate were varied at each pH. The manganese-containing ferritin samples were characterized by transmission electron microscopy, UV/Vis absorption, and by measuring the band gap energies for each sample. Manganese cores were deposited inside ferritin under both the acidic and basic conditions. All resulting manganese ferritin samples were found to be indirect band gap materials with band gap energies ranging from 1.01 to 1.34 eV. An increased UV/Vis absorption around 370 nm was observed for samples formed under acidic conditions, suggestive of MnO2 formation inside ferritin.

  19. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy.

    PubMed

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-09-06

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process.

  20. In-plane, commensurate GaN/AlN junctions: single-layer composite structures, multiple quantum wells and quantum dots

    NASA Astrophysics Data System (ADS)

    Durgun, Engin; Onen, Abdullatif; Kecik, Deniz; Ciraci, Salim

    In-plane composite structures constructed of the stripes or core/shells of single-layer GaN and AlN, which are joined commensurately display diversity of electronic properties, that can be tuned by the size of their constituents. In heterostructures, the dimensionality of electrons change from 2D to 1D upon their confinements in wide constituent stripes leading to the type-I band alignment and hence multiple quantum well structure in the direct space. The δ-doping of one wide stripe by other narrow stripe results in local narrowing or widening of the band gap. The direct-indirect transition of the fundamental band gap of composite structures can be attained depending on the odd or even values of formula unit in the armchair edged heterojunction. In a patterned array of GaN/AlN core/shells, the dimensionality of the electronic states are reduced from 2D to 0D forming multiple quantum dots in large GaN-cores, while 2D electrons propagate in multiply connected AlN shell as if they are in a supercrystal. These predictions are obtained from first-principles calculations based on density functional theory on single-layer GaN and AlN compound semiconductors which were synthesized recently. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No 115F088.

  1. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy

    PubMed Central

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process. PMID:27596718

  2. First total-absorption spectroscopy measurement on the neutron-rich Cu isotopes

    NASA Astrophysics Data System (ADS)

    Naqvi, F.; Spyrou, A.; Liddick, S. N.; Larsen, A. C.; Guttormsen, M.; Bleuel, D. L.; Campo, L. C.; Couture, A.; Crider, B. P.; Dombos, A. C.; Ginter, T.; Lewis, R.; Mosby, S.; Perdikakis, G.; Prokop, C. P.; Quinn, S. J.; Renstrom, T.; Rubio, B.; Siem, S.

    2015-10-01

    The first beta-decay studies of 73-71Cu isotopes using the Total Absorption Spectroscopy (TAS) will be reported. The Cu isotopes have one proton outside the Z = 28 shell and hence are good candidates to probe the single-particle structure in the region.Theories predict weakening of the Z = 28 shell gap due to the tensor interaction between the valence πν single-particle orbitals. Comparing the beta-decay strength distributions in the daughter Zn isotopes to the theoretical calculations will provide a stringent test of the predictions. The experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) employing the TAS technique with the Summing NaI(Tl) detector, while beta decays were measured in the NSCL beta-counting system. The experimentally obtained total absorption spectra for the neutron-rich Cu isotopes will be presented and the implications of the extracted beta-feeding intensities will be discussed.

  3. Strategy for thermometry via Tm³⁺-doped NaYF₄ core-shell nanoparticles.

    PubMed

    Zhou, Shaoshuai; Jiang, Guicheng; Li, Xinyue; Jiang, Sha; Wei, Xiantao; Chen, Yonghu; Yin, Min; Duan, Changkui

    2014-12-01

    Optical thermometers usually make use of the fluorescence intensity ratio of two thermally coupled energy levels, with the relative sensitivity constrained by the limited energy gap. Here we develop a strategy by using the upconversion (UC) emissions originating from two multiplets with opposite temperature dependences to achieve higher relative temperature sensitivity. We show that the intensity ratio of the two UC emissions, ³F(2,3) and ¹G₄, of Tm³⁺ in β-NaYF₄:20%Yb³⁺, 0.5%Tm³⁺/NaYF₄:1%Pr³⁺ core-shell nanoparticles under 980 nm laser excitation exhibits high relative temperature sensitivity between 350 and 510 K, with a maximum of 1.53%  K⁻¹ at 417 K. This demonstrates the validity of the strategy, and that the studied material has the potential for high-performance optical thermometry.

  4. Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S., E-mail: volkov@triniti.ru

    The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formationmore » of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.« less

  5. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukrittanon, Supanee; Liu, Ren; Pan, Janet L.

    2016-08-07

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in themore » GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.« less

  6. Linking molecular level chemistry to macroscopic combustion behavior for nano-energetic materials with halogen containing oxides.

    PubMed

    Farley, Cory W; Pantoya, Michelle L; Losada, Martin; Chaudhuri, Santanu

    2013-08-21

    Coupling molecular scale reaction kinetics with macroscopic combustion behavior is critical to understanding the influences of intermediate chemistry on energy propagation, yet bridging this multi-scale gap is challenging. This study integrates ab initio quantum chemical calculations and condensed phase density functional theory to elucidate factors contributing to experimentally measured high flame speeds (i.e., >900 m∕s) associated with halogen based energetic composites, such as aluminum (Al) and iodine pentoxide (I2O5). Experiments show a direct correlation between apparent activation energy and flame speed suggesting that flame speed is directly influenced by chemical kinetics. Toward this end, the first principle simulations resolve key exothermic surface and intermediate chemistries contributing toward the kinetics that promote high flame speeds. Linking molecular level exothermicity to macroscopic experimental investigations provides insight into the unique role of the alumina oxide shell passivating aluminum particles. In the case of Al reacting with I2O5, the alumina shell promotes exothermic surface chemistries that reduce activation energy and increase flame speed. This finding is in contrast to Al reaction with metal oxides that show the alumina shell does not participate exothermically in the reaction.

  7. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    NASA Astrophysics Data System (ADS)

    Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; Pan, Janet L.; Jungjohann, K. L.; Tu, Charles W.; Dayeh, Shadi A.

    2016-08-01

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.

  8. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    DOE PAGES

    Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; ...

    2016-08-07

    Here, we report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We also show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface andmore » in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. Finally, we present performance benefits of dilute nitride microwire solar cells and show that it can be achieved by further tuning of the epitaxial quality of the underlying materials.« less

  9. Holocene geoarchaeology of the Sixteen Mile Beach barrier dunes in the Western Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Compton, John S.; Franceschini, Giuliana

    2005-01-01

    Holocene evolution and human occupation of the Sixteen Mile Beach barrier dunes on the southwest coast of South Africa between Yzerfontein and Saldanha Bay are inferred from the radiocarbon ages of calcareous dune sand, limpet shell ( Patella spp.) manuports and gull-dropped white mussel shells ( Donax serra). A series of coast-parallel dunes have prograded seaward in response to an overall marine regression since the mid-Holocene with dated shell from relict foredunes indicating periods of shoreline progradation that correspond to drops in sea level at around 5900, 4500 and 2400 calibrated years before the present (cal yr B.P.). However, the active foredune, extensively covered by a layer of gull-dropped shell, has migrated 500 m inland by the recycling of eroded dune sand in response to an approximate 1 m sea level rise over the last 700 yr. Manuported limpet shells from relict blowouts on landward vegetated dunes indicate human occupation of coastal dune sites at 6200 and 6000 cal yr B.P. and help to fill the mid-Holocene gap in the regional archaeological record. Coastal midden shells associated with small hearth sites exposed in blowouts on the active foredune are contemporaneous (1600-500 cal yr B.P.) with large midden sites on the western margin of Langebaan Lagoon and suggest an increase in marine resource utilisation associated with the arrival of pastoralism in the Western Cape.

  10. Metal Sulfide Nanocrystals inside Ferritin with Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Hansen, Kameron; Peterson, J. Ryan; Olsen, Cameron; Hogg, Heather; Colton, John; Watt, Richard; Colton Team

    Ferritin is a spherical protein shell used universally by organisms to store iron. Due to a number of ferritin's properties (a conductive shell, ability to be arranged in ordered arrays, and high stability), recent theoretical work has proposed that non-native semiconductor nanocrystals inside ferritin can be used for high-efficiency solar energy conversion. We present research on the synthesis of a variety of these nanocrystals (PbS, CuS, Mo2S, ZnS, and PbSe) inside ferritin's hollow interior and band gap energies of the resulting ferritin-nanocrystal constructs. We also report preliminary solar cell results for dye sensitized solar cells with PbS-ferritin as the dye.

  11. Novel Approach for Modeling of Nonuniform Slag Layers and Air Gap in Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Kong, Lingwei; Yao, Man; Zhang, Xiaobing

    2017-02-01

    Various kinds of surface defects on the continuous casting slab usually originate from nonuniform heat transfer and mechanical behavior, especially during the initial solidification inside the mold. In this article, a model-coupled inverse heat transfer problem incorporating the effect of slag layers and air gap is developed to study the nonuniform distribution of liquid slag, solid slag, and air gap layers. The model considers not only the formation and evolution of slag layers and air gap but also the temperatures in the mold copper as measured by thermocouples. The simulation results from the model and the measured temperatures from experiments are shown to be in good agreement with each other. At the casting speed of 0.65 m/min, the liquid slag film disappears and transforms into solid slag entirely at about 400 mm away from meniscus, and an air gap begins to form. Until the mold exit, the maximum thickness of the solid slag layer and air gap gradually increases to 1.34 and 0.056 mm, respectively. The results illustrate that the magnitude and nonuniform distribution of the slag layers and air gap along the cross direction, correlating with heat flux between the shell and mold, eventually determine the temperature profiles of the mold hot face and slab surface. The proposed model may provide a convenient approach for analyzing nonuniform heat transfer and mechanical behaviors between the mold and slab in the real casting process.

  12. First Direct Mass Measurements of Nuclides around Z =100 with a Multireflection Time-of-Flight Mass Spectrograph

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Schury, P.; Wada, M.; Arai, F.; Haba, H.; Hirayama, Y.; Ishizawa, S.; Kaji, D.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morimoto, K.; Morita, K.; Mukai, M.; Murray, I.; Niwase, T.; Okada, K.; Ozawa, A.; Rosenbusch, M.; Takamine, A.; Tanaka, T.; Watanabe, Y. X.; Wollnik, H.; Yamaki, S.

    2018-04-01

    The masses of 246Es, 251Fm, and the transfermium nuclei Md-252249 and 254No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed N =152 neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectrograph. The masses of 246Es and 249,250,252Md were measured for the first time. Using the masses of Md,250249 as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ2 n derived from three isotopic masses was updated with the new masses and corroborates the existence of the deformed N =152 neutron shell closure for Md and Lr.

  13. rPM6 parameters for phosphorous and sulphur-containing open-shell molecules

    NASA Astrophysics Data System (ADS)

    Saito, Toru; Takano, Yu

    2018-03-01

    In this article, we have introduced a reparameterisation of PM6 (rPM6) for phosphorus and sulphur to achieve a better description of open-shell species containing the two elements. Two sets of the parameters have been optimised separately using our training sets. The performance of the spin-unrestricted rPM6 (UrPM6) method with the optimised parameters is evaluated against 14 radical species, which contain either phosphorus or sulphur atom, comparing with the original UPM6 and the spin-unrestricted density functional theory (UDFT) methods. The standard UPM6 calculations fail to describe the adiabatic singlet-triplet energy gaps correctly, and may cause significant structural mismatches with UDFT-optimised geometries. Leaving aside three difficult cases, tests on 11 open-shell molecules strongly indicate the superior performance of UrPM6, which provides much better agreement with the results of UDFT methods for geometric and electronic properties.

  14. Structure analysis for hole-nuclei close to 132Sn by a large-scale shell-model calculation

    NASA Astrophysics Data System (ADS)

    Wang, Han-Kui; Sun, Yang; Jin, Hua; Kaneko, Kazunari; Tazaki, Shigeru

    2013-11-01

    The structure of neutron-rich nuclei with a few holes in respect of the doubly magic nucleus 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including orbitals allowing both neutron and proton core excitations, an effective interaction for the extended pairing-plus-quadrupole model with monopole corrections is tested through detailed comparison between the calculation and experimental data. By using the experimental energy of the core-excited 21/2+ level in 131In as a benchmark, monopole corrections are determined that describe the size of the neutron N=82 shell gap. The level spectra, up to 5 MeV of excitation in 131In, 131Sn, 130In, 130Cd, and 130Sn, are well described and clearly explained by couplings of single-hole orbitals and by core excitations.

  15. Low Cost CaTiO3 Perovskite Synthesized from Scallop (Anadara granosa) Shell as Antibacterial Ceramic Material

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Nur Ilahi, Rico; Pratami, Rismayanti

    2018-01-01

    Research on perovskite CaTiO3 synthesis from scallop (Anadara granosa) shell and its test as material for antibacterial ceramic application have been conducted. The synthesis was performed by calcium extraction from the scallop shell followed by solid-solid reaction of obtained calcium with TiO2. Physicochemical character of the perovskite wasstudied by measurement of crystallinity using x-ray diffraction (XRD), diffuse-reflectance UV Visible spectrophotometry, scanning electrone microscope-energy dispersive x-ray (SEM-EDX) and Fourier-Transform InfraRed. Considering the future application of the perovskite as antibacterial agent, laboratory test of the peroskite as material in antibacterial ceramic preparation was also conducted. Result of research indicated that perovskite formation was obtained and the material demonstrated photocatalytic activity as identified by band gap energy (Eg) value. The significant activity was also reflected by the antibacterial action of formed ceramic.

  16. Development of dissipative elastic metamaterials based on the layered cantilever-in-mass structure for attenuating the broad spectrum vibrations

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhou, Xiaoqin; Wang, Rongqi; Lin, Jieqiong

    2018-05-01

    In this paper, the layered cantilever-in-mass structures (LCIMs) will be theoretically investigated to reveal the effects of the layered structures on band gaps, which have great potential to bring in many useful material properties without much increasing the manufacturing difficulty by stacking the damped layers or other different component layers. Firstly, the negative effective mass model of LCIMs is derived based on the mass-in-mass model, which is applied to analyze the effective parameters of band gaps in terms of the geometrical features and material properties, the analytical results indicate the negative effective masses of LCIMs depend highly on the material parameter and thicknesses of each constituent layers. Then the LCIMs consist of the same thickness layers are further researched, which has found that their resonance frequency are independent on the layer thickness, and the numeric values of resonance frequencies are between the maximum and minimum local resonance frequency of their constituent layers. To validate the above analytical model, the three-dimensional model and the two-dimensional shell model of LCIMs are constructed in COMSOL Multiphysics. The obtained results show well agreement with the derived model in both the three-dimensional model and shell model. Finally, the dissipative LCIMs modeled by stacking the damped layers and metal layers are studied and discussed.

  17. The AGCE related studies of baroclinic flows in spherical geometry

    NASA Technical Reports Server (NTRS)

    Hyun, J. M.

    1983-01-01

    Steady state, axisymmetric motions of a Boussineaq fluid continued in rotating spherical anmulus are considered. The motions are driven by latitudinally varying temperature gradient at the shells. Linearized formulations for a narrow gap are derived and the flow field is divided into the Ekman layers and the geostrophic interior. The Ekman layer flows are consistent with the known results for cylindrical geometries. Within the framework of rather restrictive assumptions, the interior flows are solved by a series of associated Legendre polynomials. The solutions show qualitative features valid at midlatitudes.

  18. Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yijun; Rowland, Clare E; Schaller, Richard D

    2014-08-26

    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II–VI, III–V and IV–VI semiconductor quantum dots. Here, we use relatively unexplored IV/II–VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch comparedmore » with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II–VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II–VI nanocrystals are reproducibly 1–3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II–VI nanocrystals. We expect this synthetic IV/II–VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.« less

  19. Synthesis of optimized indium phosphide/zinc sulfide core/shell nanocrystals and titanium dioxide nanotubes for quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Seungyong

    Synthesis of InP/ZnS core/shell nanocrystals and TiO 2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air stability, a ZnS shell was grown. The ZnS shell improves the chemical stability in terms of oxidation prevention. Transmission electron microscopy (TEM) image shows that the nanocrystals are highly crystalline and monodisperse. Free-standing TiO2 nanotubes were produced by an anodization method using ammonium fluoride. The free-standing nanotubes were formed under the condition that the chemical dissolution speed associated with fluoride concentration was faster than the speed of Ti oxidation. Highly ordered free-standing anatase form TiO2 nanotubes, which are transformed by annealing at the optimized temperature, are expected to be ideal for coupling with the prepared InP/ZnS nanocrystals. Electrophoretic deposition was carried out to couple the InP/ZnS nanocrystals with the TiO2 nanotubes. Under the adjusted applied voltage condition, the current during the electrophoretic deposition decreased continuously with time. The amount of the deposited nanocrystals was estimated by calculation and the evenly deposited nanocrystals on the TiO2 nanotubes were observed by TEM.

  20. Facet-Selective Epitaxy of Compound Semiconductors on Faceted Silicon Nanowires.

    PubMed

    Mankin, Max N; Day, Robert W; Gao, Ruixuan; No, You-Shin; Kim, Sun-Kyung; McClelland, Arthur A; Bell, David C; Park, Hong-Gyu; Lieber, Charles M

    2015-07-08

    Integration of compound semiconductors with silicon (Si) has been a long-standing goal for the semiconductor industry, as direct band gap compound semiconductors offer, for example, attractive photonic properties not possible with Si devices. However, mismatches in lattice constant, thermal expansion coefficient, and polarity between Si and compound semiconductors render growth of epitaxial heterostructures challenging. Nanowires (NWs) are a promising platform for the integration of Si and compound semiconductors since their limited surface area can alleviate such material mismatch issues. Here, we demonstrate facet-selective growth of cadmium sulfide (CdS) on Si NWs. Aberration-corrected transmission electron microscopy analysis shows that crystalline CdS is grown epitaxially on the {111} and {110} surface facets of the Si NWs but that the Si{113} facets remain bare. Further analysis of CdS on Si NWs grown at higher deposition rates to yield a conformal shell reveals a thin oxide layer on the Si{113} facet. This observation and control experiments suggest that facet-selective growth is enabled by the formation of an oxide, which prevents subsequent shell growth on the Si{113} NW facets. Further studies of facet-selective epitaxial growth of CdS shells on micro-to-mesoscale wires, which allows tuning of the lateral width of the compound semiconductor layer without lithographic patterning, and InP shell growth on Si NWs demonstrate the generality of our growth technique. In addition, photoluminescence imaging and spectroscopy show that the epitaxial shells display strong and clean band edge emission, confirming their high photonic quality, and thus suggesting that facet-selective epitaxy on NW substrates represents a promising route to integration of compound semiconductors on Si.

  1. Impact of Fe doping on the electronic structure of SrTiO3 thin films determined by resonant photoemission

    NASA Astrophysics Data System (ADS)

    Kubacki, J.; Kajewski, D.; Goraus, J.; Szot, K.; Koehl, A.; Lenser, Ch.; Dittmann, R.; Szade, J.

    2018-04-01

    Epitaxial thin films of Fe doped SrTiO3 have been studied by the use of resonant photoemission. This technique allowed us to identify contributions of the Fe and Ti originating electronic states to the valence band. Two valence states of iron Fe2+ and Fe3+, detected on the base of x-ray absorption studies spectra, appeared to form quite different contributions to the valence band of SrTiO3. The electronic states within the in-gap region can be attributed to Fe and Ti ions. The Fe2+ originating states which can be connected to the presence of oxygen vacancies form a broad band reaching binding energies of about 0.5 eV below the conduction band, while Fe3+ states form in the gap a sharp feature localized just above the top of the valence band. These structures were also confirmed by calculations performed with the use of the FP-LAPW/APW+lo method including Coulomb correlations within the d shell. It has been shown that Fe doping induced Ti originating states in the energy gap which can be related to the hybridization of Ti and Fe 3d orbitals.

  2. Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.

    The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions.more » These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3/4 capsules also increases gap size uncertainty. This study focuses on analysis of modeling assumptions and uncertainty sources to evaluate their impacts on the gap size uncertainty.« less

  3. Modeling and studying of white light emitting diodes based on CdS/ZnS spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Hasanirokh, K.; Asgari, A.

    2018-07-01

    In this paper, we propose a quantum dot (QD) based white light emitting diode (WLED) structure to study theoretically the material gain and quantum efficiency of the system. We consider the spherical QDs with a II-VI semiconductor core (CdS) that covered with a wider band gap semiconductor acting as a shell (ZnS). In order to generate white light spectrum, we use layers with different dot size that can emit blue, green and red colors. The blue emission originating from CdS core combines to green/orange components originating from ZnS shell and creates an efficiency white light emission. To model this device, at first, we solve Schrödinger and Poisson equations self consistently and obtain eigen energies and wave functions. Then, we calculate the optical gain and internal quantum efficiency (IQE) of a CdS/ZnS LED sample. We investigate the structural parameter effects on the optical properties of the WLED. The numerical results show that the gain profile and IQE curves depend strongly on the structural parameters such as dot size, carrier density and volume scaling parameter. The gain profile becomes higher and wider with increasing the core radius while it becomes less and narrower with increasing the shell thickness. Furthermore, it is found that the volume scaling parameter can manage the system quantum efficiency.

  4. Off-shell hydrodynamics from holography

    DOE PAGES

    Crossley, Michael; Glorioso, Paolo; Liu, Hong; ...

    2016-02-18

    In this article, we outline a program for obtaining an action principle for dissipative fluid dynamics by considering the holographic Wilsonian renormalization group applied to systems with a gravity dual. As a first step, in this paper we restrict to systems with a non-dissipative horizon. By integrating out gapped degrees of freedom in the bulk gravitational system between an asymptotic boundary and a horizon, we are led to a formulation of hydrodynamics where the dynamical variables are not standard velocity and temperature fields, but the relative embedding of the boundary and horizon hypersurfaces. At zeroth order, this action reduces tomore » that proposed by Dubovsky et al. as an off-shell formulation of ideal fluid dynamics.« less

  5. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    DOEpatents

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence (.about.75.degree.) and for relatively short nanoneedle lengths (.about.1 .mu.m). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of .about.1 eV. The reported black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  6. Electromagnetic diagnostic system for the Keda Torus eXperiment

    NASA Astrophysics Data System (ADS)

    Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2017-09-01

    A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on basic machine operating information and future studies.

  7. Isomer spectroscopy using RI beam

    NASA Astrophysics Data System (ADS)

    Odahara, Atsuko

    2009-10-01

    We have studied systematically high-spin oblate shape isomers in the N=83 isotones, which have revealed the characteristics of nuclear structure, such as the preserving pairing interactions at high-spin states, decrease of Z=64 proton shell gap energy as the decrease of proton number from 64 to 60 and so on. Recently, it became possible to search for isomers by the secondary fusion reaction at high-spin states in nuclei, which could not be populated by the stable beam and stable target, using RCNP RI beam line at Osaka University. RI beams enable us to study high-spin states in nuclei in wide mass region. By using the RI beams delivered by RIBF and the high-efficiency γ-ray detection system GRETINA, it will be possible to investigate nuclei far from the stability line. Single-particle energies and nucleon-nucleon interactions of these nuclei close to drip line are expected to be the test ground of nuclear models, such as shell structures. We have a plan to search for isomers with half lives of ˜μsec to ˜msec and to explore the decay mechanism of isomers in the proton-rich nuclei along N=Z line with 80< A<100. Moreover we try to search for nuclei beyond the proton drip line, which could be defined that isomeric states would be bound by the centrifugal potential although the ground states would be unbound against the proton emission. Isomers are expected to reveal the following characteristics of these nuclei. (1) Existence of isomers could prove the magicity of N=Z=50 and the large neutron-proton interaction, as one of the candidates of isomers is spin-gap isomer which is caused by the lowering of excitation energies resulting from the stretch coupling of spins of high-j (g9/2) holes of the ^100Sn core. (2) Isomers could prove the nuclear deformation which is caused by the evolution of shell structure. One of spin-gap isomers in ^94Ag was reported to have large prolate deformation. (3) This mass region is on the way of the rapid proton (rp) synthesis pass. Recently, neutrino reactions in the super novae were reported to play a role of the synthesis of the rp-process nuclei. In the case of no path or slow down of rp process, isomers could contribute to synthesis of rp-nuclei with larger Z, although the production rates of isomers are small.

  8. Acoustic and elastic waves in metamaterials for underwater applications

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.

    Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson-like effect is demonstrated using the first flexural resonance of an acrylic shell. This represent a new type of material which cannot be accurately described as an effective acoustic medium. The study concludes with an analysis of a non-zero shear modulus in a pentamode cloak via the two-scale method with the shear modulus as the perturbation parameter.

  9. An investigation into the effective surface passivation of quantum dots by a photo-assisted chemical method

    NASA Astrophysics Data System (ADS)

    Joo, So-Yeong; Park, Hyun-Su; Kim, Do-yeon; Kim, Bum-Sung; Lee, Chan Gi; Kim, Woo-Byoung

    2018-01-01

    In this study, we have developed an effective amino passivation process for quantum dots (QDs) at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL)/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%). This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ˜28%.

  10. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.

    PubMed

    Li, Chen; Pullin, Andrew O; Haldane, Duncan W; Lam, Han K; Fearing, Ronald S; Full, Robert J

    2015-06-22

    Many animals, modern aircraft, and underwater vehicles use fusiform, streamlined body shapes that reduce fluid dynamic drag to achieve fast and effective locomotion in air and water. Similarly, numerous small terrestrial animals move through cluttered terrain where three-dimensional, multi-component obstacles like grass, shrubs, vines, and leaf litter also resist motion, but it is unknown whether their body shape plays a major role in traversal. Few ground vehicles or terrestrial robots have used body shape to more effectively traverse environments such as cluttered terrain. Here, we challenged forest-floor-dwelling discoid cockroaches (Blaberus discoidalis) possessing a thin, rounded body to traverse tall, narrowly spaced, vertical, grass-like compliant beams. Animals displayed high traversal performance (79 ± 12% probability and 3.4 ± 0.7 s time). Although we observed diverse obstacle traversal strategies, cockroaches primarily (48 ± 9% probability) used a novel roll maneuver, a form of natural parkour, allowing them to rapidly traverse obstacle gaps narrower than half their body width (2.0 ± 0.5 s traversal time). Reduction of body roundness by addition of artificial shells nearly inhibited roll maneuvers and decreased traversal performance. Inspired by this discovery, we added a thin, rounded exoskeletal shell to a legged robot with a nearly cuboidal body, common to many existing terrestrial robots. Without adding sensory feedback or changing the open-loop control, the rounded shell enabled the robot to traverse beam obstacles with gaps narrower than shell width via body roll. Such terradynamically 'streamlined' shapes can reduce terrain resistance and enhance traversability by assisting effective body reorientation via distributed mechanical feedback. Our findings highlight the need to consider body shape to improve robot mobility in real-world terrain often filled with clutter, and to develop better locomotor-ground contact models to understand interaction with 3D, multi-component terrain.

  11. Bonding and structure of copper nitrenes.

    PubMed

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  12. Improved room-temperature luminescence of core-shell InGaAs/GaAs nanopillars via lattice-matched passivation

    NASA Astrophysics Data System (ADS)

    Komolibus, Katarzyna; Scofield, Adam C.; Gradkowski, Kamil; Ochalski, Tomasz J.; Kim, Hyunseok; Huffaker, Diana L.; Huyet, Guillaume

    2016-02-01

    Optical properties of GaAs/InGaAs/GaAs nanopillars (NPs) grown on GaAs(111)B were investigated. Employment of a mask-etching technique allowed for an accurate control over the geometry of NP arrays in terms of both their diameter and separation. This work describes both the steady-state and time-resolved photoluminescence of these structures as a function of the ensemble geometry, composition of the insert, and various shell compounds. The effects of the NP geometry on a parasitic radiative recombination channel, originating from an overgrown lateral sidewall layer, are discussed. Optical characterization reveals a profound influence of the core-shell lattice mismatch on the carrier lifetime and emission quenching at room temperature. When the lattice-matching conditions are satisfied, an efficient emission from the NP arrays at room temperature and below the band-gap of silicon is observed, clearly highlighting their potential application as emitters in optical interconnects integrated with silicon platforms.

  13. Alloy and heterostructure architectures as promising tools for controlling electronic properties of semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Vaxenburg, Roman; Lifshitz, Efrat

    2012-02-01

    Tunability of energy levels and wavefunctions of carriers in colloidal quantum dots (CQDs) has a marked effect on numerous physical aspects, such as Coulomb interactions and charge separation, which in turn has a direct impact on the functioning of CQD-based opto-electronic devices. The electronic properties of CQDs are conventionally controlled by variation of their size. Here we demonstrate a theoretical approach to engineer the electronic properties of IV-VI CQDs by introducing an alloy composition in core and core/shell heterostructures, having the general chemical formula PbSexS1-x/PbSeyS1-y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), while maintaining a constant size. The theoretical model considered an effective mass anisotropy and smooth potential step at the core/shell interface. The model revealed the influence induced by variation of chemical composition and core-to-shell division on the band-gap energy, remote states’ density, internal charge separation, electron-hole Coulomb interaction, and optical transition oscillator strength.

  14. Single-neutron orbits near 78Ni: Spectroscopy of the N = 49 isotope 79Zn

    DOE PAGES

    Orlandi, R.; Mücher, D.; Raabe, R.; ...

    2014-12-09

    Single-neutron states in the Z=30, N=49 isotope 79Zn have been populated using the 78Zn(d, p) 79Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected in the reaction, and of γ rays emitted by 79Zn. The analysis reveals that the lowest excited states populated in the reaction lie at approximately 1 MeV of excitation, and involve neutron orbits above the N=50 shell gap. From the analysis of γ -ray data and of proton angular distributions, characteristic of the amount of angular momentum transferred, a 5/2 + configuration was assigned to a state at 983more » keV. Comparison with large-scale-shell-model calculations supports a robust neutron N=50 shell-closure for 78Ni. Finally, these data constitute an important step towards the understanding of the magicity of 78Ni and of the structure of nuclei in the region.« less

  15. Effect of ionization on the oxidation kinetics of aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Yao-Ting; He, Min; Cheng, Guang-xu; Zhang, Zaoxiao; Xuan, Fu-Zhen; Wang, Zhengdong

    2018-03-01

    Molecular dynamics simulation (MD) of the observed stepwise oxidation of core-shell structured Al/Al2O3 nanoparticles is presented. Different from the metal ion hopping process in the Cabrera-Mott model, which is assumed to occur only at a certain distance from the oxide layer, the MD simulation shows that Al atoms jump over various interfacial gaps directly under the thermal driving force. The energy barrier for Al ionization is found to be increased along with the enlargement of interfacial gap. A mechanism of competition between thermal driving force and ionization potential barrier is proposed in the interpretation of stepwise oxidation behavior.

  16. Gap-Mode Surface-Plasmon-Enhanced Photoluminescence and Photoresponse of MoS2.

    PubMed

    Wu, Zhi-Qian; Yang, Jing-Liang; Manjunath, Nallappagar K; Zhang, Yue-Jiao; Feng, Si-Rui; Lu, Yang-Hua; Wu, Jiang-Hong; Zhao, Wei-Wei; Qiu, Cai-Yu; Li, Jian-Feng; Lin, Shi-Sheng

    2018-05-22

    2D materials hold great potential for designing novel electronic and optoelectronic devices. However, 2D material can only absorb limited incident light. As a representative 2D semiconductor, monolayer MoS 2 can only absorb up to 10% of the incident light in the visible, which is not sufficient to achieve a high optical-to-electrical conversion efficiency. To overcome this shortcoming, a "gap-mode" plasmon-enhanced monolayer MoS 2 fluorescent emitter and photodetector is designed by squeezing the light-field into Ag shell-isolated nanoparticles-Au film gap, where the confined electromagnetic field can interact with monolayer MoS 2 . With this gap-mode plasmon-enhanced configuration, a 110-fold enhancement of photoluminescence intensity is achieved, exceeding values reached by other plasmon-enhanced MoS 2 fluorescent emitters. In addition, a gap-mode plasmon-enhanced monolayer MoS 2 photodetector with an 880% enhancement in photocurrent and a responsivity of 287.5 A W -1 is demonstrated, exceeding previously reported plasmon-enhanced monolayer MoS 2 photodetectors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics.

    PubMed

    Sanchez, Rafael S; de la Fuente, Mauricio Solis; Suarez, Isaac; Muñoz-Matutano, Guillermo; Martinez-Pastor, Juan P; Mora-Sero, Ivan

    2016-01-01

    We report the first observation of exciplex state electroluminescence due to carrier injection between the hybrid lead halide perovskite (MAPbI3-xClx) and quantum dots (core/shell PbS/CdS). Single layers of perovskite (PS) and quantum dots (QDs) have been produced by solution processing methods, and their photoluminescent properties are compared to those of bilayer samples in both PS/QD and QD/PS configurations. Exciplex emission at lower energies than the band gap of both PS and QD has been detected. The exciplex emission wavelength of this mixed system can be simply tuned by controlling the QD size. Light-emitting diodes (LEDs) have been fabricated using those configurations, which provide light emission with considerably low turn-on potential. The "color" of the LED can also be tuned by controlling the applied bias. The presence of the exciplex state PS and QDs opens up a broad range of possibilities with important implications not only in tunable LEDs but also in the preparation of intermediate band gap photovoltaic devices with the potentiality of surpassing the Shockley-Queisser limit.

  18. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics

    PubMed Central

    Sanchez, Rafael S.; de la Fuente, Mauricio Solis; Suarez, Isaac; Muñoz-Matutano, Guillermo; Martinez-Pastor, Juan P.; Mora-Sero, Ivan

    2016-01-01

    We report the first observation of exciplex state electroluminescence due to carrier injection between the hybrid lead halide perovskite (MAPbI3–xClx) and quantum dots (core/shell PbS/CdS). Single layers of perovskite (PS) and quantum dots (QDs) have been produced by solution processing methods, and their photoluminescent properties are compared to those of bilayer samples in both PS/QD and QD/PS configurations. Exciplex emission at lower energies than the band gap of both PS and QD has been detected. The exciplex emission wavelength of this mixed system can be simply tuned by controlling the QD size. Light-emitting diodes (LEDs) have been fabricated using those configurations, which provide light emission with considerably low turn-on potential. The “color” of the LED can also be tuned by controlling the applied bias. The presence of the exciplex state PS and QDs opens up a broad range of possibilities with important implications not only in tunable LEDs but also in the preparation of intermediate band gap photovoltaic devices with the potentiality of surpassing the Shockley-Queisser limit. PMID:26844299

  19. Negative thermal quenching of photoluminescence in zinc oxide nanowire-core/graphene-shell complexes.

    PubMed

    Lin, S S; Chen, B G; Xiong, W; Yang, Y; He, H P; Luo, J

    2012-09-10

    Graphene is an atomic thin two-dimensional semimetal whereas ZnO is a direct wide band gap semiconductor with a strong light-emitting ability. In this paper, we report on photoluminescence (PL) of ZnO-nanowires (NWs)-core/Graphene-shell heterostructures, which shows a negative thermal quenching (NTQ) behavior both for the near band-edge and deep level emission. The abnormal PL behavior was understood through the charging and discharging processes between ZnO NWs and graphene. The NTQ properties are most possibly induced by the unique rapidly increasing density of states of graphene as a function of Fermi level, which promises a higher quantum tunneling probability between graphene and ZnO at a raised temperature.

  20. Bis(aminoaryl) Carbon-Bridged Oligo(phenylenevinylene)s Expand the Limits of Electronic Couplings.

    PubMed

    Burrezo, Paula Mayorga; Lin, Nai-Ti; Nakabayashi, Koji; Ohkoshi, Shin-Ichi; Calzado, Eva M; Boj, Pedro G; Díaz García, María A; Franco, Carlos; Rovira, Concepciò; Veciana, Jaume; Moos, Michael; Lambert, Christoph; López Navarrete, Juan T; Tsuji, Hayato; Nakamura, Eiichi; Casado, Juan

    2017-03-06

    Carbon-bridged bis(aminoaryl) oligo(para-phenylenevinylene)s have been prepared and their optical, electrochemical, and structural properties analyzed. Their radical cations are class III and class II mixed-valence systems, depending on the molecular size, and they show electronic couplings which are among the largest for the self-exchange reaction of purely organic molecules. In their dication states, the antiferromagnetic coupling is progressively tuned with size from quinoidal closed-shell to open-shell biradicals. The data prove that the electronic coupling in the radical cations and the singlet-triplet gap in the dications show similar small attenuation factors, thus allowing charge/spin transfer over rather large distances. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reduced egg shell permeability affects embryonic development and hatchling traits in Lycodon rufozonatum and Pelodiscus sinensis.

    PubMed

    Tang, Wenqi; Zhao, Bo; Chen, Ye; DU, Weiguo

    2018-01-01

    The response of embryos to unpredictable hypoxia is critical for successful embryonic development, yet there remain significant gaps in our understanding of such responses in reptiles with different types of egg shell. We experimentally generated external regional hypoxia by sealing either the upper half or bottom half of the surface area of eggs in 2 species of reptiles (snake [Lycodon rufozonatum] with parchment egg shell and Chinese soft-shelled turtle [Pelodiscus sinensis] with rigid egg shell), then monitored the growth pattern of the opaque white patch in turtle eggs (a membrane that attaches the embryo to the egg shell and plays an important role in gas exchange), the embryonic heart rate, the developmental rate and the hatchling traits in turtle and snake eggs in response to external regional hypoxia. The snake embryos from the hypoxia treatments facultatively increased their heart rate during incubation, and turtle embryos from the upper-half hypoxia treatment enhanced their growth of the opaque white patch. Furthermore, the incubation period and hatching success of embryos were not affected by the hypoxia treatment in these 2 species. External regional hypoxia significantly affected embryonic yolk utilization and offspring size in the snake and turtle. Compared to sham controls, embryos from the upper-half hypoxia treatment used less energy from yolk and, therefore, developed into smaller hatchlings, but embryos from the bottom-half hypoxia treatment did not. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  2. Analysis of nematode mechanics by piezoresistive displacement clamp

    PubMed Central

    Park, Sung-Jin; Goodman, Miriam B.; Pruitt, Beth L.

    2007-01-01

    Studying animal mechanics is critical for understanding how signals in the neuromuscular system give rise to behavior and how force-sensing organs and sensory neurons work. Few techniques exist to provide forces and displacements appropriate for such studies. To address this technological gap, we developed a metrology using piezoresistive cantilevers as force–displacement sensors coupled to a feedback system to apply and maintain defined load profiles to micrometer-scale animals. We show that this system can deliver forces between 10−8 and 10−3 N across distances of up to 100 μm with a resolution of 12 nN between 0.1 Hz and 100 kHz. We use this new metrology to show that force–displacement curves of wild-type nematodes (Caenorhabditis elegans) are linear. Because nematodes have approximately cylindrical bodies, this finding demonstrates that nematode body mechanics can be modeled as a cylindrical shell under pressure. Little is known about the relative importance of hydrostatic pressure and shell mechanics, however. We show that dissipating pressure by cuticle puncture or decreasing it by hyperosmotic shock has only a modest effect on stiffness, whereas defects in the dpy-5 and lon-2 genes, which alter body shape and cuticle proteins, decrease and increase stiffness by 25% and 50%, respectively. This initial analysis of C. elegans body mechanics suggests that shell mechanics dominates stiffness and is a first step in understanding how body mechanics affect locomotion and force sensing. PMID:17962419

  3. Theoretical Basis and Correct Explanation of the Periodic System: Review and Update

    ERIC Educational Resources Information Center

    Schwarz, W. H. Eugen; Rich, Ronald L.

    2010-01-01

    Long-standing questions on the theoretical basis of the periodic system have been answered in recent years. A specific type of periodicity is imposed on all elements by the main groups just before and after the noble gasses. The upper "n"p shells of these elements are unique because of their stabilized energies and the large gaps to the next…

  4. Sample Archaeological Survey of Public Use Areas, Milford Lake, Kansas

    DTIC Science & Technology

    1982-09-01

    6,000 B.C. Llano -(Clovis projectile points) Lindenmeier - (Folsom projectile points) Plano -(Plainview, Angostora, Hell Gap, Scotts- bluff, etc...plain, flaring or S-form rims, shell tempered, plain surfaced pottery with low rolled rims 0 and incised alternating hatched triangles on the...tempered pottery with a marked collar rim incised with zig-zags, herringbone and hatched alternating triangles; unnotched triangular arrow points; French

  5. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    PubMed Central

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  6. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides.

    PubMed

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.

  7. Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-Based Quantum Dots

    PubMed Central

    2017-01-01

    In this work, we demonstrate that a preferential Ga-for-Zn cation exchange is responsible for the increase in photoluminescence that is observed when gallium oleate is added to InZnP alloy QDs. By exposing InZnP QDs with varying Zn/In ratios to gallium oleate and monitoring their optical properties, composition, and size, we conclude that Ga3+ preferentially replaces Zn2+, leading to the formation of InZnP/InGaP core/graded-shell QDs. This cation exchange reaction results in a large increase of the QD photoluminescence, but only for InZnP QDs with Zn/In ≥ 0.5. For InP QDs that do not contain zinc, Ga is most likely incorporated only on the quantum dot surface, and a PL enhancement is not observed. After further growth of a GaP shell and a lattice-matched ZnSeS outer shell, the cation-exchanged InZnP/InGaP QDs continue to exhibit superior PL QY (over 70%) and stability under long-term illumination (840 h, 5 weeks) compared to InZnP cores with the same shells. These results provide important mechanistic insights into recent improvements in InP-based QDs for luminescent applications. PMID:28706347

  8. In-beam γ -ray spectroscopy of the neutron-rich platinum isotope 200Pt toward the N =126 shell gap

    NASA Astrophysics Data System (ADS)

    John, P. R.; Valiente-Dobón, J. J.; Mengoni, D.; Modamio, V.; Lunardi, S.; Bazzacco, D.; Gadea, A.; Wheldon, C.; Rodríguez, T. R.; Alexander, T.; de Angelis, G.; Ashwood, N.; Barr, M.; Benzoni, G.; Birkenbach, B.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Bottoni, S.; Bowry, M.; Bracco, A.; Browne, F.; Bunce, M.; Camera, F.; Corradi, L.; Crespi, F. C. L.; Melon, B.; Farnea, E.; Fioretto, E.; Gottardo, A.; Grente, L.; Hess, H.; Kokalova, Tz.; Korten, W.; Kuşoǧlu, A.; Lenzi, S.; Leoni, S.; Ljungvall, J.; Menegazzo, R.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D. R.; Podolyák, Zs.; Pollarolo, G.; Recchia, F.; Reiter, P.; Roberts, O. J.; Şahin, E.; Salsac, M.-D.; Scarlassara, F.; Sferrazza, M.; Söderström, P.-A.; Stefanini, A. M.; Szilner, S.; Ur, C. A.; Vogt, A.; Walshe, J.

    2017-06-01

    The neutron-rich nucleus 200Pt is investigated via in-beam γ -ray spectroscopy to study the shape evolution in the neutron-rich platinum isotopes towards the N =126 shell closure. The two-neutron transfer reaction 198Pt(82Se, 80Se)200Pt is used to populate excited states of 200Pt. The Advanced Gamma Ray Tracking Array (AGATA) demonstrator coupled with the PRISMA spectrometer detects γ rays coincident with the 80Se recoils, the binary partner of 200Pt. The binary partner method is applied to extract the γ -ray transitions and build the level scheme of 200Pt. The level at 1884 keV reported by Yates et al. [S. W. Yates, E. M. Baum, E. A. Henry, L. G. Mann, N. Roy, A. Aprahamian, R. A. Meyer, and R. Estep, Phys. Rev. C 37, 1889 (1988)] was confirmed to be at 1882.1 keV and assigned as the (61+) state. An additional γ ray was found and it presumably deexcites the (81+) state. The results are compared with state-of-the-art beyond mean-field calculations, performed for the even-even 190 -204Pt isotopes, revealing that 200Pt marks the transition from the γ -unstable behavior of lighter Pt nuclei towards a more spherical one when approaching the N =126 shell closure.

  9. Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodan; Estradé, Sonia; Lin, Yuanjing; Yu, Feng; Lopez-Conesa, Lluis; Zhou, Hao; Gurram, Sanjeev Kumar; Peiró, Francesca; Fan, Zhiyong; Shen, Hao; Schaefer, Lothar; Braeuer, Guenter; Waag, Andreas

    2017-05-01

    Recently, colored H-doped TiO2 (H-TiO2) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core—disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO2 nanorods grown on F:SnO2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO2 nanorods/FTO system for important applications such as photocatalysis, hydrogen generation from water splitting and solar energy conversion.

  10. Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing.

    PubMed

    Wang, Xiaodan; Estradé, Sonia; Lin, Yuanjing; Yu, Feng; Lopez-Conesa, Lluis; Zhou, Hao; Gurram, Sanjeev Kumar; Peiró, Francesca; Fan, Zhiyong; Shen, Hao; Schaefer, Lothar; Braeuer, Guenter; Waag, Andreas

    2017-12-01

    Recently, colored H-doped TiO 2 (H-TiO 2 ) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO 2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO 2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO 2 nanorods grown on F:SnO 2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO 2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO 2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO 2 nanorods/FTO system for important applications such as photocatalysis, hydrogen generation from water splitting and solar energy conversion.

  11. Sulfuric acid intercalated-mechanical exfoliation of reduced graphene oxide from old coconut shell

    NASA Astrophysics Data System (ADS)

    Islamiyah, Wildatun; Nashirudin, Luthfi; Baqiya, Malik A.; Cahyono, Yoyok; Darminto

    2018-04-01

    We report a fecile preparation of reduced grapheme oxide (rGO) from an old coconut shell by rapid reduction of heating at 400°C, chemical exfoliation using H2SO4 and HCl intercalating and mechanical exfoliation using ultrasonication. The produced samples consist of random stacks of nanometer-sized sheets. The dispersions prepared from H2SO4 had broader size distributions and larger particle sizes than the that from HCl. An average size of rGO in H2SO4 and HCl is respectively 23.62 nm and 570.4 nm. Furthermore, sample prepared in H2SO4 exhibited a high electronical conductivity of 1.1 × 10-3 S/m with a low energy gap of 0.11 eV.

  12. Radiative lifetimes of zincblende CdSe/CdS quantum dots

    DOE PAGES

    Gong, Ke; Martin, James E.; Shea-Rohwer, Lauren E.; ...

    2015-01-02

    Recent synthetic advances have made available very monodisperse zincblende CdSe/CdS quantum dots having near-unity photoluminescence quantum yields. Because of the absence of nonradiative decay pathways, accurate values of the radiative lifetimes can be obtained from time-resolved PL measurements. Radiative lifetimes can also be obtained from the Einstein relations, using the static absorption spectra and the relative thermal populations in the angular momentum sublevels. We found that one of the inputs into these calculations is the shell thickness, and it is useful to be able to determine shell thickness from spectroscopic measurements. We use an empirically corrected effective mass model tomore » produce a “map” of exciton wavelength as a function of core size and shell thickness. These calculations use an elastic continuum model and the known lattice and elastic constants to include the effect of lattice strain on the band gap energy. The map is in agreement with the known CdSe sizing curve and with the shell thicknesses of zincblende core/shell particles obtained from TEM images. Furthermore, if selenium–sulfur diffusion is included and lattice strain is omitted from the calculation then the resulting map is appropriate for wurtzite CdSe/CdS quantum dots synthesized at high temperatures, and this map is very similar to one previously reported (J. Am. Chem. Soc. 2009, 131, 14299). Radiative lifetimes determined from time-resolved measurements are compared to values obtained from the Einstein relations, and found to be in excellent agreement. For a specific core size (2.64 nm diameter, in the present case), radiative lifetimes are found to decrease with increasing shell thickness. Thus, this is similar to the size dependence of one-component CdSe quantum dots and in contrast to the size dependence in type-II quantum dots.« less

  13. New nuclear structure data beyond 136Sn

    NASA Astrophysics Data System (ADS)

    Lozeva, Radomira

    2018-05-01

    Exotic nuclei beyond the 132Sn double shell-closure are influenced by both the Sn superfluity and the evolving collectivity only few nucleons away. Toward even more neutron-rich nuclei, especially at intermediate mass number, the interplay between single-particle and collective particle-hole excitations competes. In some cases with the extreme addition of neutrons also other effects as the formation of neutron skin, stabilization as sub-shell gaps or orbital crossings may be expected. The knowledge of nuclear ingredients is especially interesting beyond 132Sn and little is known on how the excitation modes develop with the addition of both protons and neutrons and for example systematic prompt and decay studies can be such very sensitive probe. Recently, we have approached this region of nuclei in several experimental measurements following 238U projectile fission on 9Be and n-induced fission on 241Pu and 235U. Consistent data analysis allows to access various spins and excitation energies and provide new input to theory. Examples from these studies on several nuclei in the A 140 region were presented during the conference together with the possible interpretation of the new data. Here, we will illustrate one example on 136I using two complementary data sets.

  14. The Electronic Structure of Transition Metal Coated Fullerenes

    NASA Astrophysics Data System (ADS)

    Patton, David C.; Pederson, Mark R.; Kaxiras, Efthimios

    1998-03-01

    Clusters composed of fullerene molecules with an outer shell of transition metal atoms in the composition C_60M_62 (M being a transition metal) have been produced with laser vaporisation techniques(F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I.M.L. Billas, and T. P. Martin, Z. Phys D 40), 351 (1997).. We have studied several of these very large systems with a parallel version of the all-electron NRLMOL cluster code. Optimized geometries of the metal encased fullerenes C_60Ti_62 and C_60V_62 are presented along with their HOMO-LUMO gaps, electron affinities, ionization energies, and cohesive energies. We compare the stability of these clusters to relaxed met-car structures (e.g. Ti_8C_12) and to relaxed rocksalt metal-carbide fragments (TiC)n with n=8 and 32. In addition to metal-coated fullerenes we consider the possibility of a trilayered structure consisting of a small shell of metal atoms enclosed by a metal coated fullerene. The nature of bonding in these systems is analyzed by studying the electronic charge distributions.

  15. Renewable Decyl-alcohol Templated Synthesis of Si-Cu Core-Shell Nanocomposite

    NASA Astrophysics Data System (ADS)

    Salim, M. A.; >H Misran, S. Z.; Shah, N. N. H.; Razak, N. A. A.; >A Manap,

    2013-06-01

    Monodispersed silica spheres with particles size of ca. 450 nm were successfully synthesized using a modified Stöber method. The synthesized monodispersed silica spheres were successfully coated with copper using modified sol-gel method employing nonsurfactant surface modifiers and catalyst. A renewable palm oil based decyl-alcohol (C10) as nonsurfactant surface modifiers and catalyst were used to modify the silica surfaces prior to coating with copper. The X-ray diffraction patterns of Si-Cu core-shell exhibited a broad peak corresponding to amorphous silica networks and monoclinic CuO phase. It was found that samples modified in the presence of 1 ml catalyst exhibited homogeneous deposition. The surface area of core materials (SiO2) was at ca. 7.04 m2/g and Si-Cu core-shell was at ca. 8.21 m2/g. The band gap of samples prepared with and without catalyst was calculated to be ca. 2.45 eV and ca. 3.90 eV respectively based on the UV-vis absorption spectrum of the product.

  16. Rotational band structure in Mg 32

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N ≈ 20 neon, sodium, and magnesium isotopes that make up what is commonly called the “island of inversion.” However, the rotational band structures, which are a characteristic fingerprint of a rigid nonspherical shape, have yet to be observed. In this work, we report on a measurement and analysis of the yrast (lowest lying) rotational band in 32 Mg up to spin I = 6 + produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ -ray tracking detector array, GRETINA ( γmore » -ray energy tracking in-beam nuclear array). Large-scale shell-model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked-shell-model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results.« less

  17. Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles.

    PubMed

    Gallei, Markus

    2018-02-01

    Photonic band-gap materials attract enormous attention as potential candidates for a steadily increasing variety of applications. Based on the preparation of easily scalable monodisperse colloids, such optically attractive photonic materials can be prepared by an inexpensive and convenient bottom-up process. Artificial polymer opals can be prepared by shear-induced assembly of core/shell particles, yielding reversibly stretch-tunable materials with intriguing structural colors. This feature article highlights recent developments of core/shell particle design and shear-induced opal formation with focus on the combination of hard and soft materials as well as crosslinking strategies. Structure formation of opal materials relies on both the tailored core/shell architecture and the parameters for polymer processing. The emphasis of this feature article is on elucidating the particle design and incorporation of addressable moieties, i.e., stimuli-responsive polymers as well as elaborated crosslinking strategies for the preparation of smart (inverse) opal films, inorganic/organic opals, and ceramic precursors by shear-induced ordering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Aqueous Phase Synthesis and Enhanced Field Emission Properties of ZnO-Sulfide Heterojunction Nanowires

    PubMed Central

    Wang, Guojing; Li, Zhengcao; Li, Mingyang; Chen, Chienhua; Lv, Shasha; Liao, Jiecui

    2016-01-01

    ZnO-CdS, ZnO-ZnS, and ZnO-Ag2S core-shell heterojunction structures were fabricated using low-temperature, facile and simple aqueous solution approaches. The polycrystalline sulfide shells effectively enhance the field emission (FE) properties of ZnO nanowires arrays (NWAs). This results from the formation of the staggered gap heterointerface (ZnO-sulfide) which could lead to an energy well at the interfaces. Hence, electrons can be collected when an electric field is applied. It is observed that ZnO-ZnS NWAs have the lowest turn-on field (3.0 Vμm−1), compared with ZnO-CdS NWAs (6.3 Vμm−1) and ZnO-Ag2S NWAs (5.0 Vμm−1). This may be associated with the pyramid-like ZnS shell which increases the number of emission nanotips. Moreover, the Fowler-Nordheim (F-N) plot displays a nonlinear relationship in the low and high electric field regions caused by the double well potential effect of the heterojunction structures. PMID:27387653

  19. Challenges in Radiofrequency Pasteurization of Shell Eggs: Coagulation Rings.

    PubMed

    Lau, Soon Kiat; Thippareddi, Harshavardhan; Jones, David; Negahban, Mehrdad; Subbiah, Jeyamkondan

    2016-10-01

    A total of 50 different configurations of simple radiofrequency (RF) heating at 27.12 MHz of a shell egg were simulated using a finite element model with the purpose of pasteurizing the egg. Temperature-dependent thermal and dielectric properties of the yolk, albumen, and shell were measured, fitted, and introduced into the model. A regression equation that relates the top electrode voltage to the gap between the electrodes and vertical position of the egg was developed. Simulation and experimental results had good agreement in terms of temperature deviation (root mean squared error ranged from 0.35 °C to 0.48 °C) and both results demonstrated the development of a "coagulation ring" around the air cell. The focused heating near the air cell of the egg prevented pasteurization of the egg due to its impact on quality (coagulation). Analysis of the electric field patterns offered a perspective on how nonuniform RF heating could occur in heterogeneous food products. The results can be used to guide development of RF heating for heterogeneous food products and further development of RF pasteurization of eggs. © 2016 Institute of Food Technologists®.

  20. Population and decay of a Kπ=8- two-quasineutron isomer in 244Pu

    NASA Astrophysics Data System (ADS)

    Hota, S. S.; Tandel, S. K.; Chowdhury, P.; Ahmad, I.; Carpenter, M. P.; Chiara, C. J.; Greene, J. P.; Hoffman, C. R.; Jackson, E. G.; Janssens, R. V. F.; Kay, B. P.; Khoo, T. L.; Kondev, F. G.; Lakshmi, S.; Lalkovski, S.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Moran, K.; Peterson, D.; Shirwadkar, U.; Seweryniak, D.; Stefanescu, I.; Toh, Y.; Zhu, S.

    2016-08-01

    The decay of a Kπ=8- isomer in 244Pu and the collective band structures populating the isomer were studied using deep inelastic excitations with 47Ti and 208Pb beams, respectively. Precise measurements of M 1 /E 2 branching ratios in the band confirm a 9 /2-[734] ν⊗7 /2+[624] ν configuration assignment for the isomer, validating the systematics of Kπ=8- , two-quasineutron isomers observed in even-Z , N =150 isotones. These isomers around the deformed shell gap at N =152 provide critical benchmarks for theoretical predictions of single-particle energies in this gateway region to superheavy nuclei.

  1. Resolving Nonadiabatic Dynamics of Hydrated Electrons Using Ultrafast Photoemission Anisotropy.

    PubMed

    Karashima, Shutaro; Yamamoto, Yo-Ichi; Suzuki, Toshinori

    2016-04-01

    We have studied ultrafast nonadiabatic dynamics of excess electrons trapped in the band gap of liquid water using time- and angle-resolved photoemission spectroscopy. Anisotropic photoemission from the first excited state was discovered, which enabled unambiguous identification of nonadiabatic transition to the ground state in 60 fs in H_{2}O and 100 fs in D_{2}O. The photoelectron kinetic energy distribution exhibited a rapid spectral shift in ca. 20 fs, which is ascribed to the librational response of a hydration shell to electronic excitation. Photoemission anisotropy indicates that the electron orbital in the excited state is depolarized in less than 40 fs.

  2. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation

    NASA Astrophysics Data System (ADS)

    Ragupathy, S.; Raghu, K.; Prabu, P.

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models.

  3. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides.

    PubMed

    Liu, Airong; Liu, Jing; Han, Jinhao; Zhang, Wei-Xian

    2017-01-15

    Knowledge on the transformation of nanoscale zero-valent iron (nZVI) in water is essential to predict its surface chemistry including surface charge, colloidal stability and aggregation, reduction and sorption of organic contaminants, heavy metal ions and other pollutants in the environment. In this work, transmission electronic microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy are applied to study the compositional and structural evolution of nZVI under oxic and anoxic conditions. Under anoxic conditions, the core-shell structure of nZVI is well maintained even after 72h, and the corrosion products usually contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). Under oxic conditions, the core-shell structure quickly collapses to flakes or acicular-shaped structures with crystalline lepidocrocite (γ-FeOOH) as the primary end product. This work provides detailed information and fills an important knowledge gap on the physicochemical characteristics and structural evolution of engineered nanomaterials in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus

    PubMed Central

    Jing, Xiaodong; Meng, Yang; Sun, Xiaofeng

    2015-01-01

    Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance is achieved when the SR is tuned by adjusting the shell thickness, benefiting from the large density contrast between the shell material and the encapsulated gas. The SR resonates with near-perfect monopole symmetry, as demonstrated by the theoretical and experimental results, which are in excellent agreement. For a lattice of SRs, a band gap occurs and blocks near-total transmission, and the effective bulk modulus exhibits a prominent negative band, while the effective mass density remains unchanged. Our study shows that the SR is suitable for building 3D acoustic metamaterials and provides a basis for constructing left-handed materials as a new means of creating a negative bulk modulus. PMID:26538085

  5. Self-consistent description of the SHFB equations for 112Sn

    NASA Astrophysics Data System (ADS)

    Ghafouri, M.; Sadeghi, H.; Torkiha, M.

    2018-03-01

    The Hartree-Fock (HF) method is an excellent approximation of the closed shell magic nuclei. Pair correlation is essential for the description of open shell nuclei and has been derived for even-even, odd-odd and even-odd nuclei. These effects are reported by Hartree-Fock with BCS (HFBCS) or Hartree-Fock-Bogolyubov (HFB). These issues have been investigated, especially in the nuclear charts, and such studies have been compared with the observed information. We compute observations such as total binding energy, charge radius, densities, separation energies, pairing gaps and potential energy surfaces for neutrons and protons, and compare them with experimental data and the result of the spherical codes. In spherical even-even neutron-rich nuclei are considered in the Skyrme-Hartree-Fock-Bogolyubov (SHFB) method with density-dependent pairing interaction. Zero-range density-dependent interactions is used in the pairing channel. We solve SHF or SHFB equations in the spatial coordinates with spherical symmetry for tin isotopes such as 112Sn. The numerical accuracy of solving equations in the coordinate space is much greater than the fundamental extensions, which yields almost precise results.

  6. Rat Nucleus Accumbens Core Astrocytes Modulate Reward and the Motivation to Self-Administer Ethanol after Abstinence

    PubMed Central

    Bull, Cecilia; Freitas, Kelen CC; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-01-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with astrocyte-specific DREADDs. Taken together, our findings demonstrate that NAcore astrocytes can shape the motivation to self-administer ethanol; suggesting that the development of ligands which selectively stimulate astrocytes may be a successful strategy to abate ethanol-seeking behavior. PMID:24903651

  7. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    PubMed

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with astrocyte-specific DREADDs. Taken together, our findings demonstrate that NAcore astrocytes can shape the motivation to self-administer ethanol; suggesting that the development of ligands which selectively stimulate astrocytes may be a successful strategy to abate ethanol-seeking behavior.

  8. Inelastic scattering of neutron-rich Ni and Zn isotopes off a proton target

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Doornenbal, P.; Dupuis, M.; Lenzi, S. M.; Nowacki, F.; Obertelli, A.; Péru, S.; Pietralla, N.; Werner, V.; Wimmer, K.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Louchart, C.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Niikura, M.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Zs.; Franchoo, S.; Giacoppo, F.; Gottardo, A.; Hadynska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Olivier, L.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C. M.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Vajta, Zs.; Wu, J.; Xu, Z.

    2018-04-01

    Proton inelastic scattering of Ni,7472 and Zn,8076 ions at energies around 235 MeV/nucleon was performed at the Radioactive Isotope Beam Factory and studied using γ -ray spectroscopy. Angular integrated cross sections for direct inelastic scattering to the 21+ and 41+ states were measured. The Jeukenne-Lejeune-Mahaux folding model, extended beyond 200 MeV, was used together with neutron and proton densities stemming from quasiparticle random-phase approximation (QRPA) calculations to interpret the experimental cross sections and to infer neutron to proton matrix element ratios. In addition, coupled-channels calculations with a phenomenological potential were used to determine deformation lengths. For the Ni isotopes, correlations favor neutron excitations, thus conserving the Z =28 gap. A dominance of proton excitation, on the other hand, is observed in the Zn isotopes, pointing to the conservation of the N =50 gap approaching 78Ni. These results are in agreement with QRPA and large-scale shell-model calculations.

  9. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.

    PubMed

    Xi, Lifei; Cho, Deok-Yong; Besmehn, Astrid; Duchamp, Martial; Grützmacher, Detlev; Lam, Yeng Ming; Kardynał, Beata E

    2016-09-06

    This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.

  10. Mobility Research at TARDEC (Briefing Charts)

    DTIC Science & Technology

    2015-03-10

    UWM UIC UWM UWM Gap Collaboration 4 ARC & RIF Fund: $255k+$250K New ANCF shell element Fiber -reinforced composite rubber Validation and benchmark 2013...U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Mobility Research at TARDEC Dr. P. Jayakumar, S. Arepally Analytics 1...t s 5 9 - - - -3 t s 7 98 - - - . . . .t s Drucker-Prager Elasto- Plastic Soil Elastic Soil 6 A Physics-Based High Performance

  11. Energy spectrum and electrical conductivity of graphene with a nitrogen impurity

    NASA Astrophysics Data System (ADS)

    Repetskii, S. P.; Vyshivanaya, I. G.; Skotnikov, V. A.; Yatsenyuk, A. A.

    2015-04-01

    The electronic structure of graphene with a nitrogen impurity has been studied based on the model of tight binding using exchange-correlation potentials in the density-functional theory. Wave functions of 2 s and 2 p states of neutral noninteracting carbon atoms have been chosen as the basis. When studying the matrix elements of the Hamiltonian, the first three coordination shells have been taken into account. It has been established that the hybridization of electron-energy bands leads to the splitting of the electron energy spectrum near the Fermi level. Due to the overlap of the energy bands, the arising gap behaves as a quasi-gap, in which the density of the electron levels is much lower than in the rest of the spectrum. It has been established that the conductivity of graphene decreases with increasing nitrogen concentration. Since the increase in the nitrogen concentration leads to an increase in the density of states at the Fermi level, the decrease in the conductivity is due to a sharper decrease in the time of relaxation of the electron sates.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, G.; Pai, H.

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region Amore » = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.« less

  13. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.

    PubMed

    Navarro-Pardo, Fabiola; Zhao, Haiguang; Wang, Zhiming M; Rosei, Federico

    2018-03-20

    Semiconductor nanocrystals exhibit size-tunable absorption and emission ranging from the ultraviolet (UV) to the near-infrared (NIR) spectral range, high absorption coefficient, and high photoluminescence quantum yield. Effective surface passivation of these so-called quantum dots (QDs) may be achieved by growing a shell of another semiconductor material. The resulting core/shell QDs can be considered as a model system to study and optimize structure/property relations. A special case consists in growing thick shells (1.5 up to few tens of nanometers) to produce "giant" QDs (g-QDs). Tailoring the chemical composition and structure of CdSe/CdS and PbS/CdS g-QDs is a promising approach to widen the spectral separation of absorption and emission spectra (i.e., the Stokes shift), improve the isolation of photogenerated carriers from surface defects and enhance charge carrier lifetime and mobility. However, most stable systems are limited by a thick CdS shell, which strongly absorbs radiation below 500 nm, covering the UV and part of the visible range. Modification of the interfacial region between the core and shell of g-QDs or tuning their doping with narrow band gap semiconductors are effective approaches to circumvent this challenge. In addition, the synthesis of g-QDs composed of environmentally friendly elements (e.g., CuInSe 2 /CuInS 2 ) represents an alternative to extend their absorption into the NIR range. Additionally, the band gap and band alignment of g-QDs can be engineered by proper selection of the constituents according to their band edge positions and by tuning their stoichiometry during wet chemical synthesis. In most cases, the quasi-type II localization regime of electrons and holes is achieved. In this type of g-QDs, electrons can leak into the shell region, while the holes remain confined within the core region. This electron-hole spatial distribution is advantageous for optoelectronic devices, resulting in efficient electron-hole separation while maintaining good stability. This Account provides an overview of emerging engineering strategies that can be adopted to optimize structure/property relations in colloidal g-QDs for efficient photon management or charge separation/transfer. In particular, we focus on our recent contributions to this rapidly expanding field of research. We summarize the design and synthesis of a variety of colloidal g-QDs with the aim of tuning the optical properties, such as absorption/emission in a wide region of the solar spectrum, which allows enlargement of their Stokes shift. We also describe the band alignment within these systems, charge carrier dynamics, and charge transfer from g-QDs into semiconducting oxides. We show how these tailored g-QDs may be used as active components in luminescent solar concentrators, photoelectrochemical cells for hydrogen generation, QD-sensitized solar cells and optical nanothermometers. In each case, we aim at providing insights on structure/property relationships and on how to optimize them toward improving device performance. Finally, we describe perspectives for future work, sketching new directions and opportunities in this field of research at the intersection between chemistry, physics, materials science and engineering.

  14. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Ruan, Qifeng

    Localized surface plasmon resonance, which stems from the collective oscillations of conduction-band electrons, endows Au nanocrystals with unique optical properties. Au nanocrystals possess extremely large scattering/absorption cross-sections and enhanced local electromagnetic field, both of which are synthetically tunable. Moreover, when Au nanocrystals are closely placed or hybridized with semiconductors, the coupling and interaction between the individual components bring about more fascinating phenomena and promising applications, including plasmon-enhanced spectroscopies, solar energy harvesting, and cancer therapy. The continuous development in the field of plasmonics calls for further advancements in the preparation of high-quality plasmonic nanocrystals, the facile construction of hybrid plasmonic nanostructures with desired functionalities, as well as deeper understanding and efficient utilization of the interaction between plasmonic nanocrystals and semiconductor components. In this thesis, I developed a seed-mediated growth method for producing size-controlled Au nanospheres with high monodispersity and assembled Au nanospheres of different sizes into core/satellite nanostructures for enhancing Raman signals. For investigating the interactions between Au nanocrystals and semiconductors, I first prepared (Au core) (TiO2 shell) nanostructures, and then studied their synthetically controlled plasmonic properties and light-harvesting applications. Au nanocrystals with spherical shapes are desirable in plasmon-coupled systems owing to their high geometrical symmetry, which facilitates the analysis of electrodynamic responses in a classical electromagnetic framework and the investigation of quantum tunneling and nonlocal effects. I prepared remarkably uniform Au nanospheres with diameters ranging from 20 nm to 220 nm using a simple seed-mediated growth method associated with mild oxidation. Core/satellite nanostructures were assembled out of differently sized Au nanospheres with molecular linkers. The plasmon resonances of the core/satellite nanostructures undergo red shifts in comparison to those of the sole Au cores, which is consistent with Mie theory analysis. As predicted by finite-difference time-domain simulations, the assembled core/satellite nanostructures exhibit large enhancements for Raman scattering. The facile growth of Au nanospheres and assembly of core/satellite nanostructures blaze a new way to the design of nanoarchitectures with desired plasmonic properties and functions. Coating semiconductors onto Au nanocrystals to form core shell configurations can increase the interactions between the two materials, benefiting from their large active interfacial area. The shell can also protect the Au nanocrystal core from aggregation, reshaping, and chemical corrosion. In this thesis, (Au nanocrystal core) (titania shell) nanostructures with tunable shell thicknesses were prepared by a facile wetchemistry method. Au nanocrystals with strong and tunable plasmon resonances in the visible and near-infrared regions can enhance and broaden the light utilization of TiO2 through the scattering/absorption enhancement, sensitization, and hot-electron injection. The integration of Au nanocrystals therefore hold the prospect of breaking the light-harvesting limit of TiO2 arising from its wide band gap. The resultant (Au core) (TiO2 shell) nanostructures were examined to be capable of efficiently generating reactive oxygen species under near-infrared resonant excitation. On the other hand, the transverse plasmon modes of Au nanorods, which are often too weak to be observed on scattering spectra, are enhanced by the TiO2 shell through energy transfer. With the increment of the shell thickness, the intensity of the transverse plasmon mode increases significantly and even becomes comparable with the longitudinal plasmon mode. Interestingly, both the transverse and longitudinal modes of the (Au core) (TiO2 shell) nanostructures exhibit asymmetric Fano line shapes. The Fano resonances result from the coupling between the core and shell, as understood by the mechanical oscillator model. Besides varying the shell thickness, the plasmonic bands of the core shell nanostructures can also be tailored by employing Au nanorods with different aspect ratios. The synthetically tunable plasmonic properties and synergistic interactions between the gold core and the titania shell make the hybrid nanostructure a multifunctional nanomaterial and ideal system for studying the plasmonic hybrid nanostructures.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, Markus; Roberts, Evan W.; Gonzalez, Raul C.

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO 2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysomemore » locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. Finally, we show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.« less

  16. Laser ablation of Au-CuO core-shell nanocomposite in water for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ismail, Raid A.; Abdul-Hamed, Ryam S.

    2017-12-01

    Core-shell gold-copper oxide Au-CuO nanocomposites were synthesized using laser ablation of CuO target in colloidal solution of Au nanoparticles (NPs). The effect of laser fluence on the structural, morphological, electrical, and optical properties of Au-CuO nanocomposites was investigated using x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL), Fourier transformed infrared spectroscopy (FTIR), Hall measurement, and UV-vis spectroscopy. X-ray diffraction results confirm the formation of polycrystalline Au-CuO NPs with monoclinic structure. The optical energy gap for CuO was 4 eV and for the Au-CuO core-shell nanocomposites was found to be in the range of 3.4-3.7 eV. SEM and TEM investigations revealed that the structure and morphology of Au-CuO core-shell nanocomposites were strongly depending on the laser fluence. A formation of Au-CuO nanospheres and platelets structures was observed. The photoluminescence data showed an emission of broad visible peaks between 407 and 420 nm. The effect of laser fluence on the dark and illuminated I-V characteristics of Au-CuO/n-Si heterojunction photodetectors was investigated and analyzed. The experimental data demonstrated that the photodetector prepared at optimum laser fluence exhibited photosensitivity of 0.6 AW-1 at 800 nm.

  17. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities. Electronic supplementary information (ESI) available: Synthesis and TEM images of pure ZnO nanocrystals. Photocatalytic testing procedures and degradation curves. SEM and TEM images, SAED pattern and EDS spectra and maps of parts of Cu-ZnO hybrid samples. A schematic image of coincident lattice matching between Cu and ZnO. STEM-EDS elemental maps and XRD pattern of the Cu@CuNi-ZnO sample. Comparative synthetic parameters. See DOI: 10.1039/c6nr02055k

  18. Electronic properties of Bilayer Fullerene onions

    NASA Astrophysics Data System (ADS)

    Pincak, R.; Shunaev, V. V.; Smotlacha, J.; Slepchenkov, M. M.; Glukhova, O. E.

    2017-10-01

    The HOMO-LUMO gaps of the bilayer fullerene onions were investigated. For this purpose, the HOMO and LUMO energies were calculated for the isolated fullerenes using the parametrization of the tight binding method with the Harrison-Goodwin modification. Next, the difference of the Fermi levels of the outer and inner shell was calculated by considering the hybridization of the orbitals on the base of the geometric parameters. The results were obtained by the combination of these calculations.

  19. Smart Core-Shell Nanowire Architectures for Multifunctional Nanoscale Devices

    DTIC Science & Technology

    2014-02-16

    Andrew R. Akbashev, Peter K. Davies, Jonathan E. Spanier, Andrew M. Rappe. Perovskite oxides for visible- light -absorbing ferroelectric and...without loss of polar character. Shown for a single phase solid solution ferroelectric oxide perovskite (K,Ba),(Ni,Nb)O_(3-delta), this material...exhibits a compositionally tunable and direct band gap in the range of 1.1 – 3.8 eV, with potential for novel nonlinear light -matter applications in addition

  20. Shape-assisted body reorientation enhances trafficability through cluttered terrain

    NASA Astrophysics Data System (ADS)

    Li, Chen; Pullin, Andrew; Haldane, Duncan; Fearing, Ronald; Full, Robert

    2014-11-01

    Many birds and fishes have slender, streamlined bodies that reduce fluid dynamic drag and allow fast and efficient locomotion. Similarly, numerous terrestrial animals run through cluttered terrain where 3-D, multi-component obstacles like grass, bushes, trees, walls, doors, and pillars also resist motion, but it is unknown whether their body shape plays a major role. Here, we challenged discoid cockroaches that possess a rounded, thin, nearly ellipsoidal body to run through tall, narrowly spaced, grass-like beams. The animals primarily rolled their body to the side to maneuver through the obstacle gaps. Reduction of body roundness by artificial shells inhibited this side roll maneuver, resulting in a lower traversal probability and a longer traversal time (P < 0.001, ANOVA). Inspired by this discovery, we added a cockroach-like, rounded exoskeleton shell to a legged robot of a nearly cuboidal body. The rounded shell enabled the robot to use passive side rolling to maneuver through beams. To explain the mechanism, we developed a simple physics model to construct an energy landscape of the body-terrain interaction, which allowed estimation of body forces and torques exerted by the beams. Our model revealed that, by passive interaction with the terrain, a rounded body (ellipsoid) rolled more easily than an angular body (cuboid) to access energy valleys between energy barriers caused by obstacles. Our study is the first to demonstrate that a terradynamically ``streamlined'' shape can reduce terrain resistance and enhance trafficability by assisting body reorientation.

  1. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    NASA Astrophysics Data System (ADS)

    Jiang, Nina

    Gold nanostructures have been received intense and growing attention due to their unique properties associated with localized surface plasmon resonance (LSPR). The frequency and strength of the LSPR are highly dependent on the dielectric properties of the surrounding environment around gold nanostructures. Such dependence offers the essential basis for the achievement of plasmonic switching and sensing. While the plasmonic response of gold nanostructures is tuned by changing their dielectric environment, the external stimuli inducing the changes in the dielectric environment will be read out through the plasmonic response of gold nanostructures. As a consequence, plasmonic sensors and switches can be engineered by integrating active media that can respond to external stimuli with gold nanostructures. In this thesis research, I have achieved the coating of polyaniline (PANI) ' a conductive polymer, on gold nanostructures, and exploited the application of the core/shell nanostructures in plasmonic switching and sensing. Large modulation of the longitudinal plasmon resonance of single gold nanorods is achieved by coating PANI shell onto gold nanorods to produce colloidal plasmonic switches. The dielectric properties of PANI shell can be tuned by changing the proton-doping levels, which allows for the modulation of the plasmonic response of gold nanorods. The coated nanorods are sparsely housed in a simple microfluidic chamber. HCl and NaOH solutions are alternately pumped through the chamber for the realization of proton doping and dedoping. The plasmonic switching behavior is examined by monitoring the single-particle scattering spectra under the proton-doped and dedoped state of PANI. The coated nanorods exhibit a remarkable switching performance, with the modulation depth and scattering peak shift reaching 10 dB and 100 nm, respectively. Electrodynamic simulations are employed to confirm the plasmon switching behavior. I have further investigated the modulation of a macroscale array of PANI-coated gold nanorods immobilized on glass slides, whose performance is as good as that of the individual PANI-coated gold nanorods. With much smaller amounts of materials, my core/shell nanorod arrays show peak extinction values and maximal modulation depths that are comparable to those of PANI films with micrometer-scale thicknesses. Switching coupled surface plasmon relative to uncoupled one affords the possibility to achieve the modulation over a wide spectral band and with wealthy plasmonic responses. Thus, I have studied the active control of plasmon coupling in homodimers and homotrimers of PANI-coated gold nanospheres (PGNSs). The dimers and trimers are obtained by reducing the surfactant concentration in the polymerization process of PANI. The reversible proton-doping of PANI enables the control of plasmon coupling to succeed. When the plasmon coupling of the dimers is switched, the wavelength shift of the strongest scattering peak shows an exponential increase with the decrease of the interparticle gap distance. A giant wavelength shift of 231 nm is observed for the dimer with a shell thickness of 10 nm and a gap distance of 0.5 nm. Electrodynamic calculations ascertain that the wavelength shift of the strongest scattering peak originates from the tuning of the dipolar bonding plasmon resonance mode in the dimers. The quadrupolar bonding plasmon resonance mode is turned on and off by switching the doped and undoped state of the dimers with gap distances of less than 3 nm. The active tuning of plasmon coupling is further demonstrated with the trimers of PGNSs, which is sensitive to their configurations. In the triangular configuration, larger vertex angles lead to larger wavelength shifts for the plasmonic tuning. Another strategy for controlling the dielectric properties of PANI shell around gold nanostructures is to change its oxidation level. The variation of the oxidation state of PANI leads to the plasmonic peak wavelength shift. Based on this principle, I have fabricated (gold nanosphere core)/(oxidized PANI shell) plasmonic sensors. The sensors have great potential for sensing chemical and biological molecules with reducibility. By using ascorbic acid (AA) as a target analyte, the plasmonic sensor presents high sensing capability. The limit of detection is 0.5 muM, and the linear response range is from 0.5 muM to 10 muM. The limit of detection for my plasmonic sensor is lower than the lowest limit for AA sensors based on liquid chromatography, electrophoresis, and electrochemical method. The sensing performance of my plasmonic sensors is expected to be further improved by optimizing the amount of (gold nanosphere core)/(oxidized PANI shell) structures, or employing other gold nanostructures with higher refractive index sensitivities. I believe that the colloidal (metal core)/(PANI shell) nanostructures pave the way for the fabrication of high-performance, low-cost plasmonic switches as well as for the preparation of advanced, programmable chromic materials for a wide variety of applications, such as smart windows, military anti-counterfeiting and camouflage, environmental sensors and indicators. (Abstract shortened by UMI.).

  2. Gravity tectonics and seismic gaps in the mantle

    NASA Technical Reports Server (NTRS)

    Liu, H. S.

    1974-01-01

    The concept of gravity tectonics is applied to reveal the major clue as to the conditions which result in the correspondence of seismic and tectonic gaps in the mantle. An asymptotic theory is developed for the calculation of the thrust and moment when a descending lithospheric plate encounters resistance to its downward motion in the mesosphere. Dynamic analysis falls into two parts: (1) deriving equations for forces in the descending lithosphere, (2) deducing moment distribution which causes the detachment of lithosphere. For the analysis of forces a mathematical theory of shells is given. In order to determine the detachment mechanism, solutions of equations are obtained by asymptotic integration. It is found that a thrust N sub phi coupled with a moment M sub phi due to gravitational forces generated by density contrast may play a key role in the initial detachment of a piece of descending lithosphere. The results are in agreement with the observed seismic gaps beneath South America, Toga-Fiji, New Zealand and New Hebrides regions.

  3. Population and decay of a K π = 8 – two-quasineutron isomer in Pu 244

    DOE PAGES

    Hota, S. S.; Tandel, S. K.; Chowdhury, P.; ...

    2016-08-22

    Here, the decay of a K π = 8 – isomer in 244Pu and the collective band structures populating the isomer were studied using deep inelastic excitations with 47Ti and 208Pb beams, respectively. Precise measurements of M1/E2 branching ratios in the band confirm a 9/2 –[734] νⓍ7/2 +[624] ν configuration assignment for the isomer, validating the systematics of K π = 8 –, two-quasineutron isomers observed in even-Z, N = 150 isotones. These isomers around the deformed shell gap at N = 152 provide critical benchmarks for theoretical predictions of single-particle energies in this gateway region to superheavy nuclei.

  4. Population and decay of a K π = 8 – two-quasineutron isomer in Pu 244

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hota, S. S.; Tandel, S. K.; Chowdhury, P.

    Here, the decay of a K π = 8 – isomer in 244Pu and the collective band structures populating the isomer were studied using deep inelastic excitations with 47Ti and 208Pb beams, respectively. Precise measurements of M1/E2 branching ratios in the band confirm a 9/2 –[734] νⓍ7/2 +[624] ν configuration assignment for the isomer, validating the systematics of K π = 8 –, two-quasineutron isomers observed in even-Z, N = 150 isotones. These isomers around the deformed shell gap at N = 152 provide critical benchmarks for theoretical predictions of single-particle energies in this gateway region to superheavy nuclei.

  5. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.

    PubMed

    Xu, Shengyong; Tian, Mingliang; Wang, Jinguo; Xu, Jian; Redwing, Joan M; Chan, Moses H W

    2005-12-01

    We demonstrate that a high-intensity electron beam can be applied to create holes, gaps, and other patterns of atomic and nanometer dimensions on a single nanowire, to weld individual nanowires to form metal-metal or metal-semiconductor junctions, and to remove the oxide shell from a crystalline nanowire. In single-crystalline Si nanowires, the beam induces instant local vaporization and local amorphization. In metallic Au, Ag, Cu, and Sn nanowires, the beam induces rapid local surface melting and enhanced surface diffusion, in addition to local vaporization. These studies open up a novel approach for patterning and connecting nanomaterials in devices and circuits at the nanometer scale.

  6. Hierarchical Mesoporous NiO/MnO2@PANI Core-Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions.

    PubMed

    He, Junkai; Wang, Mingchao; Wang, Wenbo; Miao, Ran; Zhong, Wei; Chen, Sheng-Yu; Poges, Shannon; Jafari, Tahereh; Song, Wenqiao; Liu, Jiachen; Suib, Steven L

    2017-12-13

    We report on the new facile synthesis of mesoporous NiO/MnO 2 in one step by modifying inverse micelle templated UCT (University of Connecticut) methods. The catalyst shows excellent electrocatalytic activity and stability for both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media after further coating with polyaniline (PANI). For electrochemical performance, the optimized catalyst exhibits a potential gap, ΔE, of 0.75 V to achieve a current of 10 mA cm -2 for the OER and -3 mA cm -2 for the ORR in 0.1 M KOH solution. Extensive characterization methods were applied to investigate the structure-property of the catalyst for correlations with activity (e.g., XRD, BET, SEM, HRTEM, FIB-TEM, XPS, TGA, and Raman). The high electrocatalytic activity of the catalyst closely relates to the good electrical conductivity of PANI, accessible mesoporous structure, high surface area, as well as the synergistic effect of the specific core-shell structure. This work opens a new avenue for the rational design of core-shell structure catalysts for energy conversion and storage applications.

  7. Structural fluctuation governed dynamic diradical character in pentacene.

    PubMed

    Yang, Hongfang; Chen, Mengzhen; Song, Xinyu; Bu, Yuxiang

    2015-06-07

    We unravel intriguing dynamical diradical behavior governed by structural fluctuation in pentacene using ab initio molecular dynamics simulation. In contrast to static equilibrium configuration of pentacene with a closed-shell ground state without diradical character, due to structural fluctuation, some of its dynamical snapshot configurations exhibit an open-shell broken-symmetry singlet ground state with diradical character, and such diradical character presents irregular pulsing behavior in time evolution. Not all structural changes can lead to diradical character, only those involving the shortening of cross-linking C-C bonds and variations of the C-C bonds in polyacetylene chains are the main contributors. This scenario about diradicalization is distinctly different from that in long acenes. The essence is that structural distortion cooperatively raises the HOMO and lowers the LUMO, efficiently reducing the HOMO-LUMO and singlet-triplet energy gaps, which facilitate the formation of a broken-symmetry open-shell singlet state. The irregular pulsing behavior originates from the mixing of normal vibrations in pentacene. This fascinating behavior suggests the potential application of pentacene as a suitable building block in the design of new electronic devices due to its magnetism-controllability through energy induction. This work provides new insight into inherent electronic property fluctuation in acenes.

  8. Investigations on mechanism of self-healing and cavity filling in case of steel inoculated with seashell powder

    NASA Astrophysics Data System (ADS)

    Habibullah, Parvaiz; Siddiqui, Ghazala; Saleem, Yasir

    2017-05-01

    Seashells are comprised largely of a brittle ceramic material (calcite, the stuff of chalk) in the form of microscopic slates. Shells, such as the abalones, reinforced with a kind of protein mortar in efforts to evaluate on how seashells repair themselves. We have identified the protein and mechanism on how the protein mortar stretches itself into ligaments that bridge the gap, with the help of scanning electron microscope (SEM).

  9. The role of leak air in a double-wall chimney

    NASA Astrophysics Data System (ADS)

    Lichtenegger, Klaus; Hebenstreit, Babette; Pointner, Christian; Schmidl, Christoph; Höftberger, Ernst

    2015-06-01

    In modern buildings with tight shells, often room-independent air supply is required for proper operation of biomass stoves. One possibility to arrange this supply is to use a double-wall chimney with flue gas leaving through the pipe and fresh air entering through the annular gap. A one-dimensional quasi-static model based on balance equations has been developed and compared with experimental data. Inclusion of leak air is crucial for reproduction of the experimental results.

  10. Fabrication of core-shell nanostructures via silicon on insulator dewetting and germanium condensation: towards a strain tuning method for SiGe-based heterostructures in a three-dimensional geometry.

    PubMed

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Cabie, Martiane; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco

    2016-07-29

    We report on a novel method for the implementation of core-shell SiGe-based nanocrystals combining silicon on insulator dewetting in a molecular beam epitaxy reactor with an ex situ Ge condensation process. With an in situ two-step process (annealing and Ge deposition) we produce two families of islands on the same sample: Si-rich, formed during the first step and, all around them, Ge-rich formed after Ge deposition. By increasing the amount of Ge deposited on the annealed samples from 0 to 18 monolayers, the islands' shape in the Si-rich zones can be tuned from elongated and flat to more symmetric and with a larger vertical aspect ratio. At the same time, the spatial extension of the Ge-rich zones is progressively increased as well as the Ge content in the islands. Further processing by ex situ rapid thermal oxidation results in the formation of a core-shell composition profile in both Si and Ge-rich zones with atomically sharp heterointerfaces. The Ge condensation induces a Ge enrichment of the islands' shell of up to 50% while keeping a pure Si core in the Si-rich zones and a ∼25% SiGe alloy in the Ge-rich ones. The large lattice mismatch between core and shell, the absence of dislocations and the islands' monocrystalline nature render this novel class of nanostructures a promising device platform for strain-based band-gap engineering. Finally, this method can be used for the implementation of ultralarge scale meta-surfaces with dielectric Mie resonators for light manipulation at the nanoscale.

  11. Scattering amplitudes of massive Nambu-Goldstone bosons

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš; Jakobsen, Martin F.

    2018-01-01

    Massive Nambu-Goldstone (mNG) bosons are quasiparticles the gap of which is determined exactly by symmetry. They appear whenever a symmetry is broken spontaneously in the ground state of a quantum many-body system and at the same time explicitly by the system's chemical potential. In this paper, we revisit mNG bosons and show that apart from their gap symmetry also protects their scattering amplitudes. Just like for ordinary gapless Nambu-Goldstone (NG) bosons, the scattering amplitudes of mNG bosons vanish in the long-wavelength limit. Unlike for gapless NG bosons, this statement holds for any scattering process involving one or more external mNG states; there are no kinematic singularities associated with the radiation of a soft mNG boson from an on-shell initial or final state.

  12. Nuclear component horizontal seismic restraint

    DOEpatents

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  13. Investigating the large deformation of the 5 /2+ isomeric state in 73Zn: An indicator for triaxiality

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Tsunoda, Y.; Babcock, C.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Flanagan, K. T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L. K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Otsuka, T.; Papuga, J.; Sánchez, R.; Wraith, C.; Xie, L.; Yordanov, D. T.

    2018-04-01

    Recently reported nuclear spins and moments of neutron-rich Zn isotopes measured at ISOLDE-CERN [C. Wraith et al., Phys. Lett. B 771, 385 (2017), 10.1016/j.physletb.2017.05.085] show an uncommon behavior of the isomeric state in 73Zn. Additional details relating to the measurement and analysis of the Znm73 hyperfine structure are addressed here to further support its spin-parity assignment 5 /2+ and to estimate its half-life. A systematic investigation of this 5 /2+ isomer indicates that significant collectivity appears due to proton/neutron E 2 excitations across the proton Z = 28 and neutron N = 50 shell gaps. This is confirmed by the good agreement of the observed quadrupole moments with large scale Monte Carlo shell model calculations. In addition, potential energy surface calculations in combination with T plots reveal a triaxial shape for this isomeric state.

  14. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  15. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.

    PubMed

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-02

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.

  16. Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

    NASA Astrophysics Data System (ADS)

    Wraith, C.; Yang, X. F.; Xie, L.; Babcock, C.; Bieroń, J.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Filippin, L.; Garcia Ruiz, R. F.; Gins, W.; Grob, L. K.; Gaigalas, G.; Godefroid, M.; Gorges, C.; Heylen, H.; Honma, M.; Jönsson, P.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Nowacki, F.; Otsuka, T.; Papuga, J.; Sánchez, R.; Tsunoda, Y.; Yordanov, D. T.

    2017-08-01

    Collinear laser spectroscopy was performed on Zn (Z = 30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N = 33- 49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N = 50. Exactly one long-lived (>10 ms) isomeric state has been established in each 69-79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell-model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ = 1 /2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N = 43, while the progression towards 79Zn points to the stability of the Z = 28 and N = 50 shell gaps, supporting the magicity of 78Ni.

  17. An MRI Scan of the nucleus

    NASA Astrophysics Data System (ADS)

    Hoffman, Calem

    2017-09-01

    In the pursuit of a global description of nuclei, extensive experimental studies on short-lived isotopes have provided a wealth of new empirical information. Such data has been used to test theoretical concepts and in the development of innovative ideas. More directly, a novel device at Argonne National Laboratory, the HELIcal Orbit Spectrometer (HELIOS), was focused on providing detailed single-particle information on the malleability of the nuclear magic numbers. Once thought as immovable pillars in nuclear structure, the shell-gaps in nuclei defining magic numbers of nucleons are now well-known to evolve as proton-to-neutron ratios change. And, determination of the underlying components of the nuclear force driving the evolution is at the forefront of nuclear structure research. Additionally, the HELIOS device mentioned above also carries its own aura being that it is formed by a decommissioned MRI solenoid magnet. In this talk recent highlights and advancements in our description of nuclear shell evolution will be the focus along with a few sidestepping comments on the life-cycle and interplay between basic research and the applications of nuclear physics. This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357.

  18. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation.

    PubMed

    Ragupathy, S; Raghu, K; Prabu, P

    2015-03-05

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Self-powered highly enhanced broad wavelength (UV to visible) photoresponse of ZnO@ZnO1-xSx@ZnS core-shell heterostructures.

    PubMed

    Sarkar, Sanjit; Das Mahapatra, Ayon; Basak, Durga

    2018-08-01

    In the present scenario of energy crisis, it is inevitable to focus on the low powered or self-powered devices. Multi-spectral photoresponse is an additional advantage to the above feature. We have developed an efficient self-powered photodetector with broad wavelength detection range based on heterostructures of two wide band-gap materials ZnO and ZnS. More than two orders higher responsivity and 'ON/OFF' ratio has been observed in case of heterostructure sample as compared to pristine ZnO. On the basis of the controlled experimental results, it has been established that the interfacial surface engineering, can be useful to improve the visible response and a significant photovoltaic performance under visible light illumination can be achieved. Unlike the other recent reports on self-powered UV-visible photodetector, we have achieved two order higher visible response without compromising the UV photoresponse. Unprecedented broad wavelength photodetection in self-powered mode in the present study highlights the uniqueness and advantage of an interface in a core-shell heterostructure for photodetection applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The shell galaxy NGC4104 in an X-ray group

    NASA Astrophysics Data System (ADS)

    Lima Neto, G. B.; Durret, F.; Laganá, T.; Machado, R. E. G.; Martinet, N.

    2017-07-01

    Groups of galaxies are expected to collapse early in the history of the universe, in particular the so-called Fossil Groups, with a central galaxy that grows at the bottom of the gravitational potential well by cannibalizing smaller galaxies and/or by major mergers. An evidence of galactic cannibalism is the feature known as shells or ripples in early-type galaxies Shell galaxies are believed to be the result of a minor merger of a dwarf with an elliptical galaxy, resulting in a series of faint concentric ripples in surface brightness observed throughout the main stellar component. This contribution presents very deep r and g imaging of NGC 4104 - the brightest galaxy of an X-ray emitting group - obtained with MegaCam on the 3.6 m CFHT. Using both iraf/ellipse and galfit 2D image-fitting programs, we show the presence of strong shell features and an extended stellar halo around the group brightest galaxy. We have run a series of N-body simulations in order to gain insight on the dynamical process that shaped NGC 4104. Numerical modeling suggests a recent (around 5 Gyrs ago) collision occurred with a dwarf galaxy, which may have also led to a central absorption feature observed in the galaxy center. Moreover, given the magnitude gap between the first and second brightest galaxies, it seems that we are witnessing the formation of an object that falls within the fossil group classification.

  1. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ

    DOE PAGES

    Sutter, Markus; Roberts, Evan W.; Gonzalez, Raul C.; ...

    2015-11-05

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO 2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysomemore » locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. Finally, we show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.« less

  2. Simulating the Structural Response of a Preloaded Bolted Joint

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.

  3. Hybrid density functional study of band alignment in ZnO-GaN and ZnO-(Ga(1-x)Zn(x))(N(1-x)O(x))-GaN heterostructures.

    PubMed

    Wang, Zhenhai; Zhao, Mingwen; Wang, Xiaopeng; Xi, Yan; He, Xiujie; Liu, Xiangdong; Yan, Shishen

    2012-12-05

    The band alignment in ZnO-GaN and related heterostructures is crucial for uses in solar harvesting technology. Here, we report our density functional calculations of the band alignment and optical properties of ZnO-GaN and ZnO-(Ga(1-x)Zn(x))(N(1-x)O(x))-GaN heterostructures using a Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. We found that the conventional GGA functionals underestimate not only the band gap but also the band offset of these heterostructures. Using the hybrid functional calculations, we show that the (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution has a direct band gap of about 2.608 eV, in good agreement with the experimental data. More importantly, this solid solution forms type-II band alignment with the host materials. A GaN-(Ga(1-x)Zn(x))(N(1-x)O(x))-ZnO core-shell solar cell model is presented to improve the visible light absorption ability and carrier collection efficiency.

  4. Measurement of Isobaric Analogue Resonances of 47Ar with the Active-Target Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bradt, Joshua William

    While the nuclear shell model accurately describes the structure of nuclei near stability, the structure of unstable, neutron-rich nuclei is still an area of active research. One region of interest is the set of nuclei near N=28. The shell model suggests that these nuclei should be approximately spherical due to the shell gap predicted by their magic number of neutrons; however, experiments have shown that the nuclei in this region rapidly become deformed as protons are removed from the spherical 48Ca. This makes 46Ar a particularly interesting system as it lies in a transition region between 48Ca and lighter isotones that are known to be deformed. An experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) to measure resonant proton scattering on 46Ar. The resonances observed in this reaction correspond to unbound levels in the 47K intermediate state nucleus which are isobaric analogues of states in the 47Ar nucleus. By measuring the spectroscopic factors of these states in 47Ar, we gain information about the single-particle structure of this system, which is directly related to the size of the N=28 shell gap. Four resonances were observed: one corresponding to the ground state in 47Ar, one corresponding its first excited 1/2- state, and two corresponding to 1/2+ states in either 47Ar or the intermediate state nucleus. However, only a limited amount of information about these states could be recovered due to the low experimental statistics and limited angular resolution caused by pileup rejection and the inability to accurately reconstruct the beam particle track. In addition to the nuclear physics motivations, this experiment served as the radioactive beam commissioning for the Active-Target Time Projection Chamber (AT-TPC). The AT-TPC is a new gas-filled charged particle detector built at the NSCL to measure low-energy radioactive beams from the ReA3 facility. Since the gas inside the detector serves as both the tracking medium and the scattering target, reactions are measured over a continuous range of energies with near-4π solid angle coverage. This experiment demonstrated that tracks recorded by the AT-TPC can be reconstructed to a good resolution, and it established the feasibility of performing similar experiments with this detector in the future.

  5. A study of methods of prediction and measurement of the transmission sound through the walls of light aircraft

    NASA Technical Reports Server (NTRS)

    Forssen, B.; Wang, Y. S.; Crocker, M. J.

    1981-01-01

    Several aspects were studied. The SEA theory was used to develop a theoretical model to predict the transmission loss through an aircraft window. This work mainly consisted of the writing of two computer programs. One program predicts the sound transmission through a plexiglass window (the case of a single partition). The other program applies to the case of a plexiglass window window with a window shade added (the case of a double partition with an air gap). The sound transmission through a structure was measured in experimental studies using several different methods in order that the accuracy and complexity of all the methods could be compared. Also, the measurements were conducted on the simple model of a fuselage (a cylindrical shell), on a real aircraft fuselage, and on stiffened panels.

  6. A study of methods of prediction and measurement of the transmission sound through the walls of light aircraft

    NASA Astrophysics Data System (ADS)

    Forssen, B.; Wang, Y. S.; Crocker, M. J.

    1981-12-01

    Several aspects were studied. The SEA theory was used to develop a theoretical model to predict the transmission loss through an aircraft window. This work mainly consisted of the writing of two computer programs. One program predicts the sound transmission through a plexiglass window (the case of a single partition). The other program applies to the case of a plexiglass window window with a window shade added (the case of a double partition with an air gap). The sound transmission through a structure was measured in experimental studies using several different methods in order that the accuracy and complexity of all the methods could be compared. Also, the measurements were conducted on the simple model of a fuselage (a cylindrical shell), on a real aircraft fuselage, and on stiffened panels.

  7. Adaptation from restricted geometries: the shell inclination of terrestrial gastropods.

    PubMed

    Okajima, Ryoko; Chiba, Satoshi

    2013-02-01

    The adaptations that occur for support and protection can be studied with regard to the optimal structure that balances these objectives with any imposed constraints. The shell inclination of terrestrial gastropods is an appropriate model to address this problem. In this study, we examined how gastropods improve shell angles to well-balanced ones from geometrically constrained shapes. Our geometric analysis and physical analysis showed that constantly coiled shells are constrained from adopting a well-balanced angle; the shell angle of such basic shells tends to increase as the spire index (shell height/width) increases, although the optimum angle for stability is 90° for flat shells and 0° for tall shells. Furthermore, we estimated the influences of the geometric rule and the functional demands on actual shells by measuring the shell angles of both resting and active snails. We found that terrestrial gastropods have shell angles that are suited for balance. The growth lines of the shells indicated that this adaptation depends on the deflection of the last whorl: the apertures of flat shells are deflected downward, whereas those of tall shells are deflected upward. Our observations of active snails demonstrated that the animals hold their shells at better balanced angles than inactive snails. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  8. Archeological and Historic Cultural Resources Inventory for a Proposed Flood Control Project at Grafton, Walsh County, North Dakota.

    DTIC Science & Technology

    1983-10-01

    possibly Midland (Folsom Complex) , and a var iet- f point types such as the Alberta, Plainview, Scotts Bluff, Eden Valley anj Hell Gap ( Plano Complex). A...Red River Valley near Glyndon, Minnesota (south and slightly east of Grafton) (Michlovic 1979). An apparently early type point of the Plano Complex... incised thunderbird designs and/or raised lizzards or salamanders; welk shell (marine snail) masks/gorgets; "cigar holder-shaped" tubular pipes; and

  9. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.

  10. Influence of nesting shell size on brightness longevity and resistance to ultrasound-induced dissolution during enhanced B-mode contrast imaging.

    PubMed

    Wallace, N; Dicker, S; Lewin, P; Wrenn, S P

    2014-12-01

    This study aims to bridge the gap between transport mechanisms of an improved ultrasound contrast agent (UCA) and its resulting behavior in a clinical imaging study. Phospholipid-shelled microbubbles nested within the aqueous core of a polymer microcapsule are examined for their use and feasibility as an improved UCA. The nested formulation provides contrast comparable to traditional formulations, specifically an SF6 microbubble coated by a DSPC PEG-3000 monolayer, with the advantage that contrast persists at least nine times longer in a mock clinical, in vitro setting. The effectiveness of the sample was measured using a contrast ratio in units of decibels (dB) which compares the brightness of the nested microbubbles to a reference value of a phantom tissue mimic. During a 40min imaging study, six nesting formulations with average outer capsule diameters of 1.95, 2.53, 5.55, 9.95, 14.95, and 20.51μm reached final contrast ratio values of 0.25, 2.35, 3.68, 4.51, 5.93, and 8.00dB, respectively. The starting contrast ratio in each case was approximately 8dB and accounts for the brightness attributed to the nesting shell. As compared with empty microcapsules (no microbubbles nested within), enhancement of the initial contrast ratio increased systematically with decreasing microcapsule size. The time required to reach a steady state in the temporal contrast ratio profile also varied with microcapsule diameter and was found to be 420s for each of the four smallest shell diameters and 210s and 150s, respectively, for the largest two shell diameters. All nested formulations were longer-lived and gave higher final contrast ratios than a control sample comprising un-nested, but otherwise equivalent, microbubbles. Specifically, the contrast ratio of the un-nested microbubbles decreased to a negative value after 4min of continuous ultrasound exposure with complete disappearance of the microbubbles after 15min whereas all nested formulations maintained positive contrast ratio values for the duration of the 40min trial. The results are consistent with two distinct stages of gas transport: in the first stage, passive diffusion occurs under ambient conditions across the microbubble monolayer within the first few minutes after formulation until the aqueous interior of the microcapsule is saturated with gas; in the second stage ultrasound drives additional gas dissolution even further due to pressure modulation. It is important to understand the chemistry and transport mechanisms of this contrast agent under the influence of ultrasound to attain better perspicacity for enhanced applications in imaging. Results from this study will facilitate future preclinical studies and clinical applications of nested microbubbles for therapeutic and diagnostic imaging. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.

    PubMed

    Nie, Kui-Ying; Li, Jing; Chen, Xuanhu; Xu, Yang; Tu, Xuecou; Ren, Fang-Fang; Du, Qingguo; Fu, Lan; Kang, Lin; Tang, Kun; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong

    2017-08-08

    Intermediate band solar cells (IBSCs) are conceptual and promising for next generation high efficiency photovoltaic devices, whereas, IB impact on the cell performance is still marginal due to the weak absorption of IB states. Here a rational design of a hybrid structure composed of ZnTe:O/ZnO core-shell nanowires (NWs) with Al bowtie nanoantennas is demonstrated to exhibit strong ability in tuning and enhancing broadband light response. The optimized nanowire dimensions enable absorption enhancement by engineering leaky-mode dielectric resonances. It maximizes the overlap of the absorption spectrum and the optical transitions in ZnTe:O intermediate-band (IB) photovoltaic materials, as verified by the enhanced photoresponse especially for IB states in an individual nanowire device. Furthermore, by integrating Al bowtie antennas, the enhanced exciton-plasmon coupling enables the notable improvement in the absorption of ZnTe:O/ZnO core-shell single NW, which was demonstrated by the profound enhancement of photoluminescence and resonant Raman scattering. The marriage of dielectric and metallic resonance effects in subwavelength-scale nanowires opens up new avenues for overcoming the poor absorption of sub-gap photons by IB states in ZnTe:O to achieve high-efficiency IBSCs.

  12. Axisymmetric bluff-body flow: A vortex solver for thin shells

    NASA Astrophysics Data System (ADS)

    Strickland, J. H.

    1992-05-01

    A method which is capable of solving the axisymmetric flow field over bluff bodies consisting of thin shells such as disks, partial spheres, rings, and other such shapes is presented in this report. The body may be made up of several shells whose edges are separated by gaps. The body may be moved axially according to arbitrary velocity time histories. In addition, the surfaces may possess axial and radial degrees of flexibility such that points on the surfaces may be allowed to move relative to each other according to some specified function of time. The surfaces may be either porous or impervious. The present solution technique is based on the axisymmetric vorticity transport equation. Physically, this technique simulates the generation of vorticity at body surfaces in the form of discrete ring vortices which are subsequently diffused and convected into the boundary layers and wake of the body. Relatively large numbers of vortices (1000 or more) are required to obtain good simulations. Since the direct calculation of perturbations from large numbers of ring vortices is computationally intensive, a fast multipole method was used to greatly reduce computer processing time. Several example calculations are presented for disks, disks with holes, hemispheres, and vented hemispheres. These results are compared with steady and unsteady experimental data.

  13. Isomer Shift and Magnetic Moment of the Long-Lived 1/2^{+} Isomer in _{30}^{79}Zn_{49}: Signature of Shape Coexistence near ^{78}Ni.

    PubMed

    Yang, X F; Wraith, C; Xie, L; Babcock, C; Billowes, J; Bissell, M L; Blaum, K; Cheal, B; Flanagan, K T; Garcia Ruiz, R F; Gins, W; Gorges, C; Grob, L K; Heylen, H; Kaufmann, S; Kowalska, M; Kraemer, J; Malbrunot-Ettenauer, S; Neugart, R; Neyens, G; Nörtershäuser, W; Papuga, J; Sánchez, R; Yordanov, D T

    2016-05-06

    Collinear laser spectroscopy is performed on the _{30}^{79}Zn_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in ^{79}Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I=9/2 and I=1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ (^{79}Zn)=-1.1866(10)μ_{N}, confirms the spin-parity 9/2^{+} with a νg_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ (^{79m}Zn)=-1.0180(12)μ_{N} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ⟨r_{c}^{2}⟩^{79,79m}=+0.204(6)  fm^{2}, providing first evidence of shape coexistence.

  14. Analysis of Thick Sandwich Shells with Embedded Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Smith, C.; Lumban-Tobing, F.

    1996-01-01

    The Composite Armored Vehicle (CAV) is an advanced technology demonstrator of an all-composite ground combat vehicle. The CAV upper hull is made of a tough light-weight S2-glass/epoxy laminate with embedded ceramic tiles that serve as armor. The tiles are bonded to a rubber mat with a carefully selected, highly viscoelastic adhesive. The integration of armor and structure offers an efficient combination of ballistic protection and structural performance. The analysis of this anisotropic construction, with its inherent discontinuous and periodic nature, however, poses several challenges. The present paper describes a shell-based 'element-layering' technique that properly accounts for these effects and for the concentrated transverse shear flexibility in the rubber mat. One of the most important advantages of the element-layering technique over advanced higher-order elements is that it is based on conventional elements. This advantage allows the models to be portable to other structural analysis codes, a prerequisite in a program that involves the computational facilities of several manufacturers and government laboratories. The element-layering technique was implemented into an auto-layering program that automatically transforms a conventional shell model into a multi-layered model. The effects of tile layer homogenization, tile placement patterns, and tile gap size on the analysis results are described.

  15. Measurement of lifetimes in Fe,6462,Co,6361 , and 59Mn

    NASA Astrophysics Data System (ADS)

    Klintefjord, M.; Ljungvall, J.; Görgen, A.; Lenzi, S. M.; Bello Garrote, F. L.; Blazhev, A.; Clément, E.; de France, G.; Delaroche, J.-P.; Désesquelles, P.; Dewald, A.; Doherty, D. T.; Fransen, C.; Gengelbach, A.; Georgiev, G.; Girod, M.; Goasduff, A.; Gottardo, A.; Hadyńska-KlÈ©k, K.; Jacquot, B.; Konstantinopoulos, T.; Korichi, A.; Lemasson, A.; Libert, J.; Lopez-Martens, A.; Michelagnoli, C.; Navin, A.; Nyberg, J.; Pérez-Vidal, R. M.; Roccia, S.; Sahin, E.; Stefan, I.; Stuchbery, A. E.; Zielińska, M.; Barrientos, D.; Birkenbach, B.; Boston, A.; Charles, L.; Ciemala, M.; Dudouet, J.; Eberth, J.; Gadea, A.; González, V.; Harkness-Brennan, L.; Hess, H.; Jungclaus, A.; Korten, W.; Menegazzo, R.; Mengoni, D.; Million, B.; Pullia, A.; Ralet, D.; Recchia, F.; Reiter, P.; Salsac, M. D.; Sanchis, E.; Stezowski, O.; Theisen, Ch.; Valiente Dobon, J. J.

    2017-02-01

    Lifetimes of the 41+ states in Fe,6462 and the 11 /21- states in Co,6361 and 59Mn were measured at the Grand Accélérateur National d'Ions Lourds (GANIL) facility by using the Advanced Gamma Tracking Array (AGATA) and the large-acceptance variable mode spectrometer (VAMOS++). The states were populated through multinucleon transfer reactions with a 238U beam impinging on a 64Ni target, and lifetimes in the picosecond range were measured by using the recoil distance Doppler shift method. The data show an increase of collectivity in the iron isotopes approaching N =40 . The reduction of the subshell gap between the ν 2 p1 /2 and ν 1 g9 /2 orbitals leads to an increased population of the quasi-SU(3) pair (ν 1 g9 /2,ν 2 d5 /2 ), which causes an increase in quadrupole collectivity. This is not observed for the cobalt isotopes with N <40 for which the neutron subshell gap is larger due to the repulsive monopole component of the tensor nucleon-nucleon interaction. The extracted experimental B (E 2 ) values are compared with large-scale shell-model calculations and with beyond-mean-field calculations with the Gogny D1S interaction. A good agreement between calculations and experimental values is found, and the results demonstrate in particular the spectroscopic quality of the Lenzi, Nowacki, Poves, and Sieja (LNPS) shell-model interaction.

  16. Exciton dynamics in GaAs/(Al,Ga)As core-shell nanowires with shell quantum dots

    NASA Astrophysics Data System (ADS)

    Corfdir, Pierre; Küpers, Hanno; Lewis, Ryan B.; Flissikowski, Timur; Grahn, Holger T.; Geelhaar, Lutz; Brandt, Oliver

    2016-10-01

    We study the dynamics of excitons in GaAs/(Al,Ga)As core-shell nanowires by continuous-wave and time-resolved photoluminescence and photoluminescence excitation spectroscopy. Strong Al segregation in the shell of the nanowires leads to the formation of Ga-rich inclusions acting as quantum dots. At 10 K, intense light emission associated with these shell quantum dots is observed. The average radiative lifetime of excitons confined in the shell quantum dots is 1.7 ns. We show that excitons may tunnel toward adjacent shell quantum dots and nonradiative point defects. We investigate the changes in the dynamics of charge carriers in the shell with increasing temperature, with particular emphasis on the transfer of carriers from the shell to the core of the nanowires. We finally discuss the implications of carrier localization in the (Al,Ga)As shell for fundamental studies and optoelectronic applications based on core-shell III-As nanowires.

  17. Devolatilization Studies of Oil Palm Biomass for Torrefaction Process through Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Daud, D.; Abd. Rahman, A.; Shamsuddin, A. H.

    2016-03-01

    In this work, palm oil biomass consisting of empty fruit bunch (EFB), mesocarp fibre and palm kernel shell (PKS) were chosen as raw material for torrefaction process. Torrefaction process was conducted at various temperatures of 240 °C, 270 °C and 300 °C with a residence time of 60 minutes. The morphology of the raw and torrefied biomass was then observed through Scanning Electron Microscopy (SEM) images. Also, through this experiment the correlation between the torrefaction temperatures with the volatile gases released were studied. From the observation, the morphology structure of the biomass exhibited inter-particle gaps due to the release of volatile gases and it is obviously seen more at higher temperatures. Moreover, the change of the biomass structure is influenced by the alteration of the lignocellulose biomass.

  18. Passive Gas-Gap Heat Switches for Use in Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Panek, J.; Tuttle, J. G.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We have designed, built, and tested a gas gap heat switch that works passively, without the need for a separate, thermally activated getter. This switch uses He-3 condensed as a thin film on alternating plates of copper. The switch is thermally conductive at temperatures above about 0.2 K, and is insulating if either end of the switch is below about 0.15 K. The "on" conductance (7 mW/K at 0.25K) is limited by the surface area and gap between the copper leaves, the saturated vapor pressure of the He-3, and the Kapitza boundary resistance between the He-3 and the copper. The "off" conductance is determined by the helium containment shell which physically supports the two conductive ends. We have also designed and are building passive gas gap heat switches which will passively turn off near 1 K and 4 K. For these switches we rely on the rapidly changing vapor pressure of He-4 above neon or copper substrates, respectively, when the coverage is less than one monolayer. The different binding energies of the He-4 to the neon or copper give rise to the different temperatures where the switches transition between the on and off states.

  19. Mechanical properties and structure of Haliotis discus hannai Ino and Hemifusus tuba conch shells: a comparative study

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Chen, Chen; Liang, Yan; Wang, Jian

    2010-03-01

    Haliotis discus hannai Ino (abalone shell) and Hemifusus tuba conch shell have been studied for the purpose to comparatively investigate the mechanisms by which nature designs composites. It is shown that both shells are composed of aragonite and a small amount of proteins while the conch shell shows finer microstructure but lower strength than abalone shell. It is also shown that the fresh shells exhibits better property than those after heat-treatments. It is therefore supposed that the size of inorganic substance is not a dominant factor to improve strength, while both proteins in shells and the microstructure of inorganic matter also play important roles.

  20. β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N=82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process.

    PubMed

    Lorusso, G; Nishimura, S; Xu, Z Y; Jungclaus, A; Shimizu, Y; Simpson, G S; Söderström, P-A; Watanabe, H; Browne, F; Doornenbal, P; Gey, G; Jung, H S; Meyer, B; Sumikama, T; Taprogge, J; Vajta, Zs; Wu, J; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Kajino, T; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Li, Z; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Schury, P; Shibagaki, S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yagi, A; Yoshinaga, K

    2015-05-15

    The β-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.

  1. Equatorially trapped convection in a rapidly rotating shallow shell

    NASA Astrophysics Data System (ADS)

    Miquel, Benjamin; Xie, Jin-Han; Featherstone, Nicholas; Julien, Keith; Knobloch, Edgar

    2018-05-01

    Motivated by the recent discovery of subsurface oceans on planetary moons and the interest they have generated, we explore convective flows in shallow spherical shells of dimensionless gap width ɛ2≪1 in the rapid rotation limit E ≪1 , where E is the Ekman number. We employ direct numerical simulation (DNS) of the Boussinesq equations to compute the local heat flux Nu (λ ) as a function of the latitude λ and use the results to characterize the trapping of convection at low latitudes, around the equator. We show that these results are quantitatively reproduced by an asymptotically exact nonhydrostatic equatorial β -plane convection model at a much more modest computational cost than DNS. We identify the trapping parameter β =ɛ E-1 as the key parameter that controls the vigor and latitudinal extent of convection for moderate thermal forcing when E ˜ɛ and ɛ ↓0 . This model provides a theoretical paradigm for nonlinear investigations.

  2. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.

    PubMed

    Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D

    2016-10-05

    Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.

  3. Photosensitization of InP/ZnS quantum dots for anti-cancer and anti-microbial applications

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Chibli, Hicham; Carlini, Lina

    2012-03-01

    Cadmium-free quantum dots (QDs), such as those made from InP, show similar optical properties to those containing toxic heavy metals and thus provide a promising alternative for imaging and therapeutics. The band gap of InP is similar to that of CdTe, so photosensitization of InP QDs with porphyrins or other dyes should lead to generation of reactive oxygen species, useful for targeted destruction of malignant cells or pathogenic bacteria. Here we show the results of measurements of singlet oxygen and superoxide generation from InP QDs with single and double ZnS shells compared with CdTe and CdSe/ZnS. Reactive oxygen species are measured using colorimetric or fluorescent reporter assays and spin-trap electron paramagnetic resonance (EPR) spectroscopy. We find that the size of the InP QDs and the thickness of the ZnS shell both strongly influence ROS generation. These results suggest future approaches to the design of therapeutic nanoparticles.

  4. Chemical Component and Proteomic Study of the Amphibalanus (= Balanus) amphitrite Shell

    PubMed Central

    Zhang, Gen; He, Li-sheng; Wong, Yue-Him; Xu, Ying; Zhang, Yu; Qian, Pei-yuan

    2015-01-01

    As typical biofoulers, barnacles possess hard shells and cause serious biofouling problems. In this study, we analyzed the protein component of the barnacle Amphibalanus (= Balanus) amphitrite shell using gel-based proteomics. The results revealed 52 proteins in the A. Amphitrite shell. Among them, 40 proteins were categorized into 11 functional groups based on KOG database, and the remaining 12 proteins were unknown. Besides the known proteins in barnacle shell (SIPC, carbonic anhydrase and acidic acid matrix protein), we also identified chorion peroxidase, C-type lectin-like domains, serine proteases and proteinase inhibitor proteins in the A. Amphitrite shell. The sequences of these proteins were characterized and their potential functions were discussed. Histology and DAPI staining revealed living cells in the shell, which might secrete the shell proteins identified in this study. PMID:26222041

  5. Morphological analysis of the Chinese Cipangopaludina species (Gastropoda; Caenogastropoda: Viviparidae).

    PubMed

    Lu, Hong-Fa; Du, Li-Na; Li, Zhi-Qiang; Chen, Xiao-Yong; Yang, Jun-Xing

    2014-11-18

    Viviparidae are widely distributed around the globe, but there are considerable gaps in the taxonomic record. To date, 18 species of the viviparid genus Cipangopaludina have been recorded in China, but there is substantial disagreement on the validity of this taxonomy. In this study, we described the shell and internal traits of these species to better discuss the validity of related species. We found that C. ampulliformis is synonym of C. lecythis, and C. wingatei is synonym of C. chinensis,while C. ampullacea and C. fluminalis are subspecies of C. lecythis and C. chinensis, respectively. C. dianchiensis should be paled in the genus Margarya, while C. menglaensis and C. yunnanensisbelong to genus Mekongia. Totally, this leaves 11 species and 2 subspecies recorded in China. Based on whether these specimens' spiral whorl depth was longer than aperture depth, these species or subspecies can be further divided into two groups, viz. chinensis group and cathayensis group, which can be determined from one another via the ratio of spiral depth and aperture depth, vas deferens and number of secondary branches of vas deferens. Additionally, Principal Component Analysis indicated that body whorl depth, shell width, aperture width and aperture length were main variables during species of Cipangopaludina. A key to all valid Chinese Cipangopaludina specieswere given.

  6. Morphological analysis of the Chinese Cipangopaludina species (Gastropoda; Caenogastropoda: Viviparidae)

    PubMed Central

    LU, Hong-Fa; DU, Li-Na; LI, Zhi-Qiang; CHEN, Xiao-Yong; YANG, Jun-Xing

    2014-01-01

    Viviparidae are widely distributed around the globe, but there are considerable gaps in the taxonomic record. To date, 18 species of the viviparid genus Cipangopaludina have been recorded in China, but there is substantial disagreement on the validity of this taxonomy. In this study, we described the shell and internal traits of these species to better discuss the validity of related species. We found that C. ampulliformis is synonym of C. lecythis, and C. wingatei is synonym of C. chinensis, while C. ampullacea and C. fluminalis are subspecies of C. lecythis and C. chinensis, respectively. C. dianchiensis should be paled in the genus Margarya, while C. menglaensis and C. yunnanensis belong to genus Mekongia. Totally, this leaves 11 species and 2 subspecies recorded in China. Based on whether these specimens’ spiral whorl depth was longer than aperture depth, these species or subspecies can be further divided into two groups, viz. chinensis group and cathayensis group, which can be determined from one another via the ratio of spiral depth and aperture depth, vas deferens and number of secondary branches of vas deferens. Additionally, Principal Component Analysis indicated that body whorl depth, shell width, aperture width and aperture length were main variables during species of Cipangopaludina. A key to all valid Chinese Cipangopaludina species were given. PMID:25465086

  7. Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.

    PubMed

    Caccamo, Lorenzo; Hartmann, Jana; Fàbrega, Cristian; Estradé, Sonia; Lilienkamp, Gerhard; Prades, Joan Daniel; Hoffmann, Martin W G; Ledig, Johannes; Wagner, Alexander; Wang, Xue; Lopez-Conesa, Lluis; Peiró, Francesca; Rebled, José Manuel; Wehmann, Hergo-Heinrich; Daum, Winfried; Shen, Hao; Waag, Andreas

    2014-02-26

    3D single-crystalline, well-aligned GaN-InGaN rod arrays are fabricated by selective area growth (SAG) metal-organic vapor phase epitaxy (MOVPE) for visible-light water splitting. Epitaxial InGaN layer grows successfully on 3D GaN rods to minimize defects within the GaN-InGaN heterojunctions. The indium concentration (In ∼ 0.30 ± 0.04) is rather homogeneous in InGaN shells along the radial and longitudinal directions. The growing strategy allows us to tune the band gap of the InGaN layer in order to match the visible absorption with the solar spectrum as well as to align the semiconductor bands close to the water redox potentials to achieve high efficiency. The relation between structure, surface, and photoelectrochemical property of GaN-InGaN is explored by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), current-voltage, and open circuit potential (OCP) measurements. The epitaxial GaN-InGaN interface, pseudomorphic InGaN thin films, homogeneous and suitable indium concentration and defined surface orientation are properties demanded for systematic study and efficient photoanodes based on III-nitride heterojunctions.

  8. Perylene Bisimide Radicals and Biradicals: Synthesis and Molecular Properties.

    PubMed

    Schmidt, David; Son, Minjung; Lim, Jong Min; Lin, Mei-Jin; Krummenacher, Ivo; Braunschweig, Holger; Kim, Dongho; Würthner, Frank

    2015-11-16

    Unprecedented neutral perylene-3,4:9,10-tetracarboxylic acid bisimide (PBI) radicals and biradicals were synthesized by facile chemical oxidation of 4-hydroxyaryl-substituted PBIs. Subsequent characterization by optical and magnetic spectroscopic techniques, as well as quantum chemical calculations, revealed an open-shell singlet biradical ground state for the PBI biradical OS-2(..) (〈s(2)〉=1.2191) with a relatively small singlet-triplet energy gap of 0.041 eV and a large singlet biradical character of y=0.72. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Indium phosphide nanowires and their applications in optoelectronic devices.

    PubMed

    Zafar, Fateen; Iqbal, Azhar

    2016-03-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II-VI and I-VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III-V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core-shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed.

  10. Mold Flux Crystallization and Mold Thermal Behavior

    NASA Astrophysics Data System (ADS)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  11. Precision Mass Measurements of Cd-131129 and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process

    NASA Astrophysics Data System (ADS)

    Atanasov, D.; Ascher, P.; Blaum, K.; Cakirli, R. B.; Cocolios, T. E.; George, S.; Goriely, S.; Herfurth, F.; Janka, H.-T.; Just, O.; Kowalska, M.; Kreim, S.; Kisler, D.; Litvinov, Yu. A.; Lunney, D.; Manea, V.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2015-12-01

    Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning-trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N =82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A =128 - 132 region and a reduction of the uncertainties from the precision mass input data.

  12. Design and fabrication of a boron reinforced intertank skirt

    NASA Technical Reports Server (NTRS)

    Henshaw, J.; Roy, P. A.; Pylypetz, P.

    1974-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiency of a boron reinforced shell, where the medium of reinforcement consists of hollow aluminum extrusions infiltrated with boron epoxy. Studies were completed for the design of a one-half scale minimum weight shell using boron reinforced stringers and boron reinforced rings. Parametric and iterative studies were completed for the design of minimum weight stringers, rings, shells without rings and shells with rings. Computer studies were completed for the final evaluation of a minimum weight shell using highly buckled minimum gage skin. The detail design is described of a practical minimum weight test shell which demonstrates a weight savings of 30% as compared to an all aluminum longitudinal stiffened shell. Sub-element tests were conducted on representative segments of the compression surface at maximum stress and also on segments of the load transfer joint. A 10 foot long, 77 inch diameter shell was fabricated from the design and delivered for further testing.

  13. InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency

    NASA Astrophysics Data System (ADS)

    Greco, Tonino; Ippen, Christian; Wedel, Armin

    2012-04-01

    Semiconductor quantum dots (QDs) exhibit unique optical properties like size-tunable emission color, narrow emission peak, and high luminescence efficiency. QDs are therefore investigated towards their application in light-emitting devices (QLEDs), solar cells, and for bio-imaging purposes. In most cases QDs made from cadmium compounds like CdS, CdSe or CdTe are studied because of their facile and reliable synthesis. However, due to the toxicity of Cd compounds and the corresponding regulation (e.g. RoHS directive in Europe) these materials are not feasible for customer applications. Indium phosphide is considered to be the most promising alternative because of the similar band gap (InP 1.35 eV, CdSe 1.73 eV). InP QDs do not yet reach the quality of CdSe QDs, especially in terms of photoluminescence quantum yield and peak width. Typically, QDs are coated with another semiconductor material of wider band gap, often ZnS, to passivate surface defects and thus improve luminescence efficiency. Concerning CdSe QDs, multishell coatings like CdSe/CdS/ZnS or CdSe/ZnSe/ZnS have been shown to be advantageous due to the improved compatibility of lattice constants. Here we present a method to improve the luminescence efficiency of InP QDs by coating a ZnSe/ZnS multishell instead of a ZnS single shell. ZnSe exhibits an intermediate lattice constant of 5.67 Å between those of InP (5.87 Å) and ZnS (5.41 Å) and thus acts as a wetting layer. As a result, InP/ZnSe/ZnS is introduced as a new core-shell quantum dot material which shows improved photoluminescence quantum yield (up to 75 %) compared to the conventional InP/ZnS system.

  14. Finite Element Analysis of Geodesically Stiffened Cylindrical Composite Shells Using a Layerwise Theory

    NASA Technical Reports Server (NTRS)

    Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.

    1996-01-01

    Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.

  15. A divalent rare earth oxide semiconductor: Yttrium monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminaga, Kenichi; Sei, Ryosuke; Department of Chemistry, Tohoku University, Sendai 980-8578

    Rare earth oxides are usually widegap insulators like Y{sub 2}O{sub 3} with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y{sup 2+} (4d{sup 1}) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y{sub 2}O{sub 3}, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10{sup −1} to 10{sup 3} Ω{sup −1 }cm{sup −1} was attributed to the presence of oxygen vacancies serving as electron donor.more » Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.« less

  16. Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2006-01-01

    Bearing-load response for a pin-loaded hole is studied within the context of two-dimensional finite element analyses. Pin-loaded-hole configurations are representative of mechanically connected structures, such as a stiffener fastened to a rib of an isogrid panel, that are idealized as part of a larger structural component. Within this context, the larger structural component may be idealized as a two-dimensional shell finite element model to identify load paths and high stress regions. Finite element modeling and analysis aspects of a pin-loaded hole are considered in the present paper including the use of linear and nonlinear springs to simulate the pin-bearing contact condition. Simulating pin-connected structures within a two-dimensional finite element analysis model using nonlinear spring or gap elements provides an effective way for accurate prediction of the local effective stress state and peak forces.

  17. Angle-resolved photoemission observation of Mn-pnictide hybridization and negligible band structure renormalization in BaMn 2 As 2 and BaMn 2 Sb 2

    DOE PAGES

    Zhang, W. -L.; Richard, P.; van Roekeghem, A.; ...

    2016-10-31

    We performed an angle-resolved photoemission spectroscopy study of BaMn 2As 2 and BaMn 2Sb 2, which are isostructural to the parent compound BaFe 2As 2 of the 122 family of ferropnictide superconductors. We show the existence of a strongly k z-dependent band gap with a minimum at the Brillouin zone center, in agreement with their semiconducting properties. Despite the half filling of the electronic 3d shell, we show that the band structure in these materials is almost not renormalized from the Kohn-Sham bands of density functional theory. Finally, our photon-energy-dependent study provides evidence for Mn-pnictide hybridization, which may play amore » role in tuning the electronic correlations in these compounds.« less

  18. Single molecule conductivity: the role of junction-orbital degeneracy in the artificially high currents predicted by ab initio approaches.

    PubMed

    Solomon, Gemma C; Reimers, Jeffrey R; Hush, Noel S

    2004-10-08

    A priori evaluations, using Hartree-Fock self-consistent-field (SCF) theory or density-functional theory (DFT), of the current passing between two electrodes through a single bridging molecule result in predicted conductivities that may be up to one to two orders of magnitude larger than observed ones. We demonstrate that this is, in part, often due to the improper application of the computational methods. Conductivity is shown to arise from tunneling between junction states of the electrodes through the molecule; these states are inherently either quasi two-fold or four-fold degenerate and always comprise the (highest occupied molecular orbital) HOMO band at the Fermi energy of the system. Frequently, in previous cluster based molecular conduction calculations, closed-shell SCF or Kohn-Sham DFT methods have been applied to systems that we demonstrate to be intrinsically open shell in nature. Such calculations are shown to induce artificial HOMO-LUMO (LUMO-lowest unoccupied molecular orbital) band splittings that Landauer-based formalisms for steady-state conduction interpret as arising from extremely rapid through-molecule tunneling at the Fermi energy, hence, overestimating the low-voltage conductivity. It is demonstrated that these shortcomings can be eliminated, dramatically reducing calculated current magnitudes, through the alternate use of electronic-structure calculations based on the spin-restricted open-shell formalism and related multiconfigurational SCF of DFT approaches. Further, we demonstrate that most anomalies arising in DFT implementations arise through the use of hybrid density functionals such as B3LYP. While the enhanced band-gap properties of these functionals have made them the defacto standard in molecular conductivity calculations, we demonstrate that it also makes them particularly susceptible to open-shell anomalies.

  19. Coaxial group III-nitride nanowire photovoltaics.

    PubMed

    Dong, Yajie; Tian, Bozhi; Kempa, Thomas J; Lieber, Charles M

    2009-05-01

    Coaxial core/shell nanowires represent an important class of nanoscale building blocks with substantial potential for exploring new concepts and materials for solar energy conversion. Here, we report the first experimental realization of coaxial group III-nitride nanowire photovoltaic (PV) devices, n-GaN/i-In(x)Ga(1-x)N/p-GaN, where variation of indium mole fraction is used to control the active layer band gap and hence light absorption. Current-voltage data reveal clear diode characteristics with ideality factors from 3.9 to 5.6. Electroluminescence measurements demonstrate tunable emission from 556 to 371 nm and thus confirm band gap variations in the In(x)Ga(1-x)N active layer from 2.25 to 3.34 eV as In composition is varied. Simulated one-sun AM 1.5G illumination yielded open-circuit voltages (V(oc)) from 1.0 to 2.0 V and short-circuit current densities (J(sc)) from 0.39 to 0.059 mA/cm(2) as In composition is decreased from 0.27 to 0 and a maximum efficiency of approximately 0.19%. The n-GaN/i-In(x)Ga(1-x)N/p-GaN nanowire devices are highly robust and exhibit enhanced efficiencies for concentrated solar light illuminations as well as single nanowire J(sc) values as high as 390 mA/cm(2) under intense short-wavelength illumination. The ability to rationally tune the structure and composition of these core/shell III-nitride nanowires will make them a powerful platform for exploring nanoenabled PVs in the future.

  20. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Guo, S. C.; Chu, M. S.

    2002-11-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω-2≪1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX.

  1. Coaxial Lithography

    NASA Astrophysics Data System (ADS)

    Ozel, Tuncay

    The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowires that can be realized and studied in the laboratory. This thesis focuses on bridging templated electrochemical synthesis and lithography for expanding current synthetic capabilities with respect to materials generality and the ability to tailor two-dimensional growth in the formation of core-shell structures for the rational design and preparation of nanowires with very complex architectures that cannot be made by any other techniques. Chapter 1 introduces plasmonics, templated electrochemical synthesis, and on-wire lithography concepts and their significances within chemistry and materials science. Chapter 2 details a powerful technique for the deposition of metals and semiconductors with nanometer resolution in segment and gap lengths using on-wire lithography, which serves as a new platform to explore plasmon-exciton interactions in the form of long-range optical nanoscale rulers. Chapter 3 highlights an approach for the electrochemical synthesis of solution dispersible core-shell polymeric and inorganic semiconductor nanowires with metallic leads. A photodetector based on a single core-shell semiconductor nanowire is presented to demonstrate the functionality of the nanowires produced using this approach. Chapter 4 describes a new materials general technique, termed coaxial lithography (COAL), bridging templated electrochemical synthesis and lithography for generating coaxial nanowires in a parallel fashion with sub-10 nanometer resolution in both axial and radial dimensions. Combinations of coaxial nanowires composed of metals, metal oxides, metal chalcogenides, conjugated polymers, and a core/shell semiconductor nanowire with an embedded plasmonic nanoring are presented to demonstrate the possibilities afforded by COAL. Chapter 5 addresses the use of COAL for the synthesis of solution dispersible metal nanorings and nanotubes with exceptional architectural tailorability of inner diameter, outer diameter, and length leading to precise spectral control over the resulting plasmonic fields ranging from visible to the near-IR. Chapter 6 is an outlook on templated electrochemical synthesis using coaxial lithography and highlights a few promising applications from nanoparticle assembly to light-matter interactions.

  2. Effects of alga polysaccharide capsule shells on in-vivo bioavailability and disintegration

    NASA Astrophysics Data System (ADS)

    Li, Ting; Guo, Shuju; Ma, Lin; Yuan, Yi; Han, Lijun

    2012-01-01

    Gelatin has been used in hard capsule shells for more than a century, and some shortcomings have appeared, such as high moisture content and risk of transmitting diseases of animal origin to people. Based on available studies regarding gelatin and vegetable shells, we developed a new type of algal polysaccharide capsule (APPC) shells. To test whether our products can replace commercial gelatin shells, we measured in-vivo plasma concentration of 12 selected volunteers with a model drug, ibuprofen, using high performance liquid chromatography (HPLC), by calculating the relative bioavailability of APPC and Qualicaps® referenced to gelatin capsules and assessing bioequivalence of the three types of shells, and calculated pharmacokinetic parameters with the software DAS 2.0 (China). The results show that APPC shells possess bioequivalence with Qualicaps® and gelatin shells. Moreover, the disintegration behavior of four types of shells (APPC, Vegcaps®, Qualicaps® and gelatin shells) with the content of lactose and radioactive element (99mTc) was observed via gamma-scintigraphic images. The bioavailability and gamma-scintigraphic studies showed that APPC was not statistically different from other vegetable and gelatin capsule shells with respect to in-vivo behavior. Hence, it can be concluded that APPCs are exchangeable with other vegetable and gelatin shells.

  3. Biometric studies on the bivalves Astarte elliptica, A. borealis and A. montagui in Kiel Bay (Western Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Schaefer, R.; Trutschler, K.; Rumohr, H.

    1985-09-01

    The three Astarte species were studied in June 1983 at two sites in Kiel Bay, “Süderfahrt” and “Schleimünde”, at 20 m depth. Shell length to live wet weight correlations are given for all three species; for A. elliptica also shell-free dry weight, shell dry weight, ash-free dry weight of the soft body and ash-free dry weight of the shell are recorded as functions of the shell length. In the logarithmic length/weight regression analysis the coefficients of slope for A. elliptica and A. borealis are 3. For A. montagui, that coefficient is significantly greater than 3. Weight conversion factors, calculated for A. elliptica, revealed a mean weight composition of 31.5 % water in the mantle cavity and tissue water, 64.5 % shell ash, 2.1 % organic content of shell, 1.7 % organic content of the soft body and 0.4 % ash of the soft body. An isometric growth of shell length and shell breadth is confirmed for A. borealis, while A. montagui exhibits positive allometric shell growth and changes its shape during life.

  4. Study on surface-enhanced Raman scattering efficiency of Ag core-Au shell bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Gu, Huaimin; Kang, Jian; Yuan, Xiaojuan

    2009-08-01

    In this article, the relationship between the states of Ag core-Au shell (core-shell) nanoparticles (NP) and the intensity of Raman scattering of analytes dissolved in the water and adsorbed on the NP was studied. The core-shell NP were synthesised by coating Au layers over Ag seeds by the method of "seed-growth". To highlight the advantage of the core-shell NP, Ag colloid and Au colloid were chosen for contrasting. The analyte that were chosen for this testing were methylene blue (MB) for the reason that MB has very strong signal in surface-enhanced Raman scattering (SERS). The SERS activity of optimalizing states of Ag and Au colloids were compared with that of core-shell NP when MB was used as analyte. In this study, sodium chloride, sodium sulfate and sodium nitrate were used as aggregating agents for Ag, Au colloids and core-shell NP, because anions have a strong influence on the SERS efficiency and the stability of colloids. The results indicate that core-shell NP can obviously enhance the SERS of MB. The aim of this study is to prove that compared with the metal colloid, the core-shell NP is a high efficiency SERS active substrate.

  5. Stratigraphy Identification with Emphasis to Shells Layer using 2-D Electrical Resistivity Method at Guar Kepah, Penang

    NASA Astrophysics Data System (ADS)

    Rosli, Najmiah; Mansor, Hafizuddin; Ismail, N. A.; Masnan, S. S. K.; Saidin, M.

    2018-04-01

    2-D electrical resistivity method was done at an archaeological site in Guar Kepah, Penang, to determine its stratigraphy with emphasis to shells layer. This study aims to guide the archaeological studies where many prehistoric findings are related to shells and also for engineering purposes as an archaeological gallery is to be built there. Results show that the area is composed of three unconsolidated soil strata where the uppermost layer is sandy-clay, followed by shells layer, and lastly sandy layer. The shells layer is undulating with similar thickness throughout the site, but thickens at the northern part of the study area. The depth of the shells layer however, is different at different parts of the site.

  6. Photonic bandgap of inverse opals prepared from core-shell spheres

    PubMed Central

    2012-01-01

    In this study, we synthesized monodispersed polystyrene (PS)-silica core-shell spheres with various shell thicknesses for the fabrication of photonic crystals. The shell thickness of the spheres was controlled by various additions of tetraethyl orthosilicate during the shell growth process. The shrinkage ratio of the inverse opal photonic crystals prepared from the core-shell spheres was significantly reduced from 14.7% to within 3%. We suspected that the improvement resulted from the confinement of silica shell to the contraction of PS space during calcination. Due to the shell effect, the inverse opals prepared from the core-shell spheres have higher filling fraction and larger wavelength of stop band maximum. PMID:22894600

  7. Study of Shell Zone Formation in Lithographic and Anodizing Quality Aluminum Alloys: Experimental and Numerical Approach

    NASA Astrophysics Data System (ADS)

    Brochu, Christine; Larouche, André; Hark, Robert

    Shell thickness is an important quality factor for lithographic and anodizing quality aluminum alloys. Increasing pressure is placed on casting plants to produce a thinner shell zone for these alloys. This study, based on plant trials and mathematical modelling highlights the most significant parameters influencing shell zone formation. Results obtained show the importance of metal temperature and distribution and mould metal level on shell zone formation. As an answer to specific plant problems, this study led to the development of improved metal distribution systems for DC casting of litho and anodizing quality alloys.

  8. Do Bone Graft and Cracking of the Sclerotic Cavity Improve Fixation of Titanium and Hydroxyapatite-coated Revision Implants in an Animal Model?

    PubMed

    Elmengaard, Brian; Baas, Joergen; Jakobsen, Thomas; Kold, Soren; Jensen, Thomas B; Bechtold, Joan E; Soballe, Kjeld

    2017-02-01

    We previously introduced a manual surgical technique that makes small perforations (cracks) through the sclerotic bone shell that typically forms during the process of aseptic loosening ("crack" revision technique). Perforating just the shell (without violating the proximal cortex) can maintain overall bone continuity while allowing marrow and vascular elements to access the implant surface. Because many revisions require bone graft to fill defects, we wanted to determine if bone graft could further increase implant fixation beyond what we have experimentally shown with the crack technique alone. Also, because both titanium (Ti6Al4V) and hydroxyapatite (HA) implant surfaces are used in revisions, we also wanted to determine their relative effectiveness in this model. We hypothesized that both (1) allografted plasma-sprayed Ti6Al4V; and (2) allografted plasma-sprayed HA-coated implants inserted with a crack revision technique have better fixation compared with a noncrack revision technique in each case. Under approval from our Institutional Animal Care and Use Committee, a female canine animal model was used to evaluate the uncemented revision technique (crack, noncrack) using paired contralateral implants while implant surface (Ti6Al4V, HA) was qualitatively compared between the two (unpaired) series. All groups received bone allograft tightly packed around the implant. This revision model includes a cylindrical implant pistoning 500 μm in a 0.75-mm gap, with polyethylene particles, for 8 weeks. This engenders a bone and tissue response representative of the metaphyseal cancellous region of an aseptically loosened component. At 8 weeks, the original implants were revised and followed for an additional 4 weeks. Mechanical fixation was assessed by load, stiffness, and energy to failure when loaded in axial pushout. Histomorphometry was used to determine the amount and location of bone and fibrous tissue in the grafted gap. The grafted crack revision improved mechanical shear strength, stiffness, and energy to failure (for Ti6Al4V 27- to 69-fold increase and HA twofold increases). The histomorphometric analysis demonstrated primarily fibrous membrane ongrowth and in the gap for the allografted Ti6Al4V noncrack revisions. For allografted HA noncrack revisions, bone ongrowth at the implant surface was observed, but fibrous tissue also was present in the inner gap. Although both Ti6Al4V and HA surfaces showed improved fixation with grafted crack revision, and Ti6Al4V achieved the highest percent gain, HA demonstrated the strongest overall fixation. The results of this study suggest that novel osteoconductive or osteoinductive coatings and bone graft substitutes or tissue-engineered constructs may further improve bone-implant fixation with the crack revision technique but require evaluation in a rigorous model such as presented here. This experimental study provides data on which to base clinical trials aimed to improve fixation of revision implants. Given the multifactorial nature of complex human revisions, such a protocoled clinical study is required to determine the clinical applicability of this approach.

  9. Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, Notodiscus hookeri.

    PubMed

    Charrier, Maryvonne; Marie, Arul; Guillaume, Damien; Bédouet, Laurent; Le Lannic, Joseph; Roiland, Claire; Berland, Sophie; Pierre, Jean-Sébastien; Le Floch, Marie; Frenot, Yves; Lebouvier, Marc

    2013-01-01

    Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region). The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell) and OS (organic shell). The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS-ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial and temporal environmental variations.

  10. Soil Calcium Availability Influences Shell Ecophenotype Formation in the Sub-Antarctic Land Snail, Notodiscus hookeri

    PubMed Central

    Charrier, Maryvonne; Marie, Arul; Guillaume, Damien; Bédouet, Laurent; Le Lannic, Joseph; Roiland, Claire; Berland, Sophie; Pierre, Jean-Sébastien; Le Floch, Marie; Frenot, Yves; Lebouvier, Marc

    2013-01-01

    Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region). The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell) and OS (organic shell). The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS- ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial and temporal environmental variations. PMID:24376821

  11. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  12. Winding trajectories of noncircular composite shells

    NASA Astrophysics Data System (ADS)

    Nikityuk, V. A.; Fedorov, V. V.

    1995-07-01

    An approach has been proposed for determination of the trajectory parameters of a layer formed by winding of continuous ribbons on a complicated surface. An algorithm has been developed for determining the geodesic trajectories of the reinforcement fiber arrangement, reinforcement angles, and geodesic deviation angles. Conditions have been formulated for positional stability of the ribbons on the surface and avoidance of gaps and overlapping between the ribbons along with restrictions to the surface form. Results are given for a calculation of the geodesic turn parameters on a fuselage surface, which is not a surface of revolution, of a light airplane.

  13. Fabrication and investigation of effect of core size in heterostructure PbS/CdS core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, D.; Hussain, A. M. P.

    2018-04-01

    PbS/CdS core/shell (CS) nanoparticles (NPs) were fabricated with three different concentrations of PbS core and CdS shell. Formation of core/shell heterostructure was confirmed from X-ray diffraction studies. The diffraction patterns exhibited formation of cubic phase and polycrystalline core/shell nanostructure. The crystalline sizes calculated from Williamson-Hall plot exhibited increase with molar concentration of precursors with decrease in strain. High resolution electron microscopy studies also confirm the formation of core/shell structure with particle size around 10 nm. A large blue-shift for PbS core compared to its bulk and small red-shift for the PbS/CdS core/shell as compared to the core is being observed in absorption spectra.

  14. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell

    PubMed Central

    Wang, Xin-xing; Bao, Lin-fei; Fan, Mei-hua; Li, Xiao-min; Wu, Chang-wen; Xia, Shu-wei

    2015-01-01

    Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment. PMID:26218932

  15. Tunability and Stability of Lead Sulfide Quantum Dots in Ferritin

    NASA Astrophysics Data System (ADS)

    Peterson, J. Ryan; Hansen, Kameron

    Quantum dot solar cells have become one of the fastest growing solar cell technologies to date, and lead sulfide has proven to be an efficient absorber. However, one of the primary concerns in dye-sensitized quantum dot solar cell development is core degradation. We have synthesized lead sulfide quantum dots inside of the spherical protein ferritin in order to protect them from photocorrosion. We have studied the band gaps of these quantum dots and found them to be widely tunable inside ferritin just as they are outside the protein shell. In addition, we have examined their stability by measuring changes in photoluminescence as they are exposed to light over minutes and hours and found that the ferritin-enclosed PbS quantum dots have significantly better resistance to photocorrosion. Brigham Young University, National Science Foundation.

  16. Intra- and inter-shell Kondo effects in carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Krychowski, Damian; Lipiński, Stanisław

    2018-01-01

    The linear response transport properties of carbon nanotube quantum dot in the strongly correlated regime are discussed. The finite-U mean field slave boson approach is used to study many-body effects. Magnetic field can rebuilt Kondo correlations, which are destroyed by the effect of spin-orbit interaction or valley mixing. Apart from the field induced revivals of SU(2) Kondo effects of different types: spin, valley or spin-valley, also more exotic phenomena appear, such as SU(3) Kondo effect. Threefold degeneracy occurs due to the effective intervalley exchange induced by short-range part of Coulomb interaction or due to the intershell mixing. In narrow gap nanotubes the full spin-orbital degeneracy might be recovered in the absence of magnetic field opening the condition for a formation of SU(4) Kondo resonance.

  17. Sonochemiluminescence observation of lipid- and polymer-shelled ultrasound contrast agents in 1.2 MHz focused ultrasound field.

    PubMed

    Qiao, Yangzi; Cao, Hua; Zhang, Shusheng; Yin, Hui; Wan, Mingxi

    2013-01-01

    Ultrasound contrast agents (UCAs) are frequently added into the focused ultrasound field as cavitation nuclei to enhance the therapeutic efficiency. Since their presence will distort the pressure field and make the process unpredictable, comprehension of their behaviors especially the active zone spatial distribution is an important part of better monitoring and using of UCAs. As shell materials can strongly alter the acoustic behavior of UCAs, two different shells coated UCAs, lipid-shelled and polymer-shelled UCAs, in a 1.2 MHz focused ultrasound field were studied by the Sonochemiluminescence (SCL) method and compared. The SCL spatial distribution of lipid-shelled group differed from that of polymer-shelled group. The shell material and the character of focused ultrasound field work together to the SCL distribution, causing the lipid-shelled group to have a maximum SCL intensity in pre-focal region at lower input power than that of polymer-shelled group, and a brighter SCL intensity in post-focal region at high input power. The SCL inactive area of these two groups both increased with the input power. The general behavior of the UCAs can be studied by both the average SCL intensity and the backscatter signals. As polymer-shelled UCAs are more resistant to acoustic pressure, they had a higher destruction power and showed less reactivation than lipid-shelled ones. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Photophysical Properties of II-VI Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gong, Ke

    As it is well known, semiconductor nanocrystals (also called quantum dots, QDs) are being actively pursued for use in many different types of luminescent optical materials. These materials include the active media for luminescence downconversion in artificial lighting, lasers, luminescent solar concentrators and many other applications. Chapter 1 gives general introduction of QDs, which describe the basic physical properties and optical properties. Based on the experimental spectroscopic study, a semiquantitative method-effective mass model is employed to give theoretical prediction and guide. The following chapters will talks about several topics respectively. A predictive understanding of the radiative lifetimes is therefore a starting point for the understanding of the use of QDs for these applications. Absorption intensities and radiative lifetimes are fundamental properties of any luminescent material. Meantime, achievement of high efficiency with high working temperature and heterostructure fabrication with manipulation of lattice strain are not easy and need systematic investigation. To make accurate connections between extinction coefficients and radiative recombination rates, chapter 2 will consider three closely related aspects of the size dependent spectroscopy of II-VI QDs. First, it will consider the existing literature on cadmium selenide (CdSe) QD absorption spectra and extinction coefficients. From these results and fine structure considerations Boltzmann weighted radiative lifetimes are calculated. These lifetimes are compared to values measured on very high quality CdSe and CdSe coated with zinc selenide (ZnSe) shells. Second, analogous literature data are analyzed for cadmium telluride (CdTe) nanocrystals and compared to lifetimes measured for very high quality QDs. Furthermore, studies of the absorption and excitation spectra and measured radiative lifetimes for CdTe/CdSe Type-II core/shell QDs are reported. These results are also analyzed in terms of a Boltzmann population of exciton sublevels and calculated electron and hole wave functions. Much of the absorption data and fine structure calculations are already in the literature. These results are combined with new measurements of radiative lifetimes and electron-hole overlap calculations to produce an integrated picture of the II-VI QD spectroscopic fundamentals. Finally, we adopt recent synthetic advances to make very monodisperse zincblende CdSe/CdS quantum dots having near-unity photoluminescence quantum yields (PLQYs). Due the absence of nonradiative decay pathways, accurate values of the radiative lifetimes can be obtained from time resolved PL measurements. Radiative lifetimes can also be obtained from the Einstein relations, using the static absorption spectra and the relative thermal populations in the angular momentum sublevels. One of the inputs into these calculations is the shell thickness, and it is useful to be able to determine shell thickness from spectroscopic measurements. We use an empirically corrected effective mass model to produce a "map" of exciton wavelength as a function of core size and shell thickness. These calculations use an elastic continuum model and the known lattice and elastic constants to include the effect of lattice strain on the band gap energy. Radiative lifetimes calculated both experimentally and theoretically are checked and the size dependence is compared to previous studied Type-I, II and single component particles. However, it is not enough to just understanding these basic photophysics of absorption and emission. The emission intensities (related to QYs) also change with changes of the temperature. The temperature dependent PLs of II-VI QDs is extensively studied, but most of this work is at low temperatures. Temperatures well above ambient are of interest to lighting applications and in this regime both the reversible and irreversible loss of quantum yield (thermal quenching) are serious impediments to the implementation of QDs in commercial devices. Chapter 3 will elucidate the mechanism of static thermal quenching, in which the reduction of QYs does not affect the PL decay kinetics, on CdSe, CdTe and CdSe/ZnSe QDs as a function of particle sizes/shapes, surface composition and surface ligands. Through systematic experiments, this part of the dissertation discusses several possible mechanisms (e.g. structural, activated excited state, and electronic charging) and examines which the dominant cause for loss of QY at high temperature is. The more practical step is to develop the synthetic method of highly luminescent and stable core/shell QDs with minimum thermal quenching, which greatly enhance the energy efficiency of light emitting and photovoltaic devices. As the nonradiative Auger processed are induced by surface charging described in chapter 3, static and time-resolved fluorescence and high and low power transient absorption results on CdSe/CdS and CdSe/ZnSe core/shell particles are presented in chapter 4. Two CdS shell thicknesses were examined and all of the particles had either octadecylamine (ODA) and tributylphosphine (TBP) or just ODA ligands. The results can be understood in terms of a mechanism in which there is a thermal equilibrium between electrons being in the valence band or in chalcogenide localized surface states. Thermal promotion of a valence band electron to a surface state leaves the particle core positively charged. Photon absorption when the particle is in this state results in a positive trion, which undergoes a fast Auger recombination, making the particle nonluminescent. A lack of TBP ligands results in more empty surface orbitals and therefore shifts the equilibrium toward surface trapped electrons and hence trion formation. Low- and high-power transient absorption measurements give the trion and biexciton lifetimes and the ratio of the trion to biexciton Auger lifetimes are examined and compared to the degeneracies of Auger pathways. We also study the shell thickness and composition dependence of Auger times, which is compared to the scaling factors of effective volume and electron-hole overlap considerations. Core/shell QDs often exhibit much higher luminescence quantum yields (QYs), more stability, and are depicted as having a nearly spherical core and a shell of very nearly uniform thickness, which results in a very simple picture of surface passivation. The uniformity of the shell is crucial in obtaining QDs with well passivated surfaces. However, transmission electron microscope (TEM) images disprove the ideal situation. Defects and thickness inhomogeneity in shell materials are treated qualitatively as an analog to film thickness inhomogeneity in epitaxially grown thin films. More quantitatively, the extent to which the shell thickness of core/shell particles is constant can be determined by time-resolved PL studies that measure the dynamics of hole tunneling to acceptors that are adsorbed on the shell surface due that tunneling rates varies strongly with core-acceptor separation. Careful analysis of the hole transfer kinetics reveals the extent of shell thickness inhomogeneity, however, it may be complicated by the distribution of numbers of adsorbed acceptors. All the considerations can be incorporated into a model we establish in Chapter 5for the distribution of measured hole tunneling rates. From this analysis the distribution of shell thicknesses can be extracted from the luminescence kinetic results. This approach is therefore a sensitive measure of the distribution of tunneling distances. Thus, any defects or structural irregularities that allow the hole acceptors to adsorb closer to the particle core increases the hole tunneling rate and can be detected and quantified. A quantitative treatment of the lattice strain energy in determining the shell morphology of CdSe/CdS core/shell nanoparticles is presented in chapter 5. We use the inhomogeneity in hole tunneling rates through the shell to adsorbed hole acceptors to quantify the extent of shell thickness inhomogeneity. The results can be understood in terms of a model based on elastic continuum calculations, which indicate that the lattice strain energy depends on both core size and shell thickness. This model assumes thermodynamic equilibrium, i.e., that the shell morphology corresponds to a minimum total (lattice strain plus surface) energy. Comparison with the experimental results indicates that CdSe/CdS nanoparticles undergo an abrupt transition from smooth to rough shells when the total lattice strain energy exceeds about 27eV or the strain energy density exceeds 0.59 eV/nm2. The predictions of this model are not followed for CdSe/CdS nanoparticles when the shell is deposited at very low temperature and therefore equilibrium is not established. The effects of lattice strain on the spectroscopy and photoluminescence quantum yields of zincblende CdSe/CdS core/shell quantum dots are examined. The quantum yields are measured as a function of core size and shell thickness. High quantum yields are achieved as long as the lattice strain energy density is below ~0.85 eV/nm2, which is considerably greater than the limiting value of 0.59 eV/nm2 for thermodynamicstability of a smooth, defect free shell, as previously reported in chapter 5. Thus, core/shell quantum dots having strain energy densities between 0.59 and 0.85 eV/nm2 can have very high PL QYs, but are metastable with respect to surface defect formation. Such metastable core/shell QDs can be produced by shell deposition at comparatively low temperatures (< 140 °C). Annealing of these particles causes partial loss of core pressure, and a red shift of the spectrum.

  19. Optical and Electrical Characterization of Single Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Wickramasuriya, Nadeeka Thejanie

    Strain distribution in the core and the shell of a semiconductor nanowire (NW) and its effect on band structures including carrier recombination dynamics of individual Wurtzite (WZ) In1- xGxAs/InP and Zincblende (ZB) GaAs1-xSbx/InP strained core-shell NWs are investigated using room temperature Raman scattering and transient Rayleigh scattering (TRS) optical spectroscopy techniques. In addition, the electrical transport properties of individual ZB InP NWs are explored using gate-dependent current-voltage (I-V) measurements. Micro-Raman scattering from individual In1-xGaxAs NWs show InAs like TO and GaAs like TO modes with frequencies which are consistent with the 35% Ga concentration determined from the growth parameters. Calculations showed that the In0.65Ga0.35As core is under compressive strain of 0.26% while the InP shell is in tensile strain of 0.42% in In 0.65Ga0.35As/InP NWs. TRS measurements of single NWs show clear evidence for a strong band resonance in the WZ In0.65Ga 0.35As NW at 0.819 eV which is estimated to be a 186 meV blue-shift with respect to bulk ZB In0.65Ga0.35As. Furthermore, both Raman scattering and TRS measurements are on excellent agreement with the band gap shift of In0.65Ga0.35As/InP core-shell NWs with respect to the core only NW by 46 48 meV which experimentally confirmed the InP shell induced compression of the core. The time decays of the resonance are observed to be long ( 125 ps) for core-shell NWs while it is short ( 31 ps) for core only NWs consistent with a larger nonradiative recombination rate. Optical phonon modes of GaAs1-xSbx are observed to be red-shifted with increasing Antimony fraction in GaAs1-xSb x NWs which can be expected in an alloy with increasing concentration of a heavier atom in the lattice. Using TRS measurements, the GaAs0.71 Sb0.29 band gap for the coreshell NW is observed to be reduced by 0.04 eV with respect to the core only NW because of the tensile strain in the core. Raman experiments show a blue-shift of the InP phonons and a redshift of the GaAs1-xSbx phonons in individual GaAs 0.71Sb0.29/InP NWs, which is consistent with the tensile core strain inferred from TRS results. The recombination life times in GaAs 0.71Sb0.29, GaAs0.71Sb0.29/InP NWs are found to be 31 ps and 127 ps respectively reflecting the effectiveness of the InP shell surface passivation. Individual InP NW field effect transistors are fabricated using photolithography to investigate the electrical transport properties of InP NWs. Gate-dependent I-V plots showed that the InP NWs are n-type and displayed typical non-Ohmic behavior due to the contact resistance between NW and metal electrodes. Carrier mobility determined for the InP NWs is as high as 655 cm2/(V.s) for the carrier density of 4.08 x 1017 cm-3 which is comparable to n-type InP thin film materials with similar carrier densities and thus demonstrates the high quality of the NWs. An equivalent circuit model of the metal-semiconductor-metal structure is used to extract the carrier density and mobility of the NW as 1.00 x 1017 cm -3 and 511 cm2/(V.s), This model makes it possible to determine the barrier heights of the NW device while providing a good agreement with the experimental results.

  20. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  1. SHELL MICROSTRUCTURE OF GASTROPODS FROM LAKE TANGANYIKA, AFRICA: ADAPTATION, CONVERGENT EVOLUTION, AND ESCALATION.

    PubMed

    West, Kelly; Cohen, Andrew

    1996-04-01

    Gastropod shells from Lake Tanganyika, with their heavy calcification, coarse noded ribbing, spines, apertural lip thickening and repair scars, resemble marine shells more closely than they resemble other lacustrine shells. This convergence between Tanganyikan and marine gastropod shells, however, is not just superficial. Scanning electron microscope (SEM) studies reveal that the Tanganyikan shells are primarily layers of crossed-lamellar crystal architecture (that is, needle-like aragonite crystals arranged into laths that are packed into sheets such that the aragonite needles of adjacent laths are never parallel). The number of crossed-lamellar layers can vary from one to four between different Tanganyikan gastropod species. In species with two or more crossed-lamellar layers, the orientation of the lamellae is offset by approximately 90° between the different layers. The number of crossed-lamellar layers in the shell wall is positively correlated with shell strength and with predation resistance. Three and four crossed-lamellar layers in the shell wall evolved several times independently within the endemic thiarid gastropod radiation in Lake Tanganyika. Repeated origins of three and four crossed-lamellar layers suggest that they may be specific adaptations by Tanganyikan gastropods to strengthen their shells as a defense against shell-crushing predators. © 1996 The Society for the Study of Evolution.

  2. Synthesis of walnut shell modified with titanium dioxide and zinc oxide nanoparticles for efficient removal of humic acid from aqueous solutions.

    PubMed

    Naghizadeh, Ali; Shahabi, Habibeh; Ghasemi, Fatemeh; Zarei, Ahmad

    2016-12-01

    The main aim of this research was to study the efficiency of modified walnut shell with titanium dioxide (TiO 2 ) and zinc oxide (ZnO) in the adsorption of humic acid from aqueous solutions. This experimental study was carried out in a batch condition to determine the effects of factors such as contact time, pH, humic acid concentration, dose of adsorbents (raw walnut shell, modified walnut shell with TiO 2 and ZnO) on the removal efficiency of humic acid. pH zpc of raw walnut shell, walnut shell modified with TiO 2 and walnut shell modified with ZnO were 7.6, 7.5, and 8, respectively. The maximum adsorption capacity of humic acid at concentration of 30 mg/L, contact time of 30 min at pH = 3 in an adsorbent dose of 0.02 g of walnut shell and ZnO and TiO 2 modified walnut shell were found to be 35.2, 37.9, and 40.2 mg/g, respectively. The results showed that the studied adsorbents tended to fit with the Langmuir model. Walnut shell, due to its availability, cost-effectiveness, and also its high adsorption efficiency, can be proposed as a promising natural adsorbent in the removal of humic acid from aqueous solutions.

  3. Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities

    NASA Astrophysics Data System (ADS)

    Song, Woo-Seuk; Lee, Hye-Seung; Lee, Ju Chul; Jang, Dong Seon; Choi, Yoonyoung; Choi, Moongoo; Yang, Heesun

    2013-06-01

    High-quality, Cd-free InP quantum dots (QDs) have been conventionally synthesized by exclusively selecting tris(trimethylsilyl)phosphine (P(TMS)3) as a phosphorus (P) precursor, which is problematic from the standpoint of green and economic chemistry. Thus, other synthetic chemistries adopting alternative P sources to P(TMS)3 have been introduced, however, they could not guarantee the production of satisfactorily fluorescence-efficient, color-pure InP QDs. In this study, the unprecedented controlled synthesis of a series of band-gap-tuned InP QDs is demonstrated through a hot-injection of a far safer and cheaper tris(dimethylamino)phosphine in the presence of a key coordinating solvent of oleylamine that enables successful QD nucleation/growth. Effects of the co-existence of Zn additive, the core growth temperature, and the amount of P source injected on the growth behaviors of InP QD are investigated. After ZnS overcoating by a successive injection of 1-dodecanethiol only, high-fluorescence-quality, green-to-red color emission-tunable core/shell QDs of InP/ZnS are obtained. The fluorescent characteristics of different color-emitting QDs desirably exhibit little fluctuations in quantum yield and emission bandwidth, specifically ranging 51-53 % and 60-64 nm, respectively. Lastly, the utility of the introduction of a secondary shelling process in rendering the QDs are more bright, photostable is also proved.

  4. Penning-trap mass measurements of the neutron-rich K and Ca isotopes: Resurgence of the N=28 shell strength

    NASA Astrophysics Data System (ADS)

    Lapierre, A.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Finlay, P.; Gallant, A. T.; Simon, V. V.; Delheij, P.; Lunney, D.; Ringle, R.; Savajols, H.; Dilling, J.

    2012-02-01

    We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN electron beam ion trap and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME’03). The 48,49,50K mass excesses are more precise than the AME’03 values by more than 1 order of magnitude. For 48,49K, we find deviations of 7σ and 10σ, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME’03 mass-excess values and thus increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.

  5. Historical approaches to post-combat disorders.

    PubMed

    Jones, Edgar

    2006-04-29

    Almost every major war in the last century involving western nations has seen combatants diagnosed with a form of post-combat disorder. Some took a psychological form (exhaustion, combat fatigue, combat stress reaction and post-traumatic stress disorder), while others were characterized by medically unexplained symptoms (soldier's heart, effort syndrome, shell shock, non-ulcer dyspepsia, effects of Agent Orange and Gulf War Syndrome). Although many of these disorders have common symptoms, the explanations attached to them showed considerable diversity often reflected in the labels themselves. These causal hypotheses ranged from the effects of climate, compressive forces released by shell explosions, side effects of vaccinations, changes in diet, toxic effects of organophosphates, oil-well fires or depleted-uranium munitions. Military history suggests that these disorders, which coexisted in the civilian population, reflected popular health fears and emerged in the gaps left by the advance of medical science. While the current Iraq conflict has yet to produce a syndrome typified by medically unexplained symptoms, it is unlikely that we have seen the last of post-combat disorders as past experience suggests that they have the capacity to catch both military planners and doctors by surprise.

  6. Experimental study of the flow in the wake of a stationary sphere immersed in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry

    2018-02-01

    In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692

  7. Comparison of performance of shell-and-tube heat exchangers with conventional segmental baffles and continuous helical baffle

    NASA Astrophysics Data System (ADS)

    Ahmed, Asif; Ferdous, Imam Ul.; Saha, Sumon

    2017-06-01

    In the present study, three-dimensional numerical simulation of two shell-and-tube heat exchangers (STHXs) with conventional segmental baffles (STHXsSB) and continuous helical baffle (STHXsHB) is carried out and a comparative study is performed based on the simulation results. Both of the STHXs contain 37 tubes inside a 500 mm long and 200 mm diameter shell and mass flow rate of shell-side fluid is varied from 0.5 kg/s to 2 kg/s. At first, physical and mathematical models are developed and numerically simulated using finite element method (FEM). For the validation of the computational model, shell-side average nusselt number (Nus) is calculated from the simulation results and compared with the available experimental results. The comparative study shows that STHXsHB has 72-127% higher heat transfer coefficient per unit pressure drop compared to the conventional STHXsSB for the same shell-side mass flow rate. Moreover, STHXsHB has 59-63% lower shell-side pressure drop than STHXsSB.

  8. Shell shape as a biomarker of marine pollution historic increase.

    PubMed

    Márquez, F; Primost, M A; Bigatti, G

    2017-01-30

    Buccinanops globulosus is a TBT sensitive marine gastropod, classified as a good indicator of imposex incidence and used as a model to study adverse contamination effects. Population and maritime industries has incremented pollution in Nuevo gulf harbor since 1970s, promoting morphological changes in B. globulosus shell shape. We study the shell shape of the species comparing present day's specimens from the harbor zone with those collected in the same zone before the increasing of maritime activity and pre-Hispanic archaeological Middens. We demonstrated that harbor pollution produces globular shell shape in B. globulosus, an effect that probably allows gastropods to isolate themselves from the external adverse environment. On the contrary, shells from pre-Hispanic periods, unpolluted sites and those collected before the expansion of maritime activities, presented an elongated shell shape. Our study confirms that shell shape variation in marine gastropods can be used as a biomarker of harbor pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. NIF Double Shell outer/inner shell collision experiments

    NASA Astrophysics Data System (ADS)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  10. Differential Contributions of Nucleus Accumbens Subregions to Cue-Guided Risk/Reward Decision Making and Implementation of Conditional Rules.

    PubMed

    Floresco, Stan B; Montes, David R; Tse, Maric M T; van Holstein, Mieke

    2018-02-21

    The nucleus accumbens (NAc) is a key node within corticolimbic circuitry for guiding action selection and cost/benefit decision making in situations involving reward uncertainty. Preclinical studies have typically assessed risk/reward decision making using assays where decisions are guided by internally generated representations of choice-outcome contingencies. Yet, real-life decisions are often influenced by external stimuli that inform about likelihoods of obtaining rewards. How different subregions of the NAc mediate decision making in such situations is unclear. Here, we used a novel assay colloquially termed the "Blackjack" task that models these types of situations. Male Long-Evans rats were trained to choose between one lever that always delivered a one-pellet reward and another that delivered four pellets with different probabilities [either 50% (good-odds) or 12.5% (poor-odds)], which were signaled by one of two auditory cues. Under control conditions, rats selected the large/risky option more often on good-odds versus poor-odds trials. Inactivation of the NAc core caused indiscriminate choice patterns. In contrast, NAc shell inactivation increased risky choice, more prominently on poor-odds trials. Additional experiments revealed that both subregions contribute to auditory conditional discrimination. NAc core or shell inactivation reduced Pavlovian approach elicited by an auditory CS+, yet shell inactivation also increased responding during presentation of a CS-. These data highlight distinct contributions for NAc subregions in decision making and reward seeking guided by discriminative stimuli. The core is crucial for implementation of conditional rules, whereas the shell refines reward seeking by mitigating the allure of larger, unlikely rewards and reducing expression of inappropriate or non-rewarded actions. SIGNIFICANCE STATEMENT Using external cues to guide decision making is crucial for adaptive behavior. Deficits in cue-guided behavior have been associated with neuropsychiatric disorders, such as attention deficit hyperactivity disorder and schizophrenia, which in turn has been linked to aberrant processing in the nucleus accumbens. However, many preclinical studies have often assessed risk/reward decision making in the absence of explicit cues. The current study fills that gap by using a novel task that allows for the assessment of cue-guided risk/reward decision making in rodents. Our findings identified distinct yet complementary roles for the medial versus lateral portions of this nucleus that provide a broader understanding of the differential contributions it makes to decision making and reward seeking guided by discriminative stimuli. Copyright © 2018 the authors 0270-6474/18/381901-14$15.00/0.

  11. Oxidation of InP nanowires: a first principles molecular dynamics study.

    PubMed

    Berwanger, Mailing; Schoenhalz, Aline L; Dos Santos, Cláudia L; Piquini, Paulo

    2016-11-16

    InP nanowires are candidates for optoelectronic applications, and as protective capping layers of III-V core-shell nanowires. Their surfaces are oxidized under ambient conditions which affects the nanowire physical properties. The majority of theoretical studies of InP nanowires, however, do not take into account the oxide layer at their surfaces. In this work we use first principles molecular dynamics electronic structure calculations to study the first steps in the oxidation process of a non-saturated InP nanowire surface as well as the properties of an already oxidized surface of an InP nanowire. Our calculations show that the O 2 molecules dissociate through several mechanisms, resulting in incorporation of O atoms into the surface layers. The results confirm the experimental observation that the oxidized layers become amorphous but the non-oxidized core layers remain crystalline. Oxygen related bonds at the oxidized layers introduce defective levels at the band gap region, with greater contributions from defects involving In-O and P-O bonds.

  12. Vibrio cholerae Colonization of Soft-Shelled Turtles

    PubMed Central

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin

    2017-01-01

    ABSTRACT Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae-contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N-acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological investigations, no experimental studies have demonstrated the colonization by V. cholerae on soft-shelled turtles. The present studies will benefit our understanding of the interaction between V. cholerae and the soft-shelled turtle. We demonstrated the colonization by V. cholerae on the soft-shelled turtle's body surface and in the intestine and revealed the different roles of major V. cholerae factors for colonization on the body surface and in the intestine. Our work provides experimental evidence for the role of soft-shelled turtles in cholera transmission. In addition, this study also shows the possibility for the soft-shelled turtle to serve as a new animal model for studying the interaction between V. cholerae and aquatic hosts. PMID:28600312

  13. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    PubMed

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological investigations, no experimental studies have demonstrated the colonization by V. cholerae on soft-shelled turtles. The present studies will benefit our understanding of the interaction between V. cholerae and the soft-shelled turtle. We demonstrated the colonization by V. cholerae on the soft-shelled turtle's body surface and in the intestine and revealed the different roles of major V. cholerae factors for colonization on the body surface and in the intestine. Our work provides experimental evidence for the role of soft-shelled turtles in cholera transmission. In addition, this study also shows the possibility for the soft-shelled turtle to serve as a new animal model for studying the interaction between V. cholerae and aquatic hosts. Copyright © 2017 American Society for Microbiology.

  14. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions

    PubMed Central

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m2, could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process. PMID:29922646

  15. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.

    PubMed

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.

  16. Global Curvature Buckling and Snapping of Spherical Shells.

    NASA Astrophysics Data System (ADS)

    Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark; Bade, Abdikhalaq; Trejo, Miguel; Holmes, Douglas

    A spherical shell under external pressure will eventually buckle locally through the development of a dimple. However, when a free spherical shell is subject to variations in natural curvature, it will either buckle globally or snap towards a buckled configuration. We study the similarities and differences between pressure and curvature instabilities in spherical shells. We show how the critical buckling natural curvature is largely independent of the thinness and half-angle of the shell, while the critical snapping natural curvature grows linearly with the half-angle. As a result, we demonstrate how a critical half-angle, depending only on the thinness of the shell, sets the threshold between two different kinds of snapping: as a rule of thumb, shallow shells snap into everted shells, while deep shells snap into buckled shells. As the developed models are purely geometrical, the results are applicable to a large variety of stimuli and scales. NSF CAREER CMMI-1454153.

  17. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less

  18. Micro-Photoluminescence (micro-PL) Study of Core-Shell GaAs/GaAsSb Nanowires Grown by Self-Assisted Molecular Beam Epitaxy

    DTIC Science & Technology

    2015-06-18

    public release; distribution is unlimited. Micro-Photoluminescence (micro-PL) Study of Core-Shell GaAs/GaAsSb Nanowires grown by Self-Assisted Molecular...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 GaAsSb, Core Shell Nanowires , Micro Photoluminescence...University 1601 East Market Street Greensboro, NC 27411 -0001 ABSTRACT Micro-Photoluminescence (micro-PL) Study of Core-Shell GaAs/GaAsSb Nanowires grown by

  19. Epitaxy of semiconductor-superconductor nanowires

    NASA Astrophysics Data System (ADS)

    Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S.

    2015-04-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.

  20. Nuclear reactor building

    DOEpatents

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  1. Nuclear reactor building

    DOEpatents

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  2. A method for the estimate of the wall diffusion for non-axisymmetric fields using rotating external fields

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Fridström, R.; Setiadi, A. C.; Brunsell, P. R.; Volpe, F. A.; Drake, J.

    2013-08-01

    A new method for the estimate of the wall diffusion time of non-axisymmetric fields is developed. The method based on rotating external fields and on the measurement of the wall frequency response is developed and tested in EXTRAP T2R. The method allows the experimental estimate of the wall diffusion time for each Fourier harmonic and the estimate of the wall diffusion toroidal asymmetries. The method intrinsically considers the effects of three-dimensional structures and of the shell gaps. Far from the gaps, experimental results are in good agreement with the diffusion time estimated with a simple cylindrical model that assumes a homogeneous wall. The method is also applied with non-standard configurations of the coil array, in order to mimic tokamak-relevant settings with a partial wall coverage and active coils of large toroidal extent. The comparison with the full coverage results shows good agreement if the effects of the relevant sidebands are considered.

  3. Indium phosphide nanowires and their applications in optoelectronic devices

    PubMed Central

    Zafar, Fateen

    2016-01-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II–VI and I–VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III–V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core–shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed. PMID:27118920

  4. Quasi-Dual-Packed-Kerneled Au49 (2,4-DMBT)27 Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap.

    PubMed

    Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun

    2017-10-02

    Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. New Planar Wire Array Experiments on the LTD Generator at U Michigan

    NASA Astrophysics Data System (ADS)

    Weller, M. E.; Safronova, A. S.; Kantsyrev, V. L.; Shrestha, I.; Shlyaptseva, V. V.; Cooper, M. C.; Lorance, M. Y.; Stafford, A.; Petkov, E. E.; Jordan, N. M.; Patel, S. G.; Steiner, A. M.; Yager-Elorriaga, D. A.; Gilgenbach, R. M.

    2014-10-01

    Experiments on planar wire array z-pinches have been carried out on the MAIZE Linear Transformer Driver (LTD) generator at the University of Michigan (UM) for the first time. Specifically, Al (Al 5056, 95% Al, 5% Mg) double planar wire arrays (DPWAs) comprising six wires in each plane with interplanar gaps of 3.0 mm and 6.0 mm and interwire gaps of 0.7 mm and 1.0 mm were imploded with x-ray time-integrated spectra indicating electron temperatures of over 450 eV for K-shell Al and Mg, while producing mostly optically thin lines. In addition to x-ray time-integrated spectra, the diagnostics included x-ray time-integrated pinhole cameras, two silicon diodes, and shadowgraphy, which are analyzed and compared. The MAIZE LTD is capable of supplying up 1.0 MA, 100 kV pulses with 100 ns rise time into a matched load. However, for these experiments the LTD was charged to +-70 kV resulting in up to 0.5 MA with a current rise time of approximately 150 ns. Future experiments and the importance of studying planar wire arrays on LTD devices are discussed. This work supported by NNSA under DOE Cooperative Agreement DE-NA0001984. S. Patel & A. Steiner supported by Sandia. D. Yager-Elorriaga supported by NSF GF.

  6. Novel Use of Water Soluble "Aquapour" As A Temporary Spacer During Coil Winding For The NSTX-U Centerstack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardenfeld, Michael

    A major facility upgrade to the National Spherical Torus eXperiment (NSTX-U) is currently underway at Princeton Plasma Physics Laboratory (PPPL). A key component of NSTX-U is the fabrication of a new, higher field centerstack (CS). In order to simultaneously provide robust joints between the inner and outer legs of the Toroidal Field Coils (TF) and minimize radial build, the NSTX-U CS design requires that the Ohmic Heating solenoid (OH) be wound directly on the inner TF bundle. To protect the OH against thermal expansion stress during scenarios where the inner TF bundle is hot but the OH is relatively cool,more » the completed CS will have a 0.100 inch annular gap between the outer diameter of the TF bundle and the inner diameter of the OH solenoid. "Aquapour", a proprietary material produced by the Advanced Ceramics Manufacturing Company will be used during manufacture to produce this gap. After the TF bundle is vacuum pressure impregnated and cured, a cylindrical "clam shell" mold will be assembled around it, and a slurry of powdered Aquapour and water will be pumped into the annular space between the mold and TF bundle. Subsequent baking will turn the Aquapour solid, and a protective layer of wet lay-up fiberglass and resin will be added. The OH solenoid will be wound directly on this wet lay-up shell. After vacuum pressure impregnation of the OH, the water soluble Aquapour will be washed away, leaving the required radial clearance between the TF and OH. This paper will describe prototyping and testing of this process, and plans for use on the actual CS fabrication.« less

  7. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  8. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  9. Ultrafast light matter interaction in CdSe/ZnS core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Yadav, Rajesh Kumar; Sharma, Rituraj; Mondal, Anirban; Adarsh, K. V.

    2018-04-01

    Core-shell quantum dot are imperative for carrier (electron and holes) confinement in core/shell, which provides a stage to explore the linear and nonlinear optical phenomena at the nanoscalelimit. Here we present a comprehensive study of ultrafast excitation dynamics and nonlinear optical absorption of CdSe/ZnS core shell quantum dot with the help of ultrafast spectroscopy. Pump-probe and time-resolved measurements revealed the drop of trapping at CdSe surface due to the presence of the ZnS shell, which makes more efficient photoluminescence. We have carried out femtosecond transient absorption studies of the CdSe/ZnS core-shell quantum dot by irradiation with 400 nm laser light, monitoring the transients in the visible region. The optical nonlinearity of the core-shell quantum dot studied by using the Z-scan technique with 120 fs pulses at the wavelengths of 800 nm. The value of two photon absorption coefficients (β) of core-shell QDs extracted as80cm/GW, and it shows excellent benchmark for the optical limiting onset of 2.5GW/cm2 with the low limiting differential transmittance of 0.10, that is an order of magnitude better than graphene based materials.

  10. X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates

    DOE PAGES

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...

    2016-02-05

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less

  11. Fractal dimension study of polaron effects in cylindrical GaAs/Al x Ga1- x As core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Li, Hua; Tian, Qiang

    2018-04-01

    Polaron effects in cylindrical GaAs/Al x Ga1- x As core-shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/Al x Ga1- x As core-shell nanowires with different core radii and aluminum concentrations are discussed. The polaron binding energy, polaron mass shift, and fractal dimension parameter are numerically determined as functions of shell width. The calculation results reveal that the binding energy and mass shift of the polaron first increase and then decrease as the shell width increases. A maximum value appears at a certain shell width for different aluminum concentrations and a given core radius. By using the fractal dimension method, polaron problems in cylindrical GaAs/Al x Ga1- x As core-shell nanowires are solved in a simple manner that avoids complex and lengthy calculations.

  12. Numerical and experimental study on buckling and postbuckling behavior of cracked cylindrical shells

    NASA Astrophysics Data System (ADS)

    Saemi, J.; Sedighi, M.; Shariati, M.

    2015-09-01

    The effect of crack on load-bearing capacity and buckling behavior of cylindrical shells is an essential consideration in their design. In this paper, experimental and numerical buckling analysis of steel cylindrical shells of various lengths and diameters with cracks have been studied using the finite element method, and the effect of crack position, crack orientation and the crack length-to-cylindrical shell perimeter ( λ = a/(2 πr)) and shell length-to-diameter ( L/ D) ratios on the buckling and post-buckling behavior of cylindrical shells has been investigated. For several specimens, buckling test was performed using an INSTRON 8802 servo hydraulic machine, and the results of experimental tests were compared to numerical results. A very good correlation was observed between numerical simulation and experimental results. Finally, based on the experimental and numerical results, sensitivity of the buckling load to the shell length, crack length and orientation has also been investigated.

  13. Optical properties of core-shell and multi-shell nanorods

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  14. Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere

    NASA Technical Reports Server (NTRS)

    Raftopoulos, D. D.; Spicer, A. L.

    1976-01-01

    An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.

  15. An experimental determination of the drag coefficient of a Mens 8+ racing shell.

    PubMed

    Buckmann, James G; Harris, Samuel D

    2014-01-01

    This study centered around an experimental analysis of a Mens Lightweight Eight racing shell and, specifically, determining an approximation for the drag coefficient. A testing procedure was employed that used a Global Positioning System (GPS) unit in order to determine the acceleration and drag force on the shell, and through calculations yield a drag coefficient. The testing was run over several days in numerous conditions, and a 95% confidence interval was established to capture the results. The results obtained, over these varying trials, maintained a successful level of consistency. The significance of this study transcends the determination an approximation for the drag coefficient of the racing shell; it defined a successful means of quantifying performance of the shell itself. The testing procedures outlined in the study represent a uniform means of evaluating the factors that influence drag on the shell, and thus influence speed.

  16. Nyctemeral variations of magnesium intake in the calcitic layer of a Chilean mollusk shell ( Concholepas concholepas, Gastropoda)

    NASA Astrophysics Data System (ADS)

    Lazareth, Claire E.; Guzman, Nury; Poitrasson, Franck; Candaudap, Frederic; Ortlieb, Luc

    2007-11-01

    Mollusk shells are increasingly used as records of past environmental conditions, particularly for sea-surface temperature (SST) reconstructions. Many recent studies tackled SST (and/or sea-surface salinity) tracers through variations in the elementary (Mg and Sr) or stable isotope (δ 18O) composition within mollusk shells. But such attempts, which sometimes include calibration studies on modern specimens, are not always conclusive. We present here a series of Mg and Sr analyses in the calcitic layer of Concholepas concholepas (Muricidae, Gastropoda) with a very high time-resolution on a time window covering about 1 and a half month of shell formation, performed by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICP-MS) and electron probe micro-analysis (EPMA). The selected specimen of this common Chilean gastropod was grown under controlled environmental conditions and precise weekly time-marks were imprinted in the shell with calcein staining. Strontium variations in the shell are too limited to be interpreted in terms of environmental parameter changes. In contrast, Mg incorporation into the shell and growth rate appear to change systematically between night and day. During the day, Mg is incorporated at a higher rate than at night and this intake seems positively correlated with water temperature. The nightly reduced Mg incorporation is seemingly related to metabolically controlled processes, formation of organic-rich shell increments and nocturnal feeding activity of the animals. The nyctemeral Mg changes in the C. concholepas shell revealed in this study might explain at least part of the discrepancies observed in previous studies on the use of Mg as a SST proxy in mollusk shells. In the case of C. concholepas, Mg cannot be used straightforwardly as a SST proxy.

  17. Preliminary evaluation of physical and chemical characterization of waste palm oil shell as cool material replaced in asphaltic concrete as fine aggregate

    NASA Astrophysics Data System (ADS)

    Anuar, M. A. M.; Anting, N.; Shahidan, S.; Lee, Y. Y.; Din, M. F. Md; Khalid, F. S.; Nazri, W. M. H. W.

    2017-11-01

    Malaysia is one of the biggest producer of palm oil product and currently as main source of economy for the country. During the production of crude palm oil, a large amount of waste material is generated, such as palm oil fibres, palm oil shells and empty fruit bunches. Palm oil shell aggregate (POSA) is identified as a material that shows good potential to be used as a fine aggregate replacement in asphaltic concrete. On other hand, the chemical compound that exist in the Palm Oil Shell (POS) have shown a good potential as reflective component in cool-material. The purpose of this study is to obtain the physical and chemical properties of palm oil shell. The result shows the apparent particle density of Palm Oil Shell is 1.6 mg/m3. The specific gravity of palm oil shell was obtained with the value 1.6 and the water absorption amount of palm oil shell recorded from this study was 25.1%. The X-Ray Fluorescence study shows that palm oil shell contains the highest amount of SiO2 (46.412 wt%) and the second highest amount of Fe2O3 (34.016 wt%), both is the main output of relectivity compound. As a conclusion, waste palm oil shell has a potential to be used as alternative material for fine aggregate replacement. Besides that, the amount of chemical element that consist in palm oil shell which high in SiO2 and Fe2O3, promising the benefit to mitigate urban heat island as a cooling material agent.

  18. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  19. Effect of shell corrections on the beta decay isobaric mass parabolas

    NASA Astrophysics Data System (ADS)

    Kaur, Sarbjeet; Kaur, Manpreet; Singh, Bir Bikram

    2018-05-01

    The beta decay isobaric mass parabolas have been studied for isobaric families in di erent mass regions. The mass parabolas have been studied using the semi empirical mass formula of Seeger to find the most stable isobar for a particular isobaric family. In addition to liquid drop part VLDM, the shell correction part δU to give binding energy B. E. = VLDM + δU, defined within Strutinsky renormalization procedure, has been used. To elucidate the role of shell e ects on the structure shape of mass parabola, we have made comparison for the δU = 0 and δU ≠ 0 cases. For a particular mass value of isobaric family, the results show that with the inclusion of shell corrections i.e. δU ≠ 0, the minimum for the most stable isobar is strongly pronounced compared to the case without shell corrections. In other words, shell corrections significantly enhance the stability of stable isobar. The study reveals that the role of shell effects on the mass minima is more pronounced in heavy mass region compared to light and intermediate mass regions.

  20. Comparative Transcriptome Analysis of the Pacific Oyster Crassostrea gigas Characterized by Shell Colors: Identification of Genetic Bases Potentially Involved in Pigmentation

    PubMed Central

    Feng, Dandan; Li, Qi; Yu, Hong; Zhao, Xuelin; Kong, Lingfeng

    2015-01-01

    Background Shell color polymorphisms of Mollusca have contributed to development of evolutionary biology and population genetics, while the genetic bases and molecular mechanisms underlying shell pigmentation are poorly understood. The Pacific oyster (Crassostrea gigas) is one of the most important farmed oysters worldwide. Through successive family selection, four shell color variants (white, golden, black and partially pigmented) of C. gigas have been developed. To elucidate the genetic mechanisms of shell coloration in C. gigas and facilitate the selection of elite oyster lines with desired coloration patterns, differentially expressed genes (DEGs) were identified among the four shell color variants by RNA-seq. Results Digital gene expression generated over fifteen million reads per sample, producing expression data for 28,027 genes. A total number of 2,645 DEGs were identified from pair-wise comparisons, of which 432, 91, 43 and 39 genes specially were up-regulated in white, black, golden and partially pigmented shell of C. gigas, respectively. Three genes of Abca1, Abca3 and Abcb1 which belong to the ATP-binding cassette (ABC) transporters super-families were significantly associated with white shell formation. A tyrosinase transcript (CGI_10008737) represented consistent up-regulated pattern with golden coloration. We proposed that white shell variant of C. gigas could employ “endocytosis” to down-regulate notch level and to prevent shell pigmentation. Conclusion This study discovered some potential shell coloration genes and related molecular mechanisms by the RNA-seq, which would provide foundational information to further study on shell coloration and assist in selective breeding in C. gigas. PMID:26693729

  1. Shell effect on the electron and hole reorganization energy of core-shell II-VI nanoclusters

    NASA Astrophysics Data System (ADS)

    Cui, Xianhui; Wang, Xinqin; Yang, Fang; Cui, Yingqi; Yang, Mingli

    2017-09-01

    Density functional theory calculations were performed to study the effect of shell encapsulation on the geometrical and electronic properties of pure and hybrid core-shell CdSe nanoclusters. The CdSe cores are distorted by the shells, and the shells exhibit distinct surface activity from the cores, which leads to remarkable changes in their electron transition behaviors. Although the electron and hole reorganization energies, which are related to the formation and recombination of electron-hole pairs, vary in a complicated way, their itemized contributions, potentials of electron extraction, ionization and affinity, and hole extraction (HEP), are dependent on the cluster size, shell composition and/or solvent. Our calculations suggest that the behaviors of charge carriers, free electrons and holes, in the semiconductor core-shell nanoclusters can be modulated by selecting appropriate cluster size and controlling the chemical composition of the shells.

  2. Helium shell flashes and evolution of accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Fujimoto, M. Y.; Sugimoto, D.

    1982-06-01

    The evolution of accreting white dwarfs is investigated from the onset of accretion through the helium shell flash. Properties of the helium shell flashes are studied by means of a generalized theory of shell flash and by numerical computations, and it is found that the shell flash grows up to the strength of a supernova explosion when the mass of the helium zone is large enough on a massive white dwarf. Although accretion onto a hot white dwarf causes a weaker shell flash than those onto cool ones, a strong tendency exists for the strength to be determined mainly by the accretion rate. For fast accretion, the shell flashes are weak and triggered recurrently, while for slow accretion the helium shell flash, once triggered, develops into a detonation supernova.

  3. Comparative study of shell swab and shell crush methods for the recovery of Salmonella from shell eggs

    USDA-ARS?s Scientific Manuscript database

    Egg associated Salmonella Enteritidis outbreaks have been a major cause of foodborne illness in Japan as well as in the United States and several European countries. Researchers have been attempting to develop a rapid and highly sensitive method for the recovery of microorganisms from shell eggs. ...

  4. Room-temperature ferromagnetic Cr-doped Ge/GeOx core-shell nanowires.

    PubMed

    Katkar, Amar S; Gupta, Shobhnath P; Seikh, Md Motin; Chen, Lih-Juann; Walke, Pravin S

    2018-06-08

    The Cr-doped tunable thickness core-shell Ge/GeO x nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr 3+ in core-shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core-shell thickness and intriguing room temperature ferromagnetism is realized only in core-shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (T C  > 300 K) with the dominating values of its magnetic remanence (M R ) and coercivity (H C ) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeO X core-shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  5. Utilization of waste crab shell (Scylla serrata) as a catalyst in palm olein transesterification.

    PubMed

    Boey, Peng-Lim; Maniam, Gaanty Pragas; Hamid, Shafida Abd

    2009-01-01

    Aquaculture activity has increased the population of crab, hence increasing the generation of related wastes, particularly the shell. In addition, the number of molting process in crabs compounds further the amount of waste shell generated. As such, in the present work, the application of the waste crab shell as a source of CaO in transesterification of palm olein to biodiesel (methyl ester) was investigated. Preliminary XRD results revealed that thermally activated crab shell contains mainly CaO. Parametric study has been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 4 wt. %; and reaction temperature, 338 K. As compared to laboratory CaO, the catalyst from waste crab shell performs well, thus creating another low-cost catalyst source for producing biodiesel as well as adding value to the waste crab shell. Reusability of crab shell CaO has also been studied and the outcome confirmed that the catalyst is capable to be reutilized up to 11 times, without any major deterioration.

  6. Room-temperature ferromagnetic Cr-doped Ge/GeOx core–shell nanowires

    NASA Astrophysics Data System (ADS)

    Katkar, Amar S.; Gupta, Shobhnath P.; Motin Seikh, Md; Chen, Lih-Juann; Walke, Pravin S.

    2018-06-01

    The Cr-doped tunable thickness core–shell Ge/GeOx nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr3+ in core–shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core–shell thickness and intriguing room temperature ferromagnetism is realized only in core–shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (TC > 300 K) with the dominating values of its magnetic remanence (MR) and coercivity (HC) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeOX core–shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  7. Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography.

    PubMed

    Baier, Sina; Damsgaard, Christian D; Klumpp, Michael; Reinhardt, Juliane; Sheppard, Thomas; Balogh, Zoltan; Kasama, Takeshi; Benzi, Federico; Wagner, Jakob B; Schwieger, Wilhelm; Schroer, Christian G; Grunwaldt, Jan-Dierk

    2017-06-01

    When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.

  8. In-life pteropod shell dissolution as an indicator of past ocean carbonate saturation

    NASA Astrophysics Data System (ADS)

    Wall-Palmer, Deborah; Smart, Christopher W.; Hart, Malcolm B.

    2013-12-01

    Recent concern over the effects of ocean acidification upon calcifying organisms has highlighted the aragonitic shelled thecosomatous pteropods as being at a high risk. Both in-situ and laboratory studies have shown that an increased dissolved CO2 concentration, leading to decreased water pH and low carbonate concentration, causes reduced calcification rates and enhanced dissolution in the shells of living pteropods. In fossil records unaffected by post-depositional dissolution, this in-life shell dissolution can be detected. Here we present the first evidence of variations of in-life pteropod shell dissolution due to variations in surface water carbonate concentration during the Late Pleistocene by analysing the surface layer of pteropod shells in marine sediment cores from the Caribbean Sea and Indian Ocean. In-life shell dissolution was determined by applying the Limacina Dissolution Index (LDX) to the sub-tropical pteropod Limacina inflata. Average shell size information shows that high in-life dissolution is accompanied by smaller shell sizes in L. inflata, which may indicate a reduction in calcification rate. Comparison of the LDX profile to Late Pleistocene Vostok atmospheric CO2 concentrations, shows that in-life pteropod dissolution is closely associated to variations in past ocean carbonate saturation. This study confirms the findings of laboratory studies, showing enhanced shell dissolution and reduced calcification in living pteropods when surface ocean carbonate concentrations were lower. Results also demonstrate that oceanic pH levels that were less acidic and changing less rapidly than those predicted for the 21st Century, negatively affected pteropods during the Late Pleistocene.

  9. Nuclear structure for SNe r- and neutrino processes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio

    2014-09-01

    SNe r- and neutrino-processes are investigated based on recent advances in the studies of spin responses in nuclei. New shell-model Hamiltonians, which can well describe spin responses in nuclei with proper tensor components, are used to make accurate evaluations of reaction cross sections and rates in astrophysical processes. Nucleosyntheses in SNe r- and ν -processes as well as rp-processes are discussed with these new reaction rates with improved accuracies. (1) Beta-decay rates for N = 126 isotones are evaluated by shell-model calculations, and new rates are applied to study r-process nucleosynthesis in SNe's around its third peak as well as beyond the peak region up to uranium. (2) ν -processes for light-element synthesis in core-collapse SNe are studied with a new shell-model Hamiltonian in p-shell, SFO. Effects of MSW ν -oscillations on the production yields of 7Li and 11B and sensitivity of the yield ratio on ν -oscillation parameters are discussed. ν -induced reactions on 16O are also studied. (3) A new shell-model Hamiltonian in pf-shell, GXPF1J, is used to evaluate e-capture rates in pf-shell nuclei at stellar environments. New e-capture rates are applied to study nucleosynthesis in type-Ia supernova explosions, rp-process and X-ray bursts.

  10. Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain.

    PubMed

    Wu, Shih-Ying; Chen, Cherry C; Tung, Yao-Sheng; Olumolade, Oluyemi O; Konofagou, Elisa E

    2015-08-28

    Lipid-shelled microbubbles have been used in ultrasound-mediated drug delivery. The physicochemical properties of the microbubble shell could affect the delivery efficiency since they determine the microbubble mechanical properties, circulation persistence, and dissolution behavior during cavitation. Therefore, the aim of this study was to investigate the shell effects on drug delivery efficiency in the brain via blood-brain barrier (BBB) opening in vivo using monodisperse microbubbles with different phospholipid shell components. The physicochemical properties of the monolayer were varied by using phospholipids with different hydrophobic chain lengths (C16, C18, and C24). The dependence on the molecular size and acoustic energy (both pressure and pulse length) were investigated. Our results showed that a relatively small increase in the microbubble shell rigidity resulted in a significant increase in the delivery of 40-kDa dextran, especially at higher pressures. Smaller (3kDa) dextran did not show significant difference in the delivery amount, suggesting that the observed shell effect was molecular size-dependent. In studying the impact of acoustic energy on the shell effects, it was found that they occurred most significantly at pressures causing microbubble destruction (450kPa and 600kPa); by increasing the pulse length to deliver the 40-kDa dextran, the difference between C16 and C18 disappeared while C24 still achieved the highest delivery efficiency. These indicated that the acoustic energy could be used to modulate the shell effects. The acoustic cavitation emission revealed the physical mechanisms associated with different shells. Overall, lipid-shelled microbubbles with long hydrophobic chain length could achieve high delivery efficiency for larger molecules especially with high acoustic energy. Our study, for the first time, offered evidence directly linking the microbubble monolayer shell with their efficacy for drug delivery in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Programmable Phase Transitions in a Photonic Microgel System: Linking Soft Interactions to a Temporal pH Gradient.

    PubMed

    Go, Dennis; Rommel, Dirk; Chen, Lisa; Shi, Feng; Sprakel, Joris; Kuehne, Alexander J C

    2017-02-28

    Soft amphoteric microgel systems exhibit a rich phase behavior. Crystalline phases of these material systems are of interest because they exhibit photonic stop-gaps, giving rise to iridescent color. Such microgel systems are promising for applications in soft, switchable, and programmable photonic filters and devices. We here report a composite microgel system consisting of a hard and fluorescently labeled core and a soft, amphoteric microgel shell. At pH above the isoelectric point (IEP), these colloids easily crystallize into three-dimensional colloidal assemblies. By adding a cyclic lactone to the system, the temporal pH profile can be controlled, and the microgels can be programmed to melt, while they lose charge. When the microgels gain the opposite charge, they recrystallize into assemblies of even higher order. We provide a model system to study the dynamic phase behavior of soft particles and their switchable and programmable photonic effects.

  12. An ab initio cluster study of the chemisorption of atomic cesium and hydrogen on reconstructed surfaces of gallium rich gallium arsenide

    NASA Astrophysics Data System (ADS)

    Schailey, Ronald

    1999-11-01

    Chemisorption properties of cesium and hydrogen atoms on the Ga-rich GaAs (100) (2 x 1), (2 x 2), and β(4 x 2) surfaces are investigated using ab initio self-consistent restricted open shell Hartree-Fock (ROHF) total energy calculations with Hay- Wadt effective core potentials. The effects of electron correlation have been included using many-body perturbation theory through second order, with the exception of β(4 x 2) symmetry due to computational limitations. The semiconductor surface is modeled by finite sized hydrogen saturated clusters. The effects of surface relaxation and reconstruction have been investigated in detail. Results are given for the energetics of chemisorption, charge population analysis, HOMO-LUMO gaps, and consequent possibilities of metallization for atomic cesium adsorption. For the chemisorption of atomic hydrogen, the experimentally verified mechanism of surface dimer bond breaking is investigated in detail.

  13. Prediction of new ground-state crystal structure of T a2O5

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Kawazoe, Yoshiyuki

    2018-03-01

    Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.

  14. Enhanced collectivity in 12Be

    NASA Astrophysics Data System (ADS)

    Morse, C.; McCutchan, E. A.; Iwasaki, H.; Lister, C. J.; Bader, V. M.; Bazin, D.; Beceiro Novo, S.; Chowdhury, P.; Gade, A.; Johnson, T. D.; Loelius, C.; Lunderberg, E.; Merchan, E.; Prasher, V. S.; Recchia, F.; Sonzogni, A. A.; Weisshaar, D.; Whitmore, K.

    2018-05-01

    Electromagnetic quadrupole transition strength is a sensitive probe of the evolution of the structure of nuclei, particularly the competition between collectivity and magicity. We have performed a new lifetime measurement of the 21+ state of 12Be to study the interplay of these phenomena. The lifetime was measured with the Doppler Shift Attenuation Method using the γ-ray detector GRETINA. Excited states of 12Be were produced via inelastic scattering at 55 MeV/nucleon, using several different targets to control for systematic uncertainties in the stopping powers. The lifetime is determined to be τ = 1.38 ± 0.10(stat) ± 0.19(sys) ps, which is about half the previously reported value at twice the precision. The reduced transition strength deduced from this result is B (E 2 ;21+ → 01+) = 14.2 ± 1.0(stat) ± 2.0(sys) e2fm4, which supports the quenching of the N = 8 shell gap in 12Be.

  15. Evolution of Nanowire Transmon Qubits and Their Coherence in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Luthi, F.; Stavenga, T.; Enzing, O. W.; Bruno, A.; Dickel, C.; Langford, N. K.; Rol, M. A.; Jespersen, T. S.; Nygârd, J.; Krogstrup, P.; DiCarlo, L.

    2018-03-01

    We present an experimental study of flux- and gate-tunable nanowire transmons with state-of-the-art relaxation time allowing quantitative extraction of flux and charge noise coupling to the Josephson energy. We evidence coherence sweet spots for charge, tuned by voltage on a proximal side gate, where first order sensitivity to switching two-level systems and background 1 /f noise is minimized. Next, we investigate the evolution of a nanowire transmon in a parallel magnetic field up to 70 mT, the upper bound set by the closing of the induced gap. Several features observed in the field dependence of qubit energy relaxation and dephasing times are not fully understood. Using nanowires with a thinner, partially covering Al shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation and other applications.

  16. Simple Interpretation of Proton-Neutron Interactions in Rare Earth Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oktem, Y.; Cakirli, R. B.; Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520

    2007-04-23

    Empirical values of the average interactions of the last two protons and last two neutrons, {delta}Vpn, which can be obtained from double differences of binding energies, provide significant information about nuclear structure. Studies of {delta}Vpn showed striking behavior across major shell gaps and the relation of proton-neutron (p-n) interaction strengths to the increasing collectivity and onset of deformation in nuclei. Here we focus on the strong regularity at the {delta}Vpn values in A{approx}150-180 mass region. Experimentally, for each nucleus, the valence p-n interaction strengths increase systematically against the neutron number and it decreases for the observed last neutron number. Thesemore » experimental results give almost nearly perfect parallel trajectories. A microscopic interpretation with a zero range {delta}-interaction in a Nilsson basis gives reasonable agreement for Er-W but more significant discrepancies appear for Gd and Dy.« less

  17. Explosive shock damage potential in space structures

    NASA Technical Reports Server (NTRS)

    Mortimer, R. W.

    1972-01-01

    The effects of a pulse shape on the transient response of a cylindrical shell are presented. Uniaxial, membrane, and bending theories for isotropic shells were used in this study. In addition to the results of the analytical study, the preliminary results of an experimental study into the generation and measurement of shear waves in a cylindrical shell are included.

  18. Gastropod shell size and architecture influence the applicability of methods used to estimate internal volume.

    PubMed

    Ragagnin, Marilia Nagata; Gorman, Daniel; McCarthy, Ian Donald; Sant'Anna, Bruno Sampaio; de Castro, Cláudio Campi; Turra, Alexander

    2018-01-11

    Obtaining accurate and reproducible estimates of internal shell volume is a vital requirement for studies into the ecology of a range of shell-occupying organisms, including hermit crabs. Shell internal volume is usually estimated by filling the shell cavity with water or sand, however, there has been no systematic assessment of the reliability of these methods and moreover no comparison with modern alternatives, e.g., computed tomography (CT). This study undertakes the first assessment of the measurement reproducibility of three contrasting approaches across a spectrum of shell architectures and sizes. While our results suggested a certain level of variability inherent for all methods, we conclude that a single measure using sand/water is likely to be sufficient for the majority of studies. However, care must be taken as precision may decline with increasing shell size and structural complexity. CT provided less variation between repeat measures but volume estimates were consistently lower compared to sand/water and will need methodological improvements before it can be used as an alternative. CT indicated volume may be also underestimated using sand/water due to the presence of air spaces visible in filled shells scanned by CT. Lastly, we encourage authors to clearly describe how volume estimates were obtained.

  19. Core-shell structure of Miglyol/poly(D,L-lactide)/Poloxamer nanocapsules studied by small-angle neutron scattering.

    PubMed

    Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim

    2005-10-03

    The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.

  20. Hen genetic strain and extended cold storage influence on physical egg quality from cage-free aviary housing system.

    PubMed

    Jones, D R; Karcher, D M; Regmi, P; Robison, C O; Gast, R K

    2018-04-02

    In the United States, there is an increase in need for cage-free eggs in retail and food manufacturing sectors. Understanding the impact of cage-free systems and the corresponding management on egg quality is pertinent as the U.S. industry adapts existing housing and builds new cage-free housing structures. A study was conducted comparing 2 brown shell and 2 white shell hen strains housed in a cage-free aviary system. Each set of eggs were placed in cold storage and assessed at 0, 2, 4, 8, and 12 wk. Eggs were collected at 21, 31, 42, and 60 wk of hen age. A full profile of physical quality measurements was conducted on up to 18 intact eggs for each hen strain/egg storage/hen age combination. Egg weight increased approximately 10 g for brown shell and 14 g for white shell eggs as hens aged. Many of the properties monitored were significantly impacted by all 3 main effects (hen strain, egg storage, and hen age) resulting in 3-way interactions. A brown and a white shell strain had stronger shells (44 N; P < 0.0001) than the remaining brown and white shell strains (42 N and 39 N, respectively). The current study also determined volume of shell, total length, maximum width, and percent length at maximum width to more accurately indicate egg shape than shape index. One brown shell strain produced eggs with the most consistent shape characteristics over the hen ages monitored. White shell eggs from the cage-free aviary housing produced the highest whole-egg total solids between 31 to 60 wk of hen age, whereas brown shell eggs resulted in the most consistent level of whole-egg total solids (22-23.5%). The brown and white shell strains in the current study produce cage-free aviary eggs with distinctive physical quality attributes. The outcomes from this study can be utilized by the U.S. egg industry in planning management strategies and market placement of cage-free eggs.

  1. Effects of egg shell quality and washing on Salmonella Infantis penetration.

    PubMed

    Samiullah; Chousalkar, K K; Roberts, J R; Sexton, M; May, D; Kiermeier, A

    2013-07-15

    The vast majority of eggs in Australia are washed prior to packing to remove dirt and fecal material and to reduce the microbial contamination of the egg shell. The egg contents can be an ideal growth medium for microorganisms which can result in human illness if eggs are stored improperly and eaten raw or undercooked, and it is estimated that egg-related salmonellosis is costing Australia $44 million per year. Egg shell characteristics such as shell thickness, amount of cuticle present, and thickness of individual egg shell layers can affect the ease with which bacteria can penetrate the egg shell and washing could partially or completely remove the cuticle layer. The current study was conducted to investigate the effects of egg washing on cuticle cover and effects of egg shell quality and cuticle cover on Salmonella Infantis penetration of the egg shell. A higher incidence of unfavorable ultrastructural variables of the mammillary layer such as late fusion, type B bodies, type A bodies, poor cap quality, alignment, depression, erosion and cubics were recorded in Salmonella penetrated areas of egg shells. The influence of egg washing on the ability of Salmonella Infantis on the egg shell surface to enter the egg internal contents was also investigated using culture-based agar egg penetration and real-time qPCR based experiments. The results from the current study indicate that washing affected cuticle cover. There were no significant differences in Salmonella Infantis penetration of washed or unwashed eggs. Egg shell translucency may have effects on Salmonella Infantis penetration of the egg shell. The qPCR assay was more sensitive for detection of Salmonella Infantis from egg shell wash and internal contents than traditional microbiological methods. The agar egg and whole egg inoculation experiments indicated that Salmonella Infantis penetrated the egg shells. Egg washing not only can be highly effective at removing Salmonella Infantis from the egg shell surface, but also allows subsequent trans-shell and trans-membrane penetration into the egg. Consequently, it is important to prevent recontamination of the egg after washing. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty.

    PubMed

    Baroud, Gamal; Vant, Christianne; Giannitsios, Demetri; Bohner, Marc; Steffen, Thomas

    2005-01-01

    An experimental biomechanical study conducted on osteoporotic cadaveric vertebrae. 1) To measure the intravertebral shell pressure and injection pressure; and 2) to determine the effect of the vertebral shell on the intravertebral shell pressure and on the injection pressure. Forces that govern cement flow are an essential component of the cement injection process in vertebroplasty. The vertebral shell may play a significant role in confining the flow of cement in the vertebral body and thereby affecting the intravertebral pressure and injection pressure. A small fenestration was created in the left lateral vertebral shell of 14 vertebrae. A valve to open and close the fenestration and a sensor to measure the intravertebral pressure were attached to the opening. A closed fenestration simulated an intact shell, whereas an open fenestration represented a vented shell. Injection pressure and intravertebral pressure at the shell were recorded during a controlled injection. A closed fenestration resulted in a significant increase in the intravertebral pressure at the shell. During the injection, the shell pressure increased on average to approximately 3.54 +/- 2.91 kPa. Conversely, an open fenestration resulted in an instant relaxation of the shell pressure to the ambient pressure of 0 kPa. Additionally, the injection pressure was approximately 97 times higher than the shell pressure. The presence of vertebral shell seems to be important for intravertebral pressure. However, the intravertebral shell pressure adds very little to the injection pressure.

  3. Investigation of mechanical properties and deformation behavior of single-crystal Al-Cu core-shell nanowire generated using non-equilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sarkar, Jit

    2018-06-01

    Molecular dynamics (MD) simulation studies were carried out to generate a cylindrical single-crystal Al-Cu core-shell nanowire and its mechanical properties like yield strength and Young's modulus were evaluated in comparison to a solid aluminum nanowire and hollow copper nanowire which combines to constitute the core-shell structure respectively. The deformation behavior due to changes in the number of Wigner-Seitz defects and dislocations during the entire tensile deformation process was thoroughly studied for the Al-Cu core-shell nanowire. The single-crystal Al-Cu core-shell nanowire shows much higher yield strength and Young's modulus in comparison to the solid aluminum core and hollow copper shell nanowire due to tangling of dislocations caused by lattice mismatch between aluminum and copper. Thus, the Al-Cu core-shell nanowire can be reinforced in different bulk matrix to develop new type of light-weight nanocomposite materials with greatly enhanced material properties.

  4. Business travelers' risk perception of infectious diseases: where are the knowledge gaps, and how serious are they?

    PubMed

    Wynberg, Elke; Toner, Sharyn; Wendt, Judy K; Visser, Leo G; Breederveld, Daan; Berg, Johannes

    2013-01-01

    Many studies have explored the risk perception of frequent business travelers (FBT) toward malaria. However, less is known about their knowledge of other infectious diseases. This study aimed to identify knowledge gaps by determining the risk perception of FBT toward 11 infectious diseases. Our retrospective web-based survey assessed the accuracy of risk perception among a defined cohort of FBT for 11 infectious diseases. We used logistic regression and the chi-square test to determine the association of risk perception with source of travel advice, demographic variables, and features of trip preparation. Surveys were returned by 63% of the 608 self-registered FBT in Rijswijk, and only the 328 completed questionnaires that adhered to our inclusion criteria were used for analysis. The majority (71%) sought pre-travel health advice and used a company health source (83%). Participants seeking company travel health advice instead of external had significantly more accurate risk knowledge (p = 0.03), but more frequently overestimated typhoid risk (odds ratio = 2.03; 95% confidence interval = 1.23-3.34). While underestimation of disease risk was on average 23% more common than overestimation, HIV risk was overestimated by 75% of FBT. More accurate knowledge among FBT seeking company health advice demonstrates that access to in-company travel clinics can improve risk perception. However, there is an obvious need for risk knowledge improvement, given the overall underestimation of risk. The substantial overestimation of HIV risk is probably due to both public and in-company awareness efforts. Conversely, typhoid risk overestimation was statistically associated with seeking company health advice, and therefore specifically reflects the high focus on typhoid fever within Shell's travel clinic. This study serves as a reminder that a knowledge gap toward infectious diseases besides malaria still exists. Our article will explore the future requirements for more targeted education and research among FBT in companies worldwide. © 2012 International Society of Travel Medicine.

  5. Monte Carlo simulations of nematic and chiral nematic shells

    NASA Astrophysics Data System (ADS)

    Wand, Charlie R.; Bates, Martin A.

    2015-01-01

    We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.

  6. Seed-Surface Grafting Precipitation Polymerization for Preparing Microsized Optically Active Helical Polymer Core/Shell Particles and Their Application in Enantioselective Crystallization.

    PubMed

    Zhao, Biao; Lin, Jiangfeng; Deng, Jianping; Liu, Dong

    2018-05-14

    Core/shell particles constructed by polymer shell and silica core have constituted a significant category of advanced functional materials. However, constructing microsized optically active helical polymer core/shell particles still remains as a big academic challenge due to the lack of effective and universal preparation methods. In this study, a seed-surface grafting precipitation polymerization (SSGPP) strategy is developed for preparing microsized core/shell particles with SiO 2 as core on which helically substituted polyacetylene is covalently bonded as shell. The resulting core/shell particles exhibit fascinating optical activity and efficiently induce enantioselective crystallization of racemic threonine. Taking advantage of the preparation strategy, novel achiral polymeric and hybrid core/shell particles are also expected. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Determination of aflatoxin risk components for in-shell Brazil nuts.

    PubMed

    Vargas, E A; dos Santos, E A; Whitaker, T B; Slate, A B

    2011-09-01

    A study was conducted on the risk from aflatoxins associated with the kernels and shells of Brazil nuts. Samples were collected from processing plants in Amazonia, Brazil. A total of 54 test samples (40 kg) were taken from 13 in-shell Brazil nut lots ready for market. Each in-shell sample was shelled and the kernels and shells were sorted in five fractions: good kernels, rotten kernels, good shells with kernel residue, good shells without kernel residue, and rotten shells, and analysed for aflatoxins. The kernel:shell ratio mass (w/w) was 50.2/49.8%. The Brazil nut shell was found to be contaminated with aflatoxin. Rotten nuts were found to be a high-risk fraction for aflatoxin in in-shell Brazil nut lots. Rotten nuts contributed only 4.2% of the sample mass (kg), but contributed 76.6% of the total aflatoxin mass (µg) in the in-shell test sample. The highest correlations were found between the aflatoxin concentration in in-shell Brazil nuts samples and the aflatoxin concentration in all defective fractions (R(2)=0.97). The aflatoxin mass of all defective fractions (R(2)=0.90) as well as that of the rotten nut (R(2)=0.88) were also strongly correlated with the aflatoxin concentration of the in-shell test samples. Process factors of 0.17, 0.16 and 0.24 were respectively calculated to estimate the aflatoxin concentration in the good kernels (edible) and good nuts by measuring the aflatoxin concentration in the in-shell test sample and in all kernels, respectively. © 2011 Taylor & Francis

  8. The design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared

    DOE PAGES

    Lin, Qianglu; Makarov, Nikolay S.; Koh, Weon-kyu; ...

    2014-11-26

    The unique optical properties exhibited by visible emitting core/shell quantum dots with especially thick shells are the focus of widespread study, but have yet to be realized in infrared (IR) -active nanostructures. We apply an effective-mass model to identify PbSe/CdSe core/shell quantum dots as a promising system for achieving this goal. We then synthesize colloidal PbSe/CdSe quantum dots with shell thicknesses of up to 4 nm that exhibit unusually slow hole intra-band relaxation from shell to core states, as evidenced by the emergence of dual emission, i.e., IR photoluminescence from the PbSe core observed simultaneously with visible emission from themore » CdSe shell. In addition to the large shell thickness, the development of slowed intraband relaxation is facilitated by the existence of a sharp core-shell interface without discernible alloying. Growth of thick shells without interfacial alloying or incidental formation of homogenous CdSe nanocrystals was accomplished using insights attained via a systematic study of the dynamics of the cation-exchange synthesis of both PbSe/CdSe as well as the related system PbS/CdS. Finally, we show that the efficiency of the visible photoluminescence can be greatly enhanced by inorganic passivation.« less

  9. Isolation and characterization of melanin pigment from yesso scallop Patinopecten yessoensis

    NASA Astrophysics Data System (ADS)

    Sun, Xiujun; Wu, Biao; Zhou, Liqing; Liu, Zhihong; Dong, Yinghui; Yang, Aiguo

    2017-04-01

    Melanin is one of the essential compounds in the pigments of molluscan shells. However, the effects of melanin on color variations in molluscs are largely unknown. Our previous study suggests that Yesso scallop Patinopecten yessoensis might contain melanin pigment in the dark brown shell. We therefore isolated melanin from the pigmented shells using hydrochloric acid method, and characterized the types of melanin pigments by spectrophotometry. The purified melanin, which was verified by spectrophotometry scanning and HPLC analysis, showed the typical characteristics of melanin absorption spectra and HPLC chromatograms. The contents of pheomelanin and eumelanin in pigmented shells, which were determined by the linear standard curve of melanin at 405 nm and 350 nm absorbance, were 48.23 ± 1.350 and 157.65 ± 5.905 mg, respectively. The present results indicate that the brown-pigmented shells of scallops comprise approximately 76.6% of eumelanin and 23.4% of pheomelanin, which supports the presence of eumelanin-rich pigment in scallop shells. Therefore, the combination of hydrochloric acid extraction and spectrophotometric quantification is a rapid and efficient method to isolate and quantify melanin in shells. This will facilitate the melanin studies related to shell color polymorphism and the selective breeding of bivalves with different shell colors.

  10. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    NASA Astrophysics Data System (ADS)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  11. Post-buckling of a pressured biopolymer spherical shell with the mode interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2018-03-01

    Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.

  12. Design of Functional Materials based on Liquid Crystalline Droplets.

    PubMed

    Miller, Daniel S; Wang, Xiaoguang; Abbott, Nicholas L

    2014-01-14

    This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems.

  13. Deployment of Large-Size Shell Constructions by Internal Pressure

    NASA Astrophysics Data System (ADS)

    Pestrenin, V. M.; Pestrenina, I. V.; Rusakov, S. V.; Kondyurin, A. V.

    2015-11-01

    A numerical study on the deployment pressure (the minimum internal pressure bringing a construction from the packed state to the operational one) of large laminated CFRP shell structures is performed using the ANSYS engineering package. The shell resists both membrane and bending deformations. Structures composed of shell elements whose median surface has an involute are considered. In the packed (natural) states of constituent elements, the median surfaces coincide with their involutes. Criteria for the termination of stepwise solution of the geometrically nonlinear problem on determination of the deployment pressure are formulated, and the deployment of cylindrical, conical (full and truncated cones), and large-size composite shells is studied. The results obtained are shown by graphs illustrating the deployment pressure in relation to the geometric and material parameters of the structure. These studies show that large pneumatic composite shells can be used as space and building structures, because the deployment pressure in them only slightly differs from the excess pressure in pneumatic articles made from films and soft materials.

  14. Discontinuity surfaces and event stratigraphy of Okha Shell Limestone Member: Implications for Holocene sea level changes, western India

    NASA Astrophysics Data System (ADS)

    Bhonde, Uday; Desai, Bhawanisingh G.

    2011-08-01

    The Okha Shell Limestone Member of Chaya Formation is the coarse grained, shell rich deposit commonly recognized as the beach rocks. It has been age bracketed between Late Pleistocene and Holocene. Late Quaternary sea level changes have been studied with beach rocks along the Saurashtra coastal region. The present study has been carried out in the Okhamandal area of the Saurashtra peninsula especially on the Okha Shell Limestone Member as exposed at various locations along the coast from north to south. Temporal and spatial correlations of the observations have revealed three events in the Okha Shell Limestone Member of Chaya Formation that are correlated laterally. The events show depositional breaks represented by discontinuity surfaces, the taphofacies varieties and ichnological variations. The present study in the context of available geochrnological data of the region suggests a prominent depositional break representing low sea level stand (regression) during an Early Holocene during the deposition of Okha Shell Limestone Member.

  15. Double shell planar experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.

    2017-10-01

    The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.

  16. Geodynamic Modeling of Planetary Ice-Oceans: Evolution of Ice-Shell Thickness in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2016-12-01

    Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.

  17. Rhythmic patterns in ancient shells: Can we reconstruct sub-annual cyclicity in trace element and stable isotope profiles from rudist bivalves?

    NASA Astrophysics Data System (ADS)

    de Winter, N.; Sinnesael, M.; Vansteenberge, S.; Goderis, S.; Snoeck, C.; Van Malderen, S. J. M.; Vanhaecke, F. F.; Claeys, P.

    2017-12-01

    Well-preserved shells of Torreites rudists from the Late Campanian Saiwan Formation in Oman exhibit fine internal layering. These fine (±20 µm) laminae are rhythmically bundled (±400 µm) and subdivide the shells' larger scale annual lamination (±15 mm), suggesting the presence of several interfering cycles in shell growth rate. The aim of the present study is to determine the duration and chemical signature of these rhythmic variations in shell composition. To achieve this, a range of micro-analytical techniques is applied on cross sections through the shells. Firstly, microscopy-based layer counting and colorimetric analysis are carried out on thin sections of shell calcite. Secondly, X-Ray Fluorescence (XRF) and Fourier Transform InfraRed (FTIR) mapping of cross sections of the shells reveal chemical and structural differences between laminae in 2D. Thirdly, high-resolution XRF (25 µm) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS; 10 µm) trace element profiles are used to quantify variations in chemical composition between shell laminae. Fourthly, annual chronology is established based on micro-sampled stable carbon and oxygen stable isotope measurements (250 µm) along the growth axis of the shells. Finally, spectral analysis routines are applied to extract rhythmic patterns matched to the shell laminae from the structural, chemical and colorimetric data. Combining these methods allows for a full evaluation of the structural and chemical characteristics as well as the timing of sub-annual lamination in rudist shells. The results of this study shed light on the external factors that influenced growth rates in rudist bivalves. A better understanding of the timing of deposition of these laminae allows them to be used to improve age models of geochemical records in rudist shells. Characterization of small scale variations in shell composition will characterize the uncertainties contained within lower resolution proxy records from these fossil bivalves. Finally, the study of these laminae enables the reconstruction of sub-annual cyclicity in the environment of Late Cretaceous rudist bivalves. This may in turn shed light on the mechanics of climate in this shallow marine hothouse setting, which provide an analogue of future climate in the light of anthropogenic climate change.

  18. Fabrication of core-shell micro/nanoparticles for programmable dual drug release by emulsion electrospraying

    NASA Astrophysics Data System (ADS)

    Wang, Yazhou; Zhang, Yiqiong; Wang, Bochu; Cao, Yang; Yu, Qingsong; Yin, Tieying

    2013-06-01

    The study aimed at constructing a novel drug delivery system for programmable multiple drug release controlled with core-shell structure. The core-shell structure consisted of chitosan nanoparticles as core and polyvinylpyrrolidone micro/nanocoating as shell to form core-shell micro/nanoparticles, which was fabricated by ionic gelation and emulsion electrospray methods. As model drug agents, Naproxen and rhodamine B were encapsulated in the core and shell regions, respectively. The core-shell micro/nanoparticles thus fabricated were characterized and confirmed by scanning electron microscope, transmission electron microscope, and fluorescence optical microscope. The core-shell micro/nanoparticles showed good release controllability through drug release experiment in vitro. It was noted that a programmable release pattern for dual drug agents was also achieved by adjusting their loading regions in the core-shell structures. The results indicate that emulsion electrospraying technology is a promising approach in fabrication of core-shell micro/nanoparticles for programmable dual drug release. Such a novel multi-drug delivery system has a potential application for the clinical treatment of cancer, tuberculosis, and tissue engineering.

  19. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    NASA Astrophysics Data System (ADS)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  20. Porous Core-Shell Nanostructures for Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  1. A generic double-curvature piezoelectric shell energy harvester: Linear/nonlinear theory and applications

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Hu, S. D.; Tzou, H. S.

    2014-12-01

    Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.

  2. Impact Crater Morphology and the Structure of Europa's Ice Shell

    NASA Astrophysics Data System (ADS)

    Silber, Elizabeth A.; Johnson, Brandon C.

    2017-12-01

    We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.

  3. Whispering gallery modes in a spherical microcavity with a photoluminescent shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A.

    2015-10-15

    Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.

  4. Can acceptable quality angel food cakes be made using pasteurized shell eggs? The effects of processing factors on functional properties of angel food cakes

    USDA-ARS?s Scientific Manuscript database

    Due to recent incidences of Salmonella contamination, the market for pasteurized shell eggs is rapidly growing. One objection to using pasteurized shell eggs is the belief that they will produce unacceptable baked product (e.g., angel food cakes). In the present study, shell eggs were pasteurized us...

  5. The microstructure and magnetic properties of Cu/CuO/Ni core/multi-shell nanowire arrays

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Shi, Jie; Zhang, Xiaofeng; Hao, Shijie; Liu, Yinong; Feng, Chun; Cui, Lishan

    2018-04-01

    Multifunctional metal/oxide/metal core/multi-shell nanowire arrays were prepared mostly by physical or chemical vapor deposition. In our study, the Cu/CuO/Ni core/multi-shell nanowire arrays were prepared by AAO template-electrodeposition and oxidation processes. The Cu/Ni core/shell nanowire arrays were prepared by AAO template-electrodeposition method. The microstructure and chemical compositions of the core/multi-shell nanowires and core/shell nanowires have been characterized using transmission electron microscopy with HADDF-STEM and X-ray diffraction. Magnetization measurements revealed that the Cu/CuO/Ni and Cu/Ni nanowire arrays have high coercivity and remanence ratio.

  6. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  7. Ecological studies on the breeding of Aedes aegypti and other mosquitos in shells of the giant African snail Achatina fulica

    PubMed Central

    Trpis, Milan

    1973-01-01

    The breeding of larvae of Aedes aegypti, Aedes simpsoni, and Eretmapodites quinquevittatus in empty shells of Achatina fulica was studied in the coastal zone of Dar es Salaam, Tanzania. The average density of shells was estimated to be 228 per ha. From 11 to 35% were positive for mosquito larvae. A. aegypti were found in 82-84% of positive shells; A. simpsoni in 8-13%. On Msasani peninsula, during the 3-month rainy season April—June 1970, the larval density of A. aegypti in shells was estimated at 1 100 per ha, that of A. simpsoni and E. quinquevittatus being estimated at 60 and 280 larvae per ha, respectively. Empty shells of A. fulica may contain up to 250 ml of water (average: 56.5 ml). The number of larvae per shell varies from 1 to 35 (average: 8.4) and it was estimated that, depending on the availability of food, and other factors, approximately 10 ml of water are required per larva. Viable eggs of A. aegypti were still to be found in 4% of the shells at the end of the dry season. PMID:4148745

  8. THREE-DIMENSIONAL MODELING OF THE DYNAMICS OF THERAPEUTIC ULTRASOUND CONTRAST AGENTS

    PubMed Central

    Hsiao, Chao-Tsung; Lu, Xiaozhen; Chahine, Georges

    2010-01-01

    A 3-D thick-shell contrast agent dynamics model was developed by coupling a finite volume Navier-Stokes solver and a potential boundary element method flow solver to simulate the dynamics of thick-shelled contrast agents subjected to pressure waves. The 3-D model was validated using a spherical thick-shell model validated by experimental observations. We then used this model to study shell break-up during nonspherical deformations resulting from multiple contrast agent interaction or the presence of a nearby solid wall. Our simulations indicate that the thick viscous shell resists the contrast agent from forming a re-entrant jet, as normally observed for an air bubble oscillating near a solid wall. Instead, the shell thickness varies significantly from location to location during the dynamics, and this could lead to shell break-up caused by local shell thinning and stretching. PMID:20950929

  9. Effect of five year storage on total phenolic content and antioxidant capacity of almond (Amygdalus communisL.) hull and shell from different genotypes.

    PubMed

    Moosavi Dolatabadi, Khadijeh Sadat; Dehghan, Gholamreza; Hosseini, Siavash; Jahanban Esfahlan, Ali

    2015-01-01

    Almond (Prunus amygdalus) hull and shell are agricultural by-products that are a source of phenolic compounds.The processing of almond produce shell and hull, accounts for more than 50% by dry weight of the almond fruits. Recently, more studies have focused on the influence of storage conditions and postharvest handling on the nutritional quality of fruits, especially the antioxidant phenolics. In this study, influence of long-term storage (five years) on the total phenolic and antioxidant capacity of almond hull and shell from different genotypes was evaluated. The fruits of subjected genotypes were collected and their hull and shell were separated. They were dried and reduced to fine powder. This powder stored at room temperature for five years. The total phenolic content (TPC) and bioactivities (antioxidant potential: DPPH and ABTS radical scavenging and reducing power) of extracts were evaluated using spectrophotometric methods. It was found that TPC content and bioactivity levels in the stored almond hull and shell were different, compared to the hulls and shells which were evaluated in 2007. S1-4 genotype had the highest TPC and reducing power in its hull and shell.Low correlation coefficient was observed between phenolic content and the DPPH radical scavenging percentage in hull and shell extract. For the first time, results of this investigation showed that storage can influence the antioxidant and antiradical potential of almond hull and shell.

  10. Molluscan shell colour.

    PubMed

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  11. Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study

    PubMed Central

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Xing, Lei; Fahrig, Rebecca

    2015-01-01

    Abstract. Thanks to the current advances in nanoscience, molecular biochemistry, and x-ray detector technology, x-ray fluorescence computed tomography (XFCT) has been considered for molecular imaging of probes containing high atomic number elements, such as gold nanoparticles. The commonly used XFCT imaging performed with K-shell x rays appears to have insufficient imaging sensitivity to detect the low gold concentrations observed in small animal studies. Low energy fluorescence L-shell x rays have exhibited higher signal-to-background ratio and appeared as a promising XFCT mode with greatly enhanced sensitivity. The aim of this work was to experimentally demonstrate the feasibility of L-shell XFCT imaging and to assess its achievable sensitivity. We built an experimental L-shell XFCT imaging system consisting of a miniature x-ray tube and two spectrometers, a silicon drift detector (SDD), and a CdTe detector placed at ±120  deg with respect to the excitation beam. We imaged a 28-mm-diameter water phantom with 4-mm-diameter Eppendorf tubes containing gold solutions with concentrations of 0.06 to 0.1% Au. While all Au vials were detectable in the SDD L-shell XFCT image, none of the vials were visible in the CdTe L-shell XFCT image. The detectability limit of the presented L-shell XFCT SDD imaging setup was 0.007% Au, a concentration observed in small animal studies. PMID:26839910

  12. Ion nose spectral structures observed by the Van Allen Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.

    Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less

  13. Ion nose spectral structures observed by the Van Allen Probes

    DOE PAGES

    Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...

    2016-11-22

    Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less

  14. Ion nose spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.

    2016-12-01

    We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+ and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses, and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted by using a steady state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge-exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.

  15. Morphological diversity of microstructures occurring in selected recent bivalve shells and their ecological implications

    NASA Astrophysics Data System (ADS)

    Brom, Krzysztof Roman; Szopa, Krzysztof

    2016-12-01

    Environmental adaptation of molluscs during evolution has led to form biomineral exoskeleton - shell. The main compound of their shells is calcium carbonate, which is represented by calcite and/or aragonite. The mineral part, together with the biopolymer matrix, forms many types of microstructures, which are differ in texture. Different types of internal shell microstructures are characteristic for some bivalve groups. Studied bivalve species (freshwater species - duck mussel (Anodonta anatina Linnaeus, 1758) and marine species - common cockle (Cerastoderma edule Linnaeus, 1758), lyrate Asiatic hard clam (Meretrix lyrata Sowerby II, 1851) and blue mussel (Mytilus edulis Linnaeus, 1758)) from different locations and environmental conditions, show that the internal shell microstructure with the shell morphology and thickness have critical impact to the ability to survive in changing environment and also to the probability of surviving predator attack. Moreover, more detailed studies on molluscan structures might be responsible for create mechanically resistant nanomaterials.

  16. Fabrication of slender elastic shells by the coating of curved surfaces

    NASA Astrophysics Data System (ADS)

    Lee, A.; Brun, P.-T.; Marthelot, J.; Balestra, G.; Gallaire, F.; Reis, P. M.

    2016-04-01

    Various manufacturing techniques exist to produce double-curvature shells, including injection, rotational and blow molding, as well as dip coating. However, these industrial processes are typically geared for mass production and are not directly applicable to laboratory research settings, where adaptable, inexpensive and predictable prototyping tools are desirable. Here, we study the rapid fabrication of hemispherical elastic shells by coating a curved surface with a polymer solution that yields a nearly uniform shell, upon polymerization of the resulting thin film. We experimentally characterize how the curing of the polymer affects its drainage dynamics and eventually selects the shell thickness. The coating process is then rationalized through a theoretical analysis that predicts the final thickness, in quantitative agreement with experiments and numerical simulations of the lubrication flow field. This robust fabrication framework should be invaluable for future studies on the mechanics of thin elastic shells and their intrinsic geometric nonlinearities.

  17. Diagenetic changes in Concholepas concholepas shells (Gastropoda, Muricidae) in the hyper-arid conditions of Northern Chile - implications for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Guzmán, N.; Dauphin, Y.; Cuif, J. P.; Denis, A.; Ortlieb, L.

    2009-02-01

    Variations in the chemical composition of fossil biogenic carbonates, and in particular of mollusc shells, have been used in a range of palaeoenvironmental reconstructions. It is of primary importance, therefore, to detect and understand the diagenetic processes that may modify the original chemical signature. This microstructural and biogeochemical study focuses on modern and fossil (Holocene and Pleistocene) shells of a littoral gastropod of Northern Chile, and on the characterization of mineral component transformations at the nanometric scale and concomitant intracrystalline organic compound modifications. The inner aragonite layer of the shell exhibits more complex deteriorations than the calcite layer. This preliminary study confirms that physical and chemical alterations of various components of mollusc shell biocrystals are complex and might manifest in different ways even within a single individual. The single criterion of determining the mineralogical composition to verify the conservation state of shell samples is insufficient.

  18. Diagenetic changes in Concholepas concholepas shells (Gastropoda, Muricidae) in the hyper-arid conditions of Northern Chile - implications for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Guzman, N.; Dauphin, Y.; Cuif, J. P.; Denis, A.; Ortlieb, L.

    2008-02-01

    Variations on chemical composition in fossil biogenic carbonates, and in particular of mollusk shells, have been used in a range of palaeoenvironmental reconstructions. Therefore, it is of primary importance to detect and understand the diagenetic processes that may modify the original chemical signature. This microstructural and biogeochemical study focuses on modern and fossil (Pleistocene and Holocene) shells of a littoral gastropod of Northern Chile, and on the characterization of mineral component transformations at the nanometric scale and concomitant intracrystalline organic compound modifications. The inner aragonite layer of the shell exhibits more complex deteriorations than the calcite layer. This preliminary study confirms that physical and chemical alterations of various components of mollusk shell biocrystals are complex and might manifest in different ways even within a single individual. The single criterion of determining the mineralogical composition to attest shell sample conservation state should not be considered as sufficient.

  19. Ocean Acidification Causes Increased Calcium Carbonate Turnover during Larval Shell Formation

    NASA Astrophysics Data System (ADS)

    Frieder, C.; Pan, F.; Applebaum, S.; Manahan, D. T.

    2016-02-01

    Mollusca is a major taxon for studies of the evolution and mechanisms of calcification. Under current and future ocean change scenarios, decreases in shell size have been observed in many molluscan species during early development. The mechanistic basis for these decreases are of significant interest. In this study, Pacific oyster larvae (Crassostrea gigas) reared at aragonite undersaturation (Ω < 1) accreted just a third of shell mass relative to control (Ω >> 1). Coupling radioisotope tracer assays with mineral mass measurements allowed calculation of calcification budgets for first shell formation in veliger stage larvae. Three primary mechanisms (in order of increasing effect) contributed to the change in shell mass at undersaturation: delayed onset of calcification, increased dissolution rates, and decreased net calcification rates. The observation of dissolution indicates turnover of the newly formed shell, and physicochemical constraints of undersaturation provide a mechanistic basis for decreased calcification.

  20. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe 3O 4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO 4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly,more » our study offers a general approach to enhance Pd catalysis in acid for ORB.« less

  1. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; ...

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe 3O 4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO 4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly,more » our study offers a general approach to enhance Pd catalysis in acid for ORB.« less

  2. Theory of quasi-spherical accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2012-02-01

    A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.

  3. An Investigation of the Mold-Flux Performance for the Casting of Cr12MoV Steel Using a Mold Simulator Technique

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin; Xu, Chao; Zhang, Chen

    2017-08-01

    Mold flux plays important roles in the process of continuous casting. In this article, the performance of mold flux for the casting of Cr12MoV steel was investigated by using a mold simulator. The results showed that the slag film formed in the gap between the initial shell and mold hot surface is thin and discontinuous during the casting process with the Flux BM, due to the absorption of chromic oxide inclusions into the liquid slag, while the slag film formed in the case of the optimized Flux NEW casting process is uniform. The main precipitated crystals in Flux BM slag film are cuspidine (Ca4Si2O7F2) and Cr3O4, but only Ca4Si2O7F2 precipitated in the Flux NEW case. Besides, both the responding temperature and heat flux in the case of Flux BM are relatively higher and fluctuate in a larger amplitude. The surface of the shell obtained in the case of the Flux BM experiment is quite uneven, and many severe depressions, cracks, and entrapped slags are observed in the surface due to the lack of lubrication. However, the obtained shell surface in the case of the Flux NEW shows good surface quality due to the addition of B2O3 and the adjustment of basicity, which can compensate for the negative effects of the mold-flux properties caused by the absorption of chromic oxide during the casting process.

  4. Preparation of polyaniline/PbS core-shell nano/microcomposite and its application for photocatalytic H2 electrogeneration from H2O.

    PubMed

    Rabia, Mohamed; Mohamed, H S H; Shaban, Mohamed; Taha, S

    2018-01-18

    Lead sulfide (PbS) and polyaniline (PANI) nano/microparticles were prepared. Then, PANI/PbS core-shell nano/microcomposites (I, II, and III) were prepared by oxidative polymerization of different aniline concentrations (0.01, 0.03, and 0.05 M), respectively, in the presence of 0.05 M PbS. FT-IR, XRD, SEM, HR-TEM, and UV-Vis analyses were carried out to characterize the samples. From the FT-IR data, there are redshifts in PbS and PANI nano/microparticles bands in comparison with PANI/PbS nano/microcomposites. The average crystallite sizes of PANI/PbS core-shell nano/microcomposites (I, II, and III) from XRD analyses were 46.5, 55, and 42.16 nm, respectively. From the optical analyses, nano/microcomposite (II) has the optimum optical properties with two band gaps values of 1.41 and 2.79 eV. Then, the nano/microcomposite (II) membrane electrode supported on ITO glass was prepared and applied on the photoelectrochemical (PEC) H 2 generation from H 2 O. The characteristics current-voltage and current-time behaviors were measured at different wavelengths from 390 to 636 nm. Also, the incident photon-to-current conversion efficiency (IPCE) under monochromatic illumination condition was calculated. The optimum values for IPCE were 36.5 and 35.2% at 390 and 405 nm, respectively. Finally, a simple mechanism for PEC H 2 generation from H 2 O using the nano/microcomposite (II) membrane electrode was mentioned.

  5. Tuned range separated hybrid functionals for solvated low bandgap oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, Thiago B. de, E-mail: thiago.branquinho-de-queiroz@uni-bayreuth.de; Kümmel, Stephan

    2015-07-21

    The description of charge transfer excitations has long been a challenge to time dependent density functional theory. The recently developed concept of “optimally tuned range separated hybrid (OT-RSH) functionals” has proven to describe charge transfer excitations accurately in many cases. However, describing solvated or embedded systems is yet a challenge. This challenge is not only computational but also conceptual, because the tuning requires identifying a specific orbital, typically the highest occupied one of the molecule under study. For solvated molecules, this orbital may be delocalized over the solvent. We here demonstrate that one way of overcoming this problem is tomore » use a locally projected self-consistent field diagonalization on an absolutely localized molecular orbital expansion. We employ this approach to determine ionization energies and the optical gap of solvated oligothiophenes, i.e., paradigm low gap systems that are of relevance in organic electronics. Dioxane solvent molecules are explicitly represented in our calculations, and the ambiguities of straightforward parameter tuning in solution are elucidated. We show that a consistent estimate of the optimal range separated parameter (ω) at the limit of bulk solvation can be obtained by gradually extending the solvated system. In particular, ω is influenced by the solvent beyond the first coordination sphere. For determining ionization energies, a considerable number of solvent molecules on the first solvation shell must be taken into account. We demonstrate that accurately calculating optical gaps of solvated systems using OT-RSH can be done in three steps: (i) including the chemical environment when determining the range-separation parameter, (ii) taking into account the screening due to the solvent, and (iii) using realistic molecular geometries.« less

  6. A Qualitative Approach to the Evaluation of Expert Systems Shells.

    ERIC Educational Resources Information Center

    Slawson, Dean A.; And Others

    This study explores an approach to the evaluation of expert system shells using case studies. The methodology and some of the results of an evaluation of the prototype development of an expert system using the shell "M1" are detailed, including a description of the participants and the project, the data collection process and materials,…

  7. β decay of Si 38 , 40 ( T z = + 5 , + 6 ) to low-lying core excited states in odd-odd P 38 , 40 isotopes

    DOE PAGES

    Tripathi, Vandana; Lubna, R. S.; Abromeit, B.; ...

    2017-02-08

    Low-lying excited states in P 38,40 have been identified in the β decay of T z=+5,+6, Si 38,40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1 + and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N=20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1hmore » states in the even-A phosphorus isotopes. States in P 40 with N=25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N≈28. The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.« less

  8. Historical approaches to post-combat disorders

    PubMed Central

    Jones, Edgar

    2006-01-01

    Almost every major war in the last century involving western nations has seen combatants diagnosed with a form of post-combat disorder. Some took a psychological form (exhaustion, combat fatigue, combat stress reaction and post-traumatic stress disorder), while others were characterized by medically unexplained symptoms (soldier's heart, effort syndrome, shell shock, non-ulcer dyspepsia, effects of Agent Orange and Gulf War Syndrome). Although many of these disorders have common symptoms, the explanations attached to them showed considerable diversity often reflected in the labels themselves. These causal hypotheses ranged from the effects of climate, compressive forces released by shell explosions, side effects of vaccinations, changes in diet, toxic effects of organophosphates, oil-well fires or depleted-uranium munitions. Military history suggests that these disorders, which coexisted in the civilian population, reflected popular health fears and emerged in the gaps left by the advance of medical science. While the current Iraq conflict has yet to produce a syndrome typified by medically unexplained symptoms, it is unlikely that we have seen the last of post-combat disorders as past experience suggests that they have the capacity to catch both military planners and doctors by surprise. PMID:16687259

  9. β decay of Si 38 , 40 ( T z = + 5 , + 6 ) to low-lying core excited states in odd-odd P 38 , 40 isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Vandana; Lubna, R. S.; Abromeit, B.

    Low-lying excited states in P 38,40 have been identified in the β decay of T z=+5,+6, Si 38,40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1 + and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N=20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1hmore » states in the even-A phosphorus isotopes. States in P 40 with N=25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N≈28. The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.« less

  10. Quantum dots coupled ZnO nanowire-array panels and their photocatalytic activities.

    PubMed

    Liao, Yulong; Que, Wenxiu; Zhang, Jin; Zhong, Peng; Yuan, Yuan; Qiu, Xinku; Shen, Fengyu

    2013-02-01

    Fabrication and characterization of a heterojunction structured by CdS quantum dots@ZnO nanowire-array panels were presented. Firstly, ZnO nanowire-array panels were prepared by using a chemical bath deposition approach where wurtzite ZnO nanowires with a diameter of about 100 nm and 3 microm in length grew perpendicularly to glass substrate. Secondly, CdS quantum dots were deposited onto the surface of the ZnO nanowire-arrays by using successive ion layer absorption and reaction method, and the CdS shell/ZnO core heterojunction were thus obtained. Field emission scanning electron microscopy and transmission electron microscope were employed to characterize the morphological properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. X-ray diffraction was adopted to characterize the crystalline properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. Methyl orange was taken as a model compound to confirm the photocatalytic activities of the CdS shell/ZnO core heterojunction. Results indicate that CdS with narrow band gap not only acts as a visible-light sensitizer but also is responsible for an effective charge separation.

  11. The origin of X-ray protrusions in the VELA supernova remnant

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    We propose a possible explanation for the formation of X-ray protrusions in the Vela SNR, recently observed by the ROSAT X-ray telescope (Aschenbach, Egger & Trumper, 1995, Nature, 373, 587). We suggest that the highly asymmetric shape of the Vela SNR is the result of the interaction of the SN ejecta/shock with the pre-existing wind-driven shell blown-up in a medium with a density gradient (perpendicular to the Galactic plane). The interaction of the radiative (north-east) half of the remnant, approaching towards the Galactic plane, with dense obstacles (cloudlets or wind zones of stars) can produce X-ray "bullets" radially moving beyond the SNR boundary. These "bullets" originate due to the cooling and condensation of a gas swept-up by converging conical shocks arising behind the dense obstacles overtaken by the SN shock. The X-ray protrusions observed in the western part of the remnant might be explained by outflows of hot gas of the SNR's interior emanating through the gaps in the shell. The origin of the X-ray "jet" (Markwardt & Ogelman, 1995, Nature, 375, 40) in the central part of the Vela SNR is also discussed.

  12. New low-energy 0 + state and shape coexistence in Ni 70

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop, C. J.; Crider, B. P.; Liddick, S. N.

    2015-12-01

    In recent models, the neutron-rich Ni isotopes around N = 40 are predicted to exhibit multiple low-energy excited 0(+) states attributed to neutron and proton excitations across both the N = 40 and Z = 28 shell gaps. In Ni-68, the three observed 0(+) states have been interpreted in terms of triple shape coexistence between spherical, oblate, and prolate deformed shapes. In the present work a new (0(2)(+)) state at an energy of 1567 keV has been discovered in Ni-70 by using beta-delayed, gamma-ray spectroscopy following the decay of Co-70. The precipitous drop in the energy of the prolate-deformed 0(+)more » level between Ni-68 and Ni-70 with the addition of two neutrons compares favorably with results of Monte Carlo shell-model calculations carried out in the large fpg(9/2)d(5/2) model space, which predict a 0(2)(+) state at 1525 keV in Ni-70. The result extends the shape-coexistence picture in the region to Ni-70 and confirms the importance of the role of the tensor component of the monopole interaction in describing the structure of neutron-rich nuclei.« less

  13. A Mid-IR Census of Dusty Supernovae From the Past Decade In Preparation for JWST

    NASA Astrophysics Data System (ADS)

    Fox, Ori; Andrews, Jennifer; Arendt, Rick; Clayton, Geoff; Dwek, Eli; Filippenko, Alex; Johansson, Joel; Kelly, Patrick; Krafton, Kelsie; Marston, Tony; Mauerhan, Jon; Szalai, Tamas; Van Dyk, Schuyler

    2018-05-01

    Over the past decade, our team has shown that a surprising number of different supernova (SN) subclasses have members that exhibit mid-infrared (mid-IR) emission from warm dust at late times (>100 days post-explosion). This work has used Spitzer 3.6 and 4.5 micron imaging to constrain the dust origin and heating mechanisms, but a number of questions still remain. How much dust can SNe IIP produce in their ejecta? What progenitor can produce such extreme mass-loss events required to form the large, dense, pre-existing dust shells observed in so many cases? Many of these SNe remain bright today, in some cases more than a decade after discovery. Continued mid-IR monitoring is necessary to answer these questions by measuring the full extent of either the newly formed dust mass or pre-existing dust shell. Furthermore, Spitzer observations of both old and new SNe will provide up to date flux estimates as we prepare for continued observations with JWST. This proposal will cap off nearly a decade of work and bridge the gap to the first few cycles of JWST.

  14. Beta-Delayed Neutron Spectroscopy of 72Co with VANDLE

    NASA Astrophysics Data System (ADS)

    Keeler, Andrew; Grzywacz, Robert; King, Thomas; Taylor, Steven; Paulauskas, Stanley; Zachary, Christopher; Vandle Collaboration

    2017-09-01

    Measurements of simple, closed-shell isotopes far from stability provide important benchmarks for nuclear models and are a key constraint in r-process calculations. In particular, r-process models are sensitive to beta decay lifetimes and branching ratios of these neutron-rich isotopes. In this experiment, the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was used to observe decays of nuclei produced by the fragmentation of 82Se at the National Superconducting Cyclotron Laboratory (NSCL). The neutron and gamma emissions of 72Co were measured to map the beta strength distribution (S_beta) above the neutron separation energy and infer the size of the Z = 28 shell gap in the 78Ni region. An implantation detector made of a radiation-hardened, inorganic scintillator was used to correlate implanted ions with beta decays as well as provide a start signal for the neutron Time of Flight measurement. Funded by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DE-NA0002132 and by the Office of Nuclear Physics, U.S. Department of Energy under Awards No. DE-FG02-96ER40983 (UTK).

  15. Properties of Concrete partially replaced with Coconut Shell as Coarse aggregate and Steel fibres in addition to its Concrete volume

    NASA Astrophysics Data System (ADS)

    Kalyana Chakravarthy, P. R.; Janani, R.; Ilango, T.; Dharani, K.

    2017-03-01

    Cement is a binder material with various composition of Concrete but instantly it posses low tensile strength. The study deals with mechanical properties of that optimized fiber in comparison with conventional and coconut shell concrete. The accumulation of fibers arbitrarily dispersed in the composition increases the resistance to cracking, deflection and other serviceability conditions substantially. The steel fiber in extra is one of the revision in coconut shell concrete and the outcome of steel fiber in coconut shell concrete was to investigate and compare with the conventional concrete. For the given range of steel fibe from 0.5 to 2.0%, 12 beams and 36 cylindrical specimens were cast and tested to find the mechanical properties like flexural strength, split tensile, impact resistance and the modulus of elasticity of both conventional and coconut shell concrete has been studied and the test consequences are compared with the control concrete and coconut shell concrete for M25 Grade. It is fulfilled that, the steel fibers used in this venture has shown significant development in all the properties of conventional and coconut shell concrete while compared to controlled conventional and coconut shell concrete like, Flexural strength by 6.67 % for 1.0 % of steel fiber in conventional concrete and by 5.87 % for 1.5 % of steel fiber in coconut shell concrete.

  16. Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)

    NASA Astrophysics Data System (ADS)

    Lugovoi, P. Z.; Meish, V. F.

    2017-09-01

    Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.

  17. Growth of InAs/InP core-shell nanowires with various pure crystal structures.

    PubMed

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A

    2012-07-20

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.

  18. Paleoceanographic conditions at approximately 20 and 70 ka recorded in Kikaithyris hanzawai (Brachiopoda) shells

    NASA Astrophysics Data System (ADS)

    Takizawa, Mamoru; Takayanagi, Hideko; Yamamoto, Koshi; Abe, Osamu; Sasaki, Keiichi; Iryu, Yasufumi

    2017-10-01

    The δ13C and δ18O values of fossil brachiopod shells have been widely used as paleoenvironmental proxies. In this study, we investigated intrashell and intraspecific variations in the isotopic and minor element concentrations of well-preserved shells of the brachiopod Kikaithyris hanzawai (Yabe) from the last glacial period (∼20 ka [Last Glacial Maximum; LGM] and ∼70 ka [Marine Isotope Stage 4; MIS4]), collected in the Central Ryukyus, and used these data to estimate the paleoceanographic conditions (seawater temperature, concentration of dissolved inorganic carbon [DIC], and δ13C value of DIC [δ13CDIC]). The δ13C and δ18O profiles along the maximum growth axis, obtained from the inner shell surface, show three distinct intervals, corresponding to changes in shell morphology. These results suggest that the bulk isotopic compositions of brachiopods with complex shell morphologies are unsuitable for paleoenvironmental reconstructions. Nevertheless, there exists a specific shell portion with relatively small intrashell and intraspecific variations. The past seawater temperatures derived from the δ18O values of this portion are consistent with the alkenone- and planktic foraminiferal Mg/Ca-based past seawater temperatures reported in previous studies. The past δ13CDIC values estimated from the δ13C values of the specific shell portion are within the range of the past δ13CDIC values calculated from known atmospheric and oceanographic parameters. The past DIC concentrations reconstructed from the brachiopod-based δ13CDIC values are lower than the present concentrations in the East China Sea, which can be explained by low partial pressure of CO2 during the last glacial period. These results indicate that the δ13C and δ18O values obtained from K. hanzawai shells are potential paleoenvironmental indicators. The intrashell and intraspecific variations in the K. hanzawai shells are different for each minor element. Some anomalously high Mn and Fe concentrations in the shells are probably caused by metabolic factor(s), not by meteoric diagenesis. This suggests that the minor element concentrations are useful but not perfect for distinguishing diagenetically altered and unaltered portions of the shells of K. hanzawai in the studied succession.

  19. Buckling and Damage Resistance of Transversely-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Wardle, Brian L.

    1998-01-01

    Experimental and numerical work was conducted to better understand composite shell response to transverse loadings which simulate damage-causing impact events. The quasi-static, centered, transverse loading response of laminated graphite/epoxy shells in a [+/-45(sub n)/O(sub n)](sub s) layup having geometric characteristics of a commercial fuselage are studied. The singly-curved composite shell structures are hinged along the straight circumferential edges and are either free or simply supported along the curved axial edges. Key components of the shell response are response instabilities due to limit-point and/or bifurcation buckling. Experimentally, deflection-controlled shell response is characterized via load-deflection data, deformation-shape evolutions, and the resulting damage state. Finite element models are used to study the kinematically nonlinear shell response, including bifurcation, limit-points, and postbuckling. A novel technique is developed for evaluating bifurcation from nonlinear prebuckling states utilizing asymmetric spatial discretization to introduce numerical perturbations. Advantages of the asymmetric meshing technique (AMT) over traditional techniques include efficiency, robustness, ease of application, and solution of the actual (not modified) problems. The AMT is validated by comparison to traditional numerical analysis of a benchmark problem and verified by comparison to experimental data. Applying the technique, bifurcation in a benchmark shell-buckling problem is correctly identified. Excellent agreement between the numerical and experimental results are obtained for a number of composite shells although predictive capability decreases for stiffer (thicker) specimens which is attributed to compliance of the test fixture. Restraining the axial edge (simple support) has the effect of creating a more complex response which involves unstable bifurcation, limit-point buckling, and dynamic collapse. Such shells were noted to bifurcate into asymmetric deformation modes but were undamaged during testing. Shells in this study which were damaged were not observed to bifurcate. Thus, a direct link between bifurcation and atypical damage could not be established although the mechanism (bifurcation) was identified. Recommendations for further work in these related areas are provided and include extensions of the AMT to other shell geometries and structural problems.

  20. Optical studies of CdSe/HgSe and CdSe/Ag2Se core/shell nanoparticles embedded in gelatin

    NASA Astrophysics Data System (ADS)

    Azhniuk, Yu M.; Dzhagan, V. M.; Raevskaya, A. E.; Stroyuk, A. L.; Kuchmiy, S. Ya; Valakh, M. Ya; Zahn, D. R. T.

    2008-11-01

    CdSe/HgSe and CdSe/Ag2Se core-shell nanoparticles are obtained by colloidal synthesis from aqueous solutions in the presence of gelatin. Optical absorption, luminescence, and Raman spectra of the nanoparticles obtained are measured. The variation of the optical spectra of CdSe/HgSe and CdSe/Ag2Se core-shell nanoparticles with the shell thickness is discussed. Sharp non-monotonous variation of the photoluminescence spectra at low shell coverage is observed.

  1. Shell effects in a multinucleon transfer process

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Wen, Pei-Wei; Lin, Cheng-Jian; Bao, Xiao-Jun; Su, Jun; Li, Cheng; Guo, Chen-Chen

    2018-04-01

    The shell effects in multinucleon transfer process are investigated in the systems 136Xe + 198Pt and 136Xe + 208Pb within the dinuclear system (DNS) model. The temperature dependence of shell corrections on potential energy surface is taken into account in the DNS model and remarkable improvement for description of experimental data is noticed. The reactions 136Xe + 186W and 150Nd + 186W are also studied. It is found that due to shell effects the projectile 150Nd is more promising for producing transtarget nuclei rather than 136Xe with neutron shell closure.

  2. Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.

    2016-01-01

    Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.

  3. Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation.

    PubMed

    Osada, Mitsumasa; Miura, Chika; Nakagawa, Yuko S; Kaihara, Mikio; Nikaido, Mitsuru; Totani, Kazuhide

    2015-12-10

    This study examined the effects of sub- and supercritical water pretreatments on the physicochemical properties of crab shell α-chitin and its enzymatic degradation to obtain N,N'-diacetylchitobiose (GlcNAc)2. Following sub- and supercritical water pretreatments, the protein in the crab shell was removed and the residue of crab shell contained α-chitin and CaCO3. Prolonged pretreatment led to α-chitin decomposition. The reaction of pure α-chitin in sub- and supercritical water pretreatments was investigated separately; we observed lower mean molecular weight and weaker hydrogen bonds compared with untreated α-chitin. (GlcNAc)2 yields from enzymatic degradation of subcritical (350 °C, 7 min) and supercritical water (400 °C, 2.5 min) pretreated crab shell were 8% and 6%, compared with 0% without any pretreatment. This study shows that sub- and supercritical water pretreatments of crab shell provide to an alternative method to the use of acid and base for decalcification and deproteinization of crab shell required for (GlcNAc)2 production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Morphological and mechanical changes in juvenile red-eared slider turtle (Trachemys scripta elegans) shells during ontogeny.

    PubMed

    Fish, Jennifer F; Stayton, Charles T

    2014-04-01

    Turtles experience numerous modifications in the morphological, physiological, and mechanical characteristics of their shells through ontogeny. Although a general picture is available of the nature of these modifications, few quantitative studies have been conducted on changes in turtle shell shape through ontogeny, and none on changes in strength or rigidity. This study investigates the morphological and mechanical changes that juvenile Trachemys scripta elegans undergo as they increase in size. Morphology and shell rigidity were quantified in a sample of 36 alcohol-preserved juvenile Trachemys scripta elegans. Morphometric information was used to create finite element models of all specimens. These models were used to assess the mechanical behavior of the shells under various loading conditions. Overall, we find that turtles experience complementary changes in size, shape, deformability, and relative strength as they grow. As turtles age their shells become larger, more elongate, relatively flatter, and more rigid. These changes are associated with decreases in relative (size independent) strength, even though the shells of larger turtles are stronger in an absolute sense. Decreased deformability is primarily due to changes in the size of the animals. Residual variation in deformability cannot be explained by changes in shell shape. This variation is more likely due to changes in the degree of connectedness of the skeletal elements in the turtle's shells, along with changes in the thickness and degree of mineralization of shell bone. We suggest that the mechanical implications of shell size, shape, and deformability may have a large impact on survivorship and development in members of this species as they mature. Copyright © 2013 Wiley Periodicals, Inc.

  5. On growth and form of irregular coiled-shell of a terrestrial snail: Plectostoma concinnum (Fulton, 1901) (Mollusca: Caenogastropoda: Diplommatinidae).

    PubMed

    Liew, Thor-Seng; Kok, Annebelle C M; Schilthuizen, Menno; Urdy, Severine

    2014-01-01

    The molluscan shell can be viewed as a petrified representation of the organism's ontogeny and thus can be used as a record of changes in form during growth. However, little empirical data is available on the actual growth and form of shells, as these are hard to quantify and examine simultaneously. To address these issues, we studied the growth and form of a land snail that has an irregularly coiled and heavily ornamented shell-Plectostoma concinnum. The growth data were collected in a natural growth experiment and the actual form changes of the aperture during shell ontogeny were quantified. We used an ontogeny axis that allows data of growth and form to be analysed simultaneously. Then, we examined the association between the growth and the form during three different whorl growing phases, namely, the regular coiled spire phase, the transitional constriction phase, and the distortedly-coiled tuba phase. In addition, we also explored the association between growth rate and the switching between whorl growing mode and rib growing mode. As a result, we show how the changes in the aperture ontogeny profiles in terms of aperture shape, size and growth trajectory, and the changes in growth rates, are associated with the different shell forms at different parts of the shell ontogeny. These associations suggest plausible constraints that underlie the three different shell ontogeny phases and the two different growth modes. We found that the mechanism behind the irregularly coiled-shell is the rotational changes of the animal's body and mantle edge with respect to the previously secreted shell. Overall, we propose that future study should focus on the role of the mantle and the columellar muscular system in the determination of shell form.

  6. Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro S.; Clarke, Leon J.; Kennedy, Hilary; Richardson, Christopher A.

    2016-12-01

    Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis shell calcite as a proxy for the dissolved and/or particulate Mn concentrations, and thus the biogeochemical processes that control them, remains elusive.

  7. Ecology and shell chemistry of Loxoconcha matagordensis

    USGS Publications Warehouse

    Cronin, T. M.; Kamiya, T.; Dwyer, G.S.; Belkin, H.; Vann, C.D.; Schwede, S.; Wagner, R.

    2005-01-01

    Studies of the seasonal ecology and shell chemistry of the ostracode Loxoconcha matagordensis and related species of Loxoconcha from regions off eastern North America reveal that shell size and trace elemental (Mg/Ca ratio) composition are useful in paleothermometry using fossil populations. Seasonal sampling of populations from Chesapeake Bay, augmented by samples from Florida Bay, indicate that shell size is inversely proportional to water temperature and that Mg/Ca ratios are positively correlated with the water temperature in which the adult carapace was secreted. Microprobe analyses of sectioned valves reveal intra-shell variability in Mg/Ca ratios but this does not strongly influence the utility of whole shell Mg/Ca analyses for paleoclimate application.

  8. Effects of Combined Loads on the Nonlinear Response and Residual Strength of Damaged Stiffened Shells

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.; Rankin, Charles C.

    1996-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for various combinations of internal pressure and mechanical loads, and the effects of crack orientation on the shell response are described. The effects of combined loading conditions and the effects of varying structural parameters on the stress-intensity factors associated with a crack are presented.

  9. Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@SiO2 controlled the shell thickness

    NASA Astrophysics Data System (ADS)

    Wee, Sung-Bok; Oh, Hyeon-Cheol; Kim, Tae-Gyun; An, Gye-Seok; Choi, Sung-Churl

    2017-04-01

    We developed a simple and novel approach for the synthesis of Fe3O4@SiO2 nanoparticles with controlled shell thickness, and studied the mechanism. The introduction of N-methyl-2-pyrrolidone (NMP) led to trapping of monomer nuclei in single shell and controlled the shell thickness. Fe3O4@SiO2 controlled the shell thickness, showing a high magnetization value (64.47 emu/g). Our results reveal the role and change in the chemical structure of NMP during the core-shell synthesis process. NMP decomposed to 4-aminobutanoic acid in alkaline condition and decreased the hydrolysis rate of the silica coating process.

  10. The adsorption of rare earth ions using carbonized polydopamine nano shells

    DOE PAGES

    Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; ...

    2016-01-07

    Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group andmore » carbonyl group of dopamine.« less

  11. Acetabular shell deformation as a function of shell stiffness and bone strength.

    PubMed

    Dold, Philipp; Pandorf, Thomas; Flohr, Markus; Preuss, Roman; Bone, Martin C; Joyce, Tom J; Holland, James; Deehan, David

    2016-04-01

    Press-fit acetabular shells used for hip replacement rely upon an interference fit with the bone to provide initial stability. This process may result in deformation of the shell. This study aimed to model shell deformation as a process of shell stiffness and bone strength. A cohort of 32 shells with two different wall thicknesses (3 and 4 mm) and 10 different shell sizes (44- to 62-mm outer diameter) were implanted into eight cadavers. Shell deformation was then measured in the cadavers using a previously validated ATOS Triple Scan III optical system. The shell-bone interface was then considered as a spring system according to Hooke's law and from this the force exerted on the shell by the bone was calculated using a combined stiffness consisting of the measured shell stiffness and a calculated bone stiffness. The median radial stiffness for the 3-mm wall thickness was 4192 N/mm (range, 2920-6257 N/mm), while for the 4-mm wall thickness the median was 9633 N/mm (range, 6875-14,341 N/mm). The median deformation was 48 µm (range, 3-187 µm), while the median force was 256 N (range, 26-916 N). No statistically significant correlation was found between shell stiffness and deformation. Deformation was also found to be not fully symmetric (centres 180° apart), with a median angle discrepancy of 11.5° between the two maximum positive points of deformation. Further work is still required to understand how the bone influences acetabular shell deformation. © IMechE 2016.

  12. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.

    PubMed

    Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching

    2014-08-01

    Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products

    PubMed Central

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (−) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed (p<0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar (p>0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher (p<0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities. PMID:28943770

  14. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products.

    PubMed

    Cho, Min Guk; Bae, Su Min; Jeong, Jong Youn

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed ( p <0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar ( p >0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher ( p <0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

  15. Egg shell quality in Japanese quail: characteristics, heritabilities and genetic and phenotypic relationships.

    PubMed

    Narinc, D; Aygun, A; Karaman, E; Aksoy, T

    2015-07-01

    The objective of the present study was to estimate heritabilities as well as genetic and phenotypic correlations for egg weight, specific gravity, shape index, shell ratio, egg shell strength, egg length, egg width and shell weight in Japanese quail eggs. External egg quality traits were measured on 5864 eggs of 934 female quails from a dam line selected for two generations. Within the Bayesian framework, using Gibbs Sampling algorithm, a multivariate animal model was applied to estimate heritabilities and genetic correlations for external egg quality traits. The heritability estimates for external egg quality traits were moderate to high and ranged from 0.29 to 0.81. The heritability estimates for egg and shell weight of 0.81 and 0.76 were fairly high. The genetic and phenotypic correlations between egg shell strength with specific gravity, shell ratio and shell weight ranging from 0.55 to 0.79 were relatively high. It can be concluded that it is possible to determine egg shell quality using the egg specific gravity values utilizing its high heritability and fairly high positive correlation with most of the egg shell quality traits. As a result, egg specific gravity may be the choice of selection criterion rather than other external egg traits for genetic improvement of egg shell quality in Japanese quails.

  16. Sound-structure interaction analysis of an infinite-long cylindrical shell submerged in a quarter water domain and subject to a line-distributed harmonic excitation

    NASA Astrophysics Data System (ADS)

    Guo, Wenjie; Li, Tianyun; Zhu, Xiang; Miao, Yuyue

    2018-05-01

    The sound-structure coupling problem of a cylindrical shell submerged in a quarter water domain is studied. A semi-analytical method based on the double wave reflection method and the Graf's addition theorem is proposed to solve the vibration and acoustic radiation of an infinite cylindrical shell excited by an axially uniform harmonic line force, in which the acoustic boundary conditions consist of a free surface and a vertical rigid surface. The influences of the complex acoustic boundary conditions on the vibration and acoustic radiation of the cylindrical shell are discussed. It is found that the complex acoustic boundary has crucial influence on the vibration of the cylindrical shell when the cylindrical shell approaches the boundary, and the influence tends to vanish when the distances between the cylindrical shell and the boundaries exceed certain values. However, the influence of the complex acoustic boundary on the far-field sound pressure of the cylindrical shell cannot be ignored. The far-field acoustic directivity of the cylindrical shell varies with the distances between the cylindrical shell and the boundaries, besides the driving frequency. The work provides more understanding on the vibration and acoustic radiation behaviors of cylindrical shells with complex acoustic boundary conditions.

  17. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    PubMed

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.

  18. Study of Charge Transport in Vertically Aligned Nitride Nanowire Based Core Shell P-I-N Junctions

    DTIC Science & Technology

    2016-07-01

    Vertically- Aligned Nitride Nanowire Based Core Shell P-I-N Junctions Distribution Statement A. Approved for public release; distribution is...Study of Charge Transport in Vertically- Aligned Nitride Nanowire Based Core Shell P-I-N Junctions Grant Number: HDTRA1-14-1-0003 Principal...Investigator: Abhishek Motayed University of Maryland DISTRIBUTION A: Public Release Study of Charge Transport in Vertically-Aligned Nitride Nanowire

  19. Theoretical Studies of Nanocluster Formation

    DTIC Science & Technology

    2016-05-26

    background, technical approach 2. Core-shell nanoclusters (Mg/Cu, Si/Al, etc.) - energetic additives for propellants , explosives - gas generators...shell nanocluster synthesis Core-shell nanoclusters such as SiAln, NinAlm, Aln(CuO)m, etc. may be useful ingredients in propellants and explosives

  20. Pteropods in Southern Ocean ecosystems

    NASA Astrophysics Data System (ADS)

    Hunt, B. P. V.; Pakhomov, E. A.; Hosie, G. W.; Siegel, V.; Ward, P.; Bernard, K.

    2008-09-01

    To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO 2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group. Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m -3 (max = 800 ind m -3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m -3 (max = 2681 ind m -3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m -3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed <5% to total zooplankton in the Lazarev Sea, but 15% (max = 93%) to macrozooplankton in the East Antarctic. In addition to regional density distributions we have synthesized data on vertical distributions, seasonal cycles, and inter-annual density variation. Trophically, gymnosome are specialist predators on thecosomes, while thecosomes are considered predominantly herbivorous, capturing food with a mucous web. The ingestion rates of L. retroversa australis are in the upper range for sub-Antarctic mesozooplankton (31.2-4196.9 ng pig ind -1 d -1), while those of L. helicina antarctica and C. pyramidata are in the upper range for all Southern Ocean zooplankton, in the latter species reaching 27,757 ng pig ind -1 d -1 and >40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes. Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also contribute significantly to organic carbon flux through the production of fast sinking faecal pellets and mucous flocs, and rapid sinking of dead animals ballasted by their aragonite shells. Quantification of these contributions requires data on mucous web production rates, egestion rates, assimilation efficiencies, metabolic rates, and faecal pellet morphology for application to sediment trap studies. Based on the available data, pteropods are regionally significant components of the Southern Ocean pelagic ecosystem. However, there is an urgent need for focused research on this group in order to quantify how a decline in pteropod densities may impact on Southern Ocean ecosystems.

  1. Structural Concepts Study of Non-circular Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivel

    1996-01-01

    A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.

  2. Nonlinear Response of Thin Cylindrical Shells with Longitudinal Cracks and Subjected to Internal Pressure and Axial compression Loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.

  3. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells With Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Sarnes, James H., Jr.

    2004-01-01

    Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The results indicate that a local buckling response occurs in the shell near the cutout when subjected to load and is caused by a nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell is shown to retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.

  4. Cretaceous honeycomb oysters (Pycnodonte vesicularis) as palaeoseasonality records: A multi-proxy study

    NASA Astrophysics Data System (ADS)

    de Winter, Niels J.; Vellekoop, Johan; Vorsselmans, Robin; Golreihan, Asefeh; Petersen, Sierra V.; Meyer, Kyle W.; Speijer, Robert P.; Claeys, Philippe

    2017-04-01

    Pycnodonte or "honeycomb-oysters" (Bivalvia: Gryphaeidea) is an extinct genus of calcite-producing bivalves which is found in abundance in Cretaceous to Pleistocene fossil beds worldwide. As such, Pycnodonte shells could be ideal tracers of palaeoclimate through time, with the capability to reconstruct sea water conditions and palaeotemperatures in a range of palaeoenvironmental settings. Only few studies have attempted to reconstruct palaeoclimate based on Pycnodonte shells and with variable degrees of success (e.g. Videt, 2003; Huyge et al., 2015). Our study investigates the shell growth, structure and chemical characteristics of Maastrichtian Pycnodonte vesicularis from Bajada de Jaguel in Argentina and aims to rigorously test the application of multiple palaeoenvironmental proxies on the shells of several Maastrichtian Pycnodonte oysters for palaeoclimate reconstruction. The preservation state of four calcite shells was assessed by fluorescence microscopy, cathodoluminescence and micro X-Ray Fluorescence (XRF) mapping. Their shell structure was investigated using a combination of XRF mapping, high-resolution color scanning and microCT scanning. Long integration time point-by-point XRF line scanning yielded high-resolution trace element profiles through the hinge of all shells. Microdrilled samples from the same locations on the shell were analyzed for trace element composition by ICP-MS and for stable carbon and oxygen isotopes by IRMS. Preservation of the calcite microstructure was found to be of sufficient quality to allow discussion of original shell porosity, annual growth increments and pristine chemical signatures of the bivalves. The combination of fluorescence and cathodoluminescence microscopy with XRF mapping and microCT scanning sheds light on the characteristic internal "honeycomb" structure of these extinct bivalves and allows comparison with that of the related extant Neopycnodonte bivalves (Wisshak et al., 2009). Furthermore, high resolution trace element and stable isotope records allow discussion of the degree to which Pycnodonte shells record their palaeoenvironment and can be used to reconstruct past sea water conditions. Preliminary results indicate that stable isotope and trace element ratios in Pynodonte shells record different seasonally changing sea water conditions in the Maastrichtian and reconstructed temperatures are consistent with results from clumped isotope analysis on the same shells and TEX86 analysis on the surrounding rocks. This multi-proxy study sheds light on the shell structure of Pycnodonte oysters, their chemical signature and growth pattern and investigates the expression of palaeoenvironmental proxies in the pristine shell calcite of these bivalves. This investigation shows the potential of using fossil Pycnodonte bivalves as a new archive for palaeoclimate reconstruction on a seasonal scale over a wide range of palaeolatitudes from the Cretaceous until the Pleistocene. References Huyghe et al. (2015) J. Geol Soc 172.5: 576-587. Videt (2003) Diss. Université Rennes 1. Wisshak, et al. (2009) Deep-Sea Res Pt I 56.3: 374-407.

  5. The Mg - SST relationship in mollusc shells: is there a rule? Examples from three tropical species

    NASA Astrophysics Data System (ADS)

    Lazareth, C. E.; Guzmán, N.; Lecornec, F.; Cabioch, G.; Ortlieb, L.

    2009-04-01

    The geochemistry of mollusc shells is currently viewed as a powerful tool for paleoenvironmental reconstructions. Indeed, molluscs are ubiquitous animals, with a worldly geographical and environmental distribution, providing various environmental records. Moreover, mollusc shells are abundantly found in fossil and archaeological settings. In the paleoclimatic reconstructions, the sea-surface temperatures (SST) are a key parameter. If shell stable oxygen isotope signatures can provide accurate SST records, this proxy is also influenced by the water isotopic composition. To find another tracer which would depend on the SST solely, the relationship between Mg content changes in mollusc shell and SST has been investigated for a few years. Nevertheless, if the reliability of shell Mg as SST tracer has been proven in some species, this is clearly not a "universal" and definitive rule. To reconstruct the past tropical SSTs, Mg calibration studies were undertaken on Concholepas concholepas (gastropod, South America), Protothaca thaca (bivalve, South America) and Tridacna squamosa (bivalve, New Caledonia). The very high-resolution (infra-daily) analyses of the C. concholepas gastropod revealed a significant metabolism control, at the nyctemeral scale, on the Mg incorporation into the calcite shell layer. Over a two months period, the Mg fluctuations in C. concholepas shell do not match with the SST instrumental measurements. Mg content changes along the aragonitic shell growth axis of several living P. thaca from a same Peruvian site are significantly different indicating no relationship between Mg and SST. The Mg variations measured in a Chilean P. thaca shell are, surprisingly, similar to variations of the instrumental SST. Unless this quite reliable relationship between P. thaca shell and SST is confirmed, and that the inter-site difference in Mg response to environmental forcing is understood, P. thaca shell Mg cannot be used as SST proxy. Lastly, a preliminary work carried out on the external aragonitic shell layer of T. squamosa showed that, over 14 months of growth, Mg and SST are well conversely correlated but the seasonal cycle is interrupted by a Mg peak that corresponds to a shell growth anomaly. Additional studies, especially dedicated on anomalies-related Mg increases, must be performed to validate the T. squamosa shell as a reliable SST proxy. Considering previous works and the results presented here, one can definitively conclude that, at least, calibration procedures are indispensable before using Mg as a SST proxy in mollusc shells. In addition, further work specifically directed towards the role of the metabolism on the incorporation of Mg in mollusc shells could be the key to understand, and thus to use, this proxy for which, at the present time, no single rule is applicable to molluscs. Contribution of the CONCHAS (PNEDC), CENSOR (6th PCRD) and BioCalc (ESF) projects. "This study was financed and conducted in the frame of the EU-project CENSOR (Climate variability and El Nino Southern Oscillation: Impacts for natural resources and management, contract 511071) and is CENSOR publication 0375".

  6. Iridescence of a shell of mollusk Haliotis Glabra

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Wong, D.; Lee, Paul

    2004-10-01

    Pearls and shells of some mollusks are attractive inorganic materials primarily owing to the beauty of their natural lustrous and iridescent surface. The iridescent colors can be explained by diffraction or interference or both, depending on the microstructure of the surface. Strong iridescent colors are very evident on the polished shell of the mollusk Haliotis Glabra, commonly known as abalone. It would be interesting to study how these colors are produced on the surface of the shell. By using a scanning electron microscope (SEM), the surface of the shell is found to have a fine-scale diffraction grating structure, and stacks of thin crystalline nacreous layers or platelets are found below the surface. These observations suggest that the iridescent colors are caused by both diffraction and interference. From measurements done on the diffraction patterns that were obtained using a He-Ne laser illuminating the shell, the groove width of the grating structure was derived. Good agreement was found between the derived groove density by diffraction and that measured directly using the SEM. The crystalline structure of the nacreous layers of the shell is studied using Fourier transform infrared spectroscopy and SEM observations. The infrared absorption peaks of 700, 713, 862 and 1083 cm-1 confirmed that the nacre of the shell is basically aragonite. The strong iridescent colors of the shell are the result of high groove density on the surface which causes diffraction. The uniform stacking of layers of nacre below the surface of the shell also causes interference effects that contribute to the iridescent colors.

  7. Analytical and experimental studies of natural vibrations modes of ring-stiffened truncated-cone shells with variable theoretical ring fixity

    NASA Technical Reports Server (NTRS)

    Naumann, E. C.; Catherines, D. S.; Walton, W. C., Jr.

    1971-01-01

    Experimental and analytical investigations of the vibratory behavior of ring-stiffened truncated-cone shells are described. Vibration tests were conducted on 60 deg conical shells having up to four ring stiffeners and for free-free and clamped-free edge constraints and 9 deg conical shells, for two thicknesses, each with two angle rings and for free-free, free-clamped, and clamped-clamped edge constraints. The analytical method is based on linear thin shell theory, employing the Rayleigh-Ritz method. Discrete rings are represented as composed of one or more segments, each of which is a short truncated-cone shell of uniform thickness. Equations of constraint are used to join a ring and shell along a circumferential line connection. Excellent agreement was obtained for comparisons of experimental and calculated frequencies.

  8. Exciton in a spherical core/shell nanostructure: Influence of surface ligand

    NASA Astrophysics Data System (ADS)

    Anitha, B.; Nithiananthi, P.

    2018-04-01

    Studies on exciton in an inverted type I spherical GaAs/Al0.3Ga0.7As core/shell nanostructure (CSN) are made using variational method. Dielectric constant and effective mass mismatches of the core and shell materials are considered. The effect of core and the shell dimensions on the exciton binding energy (BE) are analyzed for different shell (Rs) and core radii (Rc). It is observed that with the core and the shell inducement, significant change in BE can be achieved. In addition, the influence of ligand enclosureon the BE as a function of shell thickness (ST) is reviewed. The result exhibits that the presence of ligand considerably affects the BE. Further the transmission probability of exciton for various Rc and Rs are reported. The notable changes are compared and examined with and without ligand inclusion.

  9. Sound Transmission through a Cylindrical Sandwich Shell with Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Robinson, Jay H.; Silcox, Richard J.

    1996-01-01

    Sound transmission through an infinite cylindrical sandwich shell is studied in the context of the transmission of airborne sound into aircraft interiors. The cylindrical shell is immersed in fluid media and excited by an oblique incident plane sound wave. The internal and external fluids are different and there is uniform airflow in the external fluid medium. An explicit expression of transmission loss is derived in terms of modal impedance of the fluids and the shell. The results show the effects of (a) the incident angles of the plane wave; (b) the flight conditions of Mach number and altitude of the aircraft; (c) the ratios between the core thickness and the total thickness of the shell; and (d) the structural loss factors on the transmission loss. Comparisons of the transmission loss are made among different shell constructions and different shell theories.

  10. Origin and diversity of testate amoebae shell composition: Example of Bullinularia indica living in Sphagnum capillifolium.

    PubMed

    Delaine, Maxence; Bernard, Nadine; Gilbert, Daniel; Recourt, Philippe; Armynot du Châtelet, Eric

    2017-06-01

    Testate amoebae are free-living shelled protists that build a wide range of shells with various sizes, shapes, and compositions. Recent studies showed that xenosomic testate amoebae shells could be indicators of atmospheric particulate matter (PM) deposition. However, no study has yet been conducted to assess the intra-specific mineral, organic, and biologic grain diversity of a single xenosomic species in a natural undisturbed environment. This study aims at providing new information about grain selection to develop the potential use of xenosomic testate amoebae shells as bioindicators of the multiple-origin mineral/organic diversity of their proximal environment. To fulfil these objectives, we analysed the shell content of 38 Bullinularia indica individuals, a single xenosomic testate amoeba species living in Sphagnum capillifolium, by scanning electron microscope (SEM) coupled with X-ray spectroscopy. The shells exhibited high diversities of mineral, organic, and biomineral grains, which confirms their capability to recycle xenosomes. Mineral grain diversity and size of B. indica matched those of the atmospheric natural mineral PM deposited in the peatbog. Calculation of grain size sorting revealed a discrete selection of grains agglutinated by B. indica. These results are a first step towards understanding the mechanisms of particle selection by xenosomic testate amoebae in natural conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. First-principle calculations of crystal structures, electronic structures, and optical properties of RETaO4 (RE = Y, La, Sm, Eu, Dy, Er)

    NASA Astrophysics Data System (ADS)

    Ma, Zhuang; Zheng, Jiayi; Wang, Song; Gao, Lihong

    2018-01-01

    It is an effective method to protect components from high power laser damage using high reflective materials. The rare earth tantalates RETaO4 with high dielectric constant suggests that they may have very high reflectivity, according to the relationship between dielectric constant and reflectivity. The crystal structures, electronic structures, and optical properties of RETaO4 (RE=Y, La, Sm, Eu, Dy, Er) have been studied by first-principle calculations. With the increasing atomic number of RE (i.e., the number of 4f electrons), a 4f electron shell moves from the bottom of conduction band to the forbidden gap and then to the valence band. The relationship between the electronic structures and optical properties is explored. The electron transitions among O 2p states, RE 4f states, and Ta 5d states have a key effect on optical properties such as dielectric function, absorption coefficient, and reflectivity. For the series of RETaO4, the appearance of the 4f electronic states will obviously promote the improvement of reflectivity. When the 4f states appear at the middle of the forbidden gap, the reflectivity reaches the maximum. The reflectivity of EuTaO4 at 1064 nm is up to 93.47%, indicating that it has potential applications in the antilaser radiation area.

  12. Fabrication of Silica-Coated Hollow Carbon Nanospheres Encapsulating Fe3O4 Cluster for Magnetical and MR Imaging Guided NIR Light Triggering Hyperthermia and Ultrasound Imaging.

    PubMed

    Huang, Yun-Kai; Su, Chia-Hao; Chen, Jiu-Jeng; Chang, Chun-Ting; Tsai, Yu-Hsin; Syu, Sheng-Fu; Tseng, Tsu-Ting; Yeh, Chen-Sheng

    2016-06-15

    Iron oxide nanoparticles (IONPs)-carbon (C) hybrid zero-dimensional nanostructures normally can be categorized into core-shell and yolk-shell architectures. Although IONP-C is a promising theranostic nanoagent, the in vivo study has surprisingly been less described. In addition, little effort has strived toward the fabrication of yolk-shell compared to the core-shell structures. In this context, we synthesized a yolk-shell type of the silica-coated hollow carbon nanospheres encapsulating IONPs cluster, which can be dispersed in aqueous solution for systemic studies in vivo, via the preparation involving the mixed micellization, polymerization/hollowing, sol-gel (hydration-condensation), and pyrolysis processes. Through a surface modification of the polyethylenimine followed by the sol-gel process, the silica shell coating was able to escape from condensing and sintering courses resulting in aggregation, due to the annealing. Not limited to the well-known functionalities in magnetical targeting and magnetic resonance (MR) imaging for IONP-C hybrid structures, we expanded this yolk-shell NPs as a near-infrared (NIR) light-responsive echogenic nanoagent giving an enhanced ultrasound imaging. Overall, we fabricated the NIR sensitive yolk-shell IONP-C to activate ultrasound imaging and photothermal ablation under magnetically and MR imaging guided therapy.

  13. Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell

    PubMed Central

    2010-01-01

    Background The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called "calcifying matrix" is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, most of its protein components remain uncharacterised. Results Recent expressed sequence tag (EST) investigations of the mantle tissue from the tropical abalone (Haliotis asinina) provide an opportunity to further characterise the proteins in the shell by a proteomic approach. In this study, we have identified a total of 14 proteins from distinct calcified layers of the shell. Only two of these proteins have been previously characterised from abalone shells. Among the novel proteins are several glutamine- and methionine-rich motifs and hydrophobic glycine-, alanine- and acidic aspartate-rich domains. In addition, two of the new proteins contained Kunitz-like and WAP (whey acidic protein) protease inhibitor domains. Conclusion This is one of the first comprehensive proteomic study of a molluscan shell, and should provide a platform for further characterization of matrix protein functions and interactions. PMID:21050442

  14. Automatic determination of 3D orientations of fossilized oyster shells from a densely packed Miocene shell bed

    NASA Astrophysics Data System (ADS)

    Puttonen, Ana; Harzhauser, Mathias; Puttonen, Eetu; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2018-02-01

    Shell beds represent a useful source of information on various physical processes that cause the depositional condition. We present an automated method to calculate the 3D orientations of a large number of elongate and platy objects (fossilized oyster shells) on a sedimentary bedding plane, developed to support the interpretation of possible depositional patterns, imbrications, or impact of local faults. The study focusses on more than 1900 fossil oyster shells exposed in a densely packed Miocene shell bed. 3D data were acquired by terrestrial laser scanning on an area of 459 m2 with a resolution of 1 mm. Bivalve shells were manually defined as 3D-point clouds of a digital surface model and stored in an ArcGIS database. An individual shell coordinate system (ISCS) was virtually embedded into each shell and its orientation was determined relative to the coordinate system of the entire, tectonically tilted shell bed. Orientation is described by the rotation angles roll, pitch, and yaw in a Cartesian coordinate system. This method allows an efficient measurement and analysis of the orientation of thousands of specimens and is a major advantage compared to the traditional 2D approach, which measures only the azimuth (yaw) angles. The resulting data can variously be utilized for taphonomic analyses and the reconstruction of prevailing hydrodynamic regimes and depositional environments. For the first time, the influence of possible post-sedimentary vertical displacements can be quantified with high accuracy. Here, the effect of nearby fault lines—present in the reef—was tested on strongly tilted oyster shells, but it was found out that the fault lines did not have a statistically significant effect on the large tilt angles. Aside from the high reproducibility, a further advantage of the method is its non-destructive nature, which is especially suitable for geoparks and protected sites such as the studied shell bed.

  15. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.

    PubMed

    Li, Zuoping; Kindig, Matthew W; Kerrigan, Jason R; Untaroiu, Costin D; Subit, Damien; Crandall, Jeff R; Kent, Richard W

    2010-01-19

    The purpose of this study was to investigate whether using a finite-element (FE) mesh composed entirely of hexahedral elements to model cortical and trabecular bone (all-hex model) would provide more accurate simulations than those with variable thickness shell elements for cortical bone and hexahedral elements for trabecular bone (hex-shell model) in the modeling human ribs. First, quasi-static non-injurious and dynamic injurious experiments were performed using the second, fourth, and tenth human thoracic ribs to record the structural behavior and fracture tolerance of individual ribs under anterior-posterior bending loads. Then, all-hex and hex-shell FE models for the three ribs were developed using an octree-based and multi-block hex meshing approach, respectively. Material properties of cortical bone were optimized using dynamic experimental data and the hex-shell model of the fourth rib and trabecular bone properties were taken from the literature. Overall, the reaction force-displacement relationship predicted by both all-hex and hex-shell models with nodes in the offset middle-cortical surfaces compared well with those measured experimentally for all the three ribs. With the exception of fracture locations, the predictions from all-hex and offset hex-shell models of the second and fourth ribs agreed better with experimental data than those from the tenth rib models in terms of reaction force at fracture (difference <15.4%), ultimate failure displacement and time (difference <7.3%), and cortical bone strains. The hex-shell models with shell nodes in outer cortical surfaces increased static reaction forces up to 16.6%, compared to offset hex-shell models. These results indicated that both all-hex and hex-shell modeling strategies were applicable for simulating rib responses and bone fractures for the loading conditions considered, but coarse hex-shell models with constant or variable shell thickness were more computationally efficient and therefore preferred. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. A preliminary study for identification of candidate AFLP markers under artificial selection for shell color in pearl oyster Pinctada fucata.

    PubMed

    Zou, Keshu; Zhang, Dianchang; Guo, Huayang; Zhu, Caiyan; Li, Min; Jiang, Shigui

    2014-05-25

    Pearl oyster Pinctada fucata is widely cultured to produce seawater pearl in South China, and the quality of pearl is significantly affected by its shell color. Thus the Pearl Oyster Selective Breeding Program (POSBP) was carried out for the shell color and growth traits. The black (B), gold (G), red (R) and white (W) shell strains with fast growth trait were achieved after five successive generation selection. In this study, AFLP technique was used to scan genome of four strains with different shell colors to identify the candidate markers under artificial selection. Eight AFLP primer combinations were screened and yielded 688 loci, 676 (98.26%) of which were polymorphic. In black, gold, red and white strains, the percentage of polymorphic loci was 90.41%, 87.79%, 93.60% and 93.31%, respectively, Nei's gene diversity was 0.3225, 0.2829, 0.3221 and 0.3292, Shannon's information index was 0.4801, 0.4271, 0.4825 and 0.4923, and the value of FST was 0.1805. These results suggested that the four different shell color strains had high genetic diversity and great genetic differentiation among strains, which had been subjected to the continuous selective pressures during the artificial selective breeding. Furthermore, six outlier loci were considered as the candidate markers under artificial selection for shell color. This study provides a molecular evidence for the inheritance of shell color of P. fucata. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Large Magellanic Cloud helium-rich peculiar blue supergiants and SN 1987A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuchman, Y.; Wheeler, J.C.

    1990-11-01

    The theoretical distribution of massive stars in the H-R diagram is compared to the revised data of Fitzpatrick and Garmany for the LMC. Preferred models of about 20 M solar masses undergo a thermal contraction at T(eff) about 35,000 K at the end of core hydrogen burning but reestablish thermal equilibrium to the red of the main sequence at T(eff) about 20,000 K after ignition of a hydrogen-burning shell. They then evolve on a nuclear time scale to T(eff) about 6000 K where they lose thermal equilibrium and jump to the Hayashi track. The theoretical and observed distributions agree withmore » two significant exceptions: the blue thermal contraction gap is overpopulated compared to the theory, and there is a ledge crossing the center of the H-R diagram. The hypothesis that some of the observed stars in the blue gap are secondaries that have accreted helium-rich matter from deep within the hydrogen envelope of a red supergiant primary is explored. Some preliminary observational justification is given. 27 refs.« less

  18. The role of core excitations in the structure and decay of the 16 + spin-gap isomer in 96Cd

    DOE PAGES

    Davies, Paul John; Grawe, H.; Moschner, K.; ...

    2017-02-14

    The first evidence for β -delayed proton emission from the 16 + spin gap isomer in 96Cd is presented. The data were obtained from the Rare Isotope Beam Factory, at the RIKEN Nishina Center, using the BigRIPS spectrometer and the EURICA decay station. βp branching ratios for the ground state and 16 + isomer have been extracted along with more precise lifetimes for these states and the lifetime for the ground state decay of 95Cd. Large scale shell model (LSSM) calculations have been performed and WKB estimates made for ℓ=0,2,4 proton emission from three resonance-like states in 96Ag, that aremore » populated by the β decay of the isomer, and the results compared to the new data. The calculations suggest that ℓ=2 proton emission from the resonance states, which reside ~5 MeV above the proton separation energy, dominates the proton decay. Finally, the results highlight the importance of core-excited wavefunction components for the 16 + state.« less

  19. Determination of shell content by activation analysis : final report.

    DOT National Transportation Integrated Search

    1978-08-01

    The objective of this study is to determine if neutron activation analysis technique, developed under Research Project 70-1ST, can be used to determine the shell content of a sand-shell mixture. : In order to accomplish this objective, samples of san...

  20. Origin of luminescence from ZnO/CdS core/shell nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Wang, Jian; Sham, Tsun-Kong; Yang, Shaoguang

    2014-07-01

    Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the BGE of CdS and defect emission (DE, zinc vacancies) of ZnO; the IR luminescence is attributed to the DE (bulk defect related to the S site) of CdS; ZnS contributes little to the luminescence of the ZnO/CdS NW arrays. Interestingly, the BGE and DE from oxygen vacancies of ZnO in the ZnO/CdS nano-composites are almost entirely quenched, while DE from zinc vacancies changes little.Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the BGE of CdS and defect emission (DE, zinc vacancies) of ZnO; the IR luminescence is attributed to the DE (bulk defect related to the S site) of CdS; ZnS contributes little to the luminescence of the ZnO/CdS NW arrays. Interestingly, the BGE and DE from oxygen vacancies of ZnO in the ZnO/CdS nano-composites are almost entirely quenched, while DE from zinc vacancies changes little. Electronic supplementary information (ESI) available: PL spectra of the ZnO NW arrays before/after CdS coating. S K-edge XANES spectra of the ZnO/CdS core/shell NW arrays. See DOI: 10.1039/c4nr02231a

  1. The energy of a prolate spheroidal shell in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Koksharov, Yu. A.

    2017-04-01

    The problem of the energy of a spheroidal magnetic shell, solved by methods of classical electrodynamics, arises, in particular, upon the study of thin-wall biocompatible microcapsules in connection with a pressing issue of targeted drug delivery. The drug inside a microcapsule should be released from the shell at a required instant of time by destroying the capsule's shell. The placement inside a shell of magnetic nanoparticles sensitive to an external magnetic field theoretically makes it possible to solve both problems: to transport a capsule to the required place and to destroy its shell. In particular, the shell can be destroyed under the action of internal stress when the shape of a capsule is changed. In this paper, the analysis of the model of a magnetic microcapsule in the form of a prolate spheroidal shell is performed and formulas for the magnetostatic and magnetic free energy when the magnetic field is directed along the major axis of the spheroid are derived.

  2. Visualization of Bacterial Microcompartment Facet Assembly Using High-Speed Atomic Force Microscopy

    DOE PAGES

    Sutter, Markus; Faulkner, Matthew; Aussignargues, Clément; ...

    2015-11-30

    Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla. They compartmentalize enzymes within a selectively permeable shell and play important roles in CO 2 fixation, pathogenesis, and microbial ecology. Here, we combine X-ray crystallography and high-speed atomic force microscopy to characterize, at molecular resolution, the structure and dynamics of BMC shell facet assembly. Our results show that preformed hexamers assemble into uniformly oriented shell layers, a single hexamer thick. We also observe the dynamic process of shell facet assembly. Shell hexamers can dissociate from and incorporate into assembled sheets, indicating a flexible intermolecular interaction. Furthermore, we demonstrate that themore » self-assembly and dynamics of shell proteins are governed by specific contacts at the interfaces of shell proteins. Our study provides novel insights into the formation, interactions, and dynamics of BMC shell facets, which are essential for the design and engineering of self-assembled biological nanoreactors and scaffolds based on BMC architectures.« less

  3. Ancient limpet shells as paleo-environmental and ethno-archaeological archives: the case of Beniguet Island's shell middens (Iroise Sea)

    NASA Astrophysics Data System (ADS)

    Cudennec, Jean-François; Stephan, Pierre; Dupont, Catherine; Pailler, Yvan; Thébault, Julien; Schöne, Bernd; Paulet, Yves-Marie

    2017-04-01

    During the winter 2013-2014, severe storm events caused a coastal erosion in the southern part of the Beniguet Island (Brittany, France). The associated shoreline retreat had uncovered three layers of shell middens interbedded into an aeolian sand dune deposit. From several radiocarbon dating crossed with the study of ceramic and lithic contents, the shell middens were dated to the Final Neolithic (2400 BC), the Early Bronze Age (2000 BC) and the Early Middle Age (800 AD) respectively. This site offers a unique opportunity to collect two types of information: palaeo-environmental (palaeo-temperature of sea water) and archaeological (determination of harvest season). In this study, we focus on gastropod of the genus Patella which represent 90% of the remains found in this midden. This organism is potentially a highly valuable archive for these environments because they are intertidal and relatively sedentary. We studied the growth rings in the outer calcitic layer of individual limpet shells from the Neolithic, Early Bronze Age and Present Day populations. We report here the results of δ18O analyses. We found a similarity between the reconstructed palaeo-temperature in the Neolithic and the Present periods (between 13 and 14°C in summer and about 8 - 9°C in winter). However, palaeo-temperatures of the Early Bronze Age shells are significantly lower in winter (5 - 6 °C). Moreover, the initial results of the δ18O analyses at the margin of these shells showed that they were harvested during a specific season (end of spring or early summer). Additional work will be done to address questions about shell growth dynamics of these species. These results confirm the interest of using ancient limpet shells as palaeo-environmental and archaeological archives.

  4. Application of stable isotope (δ13C and δ18O) composition of mollusc shells in palaeolimnological studies - possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Apolinarska, Karina; Pełechaty, Mariusz; Kossler, Annette; Pronin, Eugeniusz; Noskowiak, Daria

    2017-04-01

    Carbon (δ13C) and oxygen (δ18O) stable isotope analyses are among the standard methods applied in the studies of past environment, including climate. In lacustrine sediments, δ13C and δ18O values can be measured in fine carbonate fraction (carbonate mud), in charophyte encrustations, ostracod carapaces and mollusc shells. Application of the stable isotope record of each of the above-mentioned components of the lake sediment requires knowledge about possibilities and limitations of the method. The present research discusses the most important results of the studies carried out between 2011 and 2013, concentrated on the stable isotope composition of snail shells, primarily, the species commonly preserved in central European Quaternary lacustrine sediments. The stable isotope studies involved also, the zebra mussel (Dreissena polymorpha), one of the most invasive freshwater species in the world. The research involved shell isotope studies of both recent (Apolinarska, 2013; Apolinarska et al., 2016; Apolinarska and Pełechaty, in press) and fossil molluscs derived from the Holocene sediments (Apolinarska et al., 2015a, b). Shell δ13C values were species-specific and among the gastropods studied the same order of species from the most to the least 13C-depleted was observed at all sites sampled. Shell δ18O values were more uniform. The wide range of δ13C and δ18O values were observed in population and subpopulation, i.e. when live snails were sampled live from restricted area within the lake littoral zone. Carbon and oxygen stable isotope values of the mono-specific shells sampled from 1 cm thick sediment samples were highly variable. Those intra-specific differences (n=20) were as large as several permill. Such significant variability in δ13C and δ18O values indicates that stable isotope composition of single shells is unlikely to be representative of the sediment sample. In conclusion, samples of freshwater molluscs for stable isotope analyses should be monospecific and composed of at least several shells. The number of shells being dependent on the difference between the minimum and maximum values within the sediment layer. The research was funded by the Polish Ministry of Science and Higher Education, Iuventus Plus Program, grant No. IP2010 000670. Apolinarska, K., 2013. Stable isotope compositions of recent Dreissena polymorpha (Pallas) shells: paleoenvironmental implications. Journal of Paleolimnology 50, 353-364. Apolinarska, K., Pełechaty, M. & Kossler, A., 2015a. Within-sample variability of δ13C and δ18O values of freshwater gastropod shells and the optimum number of shells to measure per sediment layer in the Paddenluch palaeolacustrine sequence, Germany. Journal of Paleolimnology 54, 305-323. Apolinarska, K., Pełechaty, M. & Noskowiak, D., 2015b. Differences in stable isotope compositions of freshwater snails from surface sediments of two Polish shallow lakes. Limnologica 53, 95-105. Apolinarska, K., Pełechaty, M. & Pronin, E., 2016. Discrepancies between the stable isotope compositions of water, macrophyte carbonates and organics, and mollusc shells in the littoral zone of a charophyte-dominated lake (Lake Lednica, Poland). Hydrobiologia 768, 1-17. Apolinarska, K. & Pełechaty, M., Inter- and intra-specific variability in δ13C and δ18O values of freshwater gastropod shells from Lake Lednica, western Poland. DOI: 10.1515/agp-2016-0028

  5. 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides.

    PubMed

    Huang, Bolong

    2016-04-05

    The ground-state 4f fine-structure levels in the intrinsic optical transition gaps between the 2p and 5d orbitals of lanthanide sesquioxides (Ln2 O3 , Ln = La…Lu) were calculated by a two-way crossover search for the U parameters for DFT + U calculations. The original 4f-shell potential perturbation in the linear response method were reformulated within the constraint volume of the given solids. The band structures were also calculated. This method yields nearly constant optical transition gaps between Ln-5d and O-2p orbitals, with magnitudes of 5.3 to 5.5 eV. This result verifies that the error in the band structure calculations for Ln2 O3 is dominated by the inaccuracies in the predicted 4f levels in the 2p-5d transition gaps, which strongly and non-linearly depend on the on-site Hubbard U. The relationship between the 4f occupancies and Hubbard U is non-monotonic and is entirely different from that for materials with 3d or 4d orbitals, such as transition metal oxides. This new linear response DFT + U method can provide a simpler understanding of the electronic structure of Ln2 O3 and enables a quick examination of the electronic structures of lanthanide solids before hybrid functional or GW calculations. © 2015 Wiley Periodicals, Inc.

  6. Method for collecting thermocouple data via secured shell over a wireless local area network in real time

    NASA Astrophysics Data System (ADS)

    Arnold, F.; DeMallie, I.; Florence, L.; Kashinski, D. O.

    2015-03-01

    This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples.

  7. Method for collecting thermocouple data via secured shell over a wireless local area network in real time.

    PubMed

    Arnold, F; DeMallie, I; Florence, L; Kashinski, D O

    2015-03-01

    This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples.

  8. Au11Re: A hollow or endohedral binary cluster?

    NASA Astrophysics Data System (ADS)

    MacLeod Carey, Desmond; Muñoz-Castro, Alvaro

    2018-06-01

    In this letter, we discussed the plausible formation of [Au11Re] as a superatom with an electronic structure accounted by the 1S21P61D10 shell order, denoting similar stability to [W@Au12]. The possible hollow or endohedral structures show a variable HOMO-LUMO gap according to the given structure (from 0.33 to 1.30 eV, at the PBE/ZORA level). Our results show that the energy minimum is an endohedral arrangement, where Re is encapsulated in a D3h-Au11 cage, retaining a higher gold-dopant stoichiometric ratio. This approach is useful for further rationalization and design of novel superatoms expanding the libraries of endohedral clusters.

  9. Design and Manufacture of Conical Shell Structures Using Prepreg Laminates

    NASA Astrophysics Data System (ADS)

    Khakimova, Regina; Burau, Florian; Degenhardt, Richard; Siebert, Mark; Castro, Saullo G. P.

    2016-06-01

    The design and manufacture of unstiffened composite conical structures is very challenging, as the variation of the fiber orientations, lay-up and the geometry of the ply pieces have a significant influence on the thickness imperfections and ply angle deviations imprinted to the final part. This paper deals with the manufacture of laminated composite cones through the prepeg/autoclave process. The cones are designed to undergo repetitive buckling tests without accumulating permanent damage. The aim is to define a process that allows the control of fiber angle deviations and the removal of thickness imperfections generated from gaps and overlaps between ply pieces. Ultrasonic scan measurements are used to proof the effectiveness of the proposed method.

  10. Oxygen and carbon isotopes in terrestrial mollusk shells. From modern to fossil values, climatic impact on the mollusk diet.

    NASA Astrophysics Data System (ADS)

    Metref, S.; Labonne, M.; Rousseau, D.; Rousseau, D.; Bentaleb, I.; Vianey-Liaud, M.

    2001-12-01

    Stable isotope studies on fossil material as well as on sediment have been very successful these past years indicating such method a very promising Quaternary paleonvironmental index for continental studies. Although most of the studies on fossil material was related to modern material collected near the fossil record, no precise analysis of the impact of the diet and precipitation was carried out in order to justify the previous assumptions. Here we present the results of two sets of analysis from terrestrial mollusk shells, a particularly good climate indicator. On one hand, individuals from hatched eggs of raised Helix aspersa were fed with different plants characteristic of the two main photosynthetic pathways (C3 and C4), and waters of different isotopic values. The shells were analyzed in order to observe the impact of the food diet and of the precipitation on the isotope content of the shell carbonate. On the other hand, the study of fossil shells (Vertigo modesta) from the loess series of the Great Plains, an area where shifts in photosynthetic pathways where detected during the last isotopic stage 2 (24,000-12,000 yr B.P.), is carried out. The interpretation of the results is based on those of the study of modern shells

  11. Acute Dermal Irritation Study of Ten Jet Fuels in New Zealand White Rabbits: Comparison of Synthetic and Bio-Based Jet Fuels with Petroleum JP-8

    DTIC Science & Technology

    2014-02-18

    paraffinic kerosene (IPK), Sasol gas to liquid (GTL)-1 and GTL-2, Shell GTL and Syntroleum S-8 (synthetic JP-8). Four fuels were renewable bio-based fuels...5976) and GTL-2 (POSF 5977);  Shell GTL (POSF 5172, Shell Global, The Hague, The Netherlands); and  Syntroleum S-8 (synthetic JP-8, POSF 4734...from natural gas. The remaining two SPK fuels, Shell GTL (POSF 5172, Shell Global, The Hague, The Netherlands) and Syntroleum S-8 (synthetic JP-8

  12. NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.

    PubMed

    Cheng, Liyuan; Zhou, Xuegang; Zhong, Hong; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2014-01-01

    A kind of core-shell nanofibers containing sodium fluoride (NaF) was produced and used as reinforcing materials for dimethacrylate-based dental restorative resins in this study. The core-shell nanofibers were prepared by coaxial-electrospinning with polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) solutions as core and shell fluids, respectively. The produced PAN-PMMA nanofibers varied in fiber diameter and the thickness of PMMA shell depending on electrospinning parameters. NaF-loaded nanofibers were obtained by incorporating NaF nanocrystals into the core fluid at two loadings (0.8 or 1.0wt.%). Embedment of NaF nanocrystals into the PAN core did not damage the core-shell structure. The addition of PAN-PMMA nanofibers into Bis-GMA/TEGDMA clearly showed the reinforcement due to the good interfacial adhesion between fibers and resin. The flexural strength (Fs) and flexural modulus (Ey) of the composites decreased slightly as the thickness of PMMA shell increasing. Sustained fluoride releases with minor initial burst release were achieved from NaF-loaded core-shell nanofibers and the corresponding composites, which was quite different from the case of embedding NaF nanocrystals into the dental resin directly. The study demonstrated that NaF-loaded PAN-PMMA core-shell nanofibers were not only able to improve the mechanical properties of restorative resin, but also able to provide sustained fluoride release to help in preventing secondary caries. © 2013.

  13. Effects of pollution on land snail abundance, size and diversity as resources for pied flycatcher, Ficedula hypoleuca.

    PubMed

    Eeva, Tapio; Rainio, Kalle; Suominen, Otso

    2010-09-01

    Passerine birds need extra calcium during their breeding for developing egg shells and proper growth of nestling skeleton. Land snails are an important calcium source for many passerines and human-induced changes in snail populations may pose a severe problem for breeding birds. We studied from the bird's viewpoint how air pollution affects the shell mass, abundance and diversity of land snail communities along a pollution gradient of a copper smelter. We sampled remnant snail shells from the nests of an insectivorous passerine, the pied flycatcher, Ficedula hypoleuca, to find out how the availability of land snails varies along the pollution gradient. The total snail shell mass increased towards the pollution source but declined abruptly in the vicinity of the smelter. This spatial variation in shell mass was evident also within a single snail species and could not be wholly explained by spatially varying snail numbers or species composition. Instead, the total shell mass was related to their shell size, individuals being largest at the moderately polluted areas. Smaller shell size suggests inferior growth of snails in the most heavily polluted area. Our study shows that pollution affects the diversity, abundance (available shell mass) and individual quality of land snails, posing reproductive problems for birds that rely on snails as calcium sources during breeding. There are probably both direct pollution-related (heavy metal and calcium levels) and indirect (habitat change) effects behind the observed changes in snail populations. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Non-injection synthesis of monodisperse Cu-Fe-S nanocrystals and their size dependent properties.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Żukrowski, Jan; Zabost, Damian; Kotwica, Kamil; Malinowska, Karolina; Ostrowski, Andrzej; Wielgus, Ireneusz; Lisowski, Wojciech; Sobczak, Janusz W; Przybylski, Marek; Pron, Adam

    2016-06-01

    It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface.

  15. Buckling and Failure of Compression-Loaded Composite Laminated Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2007-01-01

    Results from a numerical and experimental study that illustrate the effects of laminate orthotropy on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of orthotropy on the overall response of compression-loaded shells is described. In general, preliminary numerical results appear to accurately predict the buckling and failure characteristics of the shell considered herein. In particular, some of the shells exhibit stable post-local-buckling behavior accompanied by interlaminar material failures near the free edges of the cutout. In contrast another shell with a different laminate stacking sequence appears to exhibit catastrophic interlaminar material failure at the onset of local buckling near the cutout and this behavior correlates well with corresponding experimental results.

  16. Limpet Shells from the Aterian Level 8 of El Harhoura 2 Cave (Témara, Morocco): Preservation State of Crossed-Foliated Layers.

    PubMed

    Nouet, Julius; Chevallard, Corinne; Farre, Bastien; Nehrke, Gernot; Campmas, Emilie; Stoetzel, Emmanuelle; El Hajraoui, Mohamed Abdeljalil; Nespoulet, Roland

    2015-01-01

    The exploitation of mollusks by the first anatomically modern humans is a central question for archaeologists. This paper focuses on level 8 (dated around ∼ 100 ka BP) of El Harhoura 2 Cave, located along the coastline in the Rabat-Témara region (Morocco). The large quantity of Patella sp. shells found in this level highlights questions regarding their origin and preservation. This study presents an estimation of the preservation status of these shells. We focus here on the diagenetic evolution of both the microstructural patterns and organic components of crossed-foliated shell layers, in order to assess the viability of further investigations based on shell layer minor elements, isotopic or biochemical compositions. The results show that the shells seem to be well conserved, with microstructural patterns preserved down to sub-micrometric scales, and that some organic components are still present in situ. But faint taphonomic degradations affecting both mineral and organic components are nonetheless evidenced, such as the disappearance of organic envelopes surrounding crossed-foliated lamellae, combined with a partial recrystallization of the lamellae. Our results provide a solid case-study of the early stages of the diagenetic evolution of crossed-foliated shell layers. Moreover, they highlight the fact that extreme caution must be taken before using fossil shells for palaeoenvironmental or geochronological reconstructions. Without thorough investigation, the alteration patterns illustrated here would easily have gone unnoticed. However, these degradations are liable to bias any proxy based on the elemental, isotopic or biochemical composition of the shells. This study also provides significant data concerning human subsistence behavior: the presence of notches and the good preservation state of limpet shells (no dissolution/recrystallization, no bioerosion and no abrasion/fragmentation aspects) would attest that limpets were gathered alive with tools by Middle Palaeolithic (Aterian) populations in North Africa for consumption.

  17. Limpet Shells from the Aterian Level 8 of El Harhoura 2 Cave (Témara, Morocco): Preservation State of Crossed-Foliated Layers

    PubMed Central

    Nouet, Julius; Chevallard, Corinne; Farre, Bastien; Nehrke, Gernot; Campmas, Emilie; Stoetzel, Emmanuelle; El Hajraoui, Mohamed Abdeljalil; Nespoulet, Roland

    2015-01-01

    The exploitation of mollusks by the first anatomically modern humans is a central question for archaeologists. This paper focuses on level 8 (dated around ∼ 100 ka BP) of El Harhoura 2 Cave, located along the coastline in the Rabat-Témara region (Morocco). The large quantity of Patella sp. shells found in this level highlights questions regarding their origin and preservation. This study presents an estimation of the preservation status of these shells. We focus here on the diagenetic evolution of both the microstructural patterns and organic components of crossed-foliated shell layers, in order to assess the viability of further investigations based on shell layer minor elements, isotopic or biochemical compositions. The results show that the shells seem to be well conserved, with microstructural patterns preserved down to sub-micrometric scales, and that some organic components are still present in situ. But faint taphonomic degradations affecting both mineral and organic components are nonetheless evidenced, such as the disappearance of organic envelopes surrounding crossed-foliated lamellae, combined with a partial recrystallization of the lamellae. Our results provide a solid case-study of the early stages of the diagenetic evolution of crossed-foliated shell layers. Moreover, they highlight the fact that extreme caution must be taken before using fossil shells for palaeoenvironmental or geochronological reconstructions. Without thorough investigation, the alteration patterns illustrated here would easily have gone unnoticed. However, these degradations are liable to bias any proxy based on the elemental, isotopic or biochemical composition of the shells. This study also provides significant data concerning human subsistence behavior: the presence of notches and the good preservation state of limpet shells (no dissolution/recrystallization, no bioerosion and no abrasion/fragmentation aspects) would attest that limpets were gathered alive with tools by Middle Palaeolithic (Aterian) populations in North Africa for consumption. PMID:26376294

  18. A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1999-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.

  19. Structural and electronic properties of CdS/ZnS core/shell nanowires: A first-principles study

    NASA Astrophysics Data System (ADS)

    Kim, Hyo Seok; Kim, Yong-Hoon

    2015-03-01

    Carrying out density functional theory (DFT) calculation, we studied the relative effects of quantum confinement and strain on the electronic structures of II-IV semiconductor compounds with a large lattice-mismatch, CdS and ZnS, in the core/shell nanowire geometry. We considered different core radii and shell thickness of the CdS/ZnS core/shell nanowire, different surface facets, and various defects in the core/shell interface and surface regions. To properly describe the band level alignment at the core/shell boundary, we adopted the self-interaction correction (SIC)-DFT scheme. Implications of our findings in the context of device applications will be also discussed. This work was supported by the Basic Science Research Grant (No. 2012R1A1A2044793), Global Frontier Program (No. 2013-073298), and Nano-Material Technology Development Program (2012M3A7B4049888) of the National Research Foundation funded by the Ministry of Education, Science and Technology of Korea. Corresponding author

  20. Molecular and isotopic composition of lipids in modern and fossil bivalve shells: Records of paleoenvironmental change?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CoBabe, E.A.

    1995-12-31

    Suites of lipids residing in situ in modern and fossil bivalve shells offer new possibilities for the study of paleoecology and paleoclimatology. Distributions of carbon isotopic compositions of modem shell lipids suggests that many of these compounds, including alkanes, sterols, fatty acids, ketones and phytadienes, are derived from the bivalves and not directly from the surrounding environment. The occurrence of fatty acids in modem and fossil shell material opens up the possibility that saturation levels of these compounds may be used as paleothermometers. To date, the utility of fatty acids in paleoclimate studies has been limited because of the swiftmore » breakdown of these compounds in sediment. However, initial results indicate that fatty acids in bivalve shells retain their original structure for at least several million years. Comparison of modem bivalve shell fatty acids from tropical, temperate and polar nearshore marine systems will be presented, along with analogous fossil data.« less

  1. Fragmentation of protostars dust shells at the Hayashi stage

    NASA Astrophysics Data System (ADS)

    Abdulmyanov, T. R.

    2017-09-01

    The aim of this study is to determine the density variations of a protostars dust shells at the Hayashi stage. The simplified model of the density wave perturbations are obtained on the base hydrodynamic equations. According to this model, the fragmentation of dust shells may occur at the stage of slow compression of protostar. Using the solution of the wave equation, the 3-D profiles of the density of the dust shell are defined.

  2. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2002-01-01

    Results from a numerical study of the response of thin-wall compression-loaded quasi-isotropic laminated composite cylindrical shells with reinforced and unreinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A high-fidelity nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable dynamic buckling response characteristics. The results illustrate how a compression-loaded shell with an unreinforced cutout can exhibit a complex nonlinear response. In particular, a local buckling response occurs in the shell near the cutout and is caused by a complex nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, the addition of reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell, as expected. However, results are presented that show how certain reinforcement configurations can actually cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved response characteristics.

  3. Fabrication and characterization of optical sensors using metallic core-shell thin film nanoislands for ozone detection

    NASA Astrophysics Data System (ADS)

    Addanki, Satish; Nedumaran, D.

    2017-07-01

    Core-Shell nanostructures play a vital role in the sensor field owing to their performance improvements in sensing characteristics and well-established synthesis procedures. These nanostructures can be ingeniously tuned to achieve tailored properties for a particular application of interest. In this work, an Ag-Au core-shell thin film nanoislands with APTMS (3-Aminopropyl trimethoxysilane) and PVA (Polyvinyl alcohol) binding agents was modeled, synthesized and characterized. The simulation results were used to fabricate the sensor through chemical route. The results of this study confirmed that the APTMS based Ag-Au core-shell thin film nanoislands offered a better performance over the PVA based Ag-Au core-shell thin film nanoislands. Also, the APTMS based Ag-Au core-shell thin film nanoislands exhibited better sensitivity towards ozone sensing over the other types, viz., APTMS/PVA based Au-Ag core-shell and standalone Au/Ag thin film nanoislands.

  4. Vibration Power Flow In A Constrained Layer Damping Cylindrical Shell

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Zheng, Gangtie

    2012-07-01

    In this paper, the vibration power flow in a constrained layer damping (CLD) cylindrical shell using wave propagation approach is investigated. The dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumption. With these equations, the dynamic responses of the system under a line circumferential cosine harmonic exciting force is obtained by employing the Fourier transform and the residue theorem. The vibration power flows inputted to the system and transmitted along the shell axial direction are both studied. The results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer can obviously restrict the exciting force from inputting power flow into the base shell especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order, can rapidly attenuate the vibration power flow transmitted along the base shell axial direction.

  5. Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity.

    PubMed

    Huang, Bing; Hao, Xiaofei; Zhang, Haobin; Yang, Zhijian; Ma, Zhigang; Li, Hongzhen; Nie, Fude; Huang, Hui

    2014-07-01

    To improve the safety of sensitive explosive HMX while maintaining explosion performance, a moderately powerful but insensitive explosive TATB was used to coat HMX microparticles via a facile ultrasonic method. By using Estane as surface modifier and nano-sized TATB as the shell layer, the HMX@TATB core-shell microparticles with a monodisperse size and compact shell structure were successfully constructed. Both scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of perfect core-shell structured composites. Based on a systematic and comparative study of the effect of experimental conditions, a possible formation mechanism of core-shell structure was proposed in detail. Moreover, the perfect core-shell HMX@TATB microparticles exhibited a unique thermal behavior and significantly improved mechanical sensitivity compared with that of the physical mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Tao; Zeng, Kaiyang

    2014-01-01

    The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05292c

  7. Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    2008-01-01

    In this study, a sub-scale advanced composite shell design is evaluated to determine its potential for use on a future aircraft fuselage. Two composite shells with the same nominal 8-ply [+/-45/+/-Theta](sub s) layup are evaluated, where Theta indicates a tow-steered ply. To build this shell, a fiber placement machine would be used to steer unidirectional prepreg tows as they are placed around the circumference of a 17-inch diameter right circular cylinder. The fiber orientation angle varies continuously from 10 degrees (with respect to the shell axis of revolution) at the crown, to 45 degrees on the side, and back to 10 degrees on the keel. All 24 tows are placed at each point on every fiber path in one structure designated as the shell with overlaps. The resulting pattern of tow overlaps causes the laminate thickness to vary between 8 and 16 plies. The second shell without tow overlaps uses the capability of the fiber placement machine to cut and add tows at any point along the fiber paths to fabricate a shell with a nearly uniform 8-ply laminate thickness. Issues encountered during the design and analysis of these shells are presented and discussed. Static stiffness and buckling loads of shells with tow-steered layups are compared with the performance of a baseline quasi-isotropic shell using both finite element analyses and classical strength of materials theory.

  8. Synthesis of fly ash based core-shell composites for use as functional pigment in paints

    NASA Astrophysics Data System (ADS)

    Sharma, Richa; Tiwari, Sangeeta

    2016-04-01

    Fly ash is a combustion residue, mainly composed of silica, alumina and iron oxides. It is produced by the power industries in very large amounts and usually disposed in landfills, which have represented an environmental problem in recent years1. The need to generate a market for fly ash consumption is the main reason why alternative applications have been studied. It has been applied as an additive in construction materials like cement and pavements2. The present work describes the synthesis of Flyash-Titania core-shell particles by precipitation technique using Titanium tetra isopropoxide (TTIP) which can be used for variety of applications such as NIR reflecting materials for cool coatings, Photocatalysis etc. In this work, Fly ash is used in core and Nano -TiO2 is coated as shell on it. Surfactants are used to improve the adhesion of Nano Titania shell on fly ash core. Effect on adhesion of TiO2 on Fly ash is studied by using different types of surfactant. The preparation of core shells was carried out in absence of surfactant as well as using anionic and non-ionic surfactants. The percentage of surfactant was varied to study the effect of amount of surfactant on the uniformity and size of particles in the shell using Kubelka-Munk transformed reflectance spectra. The morphology of core shell structures was studied using SEM technique. Use of anionic surfactant results in more uniform coating with reduced particle size of the shell material. The composite particles prepared by using anionic surfactant are having good pigment properties and also shows good reflectance in Near Infrared region and hence can be used as a pigment in cool coatings.

  9. Shell extracts of the edible mussel and oyster induce an enhancement of the catabolic pathway of human skin fibroblasts, in vitro.

    PubMed

    Latire, Thomas; Legendre, Florence; Bouyoucef, Mouloud; Marin, Frédéric; Carreiras, Franck; Rigot-Jolivet, Muriel; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2017-10-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. In this study, we investigated the effects of matrix macromolecular components extracted from the shells of two edible molluscs of economic interest, i.e., the blue mussel Mytilus edulis and the Pacific oyster Crassostrea gigas. The potential biological activities of these organic molecules were analysed on human dermal fibroblasts in primary culture. Our results demonstrate that shell extracts of the two studied molluscs modulate the metabolic activities of the cells. In addition, the extracts caused a decrease of type I collagen and a concomitant increase of active MMP-1, both at the mRNA and the protein levels. Therefore, our results suggest that shell extracts from M. edulis and C. gigas contain molecules that promote the catabolic pathway of human dermal fibroblasts. This work emphasises the potential use of these shell matrices in the context of anti-fibrotic strategies, particularly against scleroderma. More generally, it stresses the usefulness to valorise bivalve shells that are coproducts of shellfish farming activity.

  10. Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

    PubMed Central

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe2+ or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe2+ oxidization and H+ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe2+-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe2+ oxidation and H+ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe2+-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  11. Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Robert B.; Oh, John J.; Park, Mu-In

    2009-03-15

    We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses undermore » certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.« less

  12. Mixing of acacia bark and palm shells to increase caloric value of palm shells white charcoal briquette

    NASA Astrophysics Data System (ADS)

    Kurniawan, Edy Wibowo; Amirta, Rudianto; Budiarso, Edy; Arung, Enos Tangke

    2017-06-01

    Indonesia is greatly rich in biomass resources. Acacia bark waste utilization as a source of biomass is still very low, where as 10-20% of the potential of the wood. On the other hand waste palm shells have been partly utilized as boiler fuel oil plant as much as 62.4%, but the rest is still a waste pile or to the hardening of the estate path. This study aims to determine the effect of mixing an acacia bark with palm shells to increase the calorific value of palm shell white charcoal briquettes. The study was conducted by making white charcoal briquettes mixing 7% the acacia bark against of palm shells. As well as white charcoal briquettes control without any acacia bark. Then molds the briquettes in pyrolysis temperature at 600 ° C, 700 ° C and 800 ° C for pyrolysis time within 2 hours, 4 hours, and 6 hours. And the results of briquettes analysis in calorific value. The results showed that the caloric value of palm shell white charcoal briquettes increased from 29691.14 Kcal / kg to 31941.50 Kcal / kg.

  13. Comparative study of the shell development of hard- and soft-shelled turtles

    PubMed Central

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-01-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used – the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. PMID:24754673

  14. Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas.

    PubMed

    Herlitze, Ines; Marie, Benjamin; Marin, Frédéric; Jackson, Daniel J

    2018-06-01

    Conchiferan molluscs construct a biocalcified shell that likely supported much of their evolutionary success. However, beyond broad proteomic and transcriptomic surveys of molluscan shells and the shell-forming mantle tissue, little is known of the spatial and ontogenetic regulation of shell fabrication. In addition, most efforts have been focused on species that deposit nacre, which is at odds with the majority of conchiferan species that fabricate shells using a crossed-lamellar microstructure, sensu lato. By combining proteomic and transcriptomic sequencing with in situ hybridization we have identified a suite of gene products associated with the production of the crossed-lamellar shell in Lymnaea stagnalis. With this spatial expression data we are able to generate novel hypotheses of how the adult mantle tissue coordinates the deposition of the calcified shell. These hypotheses include functional roles for unusual and otherwise difficult-to-study proteins such as those containing repetitive low-complexity domains. The spatial expression readouts of shell-forming genes also reveal cryptic patterns of asymmetry and modularity in the shell-forming cells of larvae and adult mantle tissue. This molecular modularity of the shell-forming mantle tissue hints at intimate associations between structure, function, and evolvability and may provide an elegant explanation for the evolutionary success of the second largest phylum among the Metazoa.

  15. Comparative study of the shell development of hard- and soft-shelled turtles.

    PubMed

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-07-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. © 2014 Anatomical Society.

  16. Impact of high pCO2 on shell structure of the bivalve Cerastoderma edule.

    PubMed

    Milano, Stefania; Schöne, Bernd R; Wang, Schunfeng; Müller, Werner E

    2016-08-01

    Raised atmospheric emissions of carbon dioxide (CO2) result in an increased ocean pCO2 level and decreased carbonate saturation state. Ocean acidification potentially represents a major threat to calcifying organisms, specifically mollusks. The present study focuses on the impact of elevated pCO2 on shell microstructural and mechanical properties of the bivalve Cerastoderma edule. The mollusks were collected from the Baltic Sea and kept in flow-through systems at six different pCO2 levels from 900 μatm (control) to 24,400 μatm. Extreme pCO2 levels were used to determine the effects of potential leaks from the carbon capture and sequestration sites where CO2 is stored in sub-seabed geological formations. Two approaches were combined to determine the effects of the acidified conditions: (1) Shell microstructures and dissolution damage were analyzed using scanning electron microscopy (SEM) and (2) shell hardness was tested using nanoindentation. Microstructures of specimens reared at different pCO2 levels do not show significant changes in their size and shape. Likewise, the increase of pCO2 does not affect shell hardness. However, dissolution of ontogenetically younger portions of the shell becomes more severe with the increase of pCO2. Irrespective of pCO2, strong negative correlations exist between microstructure size and shell mechanics. An additional sample from the North Sea revealed the same microstructural-mechanical interdependency as the shells from the Baltic Sea. Our findings suggest that the skeletal structure of C. edule is not intensely influenced by pCO2 variations. Furthermore, our study indicates that naturally occurring shell mechanical property depends on the shell architecture at μm-scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. On growth and form of irregular coiled-shell of a terrestrial snail: Plectostoma concinnum (Fulton, 1901) (Mollusca: Caenogastropoda: Diplommatinidae)

    PubMed Central

    Kok, Annebelle C.M.; Schilthuizen, Menno; Urdy, Severine

    2014-01-01

    The molluscan shell can be viewed as a petrified representation of the organism’s ontogeny and thus can be used as a record of changes in form during growth. However, little empirical data is available on the actual growth and form of shells, as these are hard to quantify and examine simultaneously. To address these issues, we studied the growth and form of a land snail that has an irregularly coiled and heavily ornamented shell–Plectostoma concinnum. The growth data were collected in a natural growth experiment and the actual form changes of the aperture during shell ontogeny were quantified. We used an ontogeny axis that allows data of growth and form to be analysed simultaneously. Then, we examined the association between the growth and the form during three different whorl growing phases, namely, the regular coiled spire phase, the transitional constriction phase, and the distortedly-coiled tuba phase. In addition, we also explored the association between growth rate and the switching between whorl growing mode and rib growing mode. As a result, we show how the changes in the aperture ontogeny profiles in terms of aperture shape, size and growth trajectory, and the changes in growth rates, are associated with the different shell forms at different parts of the shell ontogeny. These associations suggest plausible constraints that underlie the three different shell ontogeny phases and the two different growth modes. We found that the mechanism behind the irregularly coiled-shell is the rotational changes of the animal’s body and mantle edge with respect to the previously secreted shell. Overall, we propose that future study should focus on the role of the mantle and the columellar muscular system in the determination of shell form. PMID:24883245

  18. Population ecology and shell chemistry of a phytal ostracode species (Loxoconcha matagordensis) in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Vann, C.D.; Cronin, T. M.; Dwyer, Gary S.

    2004-01-01

    Population ecology and shell chemistry were studied in the phytal ostracode Loxoconcha matagordensis (Swain 1955) collected from Zostera marina seagrass beds in the Chesapeake Bay to provide seasonal constraints on shell secretion time for paleothermometry. Population density and age structure were defined by two main breeding cycles that occurred between 01 to 15 June and 02 to 16 August 2001. The time interval between breeding cycles was ???2 months and total juvenile standing crop increased almost three-fold between the first and second breeding cycles. Dark brown over-wintered adults comprised the majority of the population between March and April 2001, while newly secreted translucent adults were predominant between June and September. Seasonal shell Mg/Ca and Sr/Ca ratios were positively correlated with water temperature at both sites, with the strongest correlations occurring between June and September from newly secreted shells at Dameron Marsh. Old, dark brown shells contained 10% to 23% and 1% to 6% less Mg/Ca and Sr/Ca, respectively, than new shells. Because a fossil assemblage of L. matagordensis will contain ???30% old shells (dark-brown), these results suggest that fossil Mg/Ca ratios yield an integrated late spring to summer temperature signal. Shell Mg/Ca and Sr/Ca ratios of specimens of L. matagordensis collected from living Zostera were positively correlated, suggesting that temperature may influence both elemental ratios. Mg/Ca and Sr/Ca ratios of fossil shells of the related species Loxoconcha sp. A obtained from four sediment cores were also studied and exhibited a weaker correlation between the two elemental ratios. ?? 2004 Elsevier B.V. All rights reserved.

  19. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release.We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b

  20. Freshwater mussel shells as environmental chronicles: Geochemical and taphonomic signatures of mercury-related extirpations in the North Fork Holston River, Virginia

    USGS Publications Warehouse

    Brown, M.E.; Kowalewski, M.; Neves, R.J.; Cherry, D.S.; Schreiber, M.E.

    2005-01-01

    This study utilized freshwater mussel shells to assess mercury (Hg) contamination in the North Fork Holston River that extirpated (caused local extinctions of) a diverse mussel fauna. Shells (n = 366) were collected from five sites situated upstream (two sites), just below (one site), and downstream (two sites) of the town of Saltville, Virginia, where Hg was used to produce chlorine and caustic soda from 1950 to 1972. Shell samples were used to test the (1) utility of geochemical signatures of shells for assessing the spatial variation in Hg levels in the river relative to the contamination source and (2) value of taphonomy (postmortem shell alteration) for distinguishing sites that differ in extirpation histories. Geochemical signatures of 40 shells, analyzed using atomic absorption spectroscopy, indicated a strong longitudinal pattern. All shells from the two upstream sites had low Hg concentrations (<5-31 ??g/kg), shells directly below Saltville had variable, but dramatically higher concentrations (23-4637 ??g/kg), and shells from the two downstream sites displayed intermediate Hg levels (<5-115 ??g/kg) that declined with distance from Saltville. Two pre-industrial shells, collected at Saltville in 1917, yielded very low Hg estimates (5-6 ??g/kg). Hg signatures were consistent among mussel species, suggesting that Hg concentrations were invariant to species type; most likely, highly variable Hg levels, both across sites and through time, overwhelmed any interspecific differences in Hg acquisition. Also, a notable postmortem incorporation of Hg in mussel shells seemed unlikely, as the Hg content was not correlated with shell taphonomy (r = 0.18; p = 0.28). The taphonomic analysis (n = 366) showed that the degree of shell alteration reliably distinguished sites with different extirpation histories. At Saltville, where live mussels have been absent for at least 30 years, shells were most heavily altered and fragmented. Conversely, fresh-looking shells abounded upstream, where reproducing mussel populations are still present. In summary, relic shells offered valuable spatiotemporal data on Hg concentrations in a polluted ecosystem, and shell taphonomic signatures discriminated sites with different extirpation histories. The shell-based strategies exemplified here do not require sampling live specimens and may augment more standard strategies applied to environmental monitoring. The approach should prove especially useful in areas with unknown extirpation and pollution histories. ?? 2005 American Chemical Society.

Top