Characteristics of global organic matrix in normal and pimpled chicken eggshells.
Liu, Z; Song, L; Zhang, F; He, W; Linhardt, R J
2017-10-01
The organic matrix from normal and pimpled calcified chicken eggshells were dissociated into acid-insoluble, water-insoluble, and facultative-soluble (both acid- and water-soluble) components, to understand the influence of shell matrix on eggshell qualities. A linear correlation was shown among these 3 matrix components in normal eggshells but was not observed in pimpled eggshells. In pimpled eggshells, the percentage contents of all 4 groups of matrix (the total matrix, acid-insoluble matrix, water-insoluble matrix, and facultative-soluble matrix) were significantly higher than that in normal eggshells. The amounts of both total matrix and acid-insoluble matrix in individual pimpled calcified shells were high, even though their weight was much lower than a normal eggshell. In both normal and pimpled eggshells, the calcified eggshell weight and shell thickness significantly and positively correlated with the amounts of all 4 groups of matrix in an individual calcified shell. In normal eggshells, the calcified shell thickness and shell breaking strength showed no significant correlations with the percentage contents of all 4 groups of matrix. In normal eggshells, only the shell membrane weight significantly correlated with the constituent ratios of both acid-insoluble matrix and facultative-soluble matrix in the whole matrix. In pimpled eggshells, 3 variables (calcified shell weight, shell thickness, and breaking strength) were significantly correlated with the constituent proportions of both acid-insoluble matrix and facultative-matrix. This study suggests that mechanical properties of normal eggshells may not linearly depend on the organic matrix content in the calcified eggshells and that pimpled eggshells might result by the disequilibrium enrichment of some proteins with negative effects. © 2017 Poultry Science Association Inc.
The isotopic biosignatures of photo- vs. thiotrophic bivalves: are they preserved in fossil shells?
Dreier, A; Loh, W; Blumenberg, M; Thiel, V; Hause-Reitner, D; Hoppert, M
2014-09-01
Symbiont-bearing and non-symbiotic marine bivalves were used as model organisms to establish biosignatures for the detection of distinctive symbioses in ancient bivalves. For this purpose, the isotopic composition of lipids (δ13C) and bulk organic shell matrix (δ13C, δ34S, δ15N) from shells of several thiotrophic, phototrophic, or non-symbiotic bivalves were compared (phototrophic: Fragum fragum, Fragum unedo, Tridacna maxima; thiotrophic: Codakia tigerina, Fimbria fimbriata, Anodontia sp.; non-symbiotic: Tapes dorsatus, Vasticardium vertebratum, Scutarcopagia sp.). ∆13C values of bulk organic shell matrices, most likely representing mainly original shell protein/chitin biomass, were depleted in thio- and phototrophic bivalves compared to non-symbiotic bivalves. As the bulk organic shell matrix also showed a major depletion of δ15N (down to -2.2 ‰) for thiotrophic bivalves, combined δ13C and δ15N values are useful to differentiate between thio-, phototrophic, and non-symbiotic lifestyles. However, the use of these isotopic signatures for the study of ancient bivalves is limited by the preservation of the bulk organic shell matrix in fossils. Substantial alteration was clearly shown by detailed microscopic analyses of fossil (late Pleistocene) T. maxima and Trachycardium lacunosum shell, demonstrating a severe loss of quantity and quality of bulk organic shell matrix with time. Likewise, the composition and δ13C-values of lipids from empty shells indicated that a large part of these compounds derived from prokaryotic decomposers. The use of lipids from ancient shells for the reconstruction of the bivalve's life style therefore appears to be restricted. © 2014 John Wiley & Sons Ltd.
2012-01-01
Background Invertebrate biominerals are characterized by their extraordinary functionality and physical properties, such as strength, stiffness and toughness that by far exceed those of the pure mineral component of such composites. This is attributed to the organic matrix, secreted by specialized cells, which pervades and envelops the mineral crystals. Despite the obvious importance of the protein fraction of the organic matrix, only few in-depth proteomic studies have been performed due to the lack of comprehensive protein sequence databases. The recent public release of the gastropod Lottia gigantea genome sequence and the associated protein sequence database provides for the first time the opportunity to do a state-of-the-art proteomic in-depth analysis of the organic matrix of a mollusc shell. Results Using three different sodium hypochlorite washing protocols before shell demineralization, a total of 569 proteins were identified in Lottia gigantea shell matrix. Of these, 311 were assembled in a consensus proteome comprising identifications contained in all proteomes irrespective of shell cleaning procedure. Some of these proteins were similar in amino acid sequence, amino acid composition, or domain structure to proteins identified previously in different bivalve or gastropod shells, such as BMSP, dermatopontin, nacrein, perlustrin, perlucin, or Pif. In addition there were dozens of previously uncharacterized proteins, many containing repeated short linear motifs or homorepeats. Such proteins may play a role in shell matrix construction or control of mineralization processes. Conclusions The organic matrix of Lottia gigantea shells is a complex mixture of proteins comprising possible homologs of some previously characterized mollusc shell proteins, but also many novel proteins with a possible function in biomineralization as framework building blocks or as regulatory components. We hope that this data set, the most comprehensive available at present, will provide a platform for the further exploration of biomineralization processes in molluscs. PMID:22540284
Bouyoucef, Mouloud; Rakic, Rodolphe; Gómez-Leduc, Tangni; Latire, Thomas; Marin, Frédéric; Leclercq, Sylvain; Carreiras, Franck; Serpentini, Antoine; Lebel, Jean-Marc; Galéra, Philippe; Legendre, Florence
2018-04-07
The shells of the bivalve mollusks are organo-mineral structures predominantly composed of calcium carbonate, but also of a minor organic matrix, a mixture of proteins, glycoproteins, and polysaccharides. These proteins are involved in mineral deposition and, more generally, in the spatial organization of the shell crystallites in well-defined microstructures. In this work, we extracted different organic shell extracts (acid-soluble matrix, acid-insoluble matrix, water-soluble matrix, guanidine HCl/EDTA-extracted matrix, referred as ASM, AIM, WSM, and EDTAM, respectively) from the shell of the scallop Pecten maximus and studied their biological activities on human articular chondrocytes (HACs). We found that these extracts differentially modulate the biological activities of HACs, depending on the type of extraction and the concentration used. Furthermore, we showed that, unlike ASM and AIM, WSM promotes maintenance of the chondrocyte phenotype in monolayer culture. WSM increased the expression of chondrocyte-specific markers (aggrecan and type II collagen), without enhancing that of the main chondrocyte dedifferentiation marker (type I collagen). We also demonstrated that WSM could favor redifferentiation of chondrocyte in collagen sponge scaffold in hypoxia. Thus, this study suggests that the organic matrix of Pecten maximus, particularly WSM, may contain interesting molecules with chondrogenic effects. Our research emphasizes the potential use of WSM of Pecten maximus for cell therapy of cartilage.
NASA Astrophysics Data System (ADS)
Gries, Katharina I.; Heinemann, Fabian; Rosenauer, Andreas; Fritz, Monika
2012-11-01
Nacre of abalone shells consists of aragonite platelets and organic material, the so-called organic matrix. During the growth process of the shell the aragonite platelets grow into a scaffold formed by the organic matrix. In this work we tried to mimic this growth process by placing a piece of the insoluble organic matrix (which is a part of the organic matrix) of the abalone Haliotis laevigata in a crystallization device which was flowed through by CaCl2 and NaHCO3 solutions. Using this setup amongst others flat aragonite crystals grow on the insoluble organic matrix. When investigating these crystals in a transmission electron microscope it is possible to recognize similarities to the structure of nacre, like the formation of mineral bridges and growth between layers of the insoluble organic matrix. These similarities are presented in this paper.
Data on Molluscan Shells in parts of Nellore Coast, southeast coast of India.
Lakshmanna, B; Jayaraju, N; Prasad, T Lakshmi; Sreenivasulu, G; Nagalakshmi, K; Kumar, M Pramod; Madakka, M
2018-02-01
X-ray diffraction (XRD), Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS), and Fourier Transform Infrared Spectroscopy (FT-IR), were applied to analyze the organic matrix of two Molluscan shells . The Mollusca shells are mineral structure and calcium carbonate crystallized as aragonite. The FT-IR spectra showed Alkyl Halide, Alkanes, Alcohols, Amides, Aromatic, and Hydroxyl groups in the organic matrix of the whole (organic and mineral) Molluscan shells. SEM images of particles of the two Molluscan shells at different magnifications were taken. The morphologies of the samples show a flake like structures with irregular grains, their sizes are at micrometric scale and the chemical analysis of EDS indicated that the major elements of Cardita and Gastropoda were C, O, and Ca, consistent with the results of XRD analysis. The results of the analysis of the EDS spectra of the shells showed that the content of most of the powder composition of shells is the element carbon, calcium oxygen, aluminium, and lead peaks that appear on the Cardita and Gastropoda and shells powders tap EDS spectra. The present work examined organic matrix of the selected shells of the heavily polluted and light polluted sites, along Nellore Coast, South East Coast of India. The heavily polluted sites have significantly thickened shells. The data demonstrated the sensitivity of this abundant and widely distributed intertidal fragile environment.
Forrest, Stephen R.
2008-08-19
A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.
Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine
2014-01-01
Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.
Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine
2014-01-01
Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the −112/−61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications. PMID:24949635
In-depth proteomic analysis of shell matrix proteins of Pinctada fucata
Liu, Chuang; Li, Shiguo; Kong, Jingjing; Liu, Yangjia; Wang, Tianpeng; Xie, Liping; Zhang, Rongqing
2015-01-01
The shells of pearl oysters, Pinctada fucata, are composed of calcite and aragonite and possess remarkable mechanical properties. These shells are formed under the regulation of macromolecules, especially shell matrix proteins (SMPs). Identification of diverse SMPs will lay a foundation for understanding biomineralization process. Here, we identified 72 unique SMPs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteins extracted from the shells of P. fucata combined with a draft genome. Of 72 SMPs, 17 SMPs are related to both the prismatic and nacreous layers. Moreover, according to the diverse domains found in the SMPs, we hypothesize that in addition to controlling CaCO3 crystallization and crystal organization, these proteins may potentially regulate the extracellular microenvironment and communicate between cells and the extracellular matrix (ECM). Immunohistological localization techniques identify the SMPs in the mantle, shells and synthetic calcite. Together, these proteomic data increase the repertoires of the shell matrix proteins in P. fucata and suggest that shell formation in P. fucata may involve tight regulation of cellular activities and the extracellular microenvironment. PMID:26608573
Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell
2010-01-01
Background The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called "calcifying matrix" is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, most of its protein components remain uncharacterised. Results Recent expressed sequence tag (EST) investigations of the mantle tissue from the tropical abalone (Haliotis asinina) provide an opportunity to further characterise the proteins in the shell by a proteomic approach. In this study, we have identified a total of 14 proteins from distinct calcified layers of the shell. Only two of these proteins have been previously characterised from abalone shells. Among the novel proteins are several glutamine- and methionine-rich motifs and hydrophobic glycine-, alanine- and acidic aspartate-rich domains. In addition, two of the new proteins contained Kunitz-like and WAP (whey acidic protein) protease inhibitor domains. Conclusion This is one of the first comprehensive proteomic study of a molluscan shell, and should provide a platform for further characterization of matrix protein functions and interactions. PMID:21050442
The influence of diet on the δ 13C of shell carbon in the pulmonate snail Helix aspersa
NASA Astrophysics Data System (ADS)
Stott, Lowell D.
2002-02-01
The influence of diet and atmospheric CO 2 on the carbon isotope composition of shell aragonite and shell-bound organic carbon in the pulmonate snail Helix aspersa raised in the laboratory was investigated. Three separate groups of snails were raised on romaine lettuce (C3 plant, δ 13C=-25.8‰), corn (C4 plant, δ 13C=-10.5‰), and sour orange ( 12C-enriched C3 plant, δ 13C=-39.1‰). The isotopic composition of body tissues closely tracked the isotopic composition of the snail diet as demonstrated previously. However, the isotopic composition of the acid insoluble organic matrix extracted from the aragonite shells does not track diet in all groups. In snails that were fed corn the isotopic composition of the organic matrix was more negative than the body by as much as 5‰ whereas the matrix was approximately 1‰ heavier than the body tissues in snails fed a diet of C3 plant material. These results indicate that isotopic composition of the organic matrix carbon cannot be used as an isotopic substrate for paleodietary reconstructions without first determining the source of the carbon and any associated fractionations. The isotopic composition of the shell aragonite is offset from the body tissues by 12.3‰ in each of the culture groups. This offset was not influenced by the consumption of carbonate and is not attributable to the diffusion of atmospheric CO 2 into the hemolymph. The carbon isotopic composition of shell aragonite is best explained in terms of equilibrium fractionations associated with exchange between metabolic CO 2 and HCO 3 in the hemolymph and the fractionation associated with carbonate precipitation. These results differ from previous studies, based primarily on samples collected in the field, that have suggested atmospheric carbon dioxide contributes significantly to the shell δ 13C. The culture results indicate that the δ 13C of aragonite is a good recorder of the isotopic composition of the snail body tissue, and therefore a better recorder of diet than is the insoluble shell organic carbon. Because the systematic fractionation of carbon isotopes within the snail is temperature dependent, the δ 13C of the shell could provide an independent technique for estimating paleotemperature changes.
Latire, Thomas; Legendre, Florence; Bouyoucef, Mouloud; Marin, Frédéric; Carreiras, Franck; Rigot-Jolivet, Muriel; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine
2017-10-01
Mollusc shells are composed of more than 95% calcium carbonate and less than 5% organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. In this study, we investigated the effects of matrix macromolecular components extracted from the shells of two edible molluscs of economic interest, i.e., the blue mussel Mytilus edulis and the Pacific oyster Crassostrea gigas. The potential biological activities of these organic molecules were analysed on human dermal fibroblasts in primary culture. Our results demonstrate that shell extracts of the two studied molluscs modulate the metabolic activities of the cells. In addition, the extracts caused a decrease of type I collagen and a concomitant increase of active MMP-1, both at the mRNA and the protein levels. Therefore, our results suggest that shell extracts from M. edulis and C. gigas contain molecules that promote the catabolic pathway of human dermal fibroblasts. This work emphasises the potential use of these shell matrices in the context of anti-fibrotic strategies, particularly against scleroderma. More generally, it stresses the usefulness to valorise bivalve shells that are coproducts of shellfish farming activity.
A shell regeneration assay to identify biomineralization candidate genes in mytilid mussels.
Hüning, Anne K; Lange, Skadi M; Ramesh, Kirti; Jacob, Dorrit E; Jackson, Daniel J; Panknin, Ulrike; Gutowska, Magdalena A; Philipp, Eva E R; Rosenstiel, Philip; Lucassen, Magnus; Melzner, Frank
2016-06-01
Biomineralization processes in bivalve molluscs are still poorly understood. Here we provide an analysis of specifically expressed sequences from a mantle transcriptome of the blue mussel, Mytilus edulis. We then developed a novel, integrative shell injury assay to test, whether biomineralization candidate genes highly expressed in marginal and pallial mantle could be induced in central mantle tissue underlying the damaged shell areas. This experimental approach makes it possible to identify gene products that control the chemical micro-environment during calcification as well as organic matrix components. This is unlike existing methodological approaches that work retroactively to characterize calcification relevant molecules and are just able to examine organic matrix components that are present in completed shells. In our assay an orthogonal array of nine 1mm holes was drilled into the left valve, and mussels were suspended in net cages for 20, 29 and 36days to regenerate. Structural observations using stereo-microscopy, SEM and Raman spectroscopy revealed organic sheet synthesis (day 20) as the first step of shell-repair followed by the deposition of calcite crystals (days 20 and 29) and aragonite tablets (day 36). The regeneration period was characterized by time-dependent shifts in gene expression in left central mantle tissue underlying the injured shell, (i) increased expression of two tyrosinase isoforms (TYR3: 29-fold and TYR6: 5-fold) at day 20 with a decline thereafter, (ii) an increase in expression of a gene encoding a nacrein-like protein (max. 100-fold) on day 29. The expression of an acidic Asp-Ser-rich protein was enhanced during the entire regeneration process. This proof-of-principle study demonstrates that genes that are specifically expressed in pallial and marginal mantle tissue can be induced (4 out of 10 genes) in central mantle following experimental injury of the overlying shell. Our findings suggest that regeneration assays can be used systematically to better characterize gene products that are essential for distinct phases of the shell formation process, particularly those that are not incorporated into the organic shell matrix. Copyright © 2016 Elsevier B.V. All rights reserved.
Finite Element Analysis of Crack-Path Selection in a Brick and Mortar Structure
NASA Astrophysics Data System (ADS)
Sarrafi-Nour, Reza; Manoharan, Mohan; Johnson, Curtis A.
Many natural composite materials rely on organized architectures that span several length scales. The structures of natural shells such as nacre (mother-of-pearl) and conch are prominent examples of such organizations where the calcium carbonate platelets, the main constituent of natural shells, are held together in an organized fashion within an organic matrix. At one or multiple length scales, these organized arrangements often resemble a brick-and-mortar structure, with calcium carbonate platelets acting as bricks connected through the organic mortar phase.
Ma, Yufei; Berland, Sophie; Andrieu, Jean-Pierre; Feng, Qingling; Bédouet, Laurent
2013-04-01
Aragonite pearl, vaterite pearl and shell nacre of the freshwater mollusc Hyriopsis cumingii (Zhejiang province, China) were chosen to analyze microstructure and organic composition in the different habits of calcium carbonate. SEM and TEM were used to reveal the microstructure and mineralogical phase. We found that tablets in vaterite exhibited more irregular texture and were packaged with more organic matrices than in aragonite forms. Then a peculiar method was introduced to extract water soluble matrix (WSM), acid soluble matrix (ASM) and acid insoluble matrix (AIM) from the three samples, and biochemical analysis of these organic matrixes involved in crystal formation and polymorph selection was carried out. High performance liquid chromatography (HPLC) confirms the hydrophobic pattern of the organic matrix intermingled with mineral, the opposite of the early mobilizable water soluble fraction. Amino acid composition confirms hydrophobic residues as major components of all the extracts, but it reveals an imbalance in acidic residues rates in WSM vs. ASM and in aragonite vs. vaterite. Electrophoresis gives evidence for signatures in proteins with a 140 kDa material specific for aragonite in WSM. Conversely all ASM extracts reveal the presence of about 55 kDa components, including a discrete band in vaterite extract. Copyright © 2012 Elsevier B.V. All rights reserved.
Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B; Nys, Yves; Gautron, Joël
2015-09-01
Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.
Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B.; Nys, Yves; Gautron, Joël
2015-01-01
Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed. PMID:26306314
Xiang, Liang; Su, Jingtan; Zheng, Guilan; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing
2013-01-01
The initial growth of the nacreous layer is crucial for comprehending the formation of nacreous aragonite. A flat pearl method in the presence of the inner-shell film was conducted to evaluate the role of matrix proteins in the initial stages of nacre biomineralization in vivo. We examined the crystals deposited on a substrate and the expression patterns of the matrix proteins in the mantle facing the substrate. In this study, the aragonite crystals nucleated on the surface at 5 days in the inner-shell film system. In the film-free system, the calcite crystals nucleated at 5 days, a new organic film covered the calcite, and the aragonite nucleated at 10 days. This meant that the nacre lamellae appeared in the inner-shell film system 5 days earlier than that in the film-free system, timing that was consistent with the maximum level of matrix proteins during the first 20 days. In addition, matrix proteins (Nacrein, MSI60, N19, N16 and Pif80) had similar expression patterns in controlling the sequential morphologies of the nacre growth in the inner-film system, while these proteins in the film-free system also had similar patterns of expression. These results suggest that matrix proteins regulate aragonite nucleation and growth with the inner-shell film in vivo. PMID:23776687
Review on the preparation and modified technologies of microencapsulated red phosphorus
NASA Astrophysics Data System (ADS)
Cheng, Chen; Du, Shiguo; Yan, Jun
2017-10-01
Coated by a compact shell structure, pristine red phosphorus transforms into microcapsule red phosphorus (MCRP) with lower PH3 emission and improved compatibility with polymer matrix. Diverse kinds of microcapsule red phosphorus are classified by shell material, i.e.organic shell material MCRP, inorganic shell material MCRP and composite shell material MCRP. Furthermore, the modified technology to make up deficiencies of MCRP is also introduced in the lecture. Aiming at the existing microencapsulation craft, a more harmless and high-efficiency process should be presented, and ultrafine MCRP is also urgent to be prepared.
Broussard, Cédric; Catherinet, Bastien; Plasseraud, Laurent; Alcaraz, Gérard; Bundeleva, Irina; Marin, Frédéric
2016-01-01
The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries. PMID:27213644
Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells
NASA Astrophysics Data System (ADS)
Farre, B.; Dauphin, Y.
2009-04-01
Mollusc shells are the best-known Ca-carbonate biominerals. They are commonly described as a mineralized two layered structure: an outer layer composed of calcite prismatic units, and an internal layer composed of tablets of aragonite: the nacreous layer. An external organic layer (periostracum) is present in most taxa. However, the most common structure in the Mollusc shell is the aragonite crossed lamellar layer, but aragonite prisms, calcite foliated layers and homogeneous layers have been also described by Boggild (1930) in all the Mollusc orders. Since, more detailed descriptions of Bivalve shells have been done (Taylor et al., 1969, 1973). Despite the nacroprismatic arrangement is rare, calcite prismatic and aragonite nacreous layers are the best studied because of their simple 3D structure and large units. Among these Molluscs, some Bivalve species composed of these two layers are of commercial interest, such as the pearl oyster, Pinctada margaritifera, cultivated in French Polynesia to produce black pearls. It is well established that Mollusc shells are composite structures of organic and inorganic components (Hatchett, 1799; Grégoire et al., 1955; Beedham, 1958; Simkiss, 1965; Mutvei, 1969; Cuif et al., 1980; Berman et al., 1993; Kobayashi and Samata, 2006). Numerous studies are concerned with the organic matrix of the shell. Organic components are commonly obtained after a strong or mild decalcification process. They are said to consist of both a soluble and insoluble fraction. The main part of studies is dedicated to the soluble components, and among them, proteins (Grégoire et al., 1955; Grégoire, 1961; Krampitz et al., 1976; Samata et al., 1980, 2004; Weiner, 1983; Miyamoto et al., 2006). Despite the pioneering work of Wada (1980) sugars are usually neglected despite their role in biomineralization. The third component of the organic matrix of calcareous biominerals is lipids. To date, there is a paucity of information concerning the presence, abundance and composition of these components in Mollusc shells. Goulletquer and Wolowicz (1989) have estimated that proteins represent 90% of the organic matrix of the shell, carbohydrates vary from 0.15 to 0.29%, while lipids vary from 0.8 to 2.9%. Fatty acids, cholesterol, phytadienes and ketones have been described in modern and fossil shells (Cobabe and Pratt, 1995). Using a procedure to extract intra- and intercrystalline organic matrices, Collins et al. (1995) have detected n-alkanes, n-alcohols, fatty acids and sterols in modern shells. It is suggested that the contents and ratios of these components are dependant on the environment and phylogeny. Lipids of the nacreous layer of Pinctada are diverse, with cholesterol, fatty acids, triglycerides and other unknown components (Rousseau et al., 2006). It has been established that the main part of the soluble organic matrices of the nacreous layer is composed of acidic proteins (Samata, 1988, 1990), whereas the prismatic layer of Pinna is mainly composed of acidic and sulphated polysaccharides (Dauphin, 2002; Dauphin et al., 2003). The amino acid compositions of the two layers are also different (Samata, 1990). Because the organic matrices extracted from the aragonite nacre and calcite prisms are the best known materials, the lipids extracted from the calcite prisms of Pinna nobilis and Pinctada margaritifera and the aragonite nacre of P. margaritifera have been chosen as test material for characterisation of the lipid fraction of molusk shells. The nacreous layer of Pinctada is thick,whereas its prismatic layer is thin, and the prisms display complex structures. On the opposite, the calcitic prismatic layer of Pinna is thick, with no intraprismatic membranes, and its nacreous layer is thin and present only in the oldest part of the shell. Moreover, these layers have a simple geometry so that some organic components (membranes, wall…) said to be insoluble, are clearly visible. Lipids were extracted from the calcite prismatic and aragonite nacreous layer of two mollusc shells thanks organic solvents. Two methods were used for the characterisation of the lipid obtaiened Fourier Tranform Infrared Spectrometry and thin layed chromatography. Fourier Transform Infrared Spectrometry shows that lipids are present in both samples, but they are not similar. Thin layer chromatography confirms that lipids are different in the two studied layers, so that it may be suggested they are species-dependant, but also structure-dependant. Although not yet deciphered, their role in biomineralization and fossilisation processes is probably important.
Core-shell hydrogel beads with extracellular matrix for tumor spheroid formation.
Yu, L; Grist, S M; Nasseri, S S; Cheng, E; Hwang, Y-C E; Ni, C; Cheung, K C
2015-03-01
Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since they may provide a better model of the tumor than conventional monolayer culture. Moreover, tumor cell interaction with the extracellular matrix can determine cell organization and behavior. In this work, a microfluidic system was used to form cell-laden core-shell beads which incorporate elements of the extracellular matrix and support the formation of multicellular spheroids. The bead core (comprising a mixture of alginate, collagen, and reconstituted basement membrane, with gelation by temperature control) and shell (comprising alginate hydrogel, with gelation by ionic crosslinking) were simultaneously formed through flow focusing using a cooled flow path into the microfluidic chip. During droplet gelation, the alginate acts as a fast-gelling shell which aids in preventing droplet coalescence and in maintaining spherical droplet geometry during the slower gelation of the collagen and reconstituted basement membrane components as the beads warm up. After droplet gelation, the encapsulated MCF-7 cells proliferated to form uniform spheroids when the beads contained all three components: alginate, collagen, and reconstituted basement membrane. The dose-dependent response of the MCF-7 cell tumor spheroids to two anticancer drugs, docetaxel and tamoxifen, was compared to conventional monolayer culture.
Chemical-mechanical stability of the hierarchical structure of shell nacre
NASA Astrophysics Data System (ADS)
Sun, Jinmei; Guo, Wanlin
2010-02-01
The hierarchical structure and mechanical property of shell nacre are experimentally investigated from the new aspects of chemical stability and chemistry-mechanics coupling. Through chemical deproteinization or demineralization methods together with characterization techniques at micro/nano scales, it is found that the nacre of abalone, haliotis discus hannai, contains a hierarchical structure stacked with irregular aragonite platelets and interplatelet organic matrix thin layers. Yet the aragonite platelet itself is a nanocomposite consisting of nanoparticles and intraplatelet organic matrix framework. The mean diameter of the nanoparticles and the distribution of framework are quite different for different platelets. Though the interplatelet and intraplatelet organic matrix can be both decomposed by sodium hydroxide solution, the chemical stability of individual aragonite platelets is much higher than that of the microstructure stacked with them. Further, macroscopic bending test or nanoindentation experiment is performed on the micro/nanostructure of nacre after sodium hydroxide treatment. It is found that the Young’s modulus of both the stacked microstructure and nanocomposite platelet reduced. The reduction of the microstructure is more remark than that of the platelet. Therefore the chemical-mechanical stability of the nanocomposite platelet itself is much higher than that of the stacked microstructure of nacre.
Organic Stable Isotopes in Ancient Oyster Shell Trace Pre-colonial Nitrogen Sources
NASA Astrophysics Data System (ADS)
Darrow, E. S.; Carmichael, R. H.; Andrus, C. F. T.; Jackson, H. E.
2016-02-01
Oysters (Crassostrea virginica) were an important food resource for native peoples of the northern Gulf of Mexico, who harvested oysters and deposited waste shell and other artifacts in middens. Shell δ15N is a proxy for oyster tissue δ15N that reflects nitrogen (N) in food sources of bivalves. We tested the use of shell δ15N as a paleo proxy of ancient N sources, which to our knowledge has not been previously done for archeological bivalve specimens. To determine δ15N of the very low-N and high-carbonate ancient specimens, we tested established and modified acidification techniques developed for modern clams and oysters to decalcify organic shell matrix and extract sufficient N for analyses. Centrifugation following acidification better concentrated N from ancient shells for stable isotope analysis. Careful screening was required to detect effects of diagenesis, incomplete acidification, and sample contamination. Modern oyster shells did not require acidification and bulk shell material was directly analyzed for δ15N using an EA-IRMS coupled to a CO2 trap. δ15N values in ancient oyster shells did not differ from modern oyster shells from the same sites, but %N and % organic carbon (C) were lower in ancient than in modern shells. Organic δ13C in ancient shells had a significant negative relationship with shell age, possibly due to an effect of sea level rise increasing marine suspended particulate matter (SPM) sources to oysters. In modern oysters, δ15N had a significant relationship with soft tissue δ15N, and predicted by SPM δ15N, water column nitrate, and water column dissolved organic nitrogen (DON) concentrations, demonstrating the effectiveness of oyster shell δ15N to identify N sources to bivalves such as oysters. Our study has demonstrated the usefulness of δ15N from midden oyster shells as a proxy for N sources in an estuary that has undergone relatively light impacts from human land-use change through the past 2000 years.
Miyamoto, Hiroshi; Endo, Hirotoshi; Hashimoto, Naoki; Limura, Kurin; Isowa, Yukinobu; Kinoshita, Shigeharu; Kotaki, Tomohiro; Masaoka, Tetsuji; Miki, Takumi; Nakayama, Seiji; Nogawa, Chihiro; Notazawa, Atsuto; Ohmori, Fumito; Sarashina, Isao; Suzuki, Michio; Takagi, Ryousuke; Takahashi, Jun; Takeuchi, Takeshi; Yokoo, Naoki; Satoh, Nori; Toyohara, Haruhiko; Miyashita, Tomoyuki; Wada, Hiroshi; Samata, Tetsuro; Endo, Kazuyoshi; Nagasawa, Hiromichi; Asakawa, Shuichi; Watabe, Shugo
2013-10-01
In molluscs, shell matrix proteins are associated with biomineralization, a biologically controlled process that involves nucleation and growth of calcium carbonate crystals. Identification and characterization of shell matrix proteins are important for better understanding of the adaptive radiation of a large variety of molluscs. We searched the draft genome sequence of the pearl oyster Pinctada fucata and annotated 30 different kinds of shell matrix proteins. Of these, we could identified Perlucin, ependymin-related protein and SPARC as common genes shared by bivalves and gastropods; however, most gastropod shell matrix proteins were not found in the P. fucata genome. Glycinerich proteins were conserved in the genus Pinctada. Another important finding with regard to these annotated genes was that numerous shell matrix proteins are encoded by more than one gene; e.g., three ACCBP-like proteins, three CaLPs, five chitin synthase-like proteins, two N16 proteins (pearlins), 10 N19 proteins, two nacreins, four Pifs, nine shematrins, two prismalin-14 proteins, and 21 tyrosinases. This diversity of shell matrix proteins may be implicated in the morphological diversity of mollusc shells. The annotated genes reported here can be searched in P. fucata gene models version 1.1 and genome assembly version 1.0 ( http://marinegenomics.oist.jp/pinctada_fucata ). These genes should provide a useful resource for studies of the genetic basis of biomineralization and evaluation of the role of shell matrix proteins as an evolutionary toolkit among the molluscs.
Watt, John Daniel; Bleier, Grant C.; Romero, Zachary William; ...
2018-05-15
In this paper, significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/Fe xO y core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of themore » resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watt, John Daniel; Bleier, Grant C.; Romero, Zachary William
In this paper, significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/Fe xO y core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of themore » resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.« less
Compositional analysis and structural elucidation of glycosaminoglycans in chicken eggs
Liu, Zhangguo; Zhang, Fuming; Li, Lingyun; Li, Guoyun; He, Wenqing; Linhardt, Robert J.
2014-01-01
Glycosaminoglycans (GAGs) have numerous applications in the fields of pharmaceuticals, cosmetics, nutraceuticals, and foods. GAGs are also critically important in the developmental biology of all multicellular animals. GAGs were isolated from chicken egg components including yolk, thick egg white, thin egg white, membrane, calcified shell matrix supernatant, and shell matrix deposit. Disaccharide compositional analysis was performed using ultra high-performance liquid chromatography-mass spectrometry. The results of these analyses showed that all four families of GAGs were detected in all egg components. Keratan sulfate was found in egg whites (thick and thin) and shell matrix (calcified shell matrix supernatant and deposit) with high level. Chondroitin sulfates were much more plentiful in both shell matrix components and membrane. Hyaluronan was plentiful in both shell matrix components and membrane, but were only present in a trace of quantities in the yolk. Heparan sulfate was plentiful in the shell matrix deposit but was present in a trace of quantities in the egg content components (yolk, thick and thin egg whites). Most of the chondroitin and heparan sulfate disaccharides were present in the GAGs found in chicken eggs with the exception of chondroitin and heparan sulfate 2,6-disulfated disaccharides. Both CS and HS in the shell matrix deposit contained the most diverse chondroitin and heparan sulfate disaccharide compositions. Eggs might provide a potential new source of GAGs. PMID:25218438
Bioprinting Using Mechanically Robust Core-Shell Cell-Laden Hydrogel Strands.
Mistry, Pritesh; Aied, Ahmed; Alexander, Morgan; Shakesheff, Kevin; Bennett, Andrew; Yang, Jing
2017-06-01
The strand material in extrusion-based bioprinting determines the microenvironments of the embedded cells and the initial mechanical properties of the constructs. One unmet challenge is the combination of optimal biological and mechanical properties in bioprinted constructs. Here, a novel bioprinting method that utilizes core-shell cell-laden strands with a mechanically robust shell and an extracellular matrix-like core has been developed. Cells encapsulated in the strands demonstrate high cell viability and tissue-like functions during cultivation. This process of bioprinting using core-shell strands with optimal biochemical and biomechanical properties represents a new strategy for fabricating functional human tissues and organs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rombaldi, Caroline; de Oliveira Arias, Jean Lucas; Hertzog, Gabriel Ianzer; Caldas, Sergiane Souza; Vieira, João P; Primel, Ednei Gilberto
2015-06-01
The use of golden mussel shells as a solid support in vortex-assisted matrix solid-phase dispersion (MSPD) was evaluated for the first time for extraction of residues of 11 pesticides and nine pharmaceutical and personal care products from mussel tissue samples. After they had been washed, dried, and milled, the mussel shells were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The MSPD procedure with analysis by liquid chromatography-tandem mass spectrometry allowed the determination of target analytes at trace concentrations (nanograms per gram), with mean recoveries ranging from 61 to 107 % and relative standard deviations lower than 18 %. The optimized method consisted of dispersion of 0.5 g of mussel tissue, 0.5 g of NaSO4, and 0.5 g of golden mussel shell for 5 min, and subsequent extraction with 5 mL of ethyl acetate. The matrix effect was evaluated, and a low effect was found for all compounds. The results showed that mussel shell is an effective material and a less expensive material than materials that have traditionally been used, i.e., it may be used in the MSPD dispersion step during the extraction of pesticides and pharmaceutical and personal care products from golden mussel tissues. Graphical Abstract Vortex-assited matrix solid-phase dispersion for extraction of 11 pesticides and 9 PPCPs care products from mussel tissue samples.
Eigenvalue computations with the QUAD4 consistent-mass matrix
NASA Technical Reports Server (NTRS)
Butler, Thomas A.
1990-01-01
The NASTRAN user has the option of using either a lumped-mass matrix or a consistent- (coupled-) mass matrix with the QUAD4 shell finite element. At the Sixteenth NASTRAN Users' Colloquium (1988), Melvyn Marcus and associates of the David Taylor Research Center summarized a study comparing the results of the QUAD4 element with results of other NASTRAN shell elements for a cylindrical-shell modal analysis. Results of this study, in which both the lumped-and consistent-mass matrix formulations were used, implied that the consistent-mass matrix yielded poor results. In an effort to further evaluate the consistent-mass matrix, a study was performed using both a cylindrical-shell geometry and a flat-plate geometry. Modal parameters were extracted for several modes for both geometries leading to some significant conclusions. First, there do not appear to be any fundamental errors associated with the consistent-mass matrix. However, its accuracy is quite different for the two different geometries studied. The consistent-mass matrix yields better results for the flat-plate geometry and the lumped-mass matrix seems to be the better choice for cylindrical-shell geometries.
Surface characterization of hydrophobic core-shell QDs using NMR techniques
NASA Astrophysics Data System (ADS)
Zhang, Chengqi; Zeng, Birong; Palui, Goutam; Mattoussi, Hedi
2018-02-01
Using a few solution phase NMR spectroscopy techniques, including 1H NMR and 31P NMR, we have characterized the organic shell on CdSe-ZnS core-shell quantum dots and tracked changes in its composition when the QD dispersions are subjected to varying degrees of purification. Combining solution phase NMR with diffusion ordered spectroscopy (DOSY), we were able to distinguish between freely diffusing ligands in the sample from those bound on the surfaces. Additionally, matrix assisted laser desorption ionization (MALDI) and FTIR measurements were used to provide complementary and supporting information on the organic ligand coating for these nanocrystals. We found that the organic shell is dominated by monomeric or oligomeric n-hexylphosphonic acid (HPA), along with small portion of 1-hexadecyl amine (HDA). The presence of TOP/TOPO (tri-n-octylphosphine / tri-noctylphosphine oxide) molecules is much smaller, even though large excess of TOP/TOPO were used during the QD growth. These results indicate that HPA (alkyl phosphonate) exhibits the strongest coordination affinity to ZnS-rich QD surfaces grown using the high temperature injection route.
NASA Astrophysics Data System (ADS)
Labonne, Maylis; Hillaire-Marcel, Claude
2000-05-01
Seriate geochemical measurements through shells of one modern, one Holocene, and two Sangamonian Concholepas concholepas, from marine terraces of Northern Chile, were performed to document diagenetic vs. authigenic geochemical signatures, and to better interpret U-series ages on such material. Subsamples were recovered by drilling from the outer calcitic layer to the inner aragonitic layer of each of the studied shells. Unfortunately, this sampling procedure induces artifacts, notably the convertion of up to ˜20% of calcite into aragonite, and of up to ˜6% of aragonite into calcite, as well as in the epimerization of a few percent of isoleucine into D-alloisoleucine/ L-isoleucine. Negligible sampling artifacts were noticed for stable isotope and total amino acid contents. Diagenetic effects on the geochemical properties of the shells are particularly pronounced in the inner aragonitic layer and more discrete in the outer calcitic layer. The time-dependent decay of the organic matrix of the shell is illustrated by a one order of magnitude lower total amino acid content in the Sangamonian specimens by comparison with the modern shell. Conversely, the Sangamonian shells U contents increase by a similar factor and 13C- 18O enrichments as high as 2 to 3‰ seem also to occur through the same time interval possibly due to partial replacement of aragonite by gypsum. The decay of the organic matrix of the aragonitic layer of the shell is thought to play a major role with respect to U-uptake processes and stable isotope shifts. Nevertheless, asymptotic 230Th-ages (˜100 ka) in the inner U-rich layers of the Sangamonian shells, and 234U/ 238U ratios compatible with a marine origin for U, suggest U-uptake within a short diagenetic interval, when marine waters were still bathing the embedding sediment. Thus, U-series ages on fossil mollusks from such a hyper-arid environment should not differ much from the age of the corresponding marine unit deposition. However, the diagenetic enrichments in stable isotopes raise concerns about their use for paleoenvironmental reconstructions under such climate conditions.
Polarimetry of nacre in iridescent shells
NASA Astrophysics Data System (ADS)
Metzler, R. A.; Burgess, C.; Regan, B.; Spano, S.; Galvez, E. J.
2014-09-01
We investigate the light transmitted or reflected from nacre (mother of pearl) taken from the iridescent shell of the bivalve Pinctad a fucata. These nacre surfaces have a rich structure, composed of aragonite crystals arranged as tablets or bricks, 5 μm wide and 400-500 nm thick, surrounded by 30nm thick organic mortar. The light reflected from these shell surfaces, or transmitted through thin polished layers, is rich in its polarization content, exhibiting a space dependent variation in the state of polarization with a high density of polarization singularities. Our goal is to use the polarization information to infer the structure of the biominerals and the role of the organic layer in determining the orientation of the crystals. In the experiments we send the light from a laser with a uniform state of polarization onto the shell, and analyze the light that is either transmitted or reflected, depending on the type of experiment, imaging it after its passage through polarization filters. We use the images from distinct filters to obtain the Stokes parameters, and hence the state of polarization, of each image point. We also construct the Mueller matrix for each imaged point, via 36 measurements. We do this for distinct physical and chemical treatments of the shell sample. Preliminary data shows that the organic layer may be responsible for organizing a multi-crystalline arrangement of aragonite tablets.
Controlling factors of recent clastic coastal sediments (Viransehir, Mersin bay, S Turkey)
NASA Astrophysics Data System (ADS)
Gül, Murat; Özbek, Ahmet; Kurt, Mehmet Ali; Zorlu, Kemal
2009-04-01
The Plio-Quaternary conglomeratic sets within the marine environment of the Viranşehir coast (W Mersin, S Turkey) are responsible for the evolution of sandy and gravely beaches due to their control on various factors such as sea floor irregularity, wave energy, and organic activity. The conglomeratic sets close to the shoreline (50-150 cm) act as wave breakers, creating hard substratum and high energy, well-oxygenated environment for organisms like Patella sp., Phoronida worms and Brachidontes pharaonis (Fischer P. 1870). The boring activities of these organisms have disintegrated the sandy matrix of these sets. Finer-grained matrix sediments have been transported to the interset and open sea, while cobble-pebbles have been carried landwards and have created imbricated gravely beach deposits without matrix. Sandy beach is evolving where the conglomeratic sets away from the shoreline (5.0-10.0 m). In this example, sets form a bar; causing fivefold division as backshore, berm, surf zone, bar and offshore from land to sea. Poorly sorted, cobbles-pebbles cobbles and pebbles are found associated with the high-energy environments of bars, whilst well-sorted sands are observed in low energetic environments on shore. The sets and recent shell fragments are the main sources of coastal sediments in Viranşehir. However, the amount of shell fragments decrease towards the active river mouth. This is due to sediment and fresh water influx from the river causing deteriorated temperature, salinity and light penetration of the marine environment resulting in less organic diversity.
Nakayama, Seiji; Suzuki, Michio; Endo, Hirotoshi; Iimura, Kurin; Kinoshita, Shigeharu; Watabe, Shugo; Kogure, Toshihiro; Nagasawa, Hiromichi
2013-01-01
The periostracum is a layered structure that is formed as a mollusk shell grows. The shell is covered by the periostracum, which consists of organic matrices that prevent decalcification of the shell. In the present study, we discovered the presence of chitin in the periostracum and identified a novel matrix protein, Pinctada fucata periostracum protein named PPP-10. It was purified from the sodium dodecyl sulfate/dithiothreitol-soluble fraction of the periostracum of the Japanese pearl oyster, P. fucata. The deduced amino acid sequence was determined by a combination of amino acid sequence analysis and cDNA cloning. The open reading frame encoded a precursor protein of 112 amino acid residues including a 21-residue signal peptide. The 91 residues following the signal peptide contained abundant Cys and Tyr residues. PPP-10 was expressed on the outer side of the outer fold in the mantle, indicating that PPP-10 was present in the second or third layer of the periostracum. We also determined that the recombinant PPP-10 had chitin-binding activity and could incorporate chitin into the scaffolds of the periostracum. These results shed light on the early steps in mollusk shell formation.
Nakayama, Seiji; Suzuki, Michio; Endo, Hirotoshi; Iimura, Kurin; Kinoshita, Shigeharu; Watabe, Shugo; Kogure, Toshihiro; Nagasawa, Hiromichi
2013-01-01
The periostracum is a layered structure that is formed as a mollusk shell grows. The shell is covered by the periostracum, which consists of organic matrices that prevent decalcification of the shell. In the present study, we discovered the presence of chitin in the periostracum and identified a novel matrix protein, Pinctada fucata periostracum protein named PPP-10. It was purified from the sodium dodecyl sulfate/dithiothreitol-soluble fraction of the periostracum of the Japanese pearl oyster, P. fucata. The deduced amino acid sequence was determined by a combination of amino acid sequence analysis and cDNA cloning. The open reading frame encoded a precursor protein of 112 amino acid residues including a 21-residue signal peptide. The 91 residues following the signal peptide contained abundant Cys and Tyr residues. PPP-10 was expressed on the outer side of the outer fold in the mantle, indicating that PPP-10 was present in the second or third layer of the periostracum. We also determined that the recombinant PPP-10 had chitin-binding activity and could incorporate chitin into the scaffolds of the periostracum. These results shed light on the early steps in mollusk shell formation. PMID:24251105
Calvo-Iglesias, Juan; Pérez-Estévez, Daniel; Lorenzo-Abalde, Silvia; Sánchez-Correa, Beatriz; Quiroga, María Isabel; Fuentes, José M.; González-Fernández, África
2016-01-01
The M22.8 monoclonal antibody (mAb) developed against an antigen expressed at the mussel larval and postlarval stages of Mytilus galloprovincialis was studied on adult samples. Antigenic characterization by Western blot showed that the antigen MSP22.8 has a restricted distribution that includes mantle edge tissue, extrapallial fluid, extrapallial fluid hemocytes, and the shell organic matrix of adult samples. Other tissues such as central mantle, gonadal tissue, digestive gland, labial palps, foot, and byssal retractor muscle did not express the antigen. Immunohistochemistry assays identified MSP22.8 in cells located in the outer fold epithelium of the mantle edge up to the pallial line. Flow cytometry analysis showed that hemocytes from the extrapallial fluid also contain the antigen intracellularly. Furthermore, hemocytes from hemolymph have the ability to internalize the antigen when exposed to a cell-free extrapallial fluid solution. Our findings indicate that hemocytes could play an important role in the biomineralization process and, as a consequence, they have been included in a model of shell formation. This is the first report concerning a protein secreted by the mantle edge into the extrapallial space and how it becomes part of the shell matrix framework in M. galloprovincialis mussels. PMID:27008638
Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".
Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie
2014-01-01
Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.
Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”
Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie
2014-01-01
Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022
Liang, Jian; Xie, Jun; Gao, Jing; Xu, Chao-Qun; Yan, Yi; Jia, Gan-Chu; Xiang, Liang; Xie, Li-Ping; Zhang, Rong-Qing
2016-12-01
Mantle can secret matrix proteins playing key roles in regulating the process of shell formation. The genes encoding lysine-rich matrix proteins (KRMPs) are one of the most highly expressed matrix genes in pearl oysters. However, the expression pattern of KRMPs is limited and the functions of them still remain unknown. In this study, we isolated and identified six new members of lysine-rich matrix proteins, rich in lysine, glycine and tyrosine, and all of them are basic matrix proteins. Combined with four members of the KRMPs previously reported, all these proteins can be divided into three subclasses according to the results of phylogenetic analyses: KRMP1-3 belong to subclass KPI, KRMP4-5 belong to KPII, and KRMP6-10 belong to KPIII. Three subcategories of lysine-rich matrix proteins are highly expressed in the D-phase, the larvae and adult mantle. Lysine-rich matrix proteins are involved in the shell repairing process and associated with the formation of the shell and pearl. What's more, they can cause abnormal shell growth after RNA interference. In detail, KPI subgroup was critical for the beginning formation of the prismatic layer; both KPII and KPIII subgroups participated in the formation of prismatic layer and nacreous layer. Compared with different temperatures and salinity stimulation treatments, the influence of changes in pH on KRMPs gene expression was the greatest. Recombinant KRMP7 significantly inhibited CaCO 3 precipitation, changed the morphology of calcite, and inhibited the growth of aragonite in vitro. Our results are beneficial to understand the functions of the KRMP genes during shell formation.
Hyriopsis cumingii Hic52-A novel nacreous layer matrix protein with a collagen-like structure.
Liu, Xiaojun; Pu, Jingwen; Zeng, Shimei; Jin, Can; Dong, Shaojian; Li, Jiale
2017-09-01
Nacre is a product of a precisely regulated biomineralization process and a major contributor to the luster of pearls. Nacre is composed of calcium carbonate and an organic matrix of proteins that is secreted from mollusc mantle tissue and is exclusively associated with shell formation. In this study, hic52, a novel matrix protein gene from mantle of Hyriopsis cumingii, was cloned and functionally analyzed. The full-length cDNA of hic52 encoded 542 amino acids and contained a signal peptide of 18 amino acids. Excluding the signal peptide, the theoretical molecular mass of the polypeptide was 52.2kDa. The predicted isoelectric point was 10.37, indicating a basic shell protein. The amino acid sequence of hic52 featured high proportion of Gly (28.8%) and Gln (12.4%) residues. The predicted tertiary structure was characterized as having similarities to collagen I, alpha 1 and alpha 2 in the structure. The polypeptide sequence shared no homology with collagen. The hic52 expression pattern by quantitative real-time PCR and in situ hybridization exhibits at the dorsal epithelial cells of the mantle. Expression increased during the stages of pearl sac development. The data showed that hic52 is probably a framework shell protein that mediates and controls the nacreous biomineralization process. Copyright © 2017 Elsevier B.V. All rights reserved.
In situ analysis of the organic framework in the prismatic layer of mollusc shell.
Tong, Hua; Hu, Jiming; Ma, Wentao; Zhong, Guirong; Yao, Songnian; Cao, Nianxing
2002-06-01
A novel in situ analytic approach was constructed by means of ion sputtering, decalcification and deprotein techniques combining with scanning electron microscopy (SEM) and transmission electron microscope (TEM) ultrastructural analysis. The method was employed to determine the spatial distribution of the organic framework outside and the inner crystal and organic/inorganic interface spatial geometrical relationship in the prismatic layer of cristaris plicate (leach). The results show that there is a substructure of organic matrix in the intracrystalline region. The prismatic layer forms according to strict hierarchical configuration of regular pattern. Each unit of organic template of prismatic layer can uniquely determine the column crystal growth direction, spatial orientation and size. Cavity templates are responsible for supporting. limiting size and shape and determining the crystal growth spatial orientation, while the intracrystal organic matrix is responsible for providing nucleation point and inducing the nucleation process of calcite. The stereo hierarchical fabrication of prismatic layer was elucidated for the first time.
Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing
2014-01-01
Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723
NASA Astrophysics Data System (ADS)
Díaz-Alvarado, Juan; Rodríguez, Natalia; Rodríguez, Carmen; Fernández, Carlos; Constanzo, Ítalo
2017-07-01
The orbicular granitoid of Caldera, located at the northern part of the Chilean Coastal Range, is a spectacular example of radial textures in orbicular structures. The orbicular body crops out as a 375 m2 tabular to lensoidal intrusive sheet emplaced in the Lower Jurassic Relincho pluton. The orbicular structures are 3-7 cm in diameter ellipsoids hosted in a porphyritic matrix. The orbicules are comprised by a Qtz-dioritic core (3-5 cm in diameter) composed by Pl + Hbl + Qtz + Bt ± Kfs with equiaxial textures and a gabbroic shell (2-3 cm in diameter) characterized by feathery and radiate textures with a plagioclase + hornblende paragenesis. The radial shell crystals are rooted and orthogonally disposed in the irregular contact with the core. The radial shell, called here inner shell, is in contact with the granodioritic equiaxial interorbicular matrix through a 2-3 mm wide poikilitic band around the orbicule (outer shell). The outer shell and the matrix surrounding the orbicules are characterized by the presence of large hornblende and biotite oikocrystals that include fine-grained rounded plagioclase and magnetite. The oikocrystals of both the outer shell and the matrix have a circumferential arrangement around the orbicule, i.e. orthogonal to the radial inner shell. The coarse-grained granodioritic interorbicular matrix present pegmatitic domains with large acicular hornblende and K-feldspar megacrysts. This work presents a review of the textural characteristics of the orbicules and a complete new mineral and whole-rock geochemical study of the different parts of the orbicular granitoid, together with thermobarometric and crystallographic data, and theoretical modeling of the crystallization and element partitioning processes. We propose a model for the formation of the orbicular radial textures consisting of several processes that are suggested to occur fast and consecutively: superheating, volatile exsolution, undercooling, geochemical fractionation and columnar and equiaxial crystallization. According to the obtained results, the formation of the orbicular granitoid of Caldera may have initiated 1) during the generation of a magmatic fracture in the crystallization front of the Relincho pluton, where the water released by the host crystal mush was dissolved in the new batch of dioritic magma. 2) The high influx of water-rich liquids induced superheating conditions in the newly intruding magma that became a depolymerized liquid, where the only solid particules were the small irregular fragments of the host mush dragged from the fracture walls. 3) Volatile exsolution promoted crystallization under undercooling conditions. 4) Undercooling and nucleation around the core (cold germs) involved the physical and geochemical fractionation between two sub-systems: a gabbroic sub-system that comprises the solid paragénesis with a residual water-rich liquid and a granodioritic sub-system. 5) The orbicules, including core and inner shell, behaved as viscous bodies (crystals + residual liquid) floating in the granodioritic magma. 6) Higher undercooling rates occurred at the starting stage, close to the liquidus, promoting columnar crystallization around the cores and formation of the shells. Conversely, in the granodioritic matrix sub-system, equiaxial crystallization was promoted by low relative crystallization rates. 7) The rest of the crystallization process evolved later in the outer shell and the matrix, as suggested by the poikilitic textures observed in both sides of the orbicule contact, and under conditions close to the solidus of both sub-systems (shell and matrix). The water-rich residual liquid expelled during the orbicular shell crystallization was mingled with the partially crystallized matrix magma, generating the pegmatitic domains with large Kfs megacrysts.
Collective cell behavior on basement membranes floating in space
NASA Astrophysics Data System (ADS)
Ellison, Sarah; Bhattacharjee, Tapomoy; Morley, Cameron; Sawyer, W.; Angelini, Thomas
The basement membrane is an essential part of the polarity of endothelial and epithelial tissues. In tissue culture and organ-on-chip devices, monolayer polarity can be established by coating flat surfaces with extracellular matrix proteins and tuning the trans-substrate permeability. In epithelial 3D culture, spheroids spontaneously establish inside-out polarity, morphing into hollow shell-like structures called acini, generating their own basement membrane on the inner radius of the shell. However, 3D culture approaches generally lack the high degree of control provided by the 2D culture plate or organ-on-chip devices, making it difficult to create more faithful in vitro tissue models with complex surface curvature and morphology. Here we present a method for 3D printing complex basement membranes covered in cells. We 3D print collagen-I and Matrigel into a 3D growth medium made from jammed microgels. This soft, yielding material allows extracellular matrix to be formed as complex surfaces and shapes, floating in space. We then distribute MCF10A epithelial cells across the polymerized surface. We envision employing this strategy to study 3D collective cell behavior in numerous model tissue layers, beyond this simple epithelial model.
Apparatus for forming a continuous lightweight multicell material
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Kendall, James M., Jr. (Inventor)
1984-01-01
An apparatus is described for producing a lightweight structural material (12), by forming gas-filled shells (38) of molten material from a matrix of nozzles (22) that form shells of very uniform size at very uniform rates. The matrix of molten shells coalesce into a multi-cell material of controlled cellular structure. The shells can be of two different sizes (38, 44) that are interspersed, to form a multicell material that has a regular cell pattern but which avoids planes of weakness and localized voids. The gas (50) in the shells can be under a high pressure, and can be a fire extinguishing gas.
Testing the best method to prepare recent and fossil brachiopod shells for SEM analysis
NASA Astrophysics Data System (ADS)
Crippa, Gaia; Ye, Facheng
2017-04-01
The analysis of shell microstructures by Scanning Electron Microscope (SEM) is a method easily available to most palaeontologists and geochemists. This kind of analysis is a fundamental step in the study of the mineralised parts of marine and terrestrial organisms, and it provides invaluable information in different fields of palaeontology, from the comprehension of evolutionary taxonomy and biomineralisation processes to the screening of shell diagenetic alteration. In precipitating their low-magnesium calcite shells in isotopic equilibrium with ambient seawater, brachiopods are excellent archives of past seawater temperature and ocean chemistry. However, diagenetic processes may alter the original fabric and the original geochemical composition of the shells; the SEM analysis of the microstructure represents one of the most common method used to test fossil shell preservation and eventually exclude diagenetic alteration. Notwithstanding the importance of this analysis, only few and scattered data have been published about the preparation and cleaning of brachiopod shells for SEM analyses Here, we describe several tests performed on recent and fossil brachiopod shells, experimenting new and old methodologies in order to identify a general protocol to better highlight and analyze the shell fabric. Recent taxa include Liothyrella uva and Liothyrella neozelanica, respectively collected from Antarctica and New Zealand; fossil shells are those of Terebratula scillae collected from the lower Pleistocene Stirone River sedimentary succession in Northern Italy. We carried out several tests to check the response of the shell fabric to the resin used to embed the valves before cutting and to different times of exposure to hydrochloric acid; furthermore, as the presence of the organic matrix in recent shells represents the main obstacle to obtaining high quality SEM images, we used bleach and hydrogen peroxide with different concentrations and times of exposure to remove it. We conclude that bleach and hydrogen peroxide at the highest time of exposure followed by hydrochloric acid for 3 seconds is the best method to use when preparing recent brachiopods, whereas fossil shells should undergo higher exposure time to hydrochloric acid (15 seconds).
Ceramic matrix composite turbine engine vane
NASA Technical Reports Server (NTRS)
Schaff, Jeffery R. (Inventor); Shi, Jun (Inventor)
2012-01-01
A vane has an airfoil shell and a spar within the shell. The vane has an outboard shroud at an outboard end of the shell and an inboard platform at an inboard end of the shell. The shell includes a region having a coefficient of thermal expansion (CTE) varying with depth.
NASA Astrophysics Data System (ADS)
Devi, Jutika; Datta, Pranayee
2018-07-01
Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.
NASA Astrophysics Data System (ADS)
Devi, Jutika; Datta, Pranayee
2018-03-01
Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.
Becker, Alexander; Ziegler, Andreas; Epple, Matthias
2005-05-21
The cuticules (shells) of the woodlice Porcellio scaber and Armadillidium vulgare were analysed with respect to their content of inorganic material. It was found that the cuticles consist of crystalline magnesium calcite, amorphous calcium carbonate (ACC), and amorphous calcium phosphate (ACP), besides small amounts of water and an organic matrix. It is concluded that the cuticle, which constitutes a mineralized protective organ, is chemically adapted to the biological requirements by this combination of different materials.
Zhu, Zhihong; Tong, Hua; Ren, Yaoyao; Hu, Jiming
2006-01-01
The ultrastructure of clam (Meretrix lusoria) was investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction analyzer (XRD) combining with in situ texture decalcified technique and the micro-hardness of clam was determined, in order to understand the spatial relationship between the mineral phase and organic matrix and further explain the correlation between the property and structure. The results showed that hierarchical fabrication is the major structure character of this mollusc shell. There is specific braided structure forming from domains composed of needle-like structure made up of the single crystal of aragonite. High magnification TEM image of clam indicates the intracrystal region of the aragonite single crystal is made up of subgrain phase and some amorphous substance. There are various crystal grain growth preferential orientations in the different growth direction of the shell. An amount of organic microtubule distribute evenly in the base of calcium carbonate as reinforcement phase. The mechanical property of this natural biological composite is better than other aragonite layer of mollusc shells and pearls according to the data of micro-hardness testing. The braided structure and organic microtubule reinforcement phase are responsible for its high mechanical performance. The stereo hierarchical fabrication of clam was elucidated for the first time.
Multifunctional layered magnetic composites
Siglreitmeier, Maria; Wu, Baohu; Kollmann, Tina; Neubauer, Martin; Nagy, Gergely; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Fery, Andreas
2015-01-01
Summary A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs) are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material. PMID:25671158
Sun, Congjiao; Xu, Guiyun; Yang, Ning
2013-12-01
Eggshell strength is a crucial economic trait for table egg production. During the process of eggshell formation, uncalcified eggs are bathed in uterine fluid that plays regulatory roles in eggshell calcification. In this study, a label-free MS-based protein quantification technology was used to detect differences in protein abundance between eggshell matrix from strong and weak eggs (shell matrix protein from strong eggshells and shell matrix protein from weak eggshells) and between the corresponding uterine fluids bathing strong and weak eggs (uterine fluid bathing strong eggs and uterine fluid bathing weak eggs) in a chicken population. Here, we reported the first global proteomic analysis of uterine fluid. A total of 577 and 466 proteins were identified in uterine fluid and eggshell matrix, respectively. Of 447 identified proteins in uterine fluid bathing strong eggs, up to 357 (80%) proteins were in common with proteins in uterine fluid bathing weak eggs. Similarly, up to 83% (328/396) of the proteins in shell matrix protein from strong eggshells were in common with the proteins in shell matrix protein from weak eggshells. The large amount of common proteins indicated that the difference in protein abundance should play essential roles in influencing eggshell strength. Ultimately, 15 proteins mainly relating to eggshell matrix specific proteins, calcium binding and transportation, protein folding and sorting, bone development or diseases, and thyroid hormone activity were considered to have closer association with the formation of strong eggshell. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ubiquitylation Functions in the Calcium Carbonate Biomineralization in the Extracellular Matrix
Fang, Dong; Pan, Cong; Lin, Huijuan; Lin, Ya; Xu, Guangrui; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing
2012-01-01
Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS). Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes. PMID:22558208
Hollow Pd/MOF Nanosphere with Double Shells as Multifunctional Catalyst for Hydrogenation Reaction.
Wan, Mingming; Zhang, Xinlu; Li, Meiyan; Chen, Bo; Yin, Jie; Jin, Haichao; Lin, Lin; Chen, Chao; Zhang, Ning
2017-10-01
A new type of hollow nanostructure featured double metal-organic frameworks shells with metal nanoparticles (MNPs) is designed and fabricated by the methods of ship in a bottle and bottle around the ship. The nanostructure material, hereinafter denoted as Void@HKUST-1/Pd@ZIF-8, is confirmed by the analyses of photograph, transmission electron microscopy, scanning electron microscopy, powder X-ray diffraction, inductively coupled plasma, and N 2 sorption. It possesses various multifunctionally structural characteristics such as hollow cavity which can improve mass transfer, the adjacent of the inner HKUST-1 shell to the void which enables the matrix of the shell to host and well disperse MNPs, and an outer ZIF-8 shell which acts as protective layer against the leaching of MNPs and a sieve to guarantee molecular-size selectivity. This makes the material eligible candidates for the heterogeneous catalyst. As a proof of concept, the liquid-phase hydrogenation of olefins with different molecular sizes as a model reaction is employed. It demonstrates the efficient catalytic activity and size-selectivity of Void@HKUST-1/Pd@ZIF-8. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simple Approach to Renormalize the Cabibbo-Kobayashi-Maskawa Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Sirlin, Alberto
2006-12-01
We present an on-shell scheme to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass and gauge-dependent wave function renormalization contributions, and to implement the on-shell renormalization of the former with nondiagonal mass counterterm matrices. Diagonalization of the complete mass matrix leads to an explicit CKM counterterm matrix, which automatically satisfies all the following important properties: it is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, W. A.; Mkhize, S.; Brown, B. Alex
The new Hamiltonians USDA and USDB for the sd shell are used to calculate M1 and E2 moments and transition matrix elements, Gamow-Teller {beta}-decay matrix elements, and spectroscopic factors for sd-shell nuclei from A=17 to A=39. The results are compared with those obtained with the older USD Hamiltonian and with experiment to explore the interaction sensitivity of these observables.
NASA Astrophysics Data System (ADS)
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-02-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Electroless nickel – phosphorus coating on crab shell particles and its characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arulvel, S., E-mail: gs.arulvel.research@gmail.com; Elayaperumal, A.; Jagatheeshwaran, M.S.
Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coatingmore » process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations. - Highlights: • Utilization of crab shell waste is focused on. • NiP coating on crab shell particle is fabricated using electroless process. • Thermal analysis, stability test, adsorption test and conductivity test were done. • Organic matrix of crab shell particle favors the coating process. • Results demonstrate the characterization of CSP core – NiP shell structure.« less
Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan
2010-01-12
Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles.
Colombo, Stefano; Cun, Dongmei; Remaut, Katrien; Bunker, Matt; Zhang, Jianxin; Martin-Bertelsen, Birte; Yaghmur, Anan; Braeckmans, Kevin; Nielsen, Hanne M; Foged, Camilla
2015-03-10
Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(DL-lactic-co-glycolic acid) (PLGA) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X-ray scattering (SAXS) and confocal laser scanning microscopy (CLSM) studies suggested that the siRNA-loaded LPNs are characterized by a core-shell structure consisting of a PLGA matrix core coated with lamellar DOTAP structures with siRNA localized both in the core and in the shell. Release studies in buffer and serum-containing medium combined with in vitro gene silencing and quantification of intracellular siRNA suggested that this self-assembling core-shell structure influences the siRNA release kinetics and the delivery dynamics. A main delivery mechanism appears to be mediated via the release of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix. Copyright © 2015 Elsevier B.V. All rights reserved.
Coulomb matrix elements in multi-orbital Hubbard models.
Bünemann, Jörg; Gebhard, Florian
2017-04-26
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.
Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues
NASA Astrophysics Data System (ADS)
Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.
2016-04-01
The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00224b
NASA Technical Reports Server (NTRS)
Tielking, John T.
1989-01-01
Two algorithms for obtaining static contact solutions are described in this presentation. Although they were derived for contact problems involving specific structures (a tire and a solid rubber cylinder), they are sufficiently general to be applied to other shell-of-revolution and solid-body contact problems. The shell-of-revolution contact algorithm is a method of obtaining a point load influence coefficient matrix for the portion of shell surface that is expected to carry a contact load. If the shell is sufficiently linear with respect to contact loading, a single influence coefficient matrix can be used to obtain a good approximation of the contact pressure distribution. Otherwise, the matrix will be updated to reflect nonlinear load-deflection behavior. The solid-body contact algorithm utilizes a Lagrange multiplier to include the contact constraint in a potential energy functional. The solution is found by applying the principle of minimum potential energy. The Lagrange multiplier is identified as the contact load resultant for a specific deflection. At present, only frictionless contact solutions have been obtained with these algorithms. A sliding tread element has been developed to calculate friction shear force in the contact region of the rolling shell-of-revolution tire model.
The evolution of mollusc shells.
McDougall, Carmel; Degnan, Bernard M
2018-05-01
Molluscan shells are externally fabricated by specialized epithelial cells on the dorsal mantle. Although a conserved set of regulatory genes appears to underlie specification of mantle progenitor cells, the genes that contribute to the formation of the mature shell are incredibly diverse. Recent comparative analyses of mantle transcriptomes and shell proteomes of gastropods and bivalves are consistent with shell diversity being underpinned by a rapidly evolving mantle secretome (suite of genes expressed in the mantle that encode secreted proteins) that is the product of (a) high rates of gene co-option into and loss from the mantle gene regulatory network, and (b) the rapid evolution of coding sequences, particular those encoding repetitive low complexity domains. Outside a few conserved genes, such as carbonic anhydrase, a so-called "biomineralization toolkit" has yet to be discovered. Despite this, a common suite of protein domains, which are often associated with the extracellular matrix and immunity, appear to have been independently and often uniquely co-opted into the mantle secretomes of different species. The evolvability of the mantle secretome provides a molecular explanation for the evolution and diversity of molluscan shells. These genomic processes are likely to underlie the evolution of other animal biominerals, including coral and echinoderm skeletons. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis
2015-02-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.
Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; ...
2016-05-12
The Virasoro algebra determines all ‘graviton’ matrix elements in AdS 3/CFT 2. We study the explicit exchange of any number of Virasoro gravitons between heavy and light CFT 2 operators at large central charge. These graviton exchanges can be written in terms of new on-shell tree diagrams, organized in a perturbative expansion in h H/c, the heavy operator dimension divided by the central charge. The Virasoro vacuum conformal block, which is the sum of all the tree diagrams, obeys a differential recursion relation generalizing that of the Catalan numbers. Here, we use this recursion relation to sum the on-shell diagramsmore » to all orders, computing the Virasoro vacuum block. Extrapolating to large h H/c determines the Hawking temperature of a BTZ black hole in dual AdS 3 theories.« less
NASA Astrophysics Data System (ADS)
Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; Wang, Junpu
2016-05-01
The Virasoro algebra determines all `graviton' matrix elements in AdS3/CFT2. We study the explicit exchange of any number of Virasoro gravitons between heavy and light CFT2 operators at large central charge. These graviton exchanges can be written in terms of new on-shell tree diagrams, organized in a perturbative expansion in h H /c, the heavy operator dimension divided by the central charge. The Virasoro vacuum conformal block, which is the sum of all the tree diagrams, obeys a differential recursion relation generalizing that of the Catalan numbers. We use this recursion relation to sum the on-shell diagrams to all orders, computing the Virasoro vacuum block. Extrapolating to large h H /c determines the Hawking temperature of a BTZ black hole in dual AdS3 theories.
Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability
NASA Astrophysics Data System (ADS)
Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.
2006-08-01
We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.
Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.
Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G
2006-08-28
We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.
Vieira, Tuane C R G; Costa-Filho, Adilson; Salgado, Norma C; Allodi, Silvana; Valente, Ana-Paula; Nasciutti, Luiz E; Silva, Luiz-Claudio F
2004-02-01
Acharan sulfate, a recently discovered glycosaminoglycan isolated from Achatina fulica, has a major disaccharide repeating unit of -->4)-2-acetyl,2-deoxy-alpha-d-glucopyranose(1-->4)-2-sulfo-alpha-l-idopyranosyluronic acid (1-->, making it structurally related to both heparin and heparan sulfate. It has been suggested that this glycosaminoglycan is polydisperse, with an average molecular mass of 29 kDa and known minor disaccharide sequence variants containing unsulfated iduronic acid. Acharan sulfate was found to be located in the body of this species using alcian blue staining and it was suggested to be the main constituent of the mucus. In the present work, we provide further information on the structure and compartmental distribution of acharan sulfate in the snail body. Different populations of acharan sulfate presenting charge and/or molecular mass heterogeneities were isolated from the whole body, as well as from mucus and from the organic shell matrix. A minor glycosaminoglycan fraction susceptible to degradation by nitrous acid was also purified from the snail body, suggesting the presence of N-sulfated glycosaminoglycan molecules. In addition, we demonstrate the in vivo metabolic labeling of acharan sulfate in the snail body after a meal supplemented with [35S]free sulfate. This simple approach might be applied to the study of acharan sulfate biosynthesis. Finally, we developed histochemical assays to localize acharan sulfate in the snail body by metachromatic staining and by histoautoradiography following metabolic radiolabeling with [35S]sulfate. Our results show that acharan sulfate is widely distributed among several organs.
Ceramic matrix composite turbine engine vane
NASA Technical Reports Server (NTRS)
Prill, Lisa A. (Inventor); Schaff, Jeffery R. (Inventor); Shi, Jun (Inventor)
2012-01-01
A vane has an airfoil shell and a spar within the shell. The vane has an outboard shroud at an outboard end of the shell and an inboard platform at an inboard end of the shell. The shell includes a region having a depth-wise coefficient of thermal expansion and a second coefficient of thermal expansion transverse thereto, the depth-wise coefficient of thermal expansion being greater than the second coefficient of thermal expansion.
Takesue, R.K.; VanGeen, A.
2004-01-01
This study explores the potential of intertidal Protothaca staminea shells as high-resolution geochemical archives of environmental change in a coastal upwelling region. Mg/Ca and Sr/Ca ratios were analyzed by excimer laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) at sub-weekly temporal resolution in shells growing ???1 mm per month. Growth patterns of a modern P. staminea shell from Humboldt Bay, California, collected in December 1999 made it possible to infer a lifespan from 1993 to 1998. Growth hiatuses in the shell may have excluded records of extreme events. Mg/Ca ratios appeared to be partly controlled by water temperature; the correlation coefficient between temperature and Mg/Ca was r = 0.71 in one of four growth increments. Significant year-to-year differences in the sensitivity of Mg/Ca to temperature in P. staminea could not be explained, however. Sr/Ca ratios appeared to be more closely related to shell growth rate. Oxygen isotopes, measured at 2-week temporal resolution in the same shell, did not show a clear relation to local temperature in summer, possibly because temperatures were higher and less variable at the King Salmon mudflat, where the shell was collected, than in the main channel of Humboldt Bay, where water properties were monitored. Negative shell ??13C values (<-0.5???) marked spring and summer coastal upwelling events. The Mg contents of P. staminea midden shells dated to ???3 ka and ???9 ka were significantly lower than in the modern shell. This may have resulted from degradation of a Mg-rich shell organic matrix and precluded quantitative interpretation of the older high-resolution records. Elevated ??13C values in the ???3 ka shell suggested that the individual grew in highly productive or stratified environment, such as a shallow coastal embayment or lagoon. Copyright ?? 2004 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Guo, Baisong; Yi, Jianhong; Ni, Song; Shen, Rujuan; Song, Min
2016-04-01
This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti-Al3Ti core-shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin
2018-01-01
This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, Paul G.; Seiter, Jennifer M.; Diaz, Alfredo
Metallic tungsten (W) was initially assumed to be environmentally benign and a green alternative to lead. However, subsequent investigations showed that fishing weights and munitions containing elemental W can fragment and oxidize into complex monomeric and polymeric tungstate (WO 4) species in the environment; this led to increased solubility and mobility in soils and increased bioaccumulation potential in plant and animal tissues. Here we expand on the results of our previous research, which examined tungsten toxicity, bioaccumulation, and compartmentalization into organisms, and present in this research that the bioaccumulation of W was related to greater than 50% reduction in themore » mechanical properties of the snail (Otala lactea), based on depth-sensing nanoindentation. Synchrotron-based X-ray fluorescence maps and X-ray diffraction measurements confirm the integration of W in newly formed layers of the shell matrix with the observed changes in shell biomechanical properties, mineralogical composition, and crystal orientation. With further development, this technology could be employed as a biomonitoring tool for historic metals contamination since unlike the more heavily studied bioaccumulation into soft tissue, shell tissue does not actively eliminate contaminants.« less
Allison, Paul G; Seiter, Jennifer M; Diaz, Alfredo; Lindsay, James H; Moser, Robert D; Tappero, Ryan V; Kennedy, Alan J
2016-01-01
Metallic tungsten (W) was initially assumed to be environmentally benign and a green alternative to lead. However, subsequent investigations showed that fishing weights and munitions containing elemental W can fragment and oxidize into complex monomeric and polymeric tungstate (WO4) species in the environment; this led to increased solubility and mobility in soils and increased bioaccumulation potential in plant and animal tissues. Here we expand on the results of our previous research, which examined tungsten toxicity, bioaccumulation, and compartmentalization into organisms, and present in this research that the bioaccumulation of W was related to greater than 50% reduction in the mechanical properties of the snail (Otala lactea), based on depth-sensing nanoindentation. Synchrotron-based X-ray fluorescence maps and X-ray diffraction measurements confirm the integration of W in newly formed layers of the shell matrix with the observed changes in shell biomechanical properties, mineralogical composition, and crystal orientation. With further development, this technology could be employed as a biomonitoring tool for historic metals contamination since unlike the more heavily studied bioaccumulation into soft tissue, shell tissue does not actively eliminate contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei
2017-11-22
Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (<0.05 at 1 kHz). Both high electric displacement and high electric breakdown strength were achieved in the films with 10 wt % core-shell fillers loaded. The maximum energy storage density of 7.018 J/cm 3 was measured at 2350 kV/cm, which shows significant enhancement than those of the pure P(VDF-HFP) films and analogous composited films with converse insulating-conductive core-shell fillers. A Maxwell-Wagner capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.
NASA Astrophysics Data System (ADS)
Pearson, Paul N.; Expedition 363 Shipboard Scientific Party, IODP
2018-01-01
Agglutinated foraminifera are marine protists that show apparently complex behaviour in constructing their shells, involving selecting suitable sedimentary grains from their environment, manipulating them in three dimensions, and cementing them precisely into position. Here we illustrate a striking and previously undescribed example of complex organisation in fragments of a tube-like foraminifer (questionably assigned to Rhabdammina) from 1466 m water depth on the northwest Australian margin. The tube is constructed from well-cemented siliciclastic grains which form a matrix into which hundreds of planktonic foraminifer shells are regularly spaced in apparently helical bands. These shells are of a single species, Turborotalita clarkei, which has been selected to the exclusion of all other bioclasts. The majority of shells are set horizontally in the matrix with the umbilical side upward. This mode of construction, as is the case with other agglutinated tests, seems to require either an extraordinarily selective trial-and-error process at the site of cementation or an active sensory and decision-making system within the cell.
Marie, Benjamin; Jackson, Daniel J; Ramos-Silva, Paula; Zanella-Cléon, Isabelle; Guichard, Nathalie; Marin, Frédéric
2013-01-01
Proteins that are occluded within the molluscan shell, the so-called shell matrix proteins (SMPs), are an assemblage of biomolecules attractive to study for several reasons. They increase the fracture resistance of the shell by several orders of magnitude, determine the polymorph of CaCO(3) deposited, and regulate crystal nucleation, growth initiation and termination. In addition, they are thought to control the shell microstructures. Understanding how these proteins have evolved is also likely to provide deep insight into events that supported the diversification and expansion of metazoan life during the Cambrian radiation 543 million years ago. Here, we present an analysis of SMPs isolated form the CaCO(3) shell of the limpet Lottia gigantea, a gastropod that constructs an aragonitic cross-lamellar shell. We identified 39 SMPs by combining proteomic analysis with genomic and transcriptomic database interrogations. Among these proteins are various low-complexity domain-containing proteins, enzymes such as peroxidases, carbonic anhydrases and chitinases, acidic calcium-binding proteins and protease inhibitors. This list is likely to contain the most abundant SMPs of the shell matrix. It reveals the presence of both highly conserved and lineage-specific biomineralizing proteins. This mosaic evolutionary pattern suggests that there may be an ancestral molluscan SMP set upon which different conchiferan lineages have elaborated to produce the diversity of shell microstructures we observe nowadays. © 2012 The Authors Journal compilation © 2012 FEBS.
Insights from the Shell Proteome: Biomineralization to Adaptation
Arivalagan, Jaison; Yarra, Tejaswi; Marie, Benjamin; Sleight, Victoria A.; Duvernois-Berthet, Evelyne; Clark, Melody S.; Marie, Arul; Berland, Sophie
2017-01-01
Bivalves have evolved a range of complex shell forming mechanisms that are reflected by their incredible diversity in shell mineralogy and microstructures. A suite of proteins exported to the shell matrix space plays a significant role in controlling these features, in addition to underpinning some of the physical properties of the shell itself. Although, there is a general consensus that a minimum basic protein tool kit is required for shell construction, to date, this remains undefined. In this study, the shell matrix proteins (SMPs) of four highly divergent bivalves (The Pacific oyster, Crassostrea gigas; the blue mussel, Mytilus edulis; the clam, Mya truncata, and the king scallop, Pecten maximus) were analyzed in an identical fashion using proteomics pipeline. This enabled us to identify the critical elements of a “basic tool kit” for calcification processes, which were conserved across the taxa irrespective of the shell morphology and arrangement of the crystal surfaces. In addition, protein domains controlling the crystal layers specific to aragonite and calcite were also identified. Intriguingly, a significant number of the identified SMPs contained domains related to immune functions. These were often are unique to each species implying their involvement not only in immunity, but also environmental adaptation. This suggests that the SMPs are selectively exported in a complex mix to endow the shell with both mechanical protection and biochemical defense. PMID:27744410
Liu, Wenguang; Yu, Zonghe; Huang, Xiande; Shi, Yu; Lin, Jianshi; Zhang, Hua; Yi, Xuejie; He, Maoxian
2017-09-01
In this study, shell growth, shell microstructure, and expression levels of shell matrix protein genes (aspein, n16, and nacrein) that play a key role in the CaCO 3 crystal polymorphism (calcite and aragonite) of the shell were investigated in the pearl oyster Pinctada fucata at pH 8.10, 7.70, and 7.40. We found that the shell length and total weight index did not vary significantly between oysters reared at pH 8.10 and 7.70, but was significantly lower at pH 7.40. Calcium content and shell hardness were not significantly different between pH 8.10 and 7.70, but were significantly different at pH 7.40. At pH 7.40, the shell exhibited a poorly organized nacreous microstructure, and showed an apparent loss of structural integrity in the nacreous layer. The prismatic layer appeared morphologically dissimilar from the samples at pH 8.10 and 7.70. The internal layer was corroded and had dissolved. At pH 7.40, the expression levels of nacrein, aspein, and n16 decreased on day 1, and remained low between days 2 and 42. The expression levels of these genes were significantly lower at pH 7.40 than at pH 8.10 and 7.70 during days 2-42. These results suggest that ocean acidification will have a limited impact on shell growth, calcification, and associated gene expression levels at a pH of 7.70, which is projected to be reached by the end of the century. The negative effects were found on calcification and gene expression occurred at the lowest experimental pH (7.40). Copyright © 2017 Elsevier Ltd. All rights reserved.
Double β-decay nuclear matrix elements for the A=48 and A=58 systems
NASA Astrophysics Data System (ADS)
Skouras, L. D.; Vergados, J. D.
1983-11-01
The nuclear matrix elements entering the double β decays of the 48Ca-48Ti and 58Ni-58Fe systems have been calculated using a realistic two nucleon interaction and realistic shell model spaces. Effective transition operators corresponding to a variety of gauge theory models have been considered. The stability of such matrix elements against variations of the nuclear parameters is examined. Appropriate lepton violating parameters are extracted from the A=48 data and predictions are made for the lifetimes of the positron decays of the A=58 system. RADIOACTIVITY Double β decay. Gauge theories. Lepton nonconservation. Neutrino mass. Shell model calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trell, Erik, E-mail: erik.trell@gmail.com
2014-12-10
Santilli’s revolutionary iso-, geno- and hypermathematics have provided the original straight line Lie groups and algebras with a span and coherence in all dimensions, and thus already at the infinitesimal level an extension in the Cartesian sense, allowing a continuous self-similar cyclical realization of matter from the elementary particle threshold level via the atomic to molecular and visible scale where it meets and marries with modern nanotechnology in the form of an isotropic vector matrix of space-filling octahedron-tetrahedron composition. This is distributed as an electron transition matrix with Bohr shell model stratified signature and is here directly outlining a new,more » centrally coordinated organic composition and chart of the periodic system as specifically exemplified by the noble gases.« less
A novel "modularized" optical sensor for pH monitoring in biological matrixes.
Liu, Xun; Zhang, Shang-Qing; Wei, Xing; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua
2018-06-30
A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO 2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes. Generally, a single pH sensitive dye is adopted to respond within a certain pH range. This study employs bromothymol blue (BTB) and rhodamine B (RhB) to facilitate their responses to pH variations within two ranges, i.e., pH 5.99-8.09 and pH 4.98-6.40, respectively, with detection by ratio-fluorescence protocol. The core-shell-shell structure offers superior sensitivity, which is tens of times more sensitive than those achieved by ratio-fluorescence approaches based on various nanostructures, and favorable stability is achieved in high ionic strength medium. In addition, this sensor exhibits superior photostability under continuous excitation at 980 nm. Thanks to the near infrared excitation in the core-shell-shell structure, it effectively avoids the self-fluorescence from biological samples and thus facilitates accurate sensing of pH in various biological sample matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.
Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello
2015-02-25
This work presents the synthesis and characterization of a new zinc phthalocyanine complex tetrasubstituted with 3-carboxyphenoxy in the peripheral position. The photophysical properties of the new complex are compared with those of phthalocyanines tetra substituted with 3-carboxyphenoxy or 4-carboxyphenoxy at non-peripheral positions. Three phthalocyanine complexes were encapsulated within silica matrix to form a core shell and the hybrid nanoparticles particles obtained were spherical and mono dispersed. When encapsulated within the silica shell nanoparticles, phthalocyanines showed improved triplet quantum yields and singlet oxygen quantum yields than surface grafted derivatives. The improvements observed could be attributed to the protection provided for the phthalocyanine complexes by the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
Gravitational collapse and Hawking-like radiation of a shell in AdS spacetime
NASA Astrophysics Data System (ADS)
Saini, Anshul; Stojkovic, Dejan
2018-01-01
In this paper, we study the collapse of a massive shell in 2 +1 and 3 +1 dimensional gravity with anti-de Sitter asymptotics. Using the Gauss-Codazzi method, we derive gravitational equations of motion of the shell. We then use the functional Schrödinger formalism to calculate the spectrum of particles produced during the collapse. At the late time, radiation agrees very well with the standard Hawking results. In 3 +1 dimensions, we reproduce the Hawking-Page transition. We then construct the density matrix of this collapsing system and analyze the information content in the emitted radiation. We find that the off-diagonal elements of the density matrix are very important in preserving the unitarity of the system.
NASA Astrophysics Data System (ADS)
Peng, Huifen; Wang, Xiaoran; Zhao, Yan; Tan, Taizhe; Mentbayeva, Almagul; Bakenov, Zhumabay; Zhang, Yongguang
2017-10-01
A carbon-coated sulfur/polyacrylonitrile (C@S/PAN) core-shell structured composite is successfully prepared via a novel solution processing method. The sulfur/polyacrylonitrile (S/PAN) core particle has a diameter of 100 nm, whereas the carbon shell is about 2 nm thick. The as-prepared C@S/PAN composite shows outstanding electrochemical performance in lithium/sulfur (Li/S) batteries delivering a high initial discharge capacity of 1416 mAh g-1. Furthermore, it exhibits 89% retention of the initial reversible capacity over 200 cycles at a constant current rate of 0.1 C. The improved performance contributed by the unique composition and the core-shell structure, wherein carbon matrix can also withstand the volume change of sulfur during the process of charging and discharging as well as provide channels for electron transport. In addition, polyacrylonitrile (PAN) matrix suppresses the shuttle effect by the covalent bonding between sulfur (S) and carbon (C) in the PAN matrix. [Figure not available: see fulltext.
Semiclassical S-matrix for black holes
Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey
2015-12-01
In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less
Calcium carbonate mineralization mediated by in vitro cultured mantle cells from Pinctada fucata.
Kong, Wei; Li, Shiguo; Xiang, Liang; Xie, Liping; Zhang, Rongqing
2015-08-07
Formation of the molluscan shell is believed to be an extracellular event mediated by matrix proteins. We report calcium carbonate mineralization mediated by Pinctada fucata mantle cells. Crystals only appeared when mantle cells were present in the crystallization solution. These crystals were piled up in highly ordered units and showed the typical characteristics of biomineralization products. A thin organic framework was observed after dissolving the crystals in EDTA. Some crystals had etched surfaces with a much smoother appearance than other parts. Mantle cells were observed to be attached to some of these smooth surfaces. These results suggest that mantle cells may be directly involved in the nucleation and remodeling process of calcium carbonate mineralization. Our result demonstrate the practicability of studying the mantle cell mechanism of biomineralization and contribute to the overall understanding of the shell formation process. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
de Oliveira, Leandra N.; de Oliveira, Vanessa E.; D'ávila, Sthefane; Edwards, Howell G. M.; de Oliveira, Luiz Fernando C.
2013-10-01
The colours of mollusc shells were determined using the Raman spectroscopy and these analyses suggest that the conjugated polyenes (carotenoids) and psittacofulvins are the organic pigments incorporated into their skeletal structures responsible by their colorations. The symmetric stretching vibration of the carbonate ion gives rise to a very strong Raman band at ca. 1089 cm-1 and a weak band at 705 cm-1, for all samples; the second band characterizes the aragonite as the inorganic matrix and can be used as a marker. The specimens show bands at 1523-1500 and at 1130-1119 cm-1, assigned to the ν1 and ν2 modes of the polyenic chain vibrations, respectively. Another band at 1293 cm-1, assigned to the CHdbnd CH in-plane rocking mode of the olefinic hydrogen is also observed in all samples, which reinforces the psittacofulvin compound as the main pigment present in the analyzed samples.
Fan, Guangyi; Jiao, Yu; Zhang, He; Huang, Ronglian; Zheng, Zhe; Bian, Chao; Deng, Yuewen; Wang, Qingheng; Wang, Zhongduo; Liang, Xinming; Liang, Haiying; Shi, Chengcheng; Zhao, Xiaoxia; Sun, Fengming; Hao, Ruijuan; Bai, Jie; Liu, Jialiang; Chen, Wenbin; Liang, Jinlian; Liu, Weiqing; Xu, Zhe; Shi, Qiong; Xu, Xun
2017-01-01
Abstract Nacre, the iridescent material found in pearls and shells of molluscs, is formed through an extraordinary process of matrix-assisted biomineralization. Despite recent advances, many aspects of the biomineralization process and its evolutionary origin remain unknown. The pearl oyster Pinctada fucata martensii is a well-known master of biomineralization, but the molecular mechanisms that underlie its production of shells and pearls are not fully understood. We sequenced the highly polymorphic genome of the pearl oyster and conducted multi-omic and biochemical studies to probe nacre formation. We identified a large set of novel proteins participating in matrix-framework formation, many in expanded families, including components similar to that found in vertebrate bones such as collagen-related VWA-containing proteins, chondroitin sulfotransferases, and regulatory elements. Considering that there are only collagen-based matrices in vertebrate bones and chitin-based matrices in most invertebrate skeletons, the presence of both chitin and elements of collagen-based matrices in nacre suggests that elements of chitin- and collagen-based matrices have deep roots and might be part of an ancient biomineralizing matrix. Our results expand the current shell matrix-framework model and provide new insights into the evolution of diverse biomineralization systems. PMID:28873964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de
We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating themore » analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.« less
NASA Astrophysics Data System (ADS)
Xue, Baoxia; Niu, Mei; Yang, Yongzhen; Bai, Jie; Song, Yinghao; Peng, Yun; Liu, Xuguang
2018-03-01
Carbon microspheres (CMSs) as a core material had been coated by two capsule walls: an inorganic material of magnesium hydroxide (MH) as inner shell layer and an organic material of poly (ethylene terephthalate) (PET) as outer shell layer. MH coating CMSs (MCMSs) were fabricated by liquid phase deposition method, then grafted 3-Aminopropyltriethoxysilane (APTS) to obtain the Si-MCMSs. Microencapsulated Si-MCMSs (PMCMSs) was prepared by in situ polymerization method. Morphology structure, dispersion, flame retardant and other properties of PMCMSs have been investigated. A series of PET blends were prepared by melt compounding. The results showed that MH and PET as two layers were coated on CMSs surface with the optimal thickness of about 70 nm. The PMCMSs owned better dispersion in PET matrix. Compared with MCMSs/PET composites, the mechanical property of PMCMSs/PET composites had significantly increased because of the strong interface binding force between PMCMSs and PET matrix. Moreover, PMCMSs was proved to be an effective flame retardant. For PMCMSs/PET with 2 wt% PMCMSs, the limiting oxygen index (LOI) value increased from 21.0% (pristine PET) to 27.2%, and the peak heat release rate (pk-HRR) decreased from 513.22 kW/m2 to 352.14 kW/m2. The decreased smoke production rate (SPR) and total smoke production (TSP) values demonstrated PMCMSs suppressed the smoke production. The increased Fire performance index (FPI) value illustrated PMCMSs significantly reduced the fire risk of PET. Overall, the two capsular walls endowed the PMCMSs/PET composites with good mechanical and flame-retardant properties.
Taphonomy of a thick Terebratula bioherm from the Pliocene of southeastern Spain
NASA Astrophysics Data System (ADS)
García-Ramos, Diego A.
2015-04-01
Brachiopods were extremely abundant during the Paleozoic era but underwent a dramatic loss of biodiversity at the Permo-Triassic boundary. The comparison of brachiopod and bivalve diversity through geological time shows that the latter were the most successful counterpart at best recovering from mass extinction events. Nonetheless, there are cases where Post-Paleozoic brachiopods stand out as the dominant marine benthos in particular environments, forming paucispecific brachiopod-dominated bioherms. This note describes an example of shallow-water brachiopod bioherm dominated by the terebratulid Terebratula calabra. The shell bed is found in mixed siliciclastic-temperate carbonate deposits of late Early Pliocene age nearby Águilas (southeastern Spain). This unique brachiopod concentration may be helpful to understand the particular success of large-sized brachiopods like Terebratula in Cenozoic environments typically dominated by bivalves. The bioherm attains 1.5 meters in thickness and crops out along a band up to 140 meters wide. The lithology consists of bioturbated fine-grained sands containing poorly sorted bioclasts, mostly fragments of Terebratula. This shell bed also records a diverse fauna, including five brachiopod genera, pectinids (4 genera), oysters (3 genera), in addition to rare gastropods, echinoids, bryozoans, etc. The density and sorting of bioclasts is laterally variable, and the biofabrics range from loosely dispersed to densely-packed, including examples of concave-up vertical stacking and nesting of shells. Most of the fragments of Terebratula preserve the posterior part of the shell only. These fragments generally display corrasion (rounded fractured margins, rounded to completely missing symphytium), bioerosion (prevailing the ichnogenera Entobia, Gnathichnus and Podichnus) and encrustation (mainly by bryozoans, Ancistrocrania, and Pododesmus). The good preservation of Pododesmus contrasts with that of most fragments of Terebratula, although many of these shells were drilled by gastropods. Co-occurrence of altered fragments and articulated shells of Terebratula suggests that shells of this brachiopod underwent different taphonomic pathways, implying that different generations of Terebratula were able to thrive in this habitat over a period of time long enough to produce the range of taphonomic signatures encountered. Taphonomic traits point to a within-habitat time-averaged fossil assemblage, namely: 1) sediment starvation (on account of a dense bioturbation and abrasion, bioerosion, encrustation, and fragmentation of shells accumulated in clusters). 2) fossils with distinctly different taphonomic signatures corresponding to the biostratinomic phase. 3) lithologically homogeneous matrix. 4) a functional agreement between fauna and matrix. The occurrence of fixossesile organisms such as Pododesmus, Ancistrocrania and the abundance of Podichnus (which suggests that Terebratula attached to dead and alive conspecific shells) and other bioerosive traces, point out a shift from a soft/firmground to a shelly-ground propitious for the colonization by diverse epilithic animals. These features are consistent with autigenic and allogenic taphonomic feedback. Allogenic mode is suggested by reworking and winnowing by storm currents. The influence of storms is also recorded by unaltered, hollow shells of Terebratula (rapid burial), the stacked biofabrics, and the infilling of pod-like pits by shell fragments.
Nonvolatile memory with Co-SiO2 core-shell nanocrystals as charge storage nodes in floating gate
NASA Astrophysics Data System (ADS)
Liu, Hai; Ferrer, Domingo A.; Ferdousi, Fahmida; Banerjee, Sanjay K.
2009-11-01
In this letter, we reported nanocrystal floating gate memory with Co-SiO2 core-shell nanocrystal charge storage nodes. By using a water-in-oil microemulsion scheme, Co-SiO2 core-shell nanocrystals were synthesized and closely packed to achieve high density matrix in the floating gate without aggregation. The insulator shell also can help to increase the thermal stability of the nanocrystal metal core during the fabrication process to improve memory performance.
NASA Astrophysics Data System (ADS)
Kung, Patrick; Harris, Nicholas; Shen, Gang; Wilbert, David S.; Baughman, William; Balci, Soner; Dawahre, Nabil; Butler, Lee; Rivera, Elmer; Nikles, David; Kim, Seongsin M.
2012-01-01
Quantum dot (QD) functionalized nanowire arrays are attractive structures for low cost high efficiency solar cells. QDs have the potential for higher quantum efficiency, increased stability and lifetime compared to traditional dyes, as well as the potential for multiple electron generation per photon. Nanowire array scaffolds constitute efficient, low resistance electron transport pathways which minimize the hopping mechanism in the charge transport process of quantum dot solar cells. However, the use of liquid electrolytes as a hole transport medium within such scaffold device structures have led to significant degradation of the QDs. In this work, we first present the synthesis uniform single crystalline ZnO nanowire arrays and their functionalization with InP/ZnS core-shell quantum dots. The structures are characterized using electron microscopy, optical absorption, photoluminescence and Raman spectroscopy. Complementing photoluminescence, transmission electron microanalysis is used to reveal the successful QD attachment process and the atomistic interface between the ZnO and the QD. Energy dispersive spectroscopy reveals the co-localized presence of indium, phosphorus, and sulphur, suggestive of the core-shell nature of the QDs. The functionalized nanowire arrays are subsequently embedded in a poly-3(hexylthiophene) hole transport matrix with a high degree of polymer infiltration to complete the device structure prior to measurement.
NASA Astrophysics Data System (ADS)
Chen, Jianwen; Wang, Xiucai; Yu, Xinmei; Fan, Yun; Duan, Zhikui; Jiang, Yewen; Yang, Faquan; Zhou, Yuexia
2018-07-01
Polymer/semiconductor-insulator nanocomposites can display high dielectric constants with a relatively low dissipation factor under low electric fields, and thus seem to promising for high energy density capacitors. Here, a novel nanocomposite films is developed by loading two-dimensional (2D) core-shell structure Bi2Te3@SiO2 nanosheets in the poly (vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) polymer matrix. The 2D Bi2Te3 nanosheets were prepared through simple microwave-assisted method. The experimental results suggesting that the SiO2 shell layer between the fillers and polymer matrix could effectively improve the dielectric constant, dielectric loss, AC conductivity, and breakdown strength of composites films. The composite films load with 10 vol.% 2D Bi2Te3@SiO2 nanosheets exhibits a high dielectric constant of 70.3 at 1 kHz and relatively low dielectric loss of 0.058 at 1 kHz. The finite element simulation of electric field and electric current density distribution revealed that the SiO2 shell layer between the fillers and polymer matrix could effectively improve the energy loss, local electric field strength, and breakdown strength of composite films. Therefore, this work will provide a promising route to achieve high-performance capacitors.
Explicit formulation of an anisotropic Allman/DKT 3-node thin triangular flat shell elements
NASA Astrophysics Data System (ADS)
Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.
A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular, flat shell element in global coordinates is presented. An Allman triangle is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending triangle. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, membrane and bending strain-displacement matrices.
Atypicality of Most Few-Body Observables
NASA Astrophysics Data System (ADS)
Hamazaki, Ryusuke; Ueda, Masahito
2018-02-01
The eigenstate thermalization hypothesis (ETH), which dictates that all diagonal matrix elements within a small energy shell be almost equal, is a major candidate to explain thermalization in isolated quantum systems. According to the typicality argument, the maximum variations of such matrix elements should decrease exponentially with increasing the size of the system, which implies the ETH. We show, however, that the typicality argument does not apply to most few-body observables for few-body Hamiltonians when the width of the energy shell decreases at most polynomially with increasing the size of the system.
Microscopic Shell Model Calculations for sd-Shell Nuclei
NASA Astrophysics Data System (ADS)
Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Shirokov, Andrey M.; Smirnova, Nadya A.; Vary, James P.
Several techniques now exist for performing detailed and accurate calculations of the structure of light nuclei, i.e., A ≤ 16. Going to heavier nuclei requires new techniques or extensions of old ones. One of these is the so-called No Core Shell Model (NCSM) with a Core approach, which involves an Okubo-Lee-Suzuki (OLS) transformation of a converged NCSM result into a single major shell, such as the sd-shell. The obtained effective two-body matrix elements can be separated into core and single-particle (s.p.) energies plus residual two-body interactions, which can be used for performing standard shell-model (SSM) calculations. As an example, an application of this procedure will be given for nuclei at the beginning ofthe sd-shell.
Performance of an anisotropic Allman/DKT 3-node thin triangular flat shell element
NASA Astrophysics Data System (ADS)
Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.
1992-05-01
A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular flat shell element in global coordinates is presented. An Allman triangle (AT) is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending element. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, the membrane and bending strain-displacement matrices. Using the aforementioned approach, the objective of this study is to develop and test the performance of a practical 3-node flat shell element that could be used in plate problems with unsymmetrically stacked composite laminates. The performance of the latter element is tested on plates of varying aspect ratios. The developed 3-node shell element should simplify the programming task and have the potential of reducing the computational time.
Research on soundproof properties of cylindrical shells of generalized phononic crystals
NASA Astrophysics Data System (ADS)
Liu, Ru; Shu, Haisheng; Wang, Xingguo
2017-04-01
Based on the previous studies, the concept of generalized phononic crystals (GPCs) is further introduced into the cylindrical shell structures in this paper. And a type of cylindrical shells of generalized phononic crystals (CS-GPCs) is constructed, the structural field and acoustic-structural coupled field of the composite cylindrical shells are examined respectively. For the structural field, the transfer matrix method of mechanical state vector is adopted to build the transfer matrix of radial waves propagating from inside to outside. For the acoustic-structural coupled field, the expressions of the acoustic transmission/reflection coefficients and the sound insulation of acoustic waves with the excitation of center line sound source are set up. And the acoustic transmission coefficient and the frequency response of sound insulation in this mode were numerical calculated. Furthermore, the theoretical analysis results are verified by using the method of combining the numerical calculation and finite element simulation. Finally, the effects of inner and outer fluid parameters on the transmission/reflection coefficients of CS-GPCs are analyzed in detail.
Biomineralisation in Mollusc shells
NASA Astrophysics Data System (ADS)
Dauphin, Y.; Cuif, J. P.; Salomé, M.; Williams, C. T.
2009-04-01
The main components of Mollusc shells are carbonate minerals: calcite and aragonite. ACC is present in larval stages. Calcite and aragonite can be secreted simultaneously by the mantle. Despite the small number of varieties, the arrangement of the mineral components is diverse, and dependant upon the taxonomy. They are also associated with organic components much more diverse, the diversity of which reflects the large taxonomic diversity. From TGA analyses, the organic content (water included) is high (>5% in some layers). The biomineralisation process is not a passive precipitation process, but is strongly controlled by the organism. The biological-genetic control is shown by the constancy of the arrangement of the layers, the mineralogy and the microstructure in a given species. Microstructural units (i.e. tablets, prisms etc.) have shapes that do not occur in non-biogenic counterparts. Nacreous tablets, for example, are flattened on their crystallographic c axis, which is normally the axis of maximum growth rate for non-biogenic aragonite. Morever, their inner structure is species-specific: the arrangements of nacreous tablets in Gastropoda - Cephalopoda, and in Bivalvia differ, and the inner arrangement of the nacreous tablets is different in ectocochlear and endocochlear Cephalopoda. The organic-mineral ratios also differ in the various layers of a shell. Differences in chemical composition also demonstrates the biological-genetic control: for example, aragonite has a low Sr content unknown in non-biogenic samples; two aragonitic layers in a shell have different Sr and Mg contents, S is higher in calcitic layers. Decalcification releases soluble (SOM) and insoluble (IOM) organic components. Insoluble components form the main part of the intercrystalline membranes, and contain proteins, polysaccharides and lipids. Soluble phases are present within the crystals and the intercrystalline membranes. These phases are composed of more or less glycosylated proteins and polysaccharides, with a large range of molecular weights. Proteins are rich in acidic aminoacids (aspartic and glutamic acids). Sugars are usually sulphated, and very acidic. Several hundreds of proteins and sugars are present in the SOM. The compositions of IOM and SOM are characteristic for each layer present in a shell. Topographical relationships of mineral and organic components are visible at different scales of observation. SEM images of etched surfaces display the growth line rhythmicity and concordance between adjacent microstructural units. EPMA maps show similar chemical growth lines in various structures. Whatever the taxa, the average thickness of growth lines is about 2-3 µm, indicating an inner biological rhythm, not dependant on the environmental conditions. Such growth lines are observed in deep sea molluscs at depth where diurnal changes in light and temperature are absent. However, the role of the environment is shown by larger periodicities. Sulphur deserves a special interest, because it is associated with the organic matrices. Electrophoretic data have shown that acidic sulphated sugars are abundant in some layers. XANES analyses confirm these results. New microscopic techniques allow us to obtain images at a submicrometer scale. AFM images show that all the microstructural units (i.e. tablets, prisms etc.), calcite or aragonite, are composed of small sub-spherical granules with a diameter typically of about 50 nm. These granules are surrounded by a thin cortex (about 8 nm) of organic and/or amorphous material, and are organo-composite material as shown by phase images. They do not have crystalline shapes, despite the fact that the units they build are often monocrystalline. Molecular biology and genetic studies confirm that the control of the biomineralisation process is exerted at the scale of the whole organism: the expression of genes encoding major shell matrix proteins clearly indicates a regular separation of calcite and aragonite secretory activity. The main control on the structural and compositional features of mollusc shells is genetic. However, environmental influences do exist. Due to the complex structures and composition of these shells, localized analyses must be preferred. The role of the composition and distribution of the organic matrix in fossilisation processes, and any potentially induced alterations is not yet known. Mutvei 1970, Biomineralisation 2, 48. Mutvei 1977, Calc. Tiss. Res. 24, 1. Cuif et al.1980, C. R. Acad. Sc. Paris 290, ser. D: 759. Dauphin & Cuif 1999, Ann. Sci. Nat. 2:73. Dauphin & Denis 2000, Comp. Biochem. Physiol. A126: 367. Dauphin 2001, N. Jb. Geol. Palaont. Mh. 2 : 103. Dauphin 2001, Palaont. Zeit. 75, 1: 113. Levi-Kalisman et al. 2001, J. Struct. Biol. 135:8. Dauphin 2002, Comp. Biochem. Physiol. A132, 3: 577. Dauphin et al. 2003, J. Struct. Biol., 142: 272. Gotliv et al. 2003, Chem. Biochem. 4: 522. Gotliv et al. 2004, ChemBioChem. 6:304. Dauphin et al. 2005, Amer. Mineral. 90: 1748. Nudelman et al. 2006, J. Struct. Biol. 153:176. Takeushi & Endo 2006, mar. Biotech. 8: 52. Dauphin 2008, Anal. Bioanal. Chem. 309: 1659. Cuif et al. 2008, Mineral. Mag. 72, 1: 233. This work has been made possible thanks to the support from ANR-06-BLANC-0233-01 project (BIOCRISTAL).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basilico, Nicoletta, E-mail: nicoletta.basilico@unimi.it; Magnetto, Chiara, E-mail: c.magnetto@inrim.it; D'Alessandro, Sarah, E-mail: sarah.dalessandro@unimi.it
In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. Provided that the phenotype of the cellular environment is better understood, chronic wounds might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated the effects ofmore » hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell population playing key roles during wound healing. Normoxic HMEC-1 constitutively released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and promoting cell migration, matrix invasion, and formation of microvessels. These effects were specifically dependent on time-sustained oxygen diffusion from OLN core, since they were not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these data provide new information on the effects of hypoxia on dermal endothelium and support the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound healing processes. - Highlights: • Hypoxia enhances MMP-2 and reduces TIMP-1 secretion by dermal HMEC-1 cell line. • Hypoxia compromises migration and matrix invasion abilities of HMEC-1. • Nontoxic dextran-shelled oxygen-loaded nanodroplets (OLNs) are uptaken by HMEC-1. • Dextran-shelled OLNs abrogate hypoxia effects on HMEC-1 pro-angiogenic phenotype. • Dextran-shelled OLNs abrogate hypoxia effects on HMEC-1 pro-angiogenic behavior.« less
NASA Astrophysics Data System (ADS)
Sri Aprilia, N. A.; Khalil, H. P. S. Abdul; Amin, Amri; Meurah Rosnelly, Cut; Fathanah, Ummi; Mariana
2018-05-01
The effect of accelerated weathering test of carbonized jatropha seed shell filled vinyl ester biocomposites was investigated. In this study, four loading of carbonized jatropha seed shell and one without loading of vinyl ester biocomposites were used. The samples exposure at several circles time in QUV chamber. The durability of vinyl ester biocomposites filled carbonized jatropha seed shell changes in mechanical properties and weight loss during exposure in UV and condensation. The tensile test and flexural indicated decrease with increasing of carbonized jatropha seed shell loading. The SEM fracture surface of biocomposites looks rough and some carbonized out of the matrix.
Chemical Component and Proteomic Study of the Amphibalanus (= Balanus) amphitrite Shell
Zhang, Gen; He, Li-sheng; Wong, Yue-Him; Xu, Ying; Zhang, Yu; Qian, Pei-yuan
2015-01-01
As typical biofoulers, barnacles possess hard shells and cause serious biofouling problems. In this study, we analyzed the protein component of the barnacle Amphibalanus (= Balanus) amphitrite shell using gel-based proteomics. The results revealed 52 proteins in the A. Amphitrite shell. Among them, 40 proteins were categorized into 11 functional groups based on KOG database, and the remaining 12 proteins were unknown. Besides the known proteins in barnacle shell (SIPC, carbonic anhydrase and acidic acid matrix protein), we also identified chorion peroxidase, C-type lectin-like domains, serine proteases and proteinase inhibitor proteins in the A. Amphitrite shell. The sequences of these proteins were characterized and their potential functions were discussed. Histology and DAPI staining revealed living cells in the shell, which might secrete the shell proteins identified in this study. PMID:26222041
Toughening mechanisms in laminated composites: A biomimetic study in mollusk shells
NASA Astrophysics Data System (ADS)
Kamat, Shekhar Shripad
2000-10-01
Mollusk shells can be described as structural biocomposite materials composed of a mineral (aragonite) and a continuous, albeit minor, organic (protein) component. The conch shell, Strombus Gigas, has intermediate strength and high fracture toughness. The high fracture toughness is a result of enhanced energy dissipation during crack propagation due to delamination, crack bridging, frictional sliding etc. A theoretical and experimental study was conducted on the crack bridging mechanisms operative in the shell. Four-point bend tests were conducted. Acoustic emission and post-mortem dye penetrants were used to characterize the crack propagation, together with conventional fractography. A two layer composite configuration is seen in the shells, with the tough and weak layers having a toughness ratio of ˜4 (Ktough = 2.2MPam1/2). This toughness ratio is a requisite for multiple cracking in the weak layer. A theoretical shear lag analysis of the crack bridging phenomena in the tough layer is shown to lead to a bridging law for the crack wake of the form of p = betau1/2 (p is the bridging traction for a crack opening u, with beta, being a constant of proportionality). Finite element analysis yielded a value of beta = 630 Nmm-5/2 and ucritical = 5 mum for the bridging law parameters. In a nonlinear fracture mechanics phenomenology, these values are relevant material parameters, rather than a critical stress intensity factor. The work of fracture for unnotched specimens is three orders of magnitude higher than mineral aragonite, and is demonstrated numerically incorporating the toughening mechanisms in the shell. Similar structural adaptations have been observed and studied in the red abalone shell, haliotis rufescens and the spines of the sea urchin, Heterocentrotus trigonarius. The toughening mechanisms seen in these shells give insight into structural design needs of brittle matrix composites (BMC) as well as conventional structural ceramics.
Body weight of hypersonic aircraft, part 1
NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1988-01-01
The load bearing body weight of wing-body and all-body hypersonic aircraft is estimated for a wide variety of structural materials and geometries. Variations of weight with key design and configuration parameters are presented and discussed. Both hot and cool structure approaches are considered in isotropic, organic composite, and metal matrix composite materials; structural shells are sandwich or skin-stringer. Conformal and pillow-tank designs are investigated for the all-body shape. The results identify the most promising hypersonic aircraft body structure design approaches and their weight trends. Geometric definition of vehicle shapes and structural analysis methods are presented in appendices.
Liu, Zhe-Peng; Cui, Lei; Yu, Deng-Guang; Zhao, Zhuan-Xia; Chen, Lan
2014-01-01
A novel structural solid dispersion (SD) taking the form of core-shell microparticles for poorly water-soluble drugs is reported for the first time. Using polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix, the SDs were fabricated using coaxial electrospraying (characterized by an epoxy-coated concentric spray head), although the core fluids were unprocessable using one-fluid electrospraying. Through manipulating the flow rates of the core drug-loaded solutions, two types of core-shell microparticles with tunable drug contents were prepared. They had average diameters of 1.36±0.67 and 1.74±0.58 μm, and were essentially a combination of nanocomposites with the active ingredient acyclovir (ACY) distributed in the inner core, and the sweeter sucralose and transmembrane enhancer sodium dodecyl sulfate localized in the outer shell. Differential scanning calorimetry and X-ray diffraction results demonstrated that ACY, sodium dodecyl sulfate, and sucralose were well distributed in the PVP matrix in an amorphous state because of favorable second-order interactions. In vitro dissolution and permeation studies showed that the core-shell microparticle SDs rapidly freed ACY within 1 minute and promoted nearly eightfold increases in permeation rate across the sublingual mucosa compared with raw ACY powders.
NASA Astrophysics Data System (ADS)
Pu, Zejun; Zhong, Jiachun; Liu, Xiaobo
2017-10-01
Core-shell structured magnetic carbon nanotubes (CNTs-Fe3O4) coated with hyperbranched copper phthalocyanine (HBCuPc) (HBCuPc@CNTs-Fe3O4) hybrids were prepared by the solvent-thermal method. The results indicated that the HBCuPc molecules were decorated on the surface of CNTs-Fe3O4 through coordination behavior of phthalocyanines, and the CNTs-Fe3O4 core was completely coaxial wrapped by a functional intermediate HBCuPc shell. Then, polymer-based composites with a relatively high dielectric constant and low dielectric loss were fabricated by using core-shell structured HBCuPc@CNTs-Fe3O4 hybrids as fillers and polyarylene ether nitriles (PEN) as the polymer matrix. The cross-sectional scanning electron microscopy (SEM) images of composites showed that there is almost no agglomeration and internal delamination. In addition, the rheological analysis reveals that the core-shell structured HBCuPc@CNTs-Fe3O4 hybrids present better dispersion and stronger interface adhesion with the PEN matrix than CNTs-Fe3O4, thus resulting in significant improvement of the mechanical, thermal and dielectric properties of polymer-based composites.
Isotopic fingerprints of bacterial chemosymbiosis in the bivalve Loripes lacteus
NASA Astrophysics Data System (ADS)
Dreier, A.; Stannek, L.; Blumenberg, M.; Taviani, M.; Sigovini, M.; Wrede, C.; Thiel, V.; Hoppert, M.
2012-04-01
Metazoans with chemosynthetic bacterial endosymbionts are widespread in marine habitats and respective endosymbioses are known from seven recent animal phyla. However, little is known about endosymbioses in fossil settings and, hence, ecological significance in earth history. In the presented project, we investigate the ancient and recent bivalve fauna living at marine sedimentary oxic/anoxic interfaces. Two bivalve species collected from the same benthic environment - a Mediterranean lagoon - were studied in detail. The diet of Loripes lacteus is based on thiotrophic gill symbionts whereas Venerupis aureus is a filter feeding bivalve without symbionts. The presence of three key enzymes from sulfur oxidation (APS-reductase), carbon fixation (RubisCO) and assimilation of nitrogen (glutamine synthetase [GS]) were detected by immunofluorescence in symbionts of Loripes and/or by activity tests in living specimens. In search of biosignatures associated with thiotrophic chemosymbionts that might be suitable for detection of chemosymbiotic diets in recent and fossil bivalve shells, we analyzed the isotopic composition of shell lipids (δ13C) and the bulk organic matrix of the shell (δ13C, δ15N, δ34S). We could show that the combined δ15N and δ13C values from shell extracts are stable in subfossil (Pleistocene) bivalve specimens, as long as the isotopic data is "calibrated" with respective signatures from a filter feeding bivalve sampled from the same site or lithostratigraphic bed.
NASA Astrophysics Data System (ADS)
Jo, Jung-Ho; Kim, Min-Seok; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun
2018-01-01
Fluorescent efficiency of various visible quantum dots (QDs) has been incessantly improved to meet industrially high standard mainly through the advance in core/shell heterostructural design, however, their stability against degradable environments appears still lacking. The most viable strategy to cope with this issue was to exploit chemically inert oxide phases to passivate QD surface in the form of either individual overcoating or matrix embedding. Herein, we report a simple but effective means to passivate QD surface by complexing its organic ligands with a metal alkoxide of titanium isopropoxide (Ti(i-PrO)4). For this, highly efficient red-emitting InP QDs with a multi-shell structure of ZnSeS intermediate plus ZnS outer shell are first synthesized and then the surface of resulting InP/ZnSeS/ZnS QDs is in-situ decorated with Ti(i-PrO)4. The presence of Tisbnd O species from Ti(i-PrO)4 on QD surface is verified by x-ray photoelectron and Fourier transform infrared spectroscopic analyses. Two comparative dispersions of pristine versus Ti(i-PrO)4-complexed QDs are exposed for certain periods of time to UV photon and heat and their temporal changes in photoluminescence are monitored, resulting in a huge improvement in QD stability from the latter ones through Ti(i-PrO)4-mediated better surface passivation.
SYNTHESIS AND APPLICATIONS OF Fe3O4/SiO2 CORE-SHELL MATERIALS.
Sonmez, Maria; Georgescu, Mihai; Alexandrescu, Laurentia; Gurau, Dana; Ficai, Anton; Ficai, Denisa; Andronescu, Ecaterina
2015-01-01
Multifunctional nanoparticles based on magnetite/silica core-shell, consisting of iron oxides coated with silica matrix doped with fluorescent components such as organic dyes (fluorescein isothiocyanate - FITC, Rhodamine 6G) or quantum dots, have drawn remarkable attention in the last years. Due to the bi-functionality of these types of nanoparticles (simultaneously having magnetic and fluorescent properties), they are successfully used in highly efficient human stem cell labeling, magnetic carrier for photodynamic therapy, drug delivery, hyperthermia and other biomedical applications. Another application of core-shell-based nanoparticles, in which the silica is functionalized with aminosilanes, is for immobilization and separation of various biological entities such as proteins, antibodies, enzymes etc. as well as in environmental applications, as adsorbents for heavy metal ions. In vitro tests on human cancerous cells, such as A549 (human lung carcinoma), breast, human cervical cancer, THP-1 (human acute monocytic leukaemia) etc. , were conducted to assess the potential cytotoxic effects that may occur upon contact of nanoparticles with cancerous tissue. Results show that core-shell nanoparticles doped with cytostatics (cisplatin, doxorubicin, etc.), are easily adsorbed by affected tissue and in some cases lead to an inhibition of cell proliferation and induce cell death by apoptosis. The goal of this review is to summarize the advances in the field of core-shell materials, particularly those based on magnetite/silica with applicability in medicine and environmental protection. This paper briefly describes synthesis methods of silica-coated magnetite nanoparticles (Stöber method and microemulsion), the method of encapsulating functional groups based on aminosilanes in silica shell, as well as applications in medicine of these types of simple or modified nanoparticles for cancer therapy, MRI, biomarker immobilization, drug delivery, biocatalysis etc., and in environmental applications (removal of heavy metal ions and catalysis).
Vasquez, Hebert Ely; Hashimoto, Kyotaro; Yoshida, Asami; Hara, Kenji; Imai, Chisato Chris; Kitamura, Hitoshi; Satuito, Cyril Glenn
2013-01-01
Settlement of larvae of Crassostrea gigas on shell chips (SC) prepared from shells of 11 different species of mollusks was investigated. Furthermore, the settlement inducing compound in the shell of C. gigas was extracted and subjected to various treatments to characterize the chemical cue. C. gigas larvae settled on SC of all species tested except on Patinopecten yessoensis and Atrina pinnata. In SC of species that induced C. gigas larvae to settle, settlement was proportionate to the amount of SC supplied to the larvae. When compared to C. gigas SC, all species except Crassostrea nippona showed lower settlement inducing activities, suggesting that the cue may be more abundant or in a more available form to the larvae in shells of conspecific and C. nippona than in other species. The settlement inducing activity of C. gigas SC remained intact after antibiotic treatment. Extraction of C. gigas SC with diethyl ether (Et2O-ex), ethanol (EtOH-ex), and water (Aq-ex) did not induce larval settlement of C. gigas larvae. However, extraction of C. gigas SC with 2N of hydrochloric acid (HCl-ex) induced larval settlement that was at the same level as the SC. The settlement inducing compound in the HCl-ex was stable at 100°C but was destroyed or degraded after pepsin, trypsin, PNGase F and trifluoromethanesulfonic acid treatments. This chemical cue eluted between the molecular mass range of 45 and 150 kDa after gel filtration and revealed a major band at 55 kDa on the SDS-PAGE gel after staining with Stains-all. Thus, a 55 kDa glycoprotein component in the organic matrix of C. gigas shells is hypothesized to be the chemical basis of larval settlement on conspecifics. PMID:24349261
Off-shell single-top production at NLO matched to parton showers
Frederix, R.; Frixione, S.; Papanastasiou, A. S.; ...
2016-06-06
We study the hadroproduction of a Wb pair in association with a light jet, focusing on the dominant t-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark width. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the Herwig6 and Pythia8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell t-channel single-top production. Furthermore, we formulate our approach so that it can be applied to the generalmore » case of matrix elements that feature coloured intermediate resonances and are matched to parton showers.« less
NASA Technical Reports Server (NTRS)
Gotsis, P. K.; Chamis, C. C.; Minnetyan, L.
1996-01-01
Defect-free and defected composite thin shells with ply orientation (90/0/+/-75) made of graphite/epoxy are simulated for damage progression and fracture due to internal pressure and axial loading. The thin shells have a cylindrical geometry with one end fixed and the other free. The applied load consists of an internal pressure in conjunction with an axial load at the free end, the cure temperature was 177 C (350 F) and the operational temperature was 21 C (70 F). The residual stresses due to the processing are taken into account. Shells with defect and without defects were examined by using CODSTRAN an integrated computer code that couples composite mechanics, finite element and account for all possible failure modes inherent in composites. CODSTRAN traces damage initiation, growth, accumulation, damage propagation and the final fracture of the structure. The results show that damage initiation started with matrix failure while damage/fracture progression occurred due to additional matrix failure and fiber fracture. The burst pressure of the (90/0/+/- 75) defected shell was 0.092% of that of the free defect. Finally the results of the damage progression of the (90/0/+/- 75), defective composite shell was compared with the (90/0/+/- theta, where theta = 45 and 60, layup configurations. It was shown that the examined laminate (90/0/+/- 75) has the least damage tolerant of the two compared defective shells with the (90/0/+/- theta), theta = 45 and 60 laminates.
Jain, Gaurav; Pendola, Martin; Huang, Yu-Chieh; Gebauer, Denis; Evans, John Spencer
2017-05-30
In the purple sea urchin Strongylocentrotus purpuratus, the formation and mineralization of fracture-resistant skeletal elements such as the embryonic spicule require the combinatorial participation of numerous spicule matrix proteins such as SpSM50. However, because of its limited abundance and solubility issues, it has been difficult to pursue extensive in vitro biochemical studies of SpSM50 protein and deduce its role in spicule formation and mineralization. To circumvent these problems, we expressed a tag-free bacterial model recombinant spicule matrix protein, rSpSM50. Bioinformatics and biophysical experiments confirm that rSpSM50 is an intrinsically disordered, aggregation-prone C-type lectin-like domain-containing protein that forms dimensionally and internally heterogeneous protein hydrogels that control the in vitro mineralization process in three ways. The hydrogels (1) kinetically stabilize the aqueous calcium carbonate system against nucleation and thermodynamically destabilize the initially formed ACC in bulk solution, (2) promote and organize faceted single-crystal calcite and polycrystalline vaterite nanoparticles, and (3) promote surface texturing of calcite crystals and induce subsurface nanoporosities and channels within both calcite and vaterite crystals. Many of these features are also common to mollusk shell nacre proteins and the sea urchin spicule matrix glycoprotein, SpSM30B/C, and we conclude that rSpSM50 is a spiculogenesis hydrogelator protein that exhibits traits found in other calcium carbonate mineral-modification proteins.
Liu, Xiaojun; Zeng, Shimei; Dong, Shaojian; Jin, Can; Li, Jiale
2015-01-01
In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.
Symmetry of Isoscalar Matrix Elements and Systematics in the sd and beginning of fp shells
NASA Astrophysics Data System (ADS)
Orce, J. N.; Petkov, P.; Velázquez, V.; McKay, C. J.; Lesher, S. R.; Choudry, S.; Mynk, M.; Linnemann, A.; Jolie, J.; von Brentano, P.; Werner, V.; Yates, S. W.; McEllistrem, M. T.
2006-03-01
A careful determination of the lifetime and measurement of the branching ratio for decay of the first 2T=1+ state in 42Sc has allowed an accurate experimental test of charge independence in the A = 42 isobaric triplet. A lifetime of 69(17) fs was measured at the University of Kentucky, while relative intensities for the 975 keV and 1586 keV transitions depopulating the first 2T=1+ state have been determined at the University of Cologne as 100(1) and 8(1), respectively. Both measurements give an isoscalar matrix element, M0, of 6.4(9) (W.u.)1/2. This result confirms charge independence for the A=42 isobaric triplet. Shell model calculations have been carried out for understanding the global trend of M0 values for A = 4n + 2 isobaric triplets ranging from A = 18 to A = 42. The 21 (T=1)+ → 01 (T=1)+ transition energies, reduced transition probabilities and M0 values are reproduced to a high degree of accuracy. The trend of M0 strength along the sd shell is interpreted in terms of the shell structure. Certain discrepancies arise at the extremes of the sd shell, for the A = 18 and A = 38 isobaric triplets, which might be explained in terms of the low valence space at the extremes of the sd shell.
Strain distribution of confined Ge/GeO2 core/shell nanoparticles engineered by growth environments
NASA Astrophysics Data System (ADS)
Wei, Wenyan; Yuan, Cailei; Luo, Xingfang; Yu, Ting; Wang, Gongping
2016-02-01
The strain distributions of Ge/GeO2 core/shell nanoparticles confined in different host matrix grown by surface oxidation are investigated. The simulated results by finite element method demonstrated that the strains of the Ge core and the GeO2 shell strongly depend on the growth environments of the nanoparticles. Moreover, it can be found that there is a transformation of the strain on Ge core from tensile to compressive strain during the growth of Ge/GeO2 core/shell nanoparticles. And, the transformation of the strain is closely related with the Young's modulus of surrounding materials of Ge/GeO2 core/shell nanoparticles.
Structural and compositional characterization of the adhesive produced by reef building oysters.
Alberts, Erik M; Taylor, Stephen D; Edwards, Stephanie L; Sherman, Debra M; Huang, Chia-Ping; Kenny, Paul; Wilker, Jonathan J
2015-04-29
Oysters have an impressive ability to overcome difficulties of life within the stressful intertidal zone. These shellfish produce an adhesive for attaching to each other and building protective reef communities. With their reefs often exceeding kilometers in length, oysters play a major role in balancing the health of coastal marine ecosystems. Few details are available to describe oyster adhesive composition or structure. Here several characterization methods were applied to describe the nature of this material. Microscopy studies indicated that the glue is comprised of organic fiber-like and sheet-like structures surrounded by an inorganic matrix. Phospholipids, cross-linking chemistry, and conjugated organics were found to differentiate this adhesive from the shell. Symbiosis in material synthesis could also be present, with oysters incorporating bacterial polysaccharides into their adhesive. Oyster glue shows that an organic-inorganic composite material can provide adhesion, a property especially important when constructing a marine ecosystem.
NASA Astrophysics Data System (ADS)
Das, Kalipada
2017-10-01
In our present study, we address in detail the magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures. In these core-shell nanostructures, well-known half metallic La0.67Sr0.33MnO3 nanoparticles (average particle size, ˜20 nm) are wrapped by the charge ordered antiferromagnetic Pr0.67Ca0.33MnO3 (PCMO) matrix. The intrinsic properties of PCMO markedly modify it into such a core-shell form. The robustness of the PCMO matrix becomes fragile and melts at an external magnetic field (H) of ˜20 kOe. The analysis of magneto-transport data indicates the systematic reduction of the electron-electron and electron-magnon interactions in the presence of an external magnetic field in these nanostructures. The pronounced training effect appears in this phase separated compound, which was analyzed by considering the second order tunneling through the grain boundaries of the nanostructures. Additionally, the analysis of low field magnetoconductance data supports the second order tunneling and shows the close value of the universal limit (˜1.33).
Temperature dependence Infrared and Raman studies of III-V/II-VI core-shell nanostructures
NASA Astrophysics Data System (ADS)
Manciu, Felicia S.; McCombe, Bruce D.; Lucey, Derrick
2005-03-01
The temperature dependence (8 K < T < 300 K) of optical phonon modes confined in InP/II-VI core-shell nanostructures have been investigated by far-infrared (FIR) and Raman scattering spectroscopies. The core-shell nanostructures were fabricated by colloidal chemistry and characterized by transmission electron microscopy and X-ray diffraction prior to being embedded in a polycrystalline CsI matrix for the present studies. The FIR measurements of InP/ZnSe sample exhibits three absorption features, one clearly due to the Froelich mode of the InP cores, and the others related to modes associated with the shell layer and its coupling to the matrix. Strong mixing of the characteristic vibrations of each constituent material was observed for InP/ZnS sample. Raman scattering (457.9 nm excitation) features were determined without polarization selection in the backscattering geometry. Interesting T-dependent resonant Raman effect of the surface optical phonon modes has been discovered in InP/ZnSe sample. Reasonable agreement is obtained between the Raman and FIR results, as well as with theoretical calculations.
Restricted Closed Shell Hartree Fock Roothaan Matrix Method Applied to Helium Atom Using Mathematica
ERIC Educational Resources Information Center
Acosta, César R.; Tapia, J. Alejandro; Cab, César
2014-01-01
Slater type orbitals were used to construct the overlap and the Hamiltonian core matrices; we also found the values of the bi-electron repulsion integrals. The Hartree Fock Roothaan approximation process starts with setting an initial guess value for the elements of the density matrix; with these matrices we constructed the initial Fock matrix.…
NASA Astrophysics Data System (ADS)
Strodel, Paul; Tavan, Paul
2002-09-01
We present a revised multi-reference configuration interaction (MRCI) algorithm for balanced and efficient calculation of electronic excitations in molecules. The revision takes up an earlier method, which had been designed for flexible, state-specific, and individual selection (IS) of MRCI expansions, included perturbational corrections (PERT), and used the spin-coupled hole-particle formalism of Tavan and Schulten (1980) for matrix-element evaluation. It removes the deficiencies of this method by introducing tree structures, which code the CI bases and allow us to efficiently exploit the sparseness of the Hamiltonian matrices. The algorithmic complexity is shown to be optimal for IS/MRCI applications. The revised IS/MRCI/PERT module is combined with the effective valence shell Hamiltonian OM2 suggested by Weber and Thiel (2000). This coupling serves the purpose of making excited state surfaces of organic dye molecules accessible to relatively cheap and sufficiently precise descriptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yako, K.; Sasano, M.; Miki, K.
2009-07-03
The double-differential cross sections for the {sup 48}Ca(p,n) and {sup 48}Ti(n,p) reactions were measured at 300 MeV. A multipole decomposition technique was applied to the spectra to extract the Gamow-Teller (GT) components. The integrated GT strengths up to an excitation energy of 30 MeV in {sup 48}Sc are 15.3+-2.2 and 2.8+-0.3 in the (p,n) and (n,p) spectra, respectively. In the (n,p) spectra additional GT strengths were found above 8 MeV where shell models within the fp shell-model space predict almost no GT strengths, suggesting that the present shell-model description of the nuclear matrix element of the two-neutrino double-beta decay ismore » incomplete.« less
NASA Astrophysics Data System (ADS)
Planchon, Frédéric; Poulain, Céline; Langlet, Denis; Paulet, Yves-Marie; André, Luc
2013-11-01
We estimate the magnesium stable isotopic composition (δ26Mg) of the major compartments involved in the biomineralisation process of euryhaline bivalve, the manila clam Ruditapes philippinarum. Our aim is to identify the fractionation processes associated with Mg uptake and its cycling/transport in the bivalve organism, in order to better assess the controlling factors of the Mg isotopic records in bivalve shells. δ26Mg were determined in seawater, in hemolymph, extrapallial fluid (EPF), soft tissues and aragonitic shell of adult clams collected along the Auray River estuary (Gulf of Morbihan, France) at two sites showing contrasted salinity regimes. The large overall δ26Mg variations (4.16‰) demonstrate that significant mass-dependent Mg isotopic fractionations occur during Mg transfer from seawater to the aragonitic shell. Soft tissues span a range of fractionation factors relative to seawater (Δ26Mgsoft tissue-seawater) of 0.42 ± 0.12‰ to 0.76 ± 0.12‰, and show evidence for biological isotopic fractionation of Mg. Hemolymph and EPF are on average isotopically close to seawater (Δ26Mghemolymph-seawater = -0.20 ± 0.27‰; 2 sd; n = 5 and Δ26MgEPF-seawater = -0.23 ± 0.25‰; 2 sd; n = 5) indicating (1) a predominant seawater origin for Mg in the intercellular medium and (2) a relatively passive transfer route through the bivalve organism into the calcifying fluid. The lightest isotopic composition is found in shell, with δ26Mg ranging from -1.89 ± 0.07‰ to -4.22 ± 0.06‰. This range is the largest in the dataset and is proposed to result from a combination of abiotic and biologically-driven fractionation processes. Abiotic control includes fractionation during precipitation of aragonite and accounts for Δ26Mgaragonite-seawater ≈ 1000 ln αaragonite-seawater = -1.13 ± 0.28‰ at 20 °C based on literature data. Deviations from inorganic precipitate (expressed as Δ26MgPhysiol) appear particularly variable in the clam shell, ranging from 0.03‰ to -2.20‰, which indicates that bivalve shell formation can proceed either under fractionation similar to inorganically-precipitated aragonite or under variable physiological influences. These physiological isotopic effects may be consistent with a regulation of dissolved Mg content in hemolymph and/or EPF due to Mg incorporation into soft tissue and/or Mg fixation by organic macromolecules. Using closed- and open-system models we estimate that Δ26MgPhysiol can be satisfactorily resolved with a remaining Mg fraction in hemolymph and/or EPF of 74% down to 2%. However, this feature is not reflected in our hemolymph and EPF data and may indicate that regulation processes and isotopic fractionation may take place in self-contained spaces located close to calcification sites. The potential role of the shell organic matrix, which may host non-lattice-bound Mg in the shell, is also discussed but remains difficult to assess with our data. Regarding the large physiological effects, the δ26Mg record in the Manila clam shell offers limited potential as a proxy of temperature or seawater Mg isotopic composition. In contrast, the sensitivity of its δ26Mg to the salinity regime may offer an interesting tool to track changes in clam biological activity in estuarine environments.
Cost analysis of composite fan blade manufacturing processes
NASA Technical Reports Server (NTRS)
Stelson, T. S.; Barth, C. F.
1980-01-01
The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.
Microyielding of core-shell crystal dendrites in a bulk-metallic-glass matrix composite
Huang, E. -Wen; Qiao, Junwei; Winiarski, Bartlomiej; ...
2014-03-18
In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulkmore » metallic-glass matrix composite. As a result, the complementary diffraction measurements and the simulation results suggest that the interfaces between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.« less
NASA Astrophysics Data System (ADS)
Sun, Yao; Yang, Tiejun; Chen, Yuehua
2018-06-01
In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.
Multibody dynamic analysis using a rotation-free shell element with corotational frame
NASA Astrophysics Data System (ADS)
Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen
2018-03-01
Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.
A sensitive glucose biosensor based on Ag@C core-shell matrix.
Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng
2015-04-01
Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core-shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as -OH and -COOH. The as-prepared Ag@C core-shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05-2.5mM, with a detection limit of 0.02mM (S/N=3). The apparent Michaelis-Menten constant (KM(app)) of the biosensor is calculated to be 1.7mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core-shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Zhe-Peng; Cui, Lei; Yu, Deng-Guang; Zhao, Zhuan-Xia; Chen, Lan
2014-01-01
A novel structural solid dispersion (SD) taking the form of core–shell microparticles for poorly water-soluble drugs is reported for the first time. Using polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix, the SDs were fabricated using coaxial electrospraying (characterized by an epoxy-coated concentric spray head), although the core fluids were unprocessable using one-fluid electrospraying. Through manipulating the flow rates of the core drug-loaded solutions, two types of core–shell microparticles with tunable drug contents were prepared. They had average diameters of 1.36±0.67 and 1.74±0.58 μm, and were essentially a combination of nanocomposites with the active ingredient acyclovir (ACY) distributed in the inner core, and the sweeter sucralose and transmembrane enhancer sodium dodecyl sulfate localized in the outer shell. Differential scanning calorimetry and X-ray diffraction results demonstrated that ACY, sodium dodecyl sulfate, and sucralose were well distributed in the PVP matrix in an amorphous state because of favorable second-order interactions. In vitro dissolution and permeation studies showed that the core–shell microparticle SDs rapidly freed ACY within 1 minute and promoted nearly eightfold increases in permeation rate across the sublingual mucosa compared with raw ACY powders. PMID:24790437
Active formation of `chaos terrain' over shallow subsurface water on Europa
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.
2011-11-01
Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Civitarese, Osvaldo; Suhonen, Jouni
In this work we report on general properties of the nuclear matrix elements involved in the neutrinoless double β{sup −} decays (0νβ{sup −}β{sup −} decays) of several nuclei. A summary of the values of the NMEs calculated along the years by the Jyväskylä-La Plata collaboration is presented. These NMEs, calculated in the framework of the quasiparticle random phase approximation (QRPA), are compared with those of the other available calculations, like the Shell Model (ISM) and the interacting boson model (IBA-2)
Hybrid self-healing matrix using core-shell nanofibers and capsuleless microdroplets.
Lee, Min Wook; An, Seongpil; Lee, Changmin; Liou, Minho; Yarin, Alexander L; Yoon, Sam S
2014-07-09
In this work, we developed novel self-healing anticorrosive hierarchical coatings that consist of several components. Namely, as a skeleton we prepared a core-shell nanofiber mat electrospun from emulsions of cure material (dimethyl methylhydrogen siloxane) in a poly(acrylonitrile) (PAN) solution in dimethylformamide. In these nanofibers, cure is in the core, while PAN is in the shell. The skeleton deposited on a protected surface is encased in an epoxy-based matrix, which contains emulsified liquid droplets of dimethylvinyl-terminated dimethylsiloxane resin monomer. When such hierarchical coatings are damaged, cure is released from the nanofiber cores and the resin monomer, released from the damaged matrix, is polymerized in the presence of cure. This polymerization and solidification process takes about 1-2 days and eventually heals the damaged material when solid poly(dimethylsiloxane) resin is formed. The self-healing effect was demonstrated using an electrochemical analogue of the scanning vibrating electrode technique. Damaged samples were left for 2 days. After that, the electric current through a damaged coating was found to be negligibly small for the samples with self-healing properties. On the other hand, for the samples without self-healing properties, the electric current was significant.
Babu, Dinesh; Crandall, Philip G; Johnson, Casey L; O'Bryan, Corliss A; Ricke, Steven C
2013-12-01
Growers and processors of USDA certified organic foods are in need of suitable organic antimicrobials. The purpose of the research reported here was to develop and test natural antimicrobials derived from an all-natural by-product, organic pecan shells. Unroasted and roasted organic pecan shells were subjected to solvent free extraction to produce antimicrobials that were tested against Listeria spp. and L. monocytogenes serotypes to determine the minimum inhibitory concentrations (MIC) of antimicrobials. The effectiveness of pecan shell extracts were further tested using a poultry skin model system and the growth inhibition of the Listeria cells adhered onto the skin model were quantified. The solvent free extracts of pecan shells inhibited Listeria strains at MICs as low as 0.38%. The antimicrobial effectiveness tests on a poultry skin model exhibited nearly a 2 log reduction of the inoculated cocktail mix of Listeria strains when extracts of pecan shell powder were used. The extracts also produced greater than a 4 log reduction of the indigenous spoilage bacteria on the chicken skin. Thus, the pecan shell extracts may prove to be very effective alternative antimicrobials against food pathogens and supplement the demand for effective natural antimicrobials for use in organic meat processing. © 2013 Institute of Food Technologists®
Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.
Yuan, C L; Lee, P S
2008-09-03
A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.
NASA Astrophysics Data System (ADS)
Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.
2017-04-01
In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.
Charrier, Maryvonne; Marie, Arul; Guillaume, Damien; Bédouet, Laurent; Le Lannic, Joseph; Roiland, Claire; Berland, Sophie; Pierre, Jean-Sébastien; Le Floch, Marie; Frenot, Yves; Lebouvier, Marc
2013-01-01
Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region). The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell) and OS (organic shell). The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS-ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial and temporal environmental variations.
Charrier, Maryvonne; Marie, Arul; Guillaume, Damien; Bédouet, Laurent; Le Lannic, Joseph; Roiland, Claire; Berland, Sophie; Pierre, Jean-Sébastien; Le Floch, Marie; Frenot, Yves; Lebouvier, Marc
2013-01-01
Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region). The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell) and OS (organic shell). The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS- ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial and temporal environmental variations. PMID:24376821
Uptake Kinetics and Trophic Transfer of Tungsten from Cabbage to a Herbivorous Animal Model
Lindsay, James H.; Kennedy, Alan J.; Seiter-Moser, Jennifer M.; ...
2017-10-20
This paper builds on previous studies on military-relevant tungsten (W) to more thoroughly explore environmental pathways and bioaccumulation kinetics during direct soil exposure versus trophic transfer and elucidate its relative accumulation and speciation in different snail organs. The modeled steady-state concentration and bioaccumulation factor (BAF) of W from soil into cabbage were 302 mg/kg and 0.55, respectively. Steady-state concentrations (34 mg/kg) and BAF values (0.05) obtained for the snail directly exposed to contaminated soil were lower than trophic transfer by consumption of W-contaminated cabbage (tissue concentration of 86 mg/kg; BAF of 0.36). Thus, consumption of contaminated food is the mostmore » important pathway for W mobility in this food chain. The highest concentrations of W compartmentalization were in the snail’s hepatopancreas based on wet chemistry and synchrotron-based investigations. Chemical speciation via inductively couple plasma mass spectrometry showed a higher degree of polytungstate partitioning in the hepatopancreas relative to the rest of the body. Based on synchrotron analysis, W was incorporated into the shell matrix during exposure, particularly during the regeneration of damaged shell. Finally, this offers the potential for application of the shell as a longer-term biomonitoring and forensics tool for historic exposure.« less
Xiong, Wei; Gao, Yongsheng; Wu, Xu; Hu, Xuan; Lan, Danni; Chen, Yangyang; Pu, Xuli; Zeng, Yan; Su, Jun; Zhu, Zhihong
2014-01-01
Novel biological carbon materials with highly ordered microstructure and large pore volume have caused great interest due to their multifunctional properties. Herein, we report the preparation of an interconnected porous carbon material by carbonizing the organic matrix of mollusc shell. The obtained three-dimensional carbon skeleton consists of hexangular and tightly arranged channels, which endow it with efficient electrolyte penetration and fast electron transfer, enable the mollusc shell based macroporous carbon material (MSBPC) to be an excellent conductive scaffold for supercapacitor electrodes. By growing NiCo2O4 nanowires on the obtained MSBPC, NiCo2O4/MSBPC composites were synthesized. When used on supercapacitor electrode, it exhibited anomalously high specific capacitance (∼1696 F/g), excellent rate performance (with the capacity retention of 58.6% at 15 A/g) and outstanding cycling stability (88% retention after 2000 cycles). Furthermore, an all-solid-state symmetric supercapacitor was also assembled based on this NiCo2O4/MSBPC electrode and showed good electrochemical performance with an energy density of 8.47 Wh/kg at 1 A/g, good stability over 10000 cycles. And we believe that more potential applications beyond energy storage can be developed based on this MSBPC.
Uptake Kinetics and Trophic Transfer of Tungsten from Cabbage to a Herbivorous Animal Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, James H.; Kennedy, Alan J.; Seiter-Moser, Jennifer M.
This paper builds on previous studies on military-relevant tungsten (W) to more thoroughly explore environmental pathways and bioaccumulation kinetics during direct soil exposure versus trophic transfer and elucidate its relative accumulation and speciation in different snail organs. The modeled steady-state concentration and bioaccumulation factor (BAF) of W from soil into cabbage were 302 mg/kg and 0.55, respectively. Steady-state concentrations (34 mg/kg) and BAF values (0.05) obtained for the snail directly exposed to contaminated soil were lower than trophic transfer by consumption of W-contaminated cabbage (tissue concentration of 86 mg/kg; BAF of 0.36). Thus, consumption of contaminated food is the mostmore » important pathway for W mobility in this food chain. The highest concentrations of W compartmentalization were in the snail’s hepatopancreas based on wet chemistry and synchrotron-based investigations. Chemical speciation via inductively couple plasma mass spectrometry showed a higher degree of polytungstate partitioning in the hepatopancreas relative to the rest of the body. Based on synchrotron analysis, W was incorporated into the shell matrix during exposure, particularly during the regeneration of damaged shell. Finally, this offers the potential for application of the shell as a longer-term biomonitoring and forensics tool for historic exposure.« less
NASA Astrophysics Data System (ADS)
Leung, Jonathan Y. S.; Cheung, Napo K. M.
2018-06-01
Calcification is a vital biomineralization process where calcifying organisms construct their calcareous shells for protection. While this process is expected to deteriorate under hypoxia, which reduces the metabolic energy yielded by aerobic respiration, some calcifying organisms were shown to maintain normal shell growth. The underlying mechanism remains largely unknown, but may be related to changing shell mineralogical properties, whereby shell growth is sustained at the expense of shell quality. Thus, we examined whether such plastic response is exhibited to alleviate the impact of hypoxia on calcification by assessing the shell growth and shell properties of a calcifying polychaete in two contexts (life-threatening and unthreatened conditions). Although hypoxia substantially reduced respiration rate (i.e., less metabolic energy produced), shell growth was only slightly hindered without weakening mechanical strength under unthreatened conditions. Unexpectedly, hypoxia did not undermine defence response (i.e., enhanced shell growth and mechanical strength) under life-threatening conditions, which may be attributed to the changes in mineralogical properties (e.g., increased calcite / aragonite) to reduce the energy demand for calcification. While more soluble shells (e.g., increased Mg / Ca in calcite) were produced under hypoxia as the trade-off, our findings suggest that mineralogical plasticity could be fundamental for calcifying organisms to maintain calcification under metabolic stress conditions.
Glass shell manufacturing in space. [residual gases in spherical shells made from metal-organic gels
NASA Technical Reports Server (NTRS)
Nolen, R. J.; Ebner, M. A.; Downs, R. L.
1980-01-01
Residual gases always found in glass shells are CO2, O2 and N2. In those cases where high water vapor pressure is maintained in the furnace, water is also found in the shells. Other evidence for the existence of water in shells is the presence of water-induced surface weathering of the interior shell surface. Water and CO2 are the predominant volatiles generated by the pyrolysis of both inorganic and hydrolyzed metal-organic gels. The pyrolysates of unhydrolyzed metal-organic gels also contain, in addition to water and CO2, significant levels of organic volatiles, such as ethanol and some hydrocarbons; on complete oxidation, these produce CO2 and water as well. Water is most likely the initial blowing agent, it is produced copiously during the initial stages of heating. In the later stages, CO2 becomes the dominant gas as H2O is lost at increasing rates. Water in the shell arises mainly from gel dehydration, CO2 by sodium bicarbonate/carbonate decomposition and carbon oxidation, and O2 and N2 by permeation of the ambient furnace air through the molten shell wall.
K-Shell Photoionization of Nickel Ions Using R-Matrix
NASA Technical Reports Server (NTRS)
Witthoeft, M. C.; Bautista, M. A.; Garcia, J.; Kallman, T. R.; Mendoza, C.; Palmeri, P.; Quinet, P.
2011-01-01
We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ions stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.
Tămăşan, M; Ozyegin, L S; Oktar, F N; Simon, V
2013-07-01
The study reports the preparation and characterization of powders consisting of the different phases of calcium phosphates that were obtained from the naturally derived raw materials of sea-shell origins reacted with H3PO4. Species of sea origin, such as corals and nacres, attracted a special interest in bone tissue engineering area. Nacre shells are built up of calcium carbonate in aragonite form crystallized in an organic matrix. In this work two natural marine origin materials (shells of echinoderm Sputnik sea urchin - Phyllacanthus imperialis and Trochidae Infundibulum concavus mollusk) were involved in the developing powders of calcium phosphate based biomaterials (as raw materials for bone-scaffolds) by hotplate and ultrasound methods. Thermal analyses of the as-prepared materials were made for an assessment of the thermal behavior and heat treatment temperatures. Samples from both sea shells each of them prepared by the above mentioned methods were subjected to thermal treatments at 450 °C and 850 °C in order to evaluate the crystalline transformations of the calcium phosphate structures in the heating process. By X-ray diffraction analyses various calcium phosphate phases were identified. In Sputnik sea urchins originated samples were found predominantly brushite and calcite as a small secondary phase, while in Trochidae I. concavus samples mainly monetite and HA phases were identified. Thermal treatment at 850 °C resulted flat-plate whitlockite crystals - β-MgTCP [(Ca, Mg)3 (PO4)2] for both samples regardless the preparation method (ultrasound or hotplate) or the targeted Ca/P molar ratio according with XRD patterns. Scanning electron microscopy and Fourier transformed infrared spectroscopy were involved more in the characterization of these materials and the good correlations of the results of these methods were made. Copyright © 2013 Elsevier B.V. All rights reserved.
Tiano, P; Biagiotti, L; Mastromei, G
1999-05-01
The weathering of monumental stones is a complex process inserted in the more general 'matter transformation cycle' operated by physical, chemical and biological factors. The consequence of these combined actions is a loss of cohesion with dwindling and scaling of stone material and the induction of a progressive mineral matrix dissolution. In the case of calcareous stones, calcite leaching increases the material porosity and decreases its mechanical features with a general weakening of the superficial structural strength. Attempts to stop, or at least to slow down, deterioration of monumental stones has been made by conservative treatments with both inorganic or organic products. More recent studies show a new approach to hinder these phenomena by inducing a bio-mediated precipitation of calcite directly inside the stone porosity. This can be achieved either through the application of organic matrix macromolecules extracted from sea shells or of living bacteria. The effectiveness of the treatment using calcinogenic bacteria has been evaluated with laboratory tests specifically developed to evaluate the parameters such as : porosity, superficial strength and chromatic changes, influenced by the treatment itself. The results obtained seem to indicate that this type of treatment might not be suitable for monumental stone conservation.
NASA Astrophysics Data System (ADS)
Hao, Hongxia; Zhou, Zhiguo; Li, Shulong; Maquilan, Genevieve; Folkert, Michael R.; Iyengar, Puneeth; Westover, Kenneth D.; Albuquerque, Kevin; Liu, Fang; Choy, Hak; Timmerman, Robert; Yang, Lin; Wang, Jing
2018-05-01
Distant failure is the main cause of human cancer-related mortalities. To develop a model for predicting distant failure in non-small cell lung cancer (NSCLC) and cervix cancer (CC) patients, a shell feature, consisting of outer voxels around the tumor boundary, was constructed using pre-treatment positron emission tomography (PET) images from 48 NSCLC patients received stereotactic body radiation therapy and 52 CC patients underwent external beam radiation therapy and concurrent chemotherapy followed with high-dose-rate intracavitary brachytherapy. The hypothesis behind this feature is that non-invasive and invasive tumors may have different morphologic patterns in the tumor periphery, in turn reflecting the differences in radiological presentations in the PET images. The utility of the shell was evaluated by the support vector machine classifier in comparison with intensity, geometry, gray level co-occurrence matrix-based texture, neighborhood gray tone difference matrix-based texture, and a combination of these four features. The results were assessed in terms of accuracy, sensitivity, specificity, and AUC. Collectively, the shell feature showed better predictive performance than all the other features for distant failure prediction in both NSCLC and CC cohorts.
Core–Shell to Doped Quantum Dots: Evolution of the Local Environment Using XAFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Avijit; Chattopadhyay, Soma; Shibata, Tomohiro
2016-09-30
Internal structure study at an atomic level is a challenging task with far reaching consequences to its material properties, specifically in the field of transition metal doping in quantum dots. Diffusion of transition metal ions in and out of quantum dots forming magnetic clusters has been a major bottleneck in this class of materials. Diffusion of the magnetic ions from the core into the nonmagnetic shell in a core/shell heterostructure architecture to attain uniform doping has been recently introduced and yet to be understood. In this work, we have studied the local structure variation of Fe as a function ofmore » CdS matrix thickness and annealing time during the overcoating of Fe 3O 4 core with CdS using X-ray absorption spectroscopy. The data reveals that Fe 3O 4 core initially forms a core/shell structure with CdS followed by alloying at the interface eventually completely diffusing all the way through the CdS matrix to form homogeneously Fe-doped CdS QDs with excellent control over size and size distribution. Study of Fe K-edge shows a complete change of Fe local environment from Fe–O to FeS.« less
A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift
NASA Astrophysics Data System (ADS)
Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio
2017-03-01
We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancelation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude.
Synthesis of Co 2SnO 4@C core-shell nanostructures with reversible lithium storage
NASA Astrophysics Data System (ADS)
Qi, Yue; Du, Ning; Zhang, Hui; Wu, Ping; Yang, Deren
This paper reports the synthesis of Co 2SnO 4@C core-shell nanostructures through a simple glucose hydrothermal and subsequent carbonization approach. The as-synthesized Co 2SnO 4@C core-shell nanostructures have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure Co 2SnO 4 nanocrystals. The carbon matrix has good volume buffering effect and high electronic conductivity, which may be responsible for the improved cyclic performance.
A Sixteen Node Shell Element with a Matrix Stabilization Scheme.
1987-04-22
coordinates with components x, y and z are defined on the shell midsurface in addition to global coordinates with components X, Y and Z. The x, y and z axes... midsurface while a3 is normal to the surface. The al, A2 and a3 vectors are given at each node as an input. In addition, they are defined at each integra...drawn from the point on the midsurface to the generic material point, t is the shell thickness and the nondimenslonal coordinate C runs from -1 to 1
Research advances in polymer emulsion based on "core-shell" structure particle design.
Ma, Jian-zhong; Liu, Yi-hong; Bao, Yan; Liu, Jun-li; Zhang, Jing
2013-09-01
In recent years, quite many studies on polymer emulsions with unique core-shell structure have emerged at the frontier between material chemistry and many other fields because of their singular morphology, properties and wide range of potential applications. Organic substance as a coating material onto either inorganic or organic internal core materials promises an unparalleled opportunity for enhancement of final functions through rational designs. This contribution provides a brief overview of recent progress in the synthesis, characterization, and applications of both inorganic-organic and organic-organic polymer emulsions with core-shell structure. In addition, future research trends in polymer composites with core-shell structure are also discussed in this review. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bian, Juan; Lan, Fang; Wang, Yilong; Ren, Ke; Zhao, Suling; Li, Wei; Chen, Zhihong; Li, Jiangyu; Guan, Jianguo
2018-04-01
We have developed a novel seed-mediated growth method to fabricate nickel-coated graphite composite particles (GP@Ni-CPs) with controllable shell morphology by simply adjusting the concentration of sodium hydroxide ([NaOH]). The fabrication of two kinds of typical GP@Ni-CPs includes adsorption of Ni2+ via electrostatic attraction, sufficient heterogeneous nucleation of Ni atoms by an in situ reduction, and shell-controlled growth by regulating the kinetics of electroless Ni plating in turn. High [NaOH] results in fast kinetics of electroless plating, which causes heterogeneous nuclei to grow isotropically. After fast and uniform growth of Ni nuclei, GP@Ni-CPs with dense shells can be achieved. The first typical GP@Ni-CPs exhibit denser shells, smaller diameters and higher conductivities than the available commercial ones, indicating their important applications in the conducting of polymer-matrix composites. On the other hand, low [NaOH] favors slow kinetics. Thus, the reduction rate of Ni2+ slows down to a relatively low level so that electroless plating is dominated thermodynamically instead of kinetically, leading to an anisotropic crystalline growth of nuclei and finally to the formation of GP@Ni-CPs with nanoneedle-like shells. The second typical samples can effectively catalyze the reduction of p-nitrophenol into p-aminophenol with NaBH4 in comparison with commercial GP@Ni-CPs and RANEY® Ni, owing to the strong charge accumulation effect of needle-like Ni shells. This work proposes a model system for fundamental investigations and has important applications in the fields of electronic interconnection and catalysis.
NASA Astrophysics Data System (ADS)
Bednaršek, N.; Johnson, J.; Feely, R. A.
2016-05-01
Pteropods have been recognized as one of the most sensitive marine organisms to ocean acidification (OA). Their susceptibility is mostly related to rapid shell dissolution, which is correlated with exposure to waters undersaturated with respect to aragonite (Ωar≤ 1) (e.g., Lischka et al., 2011; Bednaršek et al., 2012a,b, 2014a,b; Busch et al., 2014). Increased dissolution weakens the shell, increases vulnerability to predation and infection, and imposes an energetic cost. The rapidity of shell dissolution is attributed to the combination of metastable aragonitic crystal structure of shells that are among the thinnest known for calcifying organisms, and an extremely thin outer organic layer (i.e. periostracum <1 μm thick), suggesting insufficient protection against shell dissolution at Ωar≤1 (Bednaršek et al., 2014b). The periostracum generally consists of polysaccharide and proteinaceous components (Gaffey and Bronnimann, 1993) but varies significantly in its structure and composition amongst taxa.
ControlShell: A real-time software framework
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Chen, Vincent W.; Pardo-Castellote, Gerardo
1994-01-01
The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools.
Active formation of 'chaos terrain' over shallow subsurface water on Europa.
Schmidt, B E; Blankenship, D D; Patterson, G W; Schenk, P M
2011-11-16
Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3 kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America. ©2011 Macmillan Publishers Limited. All rights reserved
Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope
NASA Astrophysics Data System (ADS)
Kotko, P.; Serino, M.; Stasto, A. M.
2016-08-01
One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes, if working in the light cone gauge. As shown in recent works using the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in a certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the Wilson line slope instead of the external momenta. While in the original BCFW procedure the boundary integrals over the complex shift vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invariant component given by a matrix element of a straight Wilson line plus a reminder given by a sum of products of gauge invariant and gauge dependent quantities. We give several examples realizing this relation, including the five-point next-to-MHV helicity configuration.
Some preliminary calculations of whole atom Compton scattering of unpolarized photons
NASA Astrophysics Data System (ADS)
Bergstrom, P. M.; Surić, T.; Pisk, K.; Pratt, R. H.
1992-07-01
This paper represents a preliminary attempt to develop a practical prescription for calculating whole atom cross sections for the Compton scattering of unpolarized photons from the bound electrons of an atom for the entire spectrum of scattered photon energies. We initially study the scattering of 2.94 keV photons from carbon. We make use of our new second order S-matrix computer code in this case to verify that, when our recently developed criterion for the validity of the relativistic impulse approximation (which concerns the average momentum contributing to the photon spectrum ( pav)) is satisfied, the spectrum is adequately described by the impulse approximation. This criterion is generally satisfied in the peak intensity region for scattering by the outer shells, which dominate at these scattered photon energies. For soft scattered photons, however, the spectrum, dominated by K shell contributions, is given by terms corresponding to the contribution of the " p· A" term in the nonrelativistic interaction Hamiltonian, not included in the impulse approximation. Here, the spectrum is adequately reproduced by the K shell contribution. We then consider scattering of 17.4 keV photons from aluminum and 279.1 keV photons from lead. In these cases we use the S-matrix for the K shell and the impulse approximation for the outer shells, and find good agreement with experiment.
NASA Astrophysics Data System (ADS)
Brom, Krzysztof Roman; Szopa, Krzysztof
2016-12-01
Environmental adaptation of molluscs during evolution has led to form biomineral exoskeleton - shell. The main compound of their shells is calcium carbonate, which is represented by calcite and/or aragonite. The mineral part, together with the biopolymer matrix, forms many types of microstructures, which are differ in texture. Different types of internal shell microstructures are characteristic for some bivalve groups. Studied bivalve species (freshwater species - duck mussel (Anodonta anatina Linnaeus, 1758) and marine species - common cockle (Cerastoderma edule Linnaeus, 1758), lyrate Asiatic hard clam (Meretrix lyrata Sowerby II, 1851) and blue mussel (Mytilus edulis Linnaeus, 1758)) from different locations and environmental conditions, show that the internal shell microstructure with the shell morphology and thickness have critical impact to the ability to survive in changing environment and also to the probability of surviving predator attack. Moreover, more detailed studies on molluscan structures might be responsible for create mechanically resistant nanomaterials.
NASA Astrophysics Data System (ADS)
Cheng, Fengli; Liu, Wei; Zhang, Yuan; Wang, Huanlei; Liu, Shuang; Hao, Enchao; Zhao, Shuping; Yang, Hongzhan
2017-06-01
Porous carbons derived from biomass are one current hotspot in exploring advanced electrode materials for supercapacitors. In this work, based on nanoparticles from squid inks, an N-doping porous carbons with a unique "shell@pearls" structure has been fabricated through a direct carbonization/activation procedure. Remarkably, a fantastic structural evolution from core-shell, yolk-shell to the porous matrix embedded with small spheres (like pears in shell) has been observed. The as-obtained products exhibit a hierarchical porosity comprised of micro-, meso- and macropores, as well with a large surface area (1957 m2 g-1) and N-doping (2.09%). As the electrode materials for supercapacitors, the "shell@pearls"bio-carbons show the very high capacitance of 329 F g-1 at 0.5 A g-1 and 265 F g-1 at 30 A g-1 and also a superior retention of 99.5% after 10000 cycles at 5 A g-1.
Ocean acidification alters the material properties of Mytilus edulis shells
Fitzer, Susan C.; Zhu, Wenzhong; Tanner, K. Elizabeth; Phoenix, Vernon R.; Kamenos, Nicholas A.; Cusack, Maggie
2015-01-01
Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Chamis, Christos C.; Minnetyan, Levon
1996-01-01
Graphite/epoxy composite thin shell structures were simulated to investigate damage and fracture progression due to internal pressure and axial loading. Defective and defect-free structures (thin cylinders) were examined. The three different laminates examined had fiber orientations of (90/0/+/-0)(sub s), where 0 is 45, 60, and 75 deg. CODSTRAN, an integrated computer code that scales up constituent level properties to the structural level and accounts for all possible failure modes, was used to simulate composite degradation under loading. Damage initiation, growth, accumulation, and propagation to fracture were included in the simulation. Burst pressures for defective and defect-free shells were compared to evaluate damage tolerance. The results showed that damage initiation began with matrix failure whereas damage and/or fracture progression occurred as a result of additional matrix failure and fiber fracture. In both thin cylinder cases examined (defective and defect-free), the optimum layup configuration was (90/0/+/-60)(sub s) because it had the best damage tolerance with respect to the burst pressure.
Takesue, R.K.; Bacon, C.R.; Thompson, J.K.
2008-01-01
A suite of elements (B, Na, Mg, S, K, Ca, V, Mn, Cr, Sr, and Ba) was measured in aragonitic shells of the estuarine bivalve Corbula amurensis, the Asian clam, using the Sensitive High-Resolution Ion MicroProbe with Reverse Geometry (SHRIMP RG). Our initial intent was to explore potential geochemical proxy relationships between shell chemistry and salinity (freshwater inflow) in northern San Francisco Bay (SFB). In the course of this study we observed variations in shell trace element to calcium ([M]/Ca) ratios that could only be attributed to internal biological processes. This paper discusses the nature and sources of internal trace element variability in C. amurensis shells related to the shell organic fraction and shell calcification rates. The average organic content of whole C. amurensis shells is 19%. After treating whole powdered shells with an oxidative cleaning procedure to remove organic matter, shells contained on average 33% less total Mg and 78% less total Mn. Within our analytical uncertainty, Sr and Ba contents were unchanged by the removal of organic matter. These results show that aragonitic C. amurensis shells have a large component of non-lattice-bound Mg and Mn that probably contribute to the dissimilarity of [M]/Ca profiles among five same-sized shells. Non-lattice-bound trace elements could complicate the development and application of geochemical proxy relationships in bivalve shells. Because B, Ba and Sr occur exclusively in shell aragonite, they are good candidates for external proxy relationships. [M]/Ca ratios were significantly different in prismatic and nacreous aragonite and in two valves of the same shell that had different crystal growth rates. Some part of these differences can be attributed to non-lattice-bound trace elements associated with the organic fraction. The differences in [M]/Ca ratios were also consistent with the calcification rate-dependent ion transport model developed by Carr?? et al. [Carr?? M., Bentaleb I., Bruguier O., Ordinola E., Barrett N. T. and Fontugne M. (2006) Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim. Cosmochim. Acta 70, 4906-4920] which predicts that [M]/Ca ratios increase as calcification rates increase and Ca2+ channel specificity decreases. This result, in combination with the possibility that there were ontogenetic variations in growth rates among individuals younger than 2 years, underscores the need to develop an independent age model for C. amurensis shells. If growth-rate effects on lattice-bound [M]/Ca ratios can be constrained, it may yet be possible to develop high-resolution geochemical proxies for external solution chemistry in low-salinity regions of SFB.
Neutrinoless double-β decay of 48Ca in the shell model: Closure versus nonclosure approximation
NASA Astrophysics Data System (ADS)
Sen'kov, R. A.; Horoi, M.
2013-12-01
Neutrinoless double-β decay (0νββ) is a unique process that could reveal physics beyond the Standard Model. Essential ingredients in the analysis of 0νββ rates are the associated nuclear matrix elements. Most of the approaches used to calculate these matrix elements rely on the closure approximation. Here we analyze the light neutrino-exchange matrix elements of 48Ca 0νββ decay and test the closure approximation in a shell-model approach. We calculate the 0νββ nuclear matrix elements for 48Ca using both the closure approximation and a nonclosure approach, and we estimate the uncertainties associated with the closure approximation. We demonstrate that the nonclosure approach has excellent convergence properties which allow us to avoid unmanageable computational cost. Combining the nonclosure and closure approaches we propose a new method of calculation for 0νββ decay rates which can be applied to the 0νββ decay rates of heavy nuclei, such as 76Ge or 82Se.
NASA Astrophysics Data System (ADS)
Sarkar, Jit
2018-06-01
Molecular dynamics (MD) simulation studies were carried out to generate a cylindrical single-crystal Al-Cu core-shell nanowire and its mechanical properties like yield strength and Young's modulus were evaluated in comparison to a solid aluminum nanowire and hollow copper nanowire which combines to constitute the core-shell structure respectively. The deformation behavior due to changes in the number of Wigner-Seitz defects and dislocations during the entire tensile deformation process was thoroughly studied for the Al-Cu core-shell nanowire. The single-crystal Al-Cu core-shell nanowire shows much higher yield strength and Young's modulus in comparison to the solid aluminum core and hollow copper shell nanowire due to tangling of dislocations caused by lattice mismatch between aluminum and copper. Thus, the Al-Cu core-shell nanowire can be reinforced in different bulk matrix to develop new type of light-weight nanocomposite materials with greatly enhanced material properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. L. Tiller; T. E. Marceau
2006-01-25
This report documents concentrations of radionuclides, trace metals, and semivolatile organic compounds measured in shell samples of the western pearl shell mussel collected along the Hanford Reach of the Columbia River.
Goswami, Anandarup; Rathi, Anuj K; Aparicio, Claudia; Tomanec, Ondrej; Petr, Martin; Pocklanova, Radka; Gawande, Manoj B; Varma, Rajender S; Zboril, Radek
2017-01-25
Core-shell nanocatalysts are a distinctive class of nanomaterials with varied potential applications in view of their unique structure, composition-dependent physicochemical properties, and promising synergism among the individual components. A one-pot microwave (MW)-assisted approach is described to prepare the reduced graphene oxide (rGO)-supported Pd-Pt core-shell nanoparticles, (Pd@Pt/rGO); spherical core-shell nanomaterials (∼95 nm) with Pd core (∼80 nm) and 15 nm Pt shell were nicely distributed on the rGO matrix in view of the choice of reductant and reaction conditions. The well-characterized composite nanomaterials, endowed with synergism among its components and rGO support, served as catalysts in aromatic dehalogenation reactions and for the reduction of olefins with high yield (>98%), excellent selectivity (>98%) and recyclability (up to 5 times); both Pt/rGO and Pd/rGO and even their physical mixtures showed considerably lower conversions (20 and 57%) in dehalogenation of 3-bromoaniline. Similarly, in the reduction of styrene to ethylbenzene, Pd@Pt core-shell nanoparticles (without rGO support) possess considerably lower conversion (60%) compared to Pd@Pt/rGO. The mechanism of dehalogenation reactions with Pd@Pt/rGO catalyst is discussed with the explicit premise that rGO matrix facilitates the adsorption of the reducing agent, thus enhancing its local concentration and expediting the hydrazine decomposition rate. The versatility of the catalyst has been validated via diverse substrate scope for both reduction and dehalogenation reactions.
Sabbatini, A; Bédouet, L; Marie, A; Bartolini, A; Landemarre, L; Weber, M X; Gusti Ngurah Kade Mahardika, I; Berland, S; Zito, F; Vénec-Peyré, M-T
2014-07-01
Most foraminifera that produce a shell are efficient biomineralizers. We analyzed the calcitic shell of the large tropical benthic foraminifer Schlumbergerella floresiana. We found a suite of macromolecules containing many charged and polar amino acids and glycine that are also abundant in biomineralization proteins of other phyla. As neither genomic nor transcriptomic data are available for foraminiferal biomineralization yet, de novo-generated sequences, obtained from organic matrices submitted to ms blast database search, led to the characterization of 156 peptides. Very few homologous proteins were matched in the proteomic database, implying that the peptides are derived from unknown proteins present in the foraminiferal organic matrices. The amino acid distribution of these peptides was queried against the uniprot database and the mollusk uniprot database for comparison. The mollusks compose a well-studied phylum that yield a large variety of biomineralization proteins. These results showed that proteins extracted from S. floresiana shells contained sequences enriched with glycine, alanine, and proline, making a set of residues that provided a signature unique to foraminifera. Three of the de novo peptides exhibited sequence similarities to peptides found in proteins such as pre-collagen-P and a group of P-type ATPases including a calcium-transporting ATPase. Surprisingly, the peptide that was most similar to the collagen-like protein was a glycine-rich peptide reported from the test and spine proteome of sea urchin. The molecules, identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry analyses, included acid-soluble N-glycoproteins with its sugar moieties represented by high-mannose-type glycans and carbohydrates. Describing the nature of the proteins, and associated molecules in the skeletal structure of living foraminifera, can elucidate the biomineralization mechanisms of these major carbonate producers in marine ecosystems. As fossil foraminifera provide important paleoenvironmental and paleoclimatic information, a better understanding of biomineralization in these organisms will have far-reaching impacts. © 2014 John Wiley & Sons Ltd.
Pteropods counter mechanical damage and dissolution through extensive shell repair.
Peck, Victoria L; Oakes, Rosie L; Harper, Elizabeth M; Manno, Clara; Tarling, Geraint A
2018-01-17
The dissolution of the delicate shells of sea butterflies, or pteropods, has epitomised discussions regarding ecosystem vulnerability to ocean acidification over the last decade. However, a recent demonstration that the organic coating of the shell, the periostracum, is effective in inhibiting dissolution suggests that pteropod shells may not be as susceptible to ocean acidification as previously thought. Here we use micro-CT technology to show how, despite losing the entire thickness of the original shell in localised areas, specimens of polar species Limacina helicina maintain shell integrity by thickening the inner shell wall. One specimen collected within Fram Strait with a history of mechanical and dissolution damage generated four times the thickness of the original shell in repair material. The ability of pteropods to repair and maintain their shells, despite progressive loss, demonstrates a further resilience of these organisms to ocean acidification but at a likely metabolic cost.
Spontaneously amplified homochiral organic-inorganic nano-helix complexes via self-proliferation.
Zhai, Halei; Quan, Yan; Li, Li; Liu, Xiang-Yang; Xu, Xurong; Tang, Ruikang
2013-04-07
Most spiral coiled biomaterials in nature, such as gastropod shells, are homochiral, and the favoured chiral feature can be precisely inherited. This inspired us that selected material structures, including chirality, could be specifically replicated into the self-similar populations; however, a physicochemical understanding of the material-based heritage is unknown. We study the homochirality by using calcium phosphate mineralization in the presence of racemic amphiphilic molecules and biological protein. The organic-inorganic hybrid materials with spiral coiling characteristics are produced at the nanoscale. The resulted helixes are chiral with the left- and right-handed characteristics, which are agglomerated hierarchically to from clusters and networks. It is interesting that each cluster or network is homochiral so that the enantiomorphs can be separated readily. Actually, each homochiral architecture is evolved from an original chiral helix, demonstrating the heritage of the matrix chirality during the material proliferation under a racemic condition. By using the Ginzburg-Landaue expression we find that the chiral recognition in the organic-inorganic hybrid formation may be determined by a spontaneous chiral separation and immobilization of asymmetric amphiphilic molecules on the mineral surface, which transferred the structural information from the mother matrix to the descendants by an energetic control. This study shows how biomolecules guide the selective amplification of chiral materials via spontaneous self-replication. Such a strategy can be applied generally in the design and production of artificial materials with self-similar structure characteristics.
NASA Astrophysics Data System (ADS)
Freitas, Pedro; Richardson, Christopher; Chenery, Simon; Monteiro, Carlos; Butler, Paul; Reynolds, David; Scourse, James; Gaspar, Miguel
2017-04-01
Bivalve shells have a great potential as high-resolution geochemical proxy archives of marine environmental conditions. In addition, sclerochronology of long-lived bivalve species (e.g. Arctica islandica) provides a timeline of absolutely dated shell material for geochemical analysis that can extend into the past beyond the lifetime of single individuals through the use of replicated crossmatched centennial to millennial chronologies. However, the interpretation of such records remains extremely challenging and complex, with multiple environmental and biological processes affecting element incorporation in the shell (e.g. crystal fabrics, organic matrix, biomineralization mechanisms and physiological processes). As a result, the effective use of bivalve shell elemental/Ca ratios as palaeoenvironmental proxies has been limited, often to species-specific applications or applications restricted to particular environmental settings. The dog-cockle, Glycymeris glycymeris, is a relatively long-lived bivalve (up to 200 years) that occurs in coarse-grained subtidal sediments of coastal shelf seas of Europe and North West Africa. Glycymeris glycymeris shells provide a valuable, albeit not fully explored, archive to reconstruct past environmental variability in an area lacking sclerochronological studies due to the rarity of long-lived bivalves and lack of coral reefs. In this study, we evaluate the potential of Sr/Ca and Mg/Ca ratios in G. glycymeris shells as geochemical proxies of upwelling conditions in the Iberian Upwelling System, the northern section of the Canary Current Eastern Boundary Upwelling System. Sr/Ca and Mg/Ca generally co-varied significantly and a clear ontogenetic, non-environmental related change in Sr/Ca and Ba/Ca variability was observed. High Sr/Ca and Mg/Ca ratios in older shells (> 10 years old) were found to be associated with the occurrence of growth lines deposited during the winter reduction in shell growth. Nevertheless, Sr/Ca and Mg/Ca variation in older shells was synchronous with contemporary environmental conditions, i.e. upwelling intensity and salinity. The use of Sr or Mg in G. glycymeris shells as valid geochemical environmental proxies in the Iberian Upwelling System remains complex and requires further research to unravel environmental and physiological/biomineralization controls. This study was financed by the Portuguese Fundação para a Ciência e Tecnologia (FCT) GLYCY Project (contract PTDC/AAC-CLI/118003/2010) and a sabbatical grant to PSF (Ref: SFRH/BSAB/127786/2016), co-supported by POCH and the European Social Fund. Funding for consumable costs was provided by Bangor University.
Design of Aerosol Coating Reactors: Precursor Injection
Buesser, Beat; Pratsinis, Sotiris E.
2013-01-01
Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471
Ocean acidification alters the material properties of Mytilus edulis shells.
Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie
2015-02-06
Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Criteria for applicability of the impulse approach to collisions
NASA Astrophysics Data System (ADS)
Sharma, Ramesh D.; Bakshi, Pradip M.; Sindoni, Joseph M.
1990-06-01
Using an exact formulation of impulse approach (IA) to atom-diatom collisions, we assess its internal consistency. By comparing the cross sections in the forward and reverse directions for the vibrational-rotational inelastic processes, using the half-on-the-shell (post and prior) models of the two-body t matrix, we show that in both cases the IA leads to a violation of the semidetailed balance (SDB) condition for small scattering angles. An off-shell model for the two-body t matrix, which preserves SDB, is shown to have other serious shortcomings. The cross sections are studied quantitatively as a function of the relative translational energy and the mass of the incident particle, and criteria discussed for the applicability of IA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, R.D.; Bakshi, P.M.; Sindoni, J.M.
Using an exact formulation of impulse approach (IA) to atom-diatom collisions, we assess its internal consistency. By comparing the cross sections in the forward and reverse directions for the vibrational-rotational inelastic processes, using the half-on-the-shell (post and prior) models of the two-body {ital t} matrix, we show that in both cases the IA leads to a violation of the semidetailed balance (SDB) condition for small scattering angles. An off-shell model for the two-body {ital t} matrix, which preserves SDB, is shown to have other serious shortcomings. The cross sections are studied quantitatively as a function of the relative translational energymore » and the mass of the incident particle, and criteria discussed for the applicability of IA.« less
NASA Astrophysics Data System (ADS)
Das, Avisek; Gorige, Venkataiah
2018-04-01
In this work CoFe2O4 (CFO)-BaTiO3 (BTO) composite and core-shell CFO-BTO have been prepared to investigate the effect of microstructure on the magnetic properties. Detailed microstructure analysis has been carried out using X-ray diffraction, field emission scanning electron microscope and transmission electron microscope. Although uniform distribution of CFO is found in BTO matrix for the composite sample, magnetization and coercivity values are more enhanced in core-shell CFO-BTO.
Comparison of Radiocarbon Ages of Sediments, Plants, and Shells From Coastal Lakes in North Florida
NASA Astrophysics Data System (ADS)
Wang, Y.; Das, O.; Liu, J.; Xu, X.; Roy, R.; Donoghue, J. F.; Means, G. H.
2017-12-01
Coastal lakes sediments are valuable archives of paleo-hurricanes and environmental changes during the late Quaternary provided that they can be accurately dated. Here, we report new radiocarbon (14C) dates derived from various organic and inorganic substrates, including bulk sediment organic matter, plants, shells, particulate organic matter (POM) and dissolved organic matter (DOM), from three coastal lakes in Florida, and compare these ages to evaluate the "reservoir effect" on 14C dating of both organic and inorganic carbon in these lakes. Bulk sediment organic matter yielded consistently older 14C ages than contemporaneous plants and shell fragments, indicating significant radiocarbon deficiencies in sedimentary organic matter in these coastal lakes, caused by influx of old organic carbon from terrestrial sources (such as soils and ancient peat deposits) in the watershed. Several reversals are observed in the 14C ages of bulk sediment organic matter in sediment cores from these lakes, indicating that input of aged organic matter from terrestrial sources into these lakes can vary considerably over time. DOM and POM samples collected at different times also yielded variable 14C signatures, further confirming the temporal variability in the contribution of old organic carbon from terrestrial sources to the lakes. The 14C age discrepancy between bulk sediment organic matter and co-occurring plant fragments or shells varies from less than one hundred years to nearly three thousand years in sediment cores examined in this study. The results show that 14C ages obtained from bulk sediment organic matter in these coastal lakes are unreliable. Analyses of both modern and fossil shells from one of the lakes suggest that the 14C reservoir effect on inorganic carbon in the lake is small and thus freshwater shells (if preserved in the sediment cores) may serve as a good substrate for 14C dating in the absence of plant fragments. However, unidentifiable shell fragments, especially those associated with sand pockets (or sand layers), in coastal lake sediment cores are not suitable for 14C dating as they are likely of marine origin and affected by significant marine 14C reservoir effect.
Valence and L-shell photoionization of Cl-like argon using R-matrix techniques
NASA Astrophysics Data System (ADS)
Tyndall, N. B.; Ramsbottom, C. A.; Ballance, C. P.; Hibbert, A.
2016-02-01
Photoionization cross-sections are obtained using the relativistic Dirac Atomic R-matrix Codes (DARC) for all valence and L-shell energy ranges between 27 and 270 eV. A total of 557 levels arising from the dominant configurations 3s23p4, 3s3p5, 3p6, 3s23p3[3d, 4s, 4p], 3p53d, 3s23p23d2, 3s3p43d, 3s3p33d2 and 2s22p53s23p5 have been included in the target wavefunction representation of the Ar III ion, including up to 4p in the orbital basis. We also performed a smaller Breit-Pauli (BP) calculation containing the lowest 124 levels. Direct comparisons are made with previous theoretical and experimental work for both valence shell and L-shell photoionization. Excellent agreement was found for transitions involving the 2Po initial state to all allowed final states for both calculations across a range of photon energies. A number of resonant states have been identified to help analyse and explain the nature of the spectra at photon energies between 250 and 270 eV.
Mayes, W M; Davis, J; Silva, V; Jarvis, A P
2011-10-15
Bioreactors utilising bacterially mediated sulphate reduction (BSR) have been widely tested for treating metal-rich waters, but sustained treatment of mobile metals (e.g. Zn) can be difficult to achieve in short residence time systems. Data are presented providing an assessment of alkalinity generating media (shells or limestone) and modes of metal removal in bioreactors receiving a synthetic acidic metal mine discharge (pH 2.7, Zn 15 mg/L, SO(4)(2-) 200mg/L, net acidity 103 mg/L as CaCO(3)) subject to methanol dosing. In addition to alkalinity generating media (50%, v.v.), the columns comprised an organic matrix of softwood chippings (30%), manure (10%) and anaerobic digested sludge (10%). The column tests showed sustained alkalinity generation, which was significantly better in shell treatments. The first column in each treatment was effective throughout the 422 days in removing >99% of the dissolved Pb and Cu, and effective for four months in removing 99% of the dissolved Zn (residence time: 12-14 h). Methanol was added to the feedstock after Zn breakthrough and prompted almost complete removal of dissolved Zn alongside improved alkalinity generation and sulphate attenuation. While there was geochemical evidence for BSR, sequential extraction of substrates suggests that the bulk (67-80%) of removed Zn was associated with Fe-Mn oxide fractions. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Landman, Neil H.; Slattery, Joshua S.; Harries, Peter J.
2016-12-01
The inarticulate brachiopod Discinisca is a rare faunal element in the Upper Cretaceous of the U.S. Western Interior. We report two occurrences of encrustation of Discinisca on a scaphitid ammonite (scaphite) and several inoceramids from the lower Maastrichtian Baculites baculus/Endocostea typica Biozones of the Pierre Shale at two localities. Six specimens of Discinisca are present on a single specimen of Hoploscaphites crassus from east-central Montana. They occur along the furrow at the mature apertural margin. Because the brachiopods are restricted to the margin and do not occur on the rest of the shell, it is likely that they encrusted the ammonite during its lifetime. If so, this implies that the soft body of the scaphite did not cover the outside surface of the aperture, leaving this area vulnerable to epizoan attachment. A total of 13 specimens of Discinisca are also present on four specimens of Cataceramus? barabini from east-central Wyoming. The brachiopods occur in crevices on the outside of the shells and may have encrusted the inoceramids after their death as the shells began to break down and delaminate, resulting from the decomposition of the organic matrix holding them together. Based on the faunal assemblages at both localities, the presence of Discinisca may indicate environments with either low oxygen levels and/or few predators or competitors.
Dynamic Ice-Water Interactions Form Europa's Chaos Terrains
NASA Astrophysics Data System (ADS)
Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.
2011-12-01
Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have informed us about how such dynamics occur on Europa. We will discuss the observations of iceberg and matrix properties that imply shallow liquid water bodies on Europa, argue for the importance of granular mechanics in the interpretation of Europa's geology and present constraints on the properties of its ice shell. [1] Schmidt, B. E., Blankenship, D. D., Patterson, W., Schenk, P: Active chaos formation over shallow subsurface water on Europa, in review, 2011.
Mineralogical Plasticity Acts as a Compensatory Mechanism to the Impacts of Ocean Acidification.
Leung, Jonathan Y S; Russell, Bayden D; Connell, Sean D
2017-03-07
Calcifying organisms are considered particularly susceptible to the future impacts of ocean acidification (OA), but recent evidence suggests that they may be able to maintain calcification and overall fitness. The underlying mechanism remains unclear but may be attributed to mineralogical plasticity, which modifies the energetic cost of calcification. To test the hypothesis that mineralogical plasticity enables the maintenance of shell growth and functionality under OA conditions, we assessed the biological performance of a gastropod (respiration rate, feeding rate, somatic growth, and shell growth of Austrocochlea constricta) and analyzed its shell mechanical and geochemical properties (shell hardness, elastic modulus, amorphous calcium carbonate, calcite to aragonite ratio, and magnesium to calcium ratio). Despite minor metabolic depression and no increase in feeding rate, shell growth was faster under OA conditions, probably due to increased precipitation of calcite and trade-offs against inner shell density. In addition, the resulting shell was functionally suitable for increasingly "corrosive" oceans, i.e., harder and less soluble shells. We conclude that mineralogical plasticity may act as a compensatory mechanism to maintain overall performance of calcifying organisms under OA conditions and could be a cornerstone of calcifying organisms to acclimate to and maintain their ecological functions in acidifying oceans.
Nanofiber Based Optical Sensors for Oxygen Determination
NASA Astrophysics Data System (ADS)
Xue, Ruipeng
Oxygen sensors based on luminescent quenching of nanofibers were developed for measurement of both gaseous and dissolved oxygen concentrations. Electrospinning was used to fabricate "core-shell" fiber configurations in which oxygen-sensitive transition metal complexes are embedded into a polymer 'core' while a synthetic biocompatible polymer provides a protective 'shell.' Various matrix polymers and luminescent probes were studied in terms of their sensitivity, linear calibration, reversibility, response time, stability and probe-matrix interactions. Due to the small size and high surface area of these nanofibers, all samples showed rapid response and a highly linear response to oxygen. The sensitivity and photostability of the sensors were controlled by the identity of both the probe molecule and the polymer matrix. Such nanofiber sensor forms are particularly suitable in biological applications due to the fact that they do not consume oxygen, are biocompatible and biomimetic and can be easily incorporated into cell culture. Applications of these fibers in cancer cell research, wound healing, breath analysis and waste water treatment were explored.
Reorientation-effect measurement of the <21+∥E2̂∥21+> matrix element in 10Be
NASA Astrophysics Data System (ADS)
Orce, J. N.; Drake, T. E.; Djongolov, M. K.; Navrátil, P.; Triambak, S.; Ball, G. C.; Al Falou, H.; Churchman, R.; Cross, D. S.; Finlay, P.; Forssén, C.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hayes, A. B.; Kshetri, R.; Lassen, J.; Leach, K. G.; Li, R.; Meissner, J.; Pearson, C. J.; Rand, E. T.; Sarazin, F.; Sjue, S. K. L.; Stoyer, M. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Teigelhoefer, A.; Williams, S. J.; Wong, J.; Wu, C. Y.
2012-10-01
The highly-efficient and segmented TIGRESS γ-ray spectrometer at TRIUMF has been used to perform a reorientation-effect Coulomb-excitation study of the 21+ state at 3.368 MeV in 10Be. This is the first Coulomb-excitation measurement that enables one to obtain information on diagonal matrix elements for such a high-lying first excited state from γ-ray data. With the availability of accurate lifetime data, a value of -0.110±0.087 eb is determined for the <21+∥E2̂∥21+> diagonal matrix element, which assuming the rotor model, leads to a negative spectroscopic quadrupole moment of QS(21+)=-0.083±0.066 eb. This result is in agreement with both no-core shell-model calculations performed in this work with the CD-Bonn 2000 two-nucleon potential and large shell-model spaces, and Green's function Monte Carlo predictions with two- plus three-nucleon potentials.
Simple on-shell renormalization framework for the Cabibbo-Kobayashi-Maskawa matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Sirlin, Alberto
2006-12-01
We present an explicit on-shell framework to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix at the one-loop level. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass (sm) and gauge-dependent wave-function renormalization contributions, and to adjust nondiagonal mass counterterm matrices to cancel all the divergent sm contributions, and also their finite parts subject to constraints imposed by the Hermiticity of the mass matrices. It is also shown that the proof of gauge independence and finiteness of the remaining one-loop corrections to W{yields}q{sub i}+q{sub j} reduces to that in the unmixed, single-generation case. Diagonalizationmore » of the complete mass matrices leads then to an explicit expression for the CKM counterterm matrix, which is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.« less
NASA Technical Reports Server (NTRS)
Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.
1996-01-01
Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.
Wang, Guanyao; Huang, Yanhui; Wang, Yuxin; Jiang, Pingkai; Huang, Xingyi
2017-08-09
Dielectric polymer nanocomposites have received keen interest due to their potential application in energy storage. Nevertheless, the large contrast in dielectric constant between the polymer and nanofillers usually results in a significant decrease of breakdown strength of the nanocomposites, which is unfavorable for enhancing energy storage capability. Herein, BaTiO 3 nanowires (NWs) encapsulated by TiO 2 shells of variable thickness were utilized to fabricate dielectric polymer nanocomposites. Compared with nanocomposites with bare BaTiO 3 NWs, significantly enhanced energy storage capability was achieved for nanocomposites with TiO 2 encapsulated BaTiO 3 NWs. For instance, an ultrahigh energy density of 9.53 J cm -3 at 440 MV m -1 could be obtained for nanocomposites comprising core-shell structured nanowires, much higher than that of nanocomposites with 5 wt% raw ones (5.60 J cm -3 at 360 MV m -1 ). The discharged energy density of the proposed nanocomposites with 5 wt% mTiO 2 @BaTiO 3 -1 NWs at 440 MV m -1 seems to rival or exceed those of some previously reported nanocomposites (mostly comprising core-shell structured nanofillers). More notably, this study revealed that the energy storage capability of the nanocomposites can be tailored by the TiO 2 shell thickness. Finite element simulations were employed to analyze the electric field distribution in the nanocomposites. The enhanced energy storage capability should be mainly attributed to the smoother gradient of dielectric constant between the nanofillers and polymer matrix, which alleviated the electric field concentration and leakage current in the polymer matrix. The methods and results herein offer a feasible approach to construct high-energy-density polymer nanocomposites with core-shell structured nanowires.
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.
2012-04-01
Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. While models have suggested that partial melt within a thick shell or melt-through of a thin shell may form chaos, neither model has been able to definitively explain all observations of chaos terrain. However, we present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. Our analysis of the geomorphology of Conamara Chaos and Thera Macula, was used to infer and test a four-stage lens-collapse chaos formation model: 1) Thermal plumes of warm, pure ice ascend through the shell melting the impure brittle ice above, producing a lake of briny water and surface down draw due to volume reduction. 2) Surface deflection and driving force from the plume below hydraulically seals the water in place. 3) Extension of the brittle ice lid generates fractures from below, allowing brines to enter and fluidize the ice matrix. 4) As the lens and now brash matrix refreeze, thermal expansion creates domes and raises the chaos feature above the background terrain. This new "lense-collapse" model indicates that chaos features form in the presence of a great deal of liquid water, and that large liquid water bodies exist within 3km of Europa's surface comparable in volume to the North American Great Lakes. The detection of shallow subsurface "lakes" implies that the ice shell is recycling rapidly and that Europa may be currently active. In this presentation, we will explore environments on Europa and their analogs on Earth, from collapsing Antarctic ice shelves to to subglacial volcanos in Iceland. I will present these new analyses, and describe how this new perspective informs the debate about Europa's habitability and future exploration.
NASA Astrophysics Data System (ADS)
Mao, Zepeng; Zhang, Jun
2018-06-01
The phase morphology of two elastomers (i.e., chlorinated polyethylene (CPE) and polybutadiene rubber (BR)) were devised to be a core-shell structure in acrylonitrile-styrene-acrylate (ASA) resin matrix, via the interfacial tension differences of polymer pairs. Selective extraction test and scanning electron microscopy (SEM) were utilized to verify this special phase morphology. The results demonstrated that the core-shell structure, BR core and CPE shell, significantly contributed to improve the low temperature toughness of ASA/CPE/BR ternary blends, which may be because the nonpolar BR core was segregated from polar ASA by the CPE shell. The CPE shell served dual functions: Not only did it play compatibilizing effect in the interface between BR and ASA matrix, but it also toughened the blends at 25 and 0 °C. The blends of ASA/CPE/BR (100/27/3, w/w/w) and ASA/CPE/BR (100/22/8, w/w/w) showed the peak impact strengths at about 28 and 9 kJ/m2 at 0 and -30 °C, respectively, which were higher than both that of ASA/CPE/BR (100/30/0, w/w/w) and ASA/CPE/BR (100/0/30, w/w/w). Moreover, the impact strength of ternary blends at room temperature kept at 40 kJ/m2 when BR content was lower than 10 phr. Other characterizations including contact angle measurement, dynamic mechanical thermal analysis (DMTA), morphology of impact-fractured surfaces, tensile properties, flexural properties, and Fourier transform infrared spectroscopy (FTIR) were measured as well.
Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J
2004-09-01
The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Grote, Fabian; Wen, Liaoyong; Lei, Yong
2014-06-01
Large-scale arrays of core/shell nanostructures are highly desirable to enhance the performance of supercapacitors. Here we demonstrate an innovative template-based fabrication technique with high structural controllability, which is capable of synthesizing well-ordered three-dimensional arrays of SnO2/MnO2 core/shell nanotubes for electrochemical energy storage in supercapacitor applications. The SnO2 core is fabricated by atomic layer deposition and provides a highly electrical conductive matrix. Subsequently a thin MnO2 shell is coated by electrochemical deposition onto the SnO2 core, which guarantees a short ion diffusion length within the shell. The core/shell structure shows an excellent electrochemical performance with a high specific capacitance of 910 F g-1 at 1 A g-1 and a good rate capability of remaining 217 F g-1 at 50 A g-1. These results shall pave the way to realize aqueous based asymmetric supercapacitors with high specific power and high specific energy.
Wagdare, Nagesh A; Marcelis, Antonius T M; Boom, Remko M; van Rijn, Cees J M
2011-11-01
Microcapsules were prepared by microsieve membrane cross flow emulsification of Eudragit FS 30D/dichloromethane/edible oil mixtures in water, and subsequent phase separation induced by extraction of the dichloromethane through an aqueous phase. For long-chain triglycerides and jojoba oil, core-shell particles were obtained with the oil as core, surrounded by a shell of Eudragit. Medium chain triglyceride (MCT oil) was encapsulated as relatively small droplets in the Eudragit matrix. The morphology of the formed capsules was investigated with optical and SEM microscopy. Extraction of the oil from the core-shell capsules with hexane resulted in hollow Eudragit capsules with porous shells. It was shown that the differences are related to the compatibility of the oils with the shell-forming Eudragit. An oil with poor compatibility yields microcapsules with a dense Eudragit shell on a single oil droplet as the core; oils having better compatibility yield porous Eudragit spheres with several oil droplets trapped inside. Copyright © 2011 Elsevier B.V. All rights reserved.
Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate
NASA Astrophysics Data System (ADS)
Ren, Yiru; Jiang, Hongyong; Ji, Wenyuan; Zhang, Hanyu; Xiang, Jinwu; Yuan, Fuh-Gwo
2018-02-01
To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.
Core excitations across the neutron shell gap in 207Tl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, E.; Podolyák, Zs.; Grawe, H.
2015-05-05
The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less
Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J
2003-11-01
The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.
Free Vibration of Fiber Composite Thin Shells in a Hot Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1995-01-01
Results are presented of parametric studies to assess the effects of various parameters on the free vibration behavior (natural frequencies) of (plus or minus theta)2, angle-ply fiber composite thin shells in a hot environment. These results were obtained by using a three-dimensional finite element structural analysis computer code. The fiber composite shell is assumed to be cylindrical and made from T-300 graphite fibers embedded in an intermediate-modulus high-strength matrix (IMHS). The residual stresses induced into the laminated structure during curing are taken into account. The following parameters are investigated: the length and the thickness of the shell, the fiber orientations, the fiber volume fraction, the temperature profile through the thickness of the laminate and the different ply thicknesses. Results obtained indicate that: the fiber orientations and the length of the laminated shell had significant effect on the natural frequencies. The fiber volume fraction, the laminate thickness and the temperature profile through the shell thickness had a weak effect on the natural frequencies. Finally, the laminates with different ply thicknesses had insignificant influence on the behavior of the vibrated laminated shell.
High performance SMC matrix for structural applications
NASA Astrophysics Data System (ADS)
Salard, T.; Lortie, F.; Gérard, J. F.; Peyre, C.
2016-07-01
Mechanical properties of a common SMC (Sheet Molding Compound) matrix constituted of a vinylester resin and a Low-Profile Additive (LPA) were compared to those of vinylester modified with core-shell rubber (CSR) particles. Valuable properties are brought by CSR, especially high impact strength, high fracture toughness with little loss in stiffness, in spite of the presence of CSR agglomerates in blends.
McCarty, Perry L.; Bachmann, Andre
1992-01-01
A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.
Li, Jing; Wang, Ruoqi; Su, Zhen; Zhang, Dandan; Li, Heping; Yan, Youwei
2018-10-01
Nowadays, it is extremely urgent to search for efficient and effective catalysts for water purification due to the severe worldwide water-contamination crises. Here, 3D Fe@VO 2 core-shell mesh, a highly efficient catalyst toward removal of organic dyes with excellent recycling ability in the dark is designed and developed for the first time. This novel core-shell structure is actually 304 stainless steel mesh coated by VO 2 , fabricated by an electrophoretic deposition method. In such a core-shell structure, Fe as the core allows much easier separation from the water, endowing the catalyst with a flexible property for easy recycling, while VO 2 as the shell is highly efficient in degradation of organic dyes with the addition of H 2 O 2 . More intriguingly, the 3D Fe@VO 2 core-shell mesh exhibits favorable performance across a wide pH range. The 3D Fe@VO 2 core-shell mesh can decompose organic dyes both in a light-free condition and under visible irradiation. The possible catalytic oxidation mechanism of Fe@VO 2 /H 2 O 2 system is also proposed in this work. Considering its facile fabrication, remarkable catalytic efficiency across a wide pH range, and easy recycling characteristic, the 3D Fe@VO 2 core-shell mesh is a newly developed high-performance catalyst for addressing the universal water crises. Copyright © 2018 Elsevier B.V. All rights reserved.
Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharchenko, V.F., E-mail: vkharchenko@bitp.kiev.ua
2015-04-15
The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determinemore » the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities.« less
NASA Astrophysics Data System (ADS)
Movva, Mounika; Kommineni, Ravindra
2017-04-01
Cellulose is an important nanoentity that have been used for the preparation of composites. The present work focuses on the extraction of cellulose from pistachio shell and preparing a partially degradable nanocomposite with extracted cellulose. Physical and microstructural characteristics of nanocellulose extracted from pistachio shell powder (PSP) through various stages of chemical treatment are identified from scanning electron microscopy (SEM), Fourier transform infra-red spectroscopy (FTIR), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA). Later, characterized nanocellulose is reinforced in a polyester matrix to fabricate nanocellulose-based composites according to the ASTM standard. The resulting nanocellulose composite performance is evaluated in the mechanical perspective through tensile and flexural loading. SEM, FTIR, and XRD showed that the process for extraction is efficient in obtaining 95% crystalline cellulose. Cellulose also showed good thermal stability with a peak thermal degradation temperature of 361 °C. Such cellulose when reinforced in a matrix material showed a noteworthy rise in tensile and flexural strengths of 43 MPa and 127 MPa, at a definite weight percent of 5%.
Lee, Yi-Hsuan; Wu, Hsi-Chin; Yeh, Chia-Wei; Kuan, Chen-Hsiang; Liao, Han-Tsung; Hsu, Horng-Chaung; Tsai, Jui-Che; Sun, Jui-Sheng; Wang, Tzu-Wei
2017-11-01
The development of osteochondral tissue engineering is an important issue for the treatment of traumatic injury or aging associated joint disease. However, the different compositions and mechanical properties of cartilage and subchondral bone show the complexity of this tissue interface, making it challenging for the design and fabrication of osteochondral graft substitute. In this study, a bilayer scaffold is developed to promote the regeneration of osteochondral tissue within a single integrated construct. It has the capacity to serve as a gene delivery platform to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. For the subchondral bone layer, the bone matrix with organic (type I collagen, Col) and inorganic (hydroxyapatite, Hap) composite scaffold has been developed through mineralization of hydroxyapatite nanocrystals oriented growth on collagen fibrils. We also prepare multi-shell nanoparticles in different layers with a calcium phosphate core and DNA/calcium phosphate shells conjugated with polyethyleneimine to act as non-viral vectors for delivery of plasmid DNA encoding BMP2 and TGF-β3, respectively. Microbial transglutaminase is used as a cross-linking agent to crosslink the bilayer scaffold. The ability of this scaffold to act as a gene-activated matrix is demonstrated with successful transfection efficiency. The results show that the sustained release of plasmids from gene-activated matrix can promote prolonged transgene expression and stimulate hMSCs differentiation into osteogenic and chondrogenic lineages by spatial and temporal control within the bilayer composite scaffold. This improved delivery method may enhance the functionalized composite graft to accelerate healing process for osteochondral tissue regeneration. In this study, a gene-activated matrix (GAM) to promote the growth of both cartilage and subchondral bone within a single integrated construct is developed. It has the capacity to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. The results show that the sustained release of plasmids including TGF-beta and BMP-2 from GAM could promote prolonged transgene expression and stimulate hMSCs differentiation into the osteogenic and chondrogenic lineages by spatial control manner. This improved delivery method should enhance the functionalized composite graft to accelerate healing process in vitro and in vivo for osteochondral tissue regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaefer, R.; Trutschler, K.; Rumohr, H.
1985-09-01
The three Astarte species were studied in June 1983 at two sites in Kiel Bay, “Süderfahrt” and “Schleimünde”, at 20 m depth. Shell length to live wet weight correlations are given for all three species; for A. elliptica also shell-free dry weight, shell dry weight, ash-free dry weight of the soft body and ash-free dry weight of the shell are recorded as functions of the shell length. In the logarithmic length/weight regression analysis the coefficients of slope for A. elliptica and A. borealis are 3. For A. montagui, that coefficient is significantly greater than 3. Weight conversion factors, calculated for A. elliptica, revealed a mean weight composition of 31.5 % water in the mantle cavity and tissue water, 64.5 % shell ash, 2.1 % organic content of shell, 1.7 % organic content of the soft body and 0.4 % ash of the soft body. An isometric growth of shell length and shell breadth is confirmed for A. borealis, while A. montagui exhibits positive allometric shell growth and changes its shape during life.
NASA Astrophysics Data System (ADS)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Das, D. K.
2018-01-01
Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.
NASA Astrophysics Data System (ADS)
Zhang, Yongzheng; Sun, Kai; Liang, Zhan; Wang, Yanli; Ling, Licheng
2018-01-01
N-doped yolk-shell hollow carbon sphere wrapped with reduced graphene oxide (rGO/N-YSHCS) is designed and fabricated as sulfur host for lithium-sulfur batteries. The shuttle effect of polysulfides can be suppressed effectively by the porous yolk-shell structure, graphene layer and N-doping. A good conductivity network is provided for electron transportation through the graphene layer coupled with the unique yolk-shell carbon matrix. Such unique structure offers the synthesized rGO/N-YSHCS/S electrode with a high reversible capacity (800 mAh g-1 at 0.2 C after 100 cycles) and good high-rate capability (636 mAh g-1 at 1 C and 540 mAh g-1 at 2 C).
Sperling, Laura E; Reis, Karina P; Pranke, Patricia; Wendorff, Joachim H
2016-08-01
Whereas highly porous scaffolds composed of electrospun nanofibers can mimick major features of the extracellular matrix in tissue engineering, they lack the ability to incorporate and release biocompounds (drugs, growth factors) safely in a controlled way. Here, electrospun core-shell fibers (core made from water and aqueous solutions of hydrophilic polymers and the shell from materials with well-defined release mechanisms) offer unique advantages in comparison with those that have helped make porous nanofibrillar scaffolds highly successful in tissue engineering. This review considers the preparation and biofunctionalization of such core-shell fibers as well as applications in various areas, including neural, vascular, cardiac, cartilage and bone tissue engineering, and touches on the topic of clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail.
Nienhuis, Sarah; Palmer, A Richard; Harley, Christopher D G
2010-08-22
As CO(2) levels increase in the atmosphere, so too do they in the sea. Although direct effects of moderately elevated CO(2) in sea water may be of little consequence, indirect effects may be profound. For example, lowered pH and calcium carbonate saturation states may influence both deposition and dissolution rates of mineralized skeletons in many marine organisms. The relative impact of elevated CO(2) on deposition and dissolution rates are not known for many large-bodied organisms. We therefore tested the effects of increased CO(2) levels--those forecast to occur in roughly 100 and 200 years--on both shell deposition rate and shell dissolution rate in a rocky intertidal snail, Nucella lamellosa. Shell weight gain per day in live snails decreased linearly with increasing CO(2) levels. However, this trend was paralleled by shell weight loss per day in empty shells, suggesting that these declines in shell weight gain observed in live snails were due to increased dissolution of existing shell material, rather than reduced production of new shell material. Ocean acidification may therefore have a greater effect on shell dissolution than on shell deposition, at least in temperate marine molluscs.
NASA Astrophysics Data System (ADS)
Crisan, A. D.; Angelakeris, M.; Simeonidis, K.; Tsiaoussis, I.; Crisan, O.
2010-11-01
In core-shell systems with non-magnetic core and magnetic shell, the electron transport and magnetic properties are expected to show enhanced behavior due to the particular morpho-structural features of the conductive and magnetic regions. This may lead to novel advanced GMR materials and spin valves. This is the case of core-shell Ag-Co colloidal nanoscale particles that organize into regular arrays. An insight on the structure and morphology of the newly synthesized Ag-Co nanoparticles deposited on different substrates will be presented. The influence of the substrate on different morphologies and organization dynamics is discussed. It is shown that the magnetic behavior of the Ag-Co nanoparticles is highly influenced by the corona-like morphology of Co shell, chemical environment of the magnetic atoms and by the fact that they exhibit strongly reduced coordination due to the surface states.
Powder metallurgy processing and deformation characteristics of bulk multimodal nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farbaniec, L., E-mail: lfarban1@jhu.edu; Dirras, G., E-mail: dirras@univ-paris13.fr; Krawczynska, A.
2014-08-15
Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim weremore » observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.« less
NASA Astrophysics Data System (ADS)
Devi, Jutika; Saikia, Rashmi; Datta, Pranayee
2016-10-01
The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.
NASA Astrophysics Data System (ADS)
Kukolich, S.; Kendall, C.; Dettman, D. L.
2017-12-01
The geochemical record stored in growth increments of freshwater mussel shells reveals annual to sub-annual changes in environmental conditions during the lifetime of the organism. The carbon, nitrogen, and oxygen stable isotope composition of aragonite shells responds to changes in water chemistry, temperature, streamflow, turbidity, growth rate, size, age, and reproduction. The goals of this study are to determine how stable isotopes can be used to reconstruct the conditions in which the mussels lived and to illuminate any vital effects that might obscure the isotopic record of those conditions. Previous research has suggested that annual δ13C values decrease in older freshwater mussel shells due to lower growth rates and greater incorporation of dietary carbon into the shell with increasing age. However, a high-resolution, seasonal investigation of δ13C, δ15N, and δ18O as they relate to organism age has not yet been attempted in freshwater mussels. A total of 28 Unionid mussels of three different species were collected live in 2011 in the Tennessee River near Paducah, Kentucky, USA. In this study, we analyzed the shell nacre and external organic layers for stable carbon, nitrogen, and oxygen isotope ratios, focusing on growth bands formed between 2006 and 2011. We present a time series of shell δ13C, δ18O, and δ15N values with monthly resolution. We also compare the shell-derived geochemical time series to a time series of the δ13C and δ15N of particulate organic matter, δ13C of DIC, δ18OWater, and water temperature in which the mussels lived. Results show that environmental factors such as water temperature and primary productivity dominate shell chemistry while animal age has little or no effect.
Estimating local, organic, and other price premiums of shell eggs in Hawaii.
Loke, Matthew K; Xu, Xun; Leung, PingSun
2016-05-01
Hedonic modeling and retail scanner data were utilized to investigate the influence of local, organic, nutrition benefits, and other attributes of shell eggs on retail price premium in Hawaii. Within a revealed preference framework, the analysis of local and organic attributes, simultaneously, under a single unified setting is important, as such work is highly deficient in the published literature. This paper finds high to moderate price premiums in four key attributes of shell eggs - organic (64%), local (40%), nutrition benefits claimed (33%), and brown shell (18.4%). Large and extra-large sized eggs also experience price premiums over medium sized eggs. With each larger packing size, the estimated coefficients were negative, indicating a price discount, relative to the baseline packing size. However, there is no evidence to support the overwhelming influence of "local" over "organic", as hypothesized in other research work. Overall, the findings in this paper suggest industry producers and retailers should highlight and market effusively the primary attributes of their shell eggs, including "local", to remain competitive in the marketplace. Effective communication channels are crucial to delivering the product information, capturing the attention of consumers, and securing retail sales. © 2016 Poultry Science Association Inc.
Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances
NASA Astrophysics Data System (ADS)
Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik
2018-04-01
Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.
Multi-Scale Analyses of Three Dimensional Woven Composite 3D Shell With a Cut Out Circle
NASA Astrophysics Data System (ADS)
Nguyen, Duc Hai; Wang, Hu
2018-06-01
A composite material are made by combining two or more constituent materials to obtain the desired material properties of each product type. The matrix material which can be polymer and fiber is used as reinforcing material. Currently, the polymer matrix is widely used in many different fields with differently designed structures such as automotive structures and aviation, aerospace, marine, etc. because of their excellent mechanical properties; in addition, they possess the high level of hardness and durability together with a significant reduction in weight compared to traditional materials. However, during design process of structure, there will be many interruptions created for the purpose of assembling the structures together or for many other design purposes. Therefore, when this structure is subject to load-bearing, its failure occurs at these interruptions due to stress concentration. This paper proposes multi-scale modeling and optimization strategies in evaluation of the effectiveness of fiber orientation in an E-glass/Epoxy woven composite 3D shell with circular holes at the center investigated by FEA results. A multi-scale model approach was developed to predict the mechanical behavior of woven composite 3D shell with circular holes at the center with different designs of material and structural parameters. Based on the analysis result of laminae, we have found that the 3D shell with fiber direction of 450 shows the best stress and strain bearing capacity. Thus combining several layers of 450 fiber direction in a multi-layer composite 3D shell reduces the stresses concentrated on the cuts of the structures.
Boldt, Klaus; Jander, Sebastian; Hoppe, Kathrin; Weller, Horst
2011-10-25
We present the characterization of the organic ligand shell of CdSe/Cd(x)Zn(1-x)S/ZnS nanoparticles by means of fluorescence quenching experiments. Both electron scavengers and acceptors for resonance energy transfer were employed as probes. Different quenching behavior for short and long chain thiol ligands in water was found. It could be shown that poly(ethylene oxide) (PEO)-capping of the particles comprises a densely packed inner shell and a loosely packed outer shell in which ions and small molecules diffuse unhindered. A quantitative uptake of quencher molecules into the PEO shell was observed, through which the particle volume including the ligand sphere could be determined.
Calabi-Yau structures on categories of matrix factorizations
NASA Astrophysics Data System (ADS)
Shklyarov, Dmytro
2017-09-01
Using tools of complex geometry, we construct explicit proper Calabi-Yau structures, that is, non-degenerate cyclic cocycles on differential graded categories of matrix factorizations of regular functions with isolated critical points. The formulas involve the Kapustin-Li trace and its higher corrections. From the physics perspective, our result yields explicit 'off-shell' models for categories of topological D-branes in B-twisted Landau-Ginzburg models.
Thermal Expansion Measurements of Polymer Matrix Composites and Syntactics
1992-04-01
828 (Shell Chemical) epoxy combined with 50.0 PBW EPON® V-40 polyamide curing agent (Shell Chemical) and Owens Corning (E-780) polyester combined 1...with 24 oz. woven roving with an Owens Corning 463 finish. " A 3 x 1, S-2 glass with 27 oz. woven roving with an Owens Corning 933 finish, nominally...wet polyester resin ( Owens Corning E-780) and subsequently processing the composites using the standard vacuum bag cure cycle for this polyester
Progress technology in microencapsulation methods for cell therapy.
Rabanel, Jean-Michel; Banquy, Xavier; Zouaoui, Hamza; Mokhtar, Mohamed; Hildgen, Patrice
2009-01-01
Cell encapsulation in microcapsules allows the in situ delivery of secreted proteins to treat different pathological conditions. Spherical microcapsules offer optimal surface-to-volume ratio for protein and nutrient diffusion, and thus, cell viability. This technology permits cell survival along with protein secretion activity upon appropriate host stimuli without the deleterious effects of immunosuppressant drugs. Microcapsules can be classified in 3 categories: matrix-core/shell microcapsules, liquid-core/shell microcapsules, and cells-core/shell microcapsules (or conformal coating). Many preparation techniques using natural or synthetic polymers as well as inorganic compounds have been reported. Matrix-core/shell microcapsules in which cells are hydrogel-embedded, exemplified by alginates capsule, is by far the most studied method. Numerous refinement of the technique have been proposed over the years such as better material characterization and purification, improvements in microbead generation methods, and new microbeads coating techniques. Other approaches, based on liquid-core capsules showed improved protein production and increased cell survival. But aside those more traditional techniques, new techniques are emerging in response to shortcomings of existing methods. More recently, direct cell aggregate coating have been proposed to minimize membrane thickness and implants size. Microcapsule performances are largely dictated by the physicochemical properties of the materials and the preparation techniques employed. Despite numerous promising pre-clinical results, at the present time each methods proposed need further improvements before reaching the clinical phase. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
Nouet, Julius; Chevallard, Corinne; Farre, Bastien; Nehrke, Gernot; Campmas, Emilie; Stoetzel, Emmanuelle; El Hajraoui, Mohamed Abdeljalil; Nespoulet, Roland
2015-01-01
The exploitation of mollusks by the first anatomically modern humans is a central question for archaeologists. This paper focuses on level 8 (dated around ∼ 100 ka BP) of El Harhoura 2 Cave, located along the coastline in the Rabat-Témara region (Morocco). The large quantity of Patella sp. shells found in this level highlights questions regarding their origin and preservation. This study presents an estimation of the preservation status of these shells. We focus here on the diagenetic evolution of both the microstructural patterns and organic components of crossed-foliated shell layers, in order to assess the viability of further investigations based on shell layer minor elements, isotopic or biochemical compositions. The results show that the shells seem to be well conserved, with microstructural patterns preserved down to sub-micrometric scales, and that some organic components are still present in situ. But faint taphonomic degradations affecting both mineral and organic components are nonetheless evidenced, such as the disappearance of organic envelopes surrounding crossed-foliated lamellae, combined with a partial recrystallization of the lamellae. Our results provide a solid case-study of the early stages of the diagenetic evolution of crossed-foliated shell layers. Moreover, they highlight the fact that extreme caution must be taken before using fossil shells for palaeoenvironmental or geochronological reconstructions. Without thorough investigation, the alteration patterns illustrated here would easily have gone unnoticed. However, these degradations are liable to bias any proxy based on the elemental, isotopic or biochemical composition of the shells. This study also provides significant data concerning human subsistence behavior: the presence of notches and the good preservation state of limpet shells (no dissolution/recrystallization, no bioerosion and no abrasion/fragmentation aspects) would attest that limpets were gathered alive with tools by Middle Palaeolithic (Aterian) populations in North Africa for consumption.
Nouet, Julius; Chevallard, Corinne; Farre, Bastien; Nehrke, Gernot; Campmas, Emilie; Stoetzel, Emmanuelle; El Hajraoui, Mohamed Abdeljalil; Nespoulet, Roland
2015-01-01
The exploitation of mollusks by the first anatomically modern humans is a central question for archaeologists. This paper focuses on level 8 (dated around ∼ 100 ka BP) of El Harhoura 2 Cave, located along the coastline in the Rabat-Témara region (Morocco). The large quantity of Patella sp. shells found in this level highlights questions regarding their origin and preservation. This study presents an estimation of the preservation status of these shells. We focus here on the diagenetic evolution of both the microstructural patterns and organic components of crossed-foliated shell layers, in order to assess the viability of further investigations based on shell layer minor elements, isotopic or biochemical compositions. The results show that the shells seem to be well conserved, with microstructural patterns preserved down to sub-micrometric scales, and that some organic components are still present in situ. But faint taphonomic degradations affecting both mineral and organic components are nonetheless evidenced, such as the disappearance of organic envelopes surrounding crossed-foliated lamellae, combined with a partial recrystallization of the lamellae. Our results provide a solid case-study of the early stages of the diagenetic evolution of crossed-foliated shell layers. Moreover, they highlight the fact that extreme caution must be taken before using fossil shells for palaeoenvironmental or geochronological reconstructions. Without thorough investigation, the alteration patterns illustrated here would easily have gone unnoticed. However, these degradations are liable to bias any proxy based on the elemental, isotopic or biochemical composition of the shells. This study also provides significant data concerning human subsistence behavior: the presence of notches and the good preservation state of limpet shells (no dissolution/recrystallization, no bioerosion and no abrasion/fragmentation aspects) would attest that limpets were gathered alive with tools by Middle Palaeolithic (Aterian) populations in North Africa for consumption. PMID:26376294
Novel formulations of CKM matrix renormalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Sirlin, Alberto
2009-12-17
We review two recently proposed on-shell schemes for the renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix in the Standard Model. One first constructs gauge-independent mass counterterm matrices for the up- and down-type quarks complying with the hermiticity of the complete mass matrices. Diagonalization of the latter then leads to explicit expressions for the CKM counterterm matrix, which are gauge independent, preserve unitarity, and lead to renormalized amplitudes that are non-singular in the limit in which any two quarks become mass degenerate. One of the schemes also automatically satisfies flavor democracy.
NASA Astrophysics Data System (ADS)
Freitas, Pedro; Richardson, Christopher; Chenery, Simon; Butler, Paul; Reynolds, David; Gaspar, Miguel; Scourse, James
2015-04-01
The great potential of bivalve shells as a high-resolution geochemical proxy archive of environmental conditions at the time of growth has been known for several decades. The elemental composition of bivalve shells has been studied with the purpose of reconstructing environmental conditions: e.g. seawater temperature (Sr and Mg), primary productivity (Li, Mn, Mo and Ba), redox conditions (Mn and Mo), terrigenous inputs (Li) and pollution (Cu, Zn, Cd and Pb). However, the interpretation of such records remains extremely challenging and complex, with processes affecting element incorporation in the shell (e.g. crystal fabrics, organic matrix, shell formation mechanisms and physiological processes) and the influence of more than one environmental parameter affecting elemental composition of bivalve shells. Nevertheless, bivalve shells remain an underused source of information on environmental conditions, with the potential to record high-resolution (sub-weekly to annually), multi-centennial time series of geochemical proxy data. The relatively long-lived bivalve (>100 years) Glycymeris glycymeris occurs in coastal shelf seas of Europe and North West Africa and is a valid annually resolved sclerochronological archive for palaeonvironmental reconstructions. The temporal framework provided by absolute annually dated shell material makes Glycymeris glycymeris a valuable, albeit unexplored, resource for investigating sub-annually resolved geochemical proxies. We present a first evaluation on the potential of Ba, P and U, the latter two elements rarely studied in bivalves, in Glycymeris glycymeris shells to record variations in the environmental conditions, respectively primary productivity, dissolved inorganic phosphorus and carbonate ion concentration/pH. High-resolution (31 to 77 samples per year) profiles of elemental/Ca ratios (E/Ca) over four years of growth (2001 to 2004) were obtained by LA-ICP-MS on two shells (13 and 16 years old) live-collected in 2010 at 30 m water depth on the Iberia upwelling system. In both shells, clear E/Ca annual cycles with significant higher-frequency variability (weekly to sub-monthly) were observed over the four years of growth analysed. However, E/Ca ratios and the amplitude of the annual E/Ca cycles were lower in the older shell and showed decreasing trends with age (ontogenetic effects). E/Ca ratios were age-detrended using statistical techniques derived from dendrochronology, resulting in similar and coherent profiles in both shells. It seems unlikely that enough variability in E/Ca ratios will be recorded in the shell after 15 to 20 years of age to allow the retrieval of an environmental signal by age-detrending E/Ca ratios. Detrended P/Ca, Ba/Ca and U/Ca in Glycymeris glycymeris shells showed coherent variations with coeval modelled and instrumental oceanographic series from the Iberia upwelling system that suggest a robust potential as an archive of environmental conditions in the first 15 to 20 years of growth. Nevertheless a robust calibration is required to distinguish between the influences of multiple environmental parameters. This study was financed and conducted in the frame of the Portuguese FCT GLYCY Project (contract PTDC/AAC-CLI/118003/2010).
Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell
Wang, Xin-xing; Bao, Lin-fei; Fan, Mei-hua; Li, Xiao-min; Wu, Chang-wen; Xia, Shu-wei
2015-01-01
Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment. PMID:26218932
HIV-1 maturation inhibitor bevirimat stabilizes the immature Gag lattice.
Keller, Paul W; Adamson, Catherine S; Heymann, J Bernard; Freed, Eric O; Steven, Alasdair C
2011-02-01
Maturation of nascent virions, a key step in retroviral replication, involves cleavage of the Gag polyprotein by the viral protease into its matrix (MA), capsid (CA), and nucleocapsid (NC) components and their subsequent reorganization. Bevirimat (BVM) defines a new class of antiviral drugs termed maturation inhibitors. BVM acts by blocking the final cleavage event in Gag processing, the separation of CA from its C-terminal spacer peptide 1 (SP1). Prior evidence suggests that BVM binds to Gag assembled in immature virions, preventing the protease from accessing the CA-SP1 cleavage site. To investigate this hypothesis, we used cryo-electron tomography to examine the structures of (noninfectious) HIV-1 viral particles isolated from BVM-treated cells. We find that these particles contain an incomplete shell of density underlying the viral envelope, with a hexagonal honeycomb structure similar to the Gag lattice of immature HIV but lacking the innermost, NC-related, layer. We conclude that the shell represents a remnant of the immature Gag lattice that has been processed, except at the CA-SP1 sites, but has remained largely intact. We also compared BVM-treated particles with virions formed by the mutant CA5, in which cleavage between CA and SP1 is also blocked. Here, we find a thinner CA-related shell with no visible evidence of honeycomb organization, indicative of an altered conformation and further suggesting that binding of BVM stabilizes the immature lattice. In both cases, the observed failure to assemble mature capsids correlates with the loss of infectivity.
Hierarchical architecture of the inner layers of selected extant rhynchonelliform brachiopods.
Gaspard, Danièle; Nouet, Julius
2016-11-01
In spite of several attempts for a best knowledge of the phylum, brachiopods remain, compared with molluscs, among those least analysed in terms of biomineralization. The lack of economic impact for extant species is probably liable for that situation. Much attention has been on the microstructure of calcite biomaterials (rhynchonelliforms and craniiforms). Here, we emphasize the sub-micrometric structure of selected examples of rhynchonelliform shells using Atomic Force Microscopy (AFM) to complement Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analyses. The hierarchical organization of the shell layers (secondary and/or tertiary elements) is highlighted for species non-yet observed from this point of view, and is compared to a few already mentioned in the literature. Previous analysis revealed that granules are composed of a complex aggregation of sub-units in intimate relation with an intracrystalline matrix. Their shape, size and probably early orientation depend on the species as well as age and living environments of the specimens studied. The control of the inorganic part of the composite fibrous elements is constrained by the deposition of nearly arched shape or polygonal protein membranes at the inner boundary of the primary layer, prior to the deposition of the first granules, membranes becoming proteinaceous sheathes progressively enshrining fibres. The diverse orientations of the granules in fibrous neighbours thus further increase arguments in favour of the tendency to improve the shell strength. Copyright © 2016 Elsevier Inc. All rights reserved.
Polymer ceramic composite that follows the rules of bone growth
NASA Astrophysics Data System (ADS)
Dry, Carolyn M.; Warner, Carrie
1998-07-01
Research at the University of Illinois School of Architecture Material's Lab is being done on a biomimetic building material with the unique properties of bone. This polymer/ceramic composite will mimic bone by controlling the (1) the structure and form of the material, (2) chemical makeup and sequencing of fabrication, (3) ability to adapt to environmental changes during fabrication, and (4) ability to later adapt and repair itself. Bones and shells obtain their great toughness and strength as a result of careful control of these four factors. The organic fibers are made first and the matrix grown around them as opposed to conventional ceramics in which any fibers are added to the matrix. Constituents are also placed in the material which allow it to later adapt to outside changes. The rules under which bone material naturally forms and adapts, albeit at a macroscale, are followed. Our efforts have concentrated on the chemical makeup, and basic sequencing of fabrication. Our research sought to match the intimate connection between material phases of bone by developing the chemical makeup.
0ħω MEC effect on M1 properties of middle pf-shell nuclei
NASA Astrophysics Data System (ADS)
Nakada, H.; Sebe, T.
1994-09-01
M1 properties of middle pf-shell nuclei are studied within the framework of a large-scale shell-model calculation, by including two-body operators originating from the MEC effect within the 0ħω space. This MEC effect tends to enhance the M1 matrix elements slightly. However, the 0ħω MEC effect does not change the previous results so much, which have shown notable quenching in the magnetic moments of 55Co and 57Ni due to the 0ħω CP effect, while the 0ħω MEC effect should be kept track of in discussing the M1 properties with ⪅ 10% accuracy.
Confidence Testing of Shell 405 and S-405 Catalysts in a Monopropellant Hydrazine Thruster
NASA Technical Reports Server (NTRS)
McRight, Patrick; Popp, Chris; Pierce, Charles; Turpin, Alicia; Urbanchock, Walter; Wilson, Mike
2005-01-01
As part of the transfer of catalyst manufacturing technology from Shell Chemical Company (Shell 405 catalyst manufactured in Houston, Texas) to Aerojet (S-405 manufactured in Redmond, Washington), Aerojet demonstrated the equivalence of S-405 and Shell 405 at beginning of life. Some US aerospace users expressed a desire to conduct a preliminary confidence test to assess end-of-life characteristics for S-405. NASA Marshall Space Flight Center (MSFC) and Aerojet entered a contractual agreement in 2004 to conduct a confidence test using a pair of 0.2-lbf MR-103G monopropellant hydrazine thrusters, comparing S-405 and Shell 405 side by side. This paper summarizes the formulation of this test program, explains the test matrix, describes the progress of the test, and analyzes the test results. This paper also includes a discussion of the limitations of this test and the ramifications of the test results for assessing the need for future qualification testing in particular hydrazine thruster applications.
Delaine, Maxence; Bernard, Nadine; Gilbert, Daniel; Recourt, Philippe; Armynot du Châtelet, Eric
2017-06-01
Testate amoebae are free-living shelled protists that build a wide range of shells with various sizes, shapes, and compositions. Recent studies showed that xenosomic testate amoebae shells could be indicators of atmospheric particulate matter (PM) deposition. However, no study has yet been conducted to assess the intra-specific mineral, organic, and biologic grain diversity of a single xenosomic species in a natural undisturbed environment. This study aims at providing new information about grain selection to develop the potential use of xenosomic testate amoebae shells as bioindicators of the multiple-origin mineral/organic diversity of their proximal environment. To fulfil these objectives, we analysed the shell content of 38 Bullinularia indica individuals, a single xenosomic testate amoeba species living in Sphagnum capillifolium, by scanning electron microscope (SEM) coupled with X-ray spectroscopy. The shells exhibited high diversities of mineral, organic, and biomineral grains, which confirms their capability to recycle xenosomes. Mineral grain diversity and size of B. indica matched those of the atmospheric natural mineral PM deposited in the peatbog. Calculation of grain size sorting revealed a discrete selection of grains agglutinated by B. indica. These results are a first step towards understanding the mechanisms of particle selection by xenosomic testate amoebae in natural conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Eagle, R.; Howes, E.; Lischka, S.; Rudolph, R.; Büdenbender, J.; Bijma, J.; Gattuso, J. P.; Riebesell, U.
2014-12-01
Understanding and quantifying the response of marine organisms to present and future ocean acidification remains a major challenge encompassing observations on single species in culture and scaling up to the ecosystem and global scale. Understanding calcification changes in culture experiments designed to simulate present and future ocean conditions under potential CO2 emissions scenarios, and especially detecting the likely more subtle changes that may occur prior to the onset of more extreme ocean acidification, depends on the tools available. Here we explore the utility of high-resolution computed tomography (nano-CT) to provide quantitative biometric data on field collected and cultured marine pteropods, using the General Electric Company Phoenix Nanotom S Instrument. The technique is capable of quantitating the whole shell of the organism, allowing shell dimensions to be determined as well as parameters such as average shell thickness, the variation in thickness across the whole shell and in localized areas, total shell volume and surface area and when combined with weight measurements shell density can be calculated. The potential power of the technique is the ability to derive these parameters even on very small organisms less than 1 millimeter in size. Tuning the X-ray strength of the instrument allows organic material to be excluded from the analysis. Through replicate analysis of standards, we assess the reproducibility of data, and by comparison with dimension measurements derived from light microscopy we assess the accuracy of dimension determinations. We present results from historical and modern pteropod populations from the Mediterranean and cultured polar pteropods, resolving statistically significant differences in shell biometrics in both cases that may represent responses to ocean acidification.
A new approach to the method of source-sink potentials for molecular conduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickup, Barry T., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Fowler, Patrick W., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Borg, Martha
2015-11-21
We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through conjugated molecular structures in a form that avoids singularities. This enables derivation of new results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency matrix of the molecular graph. In particular, we define the transmission of electrons through individual molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found. A SSP device has specific insulation or conduction at an eigenvalue ofmore » the molecular graph (a root of the characteristic polynomial) according to the multiplicities of that value in the spectra of four defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing theorem. Inertness of shells for families such as chains and rings is predicted by selection rules based on node counting and degeneracy.« less
Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging
Yeh, Fang-Cheng; Verstynen, Timothy D.
2016-01-01
Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539
Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie
2015-11-01
Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.
Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System
Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan
2016-01-01
Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827
Veeraraghavan, Srikant; Mazziotti, David A
2014-03-28
We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.
Transition sum rules in the shell model
NASA Astrophysics Data System (ADS)
Lu, Yi; Johnson, Calvin W.
2018-03-01
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.
2011-01-01
Background Biomineralization is a process encompassing all mineral containing tissues produced within an organism. One of the most dynamic examples of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this architecture. However general understanding of how this process is achieved remains ambiguous. The mantle is a conserved organ involved in shell formation throughout molluscs. Specifically the mantle is thought to be responsible for secreting the protein component of the shell. This study employs molecular approaches to determine the spatial expression of genes within the mantle tissue to further the elucidation of the shell biomineralization. Results A microarray platform was custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from mantle tissue. This microarray was used to analyze the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and analyzed for differential gene expression with PmaxArray 1.0. Over 2000 ESTs were determined to be differentially expressed among the tissue sections, identifying five major expression regions. In situ hybridization validated and further localized the expression for a subset of these ESTs. Comparative sequence similarity analysis of these ESTs revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell related genes. Conclusions This investigation has mapped the spatial distribution for over 2000 ESTs present on PmaxArray 1.0 with reference to specific locations of the mantle. Expression profile clusters have indicated at least five unique functioning zones in the mantle. Three of these zones are likely involved in shell related activities including formation of nacre, periostracum and calcitic prismatic microstructure. A number of novel and known transcripts have been identified from these clusters. The development of PmaxArray 1.0, and the spatial map of its ESTs expression in the mantle has begun characterizing the molecular mechanisms linking the organics and inorganics of the molluscan shell. PMID:21936921
Deheyn, Dimitri D; Wilson, Nerida G
2011-07-22
Some living organisms produce visible light (bioluminescence) for intra- or interspecific visual communication. Here, we describe a remarkable bioluminescent adaptation in the marine snail Hinea brasiliana. This species produces a luminous display in response to mechanical stimulation caused by encounters with other motile organisms. The light is produced from discrete areas on the snail's body beneath the snail's shell, and must thus overcome this structural barrier to be viewed by an external receiver. The diffusion and transmission efficiency of the shell is greater than a commercial diffuser reference material. Most strikingly, the shell, although opaque and pigmented, selectively diffuses the blue-green wavelength of the species bioluminescence. This diffusion generates a luminous display that is enlarged relative to the original light source. This unusual shell thus allows spatially amplified outward transmission of light communication signals from the snail, while allowing the animal to remain safely inside its hard protective shell.
Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando
2018-01-26
The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mallette, Evan
2017-01-01
Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. PMID:27927988
Mallette, Evan; Kimber, Matthew S
2017-01-27
Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons
NASA Astrophysics Data System (ADS)
Collins, M. J.; Westbroek, P.; Muyzer, G.; de Leeuw, J. W.
1992-04-01
Melanoidins, condensation products formed from protein and polysaccharide precursors, were once thought to be an important geological sink for organic carbon. The active microbial recycling of the precursors, coupled with an inability to demonstrate the formation of covalent linkages between amino acids and sugars in melanoidins, has shaped a powerful argument against this view. Yet, melanoidins may still be an abundant source of macromolecules in fossil biominerals such as shells, in which the proteins and polysaccharides are well protected from microbial degradation. We have modelled diagenetic changes in a biomineral by heating at 90°C mixtures of protein, polysaccharides and finely ground calcite crystals in sealed glass vials. Changes to the protein bovine serum albumin (BSA, fraction V) were monitored by means of gel electrophoresis and immunology. In the presence of water, BSA was rapidly hydrolyzed and remained immunologically reactive for less than 9 h. Under anhydrous conditions the protein was immunologically reactive for the whole period of the experiment (1281 h), unless mono- or disaccharide sugars were also present. In the presence of these reactive sugars, browning, a discrete increase in molecular weight of the protein and a concomitant loss of antigenicity confirmed that the sugars were attaching covalently to the protein, forming melanoidins. The de novo formation of products cross-reactive with antibodies raised against organic matter isolated from the shells of a fossil mollusc ( Mercenaria mercenaria) indicated that at least in part the model simulated natural diagenesis. We roughly estimate that, at the global scale, 2.4 × 10 6 tonnes of calcified tissue matrix glycoproteins is processed annually through the melanoidin pathway. This amount would be equivalent to 7 per mil of the total flux of organic carbon into marine sediments.
Leung, Jonathan Y S; Connell, Sean D; Nagelkerken, Ivan; Russell, Bayden D
2017-11-07
Many marine organisms produce calcareous shells as the key structure for defense, but the functionality of shells may be compromised by ocean acidification and warming. Nevertheless, calcifying organisms may adaptively modify their shell properties in response to these impacts. Here, we examined how reduced pH and elevated temperature affect shell mechanical and geochemical properties of common grazing gastropods from intertidal to subtidal zones. Given the greater environmental fluctuations in the intertidal zone, we hypothesized that intertidal gastropods would exhibit more plastic responses in shell properties than subtidal gastropods. Overall, three out of five subtidal gastropods produced softer shells at elevated temperature, while intertidal gastropods maintained their shell hardness at both elevated pCO 2 (i.e., reduced pH) and temperature. Regardless of pH and temperature, degree of crystallization was maintained (except one subtidal gastropod) and carbonate polymorph remained unchanged in all tested species. One intertidal gastropod produced less soluble shells (e.g., higher calcite/aragonite) in response to reduced pH. In contrast, subtidal gastropods produced only aragonite which has higher solubility than calcite. Overall, subtidal gastropods are expected to be more susceptible than intertidal gastropods to shell dissolution and physical damage under future seawater conditions. The increased vulnerability to shell dissolution and predation could have serious repercussions for their survival and ecological contributions in the future subtidal environment.
Yue, Yiying; Han, Jingquan; Han, Guangping; French, Alfred D; Qi, Yadong; Wu, Qinglin
2016-08-20
Core-shell structured hydrogels consisting of a flexible interpenetrating polymer network (IPN) core and a rigid semi-IPN shell were prepared through chemical crosslinking of polyvinyl alcohol (PVA) and sodium alginate (SA) with Ca(2+) and glutaraldehyde. Short cellulose nanofibers (CNFs) extracted from energycane bagasse were incorporated in the hydrogel. The shell was micro-porous and the core was macro-porous. The hydrogels could be used in multiple adsorption-desorption cycles for dyes, and the maximum methyl blue adsorption capacity had a 10% increase after incorporating CNFs. The homogeneous distribution of CNFs in PVA-SA matrix generated additional hydrogen bonds among the polymer molecular chains, resulting in enhanced density, viscoelasticity, and mechanical strength for the hydrogel. Specifically, the compressive strength of the hydrogel reached 79.5kPa, 3.2 times higher than that of the neat hydrogel. Copyright © 2016 Elsevier Ltd. All rights reserved.
K-shell photoionization of O4 + and O5 + ions: experiment and theory
NASA Astrophysics Data System (ADS)
McLaughlin, B. M.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Douix, S.; Shorman, M. M. Al; Ghazaly, M. O. A. El; Sakho, I.; Gharaibeh, M. F.
2017-03-01
Absolute cross-sections for the K-shell photoionization of Be-like (O4 +) and Li-like (O5 +) atomic oxygen ions were measured for the first time (in their respective K-shell regions) by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/ΔE ≈ 3200 (≈170 meV, full width at half-maximum) was achieved with photon energy from 550 to 670 eV. Rich resonance structure observed in the experimental spectra is analysed using the R-matrix with pseudo-states (RMPS) method. Results are also compared with the screening constant by unit nuclear charge (SCUNC) calculations. We characterize and identify the strong 1s → 2p resonances for both ions and the weaker 1s → np resonances (n ≥ 3) observed in the K-shell spectra of O4 +.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, M. P.; Wang, L. M.; Gao, F., E-mail: gaofeium@umich.edu
Molecular dynamic simulations of Y{sub 2}O{sub 3} in bcc Fe and transmission electron microscopy (TEM) observations were used to understand the structure of Y{sub 2}O{sub 3} nano-clusters in an oxide dispersion strengthened steel matrix. The study showed that Y{sub 2}O{sub 3} nano-clusters below 2 nm were completely disordered. Y{sub 2}O{sub 3} nano-clusters above 2 nm, however, form a core-shell structure, with a shell thickness of 0.5–0.7 nm that is independent of nano-cluster size. Y{sub 2}O{sub 3} nano-clusters were surrounded by off-lattice Fe atoms, further increasing the stability of these nano-clusters. TEM was used to corroborate our simulation results and showed a crossover frommore » a disordered nano-cluster to a core-shell structure.« less
NASTRAN implementation of an isoparametric doubly-curved quadrilateral shell element
NASA Technical Reports Server (NTRS)
Potvin, A. B.; Leick, R. D.
1978-01-01
A quadrilateral shell element, CQUAD4, was added to level 15.5 and subsequently to level 16.0 of NASTRAN. The element exhibited doubly curved surfaces and used biquadratic interpolation functions. Reduced integration techniques were used to improve the performance of the element in thin shell problems. The creation of several new bulk data items is discussed, along with a special module, GPNORM, to process SHLNORM bulk data cards. In addition to the theoretical basis for the element stiffness matrix, consistent mass and load matrices are presented. Several potential sources of degenerate behavior of the element were investigated. Guidelines for proper use of the element were suggested. Performance of the element on several widely published classical examples was demonstrated. The results showed a significant improvement over presently available NASTRAN shell elements for even the coarsest meshes. Potential applications to two classes of practical problems are discussed.
Development and applications of a flat triangular element for thin laminated shells
NASA Astrophysics Data System (ADS)
Mohan, P.
Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the updated Lagrangian formulation of the flat shell element and have been validated using standard examples in the literature involving deformation-dependent pressure loads. The element can be used to obtain the nonlinear response of the tent structure under wind and snow loads. (Abstract shortened by UMI.)
The dynamics and control of large flexible space structures-IV
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Kumar, V. K.; Krishna, R.; Reddy, A. S. S. R.
1981-01-01
The effects of solar radiation pressure as the main environmental disturbance torque were incorporated into the model of the rigid orbiting shallow shell and computer simulation results indicate that within the linear range the rigid modal amplitudes are excited in proportion to the area to mass ratio. The effect of higher order terms in the gravity-gradient torque expressions previously neglected was evaluated and found to be negligible for the size structures under consideration. A graph theory approach was employed for calculating the eigenvalues of a large flexible system by reducing the system (stiffness) matrix to lower ordered submatrices. The related reachability matrix and term rank concepts are used to verify controllability and can be more effective than the alternate numerical rank tests. Control laws were developed for the shape and orientation control of the orbiting flexible shallow shell and numerical results presented.
Inverse Photonic Glasses by Packing Bidisperse Hollow Microspheres with Uniform Cores.
Kim, Seung-Hyun; Magkiriadou, Sofia; Rhee, Do Kyung; Lee, Doo Sung; Yoo, Pil J; Manoharan, Vinothan N; Yi, Gi-Ra
2017-07-19
A major fabrication challenge is producing disordered photonic materials with an angle-independent structural red color. Theoretical work has shown that such a color can be produced by fabricating inverse photonic glasses with monodisperse, nontouching voids in a silica matrix. Here, we demonstrate a route toward such materials and show that they have an angle-independent red color. We first synthesize monodisperse hollow silica particles with precisely controlled shell thickness and then make glassy colloidal structures by mixing two types of hollow particles with the same core size and different shell thicknesses. We then infiltrate the interstices with index-matched polymers, producing disordered porous materials with uniform, nontouching air voids. This procedure allows us to control the light-scattering form factor and structure factor of these porous materials independently, which is not possible to do in photonic glasses consisting of packed solid particles. The structure factor can be controlled by the shell thickness, which sets the distance between pores, whereas the pore size determines the peak wave vector of the form factor, which can be set below the visible range to keep the main structural color pure. By using a binary mixture of 246 and 268 nm hollow silica particles with 180 nm cores in an index-matched polymer matrix, we achieve angle-independent red color that can be tuned by controlling the shell thickness. Importantly, the width of the reflection peak can be kept constant, even for larger interparticle distances.
NASA Astrophysics Data System (ADS)
Wang, Yonghong; Zhang, Xinru; Chung, Kyungho; Liu, Chengcen; Choi, Seung-Bok; Choi, Hyoung Jin
2016-11-01
To improve mechanical and magnetorheological properties of magnetorheological elastomers (MREs), a facile method was used to fabricate high-performance MREs which consisted of the core-shell complex microparticles with an organic-inorganic network structure dispersed in an ethylene propylene diene rubber. In this work, the proposed magnetic complex microparticles were in situ formed during MREs fabrication as a result of strong interaction between matrix and CIPs using carbon black as a connecting point. The morphology of both isotropic (i-MREs) and anisotropic MREs (a-MREs) was observed by scanning electron microscope (SEM). The effects of carbonyl iron particle (CIP) volume content on mechanical properties and hysteresis loss of MREs were investigated. The effects of CIP volume content on the shear storage modulus, MR effect and loss tangent were studied using a modified dynamic mechanical analyzer under applied magnetic field strengths. The results showed that the orientation effect became more pronounced with increasing CIPs in the a-MREs, whereas CIPs distributed uniformly in the i-MREs. The tensile strength, tear strength and elongation at break decreased with increasing CIP content up to 40 vol.%, while the hardness increased. It is worth noting that the tensile strength of i-MREs and a-MREs containing 40 vol.% CIPs still had high mechanical properties as a result of good compatibility between complex microparticles and rubber matrix. The MR performance of shear storage modulus and damping properties of MREs increased remarkably with CIP content due to strong dipole-dipole interaction of complex microparticles. Besides, the hysteresis loss increased with increasing CIP content as a result of magnetic field induced interfacial sliding between complex microparticles.
A triangular thin shell finite element: Nonlinear analysis. [structural analysis
NASA Technical Reports Server (NTRS)
Thomas, G. R.; Gallagher, R. H.
1975-01-01
Aspects of the formulation of a triangular thin shell finite element which pertain to geometrically nonlinear (small strain, finite displacement) behavior are described. The procedure for solution of the resulting nonlinear algebraic equations combines a one-step incremental (tangent stiffness) approach with one iteration in the Newton-Raphson mode. A method is presented which permits a rational estimation of step size in this procedure. Limit points are calculated by means of a superposition scheme coupled to the incremental side of the solution procedure while bifurcation points are calculated through a process of interpolation of the determinants of the tangent-stiffness matrix. Numerical results are obtained for a flat plate and two curved shell problems and are compared with alternative solutions.
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2014-01-01
Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Subhash; Pal, Kaushik, E-mail: pl_kshk@yaho
Interface between ceramic particulate and matrix is known to control the response of the materials and functionality of the composite. Among numerous physical properties, grain structure of the materials has also played a significant role in defining the behaviour of metal matrix composites. Usually, silicon carbide (SiC) particles show poor interfacial wettability in aluminium melt. Herein, we were successfully synthesized magnesium oxide (MgO) and nanocrystalline magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel coated silicon carbide (SiC) core-shell micro-composites through sol-gel technique to improve the wettability of dispersoids. Core-shell structures of submicron size were thoroughly investigated by various characterization techniques. Further, aluminiummore » matrix composites incorporated with pristine SiC, MgO grafted SiC and MgAl{sub 2}O{sub 4} grafted SiC particles were fabricated by stir casting technique, respectively. Additionally, as-cast composites were processed via friction stir processing (FSP) technique to observe the influence of grain refinement on mechanical and damping properties. Electron back scattered diffraction (EBSD), Field emission scanning electron microscopy (FE-SEM) and X-ray energy dispersion spectroscopy (EDX) analysis were conducted for investigating grain size refinement, adequate dispersion, stability and de-agglomeration of encapsulated SiC particles in aluminium matrix. The mechanical as well as thermal cyclic (from − 100 to 400 °C) damping performance of the as-cast and friction stir processed composites were studied, respectively. Finally, the enhanced properties were attributable to reduced agglomeration, stabilization and proper dispersion of the tailored SiC particles Al matrix. - Highlights: •Synthesizing a novel coating layer of MgO and MgAl{sub 2}O{sub 4} spinel onto SiC particles •Significant improvement in UTS and hardness by reinforcing tailored SiC in Al •Significant grain refinements were obtained through FSP •SiC/MgAl{sub 2}O{sub 4}/Al exhibits ~ 61% higher storage modulus as compare to pure Al after FSP.« less
NASA Astrophysics Data System (ADS)
Sabbatini, Anna; Bédouet, Laurent; Marie, Arul; Bartolini, Annachiara; Landemarre, Ludovic; Weber, Michele; Ngurah Kade Mahardika, Gusti; Berland, Sophie; Zito, Francesca; Vénec-Peyré, Marie-Thérèse
2016-04-01
Most foraminifera that produce a shell are efficient biomineralizers. They contribute to the global carbon cycle, and thus influence ocean-climate regulation. Calcification in foraminifera is likely biologically controlled and is potentially similar to shell formation in metazoan taxa (e.g. mollusks, corals, sea urchins). However, foraminiferal biomineralization processes and the molecules involved are still poorly understood. We analyzed the calcitic shell of the large tropical benthic foraminifer Schlumbergerella floresiana. We found a suite of macromolecules containing many charged and polar amino acids and glycine that are also abundant in biomineralization proteins of other phyla. As neither genomic nor transcriptomic data are available for foraminiferal biomineralization yet, de novo-generated sequences, obtained from organic matrices submitted to MS BLAST database search, led to the characterization of 156 peptides. Very few homologous proteins were matched in the proteomic database, implying that the peptides are derived from unknown proteins present in the foraminiferal organic matrices. The amino acid distribution of these peptides was queried against the UNIPROT database and the mollusk UNIPROT database for comparison. The mollusks compose a well-studied phylum that yield a large variety of biomineralization proteins. These results showed that proteins extracted from S. floresiana shells contained sequences enriched with glycine, alanine, and proline, making a set of residues that provided a signature unique to foraminifera. Three of the de novo peptides exhibited sequence similarities to peptides found in proteins such as pre-collagen-P and a group of P-type ATPases including a calcium-transporting ATPase. Surprisingly, the peptide that was most similar to the collagen-like protein was a glycine-rich peptide reported from the test and spine proteome of sea urchin. The molecules, identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry analyses, included acid-soluble N-glycoproteins with its sugar moieties represented by high-mannose-type glycans and carbohydrates. Describing the nature of the proteins, and associated molecules in the skeletal structure of living foraminifera, can elucidate the biomineralization mechanisms of these major carbonate producers in marine ecosystems. Foraminifera constitute an important tool used for paleo-environmental reconstructions because of their nearly continuous fossil record and abundance. Many studies focus on their biomineralization process using a geochemical perspective to record environmental and climate changes from shell isotopic and trace element compositions. Our results are a first step toward understanding the functioning mechanism behind biomineralization and the molecules involved. Coupling geochemical and biological perspectives will enhance interpretation of the proxies used for climatic reconstructions and improve future modeling efforts.
Cerqueira, Maristela B R; Caldas, Sergiane S; Primel, Ednei G
2014-04-04
Recent studies have shown a decrease in the concentration of pesticides, pharmaceuticals and personal care products (PCPs) in water after treatment. A possible explanation for this phenomenon is that these compounds may adhere to the sludge; however, investigation of these compounds in drinking water treatment sludge has been scarce. The sludge generated by drinking water treatment plants during flocculation and decantation steps should get some special attention not only because it has been classified as non-inert waste but also because it is a very complex matrix, consisting essentially of inorganic (sand, argil and silt) and organic (humic substances) compounds. In the first step of this study, three QuEChERS methods were used, and then compared, for the extraction of pesticides (atrazine, simazine, clomazone and tebuconazole), pharmaceuticals (amitriptyline, caffeine, diclofenac and ibuprofen) and PCPs (methylparaben, propylparaben, triclocarban and bisphenol A) from drinking water treatment sludge. Afterwards, the study of different sorbents in the dispersive solid phase extraction (d-SPE) step was evaluated. Finally, a new QuEChERS method employing chitin, obtained from shrimp shell waste, was performed in the d-SPE step. After having been optimized, the method showed limits of quantification (LOQ) between 1 and 50 μg kg(-1) and the analytical curves showed r values higher than 0.98, when liquid chromatography tandem mass spectrometry was employed. Recoveries ranged between 50 and 120% with RSD≤15%. The matrix effect was evaluated and compensated with matrix-matched calibration. The method was applied to drinking water treatment sludge samples and methylparaben and tebuconazole were found in concentration
Structured copolymers and their use as absorbents, gels and carriers of metal ions
Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.
1996-01-01
Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.
Structured copolymers and their use as absorbents, gels and carriers of metal ions
Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.
1996-10-01
Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.
Li, Feng; Li, Xue-Mei; Zhang, Shu-Sheng
2006-10-06
A simple and reliable one-pot approach using surface imprinting coating technique combined with polysaccharide incorporated sol-gel process was established to synthesize a new organic-inorganic hybrid matrix possessing macroporous surface and functional ligand. Using mesoporous silica gel being a support, immobilized metal affinity adsorbent with a macroporous shell/mesoporous core structure was obtained after metal ion loading. In the prepared matrix, covalently bonded coating and morphology manipulation on silica gel was achieved by using one-pot sol-gel process starting from an inorganic precursor,
Short Course on Implementation of Zone Technology in the Repair and Overhaul Environment
1996-04-01
Pier Zone & Sys Pier/DD/Staging Zone Management Approach Varies Function to Project Project/Matrix Project/Matrix Project Project Fig. 9-3. Nature of...intractable problems that currently exist. Nature can give us many clues. If only we could harness the material that makes the dolphin’s outer shell so smooth...the natural effect of requiring peak manning and confined outfitting schedules. Through the application of system oriented logic to actual work accom
Ceramic-ceramic shell tile thermal protection system and method thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Smith, Marnell (Inventor); Goldstein, Howard E. (Inventor); Zimmerman, Norman B. (Inventor)
1986-01-01
A ceramic reusable, externally applied composite thermal protection system (TPS) is proposed. The system functions by utilizing a ceramic/ceramic upper shell structure which effectively separates its primary functions as a thermal insulator and as a load carrier to transmit loads to the cold structure. The composite tile system also prevents impact damage to the atmospheric entry vehicle thermal protection system. The composite tile comprises a structurally strong upper ceramic/ceramic shell manufactured from ceramic fibers and ceramic matrix meeting the thermal and structural requirements of a tile used on a re-entry aerospace vehicle. In addition, a lightweight high temperature ceramic lower temperature base tile is used. The upper shell and lower tile are attached by means effective to withstand the extreme temperatures (3000 to 3200F) and stress conditions. The composite tile may include one or more layers of variable density rigid or flexible thermal insulation. The assembly of the overall tile is facilitated by two or more locking mechanisms on opposing sides of the overall tile assembly. The assembly may occur subsequent to the installation of the lower shell tile on the spacecraft structural skin.
NASA Astrophysics Data System (ADS)
Perea, Daniel E.; Liu, Jia; Bartrand, Jonah; Dicken, Quinten; Thevuthasan, S. Theva; Browning, Nigel D.; Evans, James E.
2016-02-01
Here we report the atomic-scale analysis of biological interfaces within the ferritin protein using atom probe tomography that is facilitated by an advanced specimen preparation approach. Embedding ferritin in an organic polymer resin lacking nitrogen provided chemical contrast to visualise atomic distributions and distinguish the inorganic-organic interface of the ferrihydrite mineral core and protein shell, as well as the organic-organic interface between the ferritin protein shell and embedding resin. In addition, we definitively show the atomic-scale distribution of phosphorus as being at the surface of the ferrihydrite mineral with the distribution of sodium mapped within the protein shell environment with an enhanced distribution at the mineral/protein interface. The sample preparation method is robust and can be directly extended to further enhance the study of biological, organic and inorganic nanomaterials relevant to health, energy or the environment.
Perea, Daniel E.; Liu, Jia; Bartrand, Jonah; Dicken, Quinten; Thevuthasan, S. Theva; Browning, Nigel D.; Evans, James E.
2016-01-01
Here we report the atomic-scale analysis of biological interfaces within the ferritin protein using atom probe tomography that is facilitated by an advanced specimen preparation approach. Embedding ferritin in an organic polymer resin lacking nitrogen provided chemical contrast to visualise atomic distributions and distinguish the inorganic-organic interface of the ferrihydrite mineral core and protein shell, as well as the organic-organic interface between the ferritin protein shell and embedding resin. In addition, we definitively show the atomic-scale distribution of phosphorus as being at the surface of the ferrihydrite mineral with the distribution of sodium mapped within the protein shell environment with an enhanced distribution at the mineral/protein interface. The sample preparation method is robust and can be directly extended to further enhance the study of biological, organic and inorganic nanomaterials relevant to health, energy or the environment. PMID:26924804
High strength, wire-reinforced electroformed structures
NASA Technical Reports Server (NTRS)
Kazaroff, J. M.; Duscha, R. A.; Mccandless, L. C.
1974-01-01
Using half-round reinforcing wires, electrodeposited matrix metal readily fills spaces between wires in intimate contact with wires and without voids. Procedure combines advantages of electroforming with high-strength of commonly available wire to produce non-welded shell structures for high pressure uses.
Boundary Quantum Knizhnik-Zamolodchikov Equations and Bethe Vectors
NASA Astrophysics Data System (ADS)
Reshetikhin, Nicolai; Stokman, Jasper; Vlaar, Bart
2015-06-01
Solutions to boundary quantum Knizhnik-Zamolodchikov equations are constructed as bilateral sums involving "off-shell" Bethe vectors in case the reflection matrix is diagonal and only the 2-dimensional representation of is involved. We also consider their rational and classical degenerations.
Transition sum rules in the shell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yi; Johnson, Calvin W.
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less
Rossi, S; Mori, M; Vigani, B; Bonferoni, M C; Sandri, G; Riva, F; Caramella, C; Ferrari, F
2018-06-15
The aim of the present work was to develop a medication allowing for the combined delivery of platelet lysate (PL) and an anti-infective model drug, vancomycin hydrochloride (VCM), to chronic skin ulcers. A simple method was set up for the preparation of hyaluronic acid (HA) core-shell particles, loaded with PL and coated with calcium alginate, embedded in a VCM containing alginate matrix. Two different CaCl 2 concentrations were investigated to allow for HA/PL core-shell particle formation. The resulting dressings were characterized for mechanical and hydration properties and tested in vitro (on fibroblasts) and ex-vivo (on skin biopsies) for biological activity. They were found of sufficient mechanical strength to withstand packaging and handling stress and able to absorb a high amount of wound exudate and to form a protective gel on the lesion area. The CaCl 2 concentration used for shell formation did not affect VCM release from the alginate matrix, but strongly modified the release of PGFAB (chosen as representative of growth factors present in PL) from HA particles. In vitro and ex vivo tests provided sufficient proof of concept of the ability of dressings to improve skin ulcers healing. Copyright © 2018 Elsevier B.V. All rights reserved.
Transition sum rules in the shell model
Lu, Yi; Johnson, Calvin W.
2018-03-29
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less
NASA Astrophysics Data System (ADS)
Hatzoglou, C.; Radiguet, B.; Pareige, P.
2017-08-01
Oxide Dispersion Strengthened (ODS) steels are promising candidates for future nuclear reactors, partly due to the fine dispersion of the nanoparticles they contain. Until now, there was no consensus as to the nature of the nanoparticles because their analysis pushed the techniques to their limits and in consequence, introduced some artefacts. In this study, the artefacts that occur during atom probe tomography analysis are quantified. The artefacts quantification reveals that the particles morphology, chemical composition and atomic density are biased. A model is suggested to correct these artefacts in order to obtain a fine and accurate characterization of the nanoparticles. This model is based on volume fraction calculation and an analytical expression of the atomic density. Then, the studied ODS steel reveals nanoparticles, pure in Y, Ti and O, with a core/shell structure. The shell is rich in Cr. The Cr content of the shell is dependent on that of the matrix by a factor of 1.5. This study also shows that 15% of the atoms that were initially in the particles are not detected during the analysis. This only affects O atoms. The particle stoichiometry evolves from YTiO2 for the smallest observed (<2 nm) to Y2TiO5 for the biggest (>8 nm).
Lyophilic matrix method for dissolution and release studies of nanoscale particles.
Pessi, Jenni; Svanbäck, Sami; Lassila, Ilkka; Hæggström, Edward; Yliruusi, Jouko
2017-10-25
We introduce a system with a lyophilic matrix to aid dissolution studies of powders and particulate systems. This lyophilic matrix method (LM method) is based on the ability to discriminate between non-dissolved particles and the dissolved species. In the LM method the test substance is embedded in a thin lyophilic core-shell matrix. This permits rapid contact with the dissolution medium while minimizing dispersion of non-dissolved particles without presenting a substantial diffusion barrier. The method produces realistic dissolution and release results for particulate systems, especially those featuring nanoscale particles. By minimizing method-induced effects on the dissolution profile of nanopowders, the LM method overcomes shortcomings associated with current dissolution tests. Copyright © 2017 Elsevier B.V. All rights reserved.
Biofiltration of methanol in an organic biofilter using peanut shells as medium.
Ramirez-Lopez, E M; Corona-Hernandez, J; Avelar-Gonzalez, F J; Omil, F; Thalasso, F
2010-01-01
Biofiltration consists of a filter-bed of organic matter serving both as carrier for the active biomass and as nutrient supply, through which the polluted gas passes. The selection of a suitable medium material is of major importance to ensure optimum biofilter efficiency. Peanut shells are an agricultural byproduct locally available in large quantities at a low price in most tropical and sub-tropical countries. A previous study showed that peanut shells are physically and chemically suitable for biofiltration. This paper presents the results obtained during a six month biofiltration experiment using peanut shells as medium and methanol as air pollutant. It is shown that peanut shells are potentially suitable as biofiltration medium, since degradation rates of up to 30 kg MeOH/m(3)d with an empty bed residence time of 19s was obtained. The biofilter showed a good resistance to shock load and no operational problems were observed.
Synthesis of Co/MFe(2)O(4) (M = Fe, Mn) Core/Shell Nanocomposite Particles.
Peng, Sheng; Xie, Jin; Sun, Shouheng
2008-01-01
Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe(2)O(4) (M = Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe(2)O(4) nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe(2)O(4) nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Comparing to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.
Shell growth and environmental control of methanophyllic Thyasirid bivalves from Svalbard cold seeps
NASA Astrophysics Data System (ADS)
Carroll, Michael; Åström, Emmelie; Ambrose, William; Locke, William; Oliver, Graham; Hong, Wei-Li; Carroll, JoLynn
2016-04-01
The analysis of molluscan shell material (sclerochronology) can provide information about an organism's age, growth history, and environmental conditions during its lifetime. Bivalve molluscs are common members of hydrothermal vents and methane cold seeps communities where, supported by chemosynthetic symbionts, they can reach high density and biomass. But little is known about methane-associated bivalve populations inhabiting high-Arctic cold seeps, and sclerochronological analysis of methane-influenced bivalves is rare. We measured growth rates and elemental and isotopic shell signatures in a newly discovered species of bivalve (Thyasiridae) from cold seeps at 350-390m depth southwest of Svalbard. First discovered in 2014, recently described shells of Thyasira capitanea sp.nov. were found at 2 independent seep systems in Storfjordrenna. Mean shell carbon isotopic ratios from inorganic δ13C (mean = -4.8‰) and organic δ13C (mean = -26.9‰) fractions clearly indicate a methane influenced habitat and food source for these organisms. Shell mineral ratios (Li/Ca, Mg/Ca, Mn/Ca, Fe/Ca, Sr/Ca, Ba/Ca, Pb/Ca) sampled along the axis of growth with laser-ablated ICP-MS exhibit variability through time and between sites, suggesting that concentrations of these elements that may be affected by methane emissions. The mineralogical data also elucidates the internal pattern of shell deposition and growth checks, and combined with the isotopic and growth rate data, enables us to interpret the temporal history of methane release from these locations.
He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan
2017-12-27
Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.
Ilmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes.
Yu, Litao; Liu, Jun; Xu, Xijun; Zhang, Liguo; Hu, Renzong; Liu, Jiangwen; Ouyang, Liuzhang; Yang, Lichun; Zhu, Min
2017-05-23
To solve the problem of large volume change and low electronic conductivity of earth-abundant ilmenite used in rechargeable Na-ion batteries (SIBs), an anode of tiny ilmenite FeTiO 3 nanoparticle embedded carbon nanotubes (FTO⊂CNTs) has been successfully proposed. By introducing a TiO 2 shell on metal-organic framework (Fe-MOF) nanorods by sol-gel deposition and subsequent solid-state annealing treatment of these core-shell Fe-MOF@TiO 2 , such well-defined FTO⊂CNTs are obtained. The achieved FTO⊂CNT electrode has several distinct advantages including a hollow interior in the hybrid nanostructure, fully encapsulated ultrasmall electroactive units, flexible conductive carbon matrix, and stable solid electrolyte interface (SEI) of FTO in cycles. FTO⊂CNT electrodes present an excellent cycle stability (358.8 mA h g -1 after 200 cycles at 100 mA g -1 ) and remarkable rate capability (201.8 mA h g -1 at 5000 mA g -1 ) with a high Coulombic efficiency of approximately 99%. In addition, combined with the typical Na 3 V 2 (PO 4 ) 3 cathode to constitute full SIBs, the assembled FTO⊂CNT//Na 3 V 2 (PO 4 ) 3 batteries are also demonstrated with superior rate capability and a long cycle life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanroose, W.; Broeckhove, J.; Arickx, F.
The paper proposes a hybrid method for calculating scattering processes. It combines the J-matrix method with exterior complex scaling and an absorbing boundary condition. The wave function is represented as a finite sum of oscillator eigenstates in the inner region, and it is discretized on a grid in the outer region. The method is validated for a one- and a two-dimensional model with partial wave equations and a calculation of p-shell nuclear scattering with semirealistic interactions.
Cortical inter-hemispheric circuits for multimodal vocal learning in songbirds.
Paterson, Amy K; Bottjer, Sarah W
2017-10-15
Vocal learning in songbirds and humans is strongly influenced by social interactions based on sensory inputs from several modalities. Songbird vocal learning is mediated by cortico-basal ganglia circuits that include the SHELL region of lateral magnocellular nucleus of the anterior nidopallium (LMAN), but little is known concerning neural pathways that could integrate multimodal sensory information with SHELL circuitry. In addition, cortical pathways that mediate the precise coordination between hemispheres required for song production have been little studied. In order to identify candidate mechanisms for multimodal sensory integration and bilateral coordination for vocal learning in zebra finches, we investigated the anatomical organization of two regions that receive input from SHELL: the dorsal caudolateral nidopallium (dNCL SHELL ) and a region within the ventral arcopallium (Av). Anterograde and retrograde tracing experiments revealed a topographically organized inter-hemispheric circuit: SHELL and dNCL SHELL , as well as adjacent nidopallial areas, send axonal projections to ipsilateral Av; Av in turn projects to contralateral SHELL, dNCL SHELL , and regions of nidopallium adjacent to each. Av on each side also projects directly to contralateral Av. dNCL SHELL and Av each integrate inputs from ipsilateral SHELL with inputs from sensory regions in surrounding nidopallium, suggesting that they function to integrate multimodal sensory information with song-related responses within LMAN-SHELL during vocal learning. Av projections share this integrated information from the ipsilateral hemisphere with contralateral sensory and song-learning regions. Our results suggest that the inter-hemispheric pathway through Av may function to integrate multimodal sensory feedback with vocal-learning circuitry and coordinate bilateral vocal behavior. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chen, Rui; Zhang, Jinfeng; Wang, Yu; Chen, Xianfeng; Zapien, J. Antonio; Lee, Chun-Sing
2015-10-01
Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX and the PDT effect of g-C3N4 nanosheets can lead to considerably enhanced efficacy. Furthermore, the red fluorescence of DOX and the blue fluorescence of g-C3N4 nanosheets provide the additional function of dual-color imaging for monitoring the drug release process.Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX and the PDT effect of g-C3N4 nanosheets can lead to considerably enhanced efficacy. Furthermore, the red fluorescence of DOX and the blue fluorescence of g-C3N4 nanosheets provide the additional function of dual-color imaging for monitoring the drug release process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04436g
Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1994-01-01
Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.
Using Micro CT Scanning to Assess Pteropod Shells in the Modern Ocean
NASA Astrophysics Data System (ADS)
Oakes, R. L.; Urbanski, J. M.; Bralower, T. J.
2016-02-01
Anthropogenic activities are causing fundamental changes to ocean chemistry. Calcareous plankton and nekton are predicted to be affected by these chemical changes, especially by ocean acidification. These groups are at the base of the marine food chain and therefore their demise will have a strong effect on the marine ecosystem as a whole. One challenge moving forward is to find a method to assess how chemical changes manifest themselves in plankton and nekton shells. Recent advancements in computed tomographic (CT) scanning technology allows for organisms to be imaged in three dimensions at micrometer resolution. CT data enables quantitative measurements of properties such as shell thickness, volume, and morphology. We apply this method to look at pteropods, nektonic molluscs which make their shells from the more soluble form of calcium carbonate, aragonite. Their shell mineralogy, and the fact that some groups live in polar and upwelling waters, place them at high risk for ocean acidification. We have scanned over 70 pteropods from 5 different locations globally. Analysis shows that there is a significant difference in pteropod shell thickness in different ocean basins with the thinnest shells being found off the coast of Washington. Changes in shell thickness may affect pteropod swimming efficiency, predation, and rate of sinking. Shell volume does not seem to vary with shell thickness suggesting that changes will impact pteropods at all ontogenetic stages. We are working towards a geometric morphometric analysis of these shells to see if the shape differs in areas with different ocean conditions. This initial set of CT scans of pteropods can be used as a baseline to which future changes can be compared. Furthermore, this technique has the potential to be easily transferred to other organisms as a method of assessing shell change in response to ocean acidification and associated factors.
Anoxic and oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires: a comparative study.
Wu, Hao; Ai, Zhihui; Zhang, Lizhi
2014-04-01
In this study we comparatively investigate the removal of humic acids with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions. The products of humic acids after reacting with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions were carefully examined with three-dimensional excitation emission matrix fluorescence spectroscopy and gas chromatography mass spectrometry. It was found that humic acids were removed by Fe@Fe2O3 core-shell nanowires via adsorption under anoxic condition. Langmuir adsorption isotherm was applicable to describe the adsorption processes. Kinetics of humic acids adsorption onto Fe@Fe2O3 core-shell nanowires was found to follow pseudo-second-order rate equation. By contrast, the oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires involved adsorption and subsequent oxidation of humic acids because Fe@Fe2O3 core-shell nanowires could activate molecular oxygen to produce reactive oxygen species to oxidize humic acids. This subsequent oxidation of humic acids could improve the oxic removal rate to 2.5 times that of anoxic removal, accompanying with about 8.4% of mineralization. This study provides a new method for humic acids removal and also sheds light on the effects of humic acids on the pollutant removal by nano zero-valent iron. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vibrations and structureborne noise in space station
NASA Technical Reports Server (NTRS)
Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.
1987-01-01
Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.
Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin
2017-09-08
It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.
Detailed Investigation of Core-Shell Precipitates in a Cu-Containing High Entropy Alloy
NASA Astrophysics Data System (ADS)
Alam, T.; Gwalani, B.; Viswanathan, G.; Fraser, H.; Banerjee, R.
2018-05-01
Due to the competing influences of configurational entropy and enthalpy of mixing, in recent years, secondary (including intermetallic) phases have been reported in many high entropy alloy (HEA) systems. These secondary phases offer great potential in terms of strengthening the HEA beyond the solid solution strengthening effects, and as such are of great interest in regards to alloy design for engineering applications. The present research investigates novel nano-scale core-shell precipitates forming within the disordered bcc matrix phase of an Al2CrCuFeNi2 HEA, utilizing complementary high-resolution microscopy techniques of atom probe tomography (APT) and transmission electron microscopy (TEM). The size, morphology, and local chemistry of these core-shell precipitates was measured by APT, and the composition was further corroborated by high-resolution scanning transmission electron microscopy-energy dispersive spectroscopy in an aberration-corrected TEM. Furthermore, high-resolution TEM imaging of the core-shell structure indicates that the Cu-rich core exhibits a bcc crystal structure.
NASA Astrophysics Data System (ADS)
Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin
2017-09-01
It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.
Diffusion bonded boron/aluminum spar-shell fan blade
NASA Technical Reports Server (NTRS)
Carlson, C. E. K.; Cutler, J. L.; Fisher, W. J.; Memmott, J. V. W.
1980-01-01
Design and process development tasks intended to demonstrate composite blade application in large high by-pass ratio turbofan engines are described. Studies on a 3.0 aspect radio space and shell construction fan blade indicate a potential weight savings for a first stage fan rotor of 39% when a hollow titanium spar is employed. An alternate design which featured substantial blade internal volume filled with titanium honeycomb inserts achieved a 14% potential weight savings over the B/M rotor system. This second configuration requires a smaller development effort and entails less risk to translate a design into a successful product. The feasibility of metal joining large subsonic spar and shell fan blades was demonstrated. Initial aluminum alloy screening indicates a distinct preference for AA6061 aluminum alloy for use as a joint material. The simulated airfoil pressings established the necessity of rigid air surfaces when joining materials of different compressive rigidities. The two aluminum alloy matrix choices both were successfully formed into blade shells.
Li, Hongmei; Song, Qiushi; Xu, Qian; Chen, Ying; Xu, Liang; Man, Tiannan
2017-11-01
An NbC-Fe composite powder was synthesized from an Nb₂O₅/Fe/C mixture by electrochemical reduction and subsequent carbonization in molten CaCl₂-NaCl. The composite has a core-shell structure, in which NbC acts as the cores distributing in the Fe matrix. A strong bonding between NbC and Fe is benefit from the core-shell structure. The sintering and electrochemical reduction processes were investigated to probe the mechanism for the reactions. The results show that NbC particles about several nanometers were embraced by the Fe shell to form a composite about 100 nm in size. This featured structure can feasibly improve the wettability and sinterability of NbC as well as the uniform distribution of the carbide in the cast steel. By adding the composite into steel in the casting process, the grain size of the casted steel was markedly deceased from 1 mm to 500 μm on average, favoring the hardening of the casted steel.
NASA Astrophysics Data System (ADS)
Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun
2013-09-01
We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release.We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b
ERIC Educational Resources Information Center
Boyle, Emily
2002-01-01
Although Royal Dutch Shell had been identified as a "premiere learning organization," it had its worst results in 1998. Reasons included loss of commitment and community, leadership complacency, and inability to create a shared vision. Although management espoused learning organization principles, learning was not used for communal…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benhadjala, W., E-mail: warda.benhadjala@cea.fr; CEA, LETI, Minatec Campus, 38000 Grenoble; Gravoueille, M.
2015-11-23
Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlightedmore » that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.« less
Tilgner, Dominic; Kempe, Rhett
2017-03-02
Porous coordination polymers (PCP) or metal- organic frameworks (MOF) are promising materials for the generation of photocatalytically active composite materials. Here, a novel synthesis concept is reported, which permits the formation of PCP/MOF-core-Au/anatase-shell materials. These materials are photocatalysts for wastewater purification and hydrogen generation from water under visible-light illumination. MIL-101 (Cr) is utilized as the core material, which directs the size of the core-shell compound and ensures the overall stability. In addition, its excellent reversible large molecule sorption behavior allows the materials synthesis. The crystalline anatase shell is generated stepwise under mild conditions using titanium(IV) isopropoxide as a precursor. The high degree of control of the vapor phase deposition process permits the precise anatase shell formation. The generation of plasmonic active gold particles on the TiO 2 shell leads to an efficient material for visible-light-driven photocatalysis with a higher activity than gold-decorated P25 (Degussa). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Casella, Laura A.; Griesshaber, Erika; Yin, Xiaofei; Ziegler, Andreas; Mavromatis, Vasileios; Müller, Dirk; Ritter, Ann-Christine; Hippler, Dorothee; Harper, Elizabeth M.; Dietzel, Martin; Immenhauser, Adrian; Schöne, Bernd R.; Angiolini, Lucia; Schmahl, Wolfgang W.
2017-03-01
Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. In generating their mineralised hard parts, most marine invertebrates produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism the physiological conditions, which were present during biomineralisation, are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 and 175 °C, with the main focus on 100 and 175 °C, reaction durations between 1 and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100 °C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175 °C (and at 0.9 MPa pressure) for 7 and 84 days. During hydrothermal alteration at 100 °C for 28 days most but not the entire biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments up to 174 °C, there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175 °C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days. Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 µm, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to 1 mm after 7 days of alteration. Aragonite is metastable at all applied conditions. Only a small bulk thermodynamic driving force exists for the transition to calcite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 to ca. 170 °C or, additionally, to the presence of magnesium. Correspondingly, in Mg2+-bearing solutions the newly formed calcite crystals are larger than in Mg2+-free solutions. Overall, the aragonite-calcite transition occurs via an interface-coupled dissolution-reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explaining why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.
Block copolymers for biomimetic composites
NASA Astrophysics Data System (ADS)
Calvert, Paul D.; Oner, Mualla; Burdon, Jeremy; Rieke, Peter C.; Farmer, Kelly
1993-07-01
Mineralized biological tissues can be regarded as composites where a fine reinforcement is laid down in a very controlled fashion within a tough polymeric matrix. Such materials include bone, antler, tooth enamel, mollusc shell, and crustacean shell. We have been exploring ways of forming similar structures by synthetic routes involving precipitation of reinforcing particles directly into a polymeric matrix. Part of this biomimetic approach requires polymer matrices which can exert a high degree of control over the mineralization process. Polymer gels have been formed from cross-linked methacrylates with various types of functionality within the gel. By incorporating calcium binding groups we have been producing gels which lead to preferential mineralization of the gel when it is incubated in a supersaturated solution of calcium oxalate or calcium carbonate. Similarly we have been incorporating silane groups within the gel in order to promote the deposition of silica in a gel body when it is immersed in a metastable solution of partly hydrolysed silicon alkoxides.
Method of fabricating nested shells and resulting product
Henderson, Timothy M.; Kool, Lawrence B.
1982-01-01
A multiple shell structure and a method of manufacturing such structure wherein a hollow glass microsphere is surface treated in an organosilane solution so as to render the shell outer surface hydrophobic. The surface treated glass shell is then suspended in the oil phase of an oil-aqueous phase dispersion. The oil phase includes an organic film-forming monomer, a polymerization initiator and a blowing agent. A polymeric film forms at each phase boundary of the dispersion and is then expanded in a blowing operation so as to form an outer homogeneously integral monocellular substantially spherical thermoplastic shell encapsulating an inner glass shell of lesser diameter.
Large Electroweak Corrections to Vector-Boson Scattering at the Large Hadron Collider.
Biedermann, Benedikt; Denner, Ansgar; Pellen, Mathieu
2017-06-30
For the first time full next-to-leading-order electroweak corrections to off-shell vector-boson scattering are presented. The computation features the complete matrix elements, including all nonresonant and off-shell contributions, to the electroweak process pp→μ^{+}ν_{μ}e^{+}ν_{e}jj and is fully differential. We find surprisingly large corrections, reaching -16% for the fiducial cross section, as an intrinsic feature of the vector-boson-scattering processes. We elucidate the origin of these large electroweak corrections upon using the double-pole approximation and the effective vector-boson approximation along with leading-logarithmic corrections.
MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors.
Li, Guo-Chang; Liu, Peng-Fei; Liu, Rui; Liu, Minmin; Tao, Kai; Zhu, Shuai-Ru; Wu, Meng-Ke; Yi, Fei-Yan; Han, Lei
2016-09-14
Nanorods-composed yolk-shell bimetallic-organic frameworks microspheres are successfully synthesized by a one-step solvothermal method in the absence of any template or surfactant. Furthermore, hierarchical double-shelled NiO/ZnO hollow spheres are obtained by calcination of the bimetallic organic frameworks in air. The NiO/ZnO hollow spheres, as supercapacitor electrodes, exhibit high capacitance of 497 F g(-1) at the current density of 1.3 A g(-1) and present a superior cycling stability. The superior electrochemical performance is believed to come from the unique double-shelled NiO/ZnO hollow structures, which offer free space to accommodate the volume change during the ion insertion and desertion processes, as well as provide rich electroactive sites for the electrochemical reactions.
Limacina retroversa's response to combined effects of ocean acidification and sea water freshening
NASA Astrophysics Data System (ADS)
Manno, C.; Morata, N.; Primicerio, R.
2012-11-01
Anthropogenic carbon dioxide emissions induce ocean acidification, thereby reducing carbonate ion concentration, which may affect the ability of calcifying organisms to build shells. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living L. retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient in two factorial, randomized experiments investigating shell degradation, swimming behavior and survival. In addition, to investigate shell degradation without any physiologic influence, one perturbation experiments using only shells of dead pteropods was performed. Lower pH reduced shell mass whereas shell dissolution increased with pCO2. Interestingly, shells of dead organisms had a higher degree of dissolution than shells of living individuals. Mortality of Limacina retroversa was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim upwards. Results suggest that the energy cost of maintaining ion balance and avoiding sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract shell dissolution (in high pCO2 scenario), exceed the available energy budget of this organism causing the pteropods to change swimming behavior and begin to collapse. Since L. retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.
Guan, Bu Yuan; Yu, Le; Li, Ju; Lou, Xiong Wen (David)
2016-01-01
TiO2 is exceptionally useful, but it remains a great challenge to develop a universal method to coat TiO2 nanoshells on different functional materials. We report a one-pot, low-temperature, and facile method that can rapidly form mesoporous TiO2 shells on various inorganic, organic, and inorganic-organic composite materials, including silica-based, metal, metal oxide, organic polymer, carbon-based, and metal-organic framework nanomaterials via a cooperative assembly-directed strategy. In constructing hollow, core-shell, and yolk-shell geometries, both amorphous and crystalline TiO2 nanoshells are demonstrated with excellent control. When used as electrode materials for lithium ion batteries, these crystalline TiO2 nanoshells composed of very small nanocrystals exhibit remarkably long-term cycling stability over 1000 cycles. The electrochemical properties demonstrate that these TiO2 nanoshells are promising anode materials. PMID:26973879
Relativistic elliptic matrix tops and finite Fourier transformations
NASA Astrophysics Data System (ADS)
Zotov, A.
2017-10-01
We consider a family of classical elliptic integrable systems including (relativistic) tops and their matrix extensions of different types. These models can be obtained from the “off-shell” Lax pairs, which do not satisfy the Lax equations in general case but become true Lax pairs under various conditions (reductions). At the level of the off-shell Lax matrix, there is a natural symmetry between the spectral parameter z and relativistic parameter η. It is generated by the finite Fourier transformation, which we describe in detail. The symmetry allows one to consider z and η on an equal footing. Depending on the type of integrable reduction, any of the parameters can be chosen to be the spectral one. Then another one is the relativistic deformation parameter. As a by-product, we describe the model of N2 interacting GL(M) matrix tops and/or M2 interacting GL(N) matrix tops depending on a choice of the spectral parameter.
Puverel, S; Houlbrèque, F; Tambutté, E; Zoccola, D; Payan, P; Caminiti, N; Tambutté, S; Allemand, D
2007-08-01
Biominerals contain both inorganic and organic components. Organic components are collectively termed the organic matrix, and this matrix has been reported to play a crucial role in mineralization. Several matrix proteins have been characterized in vertebrates, but only a few in invertebrates, primarily in Molluscs and Echinoderms. Methods classically used to extract organic matrix proteins eliminate potential low molecular weight matrix components, since cut-offs ranging from 3.5 to 10 kDa are used to desalt matrix extracts. Consequently, the presence of such components remains unknown and these are never subjected to further analyses. In the present study, we have used microcolonies from the Scleractinian coral Stylophora pistillata to study newly synthesized matrix components by labelling them with 14C-labelled amino acids. Radioactive matrix components were investigated by a method in which both total organic matrix and fractions of matrix below and above 5 kDa were analyzed. Using this method and SDS-PAGE analyses, we were able to detect the presence of low molecular mass matrix components (<3.5 kDa), but no free amino acids in the skeletal organic matrix. Since more than 98% of the 14C-labelled amino acids were incorporated into low molecular weight molecules, these probably form the bulk of newly synthesized organic matrix components. Our results suggest that these low molecular weight components may be peptides, which can be involved in the regulation of coral skeleton mineralization.
NASA Astrophysics Data System (ADS)
Tamer, Ugur; Onay, Aykut; Ciftci, Hakan; Bozkurt, Akif Göktuğ; Cetin, Demet; Suludere, Zekiye; Hakkı Boyacı, İsmail; Daniel, Philippe; Lagarde, Fabienne; Yaacoub, Nader; Greneche, Jean-Marc
2014-10-01
The high product yield of multi-branched core-shell Fe3- x O4@Au magnetic nanoparticles was synthesized used as magnetic separation platform and surface-enhanced Raman scattering (SERS) substrates. The multi-branched magnetic nanoparticles were prepared by a seed-mediated growth approach using magnetic gold nanospheres as the seeds and subsequent reduction of metal salt with ascorbic acid in the presence of a stabilizing agent chitosan biopolymer and silver ions. The anisotropic growth of nanoparticles was observed in the presence of chitosan polymer matrix resulting in multi-branched nanoparticles with a diameter over 100 nm, and silver ions also play a crucial role on the growth of multi-branched nanoparticles. We propose the mechanism of the formation of multi-branched nanoparticles while the properties of nanoparticles embedded in chitosan matrix are discussed. The surface morphology of nanoparticles was characterized with transmission electron microscopy, scanning electron microscopy, ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction, and fourier transform infrared spectroscopy and 57Fe Mössbauer spectrometry. Additionally, the magnetic properties of the nanoparticles were also examined. We also demonstrated that the synthesized Fe3- x O4@Au multi-branched nanoparticle is capable of targeted separation of pathogens from matrix and sensing as SERS substrates.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... Requirements for Companies Applying To List After Consummation of a ``Reverse Merger'' With a Shell Company... shell company. The proposed rule change was published for comment in the Federal Register on August 10... companies applying to list after consummation of a ``reverse merger'' with a shell company, and to consider...
Peharda, Melita; Calcinai, Barbara; Puljas, Sanja; Golubić, Stjepko; Arapov, Jasna; Thébault, Julien
2015-07-01
Pronounced differences with respect to the extent of infestation and the degree of Lithophaga lithophaga shell damage inflicted by euendolithic taxa at two sites in the Adriatic Sea representing different productivity conditions, are described. Shells collected from the eastern part of Kaštela Bay, which is characterized by higher primary productivity, have significantly more shell damage then the shell collected from a site on the outer coast of the island of Čiovo exposed to the oligotrophic Adriatic Sea. The presence of endoliths and their perforations were detected in different layers of the shell, including solidly mineralized parts of the skeleton and within the organic lamellae incorporated into the shell. Phototrophic endoliths were not observed in the specimens. The most serious damage to L. lithophaga shells was the boring clionaid sponge Pione vastifica, which was more common in shells collected from Kaštela. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lakin, W. D.
1981-01-01
The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.
Modeling the carbon isotope composition of bivalve shells (Invited)
NASA Astrophysics Data System (ADS)
Romanek, C.
2010-12-01
The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., <10%) in shells from aquatic organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation relations dictate that shell carbonate should be preferentially enriched in C-13 by 3 to 5 per mill (from 30° to 0°C) compared to EPF at a pH of 7.5. Anomalous positive excursions are rarely, if ever, observed in shell carbonate and they have yet to be associated with growth cessation markers in bivalves. The most likely explanation for the lack of anomalous positive values is that the percentage of metabolic carbon increases in EPF when bivalves experience stressful condition. This influx of metabolic carbon is balanced to a measureable extent by the enhanced fractionation of carbon isotopes during shell deposition from EPF at relatively low pH. These two processes may be combined in a quantitative model to extract a historical record of metabolic activity from the carbon isotope profiles of bivalve shells.
Li, Xue; Niitsoo, Olivia; Couzis, Alexander
2016-03-01
An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.
Synthesis and properties of unagglomerated nanocomposite particles for nanomedical applications
NASA Astrophysics Data System (ADS)
Rouse, Sarah M.
2005-11-01
Methods have been developed to prepare stable, unagglomerated active-medical-agent nanoparticles in a range of sizes, based on reverse-micelle microemulsion techniques. The process used to prepare monodisperse, spherical nanocomposite particles is based on methods originally outlined in detail by Adair et al. and Li et al. The "Molecular Dot" (MD) nanoparticles incorporate a variety of medically-active substances, such as organic fluorophores and therapeutic drugs, internally distributed in silica, titania, calcium phosphate, or calcium phospho-silicate matrices. The synthesis techniques have also been modified to produce nanoparticles containing combinations of fluorophores and medicinal agents, in order to monitor drug release and location. The specific biomedical application for the nanocomposite particles dictates the selection of core and shell-matrix materials. For example, the protective shell-matrices of the silica and titania MDs shield the active-medical agents from damage due to changes in pH, temperature, and other environmental effects. Conversely, the calcium phosphate and calcium phospho-silicate shell-matrix nanoparticles can potentially be engineered to dissolve in physiological environments. The method used to remove residual precursor materials while maintaining a well-dispersed assembly of nanoparticles is critical to the use of nanocolloids in medical applications. The dispersion approach is based on protection-dispersion theory tailored to accommodate the high surface areas and reactivity of sub-50 nm particles in aqueous or water/ethanol mixtures. Dispersion of the nanocomposite particles is further enhanced with the use of size-exclusion high performance liquid chromatography (HPLC) to simultaneously wash and disperse the nanocomposite particle suspensions. The state of dispersion of the nanosuspensions is evaluated using the average agglomeration number (AAN) approach in conjunction with other characterization techniques. The formulation of a non-aggregating colloid to deliver active-medical agents has the potential to revolutionize controlled, targeted, systemic delivery for a variety of drug and genetic therapies. The active-medical agent nanoparticles may be applied to a range of biomedical applications, including bioimaging, drug delivery, gene therapy, and combinations thereof. The fluorescent Molecular Dot nanoparticles have been utilized in applications such as in vitro cell labeling, as well as chemical and biological targeting. In addition, the Molecular Dots are a promising alternative to current bioimaging technologies, as the fluorescent emissions from the nanoparticulates do not exhibit blinking/intermittent qualities. (Abstract shortened by UMI.)
Design of Aerosol Particle Coating: Thickness, Texture and Efficiency
Buesser, B.; Pratsinis, S.E.
2013-01-01
Core-shell particles preserve the performance (e.g. magnetic, plasmonic or opacifying) of a core material while modifying its surface with a shell that facilitates (e.g. by blocking its reactivity) their incorporation into a host liquid or polymer matrix. Here coating of titania (core) aerosol particles with thin silica shells (films or layers) is investigated at non-isothermal conditions by a trimodal aerosol dynamics model, accounting for SiO2 generation by gas phase and surface oxidation of hexamethyldisiloxane (HMDSO) vapor, coagulation and sintering. After TiO2 particles have reached their final primary particle size (e.g. upon completion of sintering during their flame synthesis), coating starts by uniformly mixing them with HMDSO vapor that is oxidized either in the gas phase or on the particles’ surface resulting in SiO2 aerosols or deposits, respectively. Sintering of SiO2 deposited onto the core TiO2 particles takes place transforming rough into smooth coating shells depending on process conditions. The core-shell characteristics (thickness, texture and efficiency) are calculated for two limiting cases of coating shells: perfectly smooth (e.g. hermetic) and fractal-like. At constant TiO2 core particle production rate, the influence of coating weight fraction, surface oxidation and core particle size on coating shell characteristics is investigated and compared to pertinent experimental data through coating diagrams. With an optimal temperature profile for complete precursor conversion, the TiO2 aerosol and SiO2-precursor (HMDSO) vapor concentrations have the strongest influence on product coating shell characteristics. PMID:23729833
High-resolution nitrogen stable isotope sclerochronology of bivalve shell carbonate-bound organics
NASA Astrophysics Data System (ADS)
Gillikin, David P.; Lorrain, Anne; Jolivet, Aurélie; Kelemen, Zita; Chauvaud, Laurent; Bouillon, Steven
2017-03-01
Nitrogen stable isotope ratios (δ15N) of organic material have successfully been used to track food-web dynamics, nitrogen baselines, pollution, and nitrogen cycling. Extending the δ15N record back in time has not been straightforward due to a lack of suitable substrates in which δ15N records are faithfully preserved, thus sparking interest in utilizing skeletal carbonate-bound organic matter (CBOM) in mollusks, corals, and foraminifera. Here we test if calcite Pecten maximus shells from the Bay of Brest and the French continental shelf can be used as an archive of δ15N values over a large environmental gradient and at a high temporal resolution (approximately weekly). Bulk CBOM δ15N values from the growing tip of shells collected over a large nitrogen isotope gradient were strongly correlated with adductor muscle tissue δ15N values (R2 = 0.99, n = 6, p < 0.0001). We were able to achieve weekly resolution (on average) over the growing season from sclerochronological profiles of three shells, which showed large seasonal variations up to 3.4‰. However, there were also large inter-specimen differences (up to 2.5‰) between shells growing at the same time and location. Generally, high-resolution shell δ15N values follow soft-tissue δ15N values, but soft-tissues integrate more time, hence soft-tissue data are more time-averaged and smoothed. Museum-archived shells from the 1950s, 1965, and 1970s do not show a large difference in δ15N values through time despite expected increasing N loading to the Bay over this time, which could be due to anthropogenic N sources with contrasting values. Compiling shell CBOM δ15N data from several studies suggests that the offset between soft-tissue and shell δ15N values (Δtissue-shell) differs between calcite and aragonite shells. We hypothesize that this difference is caused by differences in amino acids used in constructing the different minerals, which should be specific to the CaCO3 polymorph being constructed. Future work should use compound specific isotope analyses (CSIA) to test this hypothesis, and to determine whether certain amino acids could specifically track N sources or possibly identify amino acids that are more resistant to diagenesis in fossil shells. In conclusion, bivalve shell CBOM δ15N values can be used in a similar manner to soft-tissue δ15N values, and can track various biogeochemical events at a very high-resolution.
Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.
Chen, Guanying; Damasco, Jossana; Qiu, Hailong; Shao, Wei; Ohulchanskyy, Tymish Y; Valiev, Rashid R; Wu, Xiang; Han, Gang; Wang, Yan; Yang, Chunhui; Ågren, Hans; Prasad, Paras N
2015-11-11
Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion.
NASA Astrophysics Data System (ADS)
Smyth, Miriam J.
1989-12-01
Organisms boring into fifty nine species of gastropod shells on reefs around Guam were the bryozoan Penetrantia clionoides; the acrothoracian barnacles Cryptophialus coronorphorus, Cryptophialus zulloi and Lithoglyptis mitis; the foraminifer Cymbaloporella tabellaeformis, the polydorid Polydora sp. and seven species of clionid sponge. Evidence that crustose coralline algae interfere with settlement of larvae of acrothoracian barnacles, clionid sponges, and boring polychaetes came from two sources: (1) low intensity of boring in limpet shells, a potentially penetrable substrate that remains largely free of borings by virtue of becoming fully covered with coralline algae at a young age and (2) the extremely low levels of boring in the algal ridge, a massive area of carbonate almost entirely covered by a layer of living crustose corallines. There was a strong negative correlation between microstructural hardness and infestation by acrothoracian barnacles and no correlation in the case of the other borers. It is suggested that this points to a mechanical rather than a chemical method of boring by the barnacles. The periostracum, a layer of organic material reputedly a natural inhibitor of boring organisms, was bored by acrothoracican barnacles and by the bryozoan. The intensity of acrothoracican borings is shown to have no correlation with the length of the gastropod shell.
An aqueous, organic dye derivatized SnO 2 /TiO 2 core/shell photoanode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wee, Kyung-Ryang; Sherman, Benjamin D.; Brennaman, M. Kyle
2016-01-01
Visible light driven water splitting in a dye-sensitized photoelectrochemical cell (DSPEC) based on a phosphonic acid-derivatized donor–π–acceptor (D–π–A) organic dye (P–A–π–D) is described with the dye anchored to an FTO|SnO 2/TiO 2core/shell photoanode in a pH 7 phosphate buffer solution.
Kobelja, Kristina; Nemet, Ivan; Župan, Ivan; Čulin, Jelena; Rončević, Sanda
2016-12-01
Determination of metal content in biominerals provides essential information with respect to relations between biomineralization processes and environmental status. Mussels are species that have a great potential as bio-marker species and therefore, they are in the focus of numerous biomineralization and ecological studies. In this study, elemental profile of mussel shell of Noah's Ark (Arca noe, Linnaeus, 1758), which inhabit eastern Adriatic Sea was obtained by determination of seventeen elements content using inductively coupled plasma optical emission spectrometry (ICP-OES). Shell samples were collected from marine protected area and from marine shipping route in eastern Adriatic Sea. The accuracy of applied analytical procedure based on microwave decomposition of shell samples was tested by use of reference materials of limestone and by matrix-matched standards. By aid of chemometric methods, the elemental profile along with variability of elements content of shell was obtained. The impact of different environment on elements content was established by use of multivariate statistical PCA method. Discernment between two groups of samples was manifested. Among results of main, minor and trace elements content, the last one which denoted to Cd, Co, Cu, Pb, and Mn was expressed as principal distinctive feature of shell samples collected from different sampling sites. Elemental profiling of mussel shell Noah's Ark provides novel insight in species status as well as in environmental status on the observed locations. Copyright © 2016 Elsevier GmbH. All rights reserved.
Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.
Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae
2010-01-01
Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.
Weak interaction probes of light nuclei
NASA Astrophysics Data System (ADS)
Towner, I. S.
1986-03-01
Experimental evidence for pion enhancement in axial charge transitions as predicted by softpion theorems is reviewed. Corrections from non-soft-pion terms seem to be limited. For transitions involving the space part of the axial-vector current, soft-pion theorems are powerless. Meson-exchange currents then involve a complicated interplay among competing process. Explicit calculations in the hard-pion model for closed-shell-plus (or minus)-one nuclei, A=15 and A= =17, are in reasonable agreement with experiment. Quenching in the off-diagonal spin-flip matrix element is larger than in the diagonal matrix element.
Magnetic field-directed hybrid anisotropic nanocomposites.
Gong, Maogang; Zhang, Jingming; Ren, Shenqiang
2018-08-24
A facile bottom-up approach is developed to grow magnetic metallic Cu/FeCo (core/shell) nanowires, where their distribution and orientation can be controlled by magnetic field. The nanocomposites consisting of a ferroelectric polymer matrix and magnetic nanowire arrays exhibit the orientation-controlled anisotropy and interfacial magnetoelectric coupling effect.
Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors
2016-01-01
We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079
NASA Technical Reports Server (NTRS)
Caldwell, D. E. (Editor); Brierley, J. A. (Editor); Brierley, C. L. (Editor)
1985-01-01
Topics presented include biological evolution and planetary chemistry; C-1 compounds; transport, deposition, and weathering; sulfur transformations; ground water; transformation processes for nitrogen oxides; and soils. Papers are presented on immunological studies on the organic matrix of recent and fossil invertebrate shells; biogenic gases in sediments deposited since Miocene times on the Walvis Ridge, South Atlantic Ocean; aspects of the biogeochemistry of Big Soda Lake, NV; mesophilic manganese-oxidizing bacteria from hydrothermal discharge areas at 21 deg North on the East Pacific Rise; and autotrophic growth and iron oxidation and inhibition kinetics of Leptospirillum ferrooxidans. Consideration is also given to thermophilic archaebacteria occurring in submarine hydrothermal areas; fate of sulfate in a soft-water, acidic lake; geochemical conditions in the ground water environment; microbial transformations as sources and sinks for nitrogen oxides; and the biogeochemistry of soil phosphorus.
Proteinaceous Resin and Hydrophilic Encapsulation: A Self-Healing-Related Study
NASA Astrophysics Data System (ADS)
Zheng, Ting
Inspired by living organisms, self-healing materials have been designed as smart materials. Their automatic healing nature is achieved through the use of capsule in which the healing agent is encapsulated. The occurrence of cracks leads to ripping of the capsule, along with crack propagation and release of the healing agent that wets the crack surface to eventually heal (bond) the crack. Such automatic repair of the crack significantly extends the service life of the material. A vast majority of existing self-healing systems have been designed for the epoxy matrix - the most common commercially used thermoset - that possesses low crack resistance. Currently, self-healing systems have not yet been introduced for fully protein-based materials, despite their great potential to replace currently used synthesis precursors for the latter and the eco-friendly nature of self-healing materials. This has been probably due to two major obstacles: poor mechanical properties of the protein-based matrix, and extreme difficulty associated with the encapsulation of hydrophilic healing agents suitable for the protein-based matrix. This study provides possible solutions towards addressing both these obstacles. To improve the inherent mechanical properties of protein-based resin, soy protein isolate (SPI) was chosen as the model in this study. Dialdehyde carboxymethyl cellulose (DCMC) was synthesized and used as the crosslinking agent to modify the SPI film. As-synthesized DCMC - a fully bio-based material - exhibited high mechanical strength, excellent thermal stability, and reduced moisture sensitivity. Good compatibility and effective crosslinking were believed to be the key reasons for such property enhancements. However, these were accompanied by poor crack resistance, where self-healing is a pertinent solution. A novel healing system for the protein matrix was designed in this work via the use of formaldehyde as a healing agent. Subsequently, the well-acknowledged challenge, e.g. hydrophilic agent encapsulation, was addressed through the development of novel polyurethane-Poly(melamine-formaldehyde) (PU-PMF) dual-component capsules. Remarkably, the external PU insulation layer was fabricated through interfacial polymerization based on a water-in-oil-in-oil (W/O/O) emulsion template. Surface tension was identified as the main driving factor for the formation of the external oil phase. The internal PMF layer was observed to strongly influence the internal morphology of the capsule. A protocol was developed, and a typical capsule with dense and neat shell morphology with a shell/capsule diameter (around 3 %) was fabricated. This study provides solutions for the two aforementioned obstacles related to the development of the healing system for the protein-based materials.
Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.
2015-04-21
Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed thatmore » both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.« less
What determines sclerobiont colonization on marine mollusk shells?
Ochi Agostini, Vanessa; Ritter, Matias do Nascimento; José Macedo, Alexandre; Muxagata, Erik; Erthal, Fernando
2017-01-01
Empty mollusk shells may act as colonization surfaces for sclerobionts depending on the physical, chemical, and biological attributes of the shells. However, the main factors that can affect the establishment of an organism on hard substrates and the colonization patterns on modern and time-averaged shells remain unclear. Using experimental and field approaches, we compared sclerobiont (i.e., bacteria and invertebrate) colonization patterns on the exposed shells (internal and external sides) of three bivalve species (Anadara brasiliana, Mactra isabelleana, and Amarilladesma mactroides) with different external shell textures. In addition, we evaluated the influence of the host characteristics (mode of life, body size, color alteration, external and internal ornamentation and mineralogy) of sclerobionts on dead mollusk shells (bivalve and gastropod) collected from the Southern Brazilian coast. Finally, we compared field observations with experiments to evaluate how the biological signs of the present-day invertebrate settlements are preserved in molluscan death assemblages (incipient fossil record) in a subtropical shallow coastal setting. The results enhance our understanding of sclerobiont colonization over modern and paleoecology perspectives. The data suggest that sclerobiont settlement is enhanced by (i) high(er) biofilm bacteria density, which is more attracted to surfaces with high ornamentation; (ii) heterogeneous internal and external shell surface; (iii) shallow infaunal or attached epifaunal life modes; (iv) colorful or post-mortem oxidized shell surfaces; (v) shell size (<50 mm2 or >1,351 mm2); and (vi) calcitic mineralogy. Although the biofilm bacteria density, shell size, and texture are considered the most important factors, the effects of other covarying attributes should also be considered. We observed a similar pattern of sclerobiont colonization frequency over modern and paleoecology perspectives, with an increase of invertebrates occurring on textured bivalve shells. This study demonstrates how bacterial biofilms may influence sclerobiont colonization on biological hosts (mollusks), and shows how ecological relationships in marine organisms may be relevant for interpreting the fossil record of sclerobionts.
What determines sclerobiont colonization on marine mollusk shells?
José Macedo, Alexandre; Muxagata, Erik; Erthal, Fernando
2017-01-01
Empty mollusk shells may act as colonization surfaces for sclerobionts depending on the physical, chemical, and biological attributes of the shells. However, the main factors that can affect the establishment of an organism on hard substrates and the colonization patterns on modern and time-averaged shells remain unclear. Using experimental and field approaches, we compared sclerobiont (i.e., bacteria and invertebrate) colonization patterns on the exposed shells (internal and external sides) of three bivalve species (Anadara brasiliana, Mactra isabelleana, and Amarilladesma mactroides) with different external shell textures. In addition, we evaluated the influence of the host characteristics (mode of life, body size, color alteration, external and internal ornamentation and mineralogy) of sclerobionts on dead mollusk shells (bivalve and gastropod) collected from the Southern Brazilian coast. Finally, we compared field observations with experiments to evaluate how the biological signs of the present-day invertebrate settlements are preserved in molluscan death assemblages (incipient fossil record) in a subtropical shallow coastal setting. The results enhance our understanding of sclerobiont colonization over modern and paleoecology perspectives. The data suggest that sclerobiont settlement is enhanced by (i) high(er) biofilm bacteria density, which is more attracted to surfaces with high ornamentation; (ii) heterogeneous internal and external shell surface; (iii) shallow infaunal or attached epifaunal life modes; (iv) colorful or post-mortem oxidized shell surfaces; (v) shell size (<50 mm2 or >1,351 mm2); and (vi) calcitic mineralogy. Although the biofilm bacteria density, shell size, and texture are considered the most important factors, the effects of other covarying attributes should also be considered. We observed a similar pattern of sclerobiont colonization frequency over modern and paleoecology perspectives, with an increase of invertebrates occurring on textured bivalve shells. This study demonstrates how bacterial biofilms may influence sclerobiont colonization on biological hosts (mollusks), and shows how ecological relationships in marine organisms may be relevant for interpreting the fossil record of sclerobionts. PMID:28902894
Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past.
Der Sarkissian, Clio; Pichereau, Vianney; Dupont, Catherine; Ilsøe, Peter C; Perrigault, Mickael; Butler, Paul; Chauvaud, Laurent; Eiríksson, Jón; Scourse, James; Paillard, Christine; Orlando, Ludovic
2017-09-01
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management. © 2017 John Wiley & Sons Ltd.
Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi
2009-07-06
Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.
In-medium similarity renormalization group for closed and open-shell nuclei
NASA Astrophysics Data System (ADS)
Hergert, H.
2017-02-01
We present a pedagogical introduction to the in-medium similarity renormalization group (IMSRG) framework for ab initio calculations of nuclei. The IMSRG performs continuous unitary transformations of the nuclear many-body Hamiltonian in second-quantized form, which can be implemented with polynomial computational effort. Through suitably chosen generators, it is possible to extract eigenvalues of the Hamiltonian in a given nucleus, or drive the Hamiltonian matrix in configuration space to specific structures, e.g., band- or block-diagonal form. Exploiting this flexibility, we describe two complementary approaches for the description of closed- and open-shell nuclei: the first is the multireference IMSRG (MR-IMSRG), which is designed for the efficient calculation of nuclear ground-state properties. The second is the derivation of non-empirical valence-space interactions that can be used as input for nuclear shell model (i.e., configuration interaction (CI)) calculations. This IMSRG+shell model approach provides immediate access to excitation spectra, transitions, etc, but is limited in applicability by the factorial cost of the CI calculations. We review applications of the MR-IMSRG and IMSRG+shell model approaches to the calculation of ground-state properties for the oxygen, calcium, and nickel isotopic chains or the spectroscopy of nuclei in the lower sd shell, respectively, and present selected new results, e.g., for the ground- and excited state properties of neon isotopes.
Biocatalytic CO2 sequestration based on shell regeneration
NASA Astrophysics Data System (ADS)
Lee, S.
2012-04-01
Carbon dioxide, CO2, is one of the green gases, being uniformly distributed over the earth's surface. Recently, a variety of methods exists or has been proposed for pre- or post-emission capture and sequestration of CO2. However, CCS (carbon capture & storage) do not quarntee permanent treatment of CO2 and could ingenerate environment risks. Some organisms convert CO2 into exoskeleton (e.g., mollusks) or energy sources (e.g., plants) during metabolism under atmospheric conditions. One of representative biomaterials in ocean is bivalve shell to be composed of CaCO3. Calcium carbonate is not only abundant material in the world but also thermodynamically stable mineral in the capture of CO2. Bivalve has produced CaCO3 under seawater condition, in other word, near atmospheric conditions (1 atm. and around 20-25 oC). At the inorganic point, the synthesis of CaCO3 is as followed. Ca2+ + CO32- -> CaCO3 The bivalve shell plays an important role to protect bivalve's internal organs from prodetor. What will be happened if the shell is damaged and a hole is made? Bivalve must cover the hole to prevent the oxidation of internal organs as fast as possible. From in vitro crystallization test of a notched shell, rapid CaCO3 production was identified at the damaged area. The biocatalyst related to shell regeneration was purified and named as SPSR (Soluble Protein related to Shell Regeneration) that is obtained from the oyster, Crassostrea gigas. And in vitro CaCO3 crystallization test was used to calculate the crystal growth rate of SPSR on CaCO3 crystallization. The characteristics of SPRR are discussed at the point of CO2 hydration and rapid CaCO3 synthesis. To develop the bioinspired process based on shell regeneration concept, the analysis of protein structure has been studied and the immobilization has been carried out for easy recovery of SPSR.
Exploring Closed-Shell Cationic Phenalenyl: From Catalysis to Spin Electronics.
Mukherjee, Arup; Sau, Samaresh Chandra; Mandal, Swadhin K
2017-07-18
The odd alternant hydrocarbon phenalenyl (PLY) can exist in three different forms, a closed-shell cation, an open-shell radical, and a closed-shell anion, using its nonbonding molecular orbital (NBMO). The chemistry of PLY-based molecules began more than five decades ago, and so far, the progress has mainly involved the open-shell neutral radical state. Over the last two decades, we have witnessed the evolution of a range of PLY-based radicals generating an array of multifunctional materials. However, it has been admitted that the practical applications of PLY radicals are greatly challenged by the low stability of the open-shell (radical) state. Recently, we took a different route to establish the utility of these PLY molecules using the closed-shell cationic state. In such a design, the closed-shell unit of PLY can readily accept free electrons, stabilizing in its NBMO upon generation of the open-shell state of the molecule. Thus, one can synthetically avoid the unstable open-shell state but still take advantage of this state by in situ generating the radical through external electron transfer or spin injection into the empty NBMO. It is worth noting that such approaches using closed-shell phenalenyl have been missing in the literature. This Account focuses on our recent developments using the closed-shell cationic state of the PLY molecule and its application in broad multidisciplinary areas spanning from catalysis to spin electronics. We describe how this concept has been utilized to develop a variety of homogeneous catalysts. For example, this concept was used in designing an iron(III) PLY-based electrocatalyst for a single-compartment H 2 O 2 fuel cell, which delivered the best electrocatalytic activity among previously reported iron complexes, organometallic catalysts for various homogeneous organic transformations (hydroamination and polymerization), an organic Lewis acid catalyst for the ring opening of epoxides, and transition-metal-free C-H functionalization catalysts. Moreover, this concept of using the empty NBMO present in the closed-shell cationic state of the PLY moiety to capture electron(s) was further extended to an entirely different area of spin electronics to design a PLY-based spin-memory device, which worked by a spin-filtration mechanism using an organozinc compound based on a PLY backbone deposited over a ferromagnetic substrate. In this Account, we summarize our recent efforts to understand how this unexplored closed-shell state of the phenalenyl molecule, which has been known for over five decades, can be utilized in devising an array of materials that not only are important from an organometallic chemistry or organic chemistry point of view but also provide new understanding for device physics.
NASA Astrophysics Data System (ADS)
Lynn, Bryan W.; Starkman, Glenn D.
2017-09-01
The weak-scale U (1 )Y Abelian Higgs model (AHM) is the simplest spontaneous symmetry breaking (SSB) gauge theory: a scalar ϕ =1/√{2 }(H +i π )≡1/√{2 }H ˜ei π ˜/⟨H ⟩ and a vector Aμ. The extended AHM (E-AHM) adds certain heavy (MΦ2,Mψ2˜MHeavy2≫⟨H ⟩2˜mWeak2 ) spin S =0 scalars Φ and S =1/2 fermions ψ . In Lorenz gauge, ∂μAμ=0 , the SSB AHM (and E-AHM) has a global U (1 )Y conserved physical current, but no conserved charge. As shown by T. W. B. Kibble, the Goldstone theorem applies, so π ˜ is a massless derivatively coupled Nambu-Goldstone boson (NGB). Proof of all-loop-orders renormalizability and unitarity for the SSB case is tricky because the Becchi-Rouet-Stora-Tyutin (BRST)-invariant Lagrangian is not U (1 )Y symmetric. Nevertheless, Slavnov-Taylor identities guarantee that on-shell T-matrix elements of physical states Aμ,ϕ , Φ , ψ (but not ghosts ω , η ¯ ) are independent of anomaly-free local U (1 )Y gauge transformations. We observe here that they are therefore also independent of the usual anomaly-free U (1 )Y global/rigid transformations. It follows that the associated global current, which is classically conserved only up to gauge-fixing terms, is exactly conserved for amplitudes of physical states in the AHM and E-AHM. We identify corresponding "undeformed" [i.e. with full global U (1 )Y symmetry] Ward-Takahashi identities (WTI). The proof of renormalizability and unitarity, which relies on BRST invariance, is undisturbed. In Lorenz gauge, two towers of "1-soft-pion" SSB global WTI govern the ϕ -sector, and represent a new global U (1 )Y⊗BRST symmetry not of the Lagrangian but of the physics. The first gives relations among off-shell Green's functions, yielding powerful constraints on the all-loop-orders ϕ -sector SSB E-AHM low-energy effective Lagrangian and an additional global shift symmetry for the NGB: π ˜→π ˜+⟨H ⟩θ . A second tower, governing on-shell T-matrix elements, replaces the old Adler self-consistency conditions with those for gauge theories, further severely constrains the effective potential, and guarantees infrared finiteness for zero NGB (π ˜) mass. The on-shell WTI include a Lee-Stora-Symanzik theorem, also for gauge theories. This enforces the strong condition mπ2=0 on the pseudoscalar π (not just the much weaker condition mπ˜2=0 on the NGB π ˜), and causes all relevant-operator contributions to the effective Lagrangian to vanish exactly. In consequence, certain heavy C P -conserving Φ , ψ matter decouple completely in the mHe a v y 2/mwe a k 2→∞ limit. We prove four new low-energy heavy-particle decoupling theorems that are more powerful than the usual Appelquist-Carazzone decoupling theorem: including all virtual ϕ and ψ loop contributions, relevant operators operators vanish exactly due to the exact U (1 )Y symmetry of 1-soft-π Adler-self-consistency relations governing on-shell T-matrix elements. Underlying our results is that global U (1 )Y transformations δU (1 )Y,and nilpotent s2=0 BRST transformations, commute: we prove [δU (1 )Y,s ] in G. 't Hooft's Rξ gauges. With its on-shell T-matrix constraints, SSB E-AHM physics therefore has more symmetry than does its BRST-invariant Lagrangian LE-AHM Rξ : i.e. global U (1 )Y⊗BRST symmetry. The NGB π ˜ decouples from the observable particle spectrum Bμ,h ˜, Φ ˜, ψ ˜ in the usual way, when the observable vector Bμ≡Aμ+1/e ⟨H ⟩ ∂μπ ˜ absorbs it, as if it were a gauge transformation, hiding both towers of U (1 )Y WTI from observable particle physics.
Mixed finite-difference scheme for free vibration analysis of noncircular cylinders
NASA Technical Reports Server (NTRS)
Noor, A. K.; Stephens, W. B.
1973-01-01
A mixed finite-difference scheme is presented for the free-vibration analysis of simply supported closed noncircular cylindrical shells. The problem is formulated in terms of eight first-order differential equations in the circumferential coordinate which possess a symmetric coefficient matrix and are free of the derivatives of the elastic and geometric characteristics of the shell. In the finite-difference discretization, two interlacing grids are used for the different fundamental unknowns in such a way as to avoid averaging in the difference-quotient expressions used for the first derivative. The resulting finite-difference equations are symmetric. The inverse-power method is used for obtaining the eigenvalues and eigenvectors.
Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors
NASA Astrophysics Data System (ADS)
Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue
2018-04-01
Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.
Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry
NASA Astrophysics Data System (ADS)
Rahimzadegan, Aso; Rockstuhl, Carsten; Fernandez-Corbaton, Ivan
2018-05-01
Material electromagnetic duality symmetry requires a system to have equal electric and magnetic responses. Intrinsically dual materials that meet the duality conditions at the level of the constitutive relations do not exist in many frequency bands. Nevertheless, discrete objects like metallic helices and homogeneous dielectric spheres can be engineered to approximate the dual behavior. We exploit the extra degrees of freedom of a core-shell dielectric sphere in a particle optimization procedure. The duality symmetry of the resulting particle is more than 1 order of magnitude better than previously reported nonmagnetic objects. We use T -matrix-based multiscattering techniques to show that the improvement is transferred onto the duality symmetry of composite objects when the core-shell particle is used as a building block instead of homogeneous spheres. These results are relevant for the fashioning of systems with high duality symmetry, which are required for some technologically important effects.
NASA Astrophysics Data System (ADS)
Germain, Norbert; Besson, Jacques; Feyel, Frédéric
2007-07-01
Simulating damage and failure of laminate composites structures often fails when using the standard finite element procedure. The difficulties arise from an uncontrolled mesh dependence caused by damage localization and an increase in computational costs. One of the solutions to the first problem, widely used to predict the failure of metallic materials, consists of using non-local damage constitutive equations. The second difficulty can then be solved using specific finite element formulations, such as shell element, which decrease the number of degrees of freedom. The main contribution of this paper consists of extending these techniques to layered materials such as polymer matrix composites. An extension of the non-local implicit gradient formulation, accounting for anisotropy and stratification, and an original layered shell element, based on a new partition of the unity, are proposed. Finally the efficiency of the resulting numerical scheme is studied by comparing simulation with experimental results.
Vanderplank, Sula E.; Mata, Sergio; Ezcurra, Exequiel
2014-01-01
Natural and cultural heritage sites frequently have nonoverlapping or even conflicting conservation priorities, because human impacts have often resulted in local extirpations and reduced levels of native biodiversity. Over thousands of years, the predictable winter rains of northwestern Baja California have weathered calcium from the clam shells deposited by indigenous peoples in middens along the coast. The release of this calcium has changed soil properties, remediated sodic and saline soils, and resulted in a unique microhabitat that harbors plant assemblages very different from those of the surrounding matrix. Native plant biodiversity and landscape heterogeneity are significantly increased on the anthropogenic soils of these shell middens. Protection of this cultural landscape in the Anthropocene will further both archeological and biodiversity conservation in these anthropogenic footprints from the Holocene. Along these coasts, natural and cultural heritage priorities are overlapping and mutually beneficial. PMID:26955068
NASA Astrophysics Data System (ADS)
Cristescu, R.; Popescu, C.; Socol, G.; Iordache, I.; Mihailescu, I. N.; Mihaiescu, D. E.; Grumezescu, A. M.; Balan, A.; Stamatin, I.; Chifiriuc, C.; Bleotu, C.; Saviuc, C.; Popa, M.; Chrisey, D. B.
2012-09-01
We report on thin film deposition of nanostructured Fe3O4/oleic acid/ceftriaxone and Fe3O4/oleic acid/cefepime nanoparticles (core/shell/adsorption-shell) were fabricated by matrix assisted pulsed laser evaporation (MAPLE) onto inert substrates. The thin films were characterized by profilometry, Fourier transform infrared spectroscopy, atomic force microscopy, and investigated by in vitro biological assays. The biological properties tested included the investigation of the microbial viability and the microbial adherence to the glass coverslip nanoparticle film, using Gram-negative and Gram-positive bacterial strains with known antibiotic susceptibility behavior, the microbial adherence to the HeLa cells monolayer grown on the nanoparticle pellicle, and the cytotoxicity on eukaryotic cells. The proposed system, based on MAPLE, could be used for the development of novel anti-microbial materials or strategies for fighting pathogenic biofilms frequently implicated in the etiology of biofilm associated chronic infections.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dytrych, T.; Maris, Pieter; Launey, K. D.
2016-06-09
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations ofmore » states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.« less
Ito, Daisuke; Yokoyama, Shun; Zaikova, Tatiana; Masuko, Keiichiro; Hutchison, James E
2014-01-28
The properties of metal oxide nanocrystals can be tuned by incorporating mixtures of matrix metal elements, adding metal ion dopants, or constructing core/shell structures. However, high-temperature conditions required to synthesize these nanocrystals make it difficult to achieve the desired compositions, doping levels, and structural control. We present a lower temperature synthesis of ligand-stabilized metal oxide nanocrystals that produces crystalline, monodisperse nanocrystals at temperatures well below the thermal decomposition point of the precursors. Slow injection (0.2 mL/min) of an oleic acid solution of the metal oleate complex into an oleyl alcohol solvent at 230 °C results in a rapid esterification reaction and the production of metal oxide nanocrystals. The approach produces high yields of crystalline, monodisperse metal oxide nanoparticles containing manganese, iron, cobalt, zinc, and indium within 20 min. Synthesis of tin-doped indium oxide (ITO) can be accomplished with good control of the tin doping levels. Finally, the method makes it possible to perform epitaxial growth of shells onto nanocrystal cores to produce core/shell nanocrystals.
Song, Qiushi; Xu, Qian; Chen, Ying; Xu, Liang; Man, Tiannan
2017-01-01
An NbC–Fe composite powder was synthesized from an Nb2O5/Fe/C mixture by electrochemical reduction and subsequent carbonization in molten CaCl2–NaCl. The composite has a core–shell structure, in which NbC acts as the cores distributing in the Fe matrix. A strong bonding between NbC and Fe is benefit from the core–shell structure. The sintering and electrochemical reduction processes were investigated to probe the mechanism for the reactions. The results show that NbC particles about several nanometers were embraced by the Fe shell to form a composite about 100 nm in size. This featured structure can feasibly improve the wettability and sinterability of NbC as well as the uniform distribution of the carbide in the cast steel. By adding the composite into steel in the casting process, the grain size of the casted steel was markedly deceased from 1 mm to 500 μm on average, favoring the hardening of the casted steel. PMID:29104266
NASA Astrophysics Data System (ADS)
Manthina, Venkata; Agrios, Alexander G.
2017-04-01
Heterostructures consisting of Co-doped ZnO nanorod cores encased in an undoped ZnO shell were successfully synthesized to serve as photoanodes for dye-sensitized solar cells (DSSCs) by a two-step chemical bath deposition (CBD) technique. This yields a highly favorable structure in which electrons injected from the dye into the ZnO then step down in energy into the Co-doped core, where the electron is transported to the collector while the ZnO shell acts as a barrier to recombination with the electrolyte. Incorporation of the core/shell structures into DSSCs resulted in large improvements in photocurrent and photovoltage in comparison to pure ZnO nanorod-based DSSCs. SEM and XRD characterization indicate incorporation of the Co2+ into the ZnO matrix, without separation of the Co into other phases, providing no energy barriers. In addition, the ability of these heterostructures to reduce recombination rates in redox couples with fast recombination rates was probed by comparing DSSC device performance in both iodide/triiodide-based and ferrocene/ferrocenium-based electrolytes.
Xiang, Liang; Kong, Wei; Su, Jingtan; Liang, Jian; Zhang, Guiyou; Xie, Liping; Zhang, Rongqing
2014-01-01
The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC) precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation. PMID:25405357
Organic filler from golden apple snails shells to improve the silicone rubber insulator properties
NASA Astrophysics Data System (ADS)
Tepsila, Sujirat; Suksri, Amnart
2018-02-01
This paper investigates the effect of an addition of filler compound using golden apple snail shell as an organic filler to the silicone rubber insulator. The filler obtained from golden apple snail shell is found mostly contained calcium carbonate. The organic calcium carbonate (CaCO3) with particle size of 45, 75, 100 and 300 micron were prepared. Sample of silicone rubber that were filled with fillers were tested under ASTM D638-02a type standard for mechanical test. Also, electrical test such as I-V characteristics (ASTM D257-07) and dry arc test according to ASTM D495-14 have been performed. The results revealed that using larger particle size of organic filler obtained from the golden apple snail shell resulted to higher value of dielectric constant as well as higher dielectric strength. Also, the filler helps slow down the tracking activity at an insulator surface due to its crystals of calcium carbonate. However, when using excessive amount of filler, the sample will have a drawbacks in mechanical properties. By using agriculture waste as a filler compound, one can reduced the usage of commercial CaCO3 as an inorganic materials and to lower the investment cost to a final silicone rubber product.
Early post-mortem formation of carbonate concretions around tusk-shells over week-month timescales
NASA Astrophysics Data System (ADS)
Yoshida, Hidekazu; Ujihara, Atsushi; Minami, Masayo; Asahara, Yoshihiro; Katsuta, Nagayoshi; Yamamoto, Koshi; Sirono, Sin-Iti; Maruyama, Ippei; Nishimoto, Shoji; Metcalfe, Richard
2015-09-01
Carbonate concretions occur in sedimentary rocks of widely varying geological ages throughout the world. Many of these concretions are isolated spheres, centered on fossils. The formation of such concretions has been variously explained by diffusion of inorganic carbon and organic matter in buried marine sediments. However, details of the syn-depositional chemical processes by which the isolated spherical shape developed and the associated carbon sources are little known. Here we present evidence that spherical carbonate concretions (diameters φ : 14 ~ 37 mm) around tusk-shells (Fissidentalium spp.) were formed within weeks or months following death of the organism by the seepage of fatty acid from decaying soft body tissues. Characteristic concentrations of carbonate around the mouth of a tusk-shell reveal very rapid formation during the decay of organic matter from the tusk-shell. Available observations and geochemical evidence have enabled us to construct a ‘Diffusion-growth rate cross-plot’ that can be used to estimate the growth rate of all kinds of isolated spherical carbonate concretions identified in marine formations. Results shown here suggest that isolated spherical concretions that are not associated with fossils might also be formed from carbon sourced in the decaying soft body tissues of non-skeletal organisms with otherwise low preservation potential.
Quesada-Medina, Joaquín; López-Cremades, Francisco Javier; Olivares-Carrillo, Pilar
2010-11-01
The solubility of lignin from hydrolyzed almond (Prunus amygdalus) shells in different acetone, ethanol and dioxane-water mixtures and conditions (extraction time and temperature) was studied. The concept of the solubility parameter (delta-value) was applied to explain the effect of organic solvent concentration on lignin solubility. The organic solvent-water mixture that led to the highest lignin extraction was composed of a 75% vol. of organic solvent for all the solvent series investigated (acetone, ethanol and dioxane). Moreover, the best lignin extraction conditions were a temperature of 210 degrees C and an extraction time of 40 min for the acetone and ethanol series, and 25 min for the dioxane series. The delta-value of the hydrolyzed almond shell lignin [14.60 (cal/cm(3))(1/2)] and that of the organic solvent-water mixtures was calculated. The experimental delignification capacity of the aqueous organic solvents clearly reflected the proximity of their delta-value to that of lignin. The hydrogen-bonding capacity of the solvent-water mixtures was also taken into account. Copyright 2010 Elsevier Ltd. All rights reserved.
Gao, Hongyi; Luan, Yi; Chaikittikul, Kullapat; Dong, Wenjun; Li, Jie; Zhang, Xiaowei; Jia, Dandan; Yang, Mu; Wang, Ge
2015-03-04
A hierarchical yolk/shell copper hydroxysulfates@MOF (CHS@MOF, where MOF = metal-organic frameworks) structure was fabricated from a homogeneous yolk/shell CHS template composed of an active shell and a stabilized core via a facile self-template strategy at room temperature. The active shell of the template served as the source of metal ion and was in situ transformed into a well-defined MOF crystal shell, and the relatively stabilized core retained its own nature during the formation of the MOF shell. The strategy of in situ transformation of CHS shell to MOF shell avoided the self-nucleation of MOF in the solution and complex multistep procedures. Furthermore, a flow reaction system using CHS@MOF as self-supported stationary-phase catalyst was developed, which demonstrated excellent catalytic performance for aldehyde acetalization with ethanol, and high yields and selectivities were achieved under mild conditions.
Elevated extracellular pH during early shell formation in the blue mussel Mytilus edulis
NASA Astrophysics Data System (ADS)
Ramesh, K.; Melzner, F.; Himmerkus, N.; Hu, M.; Bleich, M.
2016-02-01
Marine calcifiers are amongst the most vulnerable organisms to ocean acidification (OA). However, limited studies investigate the mechanisms underlying their hindered performance under OA stress. Working with larval stages of the blue mussel, Mytilus edulis, we use microsensors to study the pH and calcium conditions necessary for shell deposition. Using 45-48 hour, D-veliger stages, we discover alkaline conditions with respect to ambient seawater pH by 0.28 pH units and higher calcium concentrations (by 0.54mM) in the extra pallial space beneath the growing shell that likely promotes the rapid synthesis of the first shell. We further use enzyme assays in combination with immuno-stainings of sodium-potassium ATPase (NKA) and proton ATPase (VHA) to provide information on the major ion regulatory pathways that enable transport of calcium carbonate required for shell formation and pH homeostasis. We also use the juvenile stages of M. edulis to understand how extracellular pH regulation close to the shell formation site will be influenced by OA stress. This allows us to describe the pH dependency of early shell formation and to begin to develop a model of the ion regulatory network that facilitates biomineralisation in the organism. The results are discussed in the context of environmental change and consequences for mollusc developmental success.
Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn
2016-04-01
This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenitzer, Veronika; Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg; Eichner, Norbert
Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report themore » heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.« less
Problems in understanding the structure and assembly of viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.
1997-12-01
Though viruses infect the cells of all groups of animals, plants, and microorganisms, their structures follow a limited number of general themes; spherical or cylindrical shells built of hundreds of repeated protein subunits enclosing a nucleic acid - DNA or RNA - genome. Since the 1960s it has been known that the protein shells of spherical viruses in fact conform to icosahedral symmetry or to subtle deviations from icosahedral symmetry. The construction of the shell lattices and the transformations they go through in the different stages of the viral life cycle are not fully understood. The shells contain the nucleicmore » in a highly condensed state, of unknown coiling/organization. Features of the well studied bacterial viruses will be reviewed, with examples from adenoviruses, herpesviruses, poliovirus, and HIV. The emergence of new viral disease has led to increased interest in the development of agents which interfere with virus reproduction at the level of the assembly or function of the organized particle. Recently computational approaches to the problem of virus assembly have made important contributions to clarifying shell assembly processes. 1 ref.« less
NASA Astrophysics Data System (ADS)
Siskova, Karolina; Tucek, Jiri; Machala, Libor; Otyepkova, Eva; Filip, Jan; Safarova, Klara; Pechousek, Jiri; Zboril, Radek
2012-03-01
We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic-organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic-organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.
NASA Astrophysics Data System (ADS)
Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath
2015-07-01
The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.
Renormalization of composite operators in Yang-Mills theories using a general covariant gauge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, J.C.; Scalise, R.J.
Essential to QCD applications of the operator product expansion, etc., is a knowledge of those operators that mix with gauge-invariant operators. A standard theorem asserts that the renormalization matrix is triangular: Gauge-invariant operators have alien'' gauge-variant operators among their counterterms, but, with a suitably chosen basis, the necessary alien operators have only themselves as counterterms. Moreover, the alien operators are supposed to vanish in physical matrix elements. A recent calculation by Hamberg and van Neerven apparently contradicts these results. By explicit calculations with the energy-momentum tensor, we show that the problems arise because of subtle infrared singularities that appear whenmore » gluonic matrix elements are taken on shell at zero momentum transfer.« less
Tungsten wire/FeCrAlY matrix turbine blade fabrication study
NASA Technical Reports Server (NTRS)
Melnyk, P.; Fleck, J. N.
1979-01-01
The objective was to establish a viable FRS monotape technology base to fabricate a complex, advanced turbine blade. All elements of monotape fabrication were addressed. A new process for incorporation of the matrix, including bi-alloy matrices, was developed. Bonding, cleaning, cutting, sizing, and forming parameters were established. These monotapes were then used to fabricate a 48 ply solid JT9D-7F 1st stage turbine blade. Core technology was then developed and first a 12 ply and then a 7 ply shell hollow airfoil was fabricated. As the fabrication technology advanced, additional airfoils incorporated further elements of sophistication, by introducing in sequence bonded root blocks, cross-plying, bi-metallic matrix, tip cap, trailing edge slots, and impingement inserts.
LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact
NASA Technical Reports Server (NTRS)
Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.
2003-01-01
A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.
Chen, Wei; Zhao, Fei; Tian, Zhi Mei; Zhang, Han Xing; Ruan, Dong; Li, Yan; Wang, Shuang; Zheng, Chun Tian; Lin, Ying Cai
2015-10-01
The objective of this study was to determine the effects of dietary calcium deficiency on the process of shell formation. Four hundred and fifty female ducks (Anas platyrhynchos) at 22 weeks were randomly assigned to three groups. Ducks were fed one of two calcium-deficient diets (containing 1.8% or 0.38% calcium, respectively) or a calcium-adequate control diet (containing 3.6% calcium) for 67 days (depletion period) and then all ducks were fed a calcium-adequate diet for an additional 67 days (repletion period). Compared with the calcium-adequate control, the average shell thickness, egg shell weight, breaking strength, mammillae density and mammillary knob thickness of shell from ducks that consumed the diet with 0.38% calcium were significantly decreased (P<0.05) during the depletion period, accompanied by reduced tibia quality. The mRNA expression of both secreted phosphoprotein 1 (SPP1) and carbonic anhydrase 2 (CA2) in the uterus was decreased after feeding calcium-deficient diets (1.8% or 0.38% calcium). mRNA transcripts of calbindin 1 (CALB1), an important protein responsible for calcium transport, and the matrix protein genes ovocalyxin-32 (OCX-32) and ovocleidin-116 (OC-116) were reduced in ducks fed 0.38% calcium but not 1.8% calcium. Plasma estradiol concentration was decreased by both of the calcium-deficient diets (P<0.05). The impaired shell quality and suppressed functional proteins involved in shell formation could be reversed by repletion of dietary calcium. The results of the present study suggest that dietary calcium deficiency negatively affects eggshell quality and microarchitecture, probably by suppressing shell biomineralization. © 2015. Published by The Company of Biologists Ltd.
Carey, Nicholas; Dupont, Sam; Sigwart, Julia D
2016-10-01
Ocean acidification is expected to cause energetic constraints upon marine calcifying organisms such as molluscs and echinoderms, because of the increased costs of building or maintaining shell material in lower pH. We examined metabolic rate, shell morphometry, and calcification in the sea hare Aplysia punctata under short-term exposure (19 days) to an extreme ocean acidification scenario (pH 7.3, ∼2800 μatm pCO 2 ), along with a group held in control conditions (pH 8.1, ∼344 μatm pCO 2 ). This gastropod and its congeners are broadly distributed and locally abundant grazers, and have an internal shell that protects the internal organs. Specimens were examined for metabolic rate via closed-chamber respirometry, followed by removal and examination of the shell under confocal microscopy. Staining using calcein determined the amount of new calcification that occurred over 6 days at the end of the acclimation period. The width of new, pre-calcified shell on the distal shell margin was also quantified as a proxy for overall shell growth. Aplysia punctata showed a 30% reduction in metabolic rate under low pH, but calcification was not affected. This species is apparently able to maintain calcification rate even under extreme low pH, and even when under the energetic constraints of lower metabolism. This finding adds to the evidence that calcification is a largely autonomous process of crystallization that occurs as long as suitable haeomocoel conditions are preserved. There was, however, evidence that the accretion of new, noncalcified shell material may have been reduced, which would lead to overall reduced shell growth under longer-term exposures to low pH independent of calcification. Our findings highlight that the chief impact of ocean acidification upon the ability of marine invertebrates to maintain their shell under low pH may be energetic constraints that hinder growth of supporting structure, rather than maintenance of calcification.
Experimental Approach on the Behavior of Composite Laminated Shell under Transverse Impact Loading
NASA Astrophysics Data System (ADS)
Kim, Y. N.; Im, K. H.; Lee, K. S.; Cho, Y. J.; Kim, S. H.; Yang, I. Y.
2005-04-01
Composites are to be considered for many structural applications structural weight. These materials have high strength-to-weight and stiffness-to-weight ratios. However, they are susceptible to impact loading because they are laminar systems with weak interfaces. Matrix cracking and delamination are the most common damage mechanisms of low velocity impact and are dependent on each other. This paper is to study the behavior of composite shell under transverse impact loading. In this study, carbon-epoxy composite laminates with various curvatures was used. Low velocity impact tests were performed using a drop weight testing machine. The 100mm×100mm shells were clamped in order to produce a central circular area (φ=80mm). An hemispherical impactor (m=0.1kg and φ=10mm) was used and the tests were done with velocities ranging from 2.8 to 4.8 m/s. The real curve force/time was registered in order to obtain the maximum contact force and contact time. And then, we know that contact force and delamination area of flat-plate is higher than cylindrical shell panel in the same kinetic energy level, and flat-plate is easily penetrated than cylindrical shell panel. And contact force, deflection and delamination area decrease as the curvature increase.
Suresh, S; Saravanan, P; Jayamoorthy, K; Ananda Kumar, S; Karthikeyan, S
2016-07-01
In this article a series of epoxy nanocomposites film were developed using amine functionalized (ZnO-APTES) core shell nanoparticles as the dispersed phase and a commercially available epoxy resin as the matrix phase. The functional group of the samples was characterized using FT-IR spectra. The most prominent peaks of epoxy resin were found in bare epoxy and in all the functionalized ZnO dispersed epoxy nanocomposites (ZnO-APTES-DGEBA). The XRD analysis of all the samples exhibits considerable shift in 2θ, intensity and d-spacing values but the best and optimum concentration is found to be 3% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposites supported by FT-IR results. From TGA measurements, 100wt% residue is obtained in bare ZnO nanoparticles whereas in ZnO core shell nanoparticles grafted DGEBA residue percentages are 37, 41, 45, 46 and 52% for 0, 1, 3, 5 and 7% ZnO-APTES-DGEBA respectively, which is confirmed with ICP-OES analysis. From antimicrobial activity test, it was notable that antimicrobial activity of 7% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposite film has best inhibition zone effect against all pathogens under study. Copyright © 2016 Elsevier B.V. All rights reserved.
Del Campo, A; de León, A S; Rodríguez-Hernández, J; Muñoz-Bonilla, A
2017-03-21
Herein, we propose a strategy to fabricate core-shell microstructures ordered in hexagonal arrays by combining the breath figures approach and phase separation of immiscible ternary blends. This simple strategy to fabricate these structures involves only the solvent casting of a ternary polymer blend under moist atmosphere, which provides a facile and low-cost fabrication method to obtain the porous structures with a core-shell morphology. For this purpose, blends consisting of polystyrene (PS) as a major component and PS 40 -b-P(PEGMA300) 48 amphiphilic copolymer and polydimethylsiloxane (PDMS) as minor components were dissolved in tetrahydrofuran and cast onto glass wafers under humid conditions, 70% of relative humidity. The resulting porous morphologies were characterized by optical and confocal Raman microscopy. In particular, confocal Raman results demonstrated the formation of core-shell morphologies into the ordered pores, in which the PS forms the continuous matrix, whereas the other two phases are located into the cavities (PDMS is the core while the amphiphilic copolymer is the shell). Besides, by controlling the weight ratio of the polymer blends, the structural parameters of the porous structure such as pore diameter and the size of the core can be effectively tuned.
Bivalves filter suspended phytoplankton, detritus and bacteria from the water column. During feeding contaminants associated with these suspended materials or dissolved in the water are ingested and potentially bioaccumulated in both soft tissue and shell matrix. Consequently biv...
Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic
NASA Technical Reports Server (NTRS)
Grant, S. W.; Knoll, A. H. (Principal Investigator)
1990-01-01
Cloudina-bearing biosparites and biomicrites in the lower part of the Nama Group, Namibia, contain a wide morphological diversity of shell fragments that can all be attributed to the two named species C. hartmannae and C. riemkeae. The curved to sinuous tubular shells of Cloudina were multi-layered. Each shell layer was 8 to 50 micrometers thick and in the form of a slightly flaring tube with one end open and the other closed. Growth appears to have been periodic with successive shell layers forming within older layers. Each added layer was slightly elevated from the previous layer at the proximal end and was asymmetrically placed within the older layer so that only a portion of the new shell layer was fused to the previous layer. This type of growth left a relatively large unminerialized area between the shell layers which was often partially or fully occluded by early marine cements. The thin shell layers exhibit both plastic and brittle deformation and were likely formed of a rigid CaCO3-impregnated organic-rich material. Often the shell layers are preferentially dolomitized suggesting an original mineralogy of high-magnesian calcite. Both species in the Nama Group formed thickets, or perhaps bioherms, and this sedentary and gregarious habit suggests that Cloudina was probably a filter-feeding metazoan of at least a cnidarian grade of organization. The unusual shell structure of Cloudina gives rise to a characteristic suite of taphonomic and diagenetic features that can be used to identify Cloudina-bearing deposits within the Nama Group and in other terminal Proterozoic deposits around the world. Species of Cloudina occur in limestones from Brazil, Spain, China, and Oman in sequences consistent with a latest Proterozoic age assignment. In addition, supposed lower Cambrian, pre-trilobitic, shelly fossils from northwest Mexico and the White-Inyo Mountains in California and Nevada, including Sinotubulites, Nevadatubulus, and Wyattia, are all either closely related to or con-generic with Cloudina. Hence, it is probable that these outcrops are latest Proterozoic in age, and that Cloudina or Cloudina-like organisms were widely distributed at that time. It is possible, moreover, to suggest that metazoan biomineralization occurred on a global scale by the latest Proterozoic, at the same time that evidence for complex multicellularity and locomotion in animals appears in siliciclastic "Ediacaran" rocks in the form of body and trace fossils.
Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers
NASA Astrophysics Data System (ADS)
Bury, Marcin; van Hameren, Andreas; Jung, Hannes; Kutak, Krzysztof; Sapeta, Sebastian; Serino, Mirko
2018-02-01
A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high p_t dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization.
Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers.
Bury, Marcin; van Hameren, Andreas; Jung, Hannes; Kutak, Krzysztof; Sapeta, Sebastian; Serino, Mirko
2018-01-01
A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high [Formula: see text] dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; ...
2017-11-08
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V
2015-02-13
We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.
An Eocene orthocone from Antarctica shows convergent evolution of internally shelled cephalopods
Bengtson, Stefan; Reguero, Marcelo A.; Mörs, Thomas
2017-01-01
Background The Subclass Coleoidea (Class Cephalopoda) accommodates the diverse present-day internally shelled cephalopod mollusks (Spirula, Sepia and octopuses, squids, Vampyroteuthis) and also extinct internally shelled cephalopods. Recent Spirula represents a unique coleoid retaining shell structures, a narrow marginal siphuncle and globular protoconch that signify the ancestry of the subclass Coleoidea from the Paleozoic subclass Bactritoidea. This hypothesis has been recently supported by newly recorded diverse bactritoid-like coleoids from the Carboniferous of the USA, but prior to this study no fossil cephalopod indicative of an endochochleate branch with an origin independent from subclass Bactritoidea has been reported. Methodology/Principal findings Two orthoconic conchs were recovered from the Early Eocene of Seymour Island at the tip of the Antarctic Peninsula, Antarctica. They have loosely mineralized organic-rich chitin-compatible microlaminated shell walls and broadly expanded central siphuncles. The morphological, ultrustructural and chemical data were determined and characterized through comparisons with extant and extinct taxa using Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM/EDS). Conclusions/Significance Our study presents the first evidence for an evolutionary lineage of internally shelled cephalopods with independent origin from Bactritoidea/Coleoidea, indicating convergent evolution with the subclass Coleoidea. A new subclass Paracoleoidea Doguzhaeva n. subcl. is established for accommodation of orthoconic cephalopods with the internal shell associated with a broadly expanded central siphuncle. Antarcticerida Doguzhaeva n. ord., Antarcticeratidae Doguzhaeva n. fam., Antarcticeras nordenskjoeldi Doguzhaeva n. gen., n. sp. are described within the subclass Paracoleoidea. The analysis of organic-rich shell preservation of A. nordenskjoeldi by use of SEM/EDS techniques revealed fossilization of hyposeptal cameral soft tissues. This suggests that a depositional environment favoring soft-tissue preservation was the factor enabling conservation of the weakly mineralized shell of A. nordenskjoeldi. PMID:28248970
Scussel, Vildes M; Manfio, Daniel; Savi, Geovana D; Moecke, Elisa H S
2014-11-01
This work reports the in-shell Brazil nut spoilage susceptible morpho-histological characteristics and fungi infection (shell, edible part, and brown skin) through stereo and scanning electron microscopies (SEM). The following characteristics related to shell (a) morphology-that allow fungi and insects' entrance to inner nut, and (b) histology-that allow humidity absorption, improving environment conditions for living organisms development, were identified. (a.1) locule in testae-the nut navel, which is a cavity formed during nut detaching from pods (located at 1.0 to 2.0/4th of the shell B&C nut faces linkage). It allows the nut brown skin (between shell and edible part) first contact to the external environment, through the (a.2) nut channel-the locule prolongation path, which has the water/nutrients cambium function for their transport and distribution to the inner seed (while still on the tree/pod). Both, locule followed by the channel, are the main natural entrance of living organisms (fungi and insects), including moisture to the inner seed structures. In addition, the (a.3) nut shell surface-which has a crinkled and uneven surface morphology-allows water absorption, thus adding to the deterioration processes too. The main shell histological characteristic, which also allows water absorption (thus improving environment conditions for fungi proliferation), is the (b.1) cell wall porosity-the multilayered wall and porous rich cells that compose the shell faces double tissue layers and the (b.2) soft tissue-the mix of tissues 2 faces corner/linkage. This work also shows in details the SEM nut spoilage susceptible features highly fungi infected with hyphae and reproductive structures distribution. © 2014 Institute of Food Technologists®
Ge, Xiaoli; Li, Zhaoqiang; Wang, Chengxiang; Yin, Longwei
2015-12-09
Metal-organic frameworks (MOFs) derived porous core/shell ZnO/ZnCo2O4/C hybrids with ZnO as a core and ZnCo2O4 as a shell are for the first time fabricated by using core/shell ZnCo-MOF precursors as reactant templates. The unique MOFs-derived core/shell structured ZnO/ZnCo2O4/C hybrids are assembled from nanoparticles of ZnO and ZnCo2O4, with homogeneous carbon layers coated on the surface of the ZnCo2O4 shell. When acting as anode materials for lithium-ion batteries (LIBs), the MOFs-derived porous ZnO/ZnCo2O4/C anodes exhibit outstanding cycling stability, high Coulombic efficiency, and remarkable rate capability. The excellent electrochemical performance of the ZnO/ZnCo2O4/C LIB anodes can be attributed to the synergistic effect of the porous structure of the MOFs-derived core/shell ZnO/ZnCo2O4/C and homogeneous carbon layer coating on the surface of the ZnCo2O4 shells. The hierarchically porous core/shell structure offers abundant active sites, enhances the electrode/electrolyte contact area, provides abundant channels for electrolyte penetration, and also alleviates the structure decomposition induced by Li(+) insertion/extraction. The carbon layers effectively improve the conductivity of the hybrids and thus enhance the electron transfer rate, efficiently prevent ZnCo2O4 from aggregation and disintegration, and partially buffer the stress induced by the volume change during cycles. This strategy may shed light on designing new MOF-based hybrid electrodes for energy storage and conversion devices.
Lin, Guo; Gao, Chaohong; Zheng, Qiong; Lei, Zhixian; Geng, Huijuan; Lin, Zian; Yang, Huanghao; Cai, Zongwei
2017-03-28
Core-shell structured magnetic covalent organic frameworks (Fe 3 O 4 @COFs) were synthesized via a facile approach at room temperature. Combining the advantages of high porosity, magnetic responsiveness, chemical stability and selectivity, Fe 3 O 4 @COFs can serve as an ideal absorbent for the highly efficient enrichment of peptides and the simultaneous exclusion of proteins from complex biological samples.
NASA Astrophysics Data System (ADS)
Mohammed Safiullah, S.; Abdul Wasi, K.; Anver Basha, K.
2015-12-01
Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.
Li, Zhaokun; Song, Shixin; Zhao, Xuanchen; Lv, Xue; Sun, Shulin
2017-01-01
In order to overcome the brittleness of polylactide (PLA), reactive core-shell particles (RCS) with polybutadiene as core and methyl methacrylate-co-styrene-co-glycidyl methacrylate as shell were prepared to toughen PLA. Tert-dodecyl mercaptan (TDDM) was used as chain transfer agent to modify the grafting properties (such as grafting degree, shell thickness, internal and external grafting) of the core-shell particles. The introduction of TDDM decreased the grafting degree, shell thickness and the Tg of the core phase. When the content of TDDM was lower than 1.15%, the RCS particles dispersed in the PLA matrix uniformly—otherwise, agglomeration took place. The addition of RCS particles induced a higher cold crystallization temperature and a lower melting temperature of PLA which indicated the decreased crystallization ability of PLA. Dynamic mechanical analysis (DMA) results proved the good miscibility between PLA and the RCS particles and the increase of TDDM in RCS induced higher storage modulus of PLA/RCS blends. Suitable TDDM addition improved the toughening ability of RCS particles for PLA. In the present research, PLA/RCS-T4 (RCS-T4: the reactive core-shell particles with 0.76 wt % TDDM addition) blends displayed much better impact strength than other blends due to the easier cavitation/debonding ability and good dispersion morphology of the RCS-T4 particles. When the RCS-T4 content was 25 wt %, the impact strength of PLA/RCS-T4 blend reached 768 J/m, which was more than 25 times that of the pure PLA. PMID:28813019
Li, Zhaokun; Song, Shixin; Zhao, Xuanchen; Lv, Xue; Sun, Shulin
2017-08-16
In order to overcome the brittleness of polylactide (PLA), reactive core-shell particles (RCS) with polybutadiene as core and methyl methacrylate-co-styrene-co-glycidyl methacrylate as shell were prepared to toughen PLA. Tert-dodecyl mercaptan (TDDM) was used as chain transfer agent to modify the grafting properties (such as grafting degree, shell thickness, internal and external grafting) of the core-shell particles. The introduction of TDDM decreased the grafting degree, shell thickness and the T g of the core phase. When the content of TDDM was lower than 1.15%, the RCS particles dispersed in the PLA matrix uniformly-otherwise, agglomeration took place. The addition of RCS particles induced a higher cold crystallization temperature and a lower melting temperature of PLA which indicated the decreased crystallization ability of PLA. Dynamic mechanical analysis (DMA) results proved the good miscibility between PLA and the RCS particles and the increase of TDDM in RCS induced higher storage modulus of PLA/RCS blends. Suitable TDDM addition improved the toughening ability of RCS particles for PLA. In the present research, PLA/RCS-T4 (RCS-T4: the reactive core-shell particles with 0.76 wt % TDDM addition) blends displayed much better impact strength than other blends due to the easier cavitation/debonding ability and good dispersion morphology of the RCS-T4 particles. When the RCS-T4 content was 25 wt %, the impact strength of PLA/RCS-T4 blend reached 768 J/m, which was more than 25 times that of the pure PLA.
Tabassum, Rana; Kaur, Parvinder; Gupta, Banshi D
2016-05-27
We report the fabrication and characterization of a surface plasmon resonance (SPR)-based fiber optic sensor that uses coatings of silver and aluminum (Al)-zinc oxide (ZnO) core-shell nanostructure (Al@ZnO) for the detection of phenyl hydrazine (Ph-Hyd). To optimize the volume fraction (f) of Al in ZnO and the thickness of the core-shell nanostructure layer (d), the electric field intensity along the normal to the multilayer system is simulated using the two-dimensional multilayer matrix method. The Al@ZnO core-shell nanostructure is prepared using the laser ablation technique. Various probes are fabricated with different values of f and an optimized thickness of core-shell nanostructure for the characterization of the Ph-Hyd sensor. The performance of the Ph-Hyd sensor is evaluated in terms of sensitivity. It is found that the Ag/Al@ZnO nanostructure core-shell-coated SPR probe with f = 0.25 and d = 0.040 μm possesses the maximum sensitivity towards Ph-Hyd. These results are in agreement with the simulated ones obtained using electric field intensity. In addition, the performance of the proposed probe is compared with that of probes coated with (i) Al@ZnO nanocomposite, (ii) Al nanoparticles and (iii) ZnO nanoparticles. It is found that the probe coated with an Al@ZnO core-shell nanostructure shows the largest resonance wavelength shift. The detailed mechanism of the sensing (involving chemical reactions) is presented. The sensor also manifests optimum performance at pH 7.
Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice; Argenziano, Monica; Gulino, Giulia Rossana; Rivolta, Ilaria; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro
2015-08-01
In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. HaCaT cells were treated for 24h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Bo; Su, Ning-Ning; Cui, Wen-Li; Yan, Shi-Nong
2018-04-01
In this work, a type of asymmetric granule/matrix composite film is designed, where the Ni granule is dispersed in PZT matrix, meanwhile the top and bottom electrode is constituted by Au and SRO respectively. Predicted through the electrostatic screening model and mean field approximation, considerable electrostatic charge is induced on Ni granule surface by ferroelectric PZT polarization. Predicted through the spin splitting model and spherical shell approximation, both the magnetization and magnetic anisotropy of Ni granule are modulated by ferroelectric PZT polarization. As the volume fraction of Ni granule is increased, the electric modulation of magnetization and magnetic anisotropy is reduced and enhanced respectively. As the dimension of granule/matrix composite is varied, such modulation is retained. Due to the large area-volume ratio of nano-granule, this work benefits to realize the converse magnetoelectric coupling in nanoscale.
A comparison of ASTROMAG coils made with aluminum and copper based superconductor
NASA Technical Reports Server (NTRS)
Green, M. A.
1991-01-01
The use of an aluminum matrix superconductor in the coils for the ASTROMAG magnet will increase the integrated field for conducting particle astrophysics experiments in space as compared to equal mass coils made with a copper matrix superconductor. The increased ability to detect charged particles can be achieved without decreasing the current margin of the superconductor in the coils. The use of a low-resistivity aluminum matrix conductor increases the energy needed to initiate a quench by two orders or magnitude. The current decay time constant during a quench is substantially increased. As a result, the quench energy dumped into the helium tank is reduced (the ASTROMAG coils are thermally decoupled from the helium tank), and the forces on the shield and shells due to eddy currents will be lower. A description is also given of the problems associated with the use of an aluminum matrix superconductor in the coils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuanqiang, Zhou; Xiangxiang, Gong; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou
This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure andmore » function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution.« less
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2018-05-01
We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.
Glass shell manufacturing in space
NASA Technical Reports Server (NTRS)
Downs, R. L.; Ebner, M. A.; Nolen, R. L., Jr.
1981-01-01
Highly-uniform, hollow glass spheres (shells), which are used for inertial confinement fusion targets, were formed from metal-organic gel powder feedstock in a vertical furnace. As a result of the rapid pyrolysis caused by the furnace, the gel is transformed to a shell in five distinct stages: (a) surface closure of the porous gel; (b) generation of a closed-cell foam structure in the gel; (c) spheridization of the gel and further expansion of the foam; (d) coalescence of the closed-cell foam to a single-void shell; and (e) fining of the glass shell. The heat transfer from the furnace to the falling gel particle was modeled to determine the effective heating rate of the gel. The model predicts the temperature history for a particle as a function of mass, dimensions, specific heat, and absorptance as well as furnace temperature profile and thermal conductivity of the furnace gas. A model was developed that predicts the gravity-induced degradation of shell concentricity in falling molten shells as a function of shell characteristics and time.
PMMA/PS coaxial electrospinning: core-shell fiber morphology as a function of material parameters
NASA Astrophysics Data System (ADS)
Rahmani, Shahrzad; Arefazar, Ahmad; Latifi, Masoud
2017-03-01
Core-shell fibers of polymethyl methacrylate (PMMA) and polystyrene (PS) have been successfully electrospun by coaxial electrospinning. To evaluate the influence of the solvent on the final fiber morphology, four types of organic solvents were used in the shell solution while the core solvent was preserved. Morphological observations with scanning electron microscopy, transmission electron microscopy and optical microscopy revealed that both core and shell solvent properties were involved in the final fiber morphology. To explain this involvement, alongside a discussion of the Bagley solubility graph of PS and PMMA, a novel criterion based on solvent physical properties was introduced. A theoretical model based on the momentum conservation principle was developed and applied for describing the dependence of the core and shell diameters to their solvent combinations. Different concentrations of core and shell were also investigated in the coaxial electrospinning of PMMA/PS. The core-shell fiber morphologies with different core and shell concentrations were compared with their single electrospun fibers.
Microcapsule and methods of making and using microcapsules
Okawa, David C.; Pastine, Stefan J.; Zettl, Alexander K.; Frechet, Jean M.J.
2014-09-02
An embodiment of a microcapsule includes a shell surrounding a space, a liquid within the shell, and a light absorbing material within the liquid. An embodiment of a method of making microcapsules includes forming a mixture of a light absorbing material and an organic solution. An emulsion of the mixture and an aqueous solution is then formed. A polymerization agent is added to the emulsion, which causes microcapsules to be formed. Each microcapsule includes a shell surrounding a space, a liquid within the shell, and light absorbing material within the liquid. An embodiment of a method of using microcapsules includes providing phototriggerable microcapsules within a bulk material. Each of the phototriggerable microcapsules includes a shell surrounding a space, a chemically reactive material within the shell, and a light absorbing material within the shell. At least some of the phototriggerable microcapsules are exposed to light, which causes the chemically reactive material to release from the shell and to come into contact with bulk material.
Visualization of newt aragonitic otoconial matrices using transmission electron microscopy
NASA Technical Reports Server (NTRS)
Steyger, P. S.; Wiederhold, M. L.
1995-01-01
Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. These protein matrices are thought to originate from the supporting or hair cells in the macula during development. Previous studies of mammalian calcitic, barrel-shaped otoconia revealed an organized protein matrix consisting of a thin peripheral layer, a well-defined organic core and a flocculent matrix inbetween. No studies have reported the microscopic organization of the aragonitic otoconial matrix, despite its protein characterization. Pote et al. (1993b) used densitometric methods and inferred that prismatic (aragonitic) otoconia have a peripheral protein distribution, compared to that described for the barrel-shaped, calcitic otoconia of birds, mammals, and the amphibian utricle. By using tannic acid as a negative stain, we observed three kinds of organic matrices in preparations of fixed, decalcified saccular otoconia from the adult newt: (1) fusiform shapes with a homogenous electron-dense matrix; (2) singular and multiple strands of matrix; and (3) more significantly, prismatic shapes outlined by a peripheral organic matrix. These prismatic shapes remain following removal of the gelatinous matrix, revealing an internal array of organic matter. We conclude that prismatic otoconia have a largely peripheral otoconial matrix, as inferred by densitometry.
An EAV-HP Insertion in 5′ Flanking Region of SLCO1B3 Causes Blue Eggshell in the Chicken
Yang, Xiaolin; Li, Guangqi; Zhang, Yuanyuan; Li, Junying; Wang, Xiaotong; Bai, Jirong; Xu, Guiyun; Deng, Xuemei; Yang, Ning; Wu, Changxin
2013-01-01
The genetic determination of eggshell coloration has not been determined in birds. Here we report that the blue eggshell is caused by an EAV-HP insertion that promotes the expression of SLCO1B3 gene in the uterus (shell gland) of the oviduct in chicken. In this study, the genetic map location of the blue eggshell gene was refined by linkage analysis in an F2 chicken population, and four candidate genes within the refined interval were subsequently tested for their expression levels in the shell gland of the uterus from blue-shelled and non-blue-shelled hens. SLCO1B3 gene was found to be the only one expressed in the uterus of blue-shelled hens but not in that of non-blue-shelled hens. Results from a pyrosequencing analysis showed that only the allele of SLCO1B3 from blue-shelled chickens was expressed in the uterus of heterozygous hens (O*LC/O*N). SLCO1B3 gene belongs to the organic anion transporting polypeptide (OATP) family; and the OATPs, functioning as membrane transporters, have been reported for the transportation of amphipathic organic compounds, including bile salt in mammals. We subsequently resequenced the whole genomic region of SLCO1B3 and discovered an EAV-HP insertion in the 5′ flanking region of SLCO1B3. The EAV-HP insertion was found closely associated with blue eggshell phenotype following complete Mendelian segregation. In situ hybridization also demonstrated that the blue eggshell is associated with ectopic expression of SLCO1B3 in shell glands of uterus. Our finding strongly suggests that the EAV-HP insertion is the causative mutation for the blue eggshell phenotype. The insertion was also found in another Chinese blue-shelled breed and an American blue-shelled breed. In addition, we found that the insertion site in the blue-shelled chickens from Araucana is different from that in Chinese breeds, which implied independent integration events in the blue-shelled chickens from the two continents, providing a parallel evolutionary example at the molecular level. PMID:23359636
NASA Astrophysics Data System (ADS)
Peck, Victoria L.; Tarling, Geraint A.; Manno, Clara; Harper, Elizabeth M.; Tynan, Eithne
2016-05-01
Scarred shells of polar pteropod Limacina helicina collected from the Greenland Sea in June 2012 reveal a history of damage, most likely failed predation, in earlier life stages. Evidence of shell fracture and subsequent re-growth is commonly observed in specimens recovered from the sub-Arctic and further afield. However, at one site within sea-ice on the Greenland shelf, shells that had been subject to mechanical damage were also found to exhibit considerable dissolution. It was evident that shell dissolution was localised to areas where the organic, periostracal sheet that covers the outer shell had been damaged at some earlier stage during the animal's life. Where the periostracum remained intact, the shell appeared pristine with no sign of dissolution. Specimens which appeared to be pristine following collection were incubated for four days. Scarring of shells that received periostracal damage during collection only became evident in specimens that were incubated in waters undersaturated with respect to aragonite, ΩAr≤1. While the waters from which the damaged specimens were collected at the Greenland Sea sea-ice margin were not ΩAr≤1, the water column did exhibit the lowest ΩAr values observed in the Greenland and Barents Seas, and was likely to have approached ΩAr≤1 during the winter months. We demonstrate that L. helicina shells are only susceptible to dissolution where both the periostracum has been breached and the aragonite beneath the breach is exposed to waters of ΩAr≤1. Exposure of multiple layers of aragonite in areas of deep dissolution indicate that, as with many molluscs, L. helicina is able to patch up dissolution damage to the shell by secreting additional aragonite internally and maintain their shell. We conclude that, unless breached, the periostracum provides an effective shield for pteropod shells against dissolution in waters ΩAr≤1, and when dissolution does occur the animal has an effective means of self-repair. We suggest that future studies of pteropod shell condition are undertaken on specimens from which the periostracum has not been removed in preparation.
Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan
2017-08-01
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A mineralogical record of ocean change: Decadal and centennial patterns in the California mussel.
McCoy, Sophie J; Kamenos, Nicholas A; Chung, Peter; Wootton, Timothy J; Pfister, Catherine A
2018-06-01
Ocean acidification, a product of increasing atmospheric carbon dioxide, may already have affected calcified organisms in the coastal zone, such as bivalves and other shellfish. Understanding species' responses to climate change requires the context of long-term dynamics. This can be particularly difficult given the longevity of many important species in contrast with the relatively rapid onset of environmental changes. Here, we present a unique archival dataset of mussel shells from a locale with recent environmental monitoring and historical climate reconstructions. We compare shell structure and composition in modern mussels, mussels from the 1970s, and mussel shells dating back to 1000-2420 years BP. Shell mineralogy has changed dramatically over the past 15 years, despite evidence for consistent mineral structure in the California mussel, Mytilus californianus, over the prior 2500 years. We present evidence for increased disorder in the calcium carbonate shells of mussels and greater variability between individuals. These changes in the last decade contrast markedly from a background of consistent shell mineralogy for centuries. Our results use an archival record of natural specimens to provide centennial-scale context for altered minerology and variability in shell features as a response to acidification stress and illustrate the utility of long-term studies and archival records in global change ecology. Increased variability between individuals is an emerging pattern in climate change responses, which may equally expose the vulnerability of organisms and the potential of populations for resilience. © 2017 John Wiley & Sons Ltd.
Adding teeth to wave action: the destructive effects of wave-borne rocks on intertidal organisms.
Shanks, Alan L; Wright, William G
1986-06-01
Observations in rocky intertidal areas demonstrate that breaking waves 'throw' rocks and cobbles and that these missiles can damage and kill organisms. Targets in the intertidal were dented by impacts from wave-borne rocks. New dents/day in these targets was positively correlated with the daily maximum significant wave height and with new patches/day in aggregations of the barnacle Chthamalus fissus. Impact frequency was highest in the upper intertidal and varied dramatically between microhabitats on individual boulders (edges, tops and faces). These patterns were reflected in the microhabitat abundances of 'old' and 'young' barnacles. Comparisons were made of the survivorship and the frequency of shell damage in two populations of the limpet Lottia gigantea living in habitats which differed primarily in the number of moveable rocks (i.e. potential projectiles). The mortality rate and frequency of shell damage were significantly higher in the projectilerich habitat. In addition only in this habitat did the frequency of shell damage covary significantly with seasonal periods of high surf. Investigation of the response of limpet shells to impacts suggests that shell strength varies between species and increases with shell size. Species-specific patterns of non-fatal shell breakage may have evolved to absorb the energy of impacts. In two of the intertidal habitats studied, wave-borne rock damage was chronic and, at least in part, may have governed the faunal makeup of the community by contributing to the physical 'boundaries" of the environment within which the inhabitants must survive.
Li, Qinghua; Yuan, Yongbiao; Chen, Zihan; Jin, Xiao; Wei, Tai-huei; Li, Yue; Qin, Yuancheng; Sun, Weifu
2014-08-13
In this work, a core-shell nanostructure of samarium phosphates encapsulated into a Eu(3+)-doped silica shell has been successfully fabricated, which has been confirmed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution TEM. Moreover, we report the energy transfer process from the Sm(3+) to emitters Eu(3+) that widens the light absorption range of the hybrid solar cells (HSCs) and the strong enhancement of the electron-transport of TiO2/poly(3-hexylthiophene) (P3HT) bulk heterojunction (BHJ) HSCs by introducing the unique core-shell nanoarchitecture. Furthermore, by applying femtosecond transient absorption spectroscopy, we successfully obtain the electron transport lifetimes of BHJ systems with or without incorporating the core-shell nanophosphors (NPs). Concrete evidence has been provided that the doping of core-shell NPs improves the efficiency of electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor. Consequently, a notable power conversion efficiency of 3.30% for SmPO4@Eu(3+):SiO2 blended TiO2/P3HT HSCs is achieved at 5 wt % as compared to 1.98% of pure TiO2/P3HT HSCs. This work indicates that the core-shell NPs can efficiently broaden the absorption region, facilitate electron-transport of BHJ, and enhance photovoltaic performance of inorganic/organic HSCs.
NASA Astrophysics Data System (ADS)
Luo, Wenfeng; Zhang, Shuangying; Lan, Yuewei; Huang, Chen; Wang, Chao; Lai, Xuexu; Chen, Hanwei; Ao, Ningjian
2018-04-01
In this work, oyster shell powder (OSP) was used as the bio-filler and combined with polycaprolactone (PCL) through melt blending methodology. The PCL and PCL/OSP scaffolds were prepared using additive manufacturing process. All the 3D printed scaffolds hold a highly porosity and interconnected pore structures. OSP particles are dispersed in the polymer matrix, which helped to improve the degree of crystallinity and mineralization ability of the scaffolds. There was no significant cytotoxicity of the prepared scaffolds towards MG-63 cells, and all the scaffolds showed a well ALP activity. Therefore, PCL/OSP scaffolds had a high potential to be employed in the bone tissue engineering.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
NASA Astrophysics Data System (ADS)
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
How to best smash a snail: the effect of tooth shape on crushing load
Crofts, S. B.; Summers, A. P.
2014-01-01
Organisms that are durophagous, hard prey consumers, have a diversity of tooth forms. To determine why we see this variation, we tested whether some tooth forms break shells better than others. We measured the force needed with three series of aluminium tooth models, which varied in concavity and the morphology of a stress concentrating cusp, to break a shell. We created functionally identical copies of two intertidal snail shells: the thicker shelled Nucella ostrina and the more ornamented Nucella lamellosa using a three-dimensional printer. In this way, we reduced variation in material properties between test shells, allowing us to test only the interaction of the experimental teeth with the two shell morphologies. We found that for all tooth shapes, thicker shells are harder to break than the thinner shells and that increased ornamentation has no discernible effect. Our results show that for both shell morphologies, domed and flat teeth break shells better than cupped teeth, and teeth with tall or skinny cusps break shells best. While our results indicate that there is an ideal tooth form for shell breaking, we do not see this shape in nature. This suggests a probable trade-off between tooth function and the structural integrity of the tooth. PMID:24430124
Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho
2016-07-01
To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Biomineral repair of abalone shell apertures.
Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A
2013-08-01
The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhao, Shu-Hua; Chen, Zhi-Liang; Zhang, Tai-Ping; Pan, Wei-Bin; Peng, Xiao-Chun; Che, Rong; Ou, Ying-Juan; Lei, Guo-Jian; Zhou, Ding
2014-04-01
Different forms of heavy metals in soil will produce different environmental effects, and will directly influence the toxicity, migration and bioavailability of heavy metals. This study used lime, fly ash, dried sludge, peanut shells as stabilizers in the treatment of heavy metals in mineral waste residues. Morphological analyses of heavy metal, leaching experiments, potted plant experiments were carried out to analyze the migration and transformation of heavy metals. The results showed that after adding stabilizers, the pH of the acidic mineral waste residues increased to more than neutral, and the organic matter content increased significantly. The main existing forms of As, Pb, and Zn in the mineral waste residues were the residual. The contents of exchangeable and organic matter-bound As decreased by 65.6% and 87.7% respectively after adding fly ash, dried sludge and peanut shells. Adding lime, fly ash and peanut shells promoted the transformation of As from the Fe-Mn oxide-bound to the carbonate-bound, and adding lime and fly ash promoted the transformation of Pb and Zn from the exchangeable, Fe-Mn oxide-bound, organic matter-bound to the residual. After the early stage of the stabilization treatment, the contents of As, Pb and Zn in the leachate had varying degrees of decline, and adding peanut shells could reduce the contents of As, Pb and Zn in the leachate further. Among them, the content of As decreased most significantly after treatment with fly ash, dried sludge and peanut shells, with a decline of 57.4%. After treatment with lime, fly ash and peanut shells, the content of Zn decreased most significantly, by 24.9%. The addition of stabilizers was advantageous to the germination and growth of plants. The combination of fly ash, dried sludge and peanut shell produced the best effect, and the Vetiveria zizanioides germination rate reached 76% in the treated wasted mineral residues.
Jain, Gaurav; Pendola, Martin; Rao, Ashit; Cölfen, Helmut; Evans, John Spencer
2016-08-09
In the purple sea urchin Strongylocentrotus purpuratus, the formation and mineralization of fracture-resistant skeletal elements such as the embryonic spicule require the combinatorial participation of numerous spicule matrix proteins such as the SpSM30A-F isoforms. However, because of limited abundance, it has been difficult to pursue extensive biochemical studies of the SpSM30 proteins and deduce their role in spicule formation and mineralization. To circumvent these problems, we expressed a model recombinant spicule matrix protein, rSpSM30B/C, which possesses the key sequence attributes of isoforms "B" and "C". Our findings indicate that rSpSM30B/C is expressed in insect cells as a single polypeptide containing variations in glycosylation that create microheterogeneity in rSpSM30B/C molecular masses. These post-translational modifications incorporate O- and N-glycans and anionic mono- and bisialylated and mono- and bisulfated monosaccharides on the protein molecules and enhance its aggregation propensity. Bioinformatics and biophysical experiments confirm that rSpSM30B/C is an intrinsically disordered, aggregation-prone protein that forms porous protein hydrogels that control the in vitro mineralization process in three ways: (1) increase the time interval for prenucleation cluster formation and transiently stabilize an ACC polymorph, (2) promote and organize single-crystal calcite nanoparticles, and (3) promote faceted growth and create surface texturing of calcite crystals. These features are also common to mollusk shell nacre proteins, and we conclude that rSpSM30B/C is a spiculogenesis protein that exhibits traits found in other calcium carbonate mineral modification proteins.
Schematic interactions with many degeneracies
NASA Astrophysics Data System (ADS)
Kingan, Arun; Quinonez, Michael; Zamick, Larry
In previous works, we examined the spectra for systems of two protons and two neutrons, in a single j shell calculation, by obtaining matrix elements from experiment. More recently, we considered the schematic interactions in the same model space. We continue in this vein here. The present work and the former can be regarded as two bookends on a bookshelf.
Evaluation of a Nonlinear Finite Element Program - ABAQUS.
1983-03-15
anisotropic properties. * MATEXP - Linearly elastic thermal expansions with isotropic, orthotropic and anisotropic properties. * MATELG - Linearly...elastic materials for general sections (options available for beam and shell elements). • MATEXG - Linearly elastic thermal expansions for general...decomposition of a matrix. * Q-R algorithm • Vector normalization, etc. Obviously, by consolidating all the utility subroutines in a library, ABAQUS has
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... of a ``Reverse Merger'' With a Shell Company September 21, 2011. On July 22, 2011, New York Stock... after consummation of a ``reverse merger'' with a shell company. The proposed rule change was published...'' [[Page 59757
Gontard, Lionel C; Fernández, Asunción; Dunin-Borkowski, Rafal E; Kasama, Takeshi; Lozano-Pérez, Sergio; Lucas, Stéphane
2014-12-01
Hybrid (organic shell-inorganic core) nanoparticles have important applications in nanomedicine. Although the inorganic components of hybrid nanoparticles can be characterized readily using conventional transmission electron microscopy (TEM) techniques, the structural and chemical arrangement of the organic molecular components remains largely unknown. Here, we apply TEM to the physico-chemical characterization of Au nanoparticles that are coated with plasma-polymerized-allylamine, an organic compound with the formula C3H5NH2. We discuss the use of energy-filtered TEM in the low-energy-loss range as a contrast enhancement mechanism for imaging the organic shells of such particles. We also study electron-beam-induced crystallization and amorphization of the shells and the formation of graphitic-like layers that contain both C and N. The resistance of the samples to irradiation by high-energy electrons, which is relevant for optical tuning and for understanding the degree to which such hybrid nanostructures are stable in the presence of biomedical radiation, is also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
A rule-based shell to hierarchically organize HST observations
NASA Technical Reports Server (NTRS)
Bose, Ashim; Gerb, Andrew
1995-01-01
An observing program on the Hubble Space Telescope (HST) is described in terms of exposures that are obtained by one or more of the instruments onboard the HST. These exposures are organized into a hierarchy of structures for purposes of efficient scheduling of observations. The process by which exposures get organized into the higher-level structures is called merging. This process relies on rules to determine which observations can be 'merged' into the same higher level structure, and which cannot. The TRANSformation expert system converts proposals for astronomical observations with HST into detailed observing plans. The conversion process includes the task of merging. Within TRANS, we have implemented a declarative shell to facilitate merging. This shell offers the following features: (1) an easy way of specifying rules on when to merge and when not to merge, (2) a straightforward priority mechanism for resolving conflicts among rules, (3) an explanation facility for recording the merging history, (4) a report generating mechanism to help users understand the reasons for merging, and (5) a self-documenting mechanism that documents all the merging rules that have been defined in the shell, ordered by priority. The merging shell is implemented using an object-oriented paradigm in CLOS. It has been a part of operational TRANS (after extensive testing) since July 1993. It has fulfilled all performance expectations, and has considerably simplified the process of implementing new or changed requirements for merging. The users are pleased with its report-generating and self-documenting features.
Cahill, J. F.; Fei, H.; Cohen, S. M.; ...
2015-01-05
Materials with core-shell structures have distinct properties that lend themselves to a variety of potential applications. Characterization of small particle core-shell materials presents a unique analytical challenge. Herein, single particles of solid-state materials with core-shell structures were measured using on-line aerosol time-of-flight mass spectrometry (ATOFMS). Laser 'depth profiling' experiments verified the core-shell nature of two known core-shell particle configurations (< 2 mu m diameter) that possessed inverted, complimentary core-shell compositions (ZrO2@SiO2 versus SiO2@ZrO2). The average peak area ratios of Si and Zr ions were calculated to definitively show their core-shell composition. These ratio curves acted as a calibrant for anmore » uncharacterized sample - a metal-organic framework (MOF) material surround by silica (UiO-66(Zr)@SiO2; UiO = University of Oslo). ATOFMS depth profiling was used to show that these particles did indeed exhibit a core-shell architecture. The results presented here show that ATOFMS can provide unique insights into core-shell solid-state materials with particle diameters between 0.2-3 mu m.« less
Gong, Yichao; Wang, Dan Ping; Wu, Renbing; Gazi, Sarifuddin; Soo, Han Sen; Sritharan, Thirumany; Chen, Zhong
2017-04-11
In this report, a three-dimensional (3-D) network of core-shell TiO 2 (P25)-mesoporous SiO 2 (P25@mSiO 2 ) nanocomposites was prepared via a controllable surfactant-assisted sol-gel method. The nanocomposites were investigated for photocatalytic reactions of organic dye degradation, water splitting, and CO 2 reduction to understand the roles of the mSiO 2 shell in these photocatalytic reactions. It was found that the mSiO 2 shell accelerates the photodegradation of the organic dye, but dramatically reduces the photocatalytic activity of P25 in water splitting and CO 2 reduction. The roles played by the mSiO 2 shell in the photocatalytic reactions are summarized as: (1) effective prevention of agglomeration of P25 nanoparticles, (2) facilitating the transfer of uncharged photo-generated ˙OH radicals via the abundant -OH groups on the mesoporous surface, (3) provision of increased reaction sites between ˙OH radicals and dye molecules by its mesoporous nanostructure and large surface area, and (4) prevention of diffusion of the photo-generated charge carriers (photoelectrons and photoholes) because of its insulating nature.
Uranium in larval shells as a barometer of molluscan ocean acidification exposure.
Frieder, Christina A; Gonzalez, Jennifer P; Levin, Lisa A
2014-06-03
As the ocean undergoes acidification, marine organisms will become increasingly exposed to reduced pH, yet variability in many coastal settings complicates our ability to accurately estimate pH exposure for those organisms that are difficult to track. Here we present shell-based geochemical proxies that reflect pH exposure from laboratory and field settings in larvae of the mussels Mytilus californianus and M. galloprovincialis. Laboratory-based proxies were generated from shells precipitated at pH 7.51 to 8.04. U/Ca, Sr/Ca, and multielemental signatures represented as principal components varied with pH for both species. Of these, U/Ca was the best predictor of pH and did not vary with larval size, with semidiurnal pH fluctuations, or with oxygen concentration. Field applications of U/Ca were tested with mussel larvae reared in situ at both known and unknown pH conditions. Larval shells precipitated in a region of greater upwelling had higher U/Ca, and these U/Ca values corresponded well with the laboratory-derived U/Ca-pH proxy. Retention of the larval shell after settlement in molluscs allows use of this geochemical proxy to assess ocean acidification effects on marine populations.
Sreemany, Arpita; Bera, Melinda Kumar; Sarkar, Anindya
2017-12-30
The elaborate sampling and analytical protocol associated with conventional dual-inlet isotope ratio mass spectrometry has long hindered high-resolution climate studies from biogenic accretionary carbonates. Laser-based on-line systems, in comparison, produce rapid data, but suffer from unresolvable matrix effects. It is, therefore, necessary to resolve these matrix effects to take advantage of the automated laser-based method. Two marine bivalve shells (one aragonite and one calcite) and one fish otolith (aragonite) were first analysed using a CO 2 laser ablation system attached to a continuous flow isotope ratio mass spectrometer under different experimental conditions (different laser power, sample untreated vs vacuum roasted). The shells and the otolith were then micro-drilled and the isotopic compositions of the powders were measured in a dual-inlet isotope ratio mass spectrometer following the conventional acid digestion method. The vacuum-roasted samples (both aragonite and calcite) produced mean isotopic ratios (with a reproducibility of ±0.2 ‰ for both δ 18 O and δ 13 C values) almost identical to the values obtained using the conventional acid digestion method. As the isotopic ratio of the acid digested samples fall within the analytical precision (±0.2 ‰) of the laser ablation system, this suggests the usefulness of the method for studying the biogenic accretionary carbonate matrix. When using laser-based continuous flow isotope ratio mass spectrometry for the high-resolution isotopic measurements of biogenic carbonates, the employment of a vacuum-roasting step will reduce the matrix effect. This method will be of immense help to geologists and sclerochronologists in exploring short-term changes in climatic parameters (e.g. seasonality) in geological times. Copyright © 2017 John Wiley & Sons, Ltd.
The Nanomechanics of Biomineralized Soft-Tissues and Organic Matrices
NASA Astrophysics Data System (ADS)
Bezares-Chavez, Jiddu
The research reported on in this dissertation is concerned with the macro-molecular constitution and geometrical organization of the soft-tissue comprising the matrix of the nacreous portion of the shell of Haliotis rufescens, the Red abalone. Nacre is one of literally legions of intricate biomineralized structures that exist in nature and has long served as a paradigm for elegant and optimized structural de-sign. Biomineralization involves, inter alia, the uptake and synthesis of elements and compounds from the environment and their incorporation into highly optimized functional structures. Nacre has a structure described as a brick wall like with a matrix of biopolymer layers that are preformed and serve as a template into which nanocrystalline tiles of CaCO3 precipitate. The matrix, or what are known as inter-lamellar layers, are of particular interest as they impart both toughness and strength to the composite ceramic nacre structure. The work first involved a histochemical mapping of the macromolecular structure of the interlamellar layers; this revealed the locations of proteins and functional molecular groups that serve as nucleation sites for the ceramic tiles. Parallel studies on the nacre of Nautilus pompilius, the Chambered Nautilus, revealed the generality of the findings. Of particular interest was determining both the content and layout of chitin within these layers. In fact it was determined that chitin was organized as mostly unidirectional architecture of fibrils, with a certain fraction of fibrils laying at cross directions. Most remarkably, it was found that the fibrils possessed a very long range connectivity that spanned many tiles. This was determined by systematic atomic force (afm) and analytical optical histochemical microscopy. These findings were further verified by a unique form of mechanical testing whereby tensile testing was conducted on groups of interlamellar layers extracted from nacre. Mechanical testing led to a quantitative visco-elastic constitutive model for these layers and, in turn, to a complete mechanical/structural model for the complete nacre composite. Further verification was obtained via micro- and nano-indentation experiments which were modeled via detailed FEM numerical simulations. Nano-indentation also allowed a detailed assessment of the nano-structure and properties of the ceramic tiles which are best described as nano-scale composites composed of protein infiltrated CaCO3 nano-grains within a biopolymer matrix. The role of water content, i.e. moisture content, was also determined via, in part experiments conducted on dehydrated nacre. These findings lead to a pathway for specifying optimal bio-mimicked or bio-inspired synthetic materials.
NASA Astrophysics Data System (ADS)
Khairy, Mohamed; El-Safty, Sherif A.; Shenashen, Mohamed. A.; Elshehy, Emad A.
2013-08-01
The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia.The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia. Electronic supplementary information (ESI) available: The experimental procedures for synthesis of AC-LHT, mesoporous core/double shell silica, and optical core/multi-shell sensors. The adsorption capacity, optical recognition of Pb ions, colorimetric response of Pb ions in ethanol medium, Langmuir adsorption isotherm and reusability of captor are addressed. See DOI: 10.1039/c3nr02403b
Suzuki, Michio; Kameda, Jun; Sasaki, Takenori; Saruwatari, Kazuko; Nagasawa, Hiromichi; Kogure, Toshihiro
2010-08-01
The microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD). The five layers were termed as M+3, M+2, M+1, M, M-1 from the outside to the inside in previous works, where M means myostracum. The outmost M+3 layer consists of calcite with a "mosaic" structure; granular submicron sub-grains with small-angle grain boundaries often accompanying dislocation arrays. M+2 layer consists of flat prismatic aragonite crystals with a leaf-like cross section, stacked obliquely to the shell surface. It looks that the prismatic crystals are surrounded by organic sheets, forming a compartment structure. M+1 and M-1 layers adopt a crossed lamellar structure consisting of aragonite flat prisms with rectangular cross section. M layer has a prismatic structure of aragonite perpendicular to the shell surface and with irregular shaped cross sections. Distinct organic sheets were not observed between the crystals in M+1, M and M-1 layers. The {110} twins are common in all aragonite M+2, M+1, M and M-1 layers, with the twin boundaries parallel to the prisms. These results for the microstructure of each layer should be considered in the discussion of the formation mechanism of the limpet shell structure. Copyright 2010 Elsevier Inc. All rights reserved.
Wang, Xianfeng; Guo, Yandong; Su, Junfeng; Zhang, Xiaolong; Han, Ningxu; Wang, Xinyu
2018-05-24
In recent decades, microcapsules containing phase change materials (microPCMs) have been the center of much attention in the field of latent thermal energy storage. The aim of this work was to prepare and investigate the microstructure and thermal conductivity of microPCMs containing self-assembled graphene/organic hybrid shells. Paraffin was used as a phase change material, which was successfully microencapsulated by graphene and polymer forming hybrid composite shells. The physicochemical characters of microPCM samples were investigated including mean size, shell thickness, and chemical structure. Scanning electron microscope (SEM) results showed that the microPCMs were spherical particles and graphene enhanced the degree of smoothness of the shell surface. The existence of graphene in the shells was proved by using the methods of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). It was found that graphene hybrid shells were constructed by forces of electric charge absorption and long-molecular entanglement. MicroPCMs with graphene had a higher degradation temperature of 300 °C. Graphene greatly enhanced the thermal stability of microPCMs. The thermal conductivity tests indicated that the phase change temperature of microPCMs was regulated by the graphene additive because of enhancement of the thermal barrier of the hybrid shells. Differential scanning calorimetry (DSC) tests proved that the latent thermal energy capability of microPCMs had been improved with a higher heat conduction rate. In addition, infrared thermograph observations implied that the microPCMs had a sensitivity response to heat during the phase change cycling process because of the excellent thermal conductivity of graphene.
Mechanisms to Explain the Elemental Composition of the Initial Aragonite Shell of Larval Oysters
NASA Astrophysics Data System (ADS)
Haley, Brian A.; Hales, Burke; Brunner, Elizabeth L.; Kovalchik, Kevin; Waldbusser, George G.
2018-04-01
Calcifying organisms face increasing stress from the changing carbonate chemistry of an acidifying ocean, particularly bivalve larvae that live in upwelling regions of the world, such as the coastal and estuarine waters of Oregon (USA). Arguably the first and most significant developmental hurdle faced by larval oysters is formation of their initial prodissoconch I (PDI) shell, upon which further ontological development depends. We measured the minor metal compositions (Sr/Ca, Mg/Ca) of this aragonitic PDI shell and of post-PDI larval Crassostrea gigas shell, as well as the water they were reared in, over ˜20 days for a May and an August cohort in 2011, during which time there was no period of carbonate under-saturation. After testing various methods, we successfully isolated the shell from organic tissue using a 5% active chlorine bleach solution. Elemental compositions (Sr, Mg, C, N) of the shells post-treatment showed that shell Sr/Ca ranged from 1.55 to 1.82 mmol/mol; Mg/Ca from 0.60 to 1.11 mmol/mol, similar to the few comparable published data for larval oyster aragonite compositions. We compare these data in light of possible biomineralization mechanisms: an amorphous calcium carbonate (ACC) path, an intercellular path, and a direct-from-seawater path to shell formation via biologically induced inorganic precipitation of aragonite. The last option provides a mechanistic explanation for: (1) the accelerated precipitation rates of biogenic calcification in the absence of a calcifying fluid; (2) consistently elevated precipitation rates at varying ambient-water saturation states; and (3) the high Ca-selectivity of the early larval calcification despite rapid precipitation rates.
Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan
2010-07-01
The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orce, J. N.; McKay, C. J.; Lesher, S. R.
A careful determination of the lifetime and measurement of the branching ratio for decay of the first 2{sub T=1}{sup +} state in 42Sc has allowed an accurate experimental test of charge independence in the A = 42 isobaric triplet. A lifetime of 69(17) fs was measured at the University of Kentucky, while relative intensities for the 975 keV and 1586 keV transitions depopulating the first 2{sub T=1}{sup +} state have been determined at the University of Cologne as 100(1) and 8(1), respectively. Both measurements give an isoscalar matrix element, M0, of 6.4(9) (W.u.)1/2. This result confirms charge independence for themore » A=42 isobaric triplet. Shell model calculations have been carried out for understanding the global trend of M0 values for A = 4n + 2 isobaric triplets ranging from A = 18 to A = 42. The 2{sub 1(T=1)}{sup +} {yields} 0{sub 1(T=1)}{sup +} transition energies, reduced transition probabilities and M0 values are reproduced to a high degree of accuracy. The trend of M0 strength along the sd shell is interpreted in terms of the shell structure. Certain discrepancies arise at the extremes of the sd shell, for the A = 18 and A 38 isobaric triplets, which might be explained in terms of the low valence space at the extremes of the sd shell.« less
Cai, Tao; Zhang, Bin; Chen, Yu; Wang, Cheng; Zhu, Chun Xiang; Neoh, Koon-Gee; Kang, En-Tang
2014-03-03
A versatile template-assisted strategy for the preparation of monodispersed rattle-type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA-g-P3HT hybrid nanorattles; PTEMA: poly(2-(thiophen-3-yl)ethyl methacrylate; P3HT: poly(3-hexylthiophene), was reported. The Au@silica core-shell nanoparticles, prepared by the modified Stöber sol-gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core-double shell nanospheres. Subsequent oxidative graft polymerization of 3-hexylthiophene from the exterior surface of the Au@silica@PTEMA core-double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA-g-P3HT nanospheres). The Au@air@ PTEMA-g-P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as-prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write-once-read-many-times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA-g-P3HT+PS/ITO (ITO: indium-tin oxide) sandwich thin-film devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similarity-transformed chiral NN + 3N interactions for the ab initio description of 12C and 16O.
Roth, Robert; Langhammer, Joachim; Calci, Angelo; Binder, Sven; Navrátil, Petr
2011-08-12
We present first ab initio no-core shell model (NCSM) calculations using similarity renormalization group (SRG) transformed chiral two-nucleon (NN) plus three-nucleon (3N) interactions for nuclei throughout the p-shell, particularly (12)C and (16)O. By introducing an adaptive importance truncation for the NCSM model space and an efficient JT-coupling scheme for the 3N matrix elements, we are able to surpass previous NCSM studies including 3N interactions. We present ground and excited states in (12)C and (16)O for model spaces up to N(max) = 12 including full 3N interactions. We analyze the contributions of induced and initial 3N interactions and probe induced 4N terms through the sensitivity of the energies on the SRG flow parameter. Unlike for light p-shell nuclei, SRG-induced 4N contributions originating from the long-range two-pion terms of the chiral 3N interaction are sizable in (12)C and (16)O.
Self-Healing Nanotextured Vascular-like Materials: Mode I Crack Propagation.
Lee, Min Wook; Sett, Soumyadip; An, Seongpil; Yoon, Sam S; Yarin, Alexander L
2017-08-16
Here, we investigate crack propagation initiated from an initial notch in a self-healing material. The crack propagation in the core-shell nanofiber mats formed by coelectrospinning and the composites reinforced by them is in focus. All samples are observed from the crack initiation until complete failure. Due to the short-time experiments done on purpose, the resin and cure released from the cores of the core-shell nanofibers could not achieve a complete curing and stop crack growth, especially given the fact that no heating was used. The aim is to elucidate their effect on the rate of crack propagation. The crack propagation speed in polyacrylonitrile (PAN)-resin-cure nanofiber mats (with PAN being the polymer in the shell) was remarkably lower than that in the corresponding monolithic PAN nanofiber mat, down to 10%. The nanofiber mats were also encased in polydimethylsiloxane (PDMS) matrix to form composites. The crack shape and propagation in the composite samples were studied experimentally and analyzed theoretically, and the theoretical results revealed agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Zhang, Li; Wu, Bao-lin; Liu, Yu-lin
2017-12-01
An Al-based composite reinforced with core-shell-structured Ti/Al3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate tensile strength and elongation of the composite sintered at 620°C for 5 h and extruded at a mass ratio of 12.75:1 reached 304 MPa and 14%, respectively, and its compressive deformation reached 60%. The promising mechanical properties are due to the core-shell-structured reinforcement, which is mainly composed of Al3Ti and Ti and is bonded strongly with the Al matrix, and to the reduced crack sensitivity of Al3Ti. The refined grains after hot extrusion also contribute to the mechanical properties of this composite. The mechanical properties might be further improved through regulating the relative thickness of Al-Ti intermetallics and Ti metal layers by adjusting the sintering time and the subsequent extrusion process.
Seltzer, Michaeld; Berry, Kristinh
2005-03-01
The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.
Quantification of eggshell microstructure using X-ray micro computed tomography
Riley, A.; Sturrock, C. J.; Mooney, S. J.
2014-01-01
1. X-ray microcomputed tomography can be used to produce rapid, fully analysable, three-dimensional images of biological and other materials without the need for complex or tedious sample preparation and sectioning. We describe the use of this technique to visualise and analyse the microstructure of fragments of shell taken from three regions of chicken eggs (sharp pole, blunt pole and equatorial region). 2. Two- and three-dimensional images and data were obtained at a resolution of 1.5 microns. The images were analysed to provide measurements of shell thickness, the spacial density of mammillary bodies, the frequency, shape, volume and effective diameter of individual pore spaces, and the intrinsic sponginess (proportion of non-X-ray dense material formed by vesicles) of the shell matrix. Measurements of these parameters were comparable with those derived by traditional methods and reported in the literature. 3. The advantages of using this technology for the quantification of eggshell microstructural parameters and its potential application for commercial, research and other purposes are discussed. PMID:24875292
NASA Astrophysics Data System (ADS)
Ledet, Lasse S.; Sorokin, Sergey V.
2018-03-01
The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-filled cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. The forced vibration problem is solved using tailored Green's matrices formulated in terms of eigenfunction expansions. The formulation of Green's matrix is based on special (bi-)orthogonality relations between the eigenfunctions, which are derived here for the fluid-filled shell. Further, the relations are generalised to any multi-modal symmetric waveguide. Using the orthogonality relations the transcendental equation system is converted into algebraic modal equations that can be solved analytically. Upon formulation of Green's matrices the solution space is studied in terms of completeness and convergence (uniformity and rate). Special features and findings exposed only through this modal decomposition method are elaborated and the physical interpretation of the bi-orthogonality relation is discussed in relation to the total energy flow which leads to derivation of simplified equations for the energy flow components.
Seltzer, M.D.; Berry, K.H.
2005-01-01
The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.
Rollable Thin Shell Composite-Material Paraboloidal Mirrors
NASA Technical Reports Server (NTRS)
Meinel, Aden; Meinel, Marjorie; Romeo, Robert
2003-01-01
An experiment and calculation have demonstrated the feasibility of a technique of compact storage of paraboloidal mirrors made of thin composite-material (multiple layers of carbon fiber mats in a polymeric matrix) shells coated with metal for reflectivity. Such mirrors are under consideration as simple, lightweight alternatives to the heavier, more complex mirrors now used in space telescopes. They could also be used on Earth in applications in which gravitational sag of the thin shells can be tolerated. The present technique is essentially the same as that used to store large maps, posters, tapestries, and similar objects: One simply rolls up the mirror to a radius small enough to enable the insertion of the mirror in a protective cylindrical case. Provided that the stress associated with rolling the mirror is not so large as to introduce an appreciable amount of hysteresis, the mirror can be expected to spring back to its original shape, with sufficient precision to perform its intended optical function, when unrolled from storage.
Synthesis of carbon core–shell pore structures and their performance as supercapacitors
Ariyanto, Teguh; Dyatkin, Boris; Zhang, Gui-Rong; ...
2015-07-15
High-power supercapacitors require excellent electrolyte mobility within the pore network and high electrical conductivity for maximum capacitance and efficiency. Achieving high power typically requires sacrificing energy densities, as the latter demands a high specific surface area and narrow porosity that impedes ion transport. Here, we present a novel solution for this optimization problem: a nanostructured core–shell carbonaceous material that exhibits a microporous carbon core surrounded by a mesoporous, graphitic shell. The tunable synthesis parameters yielded a structure that features either a sharp or a gradual transition between the core and shell sections. Electrochemical supercapacitor testing using organic electrolyte revealed thatmore » these novel core–shell materials outperform carbons with homogeneous pore structures. The hybrid core–shell materials showed a combination of good capacitance retention, typical for the carbon present in the shell and high specific capacitance, typical for the core material. These materials achieved power densities in excess of 40 kW kg -1 at energy densities reaching 27 Wh kg -1.« less
NASA Astrophysics Data System (ADS)
Guzmán, N.; Dauphin, Y.; Cuif, J. P.; Denis, A.; Ortlieb, L.
2009-02-01
Variations in the chemical composition of fossil biogenic carbonates, and in particular of mollusc shells, have been used in a range of palaeoenvironmental reconstructions. It is of primary importance, therefore, to detect and understand the diagenetic processes that may modify the original chemical signature. This microstructural and biogeochemical study focuses on modern and fossil (Holocene and Pleistocene) shells of a littoral gastropod of Northern Chile, and on the characterization of mineral component transformations at the nanometric scale and concomitant intracrystalline organic compound modifications. The inner aragonite layer of the shell exhibits more complex deteriorations than the calcite layer. This preliminary study confirms that physical and chemical alterations of various components of mollusc shell biocrystals are complex and might manifest in different ways even within a single individual. The single criterion of determining the mineralogical composition to verify the conservation state of shell samples is insufficient.
NASA Astrophysics Data System (ADS)
Guzman, N.; Dauphin, Y.; Cuif, J. P.; Denis, A.; Ortlieb, L.
2008-02-01
Variations on chemical composition in fossil biogenic carbonates, and in particular of mollusk shells, have been used in a range of palaeoenvironmental reconstructions. Therefore, it is of primary importance to detect and understand the diagenetic processes that may modify the original chemical signature. This microstructural and biogeochemical study focuses on modern and fossil (Pleistocene and Holocene) shells of a littoral gastropod of Northern Chile, and on the characterization of mineral component transformations at the nanometric scale and concomitant intracrystalline organic compound modifications. The inner aragonite layer of the shell exhibits more complex deteriorations than the calcite layer. This preliminary study confirms that physical and chemical alterations of various components of mollusk shell biocrystals are complex and might manifest in different ways even within a single individual. The single criterion of determining the mineralogical composition to attest shell sample conservation state should not be considered as sufficient.
Monolithic photonic crystals created by partial coalescence of core-shell particles.
Lee, Joon-Seok; Lim, Che Ho; Yang, Seung-Man; Kim, Shin-Hyun
2014-03-11
Colloidal crystals and their derivatives have been intensively studied and developed during the past two decades due to their unique photonic band gap properties. However, complex fabrication procedures and low mechanical stability severely limit their practical uses. Here, we report stable photonic structures created by using colloidal building blocks composed of an inorganic core and an organic shell. The core-shell particles are convectively assembled into an opal structure, which is then subjected to thermal annealing. During the heat treatment, the inorganic cores, which are insensitive to heat, retain their regular arrangement in a face-centered cubic lattice, while the organic shells are partially fused with their neighbors; this forms a monolithic structure with high mechanical stability. The interparticle distance and therefore stop band position are precisely controlled by the annealing time; the distance decreases and the stop band blue shifts during the annealing. The composite films can be further treated to give a high contrast in the refractive index. The inorganic cores are selectively removed from the composite by wet etching, thereby providing an organic film containing regular arrays of air cavities. The high refractive index contrast of the porous structure gives rise to pronounced structural colors and high reflectivity at the stop band position.
Role of reef fauna in sediment transport and distribution - Studies from Tektite I and II
Clifton, H.E.
1973-01-01
1. Reef organisms may play a major role in the transport and distribution of sediment on the sea floor adjacent to coral reefs. 2. Some fish such as Malacanthus plumieri (Bloch) selectively transport and collect certain types of sediment (such as larger coral and shell fragments). 3. The random movement of crawling or burrowing organisms may cause a large amount of sediment to be shifted laterally on the sea floor. On slopes, a net downhill displacement may result. 4. The surface configuration and internal structure of the sediment is rapidly changed by faunal mixing. Ripple marks formed by waves or currents are obliterated by the activity of organisms in only a few weeks in the environment studied. Internal structure (bedding) near the sediment-water interface is similarly destroyed in a short period of time. 5. Larger clasts (including empty shells) on the sea floor tend to be buried by faunal undermining. The rate of burial depends primarily on the grain size of the substrate. 6. The random movement of fauna on the sea floor may produce a predominantly concave-up orientation of pelecypod shells and shell fragments on the sea floor - the opposite of that produced by the activity of waves or currents. ?? 1973 Biologischen Anstalt Helgoland.
Embedded random matrix ensembles from nuclear structure and their recent applications
NASA Astrophysics Data System (ADS)
Kota, V. K. B.; Chavda, N. D.
Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.
Jang, Se Gyu; Kramer, Edward J; Hawker, Craig J
2011-10-26
We report a facile strategy to synthesize amphiphilic gold (Au) nanoparticles functionalized with a multilayer, micelle-like structure consisting of a Au core, an inner hydroxylated polyisoprene (PIOH) layer, and an outer polystyrene shell (PS). Careful control of enthalpic interactions via a systematic variation of structural parameters, such as number of hydroxyl groups per ligand (N(OH)) and styrene repeating units (N(PS)) as well as areal chain density of ligands on the Au-core surface (Σ), enables precise control of the spatial distribution of these nanoparticles. This control was demonstrated in a lamellae-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) diblock copolymer matrix, where the favorable hydrogen-bonding interaction between hydroxyl groups in the PIOH inner shell and P2VP chains in the PS-b-P2VP diblock copolymer matrix, driving the nanoparticles to be segregated in P2VP domains, could be counter balanced by the enthalphic penalty of mixing of the PS outer brush with the P2VP domains. By varying N(OH), N(PS), and Σ, the nanoparticles could be positioned in the PS or P2VP domains or at the PS/P2VP interface. In addition, the effect of additives interfering with the hydrogen-bond formation between hydroxyl groups on Au nanoparticles and P2VP chains in a diblock copolymer matrix was investigated, and an interesting pea-pod-like segregation of Au nanoparticles in PS domains was observed.
USDA-ARS?s Scientific Manuscript database
During six visits, biofilms from egg contact and non-contact surfaces in a commercial shell egg processing facility were sampled. Thirty-five different sample sites were selected: Pre-wash and wash tanks (lids, screens, tank interiors, nozzle guards), post-wash spindles, blower filters, belts (far...
Howes, Ella L; Eagle, Robert A; Gattuso, Jean-Pierre; Bijma, Jelle
2017-01-01
Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT scanning.
Gattuso, Jean-Pierre; Bijma, Jelle
2017-01-01
Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT scanning. PMID:28125590
Pressurized Shell Molds For Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Kashalikar, Uday K.; Lusignea, Richard N.; Cornie, James
1993-01-01
Balanced-pressure molds used to make parts in complex shapes from fiber-reinforced metal-matrix composite materials. In single step, molding process makes parts in nearly final shapes; only minor finishing needed. Because molding pressure same on inside and outside, mold does not have to be especially strong and can be made of cheap, nonstructural material like glass or graphite. Fibers do not have to be cut to conform to molds. Method produces parts with high content of continuous fibers. Parts stiff but light in weight, and coefficients of thermal expansion adjusted. Parts resistant to mechanical and thermal fatigue superior to similar parts made by prior fabrication methods.
Progressive delamination in polymer matrix composite laminates: A new approach
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.
1992-01-01
A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.
NASA Astrophysics Data System (ADS)
Barbero, Ever J.; Bedard, Antoine Joseph
2018-04-01
Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.
Morgan, D.; Mawer, S. L.; Harman, P. L.
1994-01-01
A family outbreak of Salmonella enteritidis PT4 infection is described in which home-made ice cream was identified as the vehicle of infection. The ice cream contained approximately 10(5) S. enteritidis PT4 organisms per gm and was probably contaminated by an infected shell egg containing between 10(5)-10(8) organisms. The continued relevance of the Chief Medical Officer's warning on the use of raw shell eggs is highlighted. Home-made ice cream using the same recipe as ice cream that had been incriminated as the cause of the family outbreak of S. enteritidis PT4 infection was used to study the growth of the organism that might have occurred in the 3-4 h it took to prepare the product. When the inoculum was in the stationary phase, as it would be from shell or other cross contamination, there was a lag phase of 3 h before growth occurred at room temperature. Even when actively multiplying organisms were introduced, as may be found in an infected egg, there was less than 3 log(10) increase in the salmonella count in 4 h at room temperature. It was, therefore, given the high S. enteritidis count, unlikely that the ice cream was cross-contaminated. By contrast, raspberry sorbet at pH 3.73 proved to be lethal to a large inoculum of S. enteritidis and may be a relatively safe raw egg containing product. PMID:8062876
Daily oscillation of gene expression associated with nacreous layer formation
NASA Astrophysics Data System (ADS)
Miyazaki, Yoko; Usui, Tomomi; Kajikawa, Aya; Hishiyama, Hajime; Matsuzawa, Norifumi; Nishida, Takuma; Machii, Akira; Samata, Tetsuro
2008-06-01
Three major organic matrix components, nacrein, MSI60 and N16 have been reported from the nacreous layer of Japanese pearl oyster, Pinctada fucata. Though several in vitro experiments have been carried out to elucidate the functions of these molecules details have not yet been clarified. In this report, we tempt to clarify the gene expression levels encoding the above three proteins between samples of 1) summer and winter seasons and 2) ocean and aquarium environments by using real-time polymerase chain reaction (PCR). It was confirmed that the biomineralization process of P. fucata is mainly influenced by the circatidal rhythm of the ocean environment. The gene expressions coding for N16 and MSI60 increased at the time of high tide, while that of nacrein increased at the time of low tide. The similar tendency observed in N16 and MSI60 showed the possibility that both components are secreted simultaneously, supporting a hypothesis that N16 forms cross-linkage with MSI60 to form the membrane. The expressions of MSI60, N16 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were remarkable in winter season, while no variation was found in the expression level of the nacrein gene in summer and winter season. The study is the first attempt regarding the seasonal and circadian rhythms observed on gene expressions incorporated into molluscan shell formation. The results will give a new insight into the relationship between molluscan physiology and the mechanism of shell formation.
Removal of Volatile Organics from Humidified Air Streams by Absorption.
1987-12-01
Type Comments Activated Carbons: SK-4 nut shell LCL coconut shell WV-B coal base CT coconut shell Specialty Carbons: Graphpac graphitized carbon area...Capacity, g/g Percentage Sorbent ( virgin ) (treated)D Change SK-4 0.114 0.117 +2.6 Carbosieve S-11 0.195 0.180 -7.7 Spherocarb 0.149 0.151 +1.3 CT...and WV-B with respect to their adsorption capacities. CT and SK-4 are both coconut -derived carbons produced by the same manufacturer. Differences
Volume-labeled nanoparticles and methods of preparation
Wang, Wei; Gu, Baohua; Retterer, Scott T; Doktycz, Mitchel J
2015-04-21
Compositions comprising nanosized objects (i.e., nanoparticles) in which at least one observable marker, such as a radioisotope or fluorophore, is incorporated within the nanosized object. The nanosized objects include, for example, metal or semi-metal oxide (e.g., silica), quantum dot, noble metal, magnetic metal oxide, organic polymer, metal salt, and core-shell nanoparticles, wherein the label is incorporated within the nanoparticle or selectively in a metal oxide shell of a core-shell nanoparticle. Methods of preparing the volume-labeled nanoparticles are also described.
Fabritius, Helge; Walther, Paul; Ziegler, Andreas
2005-05-01
Before the molt terrestrial isopods resorb calcium from the posterior cuticle and store it in large deposits within the first four anterior sternites. In Porcellio scaber the deposits consist of three structurally distinct layers consisting of amorphous CaCO3 (ACC) and an organic matrix that consists of concentric and radial elements. It is thought that the organic matrix plays a role in the structural organization of deposits and in the stabilization of ACC, which is unstable in vitro. In this paper, we present a thorough analysis of the ultrastructure of the organic matrix in the CaCO3 deposits using high-resolution field-emission scanning electron microscopy. The spherules and the homogeneous layer contain an elaborate organic matrix with similar structural organization consisting of concentric reticules and radial strands. The decalcification experiments reveal an inhomogeneous solubility of ACC within the spherules probably caused by variations in the stabilizing properties of matrix components. The transition between the three layers can be explained by changes in the number of spherule nucleation sites.
Membrane-Based Gas Separation Accelerated by Hollow Nanosphere Architectures
Zhang, Jinshui; Schott, Jennifer Ann; Univ. of Tennessee, Knoxville, TN; ...
2016-11-15
We report that the coupling of hollow carbon nanospheres with triblock copolymers is a promising strategy to fabricate mixed-matrix membranes, because the symmetric microporous shells combine with the hollow space to promote gas transport and the unique soft-rigid molecular structure of triblock copolymers can accommodate a high loading of fillers without a significant loss of mechanical strength.
Layer-by-layer-based silica encapsulation of individual yeast with thickness control.
Lee, Hojae; Hong, Daewha; Choi, Ji Yu; Kim, Ji Yup; Lee, Sang Hee; Kim, Ho Min; Yang, Sung Ho; Choi, Insung S
2015-01-01
In the area of cell-surface engineering with nanomaterials, the metabolic and functional activities of the encapsulated cells are manipulated and controlled by various parameters of the artificial shells that encase the cells, such as stiffness and elasticity, thickness, and porosity. The mechanical durability and physicochemical stability of inorganic shells prove superior to layer-by-layer-based organic shells with regard to cytoprotection, but it has been difficult to vary the parameters of inorganic shells including their thickness. In this work, we combine the layer-by-layer technique with a process of bioinspired silicification to control the thickness of the silica shells that encapsulate yeast Saccharomyces cerevisiae cells individually, and investigate the thickness-dependent microbial growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-healing fiber-reinforced composite
NASA Astrophysics Data System (ADS)
Lee, Minwook; Yoon, Sam; Yarin, Alexander
In the present work two parts of the healing agent (commercially available epoxy resin and hardener) are encapsulated in separate polymeric nanofibers. The fibers are generated by a single-step dual coaxial solution blowing. The core-shell fibers with the diameters in the 200-2600 nm range are encased in the PDMS (polydimethyl siloxane) matrix to form a self-healing composite material. Under fatigue conditions, the core-shell fibers inside the composite material are ruptured and the healing agents released into the surrounding matrix. Various fatigue conditions including repeated bending and stretching are used to damage the composites and the degree of self-healing is quantified after that. Also, an incision resembling a crack is pre-notched and crack propagation is studied. It is found that the presence of the self-healing agents in the fibers significantly retards crack propagation due to curing by the epoxy at the ruptured site. The stiffness of the composites is also measured for the samples containing self-healing fibers inside them before and after the fatigue tests. A novel theory of crack propagation is proposed, which explains the observed jump-like growth of sub-critical cracks. This work was supported by the International Collaboration Program funded by the Agency for Defense Development.
Reliability analysis of laminated CMC components through shell subelement techniques
NASA Technical Reports Server (NTRS)
Starlinger, Alois; Duffy, Stephen F.; Gyekenyesi, John P.
1992-01-01
An updated version of the integrated design program Composite Ceramics Analysis and Reliability Evaluation of Structures (C/CARES) was developed for the reliability evaluation of ceramic matrix composites (CMC) laminated shell components. The algorithm is now split into two modules: a finite-element data interface program and a reliability evaluation algorithm. More flexibility is achieved, allowing for easy implementation with various finite-element programs. The interface program creates a neutral data base which is then read by the reliability module. This neutral data base concept allows easy data transfer between different computer systems. The new interface program from the finite-element code Matrix Automated Reduction and Coupling (MARC) also includes the option of using hybrid laminates (a combination of plies of different materials or different layups) and allows for variations in temperature fields throughout the component. In the current version of C/CARES, a subelement technique was implemented, enabling stress gradients within an element to be taken into account. The noninteractive reliability function is now evaluated at each Gaussian integration point instead of using averaging techniques. As a result of the increased number of stress evaluation points, considerable improvements in the accuracy of reliability analyses were realized.
Abalone water-soluble matrix for self-healing biomineralization of tooth defects.
Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing
2016-10-01
Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53wt% the abalone water-soluble protein (AWSPro) and 2.04wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. Copyright © 2016 Elsevier B.V. All rights reserved.
Kirchhoff's rule for quantum wires
NASA Astrophysics Data System (ADS)
Kostrykin, V.; Schrader, R.
1999-01-01
We formulate and discuss one-particle quantum scattering theory on an arbitrary finite graph with n open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general boundary conditions at the vertices. This results in a scattering theory with n channels. The corresponding on-shell S-matrix formed by the reflection and transmission amplitudes for incoming plane waves of energy E>0 is given explicitly in terms of the boundary conditions and the lengths of the internal lines. It is shown to be unitary, which may be viewed as the quantum version of Kirchhoff's law. We exhibit covariance and symmetry properties. It is symmetric if the boundary conditions are real. Also there is a duality transformation on the set of boundary conditions and the lengths of the internal lines such that the low-energy behaviour of one theory gives the high-energy behaviour of the transformed theory. Finally, we provide a composition rule by which the on-shell S-matrix of a graph is factorizable in terms of the S-matrices of its subgraphs. All proofs use only known facts from the theory of self-adjoint extensions, standard linear algebra, complex function theory and elementary arguments from the theory of Hermitian symplectic forms.
NASA Astrophysics Data System (ADS)
Buschbaum, Christian; Cornelius, Annika; Goedknegt, M. Anouk
2016-11-01
In sedimentary coastal ecosystems shells of epibenthic organisms such as blue mussels (Mytilus edulis) provide the only major attachment surface for barnacle epibionts, which may cause detrimental effects on their mussel basibionts by e.g. reducing growth rate. In the European Wadden Sea, beds of native blue mussels have been invaded by Pacific oysters Crassostrea gigas, which transformed these beds into mixed reefs of oysters with mussels. In this study, we determined the spatial distribution of M. edulis and their barnacle epibionts (Semibalanus balanoides) within the reef matrix. Mean mussel density near the bottom was about twice as high compared to the mussel density near the top of an oyster reef, whereas barnacles on mussels showed a reversed pattern. Barnacle dry weight per mussel was on average 14 times higher near the top than at the bottom. This pattern was confirmed by experimentally placing clean M. edulis at the top and on the bottom of oyster reefs at two sites in the Wadden Sea (island of Texel, The Netherlands; island of Sylt, Germany). After an experimental period of five weeks (April and May 2015, the main settlement period of S. balanoides), the number of barnacles per mussel was at both sites significantly higher on mussels near the top compared to near the bottom. We conclude that the oyster reef matrix offers a refuge for M. edulis: inside reefs they are not only better protected against predators but also against detrimental barnacle overgrowth. This study shows that alien species can cause beneficial effects for native organisms and should not be generally considered as a risk for the recipient marine ecosystems.
Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro.
Blair, Harry C; Larrouture, Quitterie C; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S; Robinson, Lisa J; Schlesinger, Paul H; Nelson, Deborah J
2017-06-01
We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors.
Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro
Larrouture, Quitterie C.; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S.; Robinson, Lisa J.; Schlesinger, Paul H.; Nelson, Deborah J.
2017-01-01
We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors. PMID:27846781
NASA Astrophysics Data System (ADS)
Olofsson, K. Erik J.; Brunsell, Per R.; Rojas, Cristian R.; Drake, James R.; Hjalmarsson, Håkan
2011-08-01
The usage of computationally feasible overparametrized and nonregularized system identification signal processing methods is assessed for automated determination of the full reversed-field pinch external plasma response spectrum for the experiment EXTRAP T2R. No assumptions on the geometry of eigenmodes are imposed. The attempted approach consists of high-order autoregressive exogenous estimation followed by Markov block coefficient construction and Hankel matrix singular value decomposition. It is seen that the obtained 'black-box' state-space models indeed can be compared with the commonplace ideal magnetohydrodynamics (MHD) resistive thin-shell model in cylindrical geometry. It is possible to directly map the most unstable autodetected empirical system pole to the corresponding theoretical resistive shell MHD eigenmode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, R.C.; Garard, R.J.; Lokhandwala, K.K.
The crush behavior (specific energy absorption and crush load stability) of unidirectional fiber composite rods having tougher matrices than vinyl ester were investigated and compared with the crush behavior of similar specimens having a vinyl ester matrix. The matrices were a cyclic polyester and two rubber-toughened vinyl esters. The specific energy absorption with the cyclic polyester matrix, 180 MJ/m{sup 3}, was slightly lower than that with the vinyl ester matrix, 230 MJ/m{sup 3}. On the other hand, the crush stability was markedly better. The average deviation of the crush load about the mean was as small as 3.5% with themore » cyclic polyester matrix, in contrast to about 12% with the vinyl ester matrix. The higher ductility of the cyclic polyester and the good fiber-matrix bond strength together resulted in less fracturing of the matrix and more uniform kink-band formation across the composite cross section than occurred with the vinyl ester matrix. There was also a reduction in the tendency for fibers at the periphery of the rod to splay outward rather than being crushed. Of the two rubber-toughened vinyl ester matrices, a 30% reduction was found in the average deviation of the crush load about the mean with the matrix toughened with a core-shell material, although no improvement was found with the CTBN rubber-modified vinyl ester resin.« less
Dickinson, Gary H; Matoo, Omera B; Tourek, Robert T; Sokolova, Inna M; Beniash, Elia
2013-07-15
Ocean acidification due to increasing atmospheric CO2 concentrations results in a decrease in seawater pH and shifts in the carbonate chemistry that can negatively affect marine organisms. Marine bivalves such as the hard-shell clam, Mercenaria mercenaria, serve as ecosystem engineers in estuaries and coastal zones of the western Atlantic and, as for many marine calcifiers, are sensitive to the impacts of ocean acidification. In estuaries, the effects of ocean acidification can be exacerbated by low buffering capacity of brackish waters, acidic inputs from freshwaters and land, and/or the negative effects of salinity on the physiology of organisms. We determined the interactive effects of 21 weeks of exposure to different levels of CO2 (~395, 800 and 1500 μatm corresponding to pH of 8.2, 8.1 and 7.7, respectively) and salinity (32 versus 16) on biomineralization, shell properties and energy metabolism of juvenile hard-shell clams. Low salinity had profound effects on survival, energy metabolism and biomineralization of hard-shell clams and modulated their responses to elevated PCO2. Negative effects of low salinity in juvenile clams were mostly due to the strongly elevated basal energy demand, indicating energy deficiency, that led to reduced growth, elevated mortality and impaired shell maintenance (evidenced by the extensive damage to the periostracum). The effects of elevated PCO2 on physiology and biomineralization of hard-shell clams were more complex. Elevated PCO2 (~800-1500 μatm) had no significant effects on standard metabolic rates (indicative of the basal energy demand), but affected growth and shell mechanical properties in juvenile clams. Moderate hypercapnia (~800 μatm PCO2) increased shell and tissue growth and reduced mortality of juvenile clams in high salinity exposures; however, these effects were abolished under the low salinity conditions or at high PCO2 (~1500 μatm). Mechanical properties of the shell (measured as microhardness and fracture toughness of the shells) were negatively affected by elevated CO2 alone or in combination with low salinity, which may have important implications for protection against predators or environmental stressors. Our data indicate that environmental salinity can strongly modulate responses to ocean acidification in hard-shell clams and thus should be taken into account when predicting the effects of ocean acidification on estuarine bivalves.
Comparative study of the shell development of hard- and soft-shelled turtles
Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru
2014-01-01
The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used – the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. PMID:24754673
Comparative study of the shell development of hard- and soft-shelled turtles.
Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru
2014-07-01
The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. © 2014 Anatomical Society.
NASA Astrophysics Data System (ADS)
Menéndez, J.
2018-01-01
Neutrinoless β β decay nuclear matrix elements calculated with the shell model and energy-density functional theory typically disagree by more than a factor of two in the standard scenario of light-neutrino exchange. In contrast, for a decay mediated by sterile heavy neutrinos the deviations are reduced to about 50%, an uncertainty similar to the one due to short-range effects. We compare matrix elements in the light- and heavy-neutrino-exchange channels, exploring the radial, momentum transfer and angular momentum-parity matrix element distributions, and considering transitions that involve correlated and uncorrelated nuclear states. We argue that the shorter-range heavy-neutrino exchange is less sensitive to collective nuclear correlations, and that discrepancies in matrix elements are mostly due to the treatment of long-range correlations in many-body calculations. Our analysis supports previous studies suggesting that isoscalar pairing correlations, which affect mostly the longer-range part of the neutrinoless β β decay operator, are partially responsible for the differences between nuclear matrix elements in the standard light-neutrino-exchange mechanism.
Kocot, Kevin M; Aguilera, Felipe; McDougall, Carmel; Jackson, Daniel J; Degnan, Bernard M
2016-01-01
An external skeleton is an essential part of the body plan of many animals and is thought to be one of the key factors that enabled the great expansion in animal diversity and disparity during the Cambrian explosion. Molluscs are considered ideal to study the evolution of biomineralization because of their diversity of highly complex, robust and patterned shells. The molluscan shell forms externally at the interface of animal and environment, and involves controlled deposition of calcium carbonate within a framework of macromolecules that are secreted from the dorsal mantle epithelium. Despite its deep conservation within Mollusca, the mantle is capable of producing an incredible diversity of shell patterns, and macro- and micro-architectures. Here we review recent developments within the field of molluscan biomineralization, focusing on the genes expressed in the mantle that encode secreted proteins. The so-called mantle secretome appears to regulate shell deposition and patterning and in some cases becomes part of the shell matrix. Recent transcriptomic and proteomic studies have revealed marked differences in the mantle secretomes of even closely-related molluscs; these typically exceed expected differences based on characteristics of the external shell. All mantle secretomes surveyed to date include novel genes encoding lineage-restricted proteins and unique combinations of co-opted ancient genes. A surprisingly large proportion of both ancient and novel secreted proteins containing simple repetitive motifs or domains that are often modular in construction. These repetitive low complexity domains (RLCDs) appear to further promote the evolvability of the mantle secretome, resulting in domain shuffling, expansion and loss. RLCD families further evolve via slippage and other mechanisms associated with repetitive sequences. As analogous types of secreted proteins are expressed in biomineralizing tissues in other animals, insights into the evolution of the genes underlying molluscan shell formation may be applied more broadly to understanding the evolution of metazoan biomineralization.
Chen, Tijun; Gao, Min; Tong, Yunqi
2018-01-01
To prepare core-shell-structured Ti@compound particle (Ti@compoundp) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al–Ti–Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al3Ti phase to form to different degrees. The first-formed Al–Ti–Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)3Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)3Ti phase was larger than that in τ1 phase, but smaller than that in Al3Ti phase. So, the shells in the Al–Ti–Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al–Ti–Mg system and the reaction rate in the Al–Ti–Zn system. More importantly, the desirable core-shell structured Ti@compoundp was only achieved in the semisolid Al–Ti–Si system. PMID:29342946
Chen, Tijun; Gao, Min; Tong, Yunqi
2018-01-15
To prepare core-shell-structured Ti@compound particle (Ti@compound p ) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al-Ti-Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al₃Ti phase to form to different degrees. The first-formed Al-Ti-Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)₃Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)₃Ti phase was larger than that in τ1 phase, but smaller than that in Al₃Ti phase. So, the shells in the Al-Ti-Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al-Ti-Mg system and the reaction rate in the Al-Ti-Zn system. More importantly, the desirable core-shell structured Ti@compound p was only achieved in the semisolid Al-Ti-Si system.
Reaction of atomic hydrogen with formic acid.
Cao, Qian; Berski, Slawomir; Latajka, Zdzislaw; Räsänen, Markku; Khriachtchev, Leonid
2014-04-07
We study the reaction of atomic hydrogen with formic acid and characterize the radical products using IR spectroscopy in a Kr matrix and quantum chemical calculations. The reaction first leads to the formation of an intermediate radical trans-H2COOH, which converts to the more stable radical trans-cis-HC(OH)2via hydrogen atom tunneling on a timescale of hours at 4.3 K. These open-shell species are observed for the first time as well as a reaction between atomic hydrogen and formic acid. The structural assignment is aided by extensive deuteration experiments and ab initio calculations at the UMP2 and UCCSD(T) levels of theory. The simplest geminal diol radical trans-cis-HC(OH)2 identified in the present work as the final product of the reaction should be very reactive, and further reaction channels are of particular interest. These reactions and species may constitute new channels for the initiation and propagation of more complex organic species in the interstellar clouds.
Hovden, Robert; Wolf, Stephan E.; Holtz, Megan E.; Marin, Frédéric; Muller, David A.; Estroff, Lara A.
2015-01-01
Intricate biomineralization processes in molluscs engineer hierarchical structures with meso-, nano- and atomic architectures that give the final composite material exceptional mechanical strength and optical iridescence on the macroscale. This multiscale biological assembly inspires new synthetic routes to complex materials. Our investigation of the prism–nacre interface reveals nanoscale details governing the onset of nacre formation using high-resolution scanning transmission electron microscopy. A wedge-polishing technique provides unprecedented, large-area specimens required to span the entire interface. Within this region, we find a transition from nanofibrillar aggregation to irregular early-nacre layers, to well-ordered mature nacre suggesting the assembly process is driven by aggregation of nanoparticles (∼50–80 nm) within an organic matrix that arrange in fibre-like polycrystalline configurations. The particle number increases successively and, when critical packing is reached, they merge into early-nacre platelets. These results give new insights into nacre formation and particle-accretion mechanisms that may be common to many calcareous biominerals. PMID:26631940
A tire contact solution technique
NASA Technical Reports Server (NTRS)
Tielking, J. T.
1983-01-01
An efficient method for calculating the contact boundary and interfacial pressure distribution was developed. This solution technique utilizes the discrete Fourier transform to establish an influence coefficient matrix for the portion of the pressurized tire surface that may be in the contact region. This matrix is used in a linear algebra algorithm to determine the contact boundary and the array of forces within the boundary that are necessary to hold the tire in equilibrium against a specified contact surface. The algorithm also determines the normal and tangential displacements of those points on the tire surface that are included in the influence coefficient matrix. Displacements within and outside the contact region are calculated. The solution technique is implemented with a finite-element tire model that is based on orthotropic, nonlinear shell of revolution elements which can respond to nonaxisymmetric loads. A sample contact solution is presented.
Tajiri, Shinichiro; Kanamaru, Taro; Kamada, Makoto; Makoto, Kamada; Konno, Tsutomu; Nakagami, Hiroaki
2010-01-04
The objective of the present work is to develop an extended-release dosage form of cevimeline. Two types of extended-release tablets (simple matrix tablets and press-coated tablets) were prepared and their potential as extended-release dosage forms were assessed. Simple matrix tablets have a large amount of hydroxypropylcellulose as a rate-controlling polymer and the matrix is homogeneous throughout the tablet. The press-coated tablets consisted of a matrix core tablet, which was completely surrounded by an outer shell containing a large amount of hydroxypropylcellulose. The simple matrix tablets could not sustain the release of cevimeline effectively. In contrast, the press-coated tablets showed a slower dissolution rate compared with simple matrix tablets and the release curve was nearly linear. The dissolution of cevimeline from the press-coated tablets was not markedly affected by the pH of the dissolution medium or by a paddle rotating speed over the range of 50-200 rpm. Furthermore, cevimeline was constantly released from the press-coated tablets in the gastrointestinal tract and the steady-state plasma drug levels were maintained in beagle dogs. These results suggested that the designed PC tablets have a potential for extended-release dosage forms.
A marketing matrix for health care organizations.
Weaver, F J; Gombeski, W R; Fay, G W; Eversman, J J; Cowan-Gascoigne, C
1986-06-01
Irrespective of the formal marketing structure successful marketing for health care organizations requires the input on many people. Detailed here is the Marketing Matrix used at the Cleveland Clinic Foundation in Cleveland, Ohio. This Matrix is both a philosophy and a tool for clarifying and focusing the organization's marketing activities.
Matrix Organization of a Residency Program in an Academic Medical Center.
ERIC Educational Resources Information Center
Smith, Ellen S.; Eisenberg, John M.
1980-01-01
Matrix organization offers a structure that can facilitate coordination and cooperation in health care educational administration. Its application within the health care system is reviewed, the matrix organization of the primary care residency at the University of Pennsylvania is reported, and advantages and disadvantages are discussed.…
Gola, Joanna; Ghavami, Saeid; Skonieczna, Magdalena; Markowski, Jarosław; Likus, Wirginia; Lewandowska, Magdalena; Maziarz, Wojciech
2017-01-01
With the rapid advancement of regenerative medicine technologies, there is an urgent need for the development of new, cell-friendly techniques for obtaining nanofibers—the raw material for an artificial extracellular matrix production. We investigated the structure and properties of PCL10 nanofibers, PCL5/PCL10 core-shell type nanofibers, as well as PCL5/PCLAg nanofibres prepared by electrospinning. For the production of the fiber variants, a 5–10% solution of polycaprolactone (PCL) (Mw = 70,000–90,000), dissolved in a mixture of formic acid and acetic acid at a ratio of 70:30 m/m was used. In order to obtain fibers containing PCLAg 1% of silver nanoparticles was added. The electrospin was conducted using the above-described solutions at the electrostatic field. The subsequent bio-analysis shows that synthesis of core-shell nanofibers PCL5/PCL10, and the silver-doped variant nanofiber core shell PCL5/PCLAg, by using organic acids as solvents, is a robust technique. Furthermore, the incorporation of silver nanoparticles into PCL5/PCLAg makes such nanofibers toxic to model microbes without compromising its biocompatibility. Nanofibers obtained such way may then be used in regenerative medicine, for the preparation of extracellular scaffolds: (i) for controlled bone regeneration due to the long decay time of the PCL, (ii) as bioscaffolds for generation of other types of artificial tissues, (iii) and as carriers of nanocapsules for local drug delivery. Furthermore, the used solvents are significantly less toxic than the solvents for polycaprolactone currently commonly used in electrospin, like for example chloroform (CHCl3), methanol (CH3OH), dimethylformamide (C3H7NO) or tetrahydrofuran (C4H8O), hence the presented here electrospin technique may allow for the production of multilayer nanofibres more suitable for the use in medical field. PMID:29302386
Retrospective environmental biomonitoring - Mussel Watch expanded
NASA Astrophysics Data System (ADS)
Schöne, Bernd R.; Krause, Richard A.
2016-09-01
Monitoring bioavailable contaminants and determining baseline conditions in aquatic environments has become an important aspect of ecology and ecotoxicology. Since the mid-1970s and the initiation of the Mussel Watch program, this has been successfully accomplished with bivalve mollusks. These (mostly) sessile organisms reliably and proportionately record changes of a range of organic and inorganic pollutants occurring in the water, food or sediment. The great majority of studies have measured the concentration of pollutants in soft tissues and, to a much lesser extent, in whole shells or fractions thereof. Both approaches come with several drawbacks. Neither soft tissues nor whole shells can resolve temporal changes of the pollution history, except through the analysis of multiple specimens collected at different times. Soft tissues and shell fractions provide time-averaged data spanning months or years, and whole shells time-averaged data over the entire lifespan of the animal. Even with regular sampling of multiple specimens over long intervals of time, the resulting chronology may not faithfully resolve short-term changes of water quality. Compounding the problem, whole shell averages tend to be non-arithmetic and non-linear, because shell growth rate varies through seasons and lifetime, and different shell layers often vary ultrastructurally and can thus be chemically different from each other. Mussel Watch could greatly benefit from the potential of bivalve shells in providing high-resolution, temporally aligned archives of environmental variability. So far, only circa a dozen studies have demonstrated that the sclerochronological approach - i.e., combined growth pattern and high-resolution chemical analyses - can provide sub-seasonally to annually resolved time-series documenting the history of pollution over centuries and even millennia. On the other hand, the sclerochronological community has failed to fully appreciate that the formation of the shell and its chemical composition is controlled by the soft parts and that a robust interpretation of the shell record requires a detailed understanding of bivalve physiology, behavior and ecology. This review attempts to bring together the Mussel Watch and sclerochronology communities and lay the foundation of a new subdiscipline of the Mussel Watch: retrospective environmental biomonitoring. For this purpose, we provide an overview of seminal work from both fields and outline potential future research directions.
NASA Astrophysics Data System (ADS)
Nehrke, G.; Nouet, J.
2011-06-01
Marine biogenic carbonates formed by invertebrates (e.g. corals and mollusk shells) represent complex composites of one or more mineral phases and organic molecules. This complexity ranges from the macroscopic structures observed with the naked eye down to sub micrometric structures only revealed by micro analytical techniques. Understanding to what extent and how organisms can control the formation of these structures requires that the mineral and organic phases can be identified and their spatial distribution related. Here we demonstrate the capability of confocal Raman microscopy applied to cross sections of a shell of Nerita undata to describe the distribution of calcite and aragonite including their crystallographic orientation with high lateral resolution (∼300 nm). Moreover, spatial distribution of functional groups of organic compounds can be simultaneously acquired, allowing to specifically relate them to the observed microstructures. The data presented in this case study highlights the possible new contributions of this method to the description of modalities of Nerita undata shell formation, and what could be expected of its application to other marine biogenic carbonates. Localization of areas of interest would also allow further investigations using more localized methods, such as TEM that would provide complementary information on the relation between organic molecules and crystallographic lattice.
Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud
2017-03-15
For the first time the extract of the plant of Salvia hydrangea was used to green synthesis of Pd nanoparticles (NPs) supported on Apricot kernel shell as an environmentally benign support. The Pd NPs/Apricot kernel shell as an effective catalyst was prepared through reduction of Pd 2+ ions using Salvia hydrangea extract as the reducing and capping agent and Pd NPs immobilization on Apricot kernel shell surface in the absence of any stabilizer or surfactant. According to FT-IR analysis, the hydroxyl groups of phenolics in Salvia hydrangea extract as bioreductant agents are directly responsible for the reduction of Pd 2+ ions and formation of Pd NPs. The as-prepared catalyst was characterized by Fourier transform infrared (FT-IR) and UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) equipped with an energy dispersive X-ray spectroscopy (EDS), Elemental mapping, X-ray diffraction analysis (XRD) and transmittance electron microscopy (TEM). The synthesized catalyst was used in the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), Methylene Blue (MB), Rhodamine B (RhB), and Congo Red (CR) at room temperature. The Pd NPs/Apricot kernel shell showed excellent catalytic activity in the reduction of these organic dyes. In addition, it was found that Pd NPs/Apricot kernel shell can be recovered and reused several times without significant loss of catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Ying; Wang, Man; Cao, Lu-Jie; Yang, Ming-Yang; Ho-Sum Cheng, Samson; Cao, Chen-Wei; Leung, Kwan-Lan; Chung, Chi-Yuen; Lu, Zhou-Guang
2015-07-01
A facile oxidation-reduction reaction method has been implemented to prepare pomegranate-like Ag@CeO2 multicore-shell structured nanocomposites. Under Ar atmosphere, redox reaction automatically occurs between AgNO3 and Ce(NO3)3 in an alkaline solution, where Ag+ is reduced to Ag nanopartilces and Ce3+ is simultaneously oxidized to form CeO2, followed by the self-assembly to form the pomegranate-like multicore-shell structured Ag@CeO2 nanocomposites driven by thermodynamic equilibrium. No other organic amines or surfactants are utilized in the whole reaction system and only NaOH instead of organic reducing agent is used to prevent the introduction of a secondary reducing byproduct. The as-obtained pomegranate-like Ag@CeO2 multicore-shell structured nanocomposites have been characterized as electro-catalysts for the air cathode of lithium-air batteries operated in a simulated air environment. Superior electrochemical performance with high discharge capacity of 3415 mAh g-1 at 100 mA g-1, stable cycling and small charge/discharge polarization voltage is achieved, which is much better than that of the CeO2 or simple mixture of CeO2 and Ag. The enhanced properties can be primarily attributed to the synergy effect between the Ag core and the CeO2 shell resulting from the unique pomegranate-like multicore-shell nanostructures possessing plenty of active sites to promote the facile formation and decomposition of Li2O2.
Experimental evaluation of drying characteristics of sewage sludge and hazelnut shell mixtures
NASA Astrophysics Data System (ADS)
Pehlivan, Hüseyin; Ateş, Asude; Özdemir, Mustafa
2016-11-01
In this study the drying behavior of organic and agricultural waste mixtures has been experimentally investigated. The usability of sewage sludge as an organic waste and hazelnut shell as an agricultural waste was assessed in different mixture range. The paper discusses the applicability of these mixtures as a recovery energy source. Moisture content of mixtures has been calculated in laboratory and plant conditions. Indoor and outdoor solar sludge drying plants were constructed in pilot scale for experimental purposes. Dry solids and climatic conditions were constantly measured. A total more than 140 samples including for drying has been carried out to build up results. Indoor and outdoor weather conditions are taken into consideration in winter and summer. The most effective drying capacity is obtained in mixture of 20 % hazelnut shell and 80 % sewage sludge.
USDA-ARS?s Scientific Manuscript database
Activated carbons are a byproduct from pyrolysis and have value as a purifying agent. The effectiveness of activated carbons is dependent on feedstock selection and pyrolysis conditions that modify its surface properties. Therefore, pecan shell-based activated carbons (PSACs) were prepared by soakin...
Checa, Antonio G.; Macías-Sánchez, Elena; Ramírez-Rico, Joaquín
2016-01-01
The Cavolinioidea are planktonic gastropods which construct their shells with the so-called aragonitic helical fibrous microstructure, consisting of a highly ordered arrangement of helically coiled interlocking continuous crystalline aragonite fibres. Our study reveals that, despite the high and continuous degree of interlocking between fibres, every fibre has a differentiated organic-rich thin external band, which is never invaded by neighbouring fibres. In this way, fibres avoid extinction. These intra-fibre organic-rich bands appear on the growth surface of the shell as minuscule elevations, which have to be secreted differentially by the outer mantle cells. We propose that, as the shell thickens during mineralization, fibre secretion proceeds by a mechanism of contact recognition and displacement of the tips along circular trajectories by the cells of the outer mantle surface. Given the sizes of the tips, this mechanism has to operate at the subcellular level. Accordingly, the fabrication of the helical microstructure is under strict biological control. This mechanism of fibre-by-fibre fabrication by the mantle cells is unlike that any other shell microstructure. PMID:27181457
NASA Astrophysics Data System (ADS)
Zeng, Zhigang; Ma, Yao; Wang, Xiaoyuan; Chen, Chen-Tung Arthur; Yin, Xuebo; Zhang, Suping; Zhang, Junlong; Jiang, Wei
2018-04-01
To reveal differences in the behavior of benthic vent animals, and the sources and sinks of biogeochemical and fluid circulations, it is necessary to constrain the chemical characteristics of benthic animals from seafloor hydrothermal fields. We measured the abundances of 27 elements in shells of the crab Xenograpsus testudinatus and the snail Anachis sp., collected from the Kueishantao hydrothermal field (KHF) in the southwestern Okinawa Trough, with the aim of improving our understanding of the compositional variations between individual vent organisms, and the sources of the rare earth elements (REEs) in their shells. The Mn, Hg, and K concentrations in the male X. testudinatus shells are found to be higher than those in female crab shells, whereas the reverse is true for the accumulation of B, implying that the accumulation of K, Mn, Hg, and B in the crab shells is influenced by sex. This is inferred to be a result of the asynchronous molting of the male and female crab shells. Snail shells are found to have higher Ca, Al, Fe, Ni, and Co concentrations than crab shells. This may be attributed to different metal accumulation times. The majority of the light rare earth element (LREE) distribution patterns in the crab and snail shells are similar to those of Kueishantao vent fluids, with the crab and snail shells also exhibiting LREE enrichment, implying that the LREEs contained in crab and snail shells in the KHF are derived from vent fluids.
Sherratt, Emma; Serb, Jeanne M; Adams, Dean C
2017-12-08
Rates of morphological evolution vary across different taxonomic groups, and this has been proposed as one of the main drivers for the great diversity of organisms on Earth. Of the extrinsic factors pertaining to this variation, ecological hypotheses feature prominently in observed differences in phenotypic evolutionary rates across lineages. But complex organisms are inherently modular, comprising distinct body parts that can be differentially affected by external selective pressures. Thus, the evolution of trait covariation and integration in modular systems may also play a prominent role in shaping patterns of phenotypic diversity. Here we investigate the role ecological diversity plays in morphological integration, and the tempo of shell shape evolution and of directional asymmetry in bivalved scallops. Overall, the shape of both valves and the magnitude of asymmetry of the whole shell (difference in shape between valves) are traits that are evolving fast in ecomorphs under strong selective pressures (gliders, recessers and nestling), compared to low rates observed in other ecomorphs (byssal-attaching, free-living and cementing). Given that different parts of an organism can be under different selective pressures from the environment, we also examined the degree of evolutionary integration between the valves as it relates to ecological shifts. We find that evolutionary morphological integration is consistent and surprisingly high across species, indicating that while the left and right valves of a scallop shell are diversifying in accordance with ecomorphology, they are doing so in a concerted fashion. Our study on scallops adds another strong piece of evidence that ecological shifts play an important role in the tempo and mode of morphological evolution. Strong selective pressures from the environment, inferred from the repeated evolution of distinct ecomorphs, have influenced the rate of morphological evolution in valve shape and the magnitude of asymmetry between valves. Our observation that morphological integration of the valves making up the shell is consistently strong suggests tight developmental pathways are responsible for the concerted evolution of these structures while environmental pressures are driving whole shell shape. Finally, our study shows that directional asymmetry in shell shape among species is an important aspect of scallop macroevolution.
Vibrio cholerae Colonization of Soft-Shelled Turtles
Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin
2017-01-01
ABSTRACT Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae-contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N-acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological investigations, no experimental studies have demonstrated the colonization by V. cholerae on soft-shelled turtles. The present studies will benefit our understanding of the interaction between V. cholerae and the soft-shelled turtle. We demonstrated the colonization by V. cholerae on the soft-shelled turtle's body surface and in the intestine and revealed the different roles of major V. cholerae factors for colonization on the body surface and in the intestine. Our work provides experimental evidence for the role of soft-shelled turtles in cholera transmission. In addition, this study also shows the possibility for the soft-shelled turtle to serve as a new animal model for studying the interaction between V. cholerae and aquatic hosts. PMID:28600312
Vibrio cholerae Colonization of Soft-Shelled Turtles.
Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao
2017-07-15
Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological investigations, no experimental studies have demonstrated the colonization by V. cholerae on soft-shelled turtles. The present studies will benefit our understanding of the interaction between V. cholerae and the soft-shelled turtle. We demonstrated the colonization by V. cholerae on the soft-shelled turtle's body surface and in the intestine and revealed the different roles of major V. cholerae factors for colonization on the body surface and in the intestine. Our work provides experimental evidence for the role of soft-shelled turtles in cholera transmission. In addition, this study also shows the possibility for the soft-shelled turtle to serve as a new animal model for studying the interaction between V. cholerae and aquatic hosts. Copyright © 2017 American Society for Microbiology.
Nonbibliographic Databases in a Corporate Health, Safety, and Environment Organization.
ERIC Educational Resources Information Center
Cubillas, Mary M.
1981-01-01
Summarizes the characteristics of TOXIN, CHEMFILE, and the Product Profile Information System (PPIS), nonbibliographic databases used by Shell Oil Company's Health, Safety, and Environment Organization. (FM)
Zhao, Wentong; Lu, Xiaoqing; Selvaraj, Manickam; Wei, Wei; Jiang, Zhifeng; Ullah, Nabi; Liu, Jie; Xie, Jimin
2018-05-24
Low-cost electrocatalysts play an important role in the hydrogen evolution reaction (HER). Particularly, transition metal phosphides (TMPs) are widely applied in the development of HER electrocatalysts. To improve the poor electrochemical reaction kinetics of HER, we introduce a facile way to synthesize carbon core-shell materials containing cobalt phosphide nanoparticles embedded in different graphene aerogels (GAs) (CoP@C-NPs/GA-x (x = 5, 10 and 20)) using seaweed biomass as precursors. The synthesized CoP@C-NPs/GA-5 exhibits efficient catalytic activity with small overpotentials of 120 and 225 mV at current densities of 10 mA cm-2, along with the low Tafel slopes of 57 and 66 mV dec-1, for HER in acidic and alkaline electrolytes, respectively. Compared with carbon aerogel (CA) containing cobalt phosphide nanoparticles (CoP-NPs@CA), the stability of CoP@C-NPs/GA-5 coated with carbon-shells (∼0.8 nm) was significantly improved in acidic electrolytes. We also prepared carbon core-shell materials containing nickel phosphide nanoparticles embedded in GA (Ni2P@C-NPs/GA) to further expand this synthetic route. The graphene-Ni2P@C aerogel shows a similar morphology and better catalytic activity for HER in acidic and alkaline electrolytes. In this work, the robust three-dimensional (3D) GA matrix with abundant open pores and large surface area provides unblocked channels for electrolyte contact and electronic transfer and enables very close contact between the catalyst and electrolyte. The MxP@C core-shell structure prevents the inactivation of MxP NPs during HER processes, and the thin graphene oxide (GO) layers and 3D CA together build up a 3D conductive matrix, which not only adjusts the volume expansion of MxP NPs as well as preventing their aggregation, but also provides a 3D conductive pathway for rapid charge transfer processes. The present synthetic strategy for phosphides via in situ phosphorization with 3D GA can be extended to other novel high-performance catalysts. The simple synthesis and efficient catalytic activity of MXP@C-NPs/GA indicate good application prospects in HER.
Stage-structured matrix models for organisms with non-geometric development times
Andrew Birt; Richard M. Feldman; David M. Cairns; Robert N. Coulson; Maria Tchakerian; Weimin Xi; James M. Guldin
2009-01-01
Matrix models have been used to model population growth of organisms for many decades. They are popular because of both their conceptual simplicity and their computational efficiency. For some types of organisms they are relatively accurate in predicting population growth; however, for others the matrix approach does not adequately model...
Dalvi, Bhagyashree R; Siddiqui, Ejaz A; Syed, Asad S; Velhal, Shilpa M; Ahmad, Absar; Bandivdekar, Atmaram B; Devarajan, Padma V
2016-01-01
HIV/AIDS is a macrophage resident infection localized in the reticuloendothelial system and remote locations of brain and bone marrow. We present core shell nanoparticles of gold(AuNPs) and nevirapine(NVP) for targeted delivery to the multiple HIV reservoirs. The aim of the study was to design core shell NVP loaded AuNPs with high drug loading and to evaluate biodistribution of the nanoparticles in possible HIV reservoirs in vivo. A specific objective was to assess the possible synergy of AuNPs with NVP on anti-HIV activity in vitro. Core shell nanoparticles were prepared by double emulsion solvent evaporation method and characterized. Glyceryl monostearate-nevirapine-gold nanoparticles(GMS-NVP-AuNPs) revealed high entrapment efficiency (>70%), high loading (~40%), particle size <250 nm and zeta potential -35.9± 1.41mv and exhibited sustained release with good stability. Surface plasmon resonance indicated shell formation while SEM coupled EDAX confirmed the presence of Au. TEM confirmed formation of spherical core shell nanoparticles. GMS-NVP-AuNPs revealed low hemolysis (<10 %) and serum stability upto 6 h. GMS-NVP-AuNPs exhibited rapid, high and sustained accumulation in the possible HIV reservoir organs, including the major organs of liver, spleen, lymph nodes, thymus and also remote locations of brain, ovary and bone marrow. High cell viability and enhanced uptake in PBMC's and TZM-bl cells were observed. While uptake in PBMC's proposed monocytes/macrophages enabled brain delivery. GMS-NVP-AuNPs demonstrated synergistic anti-HIV activity. The superior anti-HIV activity in vitro coupled with extensive localization of the nanoparticles in multiple HIV reservoirs suggests great promise of the core shell GMS-NVP-AuNPs for improved therapy of HIV.
Metal coated colloidosomes as carriers for an antibiotic
NASA Astrophysics Data System (ADS)
Sun, Qian; Zhao, Ziyan; Hall, Elizabeth A. H.; Routh, Alexander F.
2018-06-01
Colloidosomes are polymer shell microcapsules. They are stable and easy to prepare and have been used to encapsulate drugs for release at specific areas in the body. Traditional polymer shell capsules cannot totally seal drugs, since they are porous and small molecules diffuse through the polymer shell. In this paper, we report a method for encapsulating an antibiotic kanamycin using gold or silver coated colloidosomes. The colloidosomes are impermeable and can be triggered using ultrasound. To investigate the application of the capsules in a biological system, Escherichia Coli (E.coli) was chosen as a model organism. After triggering, the released antibiotic, as well as the metal shell fragments, kill E.coli. Both the silver and gold shells colloidosomes are toxic to this bacterial system and the gold coated colloidosomes can load a higher concentration of kanamycin.
Analysis of Benthic Foraminiferal Size Change During the Eocene-Oligocene Transition
NASA Astrophysics Data System (ADS)
Zachary, W.; Keating-Bitonti, C.
2017-12-01
The Eocene-Oligocene transition is a significant global cooling event with the first growth of continental ice on Antarctica. In the geologic record, the size of fossils can be used to indirectly observe how organisms respond to climate change. For example, organisms tend to be larger in cooler environments as a physiological response to temperature. This major global cooling event should influence organism physiology, resulting in significant size trends observed in the fossil record. Benthic foraminifera are protists and those that grow a carbonate shell are both well-preserved and abundant in marine sediments. Here, we used the foraminiferal fossil record to study the relationship between their size and global cooling. We hypothesize that cooler temperatures across the Eocene-Oligocene boundary promoted shell size increase. To test this hypothesis, we studied benthic foraminifera from 10 deep-sea cores drilled at Ocean Drilling Program Site 744, located in the southern Indian Ocean. We washed sediment samples over a 63-micron sieve and picked foraminifera from a 125-micron sieve. We studied the benthic foraminiferal genus Cibicidoides and its size change across this cooling event. Picked specimens were imaged and we measured the diameter of their shells using "imageJ". Overall, we find that Cibicidoides shows a general trend of increasing size during this transition. In particular, both the median and maximum sizes of Cibicidoides increase from the Eocene into the Oligocene. We also analyzed C. pachyderma and C. mundulus for size trends. Although both species increase in median size across the boundary, only C. pachyderma shows a consistent trend of increasing maximum, median, and minimum shell diameter. After the Eocene-Oligocene boundary, we observe that shell diameter decreases following peak cooling and that foraminiferal sizes remain stable into the early Oligocene. Therefore, the Eocene-Oligocene cooling event appears to have strong influence on shell size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qingxiang, E-mail: qxyangzz@163.com; Zhao, Qianqian; Ren, ShuangShuang
Facile regeneration of an adsorbent is very important for commercial feasibility. One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) with diameter about of 350 nm were successfully synthesized. The growth of MIL-100(Fe) shell on the surface of Fe{sub 3}O{sub 4} was utilized precursor as crystal seed via in-situ step hydrothermal reaction. It is a simple way to obtain well organized core-shell MOF composites, compared to the step-by-step method. MMCs were firstly used to uptake of Cr(VI) anions in aqueous solution. Adsorption experiments were carried out in batch sorption mode investigatingmore » with the factors of contact time (0–1000 min), pH (from 2 to 12), dose of adsorbent (4–25 mg), and initial Cr(VI) concentration (range from 10 to 100 ppm). - Graphical abstract: One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) were successfully synthesized. Utilizing Fe{sub 3}O{sub 4} precursor as crystal seed to grow MIL-100(Fe) shell by in-situ step hydrothermal reaction. It is a simple way to obtain core-shell MOF composites. MMCs could effectively uptake of Cr(VI) anions in aqueous solution. - Highlights: • Fe{sub 3}O{sub 4}@MIL-100(Fe) composites with core-shell structure were successfully prepared through a simple method. • The influence factors on Cr(VI) adsorption by Fe{sub 3}O{sub 4}@MIL-100(Fe) were investigated. • Cr(VI) can efficiently adsorbed by Fe{sub 3}O{sub 4}@MIL-100(Fe) composites from aqueous solution.« less
Molecular basis for competitive solvation of the Burkholderia cepacia lipase by sorbitol and urea.
Oliveira, Ivan P; Martínez, Leandro
2016-08-21
Increasing the stability of proteins is important for their application in industrial processes. In the intracellular environment many small molecules, called osmolytes, contribute to protein stabilization under physical or chemical stress. Understanding the nature of the interactions of these osmolytes with proteins can help the design of solvents and mutations to increase protein stability in extracellular media. One of the most common stabilizing osmolyes is sorbitol and one of the most common chemical denaturants is urea. In this work, we use molecular dynamics simulations to obtain a detailed picture of the solvation of the Burkholderia cepacia lipase (BCL) in the presence of the protecting osmolyte sorbitol and of the urea denaturant. We show that both sorbitol and urea compete with water for interactions with the protein surface. Overall, sorbitol promotes the organization of water in the first solvation shell and displaces water from the second solvation shell, while urea causes opposite effects. These effects are, however, highly heterogeneous among residue types. For instance, the depletion of water from the first protein solvation shell by urea can be traced down essentially to the side chain of negatively charged residues. The organization of water in the first solvation shell promoted by sorbitol occurs at polar (but not charged) residues, where the urea effect is minor. By contrast, sorbitol depletes water from the second solvation shell of polar residues, while urea promotes water organization at the same distances. The interactions of urea with negatively charged residues are insensitive to the presence of sorbitol. This osmolyte removes water and urea particularly from the second solvation shell of polar and non-polar residues. In summary, we provide a comprehensive description of the diversity of protein-solvent interactions, which can guide further investigations on the stability of proteins in non-conventional media, and assist solvent and protein design.
Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity
Jackson, Daniel J.; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M.; Fleck, Claudia
2017-01-01
Abstract Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent “GS” domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. PMID:28961798
Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan
2012-07-23
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Praveen, P. S.; Ramanathan, V.
2013-12-01
Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2% hematite content. The cloud spectral optical properties and the radiative properties for the aforesaid cases during CARDEX observations will be discussed in detail.
Liquid Crystal Mediated Nano-assembled Gold Micro-shells
NASA Astrophysics Data System (ADS)
Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani
We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.
NASA Astrophysics Data System (ADS)
Sui, Dong; Xie, Yuqing; Zhao, Weimin; Zhang, Hongtao; Zhou, Ying; Qin, Xiting; Ma, Yanfeng; Yang, Yong; Chen, Yongsheng
2018-04-01
Si is a promising anode material for lithium-ion batteries, but suffers from sophisticated engineering structures and complex fabrication processes that pose challenges for commercial application. Herein, a ternary Si/graphite/pyrolytic carbon (SiGC) anode material with a structure of crystal core and amorphous shell using low-cost raw materials is developed. In this ternary SiGC composite, Si component exists as nanoparticles and is spread on the surface of the core graphite flakes while the sucrose-derived pyrolytic carbon further covers the graphite/Si components as the amorphous shell. With this structure, Si together with the graphite contributes to the high specific capacity of this Si ternary material. Also the graphite serves as the supporting and conducting matrix and the amorphous shell carbon could accommodate the volume change effect of Si, reinforces the integrity of the composite architecture, and prevents the graphite and Si from direct exposing to the electrolyte. The optimized ternary SiGC composite displays high reversible specific capacity of 818 mAh g-1 at 0.1 A g-1, initial Coulombic efficiency (CE) over 80%, and excellent cycling stability at 0.5 A g-1 with 83.6% capacity retention (∼610 mAh g-1) after 300 cycles.
Combined approach of shell and shear-warp rendering for efficient volume visualization
NASA Astrophysics Data System (ADS)
Falcao, Alexandre X.; Rocha, Leonardo M.; Udupa, Jayaram K.
2003-05-01
In Medical Imaging, shell rendering (SR) and shear-warp rendering (SWR) are two ultra-fast and effective methods for volume visualization. We have previously shown that, typically, SWR can be on the average 1.38 times faster than SR, but it requires from 2 to 8 times more memory space than SR. In this paper, we propose an extension of the compact shell data structure utilized in SR to allow shear-warp factorization of the viewing matrix in order to obtain speed up gains for SR, without paying the high storage price of SWR. The new approach is called shear-warp shell rendering (SWSR). The paper describes the methods, points out their major differences in the computational aspects, and presents a comparative analysis of them in terms of speed, storage, and image quality. The experiments involve hard and fuzzy boundaries of 10 different objects of various sizes, shapes, and topologies, rendered on a 1GHz Pentium-III PC with 512MB RAM, utilizing surface and volume rendering strategies. The results indicate that SWSR offers the best speed and storage characteristics compromise among these methods. We also show that SWSR improves the rendition quality over SR, and provides renditions similar to those produced by SWR.
NASA Technical Reports Server (NTRS)
Schenk, Paul M.
2002-01-01
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometers of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7-8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25-0.5 times the thickness of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
NASA Astrophysics Data System (ADS)
Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing
2017-08-01
The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.
Holland, Hilmar A; Schöne, Bernd R; Marali, Soraya; Jochum, Klaus P
2014-10-15
We present the first annually resolved record of biologically available Pb and Fe in the Greater North Sea and Iceland during 1040-2004 AD based on shells of the long-lived marine bivalve Arctica islandica. The iron content in pre-industrial shells from the North Sea largely remained below the detection limit. Only since 1830, shell Fe levels rose gradually reflecting the combined effect of increased terrestrial runoff of iron-bearing sediments and eutrophication. Although the lead gasoline peak of the 20th century was well recorded by the shells, bivalves that lived during the medieval heyday of metallurgy showed four-fold higher shell Pb levels than modern specimens. Presumably, pre-industrial bivalves were offered larger proportions of resuspended (Pb-enriched) organics, whereas modern specimens receive fresh increased amounts of (Pb-depleted) phytoplankton. As expected, metal loads in the shells from Iceland were much lower. Our study confirms that bivalve shells provide a powerful tool for retrospective environmental biomonitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.
Das, Sourav; Ranjana, Neha; Misra, Ananyo Jyoti; Suar, Mrutyunjay; Mishra, Amrita; Tamhankar, Ashok J; Lundborg, Cecilia Stålsby; Tripathy, Suraj K
2017-07-10
Water borne pathogens present a threat to human health and their disinfection from water poses a challenge, prompting the search for newer methods and newer materials. Disinfection of the Gram-negative bacterium Escherichia coli and the Gram-positive coccal bacterium Staphylococcus aureus in an aqueous matrix was achieved within 60 and 90 min, respectively, at 35 °C using solar-photocatalysis mediated by sonochemically synthesized Ag@ZnO core-shell nanoparticles. The efficiency of the process increased with the increase in temperature and at 55 °C the disinfection for the two bacteria could be achieved in 45 and 60 min, respectively. A new ultrasound-assisted chemical precipitation technique was used for the synthesis of Ag@ZnO core-shell nanoparticles. The characteristics of the synthesized material were established using physical techniques. The material remained stable even at 400 °C. Disinfection efficiency of the Ag@ZnO core-shell nanoparticles was confirmed in the case of real world samples of pond, river, municipal tap water and was found to be better than that of pure ZnO and TiO₂ (Degussa P25). When the nanoparticle- based catalyst was recycled and reused for subsequent disinfection experiments, its efficiency did not change remarkably, even after three cycles. The sonochemically synthesized Ag@ZnO core-shell nanoparticles thus have a good potential for application in solar photocatalytic disinfection of water borne pathogens.
Stretched proton-neutron configurations in fp-shell nuclei (II). Systematics
NASA Astrophysics Data System (ADS)
von Neumann-Cosel, P.; Fister, U.; Jahn, R.; Schenk, P.; Trelle, T. K.; Wenzel, D.; Wienands, U.
1994-03-01
The systematics of the binding energies of stretched proton-neutron configurations ( f{7}/{2}, g{9}/{2}) 8 -, ( p{3}/{2}, g{9}/{2}) 6 -, ( g{9}/{2}, p{3}/{2}) 6- and ( g{9}/{2}) 29 + are studied over a wide range of f p-shell nuclei. The effective proton-neutron interaction energies deduced from the data are nearly constant for ( p{3}/{2}, g{9}/{2}) 6 -and ( g{9}/{2}) 29 + states while the ( f{7}/{2}, g{9}/{2}) 8 - configuration reveals an additional repulsive term proportional to the partial filling of the f{7}/{2} orbit in the target ground state. Two-body matrix elements are extracted. A crude shell model, which predicts that the excitation energy of a stretched state is equal to the sum of the single-particle energies, works well for the 6 - and 9 + states, but fails for the 8 - levels due to neglect of the additional interactions described above. The physics underlying the empirically introduced basic assumptions of the crude shell model is discussed. The binding energies are found to be linearly dependent on the mass number A and the isospin Tz component and are well described by the weak-coupling model of Bansal and French. The derived parameters agree with averaged values of a similar analysis for the single-particle states in the corresponding odd-even neighbours. The data indicate a significant change of the particle-hole energies with closure of the proton f{7}/{2} shell.