Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells
Steinman, D.A.
1980-05-30
Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.
Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells
Steinman, David A.
1982-01-01
Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.
THREE-DIMENSIONAL MODELING OF THE DYNAMICS OF THERAPEUTIC ULTRASOUND CONTRAST AGENTS
Hsiao, Chao-Tsung; Lu, Xiaozhen; Chahine, Georges
2010-01-01
A 3-D thick-shell contrast agent dynamics model was developed by coupling a finite volume Navier-Stokes solver and a potential boundary element method flow solver to simulate the dynamics of thick-shelled contrast agents subjected to pressure waves. The 3-D model was validated using a spherical thick-shell model validated by experimental observations. We then used this model to study shell break-up during nonspherical deformations resulting from multiple contrast agent interaction or the presence of a nearby solid wall. Our simulations indicate that the thick viscous shell resists the contrast agent from forming a re-entrant jet, as normally observed for an air bubble oscillating near a solid wall. Instead, the shell thickness varies significantly from location to location during the dynamics, and this could lead to shell break-up caused by local shell thinning and stretching. PMID:20950929
Shape optimized headers and methods of manufacture thereof
Perrin, Ian James
2013-11-05
Disclosed herein is a shape optimized header comprising a shell that is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and tubes; wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell. Disclosed herein is a method comprising fixedly attaching tubes to a shell; wherein the shell is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell.
Computer design synthesis of a below knee-Syme prosthesis
NASA Technical Reports Server (NTRS)
Elangovan, P. T.; Ghista, D. N.; Alwar, R. S.
1979-01-01
A detailed design synthesis analysis of the BK Syme prosthesis is provided, to determine the socket's cutout orientation size and shape, cutout fillet shape, socket wall thickness distribution and the reinforced fiber distribution in the socket wall, for a minimally stressed structurally safe lightweight prosthesis. For analysis purposes, the most adverse socket loading is obtained at the push-off stage of gait; this loading is idealized as an axial in-plane loading on the bottom edge of the circular cylindrical socket shell whose top edge is considered fixed. Finite element stress analysis of the socket shell (with uniform and graded wall thickness) are performed for various orientations of the cutout and for various types of corner fillets. A lateral cutout with a streamline fillet is recommended. The wall material (i.e., thickness) distribution is determined so as to minimize the stresses, while ensuring that the wall material's stress limits are not exceeded. For such a maximally stressed lightweight socket shell, the panels in the neighborhood of the cutout are checked to ensure that they do not buckle under their acquired stresses. A fiber-reinforced laminated composite socket shell is also analyzed in order to recommend optimum variables in orientations and densities of reinforcing fibers.
NASA Astrophysics Data System (ADS)
Grigorenko, A. Ya.; Borisenko, M. Yu.; Boichuk, E. V.; Prigoda, A. P.
2018-01-01
The dynamic characteristics of a thick-walled cylindrical shell are determined numerically using the finite-element method implemented with licensed FEMAR software. The natural frequencies and modes are compared with those obtained earlier experimentally by the method of stroboscopic holographic interferometry. Frequency coefficients demonstrating how the natural frequency depends on the physical and mechanical parameters of the material are determined.
Acetabular shell deformation as a function of shell stiffness and bone strength.
Dold, Philipp; Pandorf, Thomas; Flohr, Markus; Preuss, Roman; Bone, Martin C; Joyce, Tom J; Holland, James; Deehan, David
2016-04-01
Press-fit acetabular shells used for hip replacement rely upon an interference fit with the bone to provide initial stability. This process may result in deformation of the shell. This study aimed to model shell deformation as a process of shell stiffness and bone strength. A cohort of 32 shells with two different wall thicknesses (3 and 4 mm) and 10 different shell sizes (44- to 62-mm outer diameter) were implanted into eight cadavers. Shell deformation was then measured in the cadavers using a previously validated ATOS Triple Scan III optical system. The shell-bone interface was then considered as a spring system according to Hooke's law and from this the force exerted on the shell by the bone was calculated using a combined stiffness consisting of the measured shell stiffness and a calculated bone stiffness. The median radial stiffness for the 3-mm wall thickness was 4192 N/mm (range, 2920-6257 N/mm), while for the 4-mm wall thickness the median was 9633 N/mm (range, 6875-14,341 N/mm). The median deformation was 48 µm (range, 3-187 µm), while the median force was 256 N (range, 26-916 N). No statistically significant correlation was found between shell stiffness and deformation. Deformation was also found to be not fully symmetric (centres 180° apart), with a median angle discrepancy of 11.5° between the two maximum positive points of deformation. Further work is still required to understand how the bone influences acetabular shell deformation. © IMechE 2016.
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2004-01-01
The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.
NASA Astrophysics Data System (ADS)
Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.
2017-01-01
The glass/carbon fiber composites are widely used in the design of various aircraft and rotorcraft components such as fairings and cowlings, which have predominantly a shell-like geometry and are made of quasi-isotropic laminates. The main requirements to such the composite parts are the specified mechanical stiffness to withstand the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflow-induced vibrations at the constrained weight of the part. The main objective of present study is the optimization of wall thickness and lay-up of composite shell-like cowling. The present approach assumes conversion of the CAD model of the cowling surface to finite element (FE) representation, then its wind tunnel testing simulation at the different orientation of airflow to find the most stressed mode of flight. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. A wall thickness of the shell had to change over its surface to minimize the objective at the constrained weight. We used a parameterization of the problem that assumes an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. Curve that formed by the intersection of the shell with sphere defined boundary of area, which should be reinforced by local thickening the shell wall. To eliminate a local stress concentration this increment was defined as the smooth function defined on the shell surface. As a result of structural optimization we obtained the thickness of shell's wall distribution, which then was used to design the draping and lay-up of composite prepreg layers. The global strain energy in the optimized cowling was reduced in2.5 times at the weight growth up to 15%, whereas the eigenfrequencies at the 6 first natural vibration modes have been increased by 5-15%. The present approach and developed programming tools that demonstrated a good efficiency and stability at the acceptable computational costs can be used to optimize a wide range of shell-like structures made of quasi-isotropic laminates.
Synthesis of Various Metal/TiO2 Core/shell Nanorod Arrays
NASA Astrophysics Data System (ADS)
Zhu, Wei; Wang, Guan-zhong; Hong, Xun; Shen, Xiao-shuang
2011-02-01
We present a general approach to fabricate metal/TiO2 core/shell nanorod structures by two-step electrodeposition. Firstly, TiO2 nanotubes with uniform wall thickness are prepared in anodic aluminum oxide (AAO) membranes by electrodeposition. The wall thickness of the nanotubes could be easily controlled by modulating the deposition time, and their outer diameter and length are only limited by the channel diameter and the thickness of the AAO membranes, respectively. The nanotubes' tops prepared by this method are open, while the bottoms are connected directly with the Au film at the back of the AAO membranes. Secondly, Pd, Cu, and Fe elements are filled into the TiO2 nanotubes to form core/shell structures. The core/shell nanorods prepared by this two-step process are high density and free-standing, and their length is dependent on the deposition time.
Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells
NASA Astrophysics Data System (ADS)
Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.
2017-03-01
Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness
Buckling Behavior of Compression-Loaded Composite Cylindrical Shells With Reinforced Cutouts
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Sarnes, James H., Jr.
2004-01-01
Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The results indicate that a local buckling response occurs in the shell near the cutout when subjected to load and is caused by a nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell is shown to retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.
49 CFR 179.400-10 - Sump or siphon bowl.
Code of Federal Regulations, 2013 CFR
2013-10-01
... metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c) The wall thickness is...
49 CFR 179.400-10 - Sump or siphon bowl.
Code of Federal Regulations, 2012 CFR
2012-10-01
... metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c) The wall thickness is...
49 CFR 179.400-10 - Sump or siphon bowl.
Code of Federal Regulations, 2011 CFR
2011-10-01
... metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c) The wall thickness is...
High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.
2014-01-01
Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.
Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Brunsell, P. R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J. R.; Rachlew, E.
2006-11-01
Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.
Advanced Structural and Inflatable Hybrid Spacecraft Module
NASA Technical Reports Server (NTRS)
Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)
2001-01-01
An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.
NASA Technical Reports Server (NTRS)
Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)
2003-01-01
An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.
Pteropods counter mechanical damage and dissolution through extensive shell repair.
Peck, Victoria L; Oakes, Rosie L; Harper, Elizabeth M; Manno, Clara; Tarling, Geraint A
2018-01-17
The dissolution of the delicate shells of sea butterflies, or pteropods, has epitomised discussions regarding ecosystem vulnerability to ocean acidification over the last decade. However, a recent demonstration that the organic coating of the shell, the periostracum, is effective in inhibiting dissolution suggests that pteropod shells may not be as susceptible to ocean acidification as previously thought. Here we use micro-CT technology to show how, despite losing the entire thickness of the original shell in localised areas, specimens of polar species Limacina helicina maintain shell integrity by thickening the inner shell wall. One specimen collected within Fram Strait with a history of mechanical and dissolution damage generated four times the thickness of the original shell in repair material. The ability of pteropods to repair and maintain their shells, despite progressive loss, demonstrates a further resilience of these organisms to ocean acidification but at a likely metabolic cost.
Final report SI 08-SI-004: Fusion application targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biener, J; Kucheyev, S O; Wang, M Y
2010-12-03
Complex target structures are necessary to take full advantage of the unique laboratory environment created by inertial confinement fusion experiments. For example, uses-of-ignition targets that contain a thin layer of a low density nanoporous material inside a spherical ablator shell allow placing dopants in direct contact with the DT fuel. The ideal foam for this application is a low-density hydrocarbon foam that is strong enough to survive wetting with cryogenic hydrogen, and low enough in density (density less than {approx}30 mg/cc) to not reduce the yield of the target. Here, we discuss the fabrication foam-lined uses-of-ignition targets, and the developmentmore » of low-density foams that can be used for this application. Much effort has been directed over the last 20 years toward the development of spherical foam targets for direct-drive and fast-ignition experiments. In these targets, the spherical foam shell is used to define the shape of the cryogenic DT fuel layer, or acts as a surrogate to simulate the cryogenic fuel layer. These targets are fabricated from relatively high-density aerogels (>100 mg/cc) and coated with a few micron thick permeation barrier. With exception of the above mentioned fast ignition targets, the wall of these targets is typically larger than 100 microns. In contrast, the fusion application targets for indirect-drive experiments on NIF will require a much thinner foam shell surrounded by a much thicker ablator shell. The design requirements for both types of targets are compared in Table 1. The foam shell targets for direct-drive experiments can be made in large quantities and with reasonably high yields using an encapsulation technique pioneered by Takagi et al. in the early 90's. In this approach, targets are made by first generating unsupported foam shells using a triple-orifice droplet generator, followed by coating the dried foam shells with a thin permeation barrier. However, this approach is difficult, if not impossible, to transfer to the lower density and thinner wall foam shells required for indirect-drive uses-of-ignition targets for NIF that then would have to be coated with an at least hundred-micron-thick ablator film. So far, the thinnest shells that have been fabricated using the triple-orifice-droplet generator technique had a wall thickness of {approx}20 microns, but despite of being made from a higher-density foam formulation, the shells were mechanically very sensitive, difficult to dry, and showed large deviations from roundness. We thus decided to explore a different approach based on using prefabricated thick-walled spherical ablator shells as templates for the thin-walled foam shell. As in the case of the above mentioned encapsulation technique, the foam is made by sol-gel chemistry. However, our approach removes much the requirements on the mechanical stability of the foam shell as the foam shell is never handled in its free-standing form, and promises superior ablator uniformity and surface roughness. As discussed below, the success of this approach depends strongly on the availability of suitable aerogel chemistries (ideally pure hydrocarbon (CH)-based systems) with suitable rheological properties (high viscosity and high modulus near the gel point) that produce low-density and mechanically strong foams.« less
Buckling Behavior of Compression-Loaded Composite Cylindrical Shells with Reinforced Cutouts
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2002-01-01
Results from a numerical study of the response of thin-wall compression-loaded quasi-isotropic laminated composite cylindrical shells with reinforced and unreinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A high-fidelity nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable dynamic buckling response characteristics. The results illustrate how a compression-loaded shell with an unreinforced cutout can exhibit a complex nonlinear response. In particular, a local buckling response occurs in the shell near the cutout and is caused by a complex nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, the addition of reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell, as expected. However, results are presented that show how certain reinforcement configurations can actually cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved response characteristics.
Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain.
Guervilly, Céline; Wood, Toby S; Brummell, Nicholas H
2013-11-01
We present a numerical study of dynamo action in a conducting fluid encased in a metallic spherical shell. Motions in the fluid are driven by differential rotation of the outer metallic shell, which we refer to as "the wall." The two hemispheres of the wall are held in counter-rotation, producing a steady, axisymmetric interior flow consisting of differential rotation and a two-cell meridional circulation with radial inflow in the equatorial plane. From previous studies, this type of flow is known to maintain a stationary equatorial dipole by dynamo action if the magnetic Reynolds number is larger than about 300 and if the outer boundary is electrically insulating. We vary independently the thickness, electrical conductivity, and magnetic permeability of the wall to determine their effect on the dynamo action. The main results are the following: (a) Increasing the conductivity of the wall hinders the dynamo by allowing eddy currents within the wall, which are induced by the relative motion of the equatorial dipole field and the wall. This processes can be viewed as a skin effect or, equivalently, as the tearing apart of the dipole by the differential rotation of the wall, to which the field lines are anchored by high conductivity. (b) Increasing the magnetic permeability of the wall favors dynamo action by constraining the magnetic field lines in the fluid to be normal to the wall, thereby decoupling the fluid from any induction in the wall. (c) Decreasing the wall thickness limits the amplitude of the eddy currents, and is therefore favorable for dynamo action, provided that the wall is thinner than the skin depth. We explicitly demonstrate these effects of the wall properties on the dynamo field by deriving an effective boundary condition in the limit of vanishing wall thickness.
Material Distribution Optimization for the Shell Aircraft Composite Structure
NASA Astrophysics Data System (ADS)
Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.
2016-09-01
One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.
Sun, Xiaojun; Yang, Xuan; Zhang, Yun; ...
2017-09-08
We report a facile synthesis of Pt–Ag nanocages with walls thinner than 2 nm by depositing a few atomic layers of Pt as conformal shells on Ag nanocubes and then selectively removing the Ag templateviawet etching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiaojun; Yang, Xuan; Zhang, Yun
We report a facile synthesis of Pt–Ag nanocages with walls thinner than 2 nm by depositing a few atomic layers of Pt as conformal shells on Ag nanocubes and then selectively removing the Ag templateviawet etching.
Material with core-shell structure
Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI
2011-11-15
Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.
Shell Inspection History and Current CMM Inspection Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montano, Joshua Daniel
The following report provides a review of past and current CMM Shell Inspection efforts. Calibration of the Sheffield rotary contour gauge has expired and the primary inspector, Matthew Naranjo, has retired. Efforts within the Inspection team are transitioning from maintaining and training new inspectors on Sheffield to off-the-shelf CMM technology. Although inspection of a shell has many requirements, the scope of the data presented in this report focuses on the inner contour, outer contour, radial wall thickness and mass comparisons.
NASA Astrophysics Data System (ADS)
Prasad, Ravindra; Samria, N. K.
1989-01-01
The problem considered has applications in the transient thermal analysis and time for attaining the steady state of the cylinder wall and cylinder head of an air-cooled internal-combustion engine. Numerical calculations based on finite difference approximations are carried out to assess the thermal response in a system of thin cylindrical and spherical shells having hot gases inside with convective boundary conditions. The outside surface is exposed to cooling medium where it looses heat by natural convection and radiation. As a special case, when radius is large, the surface may be considered to be a plane wall. The cylinder cover and cylinder wall of an internal-combustion engine are considered to be a plane wall for a comparatively higher ratio of cylinder diameter to the thickness of the wall, i.e., whend/δ varies from 80 to 100. A plot of temperature-time history and heat flow rates have been obtained.
Code of Federal Regulations, 2010 CFR
2010-10-01
... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...
Code of Federal Regulations, 2014 CFR
2014-10-01
... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...
Code of Federal Regulations, 2012 CFR
2012-10-01
... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...
Code of Federal Regulations, 2013 CFR
2013-10-01
... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...
Code of Federal Regulations, 2011 CFR
2011-10-01
... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...
Area Coverage of Expanding E.T. Signals in the Galaxy: SETI and Drake’s N
NASA Astrophysics Data System (ADS)
Grimaldi, Claudio; Marcy, Geoffrey W.; Tellis, Nathaniel K.; Drake, Frank
2018-05-01
The Milky Way Galaxy contains an unknown number, N, of civilizations that emit electromagnetic radiation (of unknown wavelengths) over a finite lifetime, L. Here we are assuming that the radiation is not produced indefinitely, but within L as a result of some unknown limiting event. When a civilization stops emitting, the radiation continues traveling outward at the speed of light, c, but is confined within a shell wall having constant thickness, cL. We develop a simple model of the Galaxy that includes both the birthrate and detectable lifetime of civilizations to compute the possibility of a SETI detection at the Earth. Two cases emerge for radiation shells that are (1) thinner than or (2) thicker than the size of the Galaxy, corresponding to detectable lifetimes, L, less than or greater than the light-travel time, ∼100,000 years, across the Milky Way, respectively. For case (1), each shell wall has a thickness smaller than the size of the Galaxy and intersects the Galactic plane in a donut shape (annulus) that fills only a fraction of the Galaxy’s volume, inhibiting SETI detection. But the ensemble of such shell walls may still fill our Galaxy, and indeed may overlap locally, given a sufficiently high birthrate of detectable civilizations. In the second case, each radiation shell is thicker than the size of our Galaxy. Yet, the ensemble of walls may or may not yield a SETI detection depending on the civilization birthrate. We compare the number of different electromagnetic transmissions arriving at Earth to Drake’s N, the number of currently emitting civilizations, showing that they are equal to each other for both cases (1) and (2). However, for L < 100,000 years, the transmissions arriving at Earth may come from distant civilizations long extinct, while civilizations still alive are sending signals yet to arrive.
Approximate method for calculating a thickwalled cylinder with rigidly clamped ends
NASA Astrophysics Data System (ADS)
Andreev, Vladimir
2018-03-01
Numerous papers dealing with the calculations of cylindrical bodies [1 -8 and others] have shown that analytic and numerical-analytical solutions in both homogeneous and inhomogeneous thick-walled shells can be obtained quite simply, using expansions in Fourier series on trigonometric functions, if the ends are hinged movable (sliding support). It is much more difficult to solve the problem of calculating shells with builtin ends.
Structural Assessment of Advanced Composite Tow-Steered Shells
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia
2013-01-01
The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2013-09-01
A collaboration with Building America team Building Science Corporation helped this builder win a 2013 Housing Innovation Award in 2013—a 2,508-ft2 home built on speculation in the Devens, MA, subdivision. For the above-grade walls, the super-insulated building shell starts with 12 inch thick double walls composed of two 2x4 16-inch on-center walls spaced 5 inches apart. The space between the walls is filled with low-density (open-cell) spray foam for an insulation value of R-45.
Nguyen Dinh, Duc; Nguyen, Pham Dinh
2017-01-01
Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge–Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors. PMID:29057821
Ignition of deuterium-trtium fuel targets
Musinski, Donald L.; Mruzek, Michael T.
1991-01-01
A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.
Ignition of deuterium-tritium fuel targets
Musinski, D.L.; Mruzek, M.T.
1991-08-27
Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.
Cylindrical Shells Made of Stainless Steel - Investigation of Postbuckling
NASA Astrophysics Data System (ADS)
Stehr, Sebastian; Stranghöner, Natalie
2017-06-01
The relevant load case of open thin-walled shells is often wind loading during construction. Because of the missing stabilization effect of the roof they show a very high sensitivity to buckling which results into higher wall thicknesses. As part of the European RFCS research project BiogaSS the Institute for Metal and Lightweight Structures of the University of Duisburg-Essen carried out investigations on open thin-walled tanks made of austenitic and duplex stainless steels under wind load to study a possible economic advantage which might be gained from the consideration of the elastic postbuckling behaviour. This contribution presents not only experimental and numerical results but also first recommendations regarding the range of possible buckling reduction factors which might be incorporated in future revisions of EN 1993-1-6 and EN 1993-4-2.
A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating
NASA Astrophysics Data System (ADS)
Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.
2018-05-01
A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.
NASA Astrophysics Data System (ADS)
Chen, Jia-Wen; Lin, Chuen-Fu; Wang, Shyang-Guang; Lee, Yi-Chieh; Chiang, Chung-Han; Huang, Min-Hui; Lee, Yi-Hsiung; Vitrant, Guy; Pan, Ming-Jeng; Lee, Horng-Mo; Liu, Yi-Jui; Baldeck, Patrice L.; Lin, Chih-Lang
2013-09-01
Measurements of optical tweezers forces on biological micro-objects can be used to develop innovative biodiagnostics methods. In the first part of this report, we present a new sensitive method to determine A, B, D types of red blood cells. Target antibodies are coated on glass surfaces. Optical forces needed to pull away RBC from the glass surface increase when RBC antigens interact with their corresponding antibodies. In this work, measurements of stripping optical forces are used to distinguish the major RBC types: group O Rh(+), group A Rh(+) and group B Rh(+). The sensitivity of the method is found to be at least 16-folds higher than the conventional agglutination method. In the second part of this report, we present an original way to measure in real time the wall thickness of bacteria that is one of the most important diagnostic parameters of bacteria drug resistance in hospital diagnostics. The optical tweezers force on a shell bacterium is proportional to its wall thickness. Experimentally, we determine the optical tweezers force applied on each bacteria family by measuring their escape velocity. Then, the wall thickness of shell bacteria can be obtained after calibrating with known bacteria parameters. The method has been successfully applied to indentify, from blind tests, Methicillinresistant Staphylococcus aureus (MRSA), including VSSA (NCTC 10442), VISA (Mu 50), and heto-VISA (Mu 3)
Light-weight spherical submergence vessel
NASA Technical Reports Server (NTRS)
Baker, I.
1974-01-01
Design vessel with very low thickness-to-radius ratio to obtain low weight, and fabricate it with aid of precision tracer-lathe to limit and control imperfections in spherical shape. Vessel is thin-walled, spherical, monocoque shell constructed from hemispheres joined with sealed and bolted meridional flange.
NASA Astrophysics Data System (ADS)
Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.
2018-05-01
A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.
NASA Astrophysics Data System (ADS)
Mahadev, Sthanu
Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically distinguished with respect to the circumferential arc angle, thickness-to-mean radius ratio and total laminate thickness. The potential of this methodology is challenged to analytically determine the location of the centroid. This precise location dictates the decoupling of extension-bending type deformational response in tension loaded composite structures. Upon the cross-validation of the centroidal point through the implementation of an ANSYS based finite element routine, influence of centroid is analytically examined under the application of a concentrated longitudinal tension and bending type loadings on a series of cylindrical shells characterized by three different symmetric-balanced stacking sequences. In-plane ply-stresses are computed and analyzed across the circumferential contour. An experimental investigation has been incorporated via designing an ad-hoc apparatus and test-up that accommodates the quantification of in-plane strains, computation of ply-stresses and addresses the physical characteristics for a set of auto-clave fabricated cylindrical shell articles. Consequently, this work is shown to essentially capture the mechanical aspects of cylindrical shells, thus facilitating structural engineers to design and manufacture viable structures.
Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2010-01-01
This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).
Frequency Analysis of Strain of Cylindrical Shell for Assessment of Viscosity
NASA Astrophysics Data System (ADS)
Hasegawa, Hideyuki; Kanai, Hiroshi
2005-06-01
For tissue characterization of atherosclerotic plaque, we have developed a method, namely, the phased tracking method, [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] to measure the regional strain (change in wall thickness) and elasticity of the arterial wall. In addition to the regional elasticity, we are attempting to measure the regional viscosity for a more precise tissue characterization. Previously, we showed that the viscosity can be obtained by measuring the frequency dependence of the elastic modulus using remote actuation [H. Hasegawa et al.: Jpn. J. Appl. Phys. 43 (2004) 3197]. However, in this method, we need to apply external actuation to the subject. To simplify the measurement, we instead to obtain the frequency dependence of the elastic modulus from the change in arterial wall thickness spontaneously caused by the heartbeat because this change in thickness consists of frequency components up to 20-30 Hz. In this paper, the frequency dependence of the elastic modulus of a silicone rubber tube was investigated by applying frequency analysis to the change in wall thickness caused by the change in internal pressure simulating the actual arterial blood pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weier, Dennis R.; Anderson, Kevin K.; Berman, Herbert S.
2005-03-10
The DST Integrity Plan (RPP-7574, 2003, Double-Shell Tank Integrity Program Plan, Rev. 1A, CH2M HILL Hanford Group, Inc., Richland, Washington.) requires the ultrasonic wall thickness measurement of two vertical scans of the tank primary wall while using a single riser location. The resulting measurements are then used in extreme value methodology to predict the minimum wall thickness expected for the entire tank. The representativeness of using a single riser in this manner to draw conclusions about the entire circumference of a tank has been questioned. The only data available with which to address the representativeness question comes from Tank AY-101more » since only for that tank have multiple risers been used for such inspection. The purpose of this report is to (1) further characterize AY-101 riser differences (relative to prior work); (2) propose a methodology for incorporating a ''riser difference'' uncertainty for subsequent tanks for which only a single riser is used, and (3) specifically apply the methodology to measurements made from a single riser in Tank AN-107.« less
Casha, Aaron R; Camilleri, Liberato; Manché, Alexander; Gatt, Ruben; Attard, Daphne; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Mcdonald, Stuart; Grima, Joseph N
2015-11-01
The human rib cage resembles a masonry dome in shape. Masonry domes have a particular construction that mimics stress distribution. Rib cortical thickness and bone density were analyzed to determine whether the morphology of the rib cage is sufficiently similar to a shell dome for internal rib structure to be predicted mathematically. A finite element analysis (FEA) simulation was used to measure stresses on the internal and external surfaces of a chest-shaped dome. Inner and outer rib cortical thickness and bone density were measured in the mid-axillary lines of seven cadaveric rib cages using computerized tomography scanning. Paired t tests and Pearson correlation were used to relate cortical thickness and bone density to stress. FEA modeling showed that the stress was 82% higher on the internal than the external surface, with a gradual decrease in internal and external wall stresses from the base to the apex. The inner cortex was more radio-dense, P < 0.001, and thicker, P < 0.001, than the outer cortex. Inner cortical thickness was related to internal stress, r = 0.94, P < 0.001, inner cortical bone density to internal stress, r = 0.87, P = 0.003, and outer cortical thickness to external stress, r = 0.65, P = 0.035. Mathematical models were developed relating internal and external cortical thicknesses and bone densities to rib level. The internal anatomical features of ribs, including the inner and outer cortical thicknesses and bone densities, are similar to the stress distribution in dome-shaped structures modeled using FEA computer simulations of a thick-walled dome pressure vessel. Fixation of rib fractures should include the stronger internal cortex. © 2015 Wiley Periodicals, Inc.
Li, Wenting; Zhu, Xujing; Zhao, Nan; Jiang, Zhengwu
2016-01-01
Self-healing microcapsules were synthesized by in situ polymerization with a melamine urea-formaldehyde resin shell and an epoxy resin adhesive. The effects of the key factors, i.e., core–wall ratio, reaction temperature, pH and stirring rate, were investigated by characterizing microcapsule morphology, shell thickness, particle size distribution, mechanical properties and chemical nature. Microcapsule healing mechanisms in cement paste were evaluated based on recovery strength and healing microstructure. The results showed that the encapsulation ability, the elasticity modulus and hardness of the capsule increased with an increase of the proportion of shell material. Increased polymerization temperatures were beneficial to the higher degree of shell condensation polymerization, higher resin particles deposition on microcapsule surfaces and enhanced mechanical properties. For relatively low pH values, the less porous three-dimensional structure led to the increased elastic modulus of shell and the more stable chemical structure. Optimized microcapsules were produced at a temperature of 60 °C, a core-wall ratio of 1:1, at pH 2~3 and at a stirring rate of 300~400 r/min. The best strength restoration was observed in the cement paste pre-damaged by 30% fmax and incorporating 4 wt % of capsules. PMID:28773280
Analysis of different techniques to improve sound transmission loss in cylindrical shells
NASA Astrophysics Data System (ADS)
Oliazadeh, Pouria; Farshidianfar, Anooshiravan
2017-02-01
In this study, sound transmission through double- and triple-walled shells is investigated. The structure-acoustic equations based on Donnell's shell theory are presented and transmission losses calculated by this approach are compared with the transmission losses obtained according to Love's theory. An experimental set-up is also constructed to compare natural frequencies obtained from Donnell and Love's theories with experimental results in the high frequency region. Both comparisons show that Donnell's theory predicts the sound transmission characteristics and vibrational behavior better than Love's theory in the high frequency region. The transmission losses of the double- and triple-walled construction are then presented for various radii and thicknesses. Then the effects of air gap size as an important design parameter are studied. Sound transmission characteristics through a circular cylindrical shell are also computed along with consideration of the effects of material damping. Modest absorption is shown to greatly reduce the sound transmission at ring frequency and coincidence frequency. Also the effects of five common gases that are used for filling the gap are investigated.
New Alloys for Electroformed Replicated X-Ray Optics
NASA Technical Reports Server (NTRS)
Engelhaupt, D.; Ramsey, B. D.; ODell, S. L.; Jones, W. D.; Russell, J. K.
2000-01-01
The process of electroforming x-ray mirror shells off a superpolished mandrel has been widely used. The recently launched XMM mission is a good example of this, containing 174 such mirror shells of diameters ranging from 0.3-0.7 m and thicknesses of 0.47-1.07 mm. To continue to utilize this technique for the next generation of x-ray observatories, where ever-larger collecting areas will be required within the constraints of tight weight budgets, demands that new alloys be developed that can withstand the large stresses imposed on very thin shells by the replication and handling processes. Towards this end, we began a development program in late 1997 to produce a high-strength alloy suitable for electroforming very thin high-resolution x-ray optics. The requirements for this task are quite severe; not only must the electroformed deposit be very strong, it must also have extremely low residual stresses to prevent serious figure distortions in large thin-walled shells. Further, the electroforming must be performed at near room temperature, as large temperature changes will modify the figure of the mandrel, in an environment that is not corrosive for the mandrel. The figure of merit for the strength of the electroformed deposit is its Precision Elastic Limit (PEL). This is a measure of permanent strain, at the few parts per million level, under applied stress. Pure nickel is very ductile and will permanently deform, at the parts-per-million level under loads of a few x 10(exp 7) Pa. These stresses are easily exceeded when thin-walled shells (150 micron thick) are replicated. Our goal was to develop an alloy an order of magnitude stronger than this. We will present the results of our development program, showing the evolution of our plating baths through to our present 'glassy' nickel alloy that satisfies the goals above. For each we will show the electroforming characteristics of the bath and the PEL measurements for the resulting alloys. We estimate the ultimate limit on shell thickness and mass for x-ray mirrors produced in these baths.
Method to produce large, uniform hollow spherical shells
Hendricks, C.D.
1983-09-26
The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M. J.; Fournier, K. B.; Colvin, J. D.
2015-06-15
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ ofmore » 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.« less
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
May, M. J.; Fournier, K. B.; Colvin, J. D.; ...
2015-06-01
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainlessmore » steel. The NIF laser deposited ~460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. In conclusion, time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range« less
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
NASA Astrophysics Data System (ADS)
May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Hohenberger, M.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Regan, S. P.
2015-06-01
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5-9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ˜460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.
NASA Astrophysics Data System (ADS)
Jang, Ji-Soo; Kim, Sang-Joon; Choi, Seon-Jin; Kim, Nam-Hoon; Hakim, Meggie; Rothschild, Avner; Kim, Il-Doo
2015-10-01
Bio-inspired Pt (~2 nm) and Au (~2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ~350 nm and a shell thickness of ~40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (Rair/Rgas = 92 at 5 ppm) compared to pure SnO2 NFs (Rair/Rgas = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (Rair/Rgas = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer.Bio-inspired Pt (~2 nm) and Au (~2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ~350 nm and a shell thickness of ~40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (Rair/Rgas = 92 at 5 ppm) compared to pure SnO2 NFs (Rair/Rgas = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (Rair/Rgas = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04487a
Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure.
Metzler, Rebecca A; Jones, Joshua A; D'Addario, Anthony J; Galvez, Enrique J
2017-02-01
The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata . Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth.
Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure
NASA Astrophysics Data System (ADS)
Metzler, Rebecca A.; Jones, Joshua A.; D'Addario, Anthony J.; Galvez, Enrique J.
2017-02-01
The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata. Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth.
Polyelectrolyte multilayer capsules as vehicles with tunable permeability.
Antipov, Alexei A; Sukhorukov, Gleb B
2004-11-29
This review is devoted to a novel type of polymer micro- and nanocapsules. The shell of the capsule is fabricated by alternate adsorption of oppositely charged polyelectrolytes (PEs) onto the surface of colloidal particles. Cores of different nature (organic or inorganic) with size varied from 0.1 to 10 mum can be used for templating such PE capsules. The shell thickness can be tuned in nanometer range by assembling of defined number of PE layers. The permeability of capsules depends on the pH, ionic strength, solvent, polymer composition, and shell thickness; it can be controlled and varied over wide range of substances regarding their molecular weight and charge. Including functional polymers into capsule wall, such as weak PEs or thermosensitive polymers, makes the capsule permeability sensitive to correspondent external stimuli. Permeability of the capsules is of essential interest in diverse areas related to exploitation of systems with controlled and sustained release properties. The envisaged applications of such capsules/vesicles cover biotechnology, medicine, catalysis, food industry, etc.
The use of COD and plastic instability in crack propagation and arrest in shells
NASA Technical Reports Server (NTRS)
Erdogan, F.; Ratwani, M.
1974-01-01
The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.
Fabrication of iron (III) oxide doped polystyrene shells
NASA Astrophysics Data System (ADS)
Cai, Pei-Jun; Tang, Yong-Jian; Zhang, Lin; Du, Kai; Feng, Chang-Gen
2004-03-01
A type of iron (III) oxide doped plastic shell used for inertial confinement fusion experiments has been fabricated by emulsion techniques. Three different phases of solution (W1, O, and W2) are used for the fabrication process. The W1 phase is a 1 wt % of sodium lauryl sulfate in water. This W1 phase solution is mixed with a 3 wt % Fe2O3-polystyrene (PS) solution in benzene-dichloroethane (O phase) while stirring. The resulting emulsion (W1/O) is poured into a 3 wt % aqueous polyvinyl alcohol solution (W2 phase) while stirring. The resulting emulsion (W1/O/W2) is then heated to evaporate benzene and dichloroethane, and thus a solid Fe2O3-PS shell is formed. The diameter and wall thickness of the shells range from 150 to 500 μm and 5 to 15 μm, respectively. The average surface roughness of the shells is 40 nm, similar to that of the usual PS shells. .
NASA Astrophysics Data System (ADS)
Xu, Weitai; Zhao, Yutao; Sun, Shaochun; Liu, Manping; Ma, Dexin; Liang, Xiangfeng; Wang, Cunlong; Tao, Ran
2018-04-01
The mold shell used for single-crystal turbine blades preparation was modified from conventional process to fiber reinforcement technology. The wall thickness was decreased by 32.3 percent (pct) than the conventional process. Then these two mold shells were used to produce single crystal samples of nickel-base superalloy in a Bridgman furnace. The local temperature curves were recorded in the process. The results show that the modified mold shell can increase the temperature gradient in the mushy zone than the conventional mold shell. The primary and secondary dendrite arm space were reduced by 8 pct and 12 pct, respectively. Moreover, both the area fraction and mean size of the γ‧/γ eutectic were declined, as well as the dendritic segregation tendency. Therefore it contributed to the lower residual eutectic and micro-porosity in the heat-treated microstructure. Further, fracture surface of the samples made by modified mold shell exhibited smaller facets and more uniform dimples in the size and shape.
Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.
Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu
2017-11-29
Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.
NASA Astrophysics Data System (ADS)
Khode, Urmi B.
High Altitude Long Endurance (HALE) airships are platform of interest due to their persistent observation and persistent communication capabilities. A novel HALE airship design configuration incorporates a composite sandwich propulsive hull duct between the front and the back of the hull for significant drag reduction via blown wake effects. The sandwich composite shell duct is subjected to hull pressure on its outer walls and flow suction on its inner walls which result in in-plane wall compressive stress, which may cause duct buckling. An approach based upon finite element stability analysis combined with a ply layup and foam thickness determination weight minimization search algorithm is utilized. Its goal is to achieve an optimized solution for the configuration of the sandwich composite as a solution to a constrained minimum weight design problem, for which the shell duct remains stable with a prescribed margin of safety under prescribed loading. The stability analysis methodology is first verified by comparing published analytical results for a number of simple cylindrical shell configurations with FEM counterpart solutions obtained using the commercially available code ABAQUS. Results show that the approach is effective in identifying minimum weight composite duct configurations for a number of representative combinations of duct geometry, composite material and foam properties, and propulsive duct applied pressure loading.
Viza, N. D.; Harding, D. R.
2017-12-20
Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viza, N. D.; Harding, D. R.
Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less
Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure
Jones, Joshua A.; D'Addario, Anthony J.; Galvez, Enrique J.
2017-01-01
The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata. Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth. PMID:28386442
Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xue; Luo, Ming; Huang, Hongwen
We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less
Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates
Wang, Xue; Luo, Ming; Huang, Hongwen; ...
2016-09-06
We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less
13. BUILDING NO. 621, INTERIOR, TOP OF BLASTING TUB UNDERNEATH ...
13. BUILDING NO. 621, INTERIOR, TOP OF BLASTING TUB UNDERNEATH SAWDUST HOPPER. BLASTING TUB HAS DOUBLE WALLS OF 3/4' THICK STEEL ARMOR PLATE. CHARGE TO BE TESTED IS BURIED IN SAWDUST WITH FLAME RESISTANT CHEMICALS. ELEVATOR BEHIND TUB CARRIES SAWDUST BACK TO TOP OF SAWDUST HOPPER AFTER TEST IS COMPLETED AND SAWDUST IN BLASTING TUB HAS BEEN SIFTED FOR SHELL FRAGMENTS. LOUVERS IN WALLS ARE HINGED FREELY SO THEY OPEN TO RELIEVE BLAST PRESSURE DURING A TEST. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
DNA nanoparticles with core-shell morphology.
Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc
2014-10-14
Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.
2000-01-01
Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.
Structural Performance of Advanced Composite Tow-Steered Shells With Cutouts
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Turpin, Jason D.; Stanford, Bret K.; Martin, Robert A.
2014-01-01
The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance.
Imperfection sensitivity of pressured buckling of biopolymer spherical shells
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ru, C. Q.
2016-06-01
Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.
Yin, Long-Wei; Bando, Yoshio; Li, Mu-Sen; Golberg, Dmitri
2005-11-01
An in situ liquid gallium-gas interface chemical reaction route has been developed to synthesize semiconducting hollow GaN nanospheres with very small shell size by carefully controlling the synthesis temperature and the ammonia reaction gas partial pressure. In this process the gallium droplet does not act as a catalyst but rather as a reactant and a template for the formation of hollow GaN structures. The diameter of the synthesized hollow GaN spheres is typically 20-25 nm and the shell thickness is 3.5-4.5 nm. The GaN nanotubes obtained at higher synthesis temperatures have a length of several hundreds of nanometers and a wall thickness of 3.5-5.0 nm. Both the hollow GaN spheres and nanotubes are polycrystalline and are composed of very fine GaN nanocrystalline particles with a diameter of 3.0-3.5 nm. The room-temperature photoluminescence (PL) spectra for the synthesized hollow GaN spheres and nanotubes, which have a narrow size distribution, display a sharp, blue-shifted band-edge emission peak at 3.52 eV (352 nm) due to quantum size effects.
Stress analysis and failure of an internally pressurized composite-jacketed steel cylinder
NASA Technical Reports Server (NTRS)
Chen, Peter C. T.
1992-01-01
This paper presents a nonlinear stress analysis of a thick-walled compound tube subjected to internal pressure. The compound tube is constructed of a steel liner and a graphite-bismaleimide outer shell. Analytical expressions for the stresses, strains, and displacements are derived for all loading ranges up to failure. Numerical results for the stresses and the maximum value that the compound tube can contain without failure are presented.
Analysis of Functionally Graded Shells Subjected to Blast Loads
2008-07-21
and antisymmetric about the midsurface , continuous distributions of the two constituent phases, ceramic and metal, are considered, in the sense that...through the wall-thickness temperature field is investigated. Two scenarios, symmetric and antisymmetric about the midsurface , continuous...and for 3 / 2x h= − , ( / 2) cP h P− ⇒ . At the midsurface , 3 0x = , and for 1k = , ( )(0) / 2c mP P P= + . 3 Kinematics and Constitutive
NASA Technical Reports Server (NTRS)
Uz, Mehmet; Titran, Robert H.
1993-01-01
Microstructure of Nb-1Zr-0.1C tubes were characterized as affected by extrusion temperature of the tube shell and its thermomechanical processing to tubing. Two tube shells of about 40-mm outside diameter (OD) and 25-mm inside diameter (ID) were extruded 8:1 from a vacuum arc-melted ingot at 1900 and 1550 K. Two different OD tubes of approximately 0.36-mm wall thickness were fabricated from each tube shell by a series of 26 cold drawing operations with two in process anneals. The microstructure of tube shells and the tubing before and after a 2-step heat treatment were characterized. Residue extracted chemically from each sample was also analyzed to identify the precipitates. The results concerning the effect of the initial extrusion temperature and subsequent processing on the microstructure of the tubes are presented together with a review of results from similar work on Nb-1Zr-0.1C sheet stock.
Impact Crater Morphology and the Structure of Europa's Ice Shell
NASA Astrophysics Data System (ADS)
Silber, Elizabeth A.; Johnson, Brandon C.
2017-12-01
We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.
NASA Astrophysics Data System (ADS)
Yang, Chungja
Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material. Experiments further examined shell thickness and particle concentration (chapter 6) dependencies on ~530 nm CSnp dielectrophoretic and electrorotational responses with ~30nm and ~80 nm shell thicknesses and at particle concentration count rates of 5000 +/- 500, 10000 +/- 500, and 15000 +/- 500 counts per second. Using similar experimental conditions, both dielectrophoretic and electrorotational CSnp responses were compiled versus frequency, shell thickness, and particle concentration. Knowledge gained from this study includes a unique resonance-like dielectrophoretic and electrorotational spectrum, which is significantly distinct from other cells and particles. CSnp dielectric properties were then calculated by parametrically fitting parameters to an existing core-shell model. The optimum conductivity and relative permittivity for the core and the shell are 1E-15 S/m, 1, 0.6 S/m, and 90, respectively. These properties can be exploited to rapidly assemble these unique core-shell particles for future structural color production in fabrics, vehicle, and wall painting.
Structural Characterization of Advanced Composite Tow-Steered Shells with Large Cutouts
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Turpin, Jason D.; Gardner, Nathaniel W.; Stanford, Bret K.; Martin, Robert A.
2015-01-01
The structural performance of two advanced composite tow-steered shells with large cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles of the shells vary continuously around their circumference from +/- 10 degrees on the crown and keel, to +/- 45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the tow drop/add capability of the system to achieve a more uniform wall thickness. These unstiffened shells, both without and with small cutouts, were previously tested in axial compression and buckled elastically. In this study, a single unreinforced cutout, scaled to represent a cargo door on a commercial aircraft, is machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of these shells with large cutouts are also computed using linear finite element structural analyses for preliminary comparisons with test data. During testing, large displacements are observed around the large cutouts, but the shells maintain an average of 91 percent of the axial stiffness, and also carry 85 percent of the buckling loads, when compared to the pristine shells without cutouts. These relatively small reductions indicate that there is great potential for using tow steering to mitigate the adverse effects of large cutouts on the overall structural performance.
Cao, Zhenming; Li, Huiqi; Zhan, Chenyang; Zhang, Jiawei; Wang, Wei; Xu, Binbin; Lu, Fa; Jiang, Yaqi; Xie, Zhaoxiong; Zheng, Lansun
2018-03-15
Single crystalline noble metal nanocages are the most promising candidates for heterogeneous catalysis due to their large specific surface area, well-defined structure and enhanced structural stability. Herein, based on the observation of an unexpected phenomenon that the alloying of Pt and transition metals by co-reduction is more preferential than the formation of pure Pt NCs, we propose a feasible one-pot strategy to synthesize a uniformly epitaxial core-shell Pt-Ni structure with a Ni-rich alloy as the core and a Pt-rich alloy as the shell. The as-prepared Pt-Ni core-shell structures are subsequently etched into monocrystalline Pt-Ni branched nanocages with the wall thickness being 2.8 nm. This unique structure exhibits excellent catalytic performance and stability for the hydrogen evolution reaction (HER) in alkaline solution which is of great significance for the energy-intensive water-alkali and chlor-alkali industry.
Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr
2011-12-15
In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs atmore » the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center. Highlights: Black-Right-Pointing-Pointer CNTs were functionalized by epoxide ring-opening polymerization. Black-Right-Pointing-Pointer Polyether and epoxide group covalently attached to the sidewalls of CNTs. Black-Right-Pointing-Pointer Functionalized CNTs have a polymer weight percentage of ca. 14-74 wt%. Black-Right-Pointing-Pointer Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.« less
Wang, Yongqiang; Liu, Minmin; Liu, Fang; Zhao, Chaocheng; Zhao, Dongfeng; Han, Fenglei; Liu, Chunshuang
2018-04-25
Storage tanks are important parts of volatile organic compound (VOC) fugitive emission sources of the petrochemical industry; the floating roof tank is the main oil storage facility at present. Based on the mechanism of withdrawal loss and the type of rim seal, octane and gasoline were taken as the research objects. A model instrument for simulating the oil loading process by the 316 stainless steel and A3 carbon steel as the test piece was designed, and the film thickness was measured by wet film thickness gauge to investigate the influence of the corrosion of the tank wall and rim seal on the withdrawal loss for floating roof tanks. It was found that withdrawal loss was directly proportional to the shell factor, and the oil thickness of the octane and gasoline increased with the strength of the wall corrosion with the same wall material and rim seal. Compared with the untreated test piece, the oil film thickness of the octane/gasoline was increased by 7.04~8.57 μm/13.14~21.93 μm and 5.59~11.49 μm/11.61~25.48 μm under the corrosion of hydrochloric acid for 32 and 75 h, respectively. The oil film thickness of octane and gasoline decreased with the increasing of the rim seal, and the oil film thickness of the octane decreased by 11.97~28.90% and 37.32~73.83% under the resilient-filled seal and the double seal, respectively. The gasoline dropped by 11.97~31.18% and 45.98~75.34% under the resilient-filled seal and the double seal, respectively. In addition, the tank surface roughness reduced the compression of the rim seal on the tank wall, and the effect of scraping decreased. The API withdrawal loss formula for a floating roof tank was recommended to take into account the effect of the rim seal to improve the accuracy of the loss evaluation. Finally, some measures of reducing the withdrawal loss were proposed.
Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.
Francois, Jean Marie
2016-01-01
The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.
Suppression of an acoustic mode by an elastic mode of a liquid-filled spherical shell resonator.
Lonzaga, Joel B; Raymond, Jason L; Mobley, Joel; Gaitan, D Felipe
2011-02-01
The purpose of this paper is to report on the suppression of an approximately radial (radially symmetric) acoustic mode by an elastic mode of a water-filled, spherical shell resonator. The resonator, which has a 1-in. wall thickness and a 9.5-in. outer diameter, was externally driven by a small transducer bolted to the external wall. Experiments showed that for the range of drive frequencies (19.7-20.6 kHz) and sound speeds in water (1520-1570 m/s) considered in this paper, a nonradial (radially nonsymmetric) mode was also excited, in addition to the radial mode. Furthermore, as the sound speed in the liquid was changed, the resonance frequency of the nonradial mode crossed with that of the radial one and the amplitude of the latter was greatly reduced near the crossing point. The crossing of the eigenfrequency curves of these two modes was also predicted theoretically. Further calculations demonstrated that while the radial mode is an acoustic one associated with the interior fluid, the nonradial mode is an elastic one associated with the shell. Thus, the suppression of the radial acoustic mode is apparently caused by the overlapping with the nonradial elastic mode near the crossing point.
Axisymmetric wave propagation in buried, fluid-filled pipes: effects of wall discontinuities
NASA Astrophysics Data System (ADS)
Muggleton, J. M.; Brennan, M. J.
2005-03-01
Water leakage from buried pipes is a subject of great concern in Britain and across the world because of decreasing water supplies due to changing rainfall patterns, deterioration of antiquated distribution systems, and an increasing population. Correlation techniques are widely used to locate the leaks, however, difficulties are encountered when repairs have been made to a pipe by inserting a new length of pipe to replace a damaged section. Although this practice is now discouraged, the new sections might be of a different material or possibly different cross-section or wall thickness. The wave propagation behaviour at such joints is poorly understood at present. In earlier work, simple expressions for the wavenumbers of the s=1 (fluid-dominated) and s=2 (shell dominated) axisymmetric wave types were derived for a fluid-filled elastic pipe, both in vacuo and surrounded by an elastic medium of infinite extent. In this paper, the wave transmission and reflection characteristics of these waves at an axisymmetric pipe wall discontinuity in a fluid-filled piping system are investigated theoretically. For changes in wall thickness or wall elasticity, simple expressions may be used to characterise the joint. The reason for this is that negligible energy conversion between the wavetypes occurs, so the wavetypes can be considered separately. For changes in the fluid cross-section, significant mode conversion occurs and the wavetypes must be considered together.
Liang, Yuan-Chang; Lo, Ya-Ru; Wang, Chein-Chung; Xu, Nian-Cih
2018-01-01
ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7–46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ZnO-ZnS core-shell nanorods are in a wurtzite structure. Moreover, photoluminance spectral analysis indicated that the introduction of a ZnS shell layer improved the photoexcited electron and hole separation efficiency of the ZnO nanorods. A strong correlation between effective charge separation and the shell thickness aids the photocatalytic behavior of the nanorods and improves their photoresponsive nature. The results of comparative degradation efficiency toward methylene blue showed that the ZnO-ZnS nanorods with the shell thickness of approximately 17 nm have the highest photocatalytic performance than the ZnO-ZnS nanorods with other shell layer thicknesses. The highly reusable catalytic efficiency and superior photocatalytic performance of the ZnO-ZnS nanorods with 17 nm-thick ZnS shell layer supports their potential for environmental applications. PMID:29316671
NASA Astrophysics Data System (ADS)
Reinoso, J.; Paggi, M.; Linder, C.
2017-06-01
Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.
NASA Technical Reports Server (NTRS)
Ko, William L.
1994-01-01
Thermocryogenic buckling and stress analyses were conducted on a horizontally oriented cryogenic tank using the finite element method. The tank is a finite-length circular cylindrical shell with its two ends capped with hemispherical shells. The tank is subjected to cylindrical strip heating in the region above the liquid-cryogen fill level and to cryogenic cooling below the fill level (i.e., under thermocryogenic loading). The effects of cryogen fill level on the buckling temperature and thermocryogenic stress field were investigated in detail. Both the buckling temperature and stress magnitudes were relatively insensitive to the cryogen fill level. The buckling temperature, however, was quite sensitive to the radius-to-thickness ratio. A mechanical stress analysis of the tank also was conducted when the tank was under: (1) cryogen liquid pressure loading; (2) internal pressure loading; and (3) tank-wall inertia loading. Deformed shapes of the cryogenic tanks under different loading conditions were shown, and high-stress domains were mapped on the tank wall for the strain-gage installations. The accuracies of solutions from different finite element models were compared.
Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell.
Dana, Jayanta; Maiti, Sourav; Tripathi, Vaidehi S; Ghosh, Hirendra N
2018-02-16
Shell thickness dependent band-gap engineering of quasi type II core-shell material with higher carrier cooling time, lower interfacial defect states, and longer charge carrier recombination time can be a promising candidate for both photocatalysis and solar cell. In the present investigation, colloidal CdSe@CdS core-shells with different shell thickness (2, 4 and 6 monolayer CdS) were synthesized through hot injection method and have been characterized by high resolution transmission electron microscope (HRTEM) followed by steady state absorption and luminescence techniques. Ultrafast transient absorption (TA) studies suggest longer carrier cooling, lower interfacial surface states, and slower carrier recombination time in CdSe@CdS core-shell with increasing shell thickness. By TA spectroscopy, the role of CdS shell in power conversion efficiency (PCE) has been explained in detail. The measured PCE was found to initially increase and then decrease with increasing shell thickness. Shell thickness has been optimized to maximize the efficiency after correlating the shell controlled carrier cooling and recombination with PCE values and a maximum PCE of 3.88 % was obtained with 4 monolayers of CdS shell, which is found to be 57 % higher than compared to bare CdSe QDs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
Michel, D. T.; Hu, S. X.; Davis, A. K.; ...
2017-05-10
Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less
Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D. T.; Hu, S. X.; Davis, A. K.
Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less
Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@SiO2 controlled the shell thickness
NASA Astrophysics Data System (ADS)
Wee, Sung-Bok; Oh, Hyeon-Cheol; Kim, Tae-Gyun; An, Gye-Seok; Choi, Sung-Churl
2017-04-01
We developed a simple and novel approach for the synthesis of Fe3O4@SiO2 nanoparticles with controlled shell thickness, and studied the mechanism. The introduction of N-methyl-2-pyrrolidone (NMP) led to trapping of monomer nuclei in single shell and controlled the shell thickness. Fe3O4@SiO2 controlled the shell thickness, showing a high magnetization value (64.47 emu/g). Our results reveal the role and change in the chemical structure of NMP during the core-shell synthesis process. NMP decomposed to 4-aminobutanoic acid in alkaline condition and decreased the hydrolysis rate of the silica coating process.
Design and Fabrication of a Ring-Stiffened Graphite-Epoxy Corrugated Cylindrical Shell
NASA Technical Reports Server (NTRS)
Johnson, R., Jr.
1978-01-01
Design and fabrication of supplement test panels that represent key portions of the cylinder are described, as are supporting tests of coupons, sample joints, and stiffening ring elements. The cylindrical shell is a ring-stiffened, open corrugation design that uses T300/5208 graphite-epoxy tape as the basic material for the shell wall and stiffening rings. The test cylinder is designed to withstand bending loads producing the relatively low maximum load intensity in the shell wall of 1,576 N/cm. The resulting shell wall weight, including stiffening rings and fasteners, is 0.0156 kg/m. The shell weight achieved in the graphite-epoxy cylinder represents a weight saving of approximately 23 percent, compared to a comparable aluminum shell. A unique fabrication approach was used in which the cylinder wall was built in three flat segments, which were then wrapped to the cylindrical shape. Such an approach, made possible by the flexibility of the thin corrugated wall in a radial direction, proved to be a simple approach to building the test cylinder. Based on tooling and fabrication methods in this program, the projected costs of a production run of 100 units are reported.
Backlighting Direct-Drive Cryogenic DT Implosions on OMEGA
NASA Astrophysics Data System (ADS)
Stoeckl, C.
2016-10-01
X-ray backlighting has been frequently used to measure the in-flight characteristics of an imploding shell in both direct- and indirect-drive inertial confinement fusion implosions. These measurements provide unique insight into the early time and stagnation stages of an implosion and guide the modeling efforts to improve the target designs. Backlighting a layered DT implosion on OMEGA is a particular challenge because the opacity of the DT shell is low, the shell velocity is high, the size and wall thickness of the shell is small, and the self-emission from the hot core at the onset of burn is exceedingly bright. A framing-camera-based crystal imaging system with a Si Heα backlighter at 1.865keV driven by 10-ps short pulses from OMEGA EP was developed to meet these radiography challenges. A fast target inserter was developed to accurately place the Si backlighter foil at a distance of 5 mm to the implosion target following the removal of the cryogenic shroud and an ultra-stable triggering system was implemented to reliably trigger the framing camera coincident with the arrival of the OMEGA EP pulse. This talk will report on a series of implosions in which the DT shell is imaged for a range of convergence ratios and in-flight aspect ratios. The images acquired have been analyzed for low-mode shape variations, the DT shell thickness, the level of ablator mixing into the DT fuel (even 0.1% of carbon mix can be reliably inferred), the areal density of the DT shell, and the impact of the support stalk. The measured implosion performance will be compared with hydrodynamic simulations that include imprint (up to mode 200), cross-beam energy transfer, nonlocal thermal transport, and initial low-mode perturbations such as power imbalance and target misalignment. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Design of footbridge with double curvature made of UHPC
NASA Astrophysics Data System (ADS)
Kněž, P.; Tej, P.; Čítek, D.; Kolísko, J.
2017-09-01
This paper presents design of footbridge with double curvature made of UHPC. The structure is designed as a single-span bridge. The span of the bridge is 10.00 m, and the width of the deck is 1.50 m. The thickness of shell structure is 0.03 m for walls and 0.045 m for deck. The main structure of the bridge is one arch shell structure with sidewalls made of UHPC with dispersed steel fibers with conventional reinforcement only at anchoring areas. The structure was designed on the basis of the numerical model. Model was subsequently clarified on the basis of the first test elements. Paper presents detailed course on design of the bridge and presentation will contain also installation in landscape and results of static and dynamic loading tests.
Free Vibration of Fiber Composite Thin Shells in a Hot Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1995-01-01
Results are presented of parametric studies to assess the effects of various parameters on the free vibration behavior (natural frequencies) of (plus or minus theta)2, angle-ply fiber composite thin shells in a hot environment. These results were obtained by using a three-dimensional finite element structural analysis computer code. The fiber composite shell is assumed to be cylindrical and made from T-300 graphite fibers embedded in an intermediate-modulus high-strength matrix (IMHS). The residual stresses induced into the laminated structure during curing are taken into account. The following parameters are investigated: the length and the thickness of the shell, the fiber orientations, the fiber volume fraction, the temperature profile through the thickness of the laminate and the different ply thicknesses. Results obtained indicate that: the fiber orientations and the length of the laminated shell had significant effect on the natural frequencies. The fiber volume fraction, the laminate thickness and the temperature profile through the shell thickness had a weak effect on the natural frequencies. Finally, the laminates with different ply thicknesses had insignificant influence on the behavior of the vibrated laminated shell.
Method of forming cavitated objects of controlled dimension
Anderson, Paul R.; Miller, Wayne J.
1982-01-01
A method of controllably varying the dimensions of cavitated objects such as hollow spherical shells wherein a precursor shell is heated to a temperature above the shell softening temperature in an ambient atmosphere wherein the ratio of gases which are permeable through the shell wall at that temperature to gases which are impermeable through the shell wall is substantially greater than the corresponding ratio for gases contained within the precursor shell. As the shell expands, the partial pressures of permeable gases internally and externally of the shell approach and achieve equilibrium, so that the final shell size depends solely upon the difference in impermeable gas partial pressures and shell surface tension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian
2014-06-14
We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less
Stress Analysis of Composite Cylindrical Shells with an Elliptical Cutout
NASA Technical Reports Server (NTRS)
Oterkus, E.; Madenci, E.; Nemeth, M. P.
2007-01-01
A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; non-uniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.
Stress Analysis of Composite Cylindrical Shells With an Elliptical Cutout
NASA Technical Reports Server (NTRS)
Nemeth, M. P.; Oterkus, E.; Madenci, E.
2005-01-01
A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.
Compression Dynamics of an Indirect Drive Fast Ignition Target
NASA Astrophysics Data System (ADS)
Stephens, R. B.; Hatchett, S. A.; Turner, R. E.; Tanaka, K. A.; Kodama, R.; Soures, J.
2002-11-01
We have compared the compression of an indirectly driven cone-in-shell target, a type proposed for the fast ignition concept, with models. The experimental parameters -500 μm diameter plastic shell with 60 μm thick wall were a 1/5 scale realization of a fast ignition target designed for NIF (absorbing 180 kJ for compression and ˜30 kJ for ignition, and yielding ˜30 MJ) [1]. The implosion was backlit with 6.4 keV x-rays, and observed with a framing camera which captured the implosion from ˜2.6 to 3.3 ns after the onset. The collapsing structure was very similar to model predictions except that non-thermal m-band emissions from the hohlraum penetrated the shell and vaporized gold off the reentrant cone. This could be eliminated by changing the hohlraum composition. [1] S. Hatchett, et al., 5th Wkshp on Fast Ignition of Fusion Targets (Satellite Wkshp, 28th EPS Conf. on Contr. Fusion and Plasma Phys.), Madeira, Portugal (2001).
Analysis of time-resolved argon line spectra from OMEGA direct-drive implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florido, R.; Nagayama, T.; Mancini, R. C.
2008-10-15
We discuss the observation and data analysis of argon K-shell line spectra from argon-doped deuterium-filled OMEGA direct-drive implosion cores based on data recorded with two streaked crystal spectrometers. The targets were 870 {mu}m in diameter, 27 {mu}m wall thickness plastic shells filled with 20 atm of deuterium gas, and a tracer amount of argon for diagnostic purposes. The argon K-shell line spectrum is primarily emitted at the collapse of the implosion and its analysis provides a spectroscopic diagnostic of the core implosion conditions. The observed spectra includes the He{alpha}, Ly{alpha}, He{beta}, He{gamma}, Ly{beta}, and Ly{gamma} line emissions and their associatedmore » He- and Li-like satellites thus covering a broad photon energy range from 3100 to 4200 eV with a spectral resolution power of approximately 500. The data analysis relies on detailed atomic and spectral models that take into account nonequilibrium collisional-radiative atomic kinetics, Stark-broadened line shapes, and radiation transport calculations.« less
Li, Anran; Lim, Xinyi; Guo, Lin; Li, Shuzhou
2018-04-20
Inert dielectric shells coating the surface of metallic nanoparticles (NPs) are important for enhancing the NPs' stability, biocompatibility, and realizing targeting detection, but they impair NPs' sensing ability due to the electric fields damping. The dielectric shell not only determines the distance of the analyte from the NP surface, but also affects the field decay. From a practical point of view, it is extremely important to investigate the critical thickness of the shell, beyond which the NPs are no longer able to effectively detect the analytes. The plasmon decay length of the shell-coated NPs determines the critical thickness of the coating layer. Extracting from the exponential fitting results, we quantitatively demonstrate that the critical thickness of the shell exhibits a linear dependence on the NP volume and the dielectric constants of the shell and the surrounding medium, but only with a small variation influenced by the NP shape where the dipole resonance is dominated. We show the critical thickness increases with enlarging the NP sizes, or increasing the dielectric constant differences between the shell and surrounding medium. The findings are essential for applications of shell-coated NPs in plasmonic sensing.
NASA Astrophysics Data System (ADS)
Li, Anran; Lim, Xinyi; Guo, Lin; Li, Shuzhou
2018-04-01
Inert dielectric shells coating the surface of metallic nanoparticles (NPs) are important for enhancing the NPs’ stability, biocompatibility, and realizing targeting detection, but they impair NPs’ sensing ability due to the electric fields damping. The dielectric shell not only determines the distance of the analyte from the NP surface, but also affects the field decay. From a practical point of view, it is extremely important to investigate the critical thickness of the shell, beyond which the NPs are no longer able to effectively detect the analytes. The plasmon decay length of the shell-coated NPs determines the critical thickness of the coating layer. Extracting from the exponential fitting results, we quantitatively demonstrate that the critical thickness of the shell exhibits a linear dependence on the NP volume and the dielectric constants of the shell and the surrounding medium, but only with a small variation influenced by the NP shape where the dipole resonance is dominated. We show the critical thickness increases with enlarging the NP sizes, or increasing the dielectric constant differences between the shell and surrounding medium. The findings are essential for applications of shell-coated NPs in plasmonic sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebey, Peter S.; Asaki, Thomas J.; Hoffer, James K.
2000-01-15
Beta-layering of deuterium-tritium (D-T) ice in spherical shell geometries is numerically and analytically considered to investigate the relationship between temperature differences that arise because of inner-surface perturbations and the absolute shell thickness. The calculations use dimensions based on a proposed design of an inertial confinement fusion target for use at the National Ignition Facility. The temperature differences are calculated within D-T ice shells of varying total thicknesses, and the temperature differences calculated in three dimensions are compared both to the one-dimensional results and to the expected limits in three dimensions for long- and short-wavelength surface perturbations. The three-dimensional numeric resultsmore » agree well with both the long- and short-wavelength limits; the region of crossover from short- to long-wavelength behavior is mapped out. Temperature differences due to surface perturbations are proportional to D-T layer thickness in one-dimensional systems but not in three-dimensional spherical shells. In spherical shells, surface perturbations of long wavelength give rise to temperature perturbations that are approximately proportional to the total shell thickness, while for short-wavelength perturbations, the temperature differences are inversely related to total shell thickness. In contrast to the one-dimensional result, we find that in three dimensions there is not a general relationship between shell thickness and surface temperature differences.« less
Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie
2015-11-01
Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.
NASA Astrophysics Data System (ADS)
Rajbongshi, Himanshu; Bhattacharjee, Suparna; Datta, Pranayee
2017-02-01
Plasmonic Ag/ZnO core-shell nanoparticles have been synthesized via a simple two-step wet chemical method for application in Photocatalysis. The morphology, size, crystal structure, composition and optical properties of the nanoparticles are investigated by x-ray diffraction, transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. The shell thicknesses are varied by varying the concentration of zinc nitrate hexa-hydrate and triethanolamine. The ZnO shell coating over Ag core enhances the charge separation, whereas the larger shell thickness and increased refractive index of surrounding medium cause red shifts of surface Plasmon resonance (SPR) peak of Ag core. The photoluminescence (PL) spectra of Ag/ZnO core-shell show that the larger shell thickness quenches the near band edge UV emission of ZnO. The electrochemical impedance spectra (EIS) i.e. Nyquist plots also confirm the higher charge transfer efficiency of the Ag/ZnO core-shell nanoparticles. The Photocatalytic activities of Ag/ZnO core-shell nanoparticles are investigated by the degradation of methylene blue (MB) dye under direct sunlight irradiation. Compared to pure ZnO nanoparticles (NPs), Ag/ZnO core-shell NPs display efficient sunlight plasmonic photocatalytic activity because of the influence of SPR of Ag core and the electron sink effect. The photocatalytic activity of Ag/ZnO core-shell NPs is found to be enhanced with increase in shell thickness.
Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee
2015-11-07
We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.
Layer-by-layer-based silica encapsulation of individual yeast with thickness control.
Lee, Hojae; Hong, Daewha; Choi, Ji Yu; Kim, Ji Yup; Lee, Sang Hee; Kim, Ho Min; Yang, Sung Ho; Choi, Insung S
2015-01-01
In the area of cell-surface engineering with nanomaterials, the metabolic and functional activities of the encapsulated cells are manipulated and controlled by various parameters of the artificial shells that encase the cells, such as stiffness and elasticity, thickness, and porosity. The mechanical durability and physicochemical stability of inorganic shells prove superior to layer-by-layer-based organic shells with regard to cytoprotection, but it has been difficult to vary the parameters of inorganic shells including their thickness. In this work, we combine the layer-by-layer technique with a process of bioinspired silicification to control the thickness of the silica shells that encapsulate yeast Saccharomyces cerevisiae cells individually, and investigate the thickness-dependent microbial growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanomechanics of biocompatible hollow thin-shell polymer microspheres.
Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis
2009-07-07
The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.
The Coast Artillery Journal. Volume 91, Number 2, March-April 1948
1948-04-01
composites of Newton, Maxwell and Einstein. From the efforts of this Army group, from a similar group in the U. S. Navy, in England, and later in the Office...would be far too heavy if solid, it is decided to make it hollow , with walls 1foot thick. The can- non required for such a projectile is, of course, too... hollow ball or shell, This would improve the mass-ratio further since the rocket as later redesigned in the novel, would have found itself would not have
NASA Astrophysics Data System (ADS)
Zou, Haixia; Jin, Fengmin; Song, Xiaoyan; Xing, Jinfeng
2017-04-01
The introduction of a thick shell structure has been widely used to enhance the emission intensity of upconversion nanoparticles (UCNPs). However, a thick shell could increase the distance between UCNPs and photosensitizers, which is not favourable to the generation of singlet oxygen (1O2) in photodynamic therapy (PDT) due to the low fluorescence resonance energy transfer (FRET) efficiency. In this study, we used a facile method to prepare UCNPs that the emission intensity could increase with the shell thickness decreasing, which facilitated the efficient FRET between UCNPs and photosensitizers. In detail, the Nd3+-doped UCNPs with different dopant concentration of Yb3+ were prepared and characterized firstly. The Ir/g (intensity of red luminescence to green luminescence) was tuned to increase largely by precisely controlling Yb3+ concentration in core-shell, which could make UCNPs effectively activate methylene blue (MB). Then, a unique procedure was used to prepare NaYF4:Yb/Er/Nd@NaYF4:Nd (Yb3+:30%) core-shell nanoparticles with different shell thickness by tuning the amount of the core. The upconversion luminescence (UCL) intensity of those UCNPs enhanced dramatically with the shell thickness decreasing. Furthermore, UCNPs and MB were encapsulated into SiO2 nanoparticles. FRET efficiency between UCNPs and MB largely increased with the shell thickness of UCNPs decreasing. Correspondingly, the efficiency of 1O2 generation obviously increased. We provided a new method to optimize the UCL intensity and FRET efficiency at the same time to produce 1O2 efficiently.
Polarization of Rayleigh scattered Lyα in active galactic nuclei
NASA Astrophysics Data System (ADS)
Chang, Seok-Jun; Lee, Hee-Won; Yang, Yujin
2017-02-01
The unification scheme of active galactic nuclei invokes an optically thick molecular torus component hiding the broad emission line region. Assuming the presence of a thick neutral component in the molecular torus characterized by a H I column density >1022 cm-2, we propose that far-UV radiation around Lyα can be significantly polarized through Rayleigh scattering. Adopting a Monte Carlo technique, we compute polarization of Rayleigh scattered radiation near Lyα in a thick neutral region in the shape of a slab and a cylindrical shell. It is found that radiation near Lyα Rayleigh reflected from a very thick slab can be significantly polarized in a fairly large range of wavelength Δλ ˜ 50 Å exhibiting a flux profile similar to the incident one. Rayleigh transmitted radiation in a slab is characterized by the central dip with a complicated polarization behaviour. The optically thick part near Lyα centre is polarized in the direction perpendicular to the slab normal, which is in contrast to weakly polarized wing parts in the direction parallel to the slab normal. A similar polarization flip phenomenon is also found in the case of a tall cylindrical shell, in which the spatial diffusion along the vertical direction near the inner cylinder wall for core photons leads to a tendency of the electric field aligned to the direction perpendicular to the vertical axis. Observational implications are briefly discussed including spectropolarimetry of the quasar PG 1630+377 by Koratkar et al. in 1990 where Lyα is strongly polarized with no other emission lines polarized.
NASA Astrophysics Data System (ADS)
Liu, Ni; Li, Shuxin; Wang, Caifeng; Li, Jie
2018-04-01
Low-toxic core-shell ZnSe:Eu/ZnS quantum dots (QDs) were prepared through two steps in water solution: nucleation doping and epitaxial shell grown. The structural and morphological characteristics of ZnSe/ZnS:Eu QDs with different shell thickness were explored by transmission electron microscopy (TEM) and X-ray diffraction (XRD) results. The characteristic photoluminescence (PL) intensity of Eu ions was enhanced whereas that of band-edge luminescence and defect-related luminescence of ZnSe QDs was decreased with increasing shell thickness. The transformation of PL intensity revealed an efficient energy transfer process between ZnSe and Eu. The PL intensity ratio of Eu ions ( I 613) to ZnSe QDs ( I B ) under different shell thickness was systemically analyzed by PL spectra and time-resolved PL spectra. The obtained results were in agreement with the theory analysis results by the kinetic theory of energy transfer, revealing that energy was transmitted in the form of dipole-electric dipole interaction. This particular method of adjusting luminous via changing the shell thickness can provide valuable insights towards the fundamental understanding and application of QDs in the field of optoelectronics.
Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1994-01-01
Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.
Teh, Chee-Keng; Muaz, Siti Dalila; Tangaya, Praveena; Fong, Po-Yee; Ong, Ai-Ling; Mayes, Sean; Chew, Fook-Tim; Kulaveerasingam, Harikrishna; Appleton, David
2017-06-08
The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.
NASA Astrophysics Data System (ADS)
El-Yadri, M.; Aghoutane, N.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.
2018-05-01
This work reports on theoretical investigation of the temperature and hydrostatic pressure effects on the confined donor impurity in a AlGaAs-GaAs hollow cylindrical core-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with approximately rigid walls. Within the framework of the effective-mass approximation and by using a variational approach, we have computed the donor binding energies as a function of the shell size in order to study the behavior of the electron-impurity attraction for a very small thickness under the influence of both temperature and hydrostatic pressure. Our results show that the temperature and hydrostatic pressure have a significant influence on the impurity binding energy for large shell quantum dots. It will be shown that the binding energy is more pronounced with increasing pressure and decreasing temperature for any impurity position and quantum dot size. The photoionization cross section is also analyzed by considering only the in-plane incident radiation polarization. Its behavior is investigated as a function of photon energy for different values of pressure and temperature. The opposite effects caused by temperature and hydrostatic pressure reveal a big practical interest and offer an alternative way to tuning of correlated electron-impurity transitions in optoelectronic devices.
Technology Solutions Case Study: Hygrothermal Performance of a Double-Stud Cellulose Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-06-01
Moisture problems within the building shell can be caused by a number of factors including excess interior moisture that is transported into the wall through air leakage and vapor drive, bulk water intrusion from leaks and wind-driven rain, capillary action from concrete to wood connections, and through wetted building materials such as siding wetted from rain splash back. With the increasing thickness of walls, moisture issues could increase. Several builders have successfully used “double-wall” systems to more practically achieve higher R-values in thicker framed walls. A double wall typically consists of a load-bearing external frame wall constructed with 2 ×more » 4 framing at 16 in. on center using conventional methods. After the building is enclosed, an additional frame wall is constructed several inches inside the load-bearing wall. Several researchers have used moisture modeling software to conduct extensive analysis of these assemblies; however, little field research has been conducted to validate the results. In this project, the Building America research team Consortium for Advanced Residential Buildings monitored a double-stud assembly in climate zone 5A to determine the accu¬racy of moisture modeling and make recommendations to ensure durable and efficient assemblies.« less
Jeong, Byeong Guk; Park, Young-Shin; Chang, Jun Hyuk; Cho, Ikjun; Kim, Jai Kyeong; Kim, Heesuk; Char, Kookheon; Cho, Jinhan; Klimov, Victor I; Park, Philip; Lee, Doh C; Bae, Wan Ki
2016-10-02
Thick inorganic shell endows colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited, due to low photoluminescence quantum yield (PL QY 60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ~ 100% PL QY for SQW NCs with thick CdS shell (≥ 5 nm). High PL QY of thick-shell SQW NCs are preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.
Understanding Bright 13 keV Kr K-shell X-ray Sources at the NIF
NASA Astrophysics Data System (ADS)
May, M. J.; Colvin, J. D.; Kemp, G. E.; Fournier, K. B.; Scott, H.; Patel, M.; Barrios, Widmann; Widmann, K.
2015-11-01
High x-ray conversion efficiency (CE) K-shell Kr sources are being investigated for High Energy Density experiments. These sources are 4.1 mm in diameter 4.4 mm tall hollow epoxy tubes having a 40 μm thick wall holding either 1.2 or 1.5 atm of Kr gas. The CE of K-shell Kr is dependent upon the peak electron temperature in the radiating plasma. In the NIF experiments, the available energy heats the source to Te = 6-7 keV, well below the temperature of Te ~25 keV needed to optimize the Kr CE. The CE is a steep function of the peak electron temperature. A spatially averaged electron temperature can be estimated from measured He(α) and Ly(α) line ratios. Some disagreement has been observed in the simulated and measured line ratios for some of these K-shell sources. Disagreements have been observed between the simulated and measured line ratios for some of these K-shell sources. To help understand this issue, Kr gas pipes have been shot with 3 ω light at ?750 kJ at ~210, ~140 TW and ~120 TW power levels with 3.7, 5.2 and 6.7 ns pulses, respectively. The power and pulse length scaling of the measured CE and K-shell line ratios and their comparison to simulations will be discussed. This work was performed under the auspic
NASA Astrophysics Data System (ADS)
Kumar, B. Ramesh; Gangradey, R.
2012-11-01
Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.
NASA Astrophysics Data System (ADS)
Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.
2017-03-01
Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.
Monte Carlo simulations of nematic and chiral nematic shells
NASA Astrophysics Data System (ADS)
Wand, Charlie R.; Bates, Martin A.
2015-01-01
We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.
2016-08-04
BAllistic SImulation Method for Lithium Ion Batteries (BASIMLIB) using Thick Shell Composites (TSC) in LS-DYNA Venkatesh Babu, Dr. Matt Castanier, Dr...Objective • Objective and focus of this work is to develop a – Robust simulation methodology to model lithium - ion based batteries in its module and full...unlimited Lithium Ion Phosphate (LiFePO4) battery cell, module and pack was modeled in LS-DYNA using both Thin Shell Layer (TSL) and Thick Shell
Code of Federal Regulations, 2010 CFR
2010-10-01
...: Material ASTM A240-316L. Shell thickness Shell 0.167 in. Head thickness Head 0.150 in. Tank builders initials ABC. Date of original test 00-0000. Outer shell: Material ASTM A285-C. Tank builders initials WYZ...
Room-temperature ferromagnetic Cr-doped Ge/GeOx core-shell nanowires.
Katkar, Amar S; Gupta, Shobhnath P; Seikh, Md Motin; Chen, Lih-Juann; Walke, Pravin S
2018-06-08
The Cr-doped tunable thickness core-shell Ge/GeO x nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr 3+ in core-shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core-shell thickness and intriguing room temperature ferromagnetism is realized only in core-shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (T C > 300 K) with the dominating values of its magnetic remanence (M R ) and coercivity (H C ) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeO X core-shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.
Room-temperature ferromagnetic Cr-doped Ge/GeOx core–shell nanowires
NASA Astrophysics Data System (ADS)
Katkar, Amar S.; Gupta, Shobhnath P.; Motin Seikh, Md; Chen, Lih-Juann; Walke, Pravin S.
2018-06-01
The Cr-doped tunable thickness core–shell Ge/GeOx nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr3+ in core–shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core–shell thickness and intriguing room temperature ferromagnetism is realized only in core–shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (TC > 300 K) with the dominating values of its magnetic remanence (MR) and coercivity (HC) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeOX core–shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.
Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions
Neville, Frances; Moreno-Atanasio, Roberto
2018-01-01
We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m2, could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process. PMID:29922646
Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.
Neville, Frances; Moreno-Atanasio, Roberto
2018-01-01
We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.
Tidal dissipation in the subsurface ocean of Enceladus
NASA Astrophysics Data System (ADS)
Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.
2017-12-01
Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power radiated from the south polar terrain requires shell thicknesses smaller than about 1 km, a value that is not consistent with recent libration, gravity and topography constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li-min, E-mail: zhaolimin@lcu.ecu.cn; Shao, Xin; Yin, Yi-bin
2012-09-15
Graphical abstract: Core–shell structure PSt/CuS were prepared using polystyrene which were modified by 3-methacryloxypropyltrimethoxysilane as template. The coating thickness of CuS can be controlled by the amount of 3-methacryloxypropyltrimethoxysilane and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS. Highlights: ► Core–shell structure PSt/CuS were prepared using silanol-modified polystyrene microspheres as template. ► The coating thickness of core–shell structure PSt/CuS can be controlled by a simple method. ► The UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS. -- Abstract: The silanol-modified polystyrene microspheres were prepared through dispersion polymerization.more » Then copper sulfide particles were grown on silanol-modified polystyrene through sonochemical deposition in an aqueous bath containing copper acetate and sulfide, released through the hydrolysis of thioacetamide. The resulting particles were continuous and uniform as characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared, thermogravimetric analysis and UV–vis absorption spectroscopy were used to characterize the structure and properties of core–shell particles. The results showed the coating thickness of CuS shell can be controlled by the amount of silanol and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS.« less
NASA Astrophysics Data System (ADS)
Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.
2017-02-01
In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.
Planetary Ice-Oceans: Numerical Modeling Study of Ice-Shell Growth in Convecting Two-Phase Systems
NASA Astrophysics Data System (ADS)
Allu Peddinti, Divya; McNamara, Allen
2017-04-01
Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an ice-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the ice-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar ice-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the ice-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the ice-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the ice-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the ice-shell over time. We perform geodynamic modeling of the ice-ocean system in order to understand how the ice-shell thickness changes with time. The convection code employs the ice Ih-water phase diagram in order to model the two-phase convecting ice-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the ice and case 3 with viscosity-dependent tidal internal heating in the ice. We track the ice-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of ice-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant ice regime. We compare the three different cases to provide a comprehensive understanding of the temporal variation in the ice-shell thickness due to the addition of heating in the ice.
Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors
NASA Astrophysics Data System (ADS)
Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.
2003-06-01
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.
Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C
2003-06-27
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.
Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao
2018-03-30
3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.
The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings
Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao
2018-01-01
3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543
A New Axi-Symmetric Element for Thin Walled Structures
NASA Astrophysics Data System (ADS)
Cardoso, Rui P. R.; Yoon, Jeong Whan; Dick, Robert E.
2010-06-01
A new axi-symmetric finite element for sheet metal forming applications is presented in this work. It uses the solid-shell element's concept with only a single element layer and multiple integration points along the thickness direction. The cross section of the element is composed of four nodes with two degrees of freedom each. The proposed formulation overcomes major locking pathologies including transverse shear locking, Poisson's locking and volumetric locking. Some examples are shown to demonstrate the performance and accuracy of the proposed element with special focus on the numerical simulations for the beverage can industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Jie; Li, Yuan; Chen, Yingnan
Highlights: • Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses were prepared via the Stöber process. • Sm and Dy complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. • The complex-doped Ag@SiO{sub 2} composites show stronger luminescent intensities than pure complexes. • The luminescent intensities of the composites strongly depend on the SiO{sub 2} shell thickness. - Abstract: Three kinds of almost spherical core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses (10, 25 and 80 nm) were prepared via the Stöber process. The Ag core nanoparticles were prepared by reducing silver nitrate with sodium citrate. The size, morphology andmore » structure of core–shell Ag@SiO{sub 2} nanoparticles were characterized by transmission electron microscopy. Subsequently, eight kinds of lanthanide complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. The composition of the lanthanide complexes was characterized by elemental analysis, IR and UV spectra. Finally, lanthanide complexes were attached to the surface of Ag@SiO{sub 2} nanoparticles to form lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites. The results show that the complex-doped Ag@SiO{sub 2} nanocomposites display much stronger luminescence intensities than the lanthanide complexes. Furthermore, the luminescence intensities of the lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites with SiO{sub 2} shell thickness of 25 nm are stronger than those of the nanocomposites with SiO{sub 2} shell thickness of 10 and 80 nm.« less
Han, Xianghui; Chen, Sheng; Lv, Xuguang; Luo, Hang; Zhang, Dou; Bowen, Chris R
2018-01-24
Polymer nanocomposites based on conductive fillers for high performance dielectrics have attracted increasing attention in recent years. However, a number of physical issues are unclear, such as the effect of interfacial thickness on the dielectric properties of the polymer nanocomposites, which limits the enhancement of permittivity. In this research, two core-shell structured reduced graphene oxide (rGO)@rigid-fluoro-polymer conducting fillers with different shell thicknesses are prepared using a surface-initiated reversible-addition-fragmentation chain transfer polymerization method, which are denoted as rGO@PTFMS-1 with a thin shell and rGO@PTFMS-2 with a thick shell. A rigid liquid crystalline fluoride-polymer poly{5-bis[(4-trifluoro-methoxyphenyl)oxycarbonyl]styrene} (PTFMS) is chosen for the first time to tailor the shell thicknesses of rGO via tailoring the degree of polymerization. The effect of interfacial thickness on the dielectric behavior of the P(VDF-TrFE-CTFE) nanocomposites with rGO and modified rGO is studied in detail. The results demonstrate that the percolation threshold of the nanocomposites increased from 0.68 vol% to 1.69 vol% with an increase in shell thickness. Compared to the rGO@PTFMS-1/P(VDF-TrFE-CTFE) composites, the rGO@PTFMS-2/P(VDF-TrFE-CTFE) composites exhibited a higher breakdown strength and a lower dielectric constant, which can be interpreted by interfacial polarization and the micro-capacitor model, resulting from the insulating nature of the rigid-polymer shell and the change of rGO's morphology. The findings provide an innovative approach to tailor dielectric composites, and promote a deeper understanding of the influence of interfacial region thickness on the dielectric performance.
NASA Technical Reports Server (NTRS)
Schenk, Paul M.
2002-01-01
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometers of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7-8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25-0.5 times the thickness of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
NASA Astrophysics Data System (ADS)
Thomas, S.; Reethu, K.; Thanveer, T.; Myint, M. T. Z.; Al-Harthi, S. H.
2017-08-01
The exchange bias blocking temperature distribution of naturally oxidized Co-CoO core-shell nanoparticles exhibits two distinct signatures. These are associated with the existence of two magnetic entities which are responsible for the temperature dependence of an exchange bias field. One is from the CoO grains which undergo thermally activated magnetization reversal. The other is from the disordered spins at the Co-CoO interface which exhibits spin-glass-like behavior. We investigated the oxide shell thickness dependence of the exchange bias effect. For particles with a 3 nm thick CoO shell, the predominant contribution to the temperature dependence of exchange bias is the interfacial spin-glass layer. On increasing the shell thickness to 4 nm, the contribution from the spin-glass layer decreases, while upholding the antiferromagnetic grain contribution. For samples with a 4 nm CoO shell, the exchange bias training was minimal. On the other hand, 3 nm samples exhibited both the training effect and a peak in coercivity at an intermediate set temperature Ta. This is explained using a magnetic core-shell model including disordered spins at the interface.
USDA-ARS?s Scientific Manuscript database
Antimicrobial activity of silver is highly effective and broad-spectrum; however, poor long-term antibacterial efficiency and cytotoxicity toward mammalian cells have restricted their applications. Here, we fabricated Au@Ag NPs with tailored shell thickness, and investigated their antibacterial acti...
Lin, Qianglu; Makarov, Nikolay S.; Koh, Weon-kyu; ...
2014-11-26
The unique optical properties exhibited by visible emitting core/shell quantum dots with especially thick shells are the focus of widespread study, but have yet to be realized in infrared (IR) -active nanostructures. We apply an effective-mass model to identify PbSe/CdSe core/shell quantum dots as a promising system for achieving this goal. We then synthesize colloidal PbSe/CdSe quantum dots with shell thicknesses of up to 4 nm that exhibit unusually slow hole intra-band relaxation from shell to core states, as evidenced by the emergence of dual emission, i.e., IR photoluminescence from the PbSe core observed simultaneously with visible emission from themore » CdSe shell. In addition to the large shell thickness, the development of slowed intraband relaxation is facilitated by the existence of a sharp core-shell interface without discernible alloying. Growth of thick shells without interfacial alloying or incidental formation of homogenous CdSe nanocrystals was accomplished using insights attained via a systematic study of the dynamics of the cation-exchange synthesis of both PbSe/CdSe as well as the related system PbS/CdS. Finally, we show that the efficiency of the visible photoluminescence can be greatly enhanced by inorganic passivation.« less
Post-buckling of a pressured biopolymer spherical shell with the mode interaction
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ru, C. Q.
2018-03-01
Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.
Photonic bandgap of inverse opals prepared from core-shell spheres
2012-01-01
In this study, we synthesized monodispersed polystyrene (PS)-silica core-shell spheres with various shell thicknesses for the fabrication of photonic crystals. The shell thickness of the spheres was controlled by various additions of tetraethyl orthosilicate during the shell growth process. The shrinkage ratio of the inverse opal photonic crystals prepared from the core-shell spheres was significantly reduced from 14.7% to within 3%. We suspected that the improvement resulted from the confinement of silica shell to the contraction of PS space during calcination. Due to the shell effect, the inverse opals prepared from the core-shell spheres have higher filling fraction and larger wavelength of stop band maximum. PMID:22894600
NASA Technical Reports Server (NTRS)
Stein, M.
1985-01-01
Nonlinear strain displacement relations for three-dimensional elasticity are determined in orthogonal curvilinear coordinates. To develop a two-dimensional theory, the displacements are expressed by trigonometric series representation through-the-thickness. The nonlinear strain-displacement relations are expanded into series which contain all first and second degree terms. In the series for the displacements only the first few terms are retained. Insertion of the expansions into the three-dimensional virtual work expression leads to nonlinear equations of equilibrium for laminated and thick plates and shells that include the effects of transverse shearing. Equations of equilibrium and buckling equations are derived for flat plates and cylindrical shells. The shell equations reduce to conventional transverse shearing shell equations when the effects of the trigonometric terms are omitted and to classical shell equations when the trigonometric terms are omitted and the shell is assumed to be thin.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
1996-01-01
The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.
Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Stein, Peter A.; Bush, Harold G.
1988-01-01
The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.
Enceladus: three-act play and current state
NASA Astrophysics Data System (ADS)
Luan, J.; Goldreich, P.
2017-12-01
Eccentricity (e) growth as Enceladus migrates deeper into mean motion resonance with Dione results in increased tidal heating. As the bottom of the ice shell melts, the rate of tidal heating jumps and runaway melting ensues. At the end of run-away melting, the shell's thickness has fallen below the value at which the frequency of free libration equals the orbital mean motion and e has damped to well below its current value. Subsequently, both the shell thickness and e partake in a limit cycle. As e damps toward its minimum value, the shell's thickness asymptotically approaches its resonant value from below. After minimum e, the shell thickens quickly and e grows even faster. This cycle is likely to have been repeated multiple times in the past. Currently, e is much smaller than its equilibrium value corresponding to the shell thickness. Physical libration resonance resolves this mystery, it ensures that the low-e and medium-thickness state is present for most of the time between consecutive limit cycles. It is a robust scenario that avoids fine tuning or extreme parameter choice, and naturally produces episodic stages of high heating, consistent with softening of topographical features on Enceladus.
Effect of Ice-Shell Thickness Variations on the Tidal Deformation of Enceladus
NASA Astrophysics Data System (ADS)
Choblet, G.; Cadek, O.; Behounkova, M.; Tobie, G.; Kozubek, T.
2015-12-01
Recent analysis of Enceladus's gravity and topography has suggested that the thickness of the ice shell significantly varies laterally - from 30-40 km in the south polar region to 60 km elsewhere. These variations may influence the activity of the geysers and increase the tidal heat production in regions where the ice shell is thinned. Using a model including a regional or global subsurface ocean and Maxwell viscoelasticity, we investigate the impact of these variations on the tidal deformation of the moon and its heat production. For that purpose, we use different numerical approaches - finite elements, local application of 1d spectral method, and a generalized spectral method. Results obtained with these three approaches for various models of ice-shell thickness variations are presented and compared. Implications of a reduced ice shell thickness for the south polar terrain activity are discussed.
Free Vibrations of Nonthin Elliptic Cylindrical Shells of Variable Thickness
NASA Astrophysics Data System (ADS)
Grigorenko, A. Ya.; Efimova, T. L.; Korotkikh, Yu. A.
2017-11-01
The problem of the free vibrations of nonthin elliptic cylindrical shells of variable thickness under various boundary conditions is solved using the refined Timoshenko-Mindlin theory. To solve the problem, an effective numerical approach based on the spline-approximation and discrete-orthogonalization methods is used. The effect of the cross-sectional shape, thickness variation law, material properties, and boundary conditions on the natural frequency spectrum of the shells is analyzed.
Henny, C.J.; Bennett, J.K.
1990-01-01
Data from a 1986 field study of white-faced ibis (Plegadis chihi) nesting at Carson Lake, Nevada, were used to compare the utility of eggshell strength measurement and eggshell thickness as indicators of eggshell quality. The ibis population had a history of reproductive failure correlated with elevated egg concentrations of p,p`DDE, hereafter referred to as DDE. Eggs from 80 nests (one egg/nest) were tested for shell strength and thickness. Egg contents were analyzed for organochlorines, mercury and selenium; productivity at each nest (minus one egg) was monitored in the field. DDE-DDT concentrations in the eggs ranged from none detected (less than 0.1) to 29 ppm (wet weight). Shell thickness and shell strength were both negatively correlated with DDE (0.60, 0.61, respectively), but shell strength deteriorated at a faster rate than shell thickness. Scanning electron micrographs indicated the deterioration in strength was related to changes in ultrastructure as well as to decreased thickness. Fourteen eggs with less than 0.40 ppm DDE were used to exemplify normal control eggs. Of the eggs with higher concentrations of DDE (i.e., greater than or equal to 0.40 ppm), 11 of 66 were thinner (greater than 2 SD below 'control' mean) than normal, 11 of 59 were weaker than normal and 7 eggs were cracked so their strength could not be tested, although thickness was measured. Therefore, 17% of the eggs with greater than or equal to 0.40 ppm DDE were thinner than normal and 27% were either weaker than normal or cracked. Further, six eggs (four with greater than or equal to 15 ppm DDE) did not have abnormally thin shells, but did have abnormally weak shells. Nests with abnormal test eggs (thinner, weaker or cracked) produced fewer young than nests with normal eggs. Use of the shell strength parameter provides additional information for better evaluations of reproductive problems. The potential utility of monitoring eggshell quality goes beyond evaluating effects of organochlorines since recent work indicates that other environmental hazards can affect shell quality.
Enceladus's ice shell thickness and ocean depth from gravity, topography, and libration measurements
NASA Astrophysics Data System (ADS)
Trinh, A.; Rivoldini, A.; Beuthe, M.; Rekier, J.; Baland, R. M.; Van Hoolst, T.
2017-12-01
One of Cassini's major achievements is the discovery of a global ocean a few kilometres beneath Enceladus's south polar terrain. Here we infer the thickness of Enceladus's ice shell and ocean from Cassini's observations using our latest models of isostatic compensation, shell libration, and ocean dynamics.
Analysis of flexible layered shallow shells on elastic foundation
NASA Astrophysics Data System (ADS)
Stupishin, L.; Kolesnikov, A.; Tolmacheva, T.
2017-05-01
This paper contains numerical analysis of a layered geometric nonlinear flexible shallow shell based on an elastic foundation. Rise of arch in the center of the shell, width, length and type of support are given. The design variable is taken to be the thickness of the shallow shell, the form of the middle surface forming and the characteristic of elastic foundations. Critical force coefficient and stress of shells are calculated by Bubnov-Galerkin. Stress, characteristic of elastic foundations - thickness dependence are presented.
NASA Astrophysics Data System (ADS)
Franus, D. V.
2018-05-01
Research is conducted into variation in the stress-strain state of the corneoscleral shell of the human eye under loading by a flat base stamp of varying weight. A three-dimensional finite-element model of the contact problem of loading of the corneoscleral shell in the ANSYS program package is presented. Cornea and sclera are modeled as conjugated transversely isotropic spherical shells. The cornea is modeled as a multilayer shell with variable thickness in which all modeled layers have their own individual elastic properties. The research deals with the numerical calculation of the diameter of the contact zone between the shell and the stamp. Values of correction coefficients for intraocular pressure are obtained depending on the thickness of the corneal shell in its center, allowing the true intraocular pressure to be determined more accurately.
Turbine Engine Component Analysis: Cantilevered Composite Flat Plate Analysis
1989-11-01
4/5 element which translates into the ADIN. shell element (Type 7) with thickness correction. PATADI automatically generates midsurface normal vectors...for each node referenced by a shell element. Using thickness correction, the element thickness will be oriented along the midsurface direction. If no
Schenk, Paul M
2002-05-23
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
NASA Astrophysics Data System (ADS)
Yang, Canchao; Huang, Qiuli; Wang, Longwu; Du, Wei-Guo; Liang, Wei; Møller, Anders Pape
2018-02-01
Obligate brood parasites have evolved unusually thick-shelled eggs, which are hypothesized to possess a variety of functions such as resistance to puncture ejection by their hosts. In this study, we tested the hypothesis that obligate brood parasites lay unusually thick-shelled eggs to retain more heat for the developing embryo and thus contribute to early hatching of parasite eggs. By doing so, we used an infrared thermal imaging system as a non-invasive method to quantify the temperature of eggshells of common cuckoos ( Cuculus canorus) and their Oriental reed warbler ( Acrocephalus orientalis) hosts in an experiment that artificially altered the duration of incubation. Our results showed that cuckoo eggshells had higher temperature than host eggs during incubation, but also less fluctuations in temperature during incubation disturbance. Therefore, there was a thermal and hence a developmental advantage for brood parasitic cuckoos of laying thick-shelled eggs, providing another possible explanation for the unusually thick-shelled eggs of obligate brood parasites and earlier hatching of cuckoo eggs compared to those of the host.
Yang, Canchao; Huang, Qiuli; Wang, Longwu; Du, Wei-Guo; Liang, Wei; Møller, Anders Pape
2018-01-02
Obligate brood parasites have evolved unusually thick-shelled eggs, which are hypothesized to possess a variety of functions such as resistance to puncture ejection by their hosts. In this study, we tested the hypothesis that obligate brood parasites lay unusually thick-shelled eggs to retain more heat for the developing embryo and thus contribute to early hatching of parasite eggs. By doing so, we used an infrared thermal imaging system as a non-invasive method to quantify the temperature of eggshells of common cuckoos (Cuculus canorus) and their Oriental reed warbler (Acrocephalus orientalis) hosts in an experiment that artificially altered the duration of incubation. Our results showed that cuckoo eggshells had higher temperature than host eggs during incubation, but also less fluctuations in temperature during incubation disturbance. Therefore, there was a thermal and hence a developmental advantage for brood parasitic cuckoos of laying thick-shelled eggs, providing another possible explanation for the unusually thick-shelled eggs of obligate brood parasites and earlier hatching of cuckoo eggs compared to those of the host.
Wang, Guan; Zhang, Kai; Wang, Yindian; Zhao, Changwen; He, Bin; Ma, Yuhong; Yang, Wantai
2018-05-03
Surface engineering of individual living cells is a promising field for cell-based applications. However, engineering individual cells with controllable thickness by chemical methods has been rarely studied. This article describes the development of a new cytocompatible chemical strategy to decorate individual living cells. The thicknesses of the crosslinked shells could be conveniently controlled by the irradiation time, visible light intensity, or monomer concentration. Moreover, the lag phase of the yeast cell division was extended and their stability against lysis was improved, which could also be tuned by controlling the shell thickness.
Implosion of Cylindrical Cavities via Short Duration Impulsive Loading
NASA Astrophysics Data System (ADS)
Huneault, Justin; Higgins, Andrew
2014-11-01
An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found. PMID:24719582
NASA Astrophysics Data System (ADS)
Xue, Baoxia; Niu, Mei; Yang, Yongzhen; Bai, Jie; Song, Yinghao; Peng, Yun; Liu, Xuguang
2018-03-01
Carbon microspheres (CMSs) as a core material had been coated by two capsule walls: an inorganic material of magnesium hydroxide (MH) as inner shell layer and an organic material of poly (ethylene terephthalate) (PET) as outer shell layer. MH coating CMSs (MCMSs) were fabricated by liquid phase deposition method, then grafted 3-Aminopropyltriethoxysilane (APTS) to obtain the Si-MCMSs. Microencapsulated Si-MCMSs (PMCMSs) was prepared by in situ polymerization method. Morphology structure, dispersion, flame retardant and other properties of PMCMSs have been investigated. A series of PET blends were prepared by melt compounding. The results showed that MH and PET as two layers were coated on CMSs surface with the optimal thickness of about 70 nm. The PMCMSs owned better dispersion in PET matrix. Compared with MCMSs/PET composites, the mechanical property of PMCMSs/PET composites had significantly increased because of the strong interface binding force between PMCMSs and PET matrix. Moreover, PMCMSs was proved to be an effective flame retardant. For PMCMSs/PET with 2 wt% PMCMSs, the limiting oxygen index (LOI) value increased from 21.0% (pristine PET) to 27.2%, and the peak heat release rate (pk-HRR) decreased from 513.22 kW/m2 to 352.14 kW/m2. The decreased smoke production rate (SPR) and total smoke production (TSP) values demonstrated PMCMSs suppressed the smoke production. The increased Fire performance index (FPI) value illustrated PMCMSs significantly reduced the fire risk of PET. Overall, the two capsular walls endowed the PMCMSs/PET composites with good mechanical and flame-retardant properties.
Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert
2007-01-01
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert
2007-01-01
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.
Eggshell thickness in mourning dove populations
Kreitzer, J.F.
1971-01-01
Eggs (n = 452) of the mourning dove (Zenaidura macroura) were collected from 9 states in 1969 and 11 states in 1970, and shell thickness was compared with that of eggs (n = 97) collected from 24 states during the years 1861 to 1935. Mean shell thickness did not differ significantly in the test groups.
Vibrations and structureborne noise in space station
NASA Technical Reports Server (NTRS)
Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.
1987-01-01
Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.
Jetting of a ultrasound contrast microbubble near a rigid wall
NASA Astrophysics Data System (ADS)
Sarkar, Kausik; Mobadersany, Nima
2017-11-01
Micron sized gas-bubbles coated with a stabilizing shell of lipids or proteins, are used as contrast enhancing agents for ultrasound imaging. However, they are increasingly being explored for novel applications in drug delivery through a process called sonoporation, the reversible permeabilization of the cell membrane. Under sufficiently strong acoustic excitations, bubbles form a jet and collapse near a wall. The jetting of free bubbles has been extensively studied by boundary element method (BEM). Here, for the first time, we implemented a rigorous interfacial rheological model of the shell into BEM and investigated the jet formation. The code has been carefully validated against past results. Increasing shell elasticity decreases the maximum bubble volume and the collapse time, while the jet velocity increases. The shear stress on the wall is computed and analyzed. A phase diagram as functions of excitation pressure and wall separation describes jet formation. Effects of shell elasticity and frequency on the phase diagram are investigated. Partially supported by National Science Foundation.
Enceladus's crust as a non-uniform thin shell: I tidal deformations
NASA Astrophysics Data System (ADS)
Beuthe, Mikael
2018-03-01
The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.
Bandgap Engineering of InP QDs Through Shell Thickness and Composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Allison M.; Mangum, Benjamin D.; Piryatinski, Andrei
2012-06-21
Fields as diverse as biological imaging and telecommunications utilize the unique photophysical and electronic properties of nanocrystal quantum dots (NQDs). The development of new NQD compositions promises material properties optimized for specific applications, while addressing material toxicity. Indium phosphide (InP) offers a 'green' alternative to the traditional cadmium-based NQDs, but suffers from extreme susceptibility to oxidation. Coating InP cores with more stable shell materials significantly improves nanocrystal resistance to oxidation and photostability. We have investigated several new InP-based core-shell compositions, correlating our results with theoretical predictions of their optical and electronic properties. Specifically, we can tailor the InP core-shell QDsmore » to a type-I, quasi-type-II, or type-II bandgap structure with emission wavelengths ranging from 500-1300 nm depending on the shell material used (ZnS, ZnSe, CdS, or CdSe) and the thickness of the shell. Single molecule microscopy assessments of photobleaching and blinking are used to correlate NQD properties with shell thickness.« less
Using Micro CT Scanning to Assess Pteropod Shells in the Modern Ocean
NASA Astrophysics Data System (ADS)
Oakes, R. L.; Urbanski, J. M.; Bralower, T. J.
2016-02-01
Anthropogenic activities are causing fundamental changes to ocean chemistry. Calcareous plankton and nekton are predicted to be affected by these chemical changes, especially by ocean acidification. These groups are at the base of the marine food chain and therefore their demise will have a strong effect on the marine ecosystem as a whole. One challenge moving forward is to find a method to assess how chemical changes manifest themselves in plankton and nekton shells. Recent advancements in computed tomographic (CT) scanning technology allows for organisms to be imaged in three dimensions at micrometer resolution. CT data enables quantitative measurements of properties such as shell thickness, volume, and morphology. We apply this method to look at pteropods, nektonic molluscs which make their shells from the more soluble form of calcium carbonate, aragonite. Their shell mineralogy, and the fact that some groups live in polar and upwelling waters, place them at high risk for ocean acidification. We have scanned over 70 pteropods from 5 different locations globally. Analysis shows that there is a significant difference in pteropod shell thickness in different ocean basins with the thinnest shells being found off the coast of Washington. Changes in shell thickness may affect pteropod swimming efficiency, predation, and rate of sinking. Shell volume does not seem to vary with shell thickness suggesting that changes will impact pteropods at all ontogenetic stages. We are working towards a geometric morphometric analysis of these shells to see if the shape differs in areas with different ocean conditions. This initial set of CT scans of pteropods can be used as a baseline to which future changes can be compared. Furthermore, this technique has the potential to be easily transferred to other organisms as a method of assessing shell change in response to ocean acidification and associated factors.
Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio
2004-11-01
Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.
Pfister, Catherine A.; Roy, Kaustuv; Wootton, J. Timothy; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Thomas H.; Sanford, Eric
2016-01-01
Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds. PMID:27306049
Pfister, Catherine A.; Roy, Kaustuv; Wootton, Timothy J.; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Tom; Sanford, Eric
2016-01-01
Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds..
Pfister, Catherine A; Roy, Kaustuv; Wootton, J Timothy; McCoy, Sophie J; Paine, Robert T; Suchanek, Thomas H; Sanford, Eric
2016-06-15
Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s-1970s and shells from two Native American midden sites (∼1000-2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10-40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds. © 2016 The Author(s).
Zhang, Jian; Fu, Yi; Lakowicz, Joseph R
2007-02-08
Labeled silica beads with an average diameter of 100 nm were synthesized by incorporating with 20-600 μM Ru(bpy)(3) (2+) complexes. Silver shells were deposited on the beads layer-by-layer with the shell thickness of 5-50 nm. The emission band became narrower and the intensity was enhanced depending on the shell thickness. Self-quenching of the probe was observed at high concentration. Poisson statistics were employed to analyze self-quenching of the fluorophores. The estimated quenching distance was extended from 6 to 16 nm with shell growth from 0 to 50 nm. Moreover, the silver shells were also labeled with Rhodamine 6G. Fluorescence enhancement and reduced lifetime were also observed for silver-silica shell containing R6G. We found that by adjustment of probe concentration and silver shell thickness, a Ru(bpy)(3) (2+)-labeled particle could be 600 times brighter than an isolated Ru(bpy)(3) (2+) molecule. We expect labeled metal core-shell structures can become useful probes for high sensitivity and/or single particle assay.
AFM Investigation of Liquid-Filled Polymer Microcapsules Elasticity.
Sarrazin, Baptiste; Tsapis, Nicolas; Mousnier, Ludivine; Taulier, Nicolas; Urbach, Wladimir; Guenoun, Patrick
2016-05-10
Elasticity of polymer microcapsules (MCs) filled with a liquid fluorinated core is studied by atomic force microscopy (AFM). Accurately characterized spherical tips are employed to obtain the Young's moduli of MCs having four different shell thicknesses. We show that those moduli are effective ones because the samples are composites. The strong decrease of the effective MC elasticity (from 3.0 to 0.1 GPa) as the shell thickness decreases (from 200 to 10 nm) is analyzed using a novel numerical approach. This model describes the evolution of the elasticity of a coated half-space according to the contact radius, the thickness of the film, and the elastic moduli of bulk materials. This numerical model is consistent with the experimental data and allows simulating the elastic behavior of MCs at high frequencies (5 MHz). While the quasi-static elasticity of the MCs is found to be very dependent on the shell thickness, the high frequency (5 MHz) elastic behavior of the core leads to a stable behavior of the MCs (from 2.5 to 3 GPa according to the shell thickness). Finally, the effect of thermal annealing on the MCs elasticity is investigated. The Young's modulus is found to decrease because of the reduction of the shell thickness due to the loss of the polymer.
Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.
2016-01-01
Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986
Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.
Reid, Kemar R; McBride, James R; Freymeyer, Nathaniel J; Thal, Lucas B; Rosenthal, Sandra J
2018-02-14
Thick-shell (>5 nm) InP-ZnSe colloidal quantum dots (QDs) grown by a continuous-injection shell growth process are reported. The growth of a thick crystalline shell is attributed to the high temperature of the growth process and the relatively low lattice mismatch between the InP core and ZnSe shell. In addition to a narrow ensemble photoluminescence (PL) line-width (∼40 nm), ensemble and single-particle emission dynamics measurements indicate that blinking and Auger recombination are reduced in these heterostructures. More specifically, high single-dot ON-times (>95%) were obtained for the core-shell QDs, and measured ensemble biexciton lifetimes, τ 2x ∼ 540 ps, represent a 7-fold increase compared to InP-ZnS QDs. Further, high-resolution energy dispersive X-ray (EDX) chemical maps directly show for the first time significant incorporation of indium into the shell of the InP-ZnSe QDs. Examination of the atomic structure of the thick-shell QDs by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals structural defects in subpopulations of particles that may mitigate PL efficiencies (∼40% in ensemble), providing insight toward further synthetic refinement. These InP-ZnSe heterostructures represent progress toward fully cadmium-free QDs with superior photophysical properties important in biological labeling and other emission-based technologies.
Gao, Feng; Bajwa, Pooja; Nguyen, Anh; Heyes, Colin D
2017-03-28
The majority of quantum dot (QD) blinking studies have used a model of switching between two distinct fluorescence intensity levels, "on" and "off". However, a distinct intermediate intensity level has been identified in some recent reports, a so-called "grey" or "dim" state, which has brought this binary model into question. While this grey state has been proposed to result from the formation of a trion, it is still unclear under which conditions it is present in a QD. By performing shell-dependent blinking studies on CdSe QDs, we report that the populations of the grey state and the on state are strongly dependent on both the shell material and its thickness. We found that adding a ZnS shell did not result in a significant population of the grey state. Using ZnSe as the shell material resulted in a slightly higher population of the grey state, although it was still poorly resolved. However, adding a CdS shell resulted in the population of a grey state, which depended strongly on its thickness up to 5 ML. Interestingly, while the frequency of transitions to and from the grey state showed a very strong dependence on CdS shell thickness, the brightness of and the dwell time in the grey state did not. Moreover, we found that the grey state acts as an on-pathway intermediate state between on and off states, with the thickness of the shell determining the transition probability between them. We also identified two types of blinking behavior in QDs, one that showed long-lived but lower intensity on states and another that showed short-lived but brighter on states that also depended on the shell thickness. Intensity-resolved single QD fluorescence lifetime analysis was used to identify the relationship between the various exciton decay pathways and the resulting intensity levels. We used this data to propose a model in which multiple on, grey, and off states exist whose equilibrium populations vary with time that give rise to the various intensity levels of single QDs and which depends on shell composition and thickness.
Hybrid indirect-drive/direct-drive target for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, Lindsay John
A hybrid indirect-drive/direct drive for inertial confinement fusion utilizing laser beams from a first direction and laser beams from a second direction including a central fusion fuel component; a first portion of a shell surrounding said central fusion fuel component, said first portion of a shell having a first thickness; a second portion of a shell surrounding said fusion fuel component, said second portion of a shell having a second thickness that is greater than said thickness of said first portion of a shell; and a hohlraum containing at least a portion of said fusion fuel component and at leastmore » a portion of said first portion of a shell; wherein said hohlraum is in a position relative to said first laser beam and to receive said first laser beam and produce X-rays that are directed to said first portion of a shell and said fusion fuel component; and wherein said fusion fuel component and said second portion of a shell are in a position relative to said second laser beam such that said second portion of a shell and said fusion fuel component receive said second laser beam.« less
Influence of shell thickness on thermal stability of bimetallic Al-Pd nanoparticles
NASA Astrophysics Data System (ADS)
Wen, John Z.; Nguyen, Ngoc Ha; Rawlins, John; Petre, Catalin F.; Ringuette, Sophie
2014-07-01
Aluminum-based bimetallic core-shell nanoparticles have shown promising applications in civil and defense industries. This study addresses the thermal stability of aluminum-palladium (Al-Pd) core/shell nanoparticles with a varying shell thickness of 5, 6, and 7 Å, respectively. The classic molecular dynamics (MD) simulations are performed in order to investigate the effects of the shell thickness on the ignition mechanism and subsequent energetic processes of these nanoparticles. The histograms of temperature change and structural evolution clearly show the inhibition role of the Pd shell during ignition. While the nanoparticle with a thicker shell is more thermally stable and hence requires more excess energy, stored as the potential energy of the nanoparticle and provided through numerically heating, to initiate the thermite reaction, a higher adiabatic temperature can be produced from this nanoparticle, thanks to its greater content of Pd. The two-stage thermite reactions are discussed with their activation energy based on the energy balance processes during MD heating and production. Analyses of the simulation results reveal that the inner pressure of the core-shell nanoparticle increases with both temperature and the absorbed thermal energy during heating, which may result in a breakup of the Pd shell.
Chitnis, Parag V.; Koppolu, Sujeethraj; Mamou, Jonathan; Chlon, Ceciel; Ketterling, Jeffrey A.
2013-01-01
This two-part study investigated shell rupture of ultrasound contrast agents (UCAs) under static overpressure conditions and the subharmonic component from UCAs subjected to 20-MHz tonebursts. Five different polylactide-shelled UCAs with shell-thickness-to-radius ratios (STRRs) of 7.5, 30, 40, 65, and 100 nm/μm were subjected to static overpressure in a glycerol-filled test chamber. A video microscope imaged the UCAs as pressure varied from 2 to 330 kPa over 90 min. Images were postprocessed to obtain the pressure threshold for rupture and the diameter of individual microbubbles. Backscatter from individual UCAs was investigated by flowing a dilute UCA solution through a wall-less flow phantom placed at the geometric focus of a 20-MHz transducer. UCAs were subjected to 10- and 20-cycle tonebursts of acoustic pressures ranging from 0.3 to 2.3 MPa. A method based on singular-value decomposition (SVD) was employed to obtain a cumulative subharmonic score (SHS). Different UCA types exhibited distinctly different rupture thresholds that were linearly related to their STRR, but uncorrelated with UCA size. The rupture threshold for the UCAs with an STRR = 100 nm/μm was more than 4 times greater than the UCAs with an STRR = 7.5 nm/μm. The polymer-shelled UCAs produced substantial subharmonic response but the subharmonic response to 20-MHz excitation did not correlate with STRRs or UCA-rupture pressures. The 20-cycle excitation resulted in an SHS that was 2 to 3 times that of UCAs excited with 10-cycle tonebursts. PMID:23287913
A pilot study on bladder wall thickness at different filling stages
NASA Astrophysics Data System (ADS)
Zhang, Xi; Liu, Yang; Li, Baojuan; Zhang, Guopeng; Liang, Zhengrong; Lu, Hongbing
2015-03-01
The ever-growing death rate and the high recurrence of bladder cancer make the early detection and appropriate followup procedure of bladder cancer attract more attention. Compare to optical cystoscopy, image-based studies have revealed its potentials in non-invasive observations of the abnormities of bladder recently, in which MR imaging turns out to be a better choice for bladder evaluation due to its non-ionizing and high contrast between urine and wall tissue. Recent studies indicate that bladder wall thickness tends to be a good indicator for detecting bladder wall abnormalities. However, it is difficult to quantitatively compare wall thickness of the same subject at different filling stages or among different subjects. In order to explore thickness variations at different bladder filling stages, in this study, we preliminarily investigate the relationship between bladder wall thickness and bladder volume based on a MRI database composed of 40 datasets acquired from 10 subjects at different filling stages, using a pipeline for thickness measurement and analysis proposed in our previous work. The Student's t-test indicated that there was no significant different on wall thickness between the male group and the female group. The Pearson correlation analysis result indicated that negative correlation with a correlation coefficient of -0.8517 existed between the wall thickness and bladder volume, and the correlation was significant(p <0.01). The corresponding linear regression equation was then estimated by the unary linear regression. Compared to the absolute value of wall thickness, the z-score of wall thickness would be more appropriate to reflect the thickness variations. For possible abnormality detection of a bladder based on wall thickness, the intra-subject and inter-subject thickness variation should be considered.
NASA Astrophysics Data System (ADS)
Amenzade, R. Yu.; Kiiko, I. A.
2007-06-01
It is commonly assumed that the theory based on the Kirchhoff hypotheses describes the properties inherent in the wave processes occurring in shells filled with fluids. But there are several new effects that cannot be described by this theory (in particular, the appearance of new types of waves). In this paper, we present a linearized description of axisymmetric wave motion of a perfect incompressible fluid in a multilayered cylindrical shell with allowance for shear strain; the shell is assumed to be infinite and simply supported. This description is aimed at finding new mechanical effects and hence at estimating the influence of the multiple layers and the shear strain on the wave characteristics. In a sense, it generalizes and develops well-known studies of this type. Practice necessitates deriving equations constructed under the assumption that the physical and mechanical properties of the shell material are inhomogeneous along the thickness direction or the shell is multilayered; the development of refined theories (compared with the classical theory based on the Kirchhoff—Love straight normal hypothesis) is also inspired by practice. This is primarily related to the fact that multilayered thin-walled shells made of composite materials are used in various fields of technology. It is of interest to note that, as a result of long evolution, the phenomenon of being multilayered also predominates in living organisms. For example, this is typical of big blood vessels [1] (arteries and veins). In [2], on the basis of a three-dimensional variational principle of mixed type, the equations of motion and physical relations for elastic anisotropic shells rigidly inhomogeneous in the thickness direction are derived under the assumptions of the theory of thin shells and with shear strains taken into account. It is also noted that the case of multilayered shells can be modeled by introducing functions with integrable singularities. When studying wave propagation in deformable shells containing fluid, hydroelasticity problems arise; the solution of such problems is of both theoretical and practical importance. Of topical problems in this field, problems related to pulsating blood flow in big blood vessels [3] (the theory of pulse waves) are worth mentioning. The incentive for such studies is that they can help to understand the normal operation of the blood circulatory system, predict its reaction to variations, and propose methods for artificial intervention. Thus, diagnostics, surgery, and prosthesis are closely related to biomechanics. But the applied value of such problems is not bounded by their applications in hemodynamics. They are also very important in technology because of the wide use of systems of fluid and gas transportation through pipelines with corrosion-resistant coating.
Exact solutions for laminated composite cylindrical shells in cylindrical bending
NASA Technical Reports Server (NTRS)
Yuan, F. G.
1992-01-01
Analytic elasticity solutions for laminated composite cylindrical shells under cylindrical bending are presented. The material of the shell is assumed to be general cylindrically anisotropic. Based on the theory of cylindrical anisotropic elasticity, coupled governing partial differential equations are developed. The general expressions for the stresses and displacements in the laminated composite cylinders are discussed. The closed form solutions based on Classical Shell Theory (CST) and Donnell's (1933) theory are also derived for comparison purposes. Three examples illustrate the effect of radius-to-thickness ratio, coupling and stacking sequence. The results show that, in general, CST yields poor stress and displacement distributions for thick-section composite shells, but converges to the exact elasticity solution as the radius-to-thickness ratio increases. It is also shown that Donnell's theory significantly underestimates the stress and displacement response.
Fabrication of Ni@Ti core-shell nanoparticles by modified gas aggregation source
NASA Astrophysics Data System (ADS)
Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H.
2017-11-01
Ni@Ti core-shell nanoparticles were prepared by a vacuum based method using the gas aggregation source (GAS) of nanoparticles. Ni nanoparticles fabricated in the GAS were afterwards coated by a Ti shell. The Ti shell was deposited by means of magnetron sputtering. The Ni nanoparticles were decelerated in the vicinity of the magnetron to the Ar drift velocity in the second deposition chamber. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy analysis of the nanoparticles showed the core-shell structure. It was shown that the thickness of the shell can be easily tuned by the process parameters with a maximum achieved thickness of the Ti shell ~2.5 nm. The core-shell structure was confirmed by the STEM analysis of the particles.
Wang, Ting; Zhu, Bingyan; Wang, Shuangpeng; Yuan, Qilin; Zhang, Han; Kang, Zhihui; Wang, Rong; Zhang, Hanzhuang; Ji, Wenyu
2018-05-02
The effect of shell thickness on the performance of all-inorganic quantum dot light-emitting diodes (QLEDs) is explored by employing a series of green quantum dots (QDs) (Zn x Cd 1- x Se/ZnS core/shell QDs with different ZnS shell thicknesses) as the emitters. ZnO nanoparticles and sol-gel NiO are employed as the electron and hole transport materials, respectively. Time-resolved and steady-state photoluminescence results indicate that positive charging processes might occur for the QDs deposited on NiO, which results in emission quenching of QDs and poor device performance. The thick shell outside the core in QDs not only largely suppresses the QD emission quenching but also effectively preserves the excitons in QDs from dissociation of electron-hole pairs when they are subjected to an electric field. The peak efficiency of 4.2 cd/A and maximum luminance of 4205 cd/m 2 are achieved for the device based on QDs with the thickest shells (∼4.2 nm). We anticipate that these results will spur progress toward the design and realization of efficient all-inorganic QLEDs as a platform for the QD-based full-colored displays.
The effect of embryonic development on the thickness of the eggshells of the coturnix quail
Kreitzer, J.F.
1972-01-01
The average thickness of the shells from 75 unincubated coturnix quail eggs was found to be 0.193 mm. This was 7.3 percent greater than the average thickness (0.179 mm.) of the shells from 60 fully incubated eggs from the same hens. The two sets of eggs were collected simultaneously. This thickness difference was statistically significant (t-test:p< 0.005).
Shang, Eric K; Nathan, Derek P; Sprinkle, Shanna R; Fairman, Ronald M; Bavaria, Joseph E; Gorman, Robert C; Gorman, Joseph H; Jackson, Benjamin M
2013-09-10
Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic aortic aneurysms. Computed tomographic angiography of descending thoracic aortic aneurysms (n=10 total, 5 fusiform and 5 saccular) underwent 3-dimensional reconstruction with custom algorithms. For each aneurysm, an initial model was constructed with uniform wall thickness. Experimental models explored the addition of variable wall thickness, calcifications, and intraluminal thrombus. Each model was loaded with 120 mm Hg pressure, and von Mises PWS was computed. The mean PWS of uniform wall thickness models was 410 ± 111 kPa. The imposition of variable wall thickness increased PWS (481 ± 126 kPa, P<0.001). Although the addition of calcifications was not statistically significant (506 ± 126 kPa, P=0.07), the addition of intraluminal thrombus to variable wall thickness (359 ± 86 kPa, P ≤ 0.001) reduced PWS. A final model incorporating all features also reduced PWS (368 ± 88 kPa, P<0.001). Saccular geometry did not increase diameter-normalized stress in the final model (77 ± 7 versus 67 ± 12 kPa/cm, P=0.22). Incorporation of local wall thickness can significantly increase PWS in finite element analysis models of thoracic aortic aneurysms. Incorporating variable wall thickness, intraluminal thrombus, and calcifications significantly impacts computed PWS of thoracic aneurysms; sophisticated models may, therefore, be more accurate in assessing rupture risk. Saccular aneurysms did not demonstrate a significantly higher normalized PWS than fusiform aneurysms.
Anatomical structure of Camellia oleifera shell.
Hu, Jinbo; Shi, Yang; Liu, Yuan; Chang, Shanshan
2018-06-04
The main product of Camellia oleifera is edible oil made from the seeds, but huge quantities of agro-waste are produced in the form of shells. The primary components of C. oleifera fruit shell are cellulose, hemicellulose, and lignin, which probably make it a good eco-friendly non-wood material. Understanding the structure of the shell is however a prerequisite to making full use of it. The anatomical structure of C. oleifera fruit shells was investigated from macroscopic to ultrastructural scale by stereoscopic, optical, and scanning electron microscopy. The main cell morphology in the different parts of the shell was observed and measured using the tissue segregation method. The density of the cross section of the shell was also obtained using an X-ray CT scanner to check the change in texture. The C. oleifera fruit pericarp was made up of exocarp, mesocarp, and endocarp. The main types of exocarp cells were stone cells, spiral vessels, and parenchyma cells. The mesocarp accounted for most of the shell and consisted of parenchyma, tracheids, and some stone cells. The endocarp was basically made up of cells with a thickened cell wall that were modified tracheid or parenchyma cells with secondary wall thickening. The most important ultrastructure in these cells was the pits in the cell wall of stone and vessel cells that give the shell a conducting, mechanical, and protective role. The density of the shell gradually decreased from exocarp to endocarp. Tracheid cells are one of the main cell types in the shell, but their low slenderness (length to width) ratio makes them unsuitable for the manufacture of paper. Further research should be conducted on composite shell-plastic panels (or other reinforced materials) to make better use of this agro-waste.
Abdellah, Mohamed; Poulsen, Felipe; Zhu, Qiushi; Zhu, Nan; Žídek, Karel; Chábera, Pavel; Corti, Annamaria; Hansen, Thorsten; Chi, Qijin; Canton, Sophie E; Zheng, Kaibo; Pullerits, Tõnu
2017-08-31
Ultrafast fluorescence spectroscopy was used to investigate the hole injection in Cd x Se y Zn 1-x S 1-y gradient core-shell quantum dot (CSQD) sensitized p-type NiO photocathodes. A series of CSQDs with a wide range of shell thicknesses was studied. Complementary photoelectrochemical cell measurements were carried out to confirm that the hole injection from the active core through the gradient shell to NiO takes place. The hole injection from the valence band of the QDs to NiO depends much less on the shell thickness when compared to the corresponding electron injection to n-type semiconductor (ZnO). We simulate the charge carrier tunneling through the potential barrier due to the gradient shell by numerically solving the Schrödinger equation. The details of the band alignment determining the potential barrier are obtained from X-ray spectroscopy measurements. The observed drastic differences between the hole and electron injection are consistent with a model where the hole effective mass decreases, while the gradient shell thickness increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Krishna P.; Nguyen, Hue M.; Paulite, Melissa
2015-03-06
Core/thick-shell "giant" quantum dots (gQDs) possessing type II electronic structures exhibit suppressed blinking and diminished nonradiative Auger recombination. Here we investigate CdSe/ZnSe and ZnSe/CdS as potential new gQDs. We show theoretically and experimentally that both can exhibit partial or complete spatial separation of an excited-state electron–hole pair (i.e., type II behavior). However, we reveal that thick-shell growth is challenged by competing processes: alloying and cation exchange. We demonstrate that these can be largely avoided by choice of shelling conditions (e.g., time, temperature, and QD core identity). The resulting CdSe/ZnSe gQDs exhibit unusual single-QD properties, principally emitting from dim gray statesmore » but having high two-exciton (biexciton) emission efficiencies, whereas ZnSe/CdS gQDs show characteristic gQD blinking suppression, though only if shelling is accompanied by partial cation exchange.« less
Dennis, Allison M.; Mangum, Benjamin D.; Piryatinski, Andrei; Park, Young-Shin; Hannah, Daniel C.; Casson, Joanna L.; Williams, Darrick J.; Schaller, Richard D.; Htoon, Han; Hollingsworth, Jennifer A.
2012-01-01
Non-blinking excitonic emission from near-infrared and type-II nanocrystal quantum dots (NQDs) is reported for the first time. To realize this unusual degree of stability at the single-dot level, novel InP/CdS core/shell NQDs were synthesized for a range of shell thicknesses (~1–11 monolayers of CdS). Ensemble spectroscopy measurements (photoluminescence peak position and radiative lifetimes) and electronic structure calculations established the transition from type-I to type-II band alignment in these heterostructured NQDs. More significantly, single-NQD studies revealed clear evidence for blinking suppression that was not strongly shell-thickness dependent, while photobleaching and biexciton lifetimes trended explicitly with extent of shelling. Specifically, very long biexciton lifetimes—up to >7 ns—were obtained for the thickest-shell structures, indicating dramatic suppression of non-radiative Auger recombination. This new system demonstrates that electronic structure and shell thickness can be employed together to effect control over key single-dot and ensemble NQD photophysical properties. PMID:23030497
Ultrasonic thickness measuring and imaging system and method
Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.
1992-08-04
An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.
Ultrasonic thickness measuring and imaging system and method
Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.
1992-01-01
An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.
NASA Astrophysics Data System (ADS)
Okhovat, Reza; Boström, Anders
2017-04-01
Dynamic equations for an isotropic spherical shell are derived by using a series expansion technique. The displacement field is split into a scalar (radial) part and a vector (tangential) part. Surface differential operators are introduced to decrease the length of all equations. The starting point is a power series expansion of the displacement components in the thickness coordinate relative to the mid-surface of the shell. By using the expansions of the displacement components, the three-dimensional elastodynamic equations yield a set of recursion relations among the expansion functions that can be used to eliminate all but the four of lowest order and to express higher order expansion functions in terms of those of lowest orders. Applying the boundary conditions on the surfaces of the spherical shell and eliminating all but the four lowest order expansion functions give the shell equations as a power series in the shell thickness. After lengthy manipulations, the final four shell equations are obtained in a relatively compact form which are given to second order in shell thickness explicitly. The eigenfrequencies are compared to exact three-dimensional theory with excellent agreement and to membrane theory.
49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not known...
49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not known...
49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not known...
49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not known...
49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not known...
Explosion-Induced Implosions of Cylindrical Shell Structures
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Duncan, J. H.
2010-11-01
An experimental study of the explosion-induced implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and are placed in a large water-filled pressure vessel. The vessel is then pressurized to various levels P∞=αPc, where Pc is the natural implosion pressure of the model and α is a factor that ranges from 0.1 to 0.9. An explosive is then set off at various standoff distances, d, from the model center line, where d varies from R to 10R and R is the maximum radius of the explosion bubble. High-speed photography (27,000 fps) was used to observe the explosion and resulting shell structure implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 6 positions. The cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thickness t = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, t = 0.36 mm, L=152 mm) tubes. The pressure records are interpreted in light of the high-speed movies. It is found that the implosion is induced by two mechanisms: the shockwave generated by the explosion and the jet formed during the explosion-bubble collapse. Whether an implosion is caused by the shockwave or the jet depends on the maximum bubble diameter and the standoff distance.
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2016-12-01
Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.
Thick or Thin Ice Shell on Europa? Artist Concept
2007-12-13
Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa ice shell.
NASA Astrophysics Data System (ADS)
Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.
2015-02-01
Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet directions for the coated and uncoated bubble are similar but the jet width and jet velocity are smaller for a coated bubble. The effects of shell thickness and shell viscosity are analyzed and determined to affect the bubble dynamics, including jet development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Feng; Wang, Dan; Tang, Li-Ming, E-mail: lmtang@hnu.edu.cn
2014-09-07
The effects of the chemical composition and strain on the electronic properties of [111] zinc-blende (ZB) and [0001] wurtzite (WZ) GaSb/InAs core-shell nanowires (NWs) with different core diameters and shell thicknesses are studied using first-principles methods. The band structures of the [111] ZB GaSb/InAs core-shell NWs underwent a noticeable type-I/II band alignment transition, associated with a direct-to-indirect band gap transition under a compressive uniaxial strain. The band structures of the [0001] WZ GaSb/InAs core-shell NWs preserved the direct band gap under either compressive or tensile uniaxial strains. In addition, the band gaps and the effective masses of the carriers couldmore » be tuned by their composition. For the core-shell NWs with a fixed GaSb-core size, the band gaps decreased linearly with an increasing InAs-shell thickness, caused by the significant downshift of the conduction bands. For the [111] ZB GaSb/InAs core-shell NWs, the calculated effective masses indicated that the transport properties could be changed from hole-dominated conduction to electron-dominated conduction by changing the InAs-shell thickness.« less
Li, Da; Liao, Haoyan; Kikuchi, Hiroaki; Liu, Tong
2017-12-27
Excellent magnetic features make Co-based materials promising candidates as high-performance microwave absorbers. However, it is still a significant challenge for Co-based absorbers to possess high-intensity and broadband absorption simultaneously, owing to the lack of dielectric loss and impedance matching. Herein, microporous Co@C nanoparticles (NPs) with carbon shell thicknesses ranging from 1.8-4.9 nm have been successfully synthesized by dealloying CoAl@C precursors. All of the samples exhibit high microwave absorption performance. The microporous Co@C sample possessing a carbon shell of 1.8 nm exhibits the highest absorption intensity among these samples with a minimum reflection loss (RL) of -141.1 dB, whose absorption bandwidth for RL ≤ -10 dB is 7.3 GHz. As the thickness of the carbon shell increases, the absorption bandwidth of the NPs becomes wider. For the sample with the carbon shell thickness of 4.9 nm, the absorption bandwidth for RL ≤ -10 dB reaches a record high of 13.2 GHz. The outstanding microwave attenuation properties are attributed to the dielectric loss of the carbon shell, the magnetic loss of the Co core, and the cooperation of the core-shell structure and microporous morphology. The strong wideband microwave absorption of the carbon-coated microporous Co NPs highlights their potential applications in microwave absorbing systems.
Free form hemispherical shaped charge
Haselman, L.C. Jr.
1996-06-04
A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved. 8 figs.
Free form hemispherical shaped charge
Haselman, Jr., Leonard C.
1996-01-01
A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.
Taborda, Jeremías R. A.; Fiorelli, Lucas E.; Grellet-Tinner, Gerald
2018-01-01
The reproduction of titanosaur dinosaurs is still a complex and debated topic. Their Late Cretaceous nesting sites are distributed worldwide and their eggs display substantial morphological variations according to the parent species. In contrast to the typical 1.3–2.0 mm thick shells common to eggs of most titanosaur species (e.g., those that nested in Auca Mahuevo, Tama, Toteşti or Boseong), the Cretaceous Sanagasta eggs of Argentina display an unusual shell thickness of up to 7.9 mm. Their oviposition was synchronous with a palaeogeothermal process, leading to the hypothesis that their extra thick eggshell was an adaptation to this particular nesting environment. Although this hypothesis has already been supported indirectly through several investigations, the mechanical implications of developing such thick shells and how this might have affected the success of hatching remains untested. Finite element analyses estimate that the breaking point of the thick-shelled Sanagasta eggs is 14–45 times higher than for other smaller and equally sized titanosaur eggs. The considerable energetic disadvantage for piping through these thick eggshells suggests that their dissolution during incubation would have been paramount for a successful hatching.
Turbine airfoil with outer wall thickness indicators
Marra, John J; James, Allister W; Merrill, Gary B
2013-08-06
A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.
Dynamo Scaling Laws for Uranus and Neptune: The Role of Convective Shell Thickness on Dipolarity
NASA Astrophysics Data System (ADS)
Stanley, Sabine; Yunsheng Tian, Bob
2017-10-01
Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet’s magnetic field is determined by the local Rossby number (Ro_l): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Ro_l <~ 0.1 produce dipolar dominated magnetic fields whereas dynamos with Ro_l >~ 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). When these scaling laws are applied to the planets, it appears that Uranus and Neptune should have dipole-dominated fields, contrary to observations. However, those scaling laws were derived using the specific convective shell thickness of the Earth’s core. Here we investigate the role of convective shell thickness on dynamo scaling laws. We find that the local Rossby number depends exponentially on the convective shell thickness. Including this new dependence on convective shell thickness, we find that the dynamo scaling laws now predict that Uranus and Neptune reside deeply in the multipolar regime, thereby resolving the previous contradiction with observations.
Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.
2004-04-13
The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.
LINE-OF-SIGHT SHELL STRUCTURE OF THE CYGNUS LOOP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru
We conducted a comprehensive study on the shell structure of the Cygnus Loop using 41 observation data obtained by the Suzaku and the XMM-Newton satellites. To investigate the detailed plasma structure of the Cygnus Loop, we divided our fields of view into 1042 box regions. From the spectral analysis, the spectra obtained from the limb of the Loop are well fitted by the single-component non-equilibrium ionization plasma model. On the other hand, the spectra obtained from the inner regions are well fitted by the two-component model. As a result, we confirmed that the low-temperature and high-temperature components originated from themore » surrounding interstellar matter (ISM) and the ejecta of the Loop, respectively. From the best-fit results, we showed a flux distribution of the ISM component. The distribution clearly shows the limb-brightening structure, and we found out some low-flux regions. Among them, the south blowout region has the lowest flux. We also found other large low-flux regions at slightly west and northeast from the center. We estimated the former thin shell region to be approx1.{sup 0}3 in diameter and concluded that there exists a blowout along the line of sight in addition to the south blowout. We also calculated the emission measure distribution of the ISM component and showed that the Cygnus Loop is far from the result obtained by a simple Sedov evolution model. From the results, we support that the Cygnus Loop originated from a cavity explosion. The emission measure distribution also suggests that the cavity-wall density is higher in the northeast than that in the southwest. These results suggest that the thickness of the cavity wall surrounding the Cygnus Loop is not uniform.« less
Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich
2015-08-14
In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Wen-Shiang; Matula, Thomas J.; Brayman, Andrew A.; Crum, Lawrence A.
2003-01-01
Contrast bubble destruction is important in several new diagnostic and therapeutic applications. The pressure threshold of destruction is determined by the shell material, while the propensity for of the bubbles to undergo inertial cavitation (IC) depends both on the gas and shell properties of the ultrasound contrast agent (UCA). The ultrasonic fragmentation thresholds of three specific UCAs (Optison, Sonazoid, and biSpheres), each with different shell and gas properties, were determined under various acoustic conditions. The acoustic emissions generated by the agents, or their derivatives, characteristic of IC after fragmentation, was also compared, using cumulated broadband-noise emissions (IC ``dose''). Albumin-shelled Optison and surfactant-shelled Sonazoid had low fragmentation thresholds (mean=0.13 and 0.15 MPa at 1.1 MHz, 0.48 and 0.58 MPa at 3.5 MHz, respectively), while polymer-shelled biSpheres had a significant higher threshold (mean=0.19 and 0.23 MPa at 1.1 MHz, 0.73 and 0.96 MPa for thin- and thick-shell biSpheres at 3.5 MHz, respectively, p<0.01). At comparable initial concentrations, surfactant-shelled Sonazoid produced a much larger IC dose after shell destruction than did either biSpheres or Optison (p<0.01). Thick-shelled biSpheres had the highest fragmentation threshold and produced the lowest IC dose. More than two and five acoustic cycles, respectively, were necessary for the thin- and thick-shell biSpheres to reach a steady-state fragmentation threshold.
Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA
NASA Astrophysics Data System (ADS)
Radha, P. B.
2004-11-01
Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ < 10) and intermediate modes (20 < ℓ < 50) occurring from single-beam laser nonuniformities. The neutron production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The neutron-rate curves for the thinner shells, however, have significantly lower amplitudes and widths closer to 1-D results, indicating shell breakup during the acceleration phase. The simulation results are consistent with experimental observations. Previously, the stability of plastic-shell implosions had been correlated to a static ``mix-width'' at the boundary of the gas and plastic pusher estimated using a variety of experimental observables and an assumption of spherical symmetry. Results of these 2-D simulations provide a comprehensive understanding of warm-target implosion dynamics without assumptions of spherical symmetry and serve to answer the question of the hydrodynamic surrogacy between these plastic-shell implosions and the cryogenic ignition designs.
Study on River Snail Shells Unearthed from Laoniupo Shang Dynasty Site.
Zhang, Rui; Yue, Lianjian; Yang, Junchang
2016-03-01
The samples of river snail shell pieces, unearthed from Laoniupo Shang dynasty site, were observed and characterized by SEM, Raman and IR to obtain the information about their chemical component and crystal structure. The uneven surface of the cuticle was covered with nanoparticles, which formed rough surface of the shells. The surface of pearl layer was combined with nano-sized flakes and kept smooth on the whole. The insection of shell was composed of three layers: the cuticle (100-120 μm in thickness), the prismatic layer (-130-140 μm in thickness), and the thickest pearl layer (280-300 μm in thickness). All layers had the component of calcium carbonate with aragonite structure and they were different in nanostructures because of different biomineralization processes.
Karuppuchamy, S; Brundha, C
2016-12-01
Core-shell structured TiO 2 /Li 2 CO 3 electrode was successfully synthesized by eco-friendly solution growth technique. TiO 2 /Li 2 CO 3 electrodes were characterized using X-ray Diffractometer (XRD), Scanning electron microscopy (SEM) and photocurrent-voltage measurements. The synthesized core-shell electrode material was sensitized with tetrabutylammonium cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenate(II) (N-719). The performance of dye-sensitized solar cells (DSCs) based on N719 dye modified TiO 2 /Li 2 CO 3 electrodes was investigated. The effect of various shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that Li 2 CO 3 shells of all thicknesses perform as inert barriers which improve open-circuit voltage (V oc ) of the DSCs. The energy conversion efficiency was greatly dependent on the thickness of Li 2 CO 3 on TiO 2 film, and the highest efficiency of 3.7% was achieved at the optimum Li 2 CO 3 shell layer. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Hongliang; Liu, Hui; Fu, Aiping; Wu, Guanglei; Xu, Man; Pang, Guangsheng; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song
2016-01-01
Three kinds of N-doped mesoporous TiO2 hollow spheres with different N-doping contents, surface area, and pore size distributions were prepared based on a sol–gel synthesis and combined with a calcination process. Melamine formaldehyde (MF) microspheres have been used as sacrificial template and cetyltrimethyl ammonium bromide (CTAB) or polyvinylpyrrolidone (PVP) was selected as pore-directing agent. Core–shell intermediate spheres of titania-coated MF with diameters of 1.2–1.6 μm were fabricated by varying the volume concentration of TiO2 precursor from 1 to 3 vol %. By calcining the core–shell composite spheres at 500 °C for 3 h in air, an in situ N-doping process occurred upon the decomposition of the MF template and CTAB or PVP pore-directing surfactant. N-doped mesoporous TiO2 hollow spheres with sizes in the range of 0.4–1.2 μm and shell thickness from 40 to 110 nm were obtained. The composition and N-doping content, thermal stability, morphology, surface area and pore size distribution, wall thickness, photocatalytic activities, and optical properties of the mesoporous TiO2 hollow spheres derived from different conditions were investigated and compared based on Fourier-transformation infrared (FTIR), SEM, TEM, thermogravimetric analysis (TGA), nitrogen adsorption–desorption, and UV–vis spectrophotoscopy techniques. The influences of particle size, N-doping, porous, and hollow characteristics of the TiO2 hollow spheres on their photocatalytic activities and optical properties have been studied and discussed based on the composition analysis, structure characterization, and optical property investigation of these hollow spherical TiO2 matrices. PMID:28773967
NASA Astrophysics Data System (ADS)
Tahouneh, Vahid; Naei, Mohammad Hasan
2016-03-01
The main purpose of this paper is to investigate the effect of bidirectional continuously graded nanocomposite materials on free vibration of thick shell panels rested on elastic foundations. The elastic foundation is considered as a Pasternak model after adding a shear layer to the Winkler model. The panels reinforced by randomly oriented straight single-walled carbon nanotubes are considered. The volume fractions of SWCNTs are assumed to be graded not only in the radial direction, but also in axial direction of the curved panel. This study presents a 2-D six-parameter power-law distribution for CNTs volume fraction of 2-D continuously graded nanocomposite that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. The benefit of using generalized power-law distribution is to illustrate and present useful results arising from symmetric, asymmetric and classic profiles. The material properties are determined in terms of local volume fractions and material properties by Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient numerical tool is used to discretize governing equations and to implement boundary conditions. The fast rate of convergence of the method is shown and results are compared against existing results in literature. Some new results for natural frequencies of the shell are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded nanocomposite volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded nanocomposite materials.
NASA Astrophysics Data System (ADS)
Shevkunov, S. V.
2017-11-01
The effect of elevated temperature has on the hydrate shell of a singly charged sodium cation inside a flat nanopore with smooth walls is studied using the Monte Carlo method. The free energy and the entropy of vapor molecule attachment are calculated by means of a bicanonical statistical ensemble using a detailed model of interactions. The nanopore has a stabilizing effect on the hydrate shell with respect to fluctuations and a destabilizing effect with respect to complete evaporation. At the boiling point of water, behavior is observed that is qualitatively similar to behavior at room temperature, but with a substantial shift in the vapor pressure and shell size.
NASA Technical Reports Server (NTRS)
Naumann, E. C.; Catherines, D. S.; Walton, W. C., Jr.
1971-01-01
Experimental and analytical investigations of the vibratory behavior of ring-stiffened truncated-cone shells are described. Vibration tests were conducted on 60 deg conical shells having up to four ring stiffeners and for free-free and clamped-free edge constraints and 9 deg conical shells, for two thicknesses, each with two angle rings and for free-free, free-clamped, and clamped-clamped edge constraints. The analytical method is based on linear thin shell theory, employing the Rayleigh-Ritz method. Discrete rings are represented as composed of one or more segments, each of which is a short truncated-cone shell of uniform thickness. Equations of constraint are used to join a ring and shell along a circumferential line connection. Excellent agreement was obtained for comparisons of experimental and calculated frequencies.
Sound Transmission through a Cylindrical Sandwich Shell with Honeycomb Core
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Robinson, Jay H.; Silcox, Richard J.
1996-01-01
Sound transmission through an infinite cylindrical sandwich shell is studied in the context of the transmission of airborne sound into aircraft interiors. The cylindrical shell is immersed in fluid media and excited by an oblique incident plane sound wave. The internal and external fluids are different and there is uniform airflow in the external fluid medium. An explicit expression of transmission loss is derived in terms of modal impedance of the fluids and the shell. The results show the effects of (a) the incident angles of the plane wave; (b) the flight conditions of Mach number and altitude of the aircraft; (c) the ratios between the core thickness and the total thickness of the shell; and (d) the structural loss factors on the transmission loss. Comparisons of the transmission loss are made among different shell constructions and different shell theories.
Abnormal elastic modulus behavior in a crystalline-amorphous core-shell nanowire system.
Lee, Jeong Hwan; Choi, Su Ji; Kwon, Ji Hwan; Van Lam, Do; Lee, Seung Mo; Kim, An Soon; Baik, Hion Suck; Ahn, Sang Jung; Hong, Seong Gu; Yun, Yong Ju; Kim, Young Heon
2018-06-13
We investigated the elastic modulus behavior of crystalline InAs/amorphous Al2O3 core-shell heterostructured nanowires with shell thicknesses varying between 10 and 90 nm by conducting in situ tensile tests inside a transmission electron microscope (TEM). Counterintuitively, the elastic modulus behaviors of InAs/Al2O3 core-shell nanowires differ greatly from those of bulk-scale composite materials, free from size effects. According to our results, the elastic modulus of InAs/Al2O3 core-shell nanowires increases, peaking at a shell thickness of 40 nm, and then decreases in the range of 50-90 nm. This abnormal behavior is attributed to the continuous decrease in the elastic modulus of the Al2O3 shell as the thickness increases, which is caused by changes in the atomic/electronic structure during the atomic layer deposition process and the relaxation of residual stress/strain in the shell transferred from the interfacial mismatch between the core and shell materials. A novel method for estimating the elastic modulus of the shell in a heterostructured core-shell system was suggested by considering these two effects, and the predictions from the suggested method coincided well with the experimental results. We also found that the former and latter effects account for 89% and 11% of the change in the elastic modulus of the shell. This study provides new insight by showing that the size dependency, which is caused by the inhomogeneity of the atomic/electronic structure and the residual stress/strain, must be considered to evaluate the mechanical properties of heterostructured nanowires.
Effect of core-shell structure on optical properties of Au-Cu2O nanoparticles
NASA Astrophysics Data System (ADS)
Sai, Cong Doanh; Ngac, An Bang
2018-03-01
Solid Au-Cu2O core-shell nanoparticles were synthesized using gold nanoparticles of 16.6 nm in size as the core. The core-shell structure of the synthesized particles was confirmed and characterized by TEM and HRTEM images. Due to their similar crystal structure, the (111) planes of Cu2O are nucleated and grown epitaxially on the {111} facets of Au nanoparticles with the lattice mismatch of about 4.3% resulting in a polycrystallized Cu2O shell covering the Au nanocore. Due to the quantum confinement effect, the band gap energy Eg of the synthesized Cu2O shells is blue-shifted from 2.35 to 2.70 eV as the shell thickness decreases from of 24.6±3.6 to 9.0±1.7 nm. The localized SPR (Surface Plasmon Resonance) peak of the Au nanocore undergoes a large red shift of the order of a hundred of nm due to both the high refractive index and the increase of the thickness of Cu2O shell. Theoretical models within the Drude framework significantly underestimate the experimental data and predict a wrong rate of change of the SPR peak position with respect to the shell thickness.
Stereoscopic Analysis of Silicone Breast Implant Shells Damaged by Surgical Instruments.
Rapp, Derek A; Neaman, Keith C; Hammond, Dennis C
2015-07-01
Iatrogenic shell injury during the implantation and explantation of silicone gel breast implants may lead to eventual device failure. Identification of the patterns of injury caused by surgical instruments is important when attempting to characterize the cause of shell rupture. Understanding the true causes of device failure may help with its prevention. The purpose of this study was to microscopically characterize patterns of shell injury induced by various surgical instruments. Textured and smooth silicone gel implants were intentionally damaged with a variety of surgical instruments. Various scalpels and surgical scissors ranging in fineness were used to create full-thickness injuries in the implant shell. Optical microscopy and scanning electron microscopy were then used to image the injured area to determine patterns of injury. Full-thickness striations across the thickness of the shell could be seen with damage caused by scissors. The density of these striations correlated directly with the fineness of scissors used. No striations were seen with injuries caused by scalpels. Striations were only observed in injuries caused by scissors and suture needles. Striation density correlated with the coarseness of the cutting edge. No such striations were seen in shells damaged by a scalpel even when the angle of approach was changed. This difference can be of assistance in distinguishing between scissors versus scalpel injury of an implant shell.
Gazzaniga, Andrea; Cerea, Matteo; Cozzi, Alberto; Foppoli, Anastasia; Maroni, Alessandra; Zema, Lucia
2011-03-01
The feasibility of injection molding was explored in the preparation of a novel capsular device for oral pulsatile/delayed delivery based on swellable/erodible polymers. For this purpose, a mold intended to be coupled with a bench-top injection-molding press was designed. This was expected to enable the preparation of matching capsule cap and body items within a single manufacturing cycle and the selection of differing shell thicknesses (300, 600, and 900 μm). Hydroxypropylcellulose (Klucel(®) EF, LF, and GF) was employed as the release-controlling polymer in admixture with polyethylene glycol 1500 (10%, w/w) as the plasticizer. After preliminary trials aimed at the setup of operating conditions, Klucel(®) EF and LF capsule shells with satisfactory technological properties were manufactured. The performance of capsular devices filled with a tracer drug powder was studied by means of a modified USP31 disintegration apparatus. Typical in vitro delayed release patterns were thereby obtained, with lag time increasing as a function of the wall thickness. A good correlation was found between the latter parameter and t (10%), i.e., the time to 10% release, for both polymer grades employed. On the basis of the overall results, the investigated technique was proven suitable for the manufacturing of an innovative pulsatile release platform. © 2011 American Association of Pharmaceutical Scientists
Pakes, D; Boulding, E G
2010-08-01
Empirical estimates of selection gradients caused by predators are common, yet no one has quantified how these estimates vary with predator ontogeny. We used logistic regression to investigate how selection on gastropod shell thickness changed with predator size. Only small and medium purple shore crabs (Hemigrapsus nudus) exerted a linear selection gradient for increased shell-thickness within a single population of the intertidal snail (Littorina subrotundata). The shape of the fitness function for shell thickness was confirmed to be linear for small and medium crabs but was humped for large male crabs, suggesting no directional selection. A second experiment using two prey species to amplify shell thickness differences established that the selection differential on adult snails decreased linearly as crab size increased. We observed differences in size distribution and sex ratios among three natural shore crab populations that may cause spatial and temporal variation in predator-mediated selection on local snail populations.
Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao
2017-12-19
Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.
Normal reference values for bladder wall thickness on CT in a healthy population.
Fananapazir, Ghaneh; Kitich, Aleksandar; Lamba, Ramit; Stewart, Susan L; Corwin, Michael T
2018-02-01
To determine normal bladder wall thickness on CT in patients without bladder disease. Four hundred and nineteen patients presenting for trauma with normal CTs of the abdomen and pelvis were included in our retrospective study. Bladder wall thickness was assessed, and bladder volume was measured using both the ellipsoid formula and an automated technique. Patient age, gender, and body mass index were recorded. Linear regression models were created to account for bladder volume, age, gender, and body mass index, and the multiple correlation coefficient with bladder wall thickness was computed. Bladder volume and bladder wall thickness were log-transformed to achieve approximate normality and homogeneity of variance. Variables that did not contribute substantively to the model were excluded, and a parsimonious model was created and the multiple correlation coefficient was calculated. Expected bladder wall thickness was estimated for different bladder volumes, and 1.96 standard deviation above expected provided the upper limit of normal on the log scale. Age, gender, and bladder volume were associated with bladder wall thickness (p = 0.049, 0.024, and < 0.001, respectively). The linear regression model had an R 2 of 0.52. Age and gender were negligible in contribution to the model, and a parsimonious model using only volume was created for both the ellipsoid and automated volumes (R 2 = 0.52 and 0.51, respectively). Bladder wall thickness correlates with bladder wall volume. The study provides reference bladder wall thicknesses on CT utilizing both the ellipsoid formula and automated bladder volumes.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
....D. and 0.165 inch wall thickness (gage 8) 4.000 inch O.D. and 0.148 inch wall thickness (gage 9) 4.000 inch O.D. and 0.165 inch wall thickness (gage 8) 4.500 inch O.D. and 0.203 inch wall thickness... investigation is Zenith Birla (India) Limited (previously known as Zenith Steel Pipes and Industries Ltd...
Muthard, Ryan W.; Welsh, John D.; Brass, Lawrence F.; Diamond, Scott L.
2015-01-01
SUMMARY Objective Biological and physical factors interact to modulate blood response in a wounded vessel, resulting in a hemostatic clot or an occlusive thrombus. Flow and pressure differential (ΔP) across the wound from the lumen to the extravascular compartment may impact hemostasis and the observed core/shell architecture. We examined physical and biological factors responsible for regulating thrombin mediated clot growth. Approach and Results Using factor XIIa-inhibited human whole blood perfused in a microfluidic device over collagen/tissue factor at controlled wall shear rate and ΔP, we found thrombin to be highly localized in the P-selectin+ core of hemostatic clots. Increasing ΔP from 9 to 29 mm-Hg (wall shear rate = 400 s−1) reduced P-selectin+ core size and total clot size due to enhanced extravasation of thrombin. Blockade of fibrin polymerization with 5 mM GPRP dysregulated hemostasis by enhancing both P-selectin+ core size and clot size at 400 s−1 (20 mm-Hg). For whole blood flow (no GPRP), the thickness of the P-selectin-negative shell was reduced under arterial conditions (2000 s−1, 20 mm-Hg). Consistent with the antithrombin-1 activity of fibrin implicated with GPRP, anti-γ’-fibrinogen antibody enhanced core-localized thrombin, core size, and overall clot size, especially at venous (100 s−1) but not arterial wall shear rates (2000 s−1). Pathological shear (15,000 s−1) and GPRP synergized to exacerbate clot growth. Conclusions Hemostatic clotting was dependent on core-localized thrombin that (1) triggered platelet P-selectin display and (2) was highly regulated by fibrin and the trans-clot ΔP. Also, γ’-fibrinogen had a role in venous but not arterial conditions. PMID:25614284
A new axi-symmetric element for thin walled structures
NASA Astrophysics Data System (ADS)
Cardoso, Rui P. R.; Yoon, Jeong Whan; Dick, Robert E.
2010-03-01
A new axi-symmetric finite element for thin walled structures is presented in this work. It uses the solid-shell element’s concept with only a single element and multiple integration points along the thickness direction. The cross-section of the element is composed of four nodes with two degrees of freedom each. The proposed formulation overcomes many locking pathologies including transverse shear locking, Poisson’s locking and volumetric locking. For transverse shear locking, the formulation uses the selective reduced integration technique, for Poisson’s locking it uses the enhanced assumed strain (EAS) method with only one enhancing variable. The B-bar approach is used to eliminate the isochoric deformations in the hourglass field while the EAS method is used to alleviate the volumetric locking in the constant part of the deformation tensor. Several examples are shown to demonstrate the performance and accuracy of the proposed element with special focus on the numerical simulations for the beverage can industry.
Use and Misuse of Laplace's Law in Ophthalmology.
Chung, Cheuk Wang; Girard, Michaël J A; Jan, Ning-Jiun; Sigal, Ian A
2016-01-01
Laplace's Law, with its compactness and simplicity, has long been employed in ophthalmology for describing the mechanics of the corneoscleral shell. We questioned the appropriateness of Laplace's Law for computing wall stress in the eye considering the advances in knowledge of ocular biomechanics. In this manuscript we recapitulate the formulation of Laplace's Law, as well as common interpretations and uses in ophthalmology. Using numerical modeling, we study how Laplace's Law cannot account for important characteristics of the eye, such as variations in globe shape and size or tissue thickness, anisotropy, viscoelasticity, or that the eye is a living, dynamic organ. We show that accounting for various geometrical and material factors, excluded from Laplace's Law, can alter estimates of corneoscleral wall stress as much as 456% and, therefore, that Laplace's Law is unreliable. We conclude by illustrating how computational techniques, such as finite element modeling, can account for the factors mentioned above, and are thus more suitable tools to provide quantitative characterization of corneoscleral biomechanics.
NASA Astrophysics Data System (ADS)
Kosevich, Yuriy A.; Goffaux, Cecile; Sánchez-Dehesa, Jose
2006-07-01
It is shown that the n=2 and 3 flexural shell vibration modes of thin-walled hollow cylinders result in Fano-like resonant enhancement of sound wave transmission through or reflection from two-dimensional periodic arrays of these cylinders in air. The frequencies of the resonant modes are well described by the analytical theory of flexural (circumferential) modes of thin-walled hollow cylinders and are confirmed by finite-difference time-domain simulations. When the modes are located in the band gaps of the phononic crystal, an enhancement of the band-gap widths is produced by the additional restoring forces caused by the flexural shell deformations. Our conclusions provide an alternative method for the vibration control of airborne phononic crystals.
Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications
NASA Astrophysics Data System (ADS)
Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho
2015-05-01
We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.
The problems concerning the integration of very thin mirror shells
NASA Astrophysics Data System (ADS)
Basso, S.; Citterio, O.; Mazzoleni, F.; Pareschi, G.; Tagliaferri, G.; Valtolina, R.; Conconi, P.; Parodi, G.
2009-08-01
The necessity to reduce the mass and to increase the collecting area requires that the thickness of the optics becomes more and more thinner. Simbol-X was a typical example of this trend. Such thickness makes the shells floppy and therefore unable to maintain the correct shape. During the integration of the shells into the mechanical structure, only negligible deformation must be introduced. The low thickness means also that the shells must be glued on both sides to reach a good stiffness of the whole mirror module and this fact introduces a set of mounting problems. In INAF - Osservatorio Astronomico di Brera an integration process has been developed. The use of stiffening rings and of a temporary structure is the key to maintain the right shape of the shell. In this article the results of the integration of the first three prototypes of the Simbol-X optics are presented. The description of the process and the analysis of the degradation of the performances during the integration are shown in detail.
On the time-variable nature of Titan's obliquity
NASA Astrophysics Data System (ADS)
Noyelles, Benoit; Nimmo, Francis
2014-05-01
Titan presents an unexpectedly high obliquity (Stiles et al. 2008, Meriggiola & Iess 2012) while its topography and gravity suggest a non-hydrostatic ice shell (Hemingway et al. 2013). We here present a 6-dof model of the rotation of Titan simultaneously simulating the full orientation of the shell and the inner core, and considering a global subsurface ocean with a partially-compensated shell of spatially-variable thickness. Between 10 and 13% of our realistic interior models induce a resonance with the annual forcing, that dramatically raises the obliquity. The relevant model Titans are composed of a 130-140 km thick shell floating on a ~250 km thick ocean. The observed obliquity should not be considered as a mean one but as an instantaneous one, that should vary by ~7 arcmin over the duration of the Cassini mission.
West, Kelly; Cohen, Andrew
1996-04-01
Gastropod shells from Lake Tanganyika, with their heavy calcification, coarse noded ribbing, spines, apertural lip thickening and repair scars, resemble marine shells more closely than they resemble other lacustrine shells. This convergence between Tanganyikan and marine gastropod shells, however, is not just superficial. Scanning electron microscope (SEM) studies reveal that the Tanganyikan shells are primarily layers of crossed-lamellar crystal architecture (that is, needle-like aragonite crystals arranged into laths that are packed into sheets such that the aragonite needles of adjacent laths are never parallel). The number of crossed-lamellar layers can vary from one to four between different Tanganyikan gastropod species. In species with two or more crossed-lamellar layers, the orientation of the lamellae is offset by approximately 90° between the different layers. The number of crossed-lamellar layers in the shell wall is positively correlated with shell strength and with predation resistance. Three and four crossed-lamellar layers in the shell wall evolved several times independently within the endemic thiarid gastropod radiation in Lake Tanganyika. Repeated origins of three and four crossed-lamellar layers suggest that they may be specific adaptations by Tanganyikan gastropods to strengthen their shells as a defense against shell-crushing predators. © 1996 The Society for the Study of Evolution.
Characterization Methods of Encapsulates
NASA Astrophysics Data System (ADS)
Zhang, Zhibing; Law, Daniel; Lian, Guoping
Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence, reliable methods which can be used to characterize these properties of encapsulates are vital. In this chapter, the state-of-art of these methods, their principles and applications, and release mechanisms are described as follows.
Shi, Meng; Yang, Yi-Yan; Chaw, Cheng-Shu; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge
2003-04-29
The poly(orthoester) (POE)-poly(D,L-lactide-co-glycolide) (50:50) (PLGA) double-walled microspheres with 50% POE in weight were loaded with hydrophilic bovine serum albumin (BSA) and hydrophobic cyclosporin A (CyA). Most of the BSA and CyA was entrapped within the shell and core, respectively, because of the difference in their hydrophilicity. The morphologies and release mechanisms of proteins-loaded double-walled POE/PLGA microspheres were investigated. Scanning electron microscope studies revealed that the CyA-BSA-loaded double-walled POE/PLGA microspheres yielded a more porous surface and PLGA shell than those without BSA. The neat POE and PLGA yielded slow and incomplete CyA and BSA release. In contrast, nearly complete BSA and more than 95% CyA were released in a sustained manner from the double-walled POE/PLGA microspheres. Both the BSA- and CyA-BSA-loaded POE/PLGA microspheres yielded a sustained BSA release over 5 days. The CyA release pattern of the CyA-loaded double-walled POE/PLGA microspheres was biphasic, characterized by a slow release over 15 days followed by a sustained release over 27 days. However, the CyA-BSA-loaded double-walled POE/PLGA microspheres provided a more constant and faster CyA release due to their more porous shell. In the CyA-BSA-loaded double-walled POE/PLGA microspheres system, the PLGA layer acted as a carrier for BSA and mild reservoir for CyA. During the first 5 days, most BSA was released from the shell but only 14% CyA was left from the microspheres. Subsequently, more than 80% CyA were released in the next 25 days. The distinct structure of double-walled POE/PLGA microspheres would make an interesting device for controlled delivery of therapeutic agents.
Average chest wall thickness at two anatomic locations in trauma patients.
Schroeder, Elizabeth; Valdez, Carrie; Krauthamer, Andres; Khati, Nadia; Rasmus, Jessica; Amdur, Richard; Brindle, Kathleen; Sarani, Babak
2013-09-01
Needle thoracostomy is the emergent treatment for tension pneumothorax. This procedure is commonly done using a 4.5cm catheter, and the optimal site for chest wall puncture is controversial. We hypothesize that needle thoracostomy cannot be performed using this catheter length irrespective of the site chosen in either gender. A retrospective review of all chest computed tomography (CT) scans obtained on trauma patients from January 1, 2011 to December 31, 2011 was performed. Patients aged 18 and 80 years were included and patients whose chest wall thickness exceeded the boundary of the images acquired were excluded. Chest wall thickness was measured at the 2nd intercostal (ICS), midclavicular line (MCL) and the 5th ICS, anterior axillary line (AAL). Injury severity score (ISS), chest wall thickness, and body mass index (BMI) were analyzed. 201 patients were included, 54% male. Average (SD) BMI was 26 (7)kg/m(2). The average chest wall thickness in the overall cohort was 4.08 (1.4)cm at the 2nd ICS/MCL and 4.55 (1.7)cm at the 5th ICS/AAL. 29% of the overall cohort (27 male and 32 female) had a chest wall thickness greater than 4.5cm at the 2nd ICS/MCL and 45% (54 male and 36 female) had a chest wall thickness greater than 4.5cm at the 5th ICS/AAL. There was no significant interaction between gender and chest wall thickness at either site. BMI was positively associated with chest wall thickness at both the 2nd and 5th ICS/AAL. A 4.5cm catheter is inadequate for needle thoracostomy in most patients regardless of puncture site or gender. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Cedric J., E-mail: cedric.powell@nist.gov; Chudzicki, Maksymilian; Werner, Wolfgang S. M.
2015-09-15
The National Institute of Standards and Technology database for the simulation of electron spectra for surface analysis has been used to simulate Cu 2p photoelectron spectra for four types of spherical copper–gold nanoparticles (NPs). These simulations were made to extend the work of Tougaard [J. Vac. Sci. Technol. A 14, 1415 (1996)] and of Powell et al. [J. Vac. Sci. Technol. A 31, 021402 (2013)] who performed similar simulations for four types of planar copper–gold films. The Cu 2p spectra for the NPs were compared and contrasted with analogous results for the planar films and the effects of elastic scatteringmore » were investigated. The new simulations were made for a monolayer of three types of Cu/Au core–shell NPs on a Si substrate: (1) an Au shell of variable thickness on a Cu core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; (2) a Cu shell of variable thickness on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; and (3) an Au shell of variable thickness on a 1 nm Cu shell on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. For these three morphologies, the outer-shell thickness was varied until the Cu 2p{sub 3/2} peak intensity was the same (within 2%) as that found in our previous work with planar Cu/Au morphologies. The authors also performed similar simulations for a monolayer of spherical NPs consisting of a CuAu{sub x} alloy (also on a Si substrate) with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. In the latter simulations, the relative Au concentration (x) was varied to give the same Cu 2p{sub 3/2} peak intensity (within 2%) as that found previously. For each morphology, the authors performed simulations with elastic scattering switched on and off. The authors found that elastic-scattering effects were generally strong for the Cu-core/Au-shell and weak for the Au-core/Cu-shell NPs; intermediate elastic-scattering effects were found for the Au-core/Cu-shell/Au-shell NPs. The shell thicknesses required to give the selected Cu 2p{sub 3/2} peak intensity for the three types of core–shell NPs were less than the corresponding film thicknesses of planar samples since Cu 2p photoelectrons can be detected from the sides and, for the smaller NPs, bottoms of the NPs. Elastic-scattering effects were also observed on the Au atomic fractions found for the CuAu{sub x} NP alloys with different diameters.« less
New alloys for electroformed replicated x-ray optics
NASA Astrophysics Data System (ADS)
Engelhaupt, Darell E.; Ramsey, Brian D.; O'Dell, Stephen L.; Jones, William D.; Russell, J. Kevin
2000-11-01
The process of electroforming nickel x-ray mirror shells from superpolished mandrels has been widely used. The recently launched XMM mission by the European Space Agency (ESA) is an excellent example, containing 174 such mirror shells of diameters ranging from 0.3 - 0.7 meters and with a thickness range of 0.47 - 1.07 mm. To continue to utilize this technique for the next generation of x-ray observatories, where larger collecting areas will be required within the constraints of tight weight budgets, demands that new alloys be developed that can withstand the large stresses imposed on very thin shells by the replication, handling and launch processes. Towards this end, we began a development program in late 1997 to produce a high-strength alloy suitable for electroforming very thin high-resolution x-ray optics for the proposed Constellation-X project. Requirements for this task are quite severe; not only must the electroformed deposit be very strong, it must also have very low residual stresses to prevent serious figure distortions in large thin-walled shells. Further, the processing must be done reasonably near room temperature, as large temperature changes will modify the figure of the mandrel. Also the environment must not be corrosive or otherwise damaging to the mandrel during the processing. The results of the development program are presented, showing the evolution of our plating processes and materials through to the present 'glassy' nickel alloy that satisfies the above requirements.
Nonlinear control of magnetic signatures
NASA Astrophysics Data System (ADS)
Niemoczynski, Bogdan
Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and observing frequency effects. The plant model is used in a feedback controller and simulated for different materials as a proof of concept.
NASA Astrophysics Data System (ADS)
Sheremet, M. A.; Shishkin, N. I.
2012-07-01
Mathematical simulation of the nonstationary regimes of heat-and-mass transfer in a ventilated rectangular cavity with heat-conducting walls of finite thickness in the presence of a heat-generating element of constant temperature has been carried out with account for the radiative heat transfer in the Rosseland approximation. As mechanisms of energy transfer in this cavity, the combined convection and the thermal radiation in the gas space of the cavity and the heat conduction in the elements of its fencing solid shell were considered. The mathematical model formulated in the dimensionless stream function-vorticity vector-temperature-concentration variables was realized numerically with the use of the finite-difference method. The streamline, temperature-field, and concentration distributions reflecting the influence of the Rayleigh number (Ra = 104, 105, 106), the nonstationarity (0 < τ ≤ 1000), and the optical thickness of the medium (τλ = 50, 100, 200) on the regimes of the gas flow and the heat-and-mass transfer in the cavity have been obtained.
Compositional analysis and structural elucidation of glycosaminoglycans in chicken eggs
Liu, Zhangguo; Zhang, Fuming; Li, Lingyun; Li, Guoyun; He, Wenqing; Linhardt, Robert J.
2014-01-01
Glycosaminoglycans (GAGs) have numerous applications in the fields of pharmaceuticals, cosmetics, nutraceuticals, and foods. GAGs are also critically important in the developmental biology of all multicellular animals. GAGs were isolated from chicken egg components including yolk, thick egg white, thin egg white, membrane, calcified shell matrix supernatant, and shell matrix deposit. Disaccharide compositional analysis was performed using ultra high-performance liquid chromatography-mass spectrometry. The results of these analyses showed that all four families of GAGs were detected in all egg components. Keratan sulfate was found in egg whites (thick and thin) and shell matrix (calcified shell matrix supernatant and deposit) with high level. Chondroitin sulfates were much more plentiful in both shell matrix components and membrane. Hyaluronan was plentiful in both shell matrix components and membrane, but were only present in a trace of quantities in the yolk. Heparan sulfate was plentiful in the shell matrix deposit but was present in a trace of quantities in the egg content components (yolk, thick and thin egg whites). Most of the chondroitin and heparan sulfate disaccharides were present in the GAGs found in chicken eggs with the exception of chondroitin and heparan sulfate 2,6-disulfated disaccharides. Both CS and HS in the shell matrix deposit contained the most diverse chondroitin and heparan sulfate disaccharide compositions. Eggs might provide a potential new source of GAGs. PMID:25218438
Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites.
Du, Yunchen; Liu, Wenwen; Qiang, Rong; Wang, Ying; Han, Xijiang; Ma, Jun; Xu, Ping
2014-08-13
Core-shell composites, Fe3O4@C, with 500 nm Fe3O4 microspheres as cores have been successfully prepared through in situ polymerization of phenolic resin on the Fe3O4 surface and subsequent high-temperature carbonization. The thickness of carbon shell, from 20 to 70 nm, can be well controlled by modulating the weight ratio of resorcinol and Fe3O4 microspheres. Carbothermic reduction has not been triggered at present conditions, thus the crystalline phase and magnetic property of Fe3O4 micropsheres can be well preserved during the carbonization process. Although carbon shells display amorphous nature, Raman spectra reveal that the presence of Fe3O4 micropsheres can promote their graphitization degree to a certain extent. Coating Fe3O4 microspheres with carbon shells will not only increase the complex permittivity but also improve characteristic impedance, leading to multiple relaxation processes in these composites, thus the microwave absorption properties of these composites are greatly enhanced. Very interestingly, a critical thickness of carbon shells leads to an unusual dielectric behavior of the core-shell structure, which endows these composites with strong reflection loss, especially in the high frequency range. By considering good chemical homogeneity and microwave absorption, we believe the as-fabricated Fe3O4@C composites can be promising candidates as highly effective microwave absorbers.
NASA Astrophysics Data System (ADS)
Liang, Shiguo; Ye, Jiamin; Wang, Haigang; Wu, Meng; Yang, Wuqiang
2018-03-01
In the design of electrical capacitance tomography (ECT) sensors, the internal wall thickness can vary with specific applications, and it is a key factor that influences the sensitivity distribution and image quality. This paper will discuss the effect of the wall thickness of ECT sensors on image quality. Three flow patterns are simulated for wall thicknesses of 2.5 mm to 15 mm on eight-electrode ECT sensors. The sensitivity distributions and potential distributions are compared for different wall thicknesses. Linear back-projection and Landweber iteration algorithms are used for image reconstruction. Relative image error and correlation coefficients are used for image evaluation using both simulation and experimental data.
Wiemeyer, Stanley N.; Bunck, C.M.; Krynitsky, A.J.
1988-01-01
Osprey (Pandion haliaetus) eggs were collected in 14 states in 1970-79 and analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), and mercury. Moderate shell thinning occurred in eggs from several areas. DDE was detected in all eggs, PCBs in 99%, DDD in 96%, dieldrin in 52%, and other compounds less frequently. Concentrations of DDT and its metabolites declined in eggs from Cape May County, New Jersey between 1970-72 and 1978-79. Eggs .from New Jersey in the early 1970s contained the highest concentrations of DDE. Dieldrin concentrations declined in eggs from the Potomac River, Maryland during 1971-77. Five different contaminants were significantly negatively correlated with shell thickness; DDE was most closely correlated. Ten percent shell thinning was associated with 2.0 ppm DDE, 15% with 4.2 ppm, and 20% with 8.7 ppm in eggs collected from randomly selected nests before egg loss. Shell thickness could not be accurately predicted from DDE concentrations in eggs collected after failure to hatch, presumably because the eggs with the thinnest shells had been broken and were unavailable for sampling. DDE was also significantly negatively correlated with brood size. Other contaminants did not appear to adversely affect shell thickness or reproductive success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Kligerman, S; Lu, W
2015-06-15
Purpose: To quantitatively evaluate the esophageal cancer response to chemoradiation therapy (CRT) by measuring the esophageal wall thickness in CT. Method: Two datasets were used in this study. The first dataset is composed of CT scans of 15 esophageal cancer patients and 15 normal controls. The second dataset is composed of 20 esophageal cancer patients who underwent PET/CT scans before (Pre-CRT) and after CRT (Post-CRT). We first segmented the esophagus using a multi-atlas-based algorithm. The esophageal wall thickness was then computed, on each slice, as the equivalent circle radius of the segmented esophagus excluding the lumen. To evaluate the changesmore » of wall thickness, we computed the standard deviation (SD), coefficient of variation (COV, SD/Mean), and flatness [(Max–Min)/Mean] of wall thickness along the entire esophagus. Results: For the first dataset, the mean wall thickness of cancer patients and normal controls were 6.35 mm and 6.03 mm, respectively. The mean SD, COV, and flatness of the wall thickness were 2.59, 0.21, and 1.27 for the cancer patients and 1.99, 0.16, and 1.13 for normal controls. Statistically significant differences (p < 0.05) were identified in SD and flatness. For the second dataset, the mean wall thickness of pre-CRT and post-CRT patients was 7.13 mm and 6.84 mm, respectively. The mean SD, COV, and flatness were 1.81, 0.26, and 1.06 for pre-CRT and 1.69, 0.26, and 1.06 for post-CRT. Statistically significant difference was not identified for these measurements. Current results are based on the entire esophagus. We believe significant differences between pre- and post-CRT scans could be obtained, if we conduct the measurements at tumor sites. Conclusion: Results show thicker wall thickness in pre-CRT scans and differences in wall thickness changes between normal and abnormal esophagus. This demonstrated the potential of esophageal wall thickness as a marker in the tumor CRT response evaluation. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less
Computer program analyzes Buckling Of Shells Of Revolution with various wall construction, BOSOR
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Bushnell, D.; Sobel, L. H.
1968-01-01
Computer program performs stability analyses for a wide class of shells without unduly restrictive approximations. The program uses numerical integration, finite difference of finite element techniques to solve with reasonable accuracy almost any buckling problem for shells exhibiting orthotropic behavior.
Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas
2018-04-23
How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.
Non-uniform thickness in Europa's icy shell: implications for astrobiology mission design
NASA Astrophysics Data System (ADS)
Fairén, A.; Amils, R.
The exploration of Europa's subsurface ocean is hardly constrained by the presence of an outer ice shell of unknown thickness: a somewhat thin crust would allow easier access to the ocean below. Current estimates for the thickness of Europa's icy surface range from a few km [1] to a few tens of km [2], the shell overlying a liquid water ocean up to 150 km thick [3,4,5]. The surface is believed to be young (mean age of 30-80 Myr [6]) and geologically active [7,8,9], as it is sparsely cratered. Here we report geological evidence indicating that the thickness of Europa's ice crust is actually a complex combination of thicker and thinner areas, highlighting the implications of such structure in the future exploration of the inner ocean. Detailed geologic mapping of impact craters, palimpsests and chaotic terrains distribution on Europa's surface, offers an initial approach to a comprehensive description of the thickness variation in the ice shell. Our analysis is based in: (1) Crater distribution, morphology, diameter and depth. Seminal work by Schenk [2] of transitions in crater shape/diameter suggested enhanced structural collapse of craters with diameter >27-33 km, that will consequently form multiring basins, due to weaker ice or a global ocean at depths >19-25 km. This being true, strictly can only be interpreted regionally: multiring basins indicate regions where the ice shell is thick; in those regions where the icy surface is thin, a bolide impact will breach the ice and leave neither crater nor multiring basin behind, but probably Ganymede's type palimpsests. (2) Palimpsest-type features distribution, indicating regions where the ice shell is too thin to support crater formation after big bolide impacts. In Ganymede, palimpsests are circular, low albedo and relief features formerly formed by impacts [10,11]. (3) Chaotic terrain distribution, considering features tens to hundreds of km across, that may be the evidence for very thin ice areas (from ˜ 2 km to zero shell thickness [12]) with liquid water at shallow depths [5], allowing for bolide penetration, diapirism and the extrusion of water to the surface. The heterogeneity in shell's thickness may be originated in spatial variations in tidal heating [13] and/or warm water upwellings from the silicate interior capable of melt-through the ice from below [12,14]. This thickness heterogeneity can be embedded in a general equatorward thickening trending, due to tidal dissipation and surface temperature variations [15]. A major constraint must be addressed at this point: the dynamism of ductile ice near the base of the shell may drive to decay in lateral thickness contrasts. But this effect has been examined both assuming ice as a Newtonian [16,17,18] and a non-Newtonian material [19], broadly reaching to similar conclusions: global shell thickness variations may survive for up to 100 Myr. In addition, lateral pressure gradients may not decay if they comprise only shallow depths [19]. Therefore, our results point to a dynamic non-uniform Europa's icy shell, displaying some regional and temporal heterogeneity in thickness. As thin/thick ice distribution is as time dependent as the surface ice features are (both are reshaped in periods ˜ 100 Myr), the analysis performed here offers an estimation of the current thickness distribution in the ice shell, estimation that cannot be extrapolated to ancient (e.g., >100 Myr) times. The astrobiological potential the shell and ocean below possess is highlighted by these results: a somewhere thin outer crust allows the possibility for some exogenous materials delivered by asteroids and comets to reach the inner liquid water ocean by breaching the brittle lithosphere [20], and so join to those generated in the interior of Europa via volcanic and hydrothermal activity [21]. In addition, pressure gradients driving the ductile ice at the base of the shell to flow laterally may help to redistribute such materials among the inner ice shell and/or ocean through time. Our results have a direct deal with the investigation of Europa's interior. Mission design will need to incorporate a drill system routine well suited to penetrate the ice shell tens of meters in the thinner areas, allowing to deep subsurface access and sampling. Landing and drilling targets should be selected among the zones where mapping indicates the presence of a thinner ice shell, as it may potentially suggest the existence of nutrient-rich hydrothermal plumes rising from the rocky interior and melting the ice from below, probably creating chaotic terrains [14]. Little-cratered, thin-crust areas would consequently be interpreted as key pacemakers to detect both the ice/ocean interface and the most complex environments under the ice shell. Additionally, drilling processes will be clearly easier in such zones. References: [1] Hoppa, G., et al. Science 285, 1899-1903 (1999). [2] Schenk, P.M. Nature 417, 419-421 (2002). [3] Anderson J.D. et al. Science 276, 1236-1239 (1997). [4] Anderson J.D. et al. Science 281, 2019-2022 (1998). [5] Carr, M.H., et al. Nature 391, 363-365 (1998). [6] Zahnle, K., et al. Icarus 163, 263-289 (2003). [7] Smith, B.A., et al. Science 206, 927-950 (1979). [8] Zahnle, K., et al. Icarus 136, 202-222 (1998). [9] Levison, H.F., et al. Icarus 143, 415-420 (2000). [10] Schenk, P.M. Lunar Planet. Sci. Conf. XXVII, #1137-1138 (1996). [11] Farrar, K.S. & Collins, G.C. Lunar Planet Sci. Conf. XXXIII, #1450 (2002). [12] Greenberg, R., et al. Icarus 141, 263-286 (1999). [13] Ojakangas, G.W. & Stevenson, D.J. Icarus 81, 220-241 (1989). [14] Collins, G.C. & Goodman, J.C. Europa's Icy Shell Conf., #7032 (2004). [15] Tobie, G., et al. J. Geophys. Res. 108, doi: 10.1029/2003JE002099 (2003). [16] Stevenson, D.J. Lunar Planet Sci. Conf. XXXI, #1506 (2000). [17] O'Brien, D.P., et al. Icarus 156, 152-161 (2002). [18] Buck, L., et al. Geophys. Res. Lett. 29, doi: 10.1029/2002GL016171 (2002). [19] Nimmo, F. Icarus in press (2004). [20] Pierazzo, E. and Chyba, C. F. Icarus 157, 120-127 (2002). [21] McCord, T.B. et al. Science 280, 1242-1245 (1998).
The effect of engine operating conditions on exhaust gas recirculation cooler fouling
Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.; ...
2018-05-17
Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less
The effect of engine operating conditions on exhaust gas recirculation cooler fouling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.
Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less
Physical and Electronic Isolation of Carbon Nanotube Conductors
NASA Technical Reports Server (NTRS)
OKeeffe, James; Biegel, Bryan (Technical Monitor)
2001-01-01
Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.
She, Zhen; Wang, Chunxia; Li, Jun; Sukhorukov, Gleb B; Antipina, Maria N
2012-07-09
Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed.
The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures
NASA Astrophysics Data System (ADS)
Cui, Xiao-Lei; Wang, Xiao-Song; Yuan, Shi-Jian
2015-05-01
To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.
High-pressure structure made of rings with peripheral weldments of reduced thickness
Leventry, Samuel C.
1988-01-01
A high-pressure structure having a circular cylindrical metal shell made of metal rings joined together by weldments and which have peripheral areas of reduced shell thickness at the weldments which permit a reduction in the amount of weld metal deposited while still maintaining sufficient circumferential or hoop stress strength.
Salminen, Hanna; Helgason, Thrandur; Kristinsson, Bjarki; Kristbergsson, Kristberg; Weiss, Jochen
2017-03-15
This study demonstrates that tuning the shell thickness of lipid particles can modulate their oxidative stability. We hypothesized that a thick crystallized shell around the incorporated fish oil would improve the oxidative stability due to the reduced diffusion of prooxidants and oxygen. We prepared solid lipid nanoparticles (5%w/w lipid phase, 1.5%w/w surfactant, pH 7) by using different ratios of tristearin as carrier lipid and ω-3 fish oil as incorporated liquid lipid stabilized by high- or low-melting lecithin. The physical, polymorphic and oxidative stability of the lipid particles was assessed. The high-melting lecithin was the key in inducing the formation of a solidified tristearin shell around the lipid particles by interfacial heterogeneous nucleation. Lipid particles containing a higher ratio of tristearin showed a better oxidative stability. The results revealed that a crystallized tristearin layer above 10nm was required to inhibit oxidation of the incorporated fish oil. This cut-off was shown for lipid particles containing 50-60% fish oil. This research gives important insights into understanding the relation between the thickness of the crystallized shell around the lipid particles and their chemical stability. Copyright © 2016 Elsevier Inc. All rights reserved.
Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus
Jing, Xiaodong; Meng, Yang; Sun, Xiaofeng
2015-01-01
Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance is achieved when the SR is tuned by adjusting the shell thickness, benefiting from the large density contrast between the shell material and the encapsulated gas. The SR resonates with near-perfect monopole symmetry, as demonstrated by the theoretical and experimental results, which are in excellent agreement. For a lattice of SRs, a band gap occurs and blocks near-total transmission, and the effective bulk modulus exhibits a prominent negative band, while the effective mass density remains unchanged. Our study shows that the SR is suitable for building 3D acoustic metamaterials and provides a basis for constructing left-handed materials as a new means of creating a negative bulk modulus. PMID:26538085
Radiative lifetimes of zincblende CdSe/CdS quantum dots
Gong, Ke; Martin, James E.; Shea-Rohwer, Lauren E.; ...
2015-01-02
Recent synthetic advances have made available very monodisperse zincblende CdSe/CdS quantum dots having near-unity photoluminescence quantum yields. Because of the absence of nonradiative decay pathways, accurate values of the radiative lifetimes can be obtained from time-resolved PL measurements. Radiative lifetimes can also be obtained from the Einstein relations, using the static absorption spectra and the relative thermal populations in the angular momentum sublevels. We found that one of the inputs into these calculations is the shell thickness, and it is useful to be able to determine shell thickness from spectroscopic measurements. We use an empirically corrected effective mass model tomore » produce a “map” of exciton wavelength as a function of core size and shell thickness. These calculations use an elastic continuum model and the known lattice and elastic constants to include the effect of lattice strain on the band gap energy. The map is in agreement with the known CdSe sizing curve and with the shell thicknesses of zincblende core/shell particles obtained from TEM images. Furthermore, if selenium–sulfur diffusion is included and lattice strain is omitted from the calculation then the resulting map is appropriate for wurtzite CdSe/CdS quantum dots synthesized at high temperatures, and this map is very similar to one previously reported (J. Am. Chem. Soc. 2009, 131, 14299). Radiative lifetimes determined from time-resolved measurements are compared to values obtained from the Einstein relations, and found to be in excellent agreement. For a specific core size (2.64 nm diameter, in the present case), radiative lifetimes are found to decrease with increasing shell thickness. Thus, this is similar to the size dependence of one-component CdSe quantum dots and in contrast to the size dependence in type-II quantum dots.« less
Bois, John P; Geske, Jeffrey B; Foley, Thomas A; Ommen, Steve R; Pellikka, Patricia A
2017-02-15
Left ventricular (LV) wall thickness is a prognostic marker in hypertrophic cardiomyopathy (HC). LV wall thickness ≥30 mm (massive hypertrophy) is independently associated with sudden cardiac death. Presence of massive hypertrophy is used to guide decision making for cardiac defibrillator implantation. We sought to determine whether measurements of maximal LV wall thickness differ between cardiac magnetic resonance imaging (MRI) and transthoracic echocardiography (TTE). Consecutive patients were studied who had HC without previous septal ablation or myectomy and underwent both cardiac MRI and TTE at a single tertiary referral center. Reported maximal LV wall thickness was compared between the imaging techniques. Patients with ≥1 technique reporting massive hypertrophy received subset analysis. In total, 618 patients were evaluated from January 1, 2003, to December 21, 2012 (mean [SD] age, 53 [15] years; 381 men [62%]). In 75 patients (12%), reported maximal LV wall thickness was identical between MRI and TTE. Median difference in reported maximal LV wall thickness between the techniques was 3 mm (maximum difference, 17 mm). Of the 63 patients with ≥1 technique measuring maximal LV wall thickness ≥30 mm, 44 patients (70%) had discrepant classification regarding massive hypertrophy. MRI identified 52 patients (83%) with massive hypertrophy; TTE, 30 patients (48%). Although guidelines recommend MRI or TTE imaging to assess cardiac anatomy in HC, this study shows discrepancy between the techniques for maximal reported LV wall thickness assessment. In conclusion, because this measure clinically affects prognosis and therapeutic decision making, efforts to resolve these discrepancies are critical. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation
Short, Mark; Jackson, Scott I.
2015-01-23
Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less
Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, Mark; Jackson, Scott I.
Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less
NASA Astrophysics Data System (ADS)
Stanley, S.; Tian, B. Y.
2016-12-01
Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet's magnetic field is determined by the local Rossby number (Rol): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Rol < 0.1 produce dipolar dominated magnetic fields whereas dynamos with Rol > 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). However, those studies focused on the specific convective shell thickness of the Earth's core and hence could not determine the influence of convective shell thickness on the local Rossby number. Aubert et al. (2009) investigated the role of convective shell thickness on dynamo scaling laws in order to investigate the palaeo-evolution of the geodynamo. Due to the focus of that study, they varied the ratio of the inner to outer core radii (rio) from 0 to 0.35 and found Rol scales with (1+rio). Here we consider a larger range of convective shell thicknesses and find an exponential dependence of rio on the local Rossby number. Our results are consistent with Aubert et al. (2009) for their small rio values. With this new scaling dependence on convective shell thickness, we find that Uranus and Neptune reside deeply in the multipolar regime, whereas without the dependence on rio, they resided near Rol =0.1; i.e. on the boundary between dipolar and multipolar fields and close to where Earth resides in the parameter space. We also find that Earth will reside more deeply in the multipolar regime, and hence not produce a stable dipolar field once the inner core has grown such that rio = 0.4.
Faraday Wave Turbulence on a Spherical Liquid Shell
NASA Technical Reports Server (NTRS)
Holt, R. Glynn; Trinh, Eugene H.
1996-01-01
Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.
Flow characteristics and scaling past highly porous wall-mounted fences
NASA Astrophysics Data System (ADS)
Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.
2017-07-01
An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties (estimated from the time-averaged momentum equation) seem to be mostly dependent on the grids' blockage ratio; wakes of different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to the wall dominated by the near-wall behaviour and another one corresponding to the grid's wake and shear layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square level of the wall shear stress fluctuations, longitudinal integral length scale, and spanwise turbulent structure is shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid's wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures in the logarithmic region, which are then re-formed after a particular streamwise extent. It is finally shown that for fences subject to a boundary layer of thickness comparable to their height, the effective thickness of the wall layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate of the internal layer is also partly dependent on the incoming boundary layer thickness.
Local and systemic effects of leg cycling training on arterial wall thickness in healthy humans.
Thijssen, Dick H J; Dawson, Ellen A; van den Munckhof, Inge C L; Birk, Gurpreet K; Timothy Cable, N; Green, Daniel J
2013-08-01
Exercise training is associated with direct effects on conduit artery function and structure. Cross-sectional studies suggest the presence of systemic changes in wall thickness as a result of exercise in healthy subjects, but no previous study has examined this question in humans undertaking exercise training. To examine the change in superficial femoral (SFA, i.e. local effect) and carotid (CA, i.e. systemic effect) artery wall thickness across 8 weeks of lower limb cycle training in healthy young men. Fourteen healthy young male subjects were assigned to an 8-week training study of cycling exercise (n = 9) or a control period (n = 5). Before, during (2, 4 and 6 weeks) and after training, SFA and CA wall thickness was examined using automated edge-detection of high resolution ultrasound images. We also measured resting diameter and calculated the wall:lumen(W:L)-ratio. Exercise training did not alter CA or SFA baseline diameter (P = 0.14), but was associated with gradual, consistent and significant decreases in wall thickness and W:L-ratio in both the CA and SFA (P < 0.001 and 0.002, respectively). Two-way ANOVA revealed a comparable magnitude of decrease in wall thickness and W:L-ratio in both arteries across the 8-week period (interaction-effect; P = 0.29 and 0.12, respectively). No changes in artery diameter, wall thickness or W:L-ratio were apparent in controls (0.82, 0.38 and 0.52, respectively). We found that cycle exercise training in healthy young individuals is associated with modest, but significant, decreases in wall thickness in the superficial femoral and carotid arteries. These findings suggest that exercise training causes systemic adaptation of the arterial wall in healthy young subjects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Growth of Walled Cells: From Shells to Vesicles
NASA Astrophysics Data System (ADS)
Boudaoud, Arezki
2003-07-01
The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.
On the growth of walled cells: From shells to vesicles.
NASA Astrophysics Data System (ADS)
Boudaoud, Arezki
2003-03-01
The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.
The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot
NASA Astrophysics Data System (ADS)
Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu; Kalpana, P.; Jayakumar, K.; Reuben, A. Merwyn Jasper D.
2015-06-01
The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.
Goebel, Paul; Kluess, Daniel; Wieding, Jan; Souffrant, Robert; Heyer, Horst; Sander, Manuela; Bader, Rainer
2013-03-01
To increase the range of motion of total hip endoprostheses, prosthetic heads need to be enlarged, which implies that the cup and/or liner thickness must decrease. This may have negative effects on the wear rate, because the acetabular cups and liners could deform during press-fit implantation and hip joint loading. We compared the metal cup and polyethylene liner deformations that occurred when different wall thicknesses were used in order to evaluate the resulting changes in the clearance of the articulating region. A parametric finite element model utilized three cup and liner wall thicknesses to analyze cup and liner deformations after press-fit implantation into the pelvic bone. The resultant hip joint force during heel strike was applied while the femur was fixed, accounting for physiological muscle forces. The deformation behavior of the liner under joint loading was therefore assessed as a function of the head diameter and the resulting clearance. Press-fit implantation showed diametral cup deformations of 0.096, 0.034, and 0.014 mm for cup wall thicknesses of 3, 5, and 7 mm, respectively. The largest deformations (average 0.084 ± 0.003 mm) of liners with thicknesses of 4, 6, and 8 mm occurred with the smallest cup wall thickness (3 mm). The smallest liner deformation (0.011 mm) was obtained with largest cup and liner wall thicknesses. Under joint loading, liner deformations in thin-walled acetabular cups (3 mm) reduced the initial clearance by about 50 %. Acetabular press-fit cups with wall thicknesses of ≤5 mm should only be used in combination with polyethylene liners >6 mm thick in order to minimize the reduction in clearance.
Fabrication of slender elastic shells by the coating of curved surfaces
NASA Astrophysics Data System (ADS)
Lee, A.; Brun, P.-T.; Marthelot, J.; Balestra, G.; Gallaire, F.; Reis, P. M.
2016-04-01
Various manufacturing techniques exist to produce double-curvature shells, including injection, rotational and blow molding, as well as dip coating. However, these industrial processes are typically geared for mass production and are not directly applicable to laboratory research settings, where adaptable, inexpensive and predictable prototyping tools are desirable. Here, we study the rapid fabrication of hemispherical elastic shells by coating a curved surface with a polymer solution that yields a nearly uniform shell, upon polymerization of the resulting thin film. We experimentally characterize how the curing of the polymer affects its drainage dynamics and eventually selects the shell thickness. The coating process is then rationalized through a theoretical analysis that predicts the final thickness, in quantitative agreement with experiments and numerical simulations of the lubrication flow field. This robust fabrication framework should be invaluable for future studies on the mechanics of thin elastic shells and their intrinsic geometric nonlinearities.
Fabrication of polyacrylate core-shell nanoparticles via spray drying method
NASA Astrophysics Data System (ADS)
Chen, Pengpeng; Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng
2016-05-01
Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core-shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core-shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.
Capsules made from prefabricated thin films
NASA Astrophysics Data System (ADS)
Amstad, Esther
2018-02-01
Capsules are composed of a core, typically a liquid containing active substances, and a surrounding shell. They are used to delay the degradation of active ingredients, protect them from reacting or interacting with substances contained in the surrounding shell, or to prevent premature consumption of encapsulants (1, 2). The performance of capsules is often determined by their permeability toward encapsulants and stability against rupture; these parameters can be adjusted with the composition, structure, and thickness of the shell (3, 4). Mechanically robust capsules with a minimal permeability even toward low molecular weight substances often have rather thick shells (5). On page 775 of this issue, Kumar et al. (6) report an elegant process to fabricate capsules with very thin, rigid shells that display a low permeability even toward small encapsulants.
The heterogeneous ice shell thickness of Enceladus
NASA Astrophysics Data System (ADS)
Lucchetti, Alice; Pozzobon, Riccardo; Mazzarini, Francesco; Cremonese, Gabriele; Massironi, Matteo
2016-10-01
Saturn's moon Enceladus is the smallest Solar System body that presents an intense geologic activity on its surface. Plumes erupting from Enceladus' South Polar terrain (SPT) provide direct evidence of a reservoir of liquid below the surface. Previous analysis of gravity data determined that the ice shell above the liquid ocean must be 30-40 km thick from the South Pole up to 50° S latitude (Iess et al., 2014), however, understand the global or regional nature of the ocean beneath the ice crust is still challenging. To infer the thickness of the outer ice shell and prove the global extent of the ocean, we used the self-similar clustering method (Bonnet et al., 2001; Bour et al., 2002) to analyze the widespread fractures of the Enceladus's surface. The spatial distribution of fractures has been analyzed in terms of their self-similar clustering and a two-point correlation method was used to measure the fractal dimension of the fractures population (Mazzarini, 2004, 2010). A self-similar clustering of fractures is characterized by a correlation coefficient with a size range defined by a lower and upper cut-off, that represent a mechanical discontinuity and the thickness of the fractured icy crust, thus connected to the liquid reservoir. Hence, this method allowed us to estimate the icy shell thickness values in different regions of Enceladus from SPT up to northern regions.We mapped fractures in ESRI ArcGis environment in different regions of the satellite improving the recently published geological map (Crow-Willard and Pappalardo, 2015). On these regions we have taken into account the fractures, such as wide troughs and narrow troughs, located in well-defined geological units. Firstly, we analyzed the distribution of South Polar Region fracture patterns finding an ice shell thickness of ~ 31 km, in agreement with gravity measurements (Iess et al., 2014). Then, we applied the same approach to other four regions of the satellite inferring an increasing of the ice shell thickness from 31 to 70 km from the South Pole to northern regions. By these findings, we prove the global extent of the ocean underneath the ice crust of the satellite.
Structure of Enceladus' Ice Shell
NASA Astrophysics Data System (ADS)
Hemingway, D.
2016-12-01
Constraining the internal structure of Enceladus is essential for understanding its evolution, its highly active south polar region, and its prospects for habitability. Of particular interest is the thickness of the icy shell, which has implications for the thermal structure, the effects of tidal stresses, and the conduits feeding the jets and plume. Since Enceladus' low order gravity field was first measured [1], several studies of shape and gravity have suggested the presence of an internal ocean beneath the icy shell [1-3]. These analyses, however, involve several assumptions and approximations and yield distinct shell thickness estimates (ranging from 18-60 km), only some of which are compatible with estimates from the measured physical librations (15-25 km [4,5]). Part of the challenge is that standard approaches to interior modeling (e.g., Radau-Darwin) are not well suited to Enceladus due to its fast rotation and relatively large non-hydrostatic topography [2,6]. Because of Enceladus' small radius, results are also sensitive to the details of the compensation model [7,8]. Here we apply an analytical compensation model that accommodates the spherical geometry in a manner that is distinct from previous studies, and employ a high fidelity numerical approach to modeling the hydrostatic equilibrium figure [6]. We show that the resulting shell thickness estimates are smaller than in previous models—in agreement with the libration observations—suggesting the possibility of an extremely thin ice crust at the south pole. While a range of mean shell thicknesses are permitted within the observational constraints, the amplitude of lateral shell thickness variations is well constrained. In particular, the shell is 10 km thicker at the north pole than at the south pole, potentially helping to explain the nature of the north-south polar asymmetry in endogenic activity. 1. Iess et al., Science. 344, 78-80 (2014). 2. McKinnon, Geophys. Res. Lett.42 (2015). 3. Cadek et al., Geophys. Res. Lett. (2016). 4. Thomas et al., Icarus. 264, 37-47 (2016). 5. Van Hoolst, Baland, Trinh, Icarus. 277, 311-318 (2016). 6. Tricarico, Astrophys. J. 782, 99 (2014). 7. Jeffreys, The Earth (Cambridge University Press, 6thed, 1976). 8. Turcotte, Willemann, Haxby, Norberry, J. Geophys. Res. 86, 3951-3959 (1981).
Zamani, J; Soltani, B; Aghaei, M
2014-10-01
An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the intersection and boundary locations on the circumferential and longitudinal stresses is evaluated and it is shown that how quantitatively they are essential.
NASA Technical Reports Server (NTRS)
Svalbonas, V.; Levine, H.
1975-01-01
The theoretical analysis background for the STARS-2P nonlinear inelastic program is discussed. The theory involved is amenable for the analysis of large deflection inelastic behavior in axisymmetric shells of revolution subjected to axisymmetric loadings. The analysis is capable of considering such effects as those involved in nonproportional and cyclic loading conditions. The following are also discussed: orthotropic nonlinear kinematic hardening theory; shell wall cross sections and discrete ring stiffeners; the coupled axisymmetric large deflection elasto-plastic torsion problem; and the provision for the inelastic treatment of smeared stiffeners, isogrid, and waffle wall constructions.
A circumferential crack in a cylindrical shell under tension.
NASA Technical Reports Server (NTRS)
Duncan-Fama, M. E.; Sanders, J. L., Jr.
1972-01-01
A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.
NASA Astrophysics Data System (ADS)
Schonberg, William P.
1993-04-01
Results are presented from an experimental study in which Al dual-wall structures were tested, under various high-speed impact conditions, with a view to the effect of multilayer insulation thickness and location on perforation resistance. Attention is given to comparisons of the damage sustained by dual-wall systems with multilayer insulation blankets of various thicknesses and at various locations within the dual-wall system, under comparable impact loading conditions. The placement of the insulation has a significant effect on the ballistic limit of the dual-wall structures considered, while reducing insulation thickness by as much as a third did not.
Dynamics of Geometrically Nonlinear Elastic Nonthin Anisotropic Shells of Variable Thickness
NASA Astrophysics Data System (ADS)
Marchuk, M. V.; Tuchapskii, R. I.
2017-11-01
A theory of dynamic elastic geometrically nonlinear deformation of nonthin anisotropic shells with variable thickness is constructed. Shells are assumed asymmetric about the reference surface. Functions are expanded into Legendre series. The basic equations are written in a coordinate system aligned with the lines of curvature of the reference surface. The equations of motion and appropriate boundary conditions are obtained using the Hamilton-Ostrogradsky variational principle. The change in metric across the thickness is taken into account. The theory assumes that the refinement process is regular and allows deriving equations including products of terms of Legendre series of unknown functions of arbitrary order. The behavior of a square metallic plate acted upon by a pressure pulse distributed over its face is studied.
Size-tunable drug-delivery capsules composed of a magnetic nanoshell.
Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa
2012-01-01
Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems.
Size-tunable drug-delivery capsules composed of a magnetic nanoshell
Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa
2012-01-01
Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems. PMID:23507895
Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study.
Kleinloog, Rachel; Korkmaz, Emine; Zwanenburg, Jaco J M; Kuijf, Hugo J; Visser, Fredy; Blankena, Roos; Post, Jan A; Ruigrok, Ynte M; Luijten, Peter R; Regli, Luca; Rinkel, Gabriel J E; Verweij, Bon H
2014-12-01
Risk prediction of rupture of intracranial aneurysms is poor and is based mainly on lumen characteristics. However, characteristics of the aneurysm wall may be more informative predictors. The limited resolution of currently available imaging techniques and the thin aneurysm wall make imaging of wall thickness challenging. To introduce a novel protocol for imaging wall thickness variation using ultra--high-resolution 7.0-Tesla (7.0-T) magnetic resonance imaging (MRI). We studied 33 unruptured intracranial aneurysms in 24 patients with a T1-weighted 3-dimensional magnetization-prepared inversion-recovery turbo-spin-echo whole-brain sequence with a resolution of 0.8 × 0.8 × 0.8 mm. We performed a validation study with a wedge phantom and with 2 aneurysm wall biopsies obtained during aneurysm treatment using ex vivo MRI and histological examination and correlating variations in MRI signal intensity with variations in actual thickness of the aneurysm wall. In vivo, the aneurysm wall was visible in 28 of the 33 aneurysms. Variation in signal intensity was observed in all visible aneurysm walls. Ex vivo MRI showed variation in signal intensity across the wall of the biopsies, similar to that observed on the in vivo images. Signal intensity and actual thickness in both biopsies had a linear correlation, with Pearson correlation coefficients of 0.85 and 0.86. Unruptured intracranial aneurysm wall and its variation in thickness can be visualized with 7.0-T MRI. Aneurysm wall thickness variation can now be further studied as a risk factor for rupture in prospective studies.
Green synthesis and characterization of size tunable silica-capped gold core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Wangoo, Nishima; Shekhawat, Gajendra; Wu, Jin-Song; Bhasin, Aman K. K.; Suri, C. R.; Bhasin, K. K.; Dravid, Vinayak
2012-08-01
Silica-coated gold nanoparticles (Au@SiO2) with controlled silica-shell thickness were prepared by a modified Stober's method using 10-nm gold nanoparticles (AuNPs) as seeds. The AuNPs were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source and ammonia as a catalyst. An increase in TEOS concentration resulted in an increase in shell thickness. The NPs were characterized by transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectroscopy, scanning near-field ultrasound holography and scanning transmission electron microscopy. The method required no surface modification and the synthesized core shell nanoparticles can be used for various types of biological applications.
Clayton, L.; Attig, J.W.; Ham, N.R.; Johnson, M.D.; Jennings, C.E.; Syverson, K.M.
2008-01-01
Ice-walled-lake plains are prominent in many areas of hummocky-till topography left behind as the Laurentide Ice Sheet melted from middle North America. The formation of the hummocky-till topography has been explained by: (1) erosion by subglacial floods; (2) squeezing of subglacial till up into holes in stagnant glacial ice; or (3) slumping of supraglacial till. The geomorphology and stratigraphy of ice-walled-lake plains provide evidence that neither the lake plains nor the adjacent hummocks are of subglacial origin. These flat lake plains, up to a few kilometers in diameter, are perched as much as a few tens of meters above surrounding depressions. They typically are underlain by laminated, fine-grained suspended-load lake sediment. Many ice-walled-lake plains are surrounded by a low rim ridge of coarser-grained shore sediment or by a steeper rim ridge of debris that slumped off the surrounding ice slopes. The ice-walled lakes persisted for hundreds to thousands of years following glacial stagnation. Shells of aquatic molluscs from several deposits of ice-walled-lake sediment in south-central North Dakota have been dated from about 13 500 to 10 500??B.P. (calibrated radiocarbon ages), indicating a climate only slightly cooler than present. This is confirmed by recent palaeoecological studies in nearby non-glacial sites. To survive so long, the stagnant glacial ice had to be well-insulated by a thick cover of supraglacial sediment, and the associated till hummocks must be composed primarily of collapsed supraglacial till. ?? 2007 Elsevier B.V. All rights reserved.
Dong, Ding-Hui; Liu, Wen-Yan; Feng, Hai-Bo; Fu, Yi-Li; Huang, Shi; Xiang, Jun-Xi; Lyu, Yi
2015-01-01
Background: Magnetic anchored surgical instruments (MASI), relying on magnetic force, can break through the limitations of the single port approach in dexterity. Individual characteristic abdominal wall thickness (ICAWT) deeply influences magnetic force that determines the safety of MASI. The purpose of this study was to research the abdominal wall characteristics in MASI applied environment to find ICAWT, and then construct an artful method to predict ICAWT, resulting in better safety and feasibility for MASI. Methods: For MASI, ICAWT is referred to the thickness of thickest point in the applied environment. We determined ICAWT through finding the thickest point in computed tomography scans. We also investigated the traits of abdominal wall thickness to discover the factor that can be used to predict ICAWT. Results: Abdominal wall at C point in the middle third lumbar vertebra plane (L3) is the thickest during chosen points. Fat layer thickness plays a more important role in abdominal wall thickness than muscle layer thickness. “BMI-ICAWT” curve was obtained based on abdominal wall thickness of C point in L3 plane, and the expression was as follow: f(x) = P1 × x2 + P2 × x + P3, where P1 = 0.03916 (0.01776, 0.06056), P2 = 1.098 (0.03197, 2.164), P3 = −18.52 (−31.64, −5.412), R-square: 0.99. Conclusions: Abdominal wall thickness of C point at L3 could be regarded as ICAWT. BMI could be a reliable predictor of ICAWT. In the light of “BMI-ICAWT” curve, we may conveniently predict ICAWT by BMI, resulting a better safety and feasibility for MASI. PMID:26228215
Pulse wave velocity as a diagnostic index: The effect of wall thickness
NASA Astrophysics Data System (ADS)
Hodis, Simona
2018-06-01
Vascular compliance is a major determinant of wave propagation within the vascular system, and hence the measurement of pulse wave velocity (PWV) is commonly used clinically as a method of detecting vascular stiffening. The accuracy of that assessment is important because vascular stiffening is a major risk factor for hypertension. PWV is usually measured by timing a pressure wave as it travels from the carotid artery to the femoral or radial artery and estimating the distance that it traveled in each case to obtain the required velocity. A major assumption on which this technique is based is that the vessel wall thickness h is negligibly small compared with the vessel radius a . The extent to which this assumption is satisfied in the cardiovascular system is not known because the ratio h /a varies widely across different regions of the vascular tree and under different pathological conditions. Using the PWV as a diagnostic test without knowing the effect of wall thickness on the measurement could lead to error when interpreting the PWV value as an index of vessel wall compliance. The aim of the present study was to extend the validity of the current practice of assessing wall stiffness by developing a method of analysis that goes beyond the assumption of a thin wall. We analyzed PWVs calculated with different wall models, depending on the ratio of wall thickness to vessel radius and the results showed that PWV is not reliable when it is estimated with the classic thin wall theory if the vessel wall is not around 25% of vessel radius. If the arterial wall is thicker than 25% of vessel radius, then the wave velocity calculated with the thin wall theory could be overestimated and in the clinical setting, this could lead to a false positive. For thicker walls, a thick wall model presented here should be considered to account for the stresses within the wall thickness that become dominant compared with the wall inertia.
Inner shell radial pin geometry and mounting arrangement
Leach, David; Bergendahl, Peter Allen
2002-01-01
Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.
Buckling test of a 3-meter-diameter corrugated graphite-epoxy ring-stiffened cylinder
NASA Technical Reports Server (NTRS)
Davis, R. C.
1982-01-01
A three m diameter by three m long corrugated cylindrical shell with external stiffening rings was tested to failure by buckling. The corrugation geometry for the graphite epoxy composite cylinder wall was optimized to withstand a compressive load producing an ultimate load intensity of 157.6 kN/m without buckling. The test method used to produce the design load intensity was to mount the specimen as a cantilevered cylinder and apply a pure bending moment to the end. A load introduction problem with the specimen was solved by using the BOSOR 4 shell of revolution computer code to analyze the shell and attached loading fixtures. The cylinder test loading achieved was 101 percent of design ultimate, and the resulting mass per unit of shell wall area was 1.96 kg/sq m.
Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls.
Guervilly, Céline; Brummell, Nicholas H
2012-10-01
We have performed numerical simulations of boundary-driven dynamos using a three-dimensional nonlinear magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of von Kármán type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow. The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo. Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.
Design of Aerosol Coating Reactors: Precursor Injection
Buesser, Beat; Pratsinis, Sotiris E.
2013-01-01
Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471
Miura, Sachiko; Haku, Eijitsu; Hirai, Toshiko; Marugami, Nagaaki; Itoh, Takahiro; Tanaka, Takehiro; Kichikawa, Kimihiko; Ohishi, Hajime
2008-06-01
During conservative therapy of infantile hypertrophic pyloric stenosis (IHPS) with atropine sulfate, there are many patients who do not achieve normal values of pyloric wall thickness and canal length even though they are clinically cured (vomiting has ceased); an objective criterion for cure has not yet been established. The aim of this study was to examine whether the appearance of pyloric wall stratification can be used as a criterion for cure. Twenty infants with IHPS who were treated conservatively were enrolled. Two of them ultimately required surgery. Ultrasound examinations were done serially and the pyloric wall thickness and canal length were measured. The echogenicity of the pyloric wall and the presence of wall stratification were noted. On admission, all infants satisfied the ultrasound criteria for IHPS and had a heterogeneous pyloric wall without stratification. With conservative therapy, symptoms disappeared, the pyloric wall thickness and the canal length gradually decreased, the echogenicity gradually became homogeneous and hypoechoic, and wall stratification appeared (in most cases before the pyloric wall thickness and the canal length had normalized). The absence of wall stratification suggests that cellular interstitial changes, such as edema or inflammation, are present in the pyloric wall in the acute stage. Pyloric wall stratification was absent during the acute stage, but it appeared after initiation of treatment but before the pyloric wall thickness and the canal length had normalized. The presence of pyloric wall stratification can be used as a criterion for cure; the absence of wall stratification can be added to ultrasound diagnostic criteria for IHPS.
Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N
2011-10-01
To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazemi, Sanaz, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir; Soleimani, Ebrahim Asl; Pourfath, Mahdi, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir
2016-04-14
Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (∼5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO{sub 2} core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Si{sup n+}, n = 0–4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. Inmore » this work, Si-SiO{sub 2} NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO{sub 2} transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.« less
Liu, Wei-Liang; Lin, Fan-Cheng; Yang, Yu-Chen; Huang, Chen-Hsien; Gwo, Shangjr; Huang, Michael H; Huang, Jer-Shing
2013-09-07
Plasmonic core-shell nanoparticles (PCSNPs) can function as nanoantennas and improve the efficiency of dye-sensitized solar cells (DSSCs). To achieve maximum enhancement, the morphology of PCSNPs needs to be optimized. Here we precisely control the morphology of Au@TiO2 PCSNPs and systematically study its influence on the plasmonic enhancement effect. The enhancement mechanism was found to vary with the thickness of the TiO2 shell. PCSNPs with a thinner shell mainly enhance the current, whereas particles with a thicker shell improve the voltage. While pronounced plasmonic enhancement was found in the near infrared regime, wavelength-independent enhancement in the visible range was observed and attributed to the plasmonic heating effect. Emission lifetime measurement confirms that N719 molecules neighboring nanoparticles with TiO2 shells exhibit a longer lifetime than those in contact with metal cores. Overall, PCSNPs with a 5 nm shell give the highest efficiency enhancement of 23%. Our work provides a new synthesis route for well-controlled Au@TiO2 core-shell nanoparticles and gains insight into the plasmonic enhancement in DSSCs.
Simulation on Effect of Preform Diameter in Injection Stretch Blow Molding
NASA Astrophysics Data System (ADS)
Tan, Z. Q.; Rosli, Nurrina; Oktaviandri, Muchamad
2018-03-01
Polyethylene terephthalate (PET) is the most common material of resin for manufacturing plastic bottle by injection stretch blow molding due to its excellent properties. As various issues of health and environmental hazards due to the PET use have risen, PET bottle manufacture may be improved by minimizing the wall thickness to reduce the PET use. One of the critical qualifications of the manufacturing process which lead to the wall thickness distribution is the initial preform diameter. In this project, we used the ANSYS Polyflow with aim to evaluate the wall thickness distribution of PET bottle for different diameter of initial preform. As a result, only 4 mm preform diameter presented wall thickness below than 1 mm. On the other hand, at least 6 mm preform diameter can permit the wall thickness 1.3 mm i.e. at the shoulder area.
NASA Technical Reports Server (NTRS)
Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.
1996-01-01
Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.
Lee, Ji-Hye; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2016-01-01
To evaluate the effect of implant coronal wall thickness on load-bearing capacity and screw joint stability. Experimental implants were customized after investigation of the thinnest coronal wall thickness of commercially available implant systems with a regular platform diameter. Implants with four coronal wall thicknesses (0.2, 0.3, 0.4, and 0.5 mm) were fabricated. Three sets of tests were performed. The first set was a failure test to evaluate load-bearing capacity and elastic limit. The second and third sets were cyclic and static loading tests. After abutment screw tightening of each implant, vertical cyclic loading of 250 N or static loading from 250 to 800 N was applied. Coronal diameter expansion, axial displacement, and removal torque values of the implants were compared. Repeated measures analysis of variance (ANOVA) was used for statistical analysis (α = .05). Implants with 0.2-mm coronal wall thickness demonstrated significantly low load-bearing capacity and elastic limit (both P < .05). These implants also showed significantly large coronal diameter expansion and axial displacement after screw tightening (both P < .05). Greater vertical load and thinner coronal wall thickness significantly increased coronal diameter expansion of the implant, axial displacement of the abutment, and removal torque loss of the abutment screw (all P < .05). Implant coronal wall thickness of 0.2 mm produces significantly inferior load-bearing capacity and screw joint stability.
Buckling Of Shells Of Revolution /BOSOR/ with various wall constructions
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Bushnell, D.; Sobel, L. H.
1969-01-01
Computer program, using numerical integration and finite difference techniques, solves almost any buckling problem for shells exhibiting orthotropic behavior. Stability analyses can be performed with reasonable accuracy and without unduly restrictive approximations.
Characteristics of global organic matrix in normal and pimpled chicken eggshells.
Liu, Z; Song, L; Zhang, F; He, W; Linhardt, R J
2017-10-01
The organic matrix from normal and pimpled calcified chicken eggshells were dissociated into acid-insoluble, water-insoluble, and facultative-soluble (both acid- and water-soluble) components, to understand the influence of shell matrix on eggshell qualities. A linear correlation was shown among these 3 matrix components in normal eggshells but was not observed in pimpled eggshells. In pimpled eggshells, the percentage contents of all 4 groups of matrix (the total matrix, acid-insoluble matrix, water-insoluble matrix, and facultative-soluble matrix) were significantly higher than that in normal eggshells. The amounts of both total matrix and acid-insoluble matrix in individual pimpled calcified shells were high, even though their weight was much lower than a normal eggshell. In both normal and pimpled eggshells, the calcified eggshell weight and shell thickness significantly and positively correlated with the amounts of all 4 groups of matrix in an individual calcified shell. In normal eggshells, the calcified shell thickness and shell breaking strength showed no significant correlations with the percentage contents of all 4 groups of matrix. In normal eggshells, only the shell membrane weight significantly correlated with the constituent ratios of both acid-insoluble matrix and facultative-soluble matrix in the whole matrix. In pimpled eggshells, 3 variables (calcified shell weight, shell thickness, and breaking strength) were significantly correlated with the constituent proportions of both acid-insoluble matrix and facultative-matrix. This study suggests that mechanical properties of normal eggshells may not linearly depend on the organic matrix content in the calcified eggshells and that pimpled eggshells might result by the disequilibrium enrichment of some proteins with negative effects. © 2017 Poultry Science Association Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Schmit, P. F.
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Schmit, P. F.
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less
Velikovich, A. L.; Schmit, P. F.
2015-12-28
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less
Controlling the Growth of Staphylococcus epidermidis by Layer-By-Layer Encapsulation.
Jonas, Alain M; Glinel, Karine; Behrens, Adam; Anselmo, Aaron C; Langer, Robert S; Jaklenec, Ana
2018-05-16
Commensal skin bacteria such as Staphylococcus epidermidis are currently being considered as possible components in skin-care and skin-health products. However, considering the potentially adverse effects of commensal skin bacteria if left free to proliferate, it is crucial to develop methodologies that are capable of maintaining bacteria viability while controlling their proliferation. Here, we encapsulate S. epidermidis in shells of increasing thickness using layer-by-layer assembly, with either a pair of synthetic polyelectrolytes or a pair of oppositely charged polysaccharides. We study the viability of the cells and their delay of growth depending on the composition of the shell, its thickness, the charge of the last deposited layer, and the degree of aggregation of the bacteria which is varied using different coating procedures-among which is a new scalable process that easily leads to large amounts of nonaggregated bacteria. We demonstrate that the growth of bacteria is not controlled by the mechanical properties of the shell but by the bacteriostatic effect of the polyelectrolyte complex, which depends on the shell thickness and charge of its outmost layer, and involves the diffusion of unpaired amine sites through the shell. The lag times of growth are sufficient to prevent proliferation for daily topical applications.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Schmit, P. F.
2015-12-01
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the "instantaneous growth rate" are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].
Gastric full-thickness suturing during EMR and for treatment of gastric-wall defects (with video).
von Renteln, Daniel; Schmidt, Arthur; Riecken, Bettina; Caca, Karel
2008-04-01
The endoscopic full-thickness Plicator device was initially developed to provide an endoscopic treatment option for patients with GERD. Because the endoscopic full-thickness Plicator enables rapid and easy placement of transmural sutures, comparable with surgical sutures, we used the Plicator device for endoscopic treatment or prevention of GI-wall defects. To describe the outcomes and complications of endoscopic full-thickness suturing during EMR and for the treatment of gastric-wall defects. A report of 4 cases treated with the endoscopic full-thickness suturing between June 2006 and April 2007. A large tertiary-referral center. Four subjects received endoscopic full-thickness suturing. The subjects were women, with a mean age of 67 years. Of the 4 subjects, 3 received endoscopic full-thickness suturing during or after an EMR. One subject received endoscopic full-thickness suturing for treatment of a fistula. Primary outcome measurements were clinical procedural success and procedure-related adverse events. The mean time for endoscopic full-thickness suturing was 15 minutes. In all cases, GI-wall patency was restored or ensured, and no procedure-related complications occurred. All subjects responded well to endoscopic full-thickness suturing. The resection of one GI stromal tumor was incomplete. Because of the Plicator's 60F distal-end diameter, endoscopic full-thickness suturing could only be performed with the patient under midazolam and propofol sedation. The durable Plicator suture might compromise the endoscopic follow-up after EMR. The endoscopic full-thickness Plicator permits rapid and easy placement of transmural sutures and seems to be a safe and effective alternative to surgical intervention to restore GI-wall defects or to ensure GI-wall patency during EMR procedures.
USDA-ARS?s Scientific Manuscript database
The thickness of cotton fiber cell walls is an important property that partially determines the economic value of cotton. To better understand the physical and chemical manifestations of the genetic variations that regulate the degree of fiber wall thickness, we used a comprehensive set of methods t...
One-step formation of multiple emulsions in microfluidics.
Abate, Adam R; Thiele, Julian; Weitz, David A
2011-01-21
We present a robust way to create multiple emulsions with controllable shell thicknesses that can vary over a wide range. We use a microfluidic device to create a coaxial jet of immiscible fluids; using a dripping instability, we break the jet into multiple emulsions. By controlling the thickness of each layer of the jet, we adjust the thicknesses of the shells of the multiple emulsions. The same method is also effective in creating monodisperse emulsions from fluids that cannot otherwise be controllably emulsified, such as, for example, viscoelastic fluids.
NASA Astrophysics Data System (ADS)
Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe
2016-10-01
With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the Czech Republic through project 15-14263Y.
Enceladus' tidal dissipation revisited
NASA Astrophysics Data System (ADS)
Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej
2016-10-01
A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal budget for the activity of Enceladus and the long-term evolution of its interior.
The nonlinear bending response of thin-walled laminated composite cylinders
NASA Technical Reports Server (NTRS)
Fuchs, Hannes P.; Hyer, Michael W.
1992-01-01
The geometrically nonlinear Donnell shell theory is applied to the problem of stable bending of thin-walled circular cylinders. Responses are computed for cylinders with a radius-to-thickness ratio of 50 and length-to-radius ratios of 1 and 5. Four laminated composite cylinders and an aluminum cylinder are considered. Critical moment estimates are presented for short cylinders for which compression-type buckling behavior is important, and for very long cylinders for which the cross-section flattening, i.e., Brazier effect, is important. A finite element analysis is used to estimate the critical end rotation in addition to establishing the range of validity of the prebuckling analysis. The radial displacement response shows that the character of the boundary layer is significantly influenced by the geometric nonlinearities. Application of a first ply failure analysis using the maximum stress criterion suggests that in nearly all instances material failure occurs before buckling. Failure of the composite cylinders can be attributed to fiber breakage. Striking similarities are seen between the prebuckling displacements of the bending problem and axial compression problem for short cylinders.
NASA Astrophysics Data System (ADS)
Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej
2017-09-01
We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.
Designing the Next Generation of Human Spacecraft
NASA Technical Reports Server (NTRS)
Simmons, Emily
2016-01-01
Lunar Space Station Common Module: A new concept for a module for a lunar space station attempts to reduce the module's mass by abandoning the traditional rack structure currently used on the ISS for the mounting of internal hardware and replacing it with a core structure. By using this design, the pressure shell will not have to carry the loads resulting from the internal mass. I worked with another intern to create the initial design for the module, with him focusing on the core and myself focusing on the pressure shell. To start, I was given the shell overall dimensions and material and tasked with sizing the wall thickness and placing stiffeners such that the shell could withstand the required loads. At the same time, I had to keep the mass to a minimum to keep the overall module within the allowable launch mass. Once I had done initial sizing based on pressure loads, I combined the pressure shell with the inner core to perform optimization of the design. Currently, the design involves circumferential stiffeners along the entire length of the pressure shell with longitudinal stiffeners on either end. In addition, extra wall thickness was added around each of the hatches. At this stage, the design shows a comparable mass to a more traditional design, but we are hopeful that, through optimization, we will be able to reduce the mass even further. There is currently a patent pending for the module design, for which I am listed as a co-inventor. ALON Material Testing: I was given samples of aluminum oxynitride (ALON) that had been impacted by a previous intern on which to perform residual strength tests as part of a plan to approve them for space use. Before testing, I measured the pucks and their damages using a ruler and optical micrometer in order to verify that the puck dimensions were within the tolerances set by the test guidelines and that the damages had not grown when the pucks were thinned. The test was a ring-ring test, which used two concentric rings to place the ring in axisymmetric bending, with the puck set up so that the damaged side was always in tension. Though I was unable to do the setup of the test or run the load machine due to a period of changing test procedures, I was able to observe the testing and perform the data collection. The pucks behaved as expected, breaking at the damage, as did the strengths calculated from the data, being lower than for the unimpacted pucks and having less scatter between the puck values. The attached image is of myself during the ALON strength testing. Over the course of my internship, I was able to learn much more about real-life structural analysis and about the behavior of materials, and it confirmed my previous interest in structural analysis. At the same time, due to the opportunities offered to interns, I was able to learn a lot about mission control, and, in doing so, I developed a second interest in working in mission control. In addition, being able to meet the people here and learn about the type of work NASA does made me want to come back to work for NASA full time.
NASA Astrophysics Data System (ADS)
Yang, Jian; Sandoval, Sergio; Alfaro, Jesus G.; Aschemeyer, Sharraya; Liberman, Alex; Martin, David T.; Makale, Milan; Kummel, Andrew C.; Trogler, William C.
2011-06-01
A simple method to fabricate Eu3+ doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu3+ doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells.
Platinum-Based Nanocages with Subnanometer-Thick Walls and Well-Defined Facets
Zhang, Lei; Wang, Xue; Chi, Miaofang; ...
2015-07-24
A cost-effective catalyst should have a high dispersion of the active atoms, together with a controllable surface structure for the optimization of activity, selectivity, or both. We fabricated nanocages by depositing a few atomic layers of platinum (Pt) as conformal shells on palladium (Pd) nanocrystals with well-defined facets and then etching away the Pd templates. Density functional theory calculations suggest that the etching is initiated via a mechanism that involves the formation of vacancies through the removal of Pd atoms incorporated into the outermost layer during the deposition of Pt. With the use of Pd nanoscale cubes and octahedra asmore » templates, we obtained Pt cubic and octahedral nanocages enclosed by {100} and {111} facets, respectively, which exhibited distinctive catalytic activities toward oxygen reduction.« less
Iceberg Scour and Shell Damage in the Antarctic Bivalve Laternula elliptica
Harper, Elizabeth M.; Clark, Melody S.; Hoffman, Joseph I.; Philipp, Eva E. R.; Peck, Lloyd S.; Morley, Simon A.
2012-01-01
We document differences in shell damage and shell thickness in a bivalve mollusc (Laternula elliptica) from seven sites around Antarctica with differing exposures to ice movement. These range from 60% of the sea bed impacted by ice per year (Hangar Cove, Antarctic Peninsula) to those protected by virtually permanent sea ice cover (McMurdo Sound). Patterns of shell damage consistent with blunt force trauma were observed in populations where ice scour frequently occurs; damage repair frequencies and the thickness of shells correlated positively with the frequency of iceberg scour at the different sites with the highest repair rates and thicker shells at Hangar Cove (74.2% of animals damaged) compared to the other less impacted sites (less than 10% at McMurdo Sound). Genetic analysis of population structure using Amplified Fragment Length Polymorphisms (AFLPs) revealed no genetic differences between the two sites showing the greatest difference in shell morphology and repair rates. Taken together, our results suggest that L. elliptica exhibits considerable phenotypic plasticity in response to geographic variation in physical disturbance. PMID:23029484
Nandiyanto, Asep Bayu Dani; Ogi, Takashi; Okuyama, Kikuo
2014-03-26
Control of the shell structural properties [i.e., thickness (8-25 nm) and morphology (dense and raspberry)] and cavity diameter (100-350 nm) of hollow particles was investigated experimentally, and the results were qualitatively explained based on the available theory. We found that the selective deposition size and formation of the shell component on the surface of a core template played important roles in controlling the structure of the resulting shell. To achieve the selective deposition size and formation of the shell component, various process parameters (i.e., reaction temperature and charge, size, and composition of the core template and shell components) were tested. Magnesium fluoride (MgF2) and polystyrene spheres were used as models for shell and core components, respectively. MgF2 was selected because, to the best of our knowledge, the current reported approaches to date were limited to synthesis of MgF2 in film and particle forms only. Therefore, understanding how to control the formation of MgF2 with various structures (both the thickness and morphology) is a prospective for advanced lens synthesis and applications.
NASA Astrophysics Data System (ADS)
Hubenthal, Frank; Ziegler, Torsten; Hendrich, Christian; Träger, Frank
2004-03-01
For many applications like surface enhanced Raman scattering in which the optical field enhancement associated with surface plasmon excitation is exploited, tunability of this collective resonance over a wide range is required. For this purpose we have prepared Ag/Au core shell and Ag/Au alloyed nanoparticles with different shell thicknesses and different percentages of the two metals. The nanoparticles were made by subsequent deposition of Ag and Au atoms on dielectric substrates followed by diffusion and nucleation or heat treatment. Depending on the Au shell thickness the plasmon frequency can be tuned, e.g. from 2.8 eV (442 nm) to 2.1 eV (590 nm). Annealing of the core-shell nanoparticles causes a shift of the resonance frequency to 2.6 eV. Theoretical modelling allows us to attribute this observation to the production of alloyed nanoparticles. Possible application of the Ag/Au nanoparticles will be discussed.
Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey
2008-01-01
In this study, a sub-scale advanced composite shell design is evaluated to determine its potential for use on a future aircraft fuselage. Two composite shells with the same nominal 8-ply [+/-45/+/-Theta](sub s) layup are evaluated, where Theta indicates a tow-steered ply. To build this shell, a fiber placement machine would be used to steer unidirectional prepreg tows as they are placed around the circumference of a 17-inch diameter right circular cylinder. The fiber orientation angle varies continuously from 10 degrees (with respect to the shell axis of revolution) at the crown, to 45 degrees on the side, and back to 10 degrees on the keel. All 24 tows are placed at each point on every fiber path in one structure designated as the shell with overlaps. The resulting pattern of tow overlaps causes the laminate thickness to vary between 8 and 16 plies. The second shell without tow overlaps uses the capability of the fiber placement machine to cut and add tows at any point along the fiber paths to fabricate a shell with a nearly uniform 8-ply laminate thickness. Issues encountered during the design and analysis of these shells are presented and discussed. Static stiffness and buckling loads of shells with tow-steered layups are compared with the performance of a baseline quasi-isotropic shell using both finite element analyses and classical strength of materials theory.
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
A procedure for the structural analysis of stiffened shells of revolution is presented. A digital computer program based on the Love-Reissner first order shell theory was developed. The computer program can analyze orthotropic thin shells of revolution, subjected to unsymmetric distributed loading or concentrated line loads, as well as thermal strains. The geometrical shapes of the shells which may be analyzed are described. The shell wall cross section can be a sheet, sandwich, or reinforced sheet or sandwich. General stiffness input options are also available.
Whispering gallery modes in a spherical microcavity with a photoluminescent shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A.
2015-10-15
Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.
Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors
Kawamura, Ayaka; Kohri, Michinari; Morimoto, Gen; Nannichi, Yuri; Taniguchi, Tatsuo; Kishikawa, Keiki
2016-01-01
The beautiful structural colors in bird feathers are some of the brightest colors in nature, and some of these colors are created by arrays of melanin granules that act as both structural colors and scattering absorbers. Inspired by the color of bird feathers, high-visibility structural colors have been created by altering four variables: size, blackness, refractive index, and arrangement of the nano-elements. To control these four variables, we developed a facile method for the preparation of biomimetic core-shell particles with melanin-like polydopamine (PDA) shell layers. The size of the core-shell particles was controlled by adjusting the core polystyrene (PSt) particles’ diameter and the PDA shell thicknesses. The blackness and refractive index of the colloidal particles could be adjusted by controlling the thickness of the PDA shell. The arrangement of the particles was controlled by adjusting the surface roughness of the core-shell particles. This method enabled the production of both iridescent and non-iridescent structural colors from only one component. This simple and novel process of using core-shell particles containing PDA shell layers can be used in basic research on structural colors in nature and their practical applications. PMID:27658446
The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK
Singh, Rajinder; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Chin, Ting Ngoot; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Abdul Manaf, Mohamad Arif; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A
2014-01-01
A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the mapping and identification of the Shell gene responsible for the different fruit forms. Using homozygosity mapping by sequencing we found two independent mutations in the DNA binding domain of a homologue of the MADS-box gene SEEDSTICK (STK) which controls ovule identity and seed development in Arabidopsis. The Shell gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene heterosis attributed to Shell, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation6. PMID:23883930
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Das, D. K.
2018-01-01
Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.
Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors.
Kawamura, Ayaka; Kohri, Michinari; Morimoto, Gen; Nannichi, Yuri; Taniguchi, Tatsuo; Kishikawa, Keiki
2016-09-23
The beautiful structural colors in bird feathers are some of the brightest colors in nature, and some of these colors are created by arrays of melanin granules that act as both structural colors and scattering absorbers. Inspired by the color of bird feathers, high-visibility structural colors have been created by altering four variables: size, blackness, refractive index, and arrangement of the nano-elements. To control these four variables, we developed a facile method for the preparation of biomimetic core-shell particles with melanin-like polydopamine (PDA) shell layers. The size of the core-shell particles was controlled by adjusting the core polystyrene (PSt) particles' diameter and the PDA shell thicknesses. The blackness and refractive index of the colloidal particles could be adjusted by controlling the thickness of the PDA shell. The arrangement of the particles was controlled by adjusting the surface roughness of the core-shell particles. This method enabled the production of both iridescent and non-iridescent structural colors from only one component. This simple and novel process of using core-shell particles containing PDA shell layers can be used in basic research on structural colors in nature and their practical applications.
Post-cast EDM method for reducing the thickness of a turbine nozzle wall
Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin
2002-01-01
A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.
Charles W. McMillin
1969-01-01
In Pinus taeda L., burst, breaking length, and sheet density were improved by using fiber refined from wood having long, narrow-diameter tracheids with thick walls. Only narrow-diameter teacheids with thick walls were required to improve tear factor. A theoretical stress analysis revealed that thick-walled cells of small outside diameter fail by...
NASA Astrophysics Data System (ADS)
Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu
2012-01-01
Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications. Electronic supplementary information (ESI) available: Supplementary TEM, EELS, EDS, Electro-chemical measurement data can be found. See DOI: 10.1039/c1nr11374g
Thick or Thin Ice Shell on Europa?
NASA Technical Reports Server (NTRS)
2007-01-01
Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)Tsuka, T; Murahata, Y; Azuma, K; Osaki, T; Ito, N; Okamoto, Y; Imagawa, T
2014-10-01
Computed tomography (CT) was performed on 800 untrimmed claws (400 inner claws and 400 outer claws) of 200 pairs of bovine hindlimbs to investigate the relationships between dorsal wall length and sole thickness, and between dorsal wall length and the relative rotation angle of distal phalanx-to-sole surface (S-D angle). Sole thickness was 3.8 and 4.0 mm at the apex of the inner claws and outer claws, respectively, with dorsal wall lengths <70 mm. These sole thickness values were less than the critical limit of 5 mm, which is associated with a softer surface following thinning of the soles. A sole thickness of 5 mm at the apex was estimated to correlate with dorsal wall lengths of 72.1 and 72.7 mm for the inner and outer claws, respectively. Sole thickness was 6.1 and 6.4 mm at the apex of the inner and outer claws, respectively, with dorsal wall lengths of 75 mm. These sole thickness values were less than the recommended sole thickness of 7 mm based on the protective function of the soles. A sole thickness >7 mm at the apex was estimated to correlate with a dorsal wall length of 79.8 and 78.4mm for the inner and outer claws, respectively. The S-D angles were recorded as anteversions of 2.9° and 4.7° for the inner and outer claws, respectively, with a dorsal wall length of 75 mm. These values indicate that the distal phalanx is likely to have rotated naturally forward toward the sole surface. The distal phalanx rotated backward to the sole surface at 3.2° and 7.6° for inner claws with dorsal wall lengths of 90-99 and ≥100 mm, respectively; and at 3.5° for outer claws with a dorsal wall length ≥100 mm. Dorsal wall lengths of 85.7 and 97.2 mm were estimated to correlate with a parallel positional relationship of the distal phalanx to the sole surface in the inner and outer claws, respectively. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
1998-01-01
This report discusses the design implications for spacecraft radiators made possible by the successful fabrication and Proof-of-concept testing of a graphite-fiber-carbon-matrix composite (i.e., carbon-carbon (C-C)) heat pipe. The proto-type heat pipe, or space radiator element, consists of a C-C composite shell with integrally woven fins. It has a thin-walled furnace-brazed metallic (Nb-1%Zr) liner with end caps for containment of the potassium working fluid. A short extension of this liner, at increased wall thickness beyond the C-C shell, forms the heat pipe evaporator section which is in thermal contact with the radiator fluid that needs to be cooled. From geometric and thermal transport properties of the C-C composite heat pipe tested, a specific radiator mass of 1.45 kg/m2 can be derived. This is less than one-fourth the specific mass of present day satellite radiators. The report also discusses the advantage of segmented space radiator designs utilizing heat pipe elements, or segments, in their survivability to micro-meteoroid damage. This survivability is further raised by the use of condenser sections with attached fins, which also improve the radiation heat transfer rate. Since the problem of heat radiation from a fin does not lend itself to a closed analytical solution, a derivation of the governing differential equation and boundary conditions is given in appendix A, along with solutions for rectangular and parabolic fin profile geometries obtained by use of a finite difference computer code written by the author.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2002-01-01
This report discusses the design implications for spacecraft radiators made possible by the successful fabrication and proof-of-concept testing of a graphite-fiber-carbon-matrix composite (i.e., carbon-carbon (C-C)) heat pipe. The prototype heat pipe, or space radiator element, consists of a C-C composite shell with integrally woven fins. It has a thin-walled furnace-brazed metallic (Nb-1%Zr) liner with end caps for containment of the potassium working fluid. A short extension of this liner, at increased wall thickness beyond the C-C shell, forms the heat pipe evaporator section which is in thermal contact with the radiator fluid that needs to be cooled. From geometric and thermal transport properties of the C-C composite heat pipe tested, a specific radiator mass of 1.45 kg/sq m can be derived. This is less than one-fourth the specific mass of present day satellite radiators. The report also discusses the advantage of segmented space radiator designs utilizing heat pipe elements, or segments, in their survivability to micrometeoroid damage. This survivability is further raised by the use of condenser sections with attached fins, which also improve the radiation heat transfer rate. Since the problem of heat radiation from a fin does not lend itself to a closed analytical solution, a derivation of the governing differential equation and boundary conditions is given in appendix A, along with solutions for rectangular and parabolic fin profile geometries obtained by use of a finite difference computer code written by the author.
Electroelastic fields in a layered piezoelectric cylindrical shell under dynamic load
NASA Astrophysics Data System (ADS)
Saviz, M. R.; Shakeri, M.; Yas, M. H.
2007-10-01
The objective of this paper is to demonstrate layerwise theory for the analysis of thick laminated piezoelectric shell structures. A general finite element formulation using the layerwise theory is developed for a laminated cylindrical shell with piezoelectric layers, subjected to dynamic loads. The quadratic approximation of the displacement and electric potential in the thickness direction is considered. The governing equations are reduced to two-dimensional (2D) differential equations. The three-dimensional (3D) elasticity solution is also presented. The resulting equations are solved by a proper finite element method. The numerical results for static loading are compared with exact solutions of benchmark problems. Numerical examples of the dynamic problem are presented. The convergence is studied, as is the influence of the electromechanical coupling on the axisymmetric free-vibration characteristics of a thick cylinder.
49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... performed; (2) Complete details concerning the dimensions, materials of construction, wall thickness, water... calculations for cylinder wall stress and wall thickness, which may be shown on a drawing or on separate sheets...
49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... performed; (2) Complete details concerning the dimensions, materials of construction, wall thickness, water... calculations for cylinder wall stress and wall thickness, which may be shown on a drawing or on separate sheets...
Do Europa's Mountains Have Roots? Modeling Flow Along the Ice-Water Interface
NASA Astrophysics Data System (ADS)
Cutler, B. B.; Goodman, J. C.
2016-12-01
Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. In this work we demonstrate that local shell thickness perturbations will relax due to viscous flow in centuries. We present a model of Europa's ice crust which includes thermal conduction, viscous flow of ice, and a mobile ice/water interface: the topography along the ice-water interface varies in response to melting, freezing, and ice flow. Temperature-dependent viscosity, conductivity, and density lead to glacier-like flow along the base of the ice shell, as well as solid-state convection in its interior. We considered both small scale processes, such as an isostatically-compensated ridge or lenticula, or heat flux from a hydrothermal plume; and a larger model focusing on melting and flow on the global scale. Our local model shows that ice-basal topographic features 5 kilometers deep and 4 kilometers wide can be filled in by glacial flow in about 200 years; even very large cavities can be infilled in 1000 years. "Hills" (locally thick areas) are removed faster than "holes". If a strong local heat flux (10x global average) is applied to the base of the ice, local melting will be prevented by rapid inflow of ice from nearby. On the large scale, global ice flow from the thick cool pole to the warmer and thinner equator removes global-scale topography in about 1 Ma; melting and freezing from this process may lead to a coupled feedback with the ocean flow. We find that glacial flow at the base of the ice shell is so rapid that Europa's ice-water interface is likely to be very flat. Local surface topography probably cannot be isostatically compensated by thickness variations: Europa's mountains may have no roots.
NASA Astrophysics Data System (ADS)
Moon, Hokyu; Kim, Kyung Min; Park, Jun Su; Kim, Beom Seok; Cho, Hyung Hee
2015-12-01
The after-shell section, which is part of the gas turbine combustion liner, is exposed to the hottest combustion gas. Various cooling schemes have been applied to protect against severe thermal load. However, there is a significant discrepancy in the thermal expansion with large temperature differences, resulting in thermo-mechanical crack formation. In this study, to reduce combustion liner damage, thermo-mechanical analysis was conducted on three after-shell section configurations: inline-discrete divider wall, staggered divider wall, and swirler wall arrays. These array components are well-known heat-transfer enhancement structures in the duct. In the numerical analyses, the heat transfer characteristics, temperature and thermo-mechanical stress distribution were evaluated using finite volume method and finite element method commercial codes. As a result, we demonstrated that the temperature and the thermo-mechanical stress distribution were readily dependent on the structural array for cooling effectiveness and structural support in each modified cooling system. Compared with the reference model, the swirler wall array was most effective in diminishing the thermo-mechanical stress concentration, especially on the inner ring that is vulnerable to crack formation.
3D mapping of airway wall thickening in asthma with MSCT: a level set approach
NASA Astrophysics Data System (ADS)
Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher
2014-03-01
Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.
Hudry, Damien; Busko, Dmitry; Popescu, Radian; ...
2017-11-02
Core@shell design represents an important class of architectures because of its capability to dramatically increase the absolute upconversion quantum yield (UCQY) of upconverting nanocrystals (UCNCs) but also to tune energy migration pathways. A relatively new trend towards the use of very thick optically inert shells affording significantly higher absolute UCQYs raises the question of the crystallographic and chemical characteristics of such nanocrystals (NCs). In this article, local chemical analyses performed by scanning transmission electron microscopy (STEM) combined with energy dispersive x-ray spectroscopy (EDXS) and x-ray total scattering experiments together with pair distribution function (PDF) analyses were used to probe themore » local chemical and structural characteristics of hexagonal β-NaGd0.78Yb0.2Er0.02F4@NaYF4 core@shell UCNCs. The investigations lead to a new crystallochemical model to describe core@shell UCNCs that considerably digresses from the commonly accepted epitaxial growth concept with sharp interfaces. The results obtained on ultra-small (4.8 ± 0.5 nm) optically active cores (β-NaGd0.78Yb0.2Er0.02F4) surrounded by an optically inert shell (NaYF4) of tunable thickness (roughly 0, 1, 2, and 3.5 nm) clearly indicate the massive dissolution of the starting seeds and the inter-diffusion of the shell element (such as Y) into the Gd/Yb/Er-containing core giving rise to the formation of a non-homogeneous solid solution characterized by concentration gradients and the lack of sharp interfaces. Independently of the inert shell thickness, core/interface/shell architectures were observed for all synthesized UCNCs. The presented results constitute a significant step towards the comprehensive understanding of the “structure - property” relationship of upconverting core@shell architectures, which is of prime interest not only in the development of more efficient structures but also to provide new physical insights at the nanoscale to better explain upconversion (UC) properties alterations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudry, Damien; Busko, Dmitry; Popescu, Radian
Core@shell design represents an important class of architectures because of its capability to dramatically increase the absolute upconversion quantum yield (UCQY) of upconverting nanocrystals (UCNCs) but also to tune energy migration pathways. A relatively new trend towards the use of very thick optically inert shells affording significantly higher absolute UCQYs raises the question of the crystallographic and chemical characteristics of such nanocrystals (NCs). In this article, local chemical analyses performed by scanning transmission electron microscopy (STEM) combined with energy dispersive x-ray spectroscopy (EDXS) and x-ray total scattering experiments together with pair distribution function (PDF) analyses were used to probe themore » local chemical and structural characteristics of hexagonal β-NaGd0.78Yb0.2Er0.02F4@NaYF4 core@shell UCNCs. The investigations lead to a new crystallochemical model to describe core@shell UCNCs that considerably digresses from the commonly accepted epitaxial growth concept with sharp interfaces. The results obtained on ultra-small (4.8 ± 0.5 nm) optically active cores (β-NaGd0.78Yb0.2Er0.02F4) surrounded by an optically inert shell (NaYF4) of tunable thickness (roughly 0, 1, 2, and 3.5 nm) clearly indicate the massive dissolution of the starting seeds and the inter-diffusion of the shell element (such as Y) into the Gd/Yb/Er-containing core giving rise to the formation of a non-homogeneous solid solution characterized by concentration gradients and the lack of sharp interfaces. Independently of the inert shell thickness, core/interface/shell architectures were observed for all synthesized UCNCs. The presented results constitute a significant step towards the comprehensive understanding of the “structure - property” relationship of upconverting core@shell architectures, which is of prime interest not only in the development of more efficient structures but also to provide new physical insights at the nanoscale to better explain upconversion (UC) properties alterations.« less
24. NICHE IN GREAT WALL AT TOP OF WEST ASCENT, ...
24. NICHE IN GREAT WALL AT TOP OF WEST ASCENT, NOTE SHELL SPILL, October 1987 - Meridian Hill Park, Bounded by Fifteenth, Sixteenth, Euclid & W Streets, Northwest, Washington, District of Columbia, DC
Microwave background distortions from domain walls
NASA Technical Reports Server (NTRS)
Goetz, Guenter; Noetzold, Dirk
1990-01-01
Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.
Campbell, Christian X; Thomaidis, Dimitrios
2014-05-13
A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.
Photophysical Properties of II-VI Semiconductor Nanocrystals
NASA Astrophysics Data System (ADS)
Gong, Ke
As it is well known, semiconductor nanocrystals (also called quantum dots, QDs) are being actively pursued for use in many different types of luminescent optical materials. These materials include the active media for luminescence downconversion in artificial lighting, lasers, luminescent solar concentrators and many other applications. Chapter 1 gives general introduction of QDs, which describe the basic physical properties and optical properties. Based on the experimental spectroscopic study, a semiquantitative method-effective mass model is employed to give theoretical prediction and guide. The following chapters will talks about several topics respectively. A predictive understanding of the radiative lifetimes is therefore a starting point for the understanding of the use of QDs for these applications. Absorption intensities and radiative lifetimes are fundamental properties of any luminescent material. Meantime, achievement of high efficiency with high working temperature and heterostructure fabrication with manipulation of lattice strain are not easy and need systematic investigation. To make accurate connections between extinction coefficients and radiative recombination rates, chapter 2 will consider three closely related aspects of the size dependent spectroscopy of II-VI QDs. First, it will consider the existing literature on cadmium selenide (CdSe) QD absorption spectra and extinction coefficients. From these results and fine structure considerations Boltzmann weighted radiative lifetimes are calculated. These lifetimes are compared to values measured on very high quality CdSe and CdSe coated with zinc selenide (ZnSe) shells. Second, analogous literature data are analyzed for cadmium telluride (CdTe) nanocrystals and compared to lifetimes measured for very high quality QDs. Furthermore, studies of the absorption and excitation spectra and measured radiative lifetimes for CdTe/CdSe Type-II core/shell QDs are reported. These results are also analyzed in terms of a Boltzmann population of exciton sublevels and calculated electron and hole wave functions. Much of the absorption data and fine structure calculations are already in the literature. These results are combined with new measurements of radiative lifetimes and electron-hole overlap calculations to produce an integrated picture of the II-VI QD spectroscopic fundamentals. Finally, we adopt recent synthetic advances to make very monodisperse zincblende CdSe/CdS quantum dots having near-unity photoluminescence quantum yields (PLQYs). Due the absence of nonradiative decay pathways, accurate values of the radiative lifetimes can be obtained from time resolved PL measurements. Radiative lifetimes can also be obtained from the Einstein relations, using the static absorption spectra and the relative thermal populations in the angular momentum sublevels. One of the inputs into these calculations is the shell thickness, and it is useful to be able to determine shell thickness from spectroscopic measurements. We use an empirically corrected effective mass model to produce a "map" of exciton wavelength as a function of core size and shell thickness. These calculations use an elastic continuum model and the known lattice and elastic constants to include the effect of lattice strain on the band gap energy. Radiative lifetimes calculated both experimentally and theoretically are checked and the size dependence is compared to previous studied Type-I, II and single component particles. However, it is not enough to just understanding these basic photophysics of absorption and emission. The emission intensities (related to QYs) also change with changes of the temperature. The temperature dependent PLs of II-VI QDs is extensively studied, but most of this work is at low temperatures. Temperatures well above ambient are of interest to lighting applications and in this regime both the reversible and irreversible loss of quantum yield (thermal quenching) are serious impediments to the implementation of QDs in commercial devices. Chapter 3 will elucidate the mechanism of static thermal quenching, in which the reduction of QYs does not affect the PL decay kinetics, on CdSe, CdTe and CdSe/ZnSe QDs as a function of particle sizes/shapes, surface composition and surface ligands. Through systematic experiments, this part of the dissertation discusses several possible mechanisms (e.g. structural, activated excited state, and electronic charging) and examines which the dominant cause for loss of QY at high temperature is. The more practical step is to develop the synthetic method of highly luminescent and stable core/shell QDs with minimum thermal quenching, which greatly enhance the energy efficiency of light emitting and photovoltaic devices. As the nonradiative Auger processed are induced by surface charging described in chapter 3, static and time-resolved fluorescence and high and low power transient absorption results on CdSe/CdS and CdSe/ZnSe core/shell particles are presented in chapter 4. Two CdS shell thicknesses were examined and all of the particles had either octadecylamine (ODA) and tributylphosphine (TBP) or just ODA ligands. The results can be understood in terms of a mechanism in which there is a thermal equilibrium between electrons being in the valence band or in chalcogenide localized surface states. Thermal promotion of a valence band electron to a surface state leaves the particle core positively charged. Photon absorption when the particle is in this state results in a positive trion, which undergoes a fast Auger recombination, making the particle nonluminescent. A lack of TBP ligands results in more empty surface orbitals and therefore shifts the equilibrium toward surface trapped electrons and hence trion formation. Low- and high-power transient absorption measurements give the trion and biexciton lifetimes and the ratio of the trion to biexciton Auger lifetimes are examined and compared to the degeneracies of Auger pathways. We also study the shell thickness and composition dependence of Auger times, which is compared to the scaling factors of effective volume and electron-hole overlap considerations. Core/shell QDs often exhibit much higher luminescence quantum yields (QYs), more stability, and are depicted as having a nearly spherical core and a shell of very nearly uniform thickness, which results in a very simple picture of surface passivation. The uniformity of the shell is crucial in obtaining QDs with well passivated surfaces. However, transmission electron microscope (TEM) images disprove the ideal situation. Defects and thickness inhomogeneity in shell materials are treated qualitatively as an analog to film thickness inhomogeneity in epitaxially grown thin films. More quantitatively, the extent to which the shell thickness of core/shell particles is constant can be determined by time-resolved PL studies that measure the dynamics of hole tunneling to acceptors that are adsorbed on the shell surface due that tunneling rates varies strongly with core-acceptor separation. Careful analysis of the hole transfer kinetics reveals the extent of shell thickness inhomogeneity, however, it may be complicated by the distribution of numbers of adsorbed acceptors. All the considerations can be incorporated into a model we establish in Chapter 5for the distribution of measured hole tunneling rates. From this analysis the distribution of shell thicknesses can be extracted from the luminescence kinetic results. This approach is therefore a sensitive measure of the distribution of tunneling distances. Thus, any defects or structural irregularities that allow the hole acceptors to adsorb closer to the particle core increases the hole tunneling rate and can be detected and quantified. A quantitative treatment of the lattice strain energy in determining the shell morphology of CdSe/CdS core/shell nanoparticles is presented in chapter 5. We use the inhomogeneity in hole tunneling rates through the shell to adsorbed hole acceptors to quantify the extent of shell thickness inhomogeneity. The results can be understood in terms of a model based on elastic continuum calculations, which indicate that the lattice strain energy depends on both core size and shell thickness. This model assumes thermodynamic equilibrium, i.e., that the shell morphology corresponds to a minimum total (lattice strain plus surface) energy. Comparison with the experimental results indicates that CdSe/CdS nanoparticles undergo an abrupt transition from smooth to rough shells when the total lattice strain energy exceeds about 27eV or the strain energy density exceeds 0.59 eV/nm2. The predictions of this model are not followed for CdSe/CdS nanoparticles when the shell is deposited at very low temperature and therefore equilibrium is not established. The effects of lattice strain on the spectroscopy and photoluminescence quantum yields of zincblende CdSe/CdS core/shell quantum dots are examined. The quantum yields are measured as a function of core size and shell thickness. High quantum yields are achieved as long as the lattice strain energy density is below ~0.85 eV/nm2, which is considerably greater than the limiting value of 0.59 eV/nm2 for thermodynamicstability of a smooth, defect free shell, as previously reported in chapter 5. Thus, core/shell quantum dots having strain energy densities between 0.59 and 0.85 eV/nm2 can have very high PL QYs, but are metastable with respect to surface defect formation. Such metastable core/shell QDs can be produced by shell deposition at comparatively low temperatures (< 140 °C). Annealing of these particles causes partial loss of core pressure, and a red shift of the spectrum.
NASA Astrophysics Data System (ADS)
Pigazzini, M. S.; Bazilevs, Y.; Ellison, A.; Kim, H.
2017-11-01
In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on isogeometric analysis, where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum damage mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.
NASA Astrophysics Data System (ADS)
Bazilevs, Y.; Pigazzini, M. S.; Ellison, A.; Kim, H.
2017-11-01
In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on Isogeometric Analysis (IGA), where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum Damage Mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.
Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej
2017-01-01
Abstract We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 1013 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus—Tidal deformation—Faults—Variable ice shell thickness—Tidal heating—Plume activity and timing. Astrobiology 17, 941–954. PMID:28816521
Xi, Guangcheng; Yu, Shijun; Zhang, Rui; Zhang, Meng; Ma, Dekun; Qian, Yitai
2005-07-14
A novel nanostructure, cubic silicon carbide (3C-SiC) nanoparticles encapsulated in branched wavelike carbon nanotubes have been prepared by a reaction of 1,2-dimenthoxyethane (CH3OCH2CH2OCH3), SiCl4, and Mg in an autoclave at 600 degrees C. According to X-ray powder diffraction, the products are composed of 3C-SiC and carbon. TEM and HRTEM images show that the as-synthesized products are composed of 3C-SiC nanoparticles encapsulated in branched carbon nanotubes with wavelike walls. The diameter of the 3C-SiC cores is approximately 20-40 nm and the thickness of the carbon shells is about 3-5 nm. In Raman scattering spectroscopy, both the TO (Gamma) phonon line and the LO (Gamma) phonon line have red shifts about 6 cm(-1) relative to that for the bulk 3C-SiC. The photoluminescence (PL) spectrum shows that there are two emission peaks: blue light emission (431 nm) and violet light emission (414 nm). A sequential deposition growth process (with cores as the templates for the shells) for the nanostructure was proposed.
Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F
2007-01-01
A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291
Ong, Kevin L; Rundell, Steve; Liepins, Imants; Laurent, Ryan; Markel, David; Kurtz, Steven M
2009-11-01
Press-fit implantation may result in acetabular component deformation between the ischial-ilial columns ("pinching"). The biomechanical and clinical consequences of liner pinching due to press-fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line-to-line ("no pinch") reaming and 2 mm underreaming press fit ("pinch") conditions were examined for Trident cups with X3 polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press-fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress-strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm-thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Blended-Wing-Body (BWB) Fuselage Structural Design for Weight Reduction
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.
2005-01-01
Structural analysis and design of efficient pressurized fuselage configurations for the advanced Blended-Wing-Body (BWB) flight vehicle is a challenging problem. Unlike a conventional cylindrical pressurized fuselage, stress level in a box type BWB fuselage is an order of magnitude higher, because internal pressure primarily results in bending stress instead of skin-membrane stress. In addition, resulting deformation of aerodynamic surface could significantly affect performance advantages provided by lifting body. The pressurized composite conformal multi-lobe tanks of X-33 type space vehicle also suffered from similar problem. In the earlier BWB design studies, Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS); Vaulted shell Honeycomb Core (VLHC) and Flat sandwich shell Honeycomb Core (FLHC) concepts were studied. The flat and vaulted ribbed shell concepts were found most efficient. In a recent study, a set of composite sandwich panel and cross-ribbed panel were analyzed. Optimal values of rib and skin thickness, rib spacing, and panel depth were obtained for minimal weight under stress and buckling constraints. In addition, a set of efficient multi-bubble fuselage (MBF) configuration concept was developed. The special geometric configuration of this concept allows for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls, while the outer-ribbed shell prevents buckling due to external resultant compressive loads. The initial results from these approximate finite element analyses indicate progressively lower maximum stresses and deflections compared to the earlier study. However, a relative comparison of the FEM weight per unit floor area of the segment unit indicates that the unit weights are still relatively higher that the conventional B777 type cylindrical or A380 type elliptic fuselage design. Due to the manufacturing concern associated with multi-bubble fuselage, a Y braced box-type fuselage alternative with special resin-film injected (RFI) stitched carbon composite with foam-core was designed by Boeing under a NASA research contract for the 480 passenger version. It is shown that this configuration can be improved to a modified multi-bubble fuselage which has better stress distribution, for same material and dimension.
He, Cunfu; Yan, Lyu; Zhang, Haijun
2018-01-01
It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the −3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ−3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth. PMID:29498636
Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun
2018-03-02
It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.
Tidal deformation of Enceladus' ice shell with variable thickness and Maxwell rheology
NASA Astrophysics Data System (ADS)
Soucek, Ondrej; Behounkova, Marie; Cadek, Ondrej; Tobie, Gabriel; Choblet, Gael
2017-04-01
Tidal deformation of icy moons has been traditionally studied using the spectral approach which is very efficient for perfectly spherical bodies with radially dependent rheological structure. Measurements of Enceladus' topography (Nimmo et al., 2011) and low-degree gravity (Iess et al., 2014) indicate that the ice shell is significantly thinned in the southern hemisphere (Iess et al., 2014; McKinnon, 2015) and according to recent gravity, shape and libration inversion, it may be only a few kilometers thick at the south pole (Cadek et al., 2016). These variations may potentially have a significant effect on the amplitude and pattern of tidal deformation, stress and associated heating inside the shell, but cannot be straightforwardly incorporated into the existing spectral codes. In order to circumvent this difficulty and to quantify the effects of ice-shell thickness variations, we have developed a three-dimensional finite element code in the framework of FEniCS package (Alnaes et al., 2015). Using this numerical tool, we address the changes in tidally-induced deformation amplitude, stresses and tidal heating for structural models of Enceladus' ice shell of various complexity. Considering Maxwell viscoelastic rheology of the shell, we compare models with uniform thickness consistent with the libration data and with constant viscosity, synthetic models with analytically parameterized thinning in the south polar region and depth-dependent viscosity varying over several orders of magnitude, and finally, models with the shell topography and thickness based on the recent model of Cadek et al. (2016). We find that the thinning of the ice shell around the south pole may lead to amplification of the stress and displacement in this region region by a factor of up to 2 and 4, respectively, depending on the average ice shell thickness, the amplitude of thinning and the viscosity structure. Our results also suggest that lateral variations of ice thickness can induce significant anomalies of the surface heat flux and, together with other effects (e.g. Souček et al., 2016), may thus contribute to the hemispheric dichotomy observed on Enceladus. Alnaes, M. S., Blechta, J., Hake, J., Johansson, J., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E.,Wells, G. N., 2015. The FEniCS Project Version 1.5. Archive of Numerical Software 3 (100), 9-23. Cadek, O., Tobie, G., van Hoolst, T., Masse, M., Choblet, G., Lefevre, A., Mitri, G., Baland, R.-M., Behounkova, M., Bourgeois, O., Trinh, A., 2016. Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Let. 46, 5653-5660. Iess, L., Stevenson, D. J., Parisi, M., Hemingway, D., Jacobson, R. A., Lunine, J. I., Nimmo, F., Armstrong, J. W., Asmar, S. W., Ducci, M., Tortora, P., Apr. 2014. The Gravity Field and Interior Structure of Enceladus. Science 344, 78-80. McKinnon, W. B., Apr. 2015. Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Let. 42, 2137-2143. Nimmo, F., Bills, B. G., Thomas, P. C., 2011. Geophysical implications of the long-wavelength topography of the Saturnian satellites. J. Geophys. Res. 116 (E15), E11001. Soucek, O., Hron, J., Behounkova, M., Cadek, O., 2016. Effect of the tiger stripes on the deformation of Saturn's moon Enceladus. Geophys. Res. Let. 43, 7417-7423.
A self-assembly aptasensor based on thick-shell quantum dots for sensing of ochratoxin A
NASA Astrophysics Data System (ADS)
Chu, Xianfeng; Dou, Xiaowen; Liang, Ruizheng; Li, Menghua; Kong, Weijun; Yang, Xihui; Luo, Jiaoyang; Yang, Meihua; Zhao, Ming
2016-02-01
A novel self-assembling aptasensor was fabricated by precisely attaching three phosphorothioate-modified capture aptamers onto a single thick-shell quantum dot in a controllable manner for monitoring of ochratoxin A (OTA), a poisonous contaminant widespread in foodstuffs. Herein, CdSe/CdS QDs coated in ten layer CdS shells were synthesized using a continual precursor injection method. Analysis of the prepared CdSe/CdS QDs showed a zinc-blende structure, high photoluminescence quantum yields (>80%), and a photoemission peak with a narrow full-width at half-maximum (about 29 nm), all qualities that render them as a superior choice for optical applications. By adjusting the number of phosphorothioate bases in the anchor domain, the tunable-valency aptasensor was able to self-assemble. In the sensing strategy, the thick-shell quantum dot was provided as an acceptor while OTA itself was used as a donor. In the presence of OTA, the capture aptamers drive the aptasensor function into a measurable signal through a fluorescence resonance energy transfer (FRET) system. The newly developed aptasensor had a detection limit as low as 0.5 ng mL-1, with a linear concentration in the range of 1 to 30 ng mL-1, and therefore meets the requirements for rapid, effective, and anti-interference sensors for real-world applications. Moreover, the high quality thick-shell QDs provide an ideal alternative for highly sensitive imaging and intensive illumination in the fields of biotechnology and bioengineering.A novel self-assembling aptasensor was fabricated by precisely attaching three phosphorothioate-modified capture aptamers onto a single thick-shell quantum dot in a controllable manner for monitoring of ochratoxin A (OTA), a poisonous contaminant widespread in foodstuffs. Herein, CdSe/CdS QDs coated in ten layer CdS shells were synthesized using a continual precursor injection method. Analysis of the prepared CdSe/CdS QDs showed a zinc-blende structure, high photoluminescence quantum yields (>80%), and a photoemission peak with a narrow full-width at half-maximum (about 29 nm), all qualities that render them as a superior choice for optical applications. By adjusting the number of phosphorothioate bases in the anchor domain, the tunable-valency aptasensor was able to self-assemble. In the sensing strategy, the thick-shell quantum dot was provided as an acceptor while OTA itself was used as a donor. In the presence of OTA, the capture aptamers drive the aptasensor function into a measurable signal through a fluorescence resonance energy transfer (FRET) system. The newly developed aptasensor had a detection limit as low as 0.5 ng mL-1, with a linear concentration in the range of 1 to 30 ng mL-1, and therefore meets the requirements for rapid, effective, and anti-interference sensors for real-world applications. Moreover, the high quality thick-shell QDs provide an ideal alternative for highly sensitive imaging and intensive illumination in the fields of biotechnology and bioengineering. Electronic supplementary information (ESI) available: Table S1. See DOI: 10.1039/c5nr08284f
Corrections to the thin wall approximation in general relativity
NASA Technical Reports Server (NTRS)
Garfinkle, David; Gregory, Ruth
1989-01-01
The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.
Rupture of poly implant prothèse silicone breast implants: an implant retrieval study.
Swarts, Eric; Kop, Alan M; Nilasaroya, Anastasia; Keogh, Catherine V; Cooper, Timothy
2013-04-01
Poly Implant Prothèse implants were recalled in Australia in April of 2010 following concerns of higher than expected rupture rates and the use of unauthorized industrial grade silicone as a filler material. Although subsequent investigations found that the gel filler material does not pose a threat to human health, the important question of what caused a relatively modern breast implant to have such a poor outcome compared with contemporary silicone breast implants is yet to be addressed. From a cohort of 27 patients, 19 ruptured Poly Implant Prothèse breast implants were subjected to a range of mechanical tests and microscopic/macroscopic investigations to evaluate possible changes in properties as a result of implantation. New Poly Implant Prothèse implants were used as controls. All samples, explanted and controls, complied with the requirements for shell integrity as specified in the International Organization for Standardization 14607. Compression testing revealed rupture rates similar to those reported in the literature. Shell thickness was highly variable, with most shells having regions below the minimum thickness of 0.57 mm that was specified by the manufacturer. Potential regions of stress concentration were observed on the smooth inner surfaces and outer textured surfaces. The high incidence of Poly Implant Prothèse shell rupture is most likely a result of inadequate quality control, with contributory factors being shell thickness variation and manufacturing defects on both inner and outer surfaces of the shell. No evidence of shell degradation with implantation time was determined.
Active formation of `chaos terrain' over shallow subsurface water on Europa
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.
2011-11-01
Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.
Polar-direct-drive experiments with contoured-shell targets on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. J.; Radha, P. B.; Bonino, M. J.
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.
Polar-direct-drive experiments with contoured-shell targets on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. J.; Radha, P. B.; Bonino, M. J.
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. Fusion yields were increased by more than a factor of ∼2 without increasing the energy of the laser by the use of contoured shells.
Polar-direct-drive experiments with contoured-shell targets on OMEGA
Marshall, F. J.; Radha, P. B.; Bonino, M. J.; ...
2016-01-28
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity of...) Wall thickness. The minimum wall thickness must be such that the wall stress at the minimum specified... the physical tests required in paragraphs (j) and (k) of this section. A wall stress of more than 90...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... (gage 8) 4.000 inch O.D. and 0.148 inch wall thickness (gage 9) 4.000 inch O.D. and 0.165 inch wall thickness (gage 8) 4.500 inch O.D. and 0.203 inch wall thickness (gage 7) The pipe subject to this... 4, 2012, the Department issued an additional supplemental questionnaire to the GOV, and it received...
Sayed Ahmed, W A; Madny, E H; Habash, Y H; Ibrahim, Z M; Morsy, A G K; Said, M E
2015-01-01
To assess the role of ultrasonographic measurement of the upper and lower uterine segments wall thickness in predicting the progress of preterm labour in patients presenting with preterm labour pains. Fifty pregnant women presenting at Obstetrics Department - Suez Canal University, Egypt with regular lower abdominal pains and diagnosed as having preterm labour were enrolled in the study. Measurements of the upper and lower uterine segments wall thickness by transabdominal ultrasonography in-between contractions and with full bladder were taken. The upper/lower uterine wall thickness ratio was calculated and correlated to the progress of the preterm labour and to the response to tocolytics. The ultrasonographic upper/lower uterine wall thickness ratio was directly related to the progress of preterm delivery (PTD). The change in this ratio is correlated inversely with the response to tocolysis. Using the ROC curve, when the upper/lower uterine wall thickness ratio was ≤ 1.26 the sensitivity was 94.74 and the specificity was 100.00, and when the ratio was ≤ 1.52 the sensitivity was 100.00 and the specificity was 83.33. These data may serve as a baseline ultrasonographic reference values for further studies in prediction the progress of preterm labour in patients presenting with preterm labour pains.
Tell, G S; Evans, G W; Folsom, A R; Shimakawa, T; Carpenter, M A; Heiss, G
1994-05-15
Associations between atherosclerosis and dietary fat and cholesterol have been demonstrated in numerous animal experiments. The relation between these dietary components and atherosclerosis has not previously been reported in a population-based study among human beings. The associations of dietary fat and cholesterol with carotid artery wall thickness (atherosclerosis) were investigated in a population-based study, the Atherosclerosis Risk in Communities (ARIC) Study, from 1987 to 1989. Participants were 2,095 black women, 5,146 white women, 1,318 black men and 4,589 white men, aged 45-64 years, recruited from four US communities: Jackson, Mississippi; Forsyth County, North Carolina; Washington County, Maryland; and Minneapolis, Minnesota. Habitual diet was assessed with a food frequency questionnaire. Wall thickness was measured with B-mode ultrasound. After adjustment for age and energy intake, animal fat, saturated fat, monounsaturated fat, cholesterol, and Keys' score were positively related to wall thickness, while vegetable fat and polyunsaturated fat were inversely related to wall thickness. These associations persisted after further adjustment for smoking and hypertension and were consistent across the four race and sex groups. Thus, elements of habitual dietary intake were consistently associated with carotid artery wall thickness, compatible with their putatively atherogenic and antiatherogenic properties.
49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2011 CFR
2011-10-01
... thickness; wall stress. The wall thickness/wall stress of the cylinder must conform to the following: (1) The calculated wall stress at 750 psi may not exceed 35,000 psi, or one-half of the minimum ultimate... stress must be made by the formula: S = [P(1.3D2 + 0.4d2)] / (D2 − d2) Where: S = wall stress in pounds...
Do Titan's Mountains Betray the Late Acquisition of its Current Atmosphere
NASA Technical Reports Server (NTRS)
Moore, Jeffrey Morgan; Nimmo, F.
2011-01-01
Titan may have acquired its massive atmosphere relatively recently in solar system history [1,2,3,4]. Prior to that time, Titan would have been nearly airless, with its volatiles frozen or sequestered. Present-day Titan experiences only small (approximately 4 K) pole-to-equator variations, owing to efficient heat transport via the thick atmosphere [5]; these temperature variations would have been much larger (approximately 20 K) in the absence of an atmosphere. If Titan's ice shell is conductive, the change in surface temperature associated with the development of an atmosphere would have led to changes in shell thickness. In particular, the poles would move down (inducing compression) while the equator would move up. Figure 1 shows the predicted change in surface elevation as a result of the change in surface temperature, using the numerical conductive shell thickness model of [6
A Probabilistic Method for Estimation of Bowel Wall Thickness in MR Colonography
Menys, Alex; Jaffer, Asif; Bhatnagar, Gauraang; Punwani, Shonit; Atkinson, David; Halligan, Steve; Hawkes, David J.; Taylor, Stuart A.
2017-01-01
MRI has recently been applied as a tool to quantitatively evaluate the response to therapy in patients with Crohn’s disease, and is the preferred choice for repeated imaging. Bowel wall thickness on MRI is an important biomarker of underlying inflammatory activity, being abnormally increased in the acute phase and reducing in response to successful therapy; however, a poor level of interobserver agreement of measured thickness is reported and therefore a system for accurate, robust and reproducible measurements is desirable. We propose a novel method for estimating bowel wall-thickness to improve the poor interobserver agreement of the manual procedure. We show that the variability of wall thickness measurement between the algorithm and observer measurements (0.25mm ± 0.81mm) has differences which are similar to observer variability (0.16mm ± 0.64mm). PMID:28072831
A rigid and weathered ice shell on Titan.
Hemingway, D; Nimmo, F; Zebker, H; Iess, L
2013-08-29
Several lines of evidence suggest that Saturn's largest moon, Titan, has a global subsurface ocean beneath an outer ice shell 50 to 200 kilometres thick. If convection is occurring, the rigid portion of the shell is expected to be thin; similarly, a weak, isostatically compensated shell has been proposed to explain the observed topography. Here we report a strong inverse correlation between gravity and topography at long wavelengths that are not dominated by tides and rotation. We argue that negative gravity anomalies (mass deficits) produced by crustal thickening at the base of the ice shell overwhelm positive gravity anomalies (mass excesses) produced by the small surface topography, giving rise to this inverse correlation. We show that this situation requires a substantially rigid ice shell with an elastic thickness exceeding 40 kilometres, and hundreds of metres of surface erosion and deposition, consistent with recent estimates from local features. Our results are therefore not compatible with a geologically active, low-rigidity ice shell. After extrapolating to wavelengths that are controlled by tides and rotation, we suggest that Titan's moment of inertia may be even higher (that is, Titan may be even less centrally condensed) than is currently thought.
Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei
2016-01-01
Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm−2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs. PMID:27125309
Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei
2016-04-29
Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2-3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm(-2) and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.
Structure and photoluminescence properties of TeO2-core/TiO2-shell nanowires
NASA Astrophysics Data System (ADS)
Park, Sunghoon; An, Soyeon; Lee, Chongmu
2013-12-01
TeO2-core/TiO2-shell nanowires were fabricated by thermal evaporation of Te powders and MOCVD of TiO2. The as-synthesized TeO2 nanowires showed a weak broad violet band centered at approximately 430 nm. The emission peak was shifted to a bluish violet region (∼455 nm) by the encapsulation of the nanowires with a TiO2 thin film. The intensity of the major emission from the core-shell nanowires showed strong dependence on the shell layer thickness. The strongest emission was obtained for the shell layer thickness of ∼15 nm and its intensity was approximately 80 times higher than that of the violet emission from the as-synthesized TeO2 nanowires. This enhancement in emission intensity is attributed to the subwavelength optical resonant cavity formation in the shell layer. The major emission intensity was enhanced further and blue-shifted by annealing, which might be attributed to the increase in the Ti interstitial and O vacancy concentrations in the TeO2 cores during annealing.
Karlsson, Martin; Jõgi, Indrek; Eriksson, Susanna K; Rensmo, Håkan; Boman, Mats; Boschloo, Gerrit; Hagfeldt, Anders
2013-01-01
This paper describes the synthesis and characterization of core-shell structures, based on SnO2 and TiO2, for use in dye-sensitized solar cells (DSC). Atomic layer deposition is employed to control and vary the thickness of the TiO2 shell. Increasing the TiO2 shell thickness to 2 nm improved the device performance of liquid electrolyte-based DSC from 0.7% to 3.5%. The increase in efficiency originates from a higher open-circuit potential and a higher short-circuit current, as well as from an improvement in the electron lifetime. SnO2-TiO2 core-shell DSC devices retain their photovoltage in darkness for longer than 500 seconds, demonstrating that the electrons are contained in the core material. Finally core-shell structures were used for solid-state DSC applications using the hole transporting material 2,2',7,7',-tetrakis(N, N-di-p-methoxyphenyl-amine)-9,9',-spirofluorene. Similar improvements in device performance were obtained for solid-state DSC devices.
Mitri, F G
2006-07-01
In this paper, analytical equations are derived for the time-averaged radiation force induced by progressive and standing acoustic waves incident on elastic spherical shells covered with a layer of viscoelastic and sound-absorbing material. The fluid surrounding the shells is considered compressible and nonviscous. The incident field is assumed to be moderate so that the scattered field from the shells is taken to linear approximation. The analytical results are illustrated by means of a numerical example in which the radiation force function curves are displayed, with particular emphasis on the coating thickness and the content of the hollow region of the shells. The fluid-loading on the radiation force function curves is analysed as well. This study attempts to generalize the various treatments of radiation force due to both progressive and standing waves on spherically-shaped structures immersed in ideal fluids. The results show that various ways can be effectively used for damping resonance peaks, such as by changing the fluid in the interior hollow region of the shells or by changing the coating thickness.
NASA Astrophysics Data System (ADS)
Hruba, J.; Kletetschka, G.
2017-12-01
Heat transport across the ice shell of Europa controls the thermal evolution of its interior. Such process involves energy sources that drive ice resurfacing (1). More importantly, heat flux through the ice shell controls the thickness of the ice (2), that is poorly constrained between 1 km to 30+ km (3). Thin ice would allow ocean water to be affected by radiation from space. Thick ice would limit the heat ocean sources available to the rock-ocean interface at the ocean's bottom due to tidal dissipation and potential radioactive sources. The heat flux structures control the development of geometrical configurations on the Europa's surface like double ridges, ice diapirs, chaos regions because the rheology of ice is temperature dependent (4).Analysis of temperature record of growing ice cover over a pond and water below revealed the importance of solar radiation during the ice growth. If there is no snow cover, a sufficient amount of solar radiation can penetrate through the ice and heat the water below. Due to temperature gradient, there is a heat flux from the water to the ice (Qwi), which may reduce ice growth at the bottom. Details and variables that constrain the heat flux through the ice can be utilized to estimate the ice thickness. We show with this analog analysis provides the forth step towards measurement strategy on the surface of Europa. We identify three types of thermal profiles (5) and fourth with combination of all three mechanisms.References:(1) Barr, A. C., A. P. Showman, 2009, Heat transfer in Europa's icy shell, University of Arizona Press, p. 405-430.(2) Ruiz, J., J. A. Alvarez-Gómez, R. Tejero, and N. Sánchez, 2007, Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies: Icarus, v. 190, p. 145-154.(3) Billings, S. E., S. A. Kattenhorn, 2005, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges: Icarus, v. 177, p. 397-412.(4) Quick, L. C., B. D. Marsh, 2016, Heat transfer of ascending cryomagma on Europa: Journal of Volcanology and Geothermal Research, v. 319, p. 66-77.(5) Mitri, G., A. P. Showman, 2005, Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa: Icarus, v. 177, p. 447-460.
Buckling of Thin Cylindrical Shell Subject to Uniform External Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forasassi, G.; Lo Frano, R.
2006-07-01
The buckling of cylindrical shells under uniform external pressure loading has been widely investigated. In general, when tubes are subjected to external pressure, collapse is initiated by yielding, but interaction with instability is significant, in that imperfections associated with fabrication of shells reduce the load bearing capacity by a significant amount even when thickness is considerable. A specific buckling analysis is used to predict collapse failure of long pressure vessels and pipelines when they are subjected to external over-pressure. The problem of buckling for variable load conditions is relevant for the optimisation of several Nuclear Power Plant applications as, formore » instance, the IRIS (International Reactor Innovative and Secure) LWR integrated Steam Generator (SG) tubes. In this paper, we consider in addition to the usual assumptions of thin shell, homogeneous and isotropic material, also the tube geometric imperfections and plastic deformations that may affect the limit load. When all those conditions are considered at present, a complete theoretical analysis was not founding the literature. At Pisa University a research activity is being carried out on the buckling of thin walled metal specimen, with reference to several geometries and two different stainless steel materials. A test equipment (with the necessary data acquisition facility), suitable for carrying out many test on this issue, as well as numerical models implemented on the MARC FEM code, were set up. In this report, the results of the performed analyses of critical pressure load determination with different numerical and experimental approaches are presented. The numerical results obtained are compared with the experimental results, for the same geometry and loading conditions, showing a good agreement between these two approaches. (authors)« less
Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim
2005-10-03
The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.
Optimization and design of pigments for heat-insulating coatings
NASA Astrophysics Data System (ADS)
Wang, Guang-Hai; Zhang, Yue
2010-12-01
This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka—Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3 ~ 1.6 μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100-300 nm.
NASA Astrophysics Data System (ADS)
Chen, Y. J.; Wu, J. Y.; Chen, C. T. A.; Liu, L. L.
2014-12-01
The effects of naturally acidified seawater on a snail species, Anachis misera (Family: Columbellidae) were quantified in five shallow vent-based environments off Kueishan Islet, Taiwan. An absence of Anachis snails was observed in the most acidic North site (pH 7.22), and the size structure differed among the remaining East, South, Southwest and Northwest sites. If a positive correlation between shell length and shell width or total weight existed, the coefficient of determination (R2) of the equations was low, i.e., 0.207-0.444. Snails from the Northwest site (pH 7.33) exhibited a more globular shape than those of the South ones (pH 7.80). Standardized shell thickness T1 (thickness of body whorl : shell length) and T2 (thickness of penultimate whorl : shell length) from the Northwest site showed a decrease of 6.3 and 9.4%, respectively, compared to the South ones. In a similar vein, based on the 16 examined protein spots, protein expression profiles of snails in the South were distinct. With further characterization by principle component analysis, the separation was mainly contributed by the first (i.e., spots 8, 1, 15, and 12) and second (i.e., spots 15, 13, 12, 1, and 11) principal-components. As a whole, the shallow vent-based findings provide new information from subtropics on the effects of ocean acidification on gastropod snails in natural environments.
49 CFR 179.400-8 - Thickness of plates.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-8 Thickness of plates... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any 3..., except that for seamless heads, E=1.0. (c) The minimum wall thickness, after forming, of a flanged and...
49 CFR 179.400-8 - Thickness of plates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-8 Thickness of plates... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any 3..., except that for seamless heads, E=1.0. (c) The minimum wall thickness, after forming, of a flanged and...
49 CFR 179.400-8 - Thickness of plates.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-8 Thickness of plates... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any 3..., except that for seamless heads, E=1.0. (c) The minimum wall thickness, after forming, of a flanged and...
49 CFR 179.400-8 - Thickness of plates.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-8 Thickness of plates... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any 3..., except that for seamless heads, E=1.0. (c) The minimum wall thickness, after forming, of a flanged and...
NASA Astrophysics Data System (ADS)
Sukkabot, Worasak; Pinsook, Udomsilp
2017-01-01
Using the atomistic tight-binding theory (TB) and a configuration interaction description (CI), we numerically compute the excitonic splitting of CdX(X = Se, S and Te)/ZnS core/shell nanocrystals with the objective to explain how types of the core materials and growth shell thickness can provide the detailed manipulation of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting, beneficial for the active application of quantum information. To analyze the splitting of the excitonic states, the optical band gaps, ground-state wave function overlaps and atomistic electron-hole interactions tend to be numerically demonstrated. Based on the atomistic computations, the single-particle and excitonic gaps are mainly reduced with the increasing ZnS shell thickness owing to the quantum confinement. In the range of the higher to lower energies, the order of the single-particle gaps is CdSe/ZnS, CdS/ZnS and CdTe/ZnS core/shell nanocrystals, while one of the excitonic gaps is CdS/ZnS, CdSe/ZnS and CdTe/ZnS core/shell nanocrystals because of the atomistic electron-hole interaction. The strongest electron-hole interactions are mainly observed in CdSe/ZnS core/shell nanocrystals. In addition, the computational results underline that the energies of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting are generally reduced with the increasing ZnS growth shell thickness as described by the trend of the electron-hole exchange interaction. The high-to-low splitting of the excitonic states is demonstrated in CdSe/ZnS, CdTe/ZnS and CdS/ZnS core/shell nanocrystals because of the fashion in the electron-hole exchange interaction and overlaps of the electron-hole wave functions. As the resulting calculations, it is expected that CdS/ZnS core/shell nanocrystals are the best candidates to be the source of entangled photons. Finally, the comprehensive information on the excitonic splitting can enable the use of suitable core/shell nanocrystals for the entangled photons in the application of quantum information.
Prospects For Earth-Based Measurements Of Europa's Librations
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc; Campbell, D. B.; Peale, S. J.
2010-10-01
The exploration of Europa is of great interest because it may be hospitable to certain life forms [1]. Several lines of evidence suggest that a subsurface ocean exists beneath an icy shell [2,3], but there is debate about the thickness of the shell [4], which impacts Europa's astrobiological potential. As in the case of Mercury, it may be possible to determine whether an outer shell is decoupled from the interior and to evaluate the shell thickness by measuring the amplitude of forced longitude librations [5,6]. In the simplest configuration of a rigid shell decoupled from a spherically symmetric interior, the libration amplitude is amplified from the nominal value of 18" by C/Cs, where C is the polar moment of inertia of the body and Cs is that of the outer shell that participates in the librations. For a 100-km thick shell, the libration amplitude would reach 200", an estimate that remains valid even in the presence of gravitational coupling between asymmetrical layers [7]. If there are significant departures from rigid behavior, the shell may deform with the ocean underneath and exhibit a libration amplitude of 52" [8]. Europa reaches closest approach in October 2011, offering a once-in-a-decade opportunity to measure spin rate variations by tracking radar speckles, as advocated by Holin [9,10]. Librations of a rigid shell thinner than 100 km would be detectable. We will describe the experimental design and expected sensitivity. References: [1] NRC, Europa Science Strategy, 1999. [2,3] Kivelson et al, Greeley et al, in Jupiter, CUP, 2004. [4] Greenberg, Unmasking Europa, Praxis, 2008. [5] Peale, Nature 262, 1976. [6] Margot et al, Science 316, 2007. [7] van Hoolst et al, Icarus 195, 2008. [8] Goldreich and Mitchell, Icarus, in press. [9] Green, in Radar Astronomy, McGraw-Hill, 1968. [10] Holin, Radiophys. Quant. Elec. 31, 1988.
Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst
NASA Astrophysics Data System (ADS)
Zhao, Yan; Yeh, Yaowen; Liu, Rui; You, Jinmao; Qu, Fengli
2015-07-01
A simple and green method for the controllable synthesis of core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) with tunable shell thickness and their application as a recyclable nanocatalyst support is presented. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach with a diameter of ˜240 nm were coated with a polydopamine shell layer with a tunable thickness of 15-45 nm. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The satellite nanocatalysts exhibited high catalytic performance for the reduction of p-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 8 times without detectible loss in activity. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core-shell NPs as a versatile platform for potential applications.
In situ passivation of GaAsP nanowires.
Himwas, C; Collin, S; Rale, P; Chauvin, N; Patriarche, G; Oehler, F; Julien, F H; Travers, L; Harmand, J-C; Tchernycheva, M
2017-12-08
We report on the structural and optical properties of GaAsP nanowires (NWs) grown by molecular-beam epitaxy. By adjusting the alloy composition in the NWs, the transition energy was tuned to the optimal value required for tandem III-V/silicon solar cells. We discovered that an unintentional shell was also formed during the GaAsP NW growth. The NW surface was passivated by an in situ deposition of a radial Ga(As)P shell. Different shell compositions and thicknesses were investigated. We demonstrate that the optimal passivation conditions for GaAsP NWs (with a gap of 1.78 eV) are obtained with a 5 nm thick GaP shell. This passivation enhances the luminescence intensity of the NWs by 2 orders of magnitude and yields a longer luminescence decay. The luminescence dynamics changes from single exponential decay with a 4 ps characteristic time in non-passivated NWs to a bi-exponential decay with characteristic times of 85 and 540 ps in NWs with GaP shell passivation.
Growth of InAs/InP core-shell nanowires with various pure crystal structures.
Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A
2012-07-20
We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.
Wall thickness measuring method and apparatus
Salzer, L.J.; Bergren, D.A.
1987-10-06
An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.
Wall thickness measuring method and apparatus
Salzer, Leander J.; Bergren, Donald A.
1989-01-01
An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.
Vertilus, Shawyntee M.; Austin, Stephanie L.; Foster, Kimberly S.; Boyette, Keri E.; Bali, Deeksha; Li, Jennifer S.; Kishnani, Priya S.; Wechsler, Stephanie Burns
2013-01-01
Purpose Glycogen Storage Disease (GSD) type III, glycogen debranching enzyme deficiency, causes accumulation of glycogen in liver, skeletal, and cardiac muscle. Some patients develop increased left ventricular (LV) thickness by echocardiography, but the rate of increase and its significance remain unclear. Methods We evaluated 33 patients with GSD type III, 23 with IIIa and 10 with IIIb, ages 1 month – 55.5 yrs, by echocardiography for wall thickness, LV mass, shortening and ejection fractions, at 1 time point (n = 33) and at 2 time points in patients with more than 1 echocardiogram (13 of the 33). Results Of 23 cross-sectional patients with type IIIa, 12 had elevated LV mass, 11 had elevated wall thickness. One type IIIb patient had elevated LV mass but 4 had elevated wall thickness. For those with multiple observations, 9 of 10 with type IIIa developed increased LV mass over time, with 3 already increased at first measurement. Shortening and ejection fractions were generally normal. Conclusion Elevated LV mass and wall thickness is more common in patients with type IIIa but develops rarely in type IIIb, though ventricular systolic function is preserved. This suggests serial echocardiograms with attention to LV thickness and mass are important for care of these patients. PMID:20526204
Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.
Kimura, Masatomo; Ito, Hiroyuki
2009-03-01
An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae.
Thet-Thet-Lwin; Takeda, Tohoru; Wu, Jin; Fumikura, Yuko; Iida, Keiji; Kawano, Satoru; Yamaguchi, Iwao; Itai, Yuji
2003-07-01
The diagnostic value of technetium-99m tetrofosmin (TF) washout in hypertrophic cardiomyopathy (HCM) was examined by investigating its relation to the metabolic abnormality depicted by iodine-123 beta-methyl- p-iodophenylpentadecanoic acid (BMIPP) uptake and the left ventricular (LV) myocardial wall thickness as measured by magnetic resonance imaging (MRI). TF washout was evaluated in 31 patients with HCM and 23 normal control subjects using 30-min (early) and 3-h (delayed) TF single-photon emission tomography images. The LV myocardial wall was divided into 19 segments and the percentage TF washout, regional BMIPP uptake and LV wall thickness were measured in each segment. Mean TF washout in the patients with HCM was significantly faster than that in normal control subjects (23.7+/-5.7 vs 13.4+/-4.1, P<0.0001). In the patients with HCM, TF washout showed an excellent correlation with MRI wall thickness ( r=0.82, P<0.0001) and a good inverse correlation with regional BMIPP uptake ( r=-0.72, P<0.0001). In addition, a good linear correlation was observed between TF uptake and MRI wall thickness in the 19 regional segments. In conclusion, the degree of TF washout corresponds well with the severity of myocardial wall thickness and the degree of metabolic abnormality in patients with HCM. These results suggest that enhanced TF washout might provide additional clinical information regarding metabolic alterations in HCM.
Microencapsulation of gallium-indium (Ga-In) liquid metal for self-healing applications.
Blaiszik, B J; Jones, A R; Sottos, N R; White, S R
2014-01-01
Microcapsules containing a liquid metal alloy core of gallium-indium (Ga-In) are prepared via in situ urea-formaldehyde (UF) microencapsulation. The capsule size, shape, thermal properties, and shell wall thickness are investigated. We prepare ellipsoidal capsules with major and minor diameter aspect ratios ranging from 1.64 to 1.08 and with major diameters ranging from 245 µm to 3 µm. We observe that as the capsule major diameter decreases, the aspect ratio approaches 1. The thermal properties of the prepared microcapsules are investigated by thermogravimetric (TGA) and differential scanning calorimetry (DSC). Microcapsules are shown to survive incorporation into an epoxy matrix and to trigger via mechanical damage to the cured matrix. Microcapsules containing liquid metal cores may have diverse applications ranging from self-healing to contrast enhancement or the demonstration of mechano-adaptive circuitry.
Hon, Ken; Orr, Tim R.
2011-01-01
Small (1-3 mm), hollow spherules of hexahydrite have been collected falling out of the magmatic gas plume downwind of Kīlauea’s summit vent. The spherules were observed on eight separate occasions during 2009-2010 when a lake of actively spattering lava was present ~150-200 m below the rim of the vent. The shells of the spherules have a fine bubbly foam structure less than 0.1 mm thick, composed almost entirely of hexahydrite [MgSO4·6H2O] Small microspherules of lava (4-saturated meteoric water in the walls of the conduit above the surface of the lava lake. Solfataric sulfates may thus be recycled and reinjected into the plume, creating particulates of sulfate minerals that can be distributed far from their original source.
Extreme IR absorption in group IV-SiGeSn core-shell nanowires
NASA Astrophysics Data System (ADS)
Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama
2018-06-01
Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.
Regeneratively cooled coal combustor/gasifier with integral dry ash removal
Beaufrere, Albert H.
1983-10-04
A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.
NASA Astrophysics Data System (ADS)
Schonberg, William P.
Traditional perforation-resistant wall design for long-duration spacecraft consists of a "bumper" that is placed a small distance away from the main "pressure wall" of a spacecraft compartment or module. This concept has been studied extensively as a means of reducing the perforation threat of hypervelocity projectiles such as meteoroids and orbital debris. If a dual-wall system is employed on an earth-orbiting spacecraft, then a blanket of multi-layer insulation (MLI) will typically be included within the dual-wall system for thermal protection purposes. This paper presents the results of an experimental study in which aluminum dual-wall structures were tested under a variety of high-speed impact conditions to study the effect of MLI thickness and location on perforation resistance. The results presented consist of test-by-test comparisons of the damage sustained by similar dual-wall systems with blanket MLI of various thicknesses and at various locations within the dual-wall systems under similar impact loading conditions. The analyses performed revealed that the placement of the MLI had a significant effect on the ballistic limit of the dual-wall structures considered while reducing the thickness of the MLI by as much as 1/3 did not.
Parametric analysis: SOC meteoroid and debris protection
NASA Technical Reports Server (NTRS)
Kowalski, R.
1985-01-01
The meteoroid and man made space debris environments of an Earth orbital manned space operations center are discussed. Protective shielding thickness and design configurations for providing given levels of no penetration probability were also calculated. Meteoroid/debris protection consists of a radiator/shield thickness, which is actually an outer skin, separated from the pressure wall, thickness by a distance. An ideal shield thickness, will, upon impact with a particle, cause both the particle and shield to vaporize, allowing a minimum amount of debris to impact the pressure wall itself. A shield which is too thick will crater on the outside, and release small particles of shield from the inside causing damage to the pressure wall. Inversely, if the shield is too thin, it will afford no protection, and the backup must provide all necessary protection. It was concluded that a double wall concept is most effective.
NASA Astrophysics Data System (ADS)
Han, Dandan; Yan, Yancui; Wei, Jishi; Wang, Biwei; Li, Tongtao; Guo, Guannan; Yang, Dong; Xie, Songhai; Dong, Angang
2017-12-01
Because of their unique physical properties, three-dimensional (3D) graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG). By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene by tailoring the hydrocarbon ligands attached to the nanocrystal surface. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with its 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites resulting from its ultrathin wall thickness and high surface area.
... sale in the United States: saline-filled and silicone gel-filled. Both types have a silicone outer shell. They vary in size, shell thickness, ... implant them. Provide information on saline-filled and silicone gel-filled breast implants, including data supporting a ...
Temporal and local variations in biochemical composition of Crassostrea gigas shells
NASA Astrophysics Data System (ADS)
Almeida, Maria J.; Machado, Jorge; Moura, Gabriela; Azevedo, Manuela; Coimbra, João
1998-12-01
The objective of this work was to find relations between organic and inorganic shell components. Crassostrea gigas shells were analysed from live specimens collected at five different stations: the Lima estuary (1), the Ria de Aveiro (2, 3), and the Mondego estuary (4, 5), Portugal. About 30% of the oysters, from stations 1, 2 and 3 had shell-thickness-index values ≤10, indicating a severe thickening. Oysters from the Mondego estuary contained mud blisters due to Polydora infestations. Oysters from station 3 had thicker shells and showed a higher Pb content in shell and tissues than oysters from the other stations. Amino-acid composition changed mainly according to the modified protein (jelly-like substance) probably produced by the presence of TBT (tributyltin) in the water; in particular, we observed an increase in glutamic acid and threonine and a decrease in major amino acids such as aspartic acid, serine and glycine. Elemental shell composition was mainly associated with environmental conditions: shells from stations in open areas had higher Li, Cd, Cr and Ca and lower Mn levels than those from semi-enclosed areas (fish farms). Discriminant analyses against the three kinds of shell observed (normal, thick and infested), using chemical elements and amino acids as discriminant variables, showed the infested group to have the biggest differences. There was no correlation between amino-acid and chemical-element patterns in shell composition. Observed changes in amino-acid pattern, probably due to TBT, did not imply a simultaneous change of elemental composition.
Initial results from the rebuilt EXTRAP T2R RFP device
NASA Astrophysics Data System (ADS)
Brunsell, P. R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.; Gravestijn, R. M.; Hedqvist\\ad{2 }, A.; Malmberg, J.-A.
2001-11-01
The EXTRAP T2R thin shell reversed-field pinch (RFP) device has recently resumed operation after a major rebuild including the replacement of the graphite armour with molybdenum limiters, a fourfold increase of the shell time constant, and the replacement of the helical coil used for the toroidal field with a conventional solenoid-type coil. Wall-conditioning using hydrogen glow discharge cleaning was instrumental for successful RFP operation. Carbon was permanently removed from the walls during the first week of operation. The initial results from RFP operation with relatively low plasma currents in the range Ip = 70-100 kA are reported. RFP discharges are sustained for more than three shell times. Significant improvements in plasma parameters are observed, compared to operation before the rebuild. There is a substantial reduction in the carbon impurity level. The electron density behaviour is more shot-to-shot reproducible. The typical density is ne = 0.5-1×1019 m-3. Monitors of Hα line radiation indicate that the plasma wall interaction is more toroidally symmetric and that there is less transient gas release from the wall. The minimum loop voltage is in the range Vt = 28-35 V, corresponding to a reduction by a factor of two to three compared to the value before the rebuild.
Thick-shell nanocrystal quantum dots
Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM
2011-05-03
Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.
Isothermal Circumstellar Dust Shell Model for Teaching
ERIC Educational Resources Information Center
Robinson, G.; Towers, I. N.; Jovanoski, Z.
2009-01-01
We introduce a model of radiative transfer in circumstellar dust shells. By assuming that the shell is both isothermal and its thickness is small compared to its radius, the model is simple enough for students to grasp and yet still provides a quantitative description of the relevant physical features. The isothermal model can be used in a…
Bishop, Martin; Rajani, Ronak; Plank, Gernot; Gaddum, Nicholas; Carr-White, Gerry; Wright, Matt; O'Neill, Mark; Niederer, Steven
2016-03-01
Transmural lesion formation is critical to success in atrial fibrillation ablation and is dependent on left atrial wall thickness (LAWT). Pre- and peri-procedural planning may benefit from LAWT measurements. To calculate the LAWT, the Laplace equation was solved over a finite element mesh of the left atrium derived from the segmented computed tomographic angiography (CTA) dataset. Local LAWT was then calculated from the length of field lines derived from the Laplace solution that spanned the wall from the endocardium or epicardium. The method was validated on an atrium phantom and retrospectively applied to 10 patients who underwent routine coronary CTA for standard clinical indications at our institute. The Laplace wall thickness algorithm was validated on the left atrium phantom. Wall thickness measurements had errors of <0.2 mm for thicknesses of 0.5-5.0 mm that are attributed to image resolution and segmentation artefacts. Left atrial wall thickness measurements were performed on 10 patients. Successful comprehensive LAWT maps were generated in all patients from the coronary CTA images. Mean LAWT measurements ranged from 0.6 to 1.0 mm and showed significant inter and intra patient variability. Left atrial wall thickness can be measured robustly and efficiently across the whole left atrium using a solution of the Laplace equation over a finite element mesh of the left atrium. Further studies are indicated to determine whether the integration of LAWT maps into pre-existing 3D anatomical mapping systems may provide important anatomical information for guiding radiofrequency ablation. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Vrljicak, Kristina; Turudić, Daniel; Bambir, Ivan; Gradiski, Ivan Pavao; Spajić, Borislav; Batinić, Danica; Topalović-Grković, Marija; Spajić, Marija; Batinić, Danko; Milosević, Danko
2013-12-01
The main purpose of this study was to demonstrate positive feedback loop between bladder wall nodules (nodules being one of the key diagnostic factors), bladder wall thickness, and recurrent urinary tract infections. Cystitis cystica was diagnosed in 115 prepubertal girls (mean age 7.79 +/- 3.05 years) by optic examination of bladder mucosal nodules and by ultrasonographic measurement of bladder wall thickness. Bladder wall thickness increased with the frequency of recurrent urinary tract infections as well as with the number of nodules on bladder wall mucosa (3.52 +/- 0.522 mm < or = 5 nodules vs. 4.42 +/- 0.429 mm 6-10 nodules vs. 5.20 +/- 0.610 mm > 10 nodules, respectively). Study results suggested that early control of urinary tract infections by chemoprophylaxis could prevent higher grades of bladder wall mucosal changes and consequently shorten the length of chemoprophylaxis.
NASA Astrophysics Data System (ADS)
Zhao, Qiwen; Yang, Lianfa; He, Yulin
2018-05-01
The Forming limit diagram (FLD), also known as a forming limit curves (FLC), is generally used in metal forming for predicting forming behavior of metals. The purpose of the study is to clarify the difference among the FLC of tubes with initial wall-thickness difference under tension-compression strain states using finite element (FE) simulation of tube hydroforming (THF) and different instability criteria. Firstly, geometrical models for SUS304 stainless steel tubes with initial wall-thickness differences were built by introducing an index `wall-thickness deviation rate'. Secondly, forced-end hydro-bugling of the tubes was modeled and the forming process was simulated by using the commercial finite element (FE) code ABAQUS/Explicit 6.10. Afterwards, the limiting strains of the material in the hydro-bugling process were calculated based on the simulated resultant data and three instability criteria-strain change criterion, strain rate change criterion and strain path change criterion, respectively. Finally, the FLD for the tubes was established and the effect of wall-thickness deviation rate on the FLD was analyzed and the differences among the FLC based on the three instability criteria were compared. The results showed that the FLC are observed to shift in the major-minor strain coordinate system due to the initial non-uniform wall-thickness; however, no distinct differences among the FLC based on the three instability criteria were observed.
49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.
Code of Federal Regulations, 2010 CFR
2010-10-01
... both with a water capacity of not over 100 pounds and a service pressure of at least 500 but not over... (b) of this section. (f) Wall thickness. The minimum wall thickness must be such that the wall stress...) Calculation for sphere must be made by the formula: S = PD / 4tE Where: S = Wall stress in psi; P = Test...
Accurate Measurement of Small Airways on Low-Dose Thoracic CT Scans in Smokers
Conradi, Susan H.; Atkinson, Jeffrey J.; Zheng, Jie; Schechtman, Kenneth B.; Senior, Robert M.; Gierada, David S.
2013-01-01
Background: Partial volume averaging and tilt relative to the scan plane on transverse images limit the accuracy of airway wall thickness measurements on CT scan, confounding assessment of the relationship between airway remodeling and clinical status in COPD. The purpose of this study was to assess the effect of partial volume averaging and tilt corrections on airway wall thickness measurement accuracy and on relationships between airway wall thickening and clinical status in COPD. Methods: Airway wall thickness measurements in 80 heavy smokers were obtained on transverse images from low-dose CT scan using the open-source program Airway Inspector. Measurements were corrected for partial volume averaging and tilt effects using an attenuation- and geometry-based algorithm and compared with functional status. Results: The algorithm reduced wall thickness measurements of smaller airways to a greater degree than larger airways, increasing the overall range. When restricted to analyses of airways with an inner diameter < 3.0 mm, for a theoretical airway of 2.0 mm inner diameter, the wall thickness decreased from 1.07 ± 0.07 to 0.29 ± 0.10 mm, and the square root of the wall area decreased from 3.34 ± 0.15 to 1.58 ± 0.29 mm, comparable to histologic measurement studies. Corrected measurements had higher correlation with FEV1, differed more between BMI, airflow obstruction, dyspnea, and exercise capacity (BODE) index scores, and explained a greater proportion of FEV1 variability in multivariate models. Conclusions: Correcting for partial volume averaging improves accuracy of airway wall thickness estimation, allowing direct measurement of the small airways to better define their role in COPD. PMID:23172175
Active formation of 'chaos terrain' over shallow subsurface water on Europa.
Schmidt, B E; Blankenship, D D; Patterson, G W; Schenk, P M
2011-11-16
Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3 kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America. ©2011 Macmillan Publishers Limited. All rights reserved
Im, Hyungsoon; Lee, Si Hoon; Wittenberg, Nathan J.; Johnson, Timothy W.; Lindquist, Nathan C.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun
2011-01-01
Inexpensive, reproducible and high-throughput fabrication of nanometric apertures in metallic films can benefit many applications in plasmonics, sensing, spectroscopy, lithography and imaging. Here we use template stripping to pattern periodic nanohole arrays in optically thick, smooth Ag films with a silicon template made via nanoimprint lithography. Ag is a low-cost material with good optical properties, but it suffers from poor chemical stability and biocompatibility. However, a thin silica shell encapsulating our template-stripped Ag nanoholes facilitates biosensing applications by protecting the Ag from oxidation as well as providing a robust surface that can be readily modified with a variety of biomolecules using well-established silane chemistry. The thickness of the conformal silica shell can be precisely tuned by atomic layer deposition, and a 15-nm-thick silica shell can effectively prevent fluorophore quenching. The Ag nanohole arrays with silica shells can also be bonded to polydimethylsiloxane (PDMS) microfluidic channels for fluorescence imaging, formation of supported lipid bilayers, and real-time, label-free SPR sensing. Additionally, the smooth surfaces of the template-stripped Ag films enhance refractive index sensitivity compared with as-deposited, rough Ag films. Because nearly centimeter-sized nanohole arrays can be produced inexpensively without using any additional lithography, etching or lift-off, this method can facilitate widespread applications of metallic nanohole arrays for plasmonics and biosensing. PMID:21770414
Compliance of the abdominal wall during laparoscopic insufflation.
Becker, Chuck; Plymale, Margaret A; Wennergren, John; Totten, Crystal; Stigall, Kyle; Roth, J Scott
2017-04-01
To provide adequate workspace between the viscera and abdominal wall, insufflation with carbon dioxide is a common practice in laparoscopic surgeries. An insufflation pressure of 15 mmHg is considered to be safe in patients, but all insufflation pressures create perioperative and postoperative physiologic effects. As a composition of viscoelastic materials, the abdominal wall should distend in a predictable manner given the pressure of the pneumoperitoneum. The purpose of this study was to elucidate the relationship between degree of abdominal distention and the insufflation pressure, with the goal of determining factors which impact the compliance of the abdominal wall. A prospective, IRB-approved study was conducted to video record the abdomens of patients undergoing insufflation prior to a laparoscopic surgery. Photo samples were taken every 5 s, and the strain of the patient's abdomen in the sagittal plane was determined, as well as the insufflator pressure (stress) at bedside. Patients were insufflated to 15 mmHg. The relationship between the stress and strain was determined in each sample, and compliance of the patient's abdominal wall was calculated. Subcutaneous fat thickness and rectus abdominus muscle thickness were obtained from computed tomography scans. Correlations between abdominal wall compliances and subcutaneous fat and muscle content were determined. Twenty-five patients were evaluated. An increased fat thickness in the abdominal wall had a direct exponential relationship with abdominal wall compliance (R 2 = 0.59, p < 0.05). There was no correlation between muscle and fat thickness. All insufflation pressures create perioperative and postoperative complications. The compliance of patients' abdominal body walls differs, and subcutaneous fat thickness has a direct exponential relationship with abdominal wall compliance. Thus, insufflation pressures can be better tailored per the patient. Future studies are needed to demonstrate the clinical impact of varying insufflation pressures.
Study on thickness distribution of thermoformed medical PVC blister
NASA Astrophysics Data System (ADS)
Li, Yiping
2017-08-01
Vacuum forming has many advantages over other plastic forming processes due to its cost effectiveness, time efficiency, higher product precision, and more design flexibility. Nevertheless, when pressures greater than the atmospheric value are required to force the thermo-plastic into more intimate contact with the mold surface, pressure forming is a better choice. This paper studies the process of air-pressure thermoforming of plastic sheet, and focuses on medical blister PVC products. ANSYS POLYFLOW tool is used to simulate the process and analyze the wall thickness distribution of the blister. The influence of mold parameters on the wall thickness distribution of thermoformed part is thus obtained through simulation. Increasing radius between mold and side wall at the bottom of blister and draft prove to improve the wall thickness distribution.
Calculation of load distribution in stiffened cylindrical shells
NASA Technical Reports Server (NTRS)
Ebner, H; Koller, H
1938-01-01
Thin-walled shells with strong longitudinal and transverse stiffening (for example, stressed-skin fuselages and wings) may, under certain simplifying assumptions, be treated as static systems with finite redundancies. In this report the underlying basis for this method of treatment of the problem is presented and a computation procedure for stiffened cylindrical shells with curved sheet panels indicated. A detailed discussion of the force distribution due to applied concentrated forces is given, and the discussion illustrated by numerical examples which refer to an experimentally determined circular cylindrical shell.
Vibrations of a thin cylindrical shell stiffened by rings with various stiffness
NASA Astrophysics Data System (ADS)
Nesterchuk, G. A.
2018-05-01
The problem of vibrations of a thin-walled elastic cylindrical shell reinforced by frames of different rigidity is investigated. The solution for the case of the clamped shell edges was obtained by asymptotic methods and refined by the finite element method. Rings with zero eccentricity and stiffness varying along the generatrix of the shell cylinder are considered. Varying the optimal coefficients of the distribution functions of the rigidity of the frames and finding more precise parameters makes it possible to find correction factors for analytical formulas of approximate calculation.
Siennicka, Aldona; Zuchowski, Marta; Kaczmarczyk, Mariusz; Cnotliwy, Miłosław; Clark, Jeremy Simon; Jastrzębska, Maria
2018-03-20
The hemostatic system cooperates with proteolytic degradation in processes allowing abdominal aortic aneurysm (AAA) formation. In previous studies, it has been suggested that aneurysm rupture depends on intraluminal thrombus (ILT) thickness, which varies across each individual aneurysm. We hypothesized that hemostatic components differentially accumulate in AAA tissue in relation to ILT thickness. Thick (A1) and thin (B1) segments of ILTs and aneurysm wall sections A (adjacent to A1) and B (adjacent to B1) from one aneurysm sac were taken from 35 patients undergoing elective repair. Factor levels were measured using enzyme-linked immunosorbent assay of protein extract. Tissue factor (TF) activities were significantly higher in thinner segments of AAA (B1 vs A1, P = .003; B vs A, P < .001; B vs A1, P < .001; B vs B1, P = .001). Significantly higher tissue plasminogen activator was found in thick thrombus-covered wall segments (A) than in B, A1, and B1 (P = .015, P < .001, and P < .001, respectively). Plasminogen concentrations were highest in ILT. Concentrations of α 2 -antiplasmin in thin ILT adjacent walls (B) were higher compared with wall (A) adjacent to thick ILT (P = .021) and thick ILT (A1; P < .001). Significant correlations between levels of different factors were mostly found in thick ILT (A1). However, no correlations were found at B sites, except for a correlation between plasmin and TF activities (r = 0.55; P = .004). These results suggest that higher TF activities are present in thinner AAA regions. These parameters and local fibrinolysis may be part of the processes leading to destruction of the aneurysm wall. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, Jiang; Hasegawa, Hideyuki; Kanai, Hiroshi
2005-06-01
For the assessment of the elasticity of the arterial wall, we have developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness due to heartbeats and the elasticity of the arterial wall with transcutaneous ultrasound. For various reasons, for example, an extremely small deformation of the wall, the minute change in wall thickness during one heartbeat is largely influenced by noise in these cases and the reliability of the elasticity distribution obtained from the maximum change in thickness deteriorates because the maximum value estimation is largely influenced by noise. To obtain a more reliable cross-sectional image of the elasticity of the arterial wall, in this paper, a matching method is proposed to evaluate the waveform of the measured change in wall thickness by comparing the measured waveform with a template waveform. The maximum deformation, which is used in the calculation of elasticity, was determined from the amplitude of the matched model waveform to reduce the influence of noise. The matched model waveform was obtained by minimizing the difference between the measured and template waveforms. Furthermore, a random error, which was obtained from the reproducibility among the heartbeats of the measured waveform, was considered useful for the evaluation of the reliability of the measured waveform.
Optical studies of CdSe/HgSe and CdSe/Ag2Se core/shell nanoparticles embedded in gelatin
NASA Astrophysics Data System (ADS)
Azhniuk, Yu M.; Dzhagan, V. M.; Raevskaya, A. E.; Stroyuk, A. L.; Kuchmiy, S. Ya; Valakh, M. Ya; Zahn, D. R. T.
2008-11-01
CdSe/HgSe and CdSe/Ag2Se core-shell nanoparticles are obtained by colloidal synthesis from aqueous solutions in the presence of gelatin. Optical absorption, luminescence, and Raman spectra of the nanoparticles obtained are measured. The variation of the optical spectra of CdSe/HgSe and CdSe/Ag2Se core-shell nanoparticles with the shell thickness is discussed. Sharp non-monotonous variation of the photoluminescence spectra at low shell coverage is observed.
Tongyoo, Assanee; Chatthamrak, Putipan; Sriussadaporn, Ekkapak; Limpavitayaporn, Palin; Mingmalairak, Chatchai
2015-07-01
The surgical site infection (SSI) is a common complication of abdominal operation. It relates to increased hospital stay, increased healthcare cost, and decreased patient's quality of life. Obesity, usually defined by BMI, is known as one of the risks of SSI. However, the thickness of subcutaneous layers of abdominal wall might be an important local factor affecting the rate of SSI after the abdominal operations. The objective of this study is to assess the importance of the abdominal wall thickness on incisional SSI rate. The subjects of the present study were patients who had undergone major abdominal operations at Thammasat University Hospital between June 2013 and May 2014, and had been investigated with CT scans before their operations. The demographic data and clinical information of these patients were recorded. The thickness ofsubcutaneous fatty tissue from skin down to the most superficial layer of abdominal wall muscle at the surgical site was measured on CT images. The wound infectious complication was reviewed and categorized as superficial and deep incisional SSIfollowing the definition from Centersfor Disease Control and Prevention (CDC) guidelines. The significance ofeach potentialfactors on SSI rates was determined separately with student t-test for quantitative data and χ2-test for categorical data. Then all factors, which had p < 0.10, were included into the multivariate logistic regression analysis and were analyzed with significance at p < 0.05. One hundred and thirty-nine patients were included in this study. They all underwent major abdominal surgery and had had pre-operative CTscans. Post-operative SSI was 25.2% (35/139), superficial and deep types in 27 and 8 patients, respectively. The comparison of abdominal wall thickness between patients with and without infection was significantly different (20.0 ± 8.4 mm and 16.0 ± 7.2 mm, respectively). When the thickness at 20 mm was used as the cut-off value, 43 of 139 patients had abdominal wall thickness ≥ 20 mm. The incidence of SSI of the thickness ±20 mm group was 37.2% (16/43) and of the less thickness group was 19.8% (19/96), with p < 0.05. The univariate analysis revealed that abdominal wall thickness ≥ 20 mm, body weight ≥ 60 kg, and wound classification were the important factors related to SSI after the abdominal operation. However, only abdominal wall thickness and wound classification were still significant by multivariate analysis. The findings of this study confirmed the significance of the subcutaneous thickness of abdominal wall at the surgical site on the incidence of incisional SSI. The thickness ≥ 20 mm had an effect on increasing post operative SSI rate especially in contaminated operations. These findings could be helpful in making healthcare providers fully aware and thus exercise special attention in wound care or even develop new modalities to prevent SSI in patients with the aforementioned risks.
NASA Astrophysics Data System (ADS)
Guo, S. C.; Chu, M. S.
2002-11-01
The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω-2≪1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX.
Preparation of polydopamine nanocapsules in a miscible tetrahydrofuran-buffer mixture.
Ni, Yun-Zhou; Jiang, Wen-Feng; Tong, Gang-Sheng; Chen, Jian-Xin; Wang, Jie; Li, Hui-Mei; Yu, Chun-Yang; Huang, Xiao-hua; Zhou, Yong-Feng
2015-01-21
A miscible tetrahydrofuran-tris buffer mixture has been used to fabricate polydopamine hollow capsules with a size of 200 nm and with a shell thickness of 40 nm. An unusual non-emulsion soft template mechanism has been disclosed to explain the formation of capsules. The results indicate that the capsule structure is highly dependent on the volume fraction of tetrahydrofuran as well as the solvent, and the shell thickness of capsules can be controlled by adjusting the reaction time and dopamine concentration.
Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays
Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; Paik, Haemin; Roh, Hee Seok; Hong, Jongin; Hong, Seungbum; Han, Seung Min; No, Kwangsoo
2015-01-01
PVDF and P(VDF-TrFE) nano- and micro- structures have been widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use of the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures. PMID:26040539
Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays
Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; ...
2015-06-04
PVDF and P(VDF-TrFE) nano- and micro- structures are widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use ofmore » the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures.« less
Method of producing silicon. [gas phase reactor multiple injector liquid feed system
NASA Technical Reports Server (NTRS)
Wolf, C. B.; Meyer, T. N. (Inventor)
1980-01-01
A liquid reactant injector assembly suited for the injection of liquid reactant into a high temperature metal reductant vapor and carrier gas stream for the production of metal is presented. The assembly is especially adapted for the continuous production of high purity silicon by the reduction of SiCl4 with sodium. The assembly includes a refractory-lined, hollow metal shell having ten equally-spaced, concentric, radially directed ports provided in the shell and wall. A hydraulic, atomizing type spray nozzle is mounted in each of the ports recessed from the inner wall surface.
STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR
Busey, H.M.
1958-06-01
A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.
Cambell, W P; Griffiths, D A
1975-07-01
The aerial, thick-walled spores in Diheterospara chlamydosporia arose as terminal swellings on erect hyphae. Repeated septation of the continuously swelling spore resulted in a multicellular structure. Immediately after the onset of septation secondary wall material was laid down between the two-layered primary wall and the plasmalemma. The presence of secondary wall material indicates that the multicellular spore is a dictyochlamydospore and not an aleuriospore. The relationship between chlamydospores and aleuriospores in other fungi is discussed.
Localized tidal deformations and dissipation in Enceladus
NASA Astrophysics Data System (ADS)
Beuthe, M.
2017-12-01
The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should include lateral variations of shell structure. I solve this problem with a new theory of non-uniform viscoelastic thin shells, allowing for large lateral variations of crustal thickness as well as large 3D variations of crustal rheology. The coupling to tidal forcing takes into account self-gravity, density stratification below the shell, core viscoelasticity, and crustal compressibility. The resulting tidal thin shell equations are two partial differential equations defined on the spherical surface, which can be solved numerically much faster than 3D Finite Element Methods. The error on tidal displacements is less than 5% if the thickness is less than 10% of the radius while the error on the deviatoric stress varies between 0 and 10%. If Enceladus's shell is conductive with isostatic thickness variations, crustal thinning increases surface stresses by 60% at the north pole and by a factor of more than 3 at the south pole. Similarly, the surface flux resulting from crustal dissipation increases by a factor of 3 at the south pole. If dissipation is an order of magnitude higher than predicted by the Maxwell model (as suggested by recent experimental data), the power dissipated in the crust could reach 50% of the total power required to maintain the crust in thermal equilibrium, and most of the surface flux variation could be explained by latitudinal variations of crustal dissipation. In all cases, a large part of the heat budget must be generated below the crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarick, Holly F.; Boulesbaa, Abdelaziz; Talbert, Eric M.
In this paper, we have examined the ultrafast dynamics of shape- and composition-controlled bimetallic Au/Ag core/shell nanostructures with transient absorption spectroscopy (TAS) as a function of Ag layer thickness (0–15 nm) and pump excitation fluence (50–500 nJ/pulse). Our synthesis approach generated both bimetallic nanocubes and nanopyramids with distinct dipolar plasmon resonances and plasmon dephasing behavior at the resonance. Lifetimes obtained from TAS at low powers (50 nJ/pulse) demonstrated minimal dependence on the Ag layer thickness, whereas at high power (500 nJ/pulse) a rise in electron–phonon coupling lifetime (τ 1) was observed with increasing Ag shell thickness for both nanocubes andmore » nanopyramids. This is attributable to the stronger absorption of the 400 nm pump pulse with higher Ag content, which induced higher electron temperatures. The phonon–phonon scattering lifetime (τ 2) also rises with increasing Ag layer, contributed both by the increasing size of the Au/Ag nanostructures as well as by surface chemistry effects. Further, we observed that even the thinnest, 2 nm, Ag shell strongly impacts both τ 1 and τ 2 at high power despite minimal change in overall size, indicating that the nanostructure composition also strongly impacts the thermalization temperature following absorption of 400 nm light. We also observed a shape-dependent trend at high power, where τ 2 increased for the nanopyramids with increasing Ag shell thickness and nanostructure size, but bimetallic nanocubes demonstrated an unexpected decrease in τ 2 for the thickest, 15 nm, Ag shell. This was attributed to the larger number of corners and edges in the nanocubes relative to the nanopyramids.« less
NASA Astrophysics Data System (ADS)
Wang, Wanlin; Lou, Zhican; Zhang, Haihui
2018-03-01
With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.
NASA Astrophysics Data System (ADS)
Wang, Wanlin; Lou, Zhican; Zhang, Haihui
2018-06-01
With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.
Numerical prediction of flow induced fibers orientation in injection molded polymer composites
NASA Astrophysics Data System (ADS)
Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.
2015-12-01
Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.
Anisotropic deformation of metallo-dielectric core shell colloids under MeV ion irradiation
NASA Astrophysics Data System (ADS)
Penninkhof, J. J.; van Dillen, T.; Roorda, S.; Graf, C.; van Blaaderen, A.; Vredenberg, A. M.; Polman, A.
2006-01-01
We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks.
Thermoresponsive Microcarriers for Smart Release of Hydrate Inhibitors under Shear Flow.
Lee, Sang Seok; Park, Juwoon; Seo, Yutaek; Kim, Shin-Hyun
2017-05-24
The hydrate formation in subsea pipelines can cause oil and gas well blowout. To avoid disasters, various chemical inhibitors have been developed to prevent or delay the hydrate formation and growth. Nevertheless, direct injection of the inhibitors results in environmental contamination and cross-suppression of inhibition performance in the presence of other inhibitors against corrosion and/or formation of scale, paraffin, and asphaltene. Here, we suggest a new class of microcarriers that encapsulate hydrate inhibitors at high concentration and release them on demand without active external triggering. The key to the success in microcarrier design lies in the temperature dependence of polymer brittleness. The microcarriers are microfluidically created to have an inhibitor-laden water core and polymer shell by employing water-in-oil-in-water (W/O/W) double-emulsion drops as a template. As the polymeric shell becomes more brittle at a lower temperature, there is an optimum range of shell thickness that renders the shell unstable at temperature responsible for hydrate formation under a constant shear flow. We precisely control the shell thickness relative to the radius by microfluidics and figure out the optimum range. The microcarriers with the optimum shell thickness are selectively ruptured by shear flow only at hydrate formation temperature and release the hydrate inhibitors. We prove that the released inhibitors effectively retard the hydrate formation without reduction of their performance. The microcarriers that do not experience the hydration formation temperature retain the inhibitors, which can be easily separated from ruptured ones for recycling by exploiting the density difference. Therefore, the use of microcarriers potentially minimizes the environmental damages.
[The cutaneous groin flap for coverage of a full-thickness abdominal wall defect].
Doebler, O; Spierer, R
2010-08-01
A full-thickness defect of the abdominal wall is rare and may occur as a complication of extended abdominal surgery procedures. We report about a 69-year-old patient who was presented to our department with a full-thickness abdominal wall defect and a fully exposed collagen-mesh for reconstructive wound closure. 13 operations with resections of necrotic parts of the abdominal wall were performed following a complicated intraabdominal infection. After debridement and mesh explantation, closure of the remaining defect of the lower abdominal region was achieved by a cutaneous groin flap. Georg Thieme Verlag KG Stuttgart New York.
NASA Technical Reports Server (NTRS)
Bushnell, D.
1974-01-01
Code is easy to use yet is general with respect to: (a) type of analysis to be performed; (b) geometry of shell meridian; (c) type of wall construction; (d) type of boundary conditions, ring supports, and branching configuration; and (e) type of loading.
Krifka, Stephanie; Anthofer, Thomas; Fritzsch, Marcus; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne
2009-01-01
No information is currently available about what the critical cavity wall thickness is and its influence upon 1) the marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and 2) the crack formation of dental tissues. This in vitro study of CI and PCC tested the effects of different remaining cusp wall thicknesses on marginal integrity and enamel crack formation. CI (n = 25) and PCC (n = 26) preparations were performed in extracted human molars. Functional cusps of CI and PCC were adjusted to a 2.5 mm thickness; for PCC, the functional cusps were reduced to a thickness of 2.0 mm. Non-functional cusps were adjusted to wall thicknesses of 1) 1.0 mm and 2) 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were fabricated and adhesively luted to the cavities with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading (TCML: 5000 x 5 degrees C-55 degrees C; 30 seconds/cycle; 500000 x 72.5N, 1.6Hz). Marginal integrity was assessed by evaluating a) dye penetration (fuchsin) on multiple sections after TCML and by using b) quantitative margin analysis in the scanning electron microscope (SEM) before and after TCML. Ceramic- and tooth-luting agent interfaces (LA) were evaluated separately. Enamel cracks were documented under a reflective light microscope. The data were statistically analyzed with the Mann Whitney U-test (alpha = 0.05) and the Error Rates Method (ERM). Crack formation was analyzed with the Chi-Square-test (alpha = 0.05) and ERM. In general, the remaining cusp wall thickness, interface, cavity design and TCML had no statistically significant influence on marginal integrity for both CI and PCC (ERM). Single pairwise comparisons showed that the CI and PCC of Group 2 had a tendency towards less microleakage along the dentin/LA interface than Group 1. Cavity design and location had no statistically significant influence on crack formation, but the specimens with 1.0 mm of remaining wall thickness had statistically significantly more crack formation after TCML than the group with 2.0 mm of remaining cusp wall thickness for CI. The remaining cusp wall thickness of non-functional cusps of adhesively bonded restorations (especially for CI) should have a thickness of at least 2.0 mm to avoid cracks and marginal deficiency at the dentin/LA interface.
Liang, Yuan-Chang; Chung, Cheng-Chia; Lo, Ya-Ju; Wang, Chein-Chung
2016-01-01
The ZnO-CdS core-shell composite nanorods with CdS shell layer thicknesses of 5 and 20 nm were synthesized by combining the hydrothermal growth of ZnO nanorods with the sputtering thin-film deposition of CdS crystallites. The microstructures and optical properties of the ZnO-CdS nanorods were associated with the CdS shell layer thickness. A thicker CdS shell layer resulted in a rougher surface morphology, more crystal defects, and a broader optical absorbance edge in the ZnO-CdS rods. The ZnO-CdS (20 nm) nanorods thus engaged in more photoactivity in this study. When they were further subjected to a postannealing procedure in ambient Ar/H2, this resulted in the layer-like CdS shell layers being converted into the serrated CdS shell layers. By contrast, the ZnO-CdS nanorods conducted with the postannealing procedure exhibited superior photoactivity and photoelectrochemical performance; the substantial changes in the microstructures and optical properties of the composite nanorods following postannealing in this study might account for the observed results. PMID:28774134
Ceramic Spheres—A Novel Solution to Deep Sea Buoyancy Modules
Jiang, Bo; Blugan, Gurdial; Sturzenegger, Philip N.; Gonzenbach, Urs T.; Misson, Michael; Thornberry, John; Stenerud, Runar; Cartlidge, David; Kuebler, Jakob
2016-01-01
Ceramic-based hollow spheres are considered a great driving force for many applications such as offshore buoyancy modules due to their large diameter to wall thickness ratio and uniform wall thickness geometric features. We have developed such thin-walled hollow spheres made of alumina using slip casting and sintering processes. A diameter as large as 50 mm with a wall thickness of 0.5–1.0 mm has been successfully achieved in these spheres. Their material and structural properties were examined by a series of characterization tools. Particularly, the feasibility of these spheres was investigated with respect to its application for deep sea (>3000 m) buoyancy modules. These spheres, sintered at 1600 °C and with 1.0 mm of wall thickness, have achieved buoyancy of more than 54%. As the sphere’s wall thickness was reduced (e.g., 0.5 mm), their buoyancy reached 72%. The mechanical performance of such spheres has shown a hydrostatic failure pressure above 150 MPa, corresponding to a rating depth below sea level of 5000 m considering a safety factor of 3. The developed alumina-based ceramic spheres are feasible for low cost and scaled-up production and show great potential at depths greater than those achievable by the current deep-sea buoyancy module technologies. PMID:28773651
An approach for characterising cellular polymeric foam structures using computed tomography
NASA Astrophysics Data System (ADS)
Chen, Youming; Das, Raj; Battley, Mark
2018-02-01
Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.
Transport Processes in the Ice Shell of Europa — A Review
NASA Astrophysics Data System (ADS)
Rhoden, A. R.
2017-11-01
Recent models and observations of Europa's geologic activity suggest a dynamic ice shell, rich with liquid water, that may change in thickness and activity over time. Implications for Europa's habitability and future exploration will be discussed.
NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.
Cheng, Liyuan; Zhou, Xuegang; Zhong, Hong; Deng, Xuliang; Cai, Qing; Yang, Xiaoping
2014-01-01
A kind of core-shell nanofibers containing sodium fluoride (NaF) was produced and used as reinforcing materials for dimethacrylate-based dental restorative resins in this study. The core-shell nanofibers were prepared by coaxial-electrospinning with polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) solutions as core and shell fluids, respectively. The produced PAN-PMMA nanofibers varied in fiber diameter and the thickness of PMMA shell depending on electrospinning parameters. NaF-loaded nanofibers were obtained by incorporating NaF nanocrystals into the core fluid at two loadings (0.8 or 1.0wt.%). Embedment of NaF nanocrystals into the PAN core did not damage the core-shell structure. The addition of PAN-PMMA nanofibers into Bis-GMA/TEGDMA clearly showed the reinforcement due to the good interfacial adhesion between fibers and resin. The flexural strength (Fs) and flexural modulus (Ey) of the composites decreased slightly as the thickness of PMMA shell increasing. Sustained fluoride releases with minor initial burst release were achieved from NaF-loaded core-shell nanofibers and the corresponding composites, which was quite different from the case of embedding NaF nanocrystals into the dental resin directly. The study demonstrated that NaF-loaded PAN-PMMA core-shell nanofibers were not only able to improve the mechanical properties of restorative resin, but also able to provide sustained fluoride release to help in preventing secondary caries. © 2013.
NASA Astrophysics Data System (ADS)
Malmberg, J.-A.; Brunsell, P. R.
2002-01-01
Observations of resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell (τw=6 ms) reversed field pinch are described. A nonresonant mode (m=1,n=-10) with the same handedness as the internal field grows nearly exponentially with an average growth time of about 2.6 ms (less than 1/2 of the shell time) consistent with linear stability theory. The externally nonresonant unstable modes (m=1,n>0), predicted by linear stability theory, are observed to have only low amplitudes (in the normal low-Θ operation mode of the device). The radial field of the dominant internally resonant tearing modes (m=1,n=-15 to n=-12) remain low due to spontaneous fast mode rotation, corresponding to angular phase velocities up to 280 krad/s. Phase aligned mode structures are observed to rotate toroidally with an average angular velocity of 40 krad/s, in the opposite direction of the plasma current. Toward the end of the discharge, the radial field of the internally resonant modes grows as the modes slow down and become wall-locked, in agreement with nonlinear computations. Fast rotation of the internally resonant modes has been observed only recently and is attributed to a change of the front-end system (vacuum vessel, shell, and TF coil) of the device.
NASA Astrophysics Data System (ADS)
Instanes, Geir; Pedersen, Audun; Toppe, Mads; Nagy, Peter B.
2009-03-01
This paper describes a novel ultrasonic guided wave inspection technique for the monitoring of internal corrosion and erosion in pipes, which exploits the fundamental flexural mode to measure the average wall thickness over the inspection path. The inspection frequency is chosen so that the group velocity of the fundamental flexural mode is essentially constant throughout the wall thickness range of interest, while the phase velocity is highly dispersive and changes in a systematic way with varying wall thickness in the pipe. Although this approach is somewhat less accurate than the often used transverse resonance methods, it smoothly integrates the wall thickness over the whole propagation length, therefore it is very robust and can tolerate large and uneven thickness variations from point to point. The constant group velocity (CGV) method is capable of monitoring the true average of the wall thickness over the inspection length with an accuracy of 1% even in the presence of one order of magnitude larger local variations. This method also eliminates spurious variations caused by changing temperature, which can cause fairly large velocity variations, but do not significantly influence the dispersion as measured by the true phase angle in the vicinity of the CGV point. The CGV guided wave CEM method was validated in both laboratory and field tests.
Enhancing cell-free layer thickness by bypass channels in a wall.
Saadatmand, M; Shimogonya, Y; Yamaguchi, T; Ishikawa, T
2016-07-26
When blood flows near a wall, red blood cells (RBCs) drift away from the wall and a cell-free layer (CFL) is formed adjacent to the wall. Controlling the CFL thickness is important for preventing adhesion of cells in the design of biomedical devices. In this study, a novel wall configuration with stenoses and bypass channels is proposed to increase the CFL thickness. We found that the presence of bypass channels modified the spatial distribution of cells and substantially increased the CFL downstream of the stenosis. A single-bypass geometry with 5% hematocrit (Hct) blood flow showed a 1.7μm increase in CFL thickness compared to without the bypass. In the case of three bypass channels, a 3μm increase in CFL thickness was observed. The CFL enhancement was observed up to 10% Hct, but no significant enhancement of CFL was indicated for 20% Hct blood flow. The mechanism of the CFL enhancement was investigated using a numerical simulation of the flow field. The results showed that the distance between each streamline and the corner of the stenosis compared with size of RBC was important parameter in regulating CFL thickness. These results show the potential of the proposed mechanism to prevent adhesion of cells to biomedical devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evolution of Planetary Ice-Ocean Systems: Effects of Salinity
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2015-12-01
Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state and possibly the intermediate states of the ice-ocean system as it evolved over time. This could help constrain the endogenic contribution of salts to the surface chemistry.
Tube wall thickness measurement apparatus
Lagasse, P.R.
1985-06-21
An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.
Tube wall thickness measurement apparatus
Lagasse, Paul R.
1987-01-01
An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.
Lamb mode selection for accurate wall loss estimation via guided wave tomography
NASA Astrophysics Data System (ADS)
Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.
2014-02-01
Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1-2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S0 and A0, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A0 to thickness variations was shown to be superior to S0, however, the attenuation from A0 when a liquid loading was present was much higher than S0. A0 was less sensitive to the presence of coatings on the surface of than S0.
Direct-drive DT implosions with Knudsen number variations
Kim, Yong Ho; Herrmann, Hans W.; Hoffman, Nelson M.; ...
2016-05-26
Direct-drive implosions of DT-filled plastic-shells have been conducted at the Omega laser facility, measuring nuclear yields while varying Knudsen numbers (i.e., the ratio of mean free path of fusing ions to the length of fuel region) by adjusting both shell thickness (e.g., 7.5, 15, 20, 30 μm) and fill pressure (e.g., 2, 5, 15 atm). In addition, the fusion reactivity reduction model showed a stronger effect on yield as the Knudsen number increases (or the shell thickness decreases). The Reduced-Ion-Kinetic (RIK) simulation which includes both fusion reactivity reduction and mix model was necessary to provide a better match between themore » observed neutron yields and those simulated.« less
NASA Astrophysics Data System (ADS)
Szczepanik, M.; Poteralski, A.
2016-11-01
The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.
NASA Astrophysics Data System (ADS)
Wan, Gengping; Luo, Yongming; Wu, Lihong; Wang, Guizhen
2018-03-01
CoFe/C core-shell structured nanocomposites (CoFe@C) have been fabricated through the thermal decomposition of acetylene with CoFe2O4 as precursor. The as-prepared CoFe@C was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The results demonstrate that the carbon shell in CoFe@C has a poor crystallization with a thickness about 5-30 nm and a content approximately 48.5 wt.%. Due to a good combination between intrinsic magnetic properties and high-electrical conductivity, the CoFe@C exhibits not only excellent absorption intensity but also wide frequency bandwidth. The minimum RL value of CoFe@C can reach - 44 dB at a thickness of 4.0 mm, and RL values below - 10 dB is up to 4.3 GHz at a thickness of 2.5 mm. The present CoFe@C may be a potential candidate for microwave absorption application.
The chocolate-egg problem: Fabrication of thin elastic shells through coating
NASA Astrophysics Data System (ADS)
Lee, Anna; Marthelot, Joel; Brun, Pierre-Thomas; Reis, Pedro M.
2015-03-01
We study the fabrication of thin polymeric shells based on the coating of a curved surface by a viscous fluid. Upon polymerization of the resulting thin film, a slender solid structure is delivered after demolding. This technique is extensively used, empirically, in manufacturing, where it is known as rotational molding, as well as in the food industry, e.g. for chocolate-eggs. This problem is analogous to the Landau-Levich-Derjaguin coating of plates and fibers and Bretherton's problem of film deposition in cylindrical channels, albeit now on a double-curved geometry. Here, the balance between gravity, viscosity, surface tension and polymerization rate can yield a constant thickness film. We seek to identify the physical ingredients that govern the final film thickness and its profile. In our experiments using organosilicon, we systematically vary the properties of the fluid, as well as the curvature of the substrate onto which the film is coated, and characterize the final thickness profile of the shells. A reduced model is developed to rationalize the process.
NASA Astrophysics Data System (ADS)
Wu, Rui; Ding, Shilei; Lai, Youfang; Tian, Guang; Yang, Jinbo
2018-01-01
The spin configuration in the ferromagnetic part during the magnetization reversal plays a crucial role in the exchange bias effect. Through Monte Carlo simulation, the exchange bias effect in ferromagnetic-antiferromagnetic core-shell nanoparticles is investigated. Magnetization reversals in the ferromagnetic core were controlled between the coherent rotation and the domain wall motion by modulating the ferromagnetic domain wall width with parameters of uniaxial anisotropy constant and exchange coupling strength. An anomalous monotonic dependence of exchange bias on the uniaxial anisotropy constant is found in systems with small exchange coupling, showing an obvious violation of classic Meiklejohn-Bean model, while domain walls are found to form close to the interface and propagate in the ferromagnetic core with larger uniaxial anisotropy in both branches of the hysteresis. The asymmetric magnetization reversal with the formation of a spherical domain wall dramatically reduces the coercive field in the ascending branch, leading to the enhancement of the exchange bias. The results provide another degree of freedom to optimize the magnetic properties of magnetic nanoparticles for applications.
Tamburi, Nicolás E; Seuffert, María E; Martín, Pablo R
2018-05-01
Temperature has a great influence on the life-history traits of freshwater snails. In this study we investigated the long term effects of a range of temperatures on shell morphology of the apple snail Pomacea canaliculata, a highly invasive species and an important pest of rice. Analysis of shells using geometric morphometrics showed that the main source of morphological variation was allometry, which was detected in males but not in females. This intersexual divergence in allometric trajectories generates much of the morphological variation evidenced. In females, the monotonic relationship with temperature produced narrower shells in the snails reared at lower temperatures, and more expanded apertures, relatively bigger than the body whorl, at higher temperatures. We also found an inverse relationship between relative shell weight, a proxy for shell thickness, and temperature. The differences in shape and relative shell weight are attributable to the different growth rates associated with different temperatures. Temperature fluctuation around a mean of 23.2 °C seemed to have no influence in shell shape and relative weight when is compared with a constant temperature of 25 °C. Information on the influence of temperature on freshwater snails is important for understanding and predicting changes in the face of global climatic change, especially in traits exhibiting great plasticity, such as shell shape and thickness. This work showed that higher temperatures could result in a relatively thinner shell, implying a greater significance of corrosion in flowing waters and a lower resistance to crushing by predators, especially in low latitude areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Using HT and DT gamma rays to diagnose mix in Omega capsule implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.
Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. Here, we propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method usesmore » a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT "clean" and DT "mix" gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. Furthermore, we observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λ ii~T 2/Z 2ρ at the gas/shell interface. Finally, since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.« less
Using HT and DT gamma rays to diagnose mix in Omega capsule implosions
Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.; ...
2016-05-26
Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. Here, we propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method usesmore » a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT "clean" and DT "mix" gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. Furthermore, we observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λ ii~T 2/Z 2ρ at the gas/shell interface. Finally, since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.« less
Using HT and DT gamma rays to diagnose mix in Omega capsule implosions
NASA Astrophysics Data System (ADS)
Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.; McEvoy, A. M.; Zylstra, A.; Hammel, B. A.; Sepke, S. M.; Leatherland, A.; Gales, S.
2016-05-01
Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. We propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method uses a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT “clean” and DT “mix” gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. An experiment to observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λii∼T2/Z2ρ at the gas/shell interface. Since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.
Oscillation-Mark Formation and Liquid-Slag Consumption in Continuous Casting Mold
NASA Astrophysics Data System (ADS)
Yang, Jie; Meng, Xiangning; Wang, Ning; Zhu, Miaoyong
2017-04-01
Traditional understanding on the complex multiphysics phenomenon of the meniscus in the oscillating mold for continuously cast steel, including oscillation-mark formation and liquid-slag consumption, has never considered the shape influence of the flux channel between the mold wall and the solidifying shell surface. Based on the reciprocating oscillation of mold, this study was carried out to calculate theoretically the periodic pressure and the liquid-slag layer thickness in the flux channel for the upper and the lower meniscus that possess different shapes in combination with a transient equilibrium profile of the flux channel as well as the sinusoidal and the nonsinusoidal oscillation modes of mold. The effect of flux channel shape on the multiphysics phenomenon in the meniscus was determined by the physical oscillation simulation by using an experimental cold model mold. The results show that the shape difference between the upper and the lower meniscus leads to the opposite direction of pressure in the flux channel. The pressure in the opposite direction plays a respective role in oscillation-mark formation and liquid-slag consumption in an oscillation cycle of mold, and thus, it makes a new mechanism for explaining the multiphysics phenomenon in the meniscus. The oscillation mark is initially formed by the rapid increase of positive channel pressure in the upper meniscus, and most of the liquid slag is infiltrated into the flux channel by the negative channel pressure in the lower meniscus from the end of a positive strip time to the beginning of the next positive strip time, including the negative strip time in between. Furthermore, the physical characteristics of the lubrication behavior in the meniscus are summarized, including liquid-slag infiltration, solidifying shell deformation, and the thickness change of the liquid-slag layer.
Scussel, Vildes M; Manfio, Daniel; Savi, Geovana D; Moecke, Elisa H S
2014-11-01
This work reports the in-shell Brazil nut spoilage susceptible morpho-histological characteristics and fungi infection (shell, edible part, and brown skin) through stereo and scanning electron microscopies (SEM). The following characteristics related to shell (a) morphology-that allow fungi and insects' entrance to inner nut, and (b) histology-that allow humidity absorption, improving environment conditions for living organisms development, were identified. (a.1) locule in testae-the nut navel, which is a cavity formed during nut detaching from pods (located at 1.0 to 2.0/4th of the shell B&C nut faces linkage). It allows the nut brown skin (between shell and edible part) first contact to the external environment, through the (a.2) nut channel-the locule prolongation path, which has the water/nutrients cambium function for their transport and distribution to the inner seed (while still on the tree/pod). Both, locule followed by the channel, are the main natural entrance of living organisms (fungi and insects), including moisture to the inner seed structures. In addition, the (a.3) nut shell surface-which has a crinkled and uneven surface morphology-allows water absorption, thus adding to the deterioration processes too. The main shell histological characteristic, which also allows water absorption (thus improving environment conditions for fungi proliferation), is the (b.1) cell wall porosity-the multilayered wall and porous rich cells that compose the shell faces double tissue layers and the (b.2) soft tissue-the mix of tissues 2 faces corner/linkage. This work also shows in details the SEM nut spoilage susceptible features highly fungi infected with hyphae and reproductive structures distribution. © 2014 Institute of Food Technologists®
Aamli Gagnat, Ane; Gjerdevik, Miriam; Gallefoss, Frode; Coxson, Harvey O; Gulsvik, Amund; Bakke, Per
2017-05-01
There is limited knowledge about the prognostic value of quantitative computed tomography (CT) measures of emphysema and airway wall thickness in cancer.The aim of this study was to investigate if using CT to quantitatively assess the amount of emphysema and airway wall thickness independently predicts the subsequent incidence of non-pulmonary cancer and lung cancer.In the GenKOLS study of 2003-2005, 947 ever-smokers performed spirometry and underwent CT examination. The main predictors were the amount of emphysema measured by the percentage of low attenuation areas (%LAA) on CT and standardised measures of airway wall thickness (AWT-PI10). Cancer data from 2003-2013 were obtained from the Norwegian Cancer Register. The hazard ratio associated with emphysema and airway wall thickness was assessed using Cox proportional hazards regression for cancer diagnoses.During 10 years of follow-up, non-pulmonary cancer was diagnosed in 11% of the subjects with LAA <3%, in 19% of subjects with LAA 3-10%, and in 17% of subjects with LAA ≥10%. Corresponding numbers for lung cancer were 2%, 3% and 11%, respectively. After adjustment, the baseline amount of emphysema remained a significant predictor of the incidence of non-pulmonary cancer and lung cancer. Airway wall thickness did not predict cancer independently.This study offers a strong argument that emphysema is an independent risk factor for both non-pulmonary cancer and lung cancer. Copyright ©ERS 2017.
Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.
Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek
2017-08-17
Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.
Viscous flow in and around a cavity surrounded by a concentric permeable patch
NASA Astrophysics Data System (ADS)
Palaniappan, D.
2017-11-01
Steady viscous incompressible fluid flow in and around a spherical fluid cavity of radius a surrounded by a permeable patch with thickness b - a is investigated in the limit of low-Reynolds number. Our model uses the Stokes equations in the pure fluid regions and the Darcy law in the concentric permeable patch. Analytic solutions for the velocity and pressure fields are derived in singularity form involving the key parameters such as the Darcy permeability coefficient k and the thickness of the permeable layer. The Faxen law for the hydrodynamical drag acting on the concentric spherical geometry due to an arbitrary incident flow is extracted from our singularity solutions. It is found that the thickness of the permeable layer and the permeability play a crucial role in controlling the drag. An expression for the mass of the fluid that enters the outer sphere is calculated by integrating the exterior radial velocity field. The hydrodynamic force on the concentric spherical shell due to the flow induced by a Stokeslet is also derived from our general expressions. Several special cases of interest are deduced from our exact analysis. The results are of some interest in the prediction of forces exerted on the walls in certain biological models with permeable layers. I request you to place my presentation on the 19th (Sunday) as I have to give final exams on Monday. Thank you.
Elective laparoscopic cholecystectomy for surgical trainees: predictive factors of operative time.
Haji, A; Khan, A; Haq, A; Ribeiro, B
2009-08-01
To determine pre-operative criteria to predict duration and technical difficulty of laparoscopic cholecystectomies that will aid in identifying patients suitable for training lists. A prospective analysis of 835 consecutive patients who underwent laparoscopic cholecystectomies. Data collected included patient demographics, endoscopic retrograde cholangiopancreatography (ERCP), endoscopic sphincterotomy (ES), duration of surgery (from skin incision to skin closure), peri-operative and postoperative complications and histological gallbladder wall thickness. Post-operative complications were seen in 3% (n=20). Overall open conversion rate was 2%. The mean duration of surgery was 78.76 +/- 1.75 minutes. Age, ERCP and ES were not independent predictors of a long operation time. However, a positive correlation was seen with histological gallbladder wall thickness and duration of surgery (p=0.001). The mean operating time for gallbladder wall thickness < 3 mm was 72.1 +/- 1.62 minutes whereas that for > 3 mm thickness was 83.3 +/- 2.05 minutes (p=<0.001). Gallbladder wall thickness can be used as an independent predictor of a long operation time.
NASA Astrophysics Data System (ADS)
Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya
2011-06-01
This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.
NASA Astrophysics Data System (ADS)
Cheng, Ye; Guo, Yuhang; Zhang, Zhenya; Dong, Songtao; Liu, Suwei; Wang, Hongying
2018-03-01
Magnetic absorber has been regarded as the advanced electromagnetic energy transfer material to solve the increasingly high frequency electromagnetic interference issue. Even so, the pure magnetic material, in particular magnetic metal nanoparticle, suffering from the poor chemical stability and strong eddy current effect, thus limits it further application. To overcome this shortage, surrounded the magnetic metal nanoparticle (MPs) with insulated oxide shell has been considered to be an efficient route to suppress such an eddy current effect. Meanwhile, the combined insulated shell with good impedance matching feature, shows a positive role on the electromagnetic energy transfer intensity. In this regard, the binary Fe@α-Fe2O3 composite with the average size of ∼ 20 nm was prepared by a facile self-oxidation reaction. Interestingly, both the core diameter and shell thickness is controllable by controlling the oxide degree. The electromagnetic energy transfer performance revealed the maximum absorption frequency bandwidth of the optimal Fe@α-Fe2O3 composite is up to 5.3 G(8.2-13.5 GHz)under a small coating thickness of 1.5 mm.
Inverse Photonic Glasses by Packing Bidisperse Hollow Microspheres with Uniform Cores.
Kim, Seung-Hyun; Magkiriadou, Sofia; Rhee, Do Kyung; Lee, Doo Sung; Yoo, Pil J; Manoharan, Vinothan N; Yi, Gi-Ra
2017-07-19
A major fabrication challenge is producing disordered photonic materials with an angle-independent structural red color. Theoretical work has shown that such a color can be produced by fabricating inverse photonic glasses with monodisperse, nontouching voids in a silica matrix. Here, we demonstrate a route toward such materials and show that they have an angle-independent red color. We first synthesize monodisperse hollow silica particles with precisely controlled shell thickness and then make glassy colloidal structures by mixing two types of hollow particles with the same core size and different shell thicknesses. We then infiltrate the interstices with index-matched polymers, producing disordered porous materials with uniform, nontouching air voids. This procedure allows us to control the light-scattering form factor and structure factor of these porous materials independently, which is not possible to do in photonic glasses consisting of packed solid particles. The structure factor can be controlled by the shell thickness, which sets the distance between pores, whereas the pore size determines the peak wave vector of the form factor, which can be set below the visible range to keep the main structural color pure. By using a binary mixture of 246 and 268 nm hollow silica particles with 180 nm cores in an index-matched polymer matrix, we achieve angle-independent red color that can be tuned by controlling the shell thickness. Importantly, the width of the reflection peak can be kept constant, even for larger interparticle distances.
Xiao, J; Foray, G; Masenelli-Varlot, K
2018-02-01
Environmental scanning electron microscopy (ESEM) allows the observation of liquids under specific conditions of pressure and temperature. Moreover, when working in the transmission mode, that is in scanning transmission electron microscopy (STEM), nano-objects can be analysed inside a liquid. The contrast in the images is mass-thickness dependent as in STEM-in-TEM (transmission electron microscopy) using closed cells. However, in STEM-in-ESEM, as the liquid-vapour equilibrium is kept dynamically, the thickness of the water droplet remains unknown. In this paper, the contrasts measured in the experimental images are compared with calculations using Monte-Carlo simulations in order to estimate the thickness of water. Two examples are given. On gold nanoparticles, the thickness of a thick film can be estimated thanks to a contrast inversion. On core-shell latex particles, the grey level of the shell compared with those of the core and of the water film gives a relatively precise measurement of the water film thickness. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Sawamiphakdi, K.
1984-01-01
A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.
1982-10-01
centerline by stanchions. A concrete beam is provided at the ship centerline to transfer unbalanced stanchion loads longitudinally along the shell . The 01...Place Cast-in-Place Concrete Connections -- Connections betw. an precast shell elements are made using cast-in-place concrete closure pours. See Figure...buckling using the column provi sions of the ACI code. For shells , the critical radius to thickness ratio is about 200 for cylindrical shells loaded in
Ion acceleration in shell cylinders irradiated by a short intense laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, A.; ELI-ALPS, Szeged; Platonov, K.
The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.
49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the formula: S = PD / 4tE Where: S = Wall stress in psi; P = Test pressure prescribed for water jacket... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a water... thickness. The minimum wall thickness must be such that the wall stress at the minimum specified test...
Cho, Misuk
2013-01-01
[Purpose] The purpose of this study was to compare the effects of bridge exercises applying the abdominal drawing-in method and modified wall squat exercises on deep abdominal muscle thickness and lumbar stability. [Subjects] A total of 30 subjects were equally divided into an experimental group and a control group. [Methods] The experimental group completed modified wall squat exercises, and the control group performed bridge exercises. Both did so for 30 minutes three times per week over a six-week period. Both groups’ transversus abdominis (Tra), internal oblique (IO), and multifidus muscle thickness were measured using ultrasonography, while their static lumbar stability and dynamic lumbar stability were measured using a pressure biofeedback unit. [Results] A comparison of the pre-intervention and post-intervention measures of the experimental group and the control group was made; the Tra and IO thicknesses were significantly different in both groups. [Conclusion] The modified wall squat exercise and bridge exercise affected the thicknesses of the Tra and the IO muscles. While the bridge exercise requirs space and a mattress to lie on, the modified wall squat exercise can be conveniently performed anytime. PMID:24259831
Preventing droplet deformation during dielectrophoretic centering of a compound emulsion droplet
NASA Astrophysics Data System (ADS)
Randall, Greg; Blue, Brent
2012-11-01
Compound droplets, or droplets-within-droplets, are traditionally key components in applications ranging from drug delivery to the food industry. Presently, millimeter-sized compound droplets are precursors for shell targets in inertial fusion energy work. However, a key constraint in target fabrication is a uniform shell wall thickness, which in turn requires a centered core droplet in the compound droplet precursor. Previously, Bei et al. (2009, 2010) have shown that compound droplets could be centered in a static fluid using an electric field of 0.7 kV/cm at 20 MHz. Randall et al. (2012) developed a process to center the core of a moving compound droplet, though the ~kV/cm field induced small (< 5%) but undesirable droplet stretching. This work shows that by using macromolecular emulsifiers to strengthen the droplet's interfaces, (proteins, tunable peptides, or biotinylated streptavidin) droplet stretching can be greatly inhibited. Proof-of-principle experiments are performed in either a stagnant density-matched aquarium or a vertical channel of buoyancy-driven droplets in a ~kV/cm electric field. A scaling analysis is given from a fluid mechanics and interfacial rheology perspective and we discuss the effective interfacial charge from an emulsifier and its impact on centering. Work funded by General Atomics Internal R&D.
Insight into the performance of multi-color InGaN/GaN nanorod light emitting diodes.
Robin, Y; Bae, S Y; Shubina, T V; Pristovsek, M; Evropeitsev, E A; Kirilenko, D A; Davydov, V Yu; Smirnov, A N; Toropov, A A; Jmerik, V N; Kushimoto, M; Nitta, S; Ivanov, S V; Amano, H
2018-05-09
We report on the thorough investigation of light emitting diodes (LEDs) made of core-shell nanorods (NRs) with InGaN/GaN quantum wells (QWs) in the outer shell, which are grown on patterned substrates by metal-organic vapor phase epitaxy. The multi-bands emission of the LEDs covers nearly the whole visible region, including UV, blue, green, and orange ranges. The intensity of each emission is strongly dependent on the current density, however the LEDs demonstrate a rather low color saturation. Based on transmission electron microscopy data and comparing them with electroluminescence and photoluminescence spectra measured at different excitation powers and temperatures, we could identify the spatial origination of each of the emission bands. We show that their wavelengths and intensities are governed by different thicknesses of the QWs grown on different crystal facets of the NRs as well as corresponding polarization-induced electric fields. Also the InGaN incorporation strongly varies along the NRs, increasing at their tips and corners, which provides the red shift of emission. With increasing the current, the different QW regions are activated successively from the NR tips to the side-walls, resulting in different LED colors. Our findings can be used as a guideline to design effectively emitting multi-color NR-LEDs.
NASA Astrophysics Data System (ADS)
Ponevchinsky, V. V.; Goncharuk, A. I.; Vasil'ev, V. I.; Lebovka, N. I.; Soskin, M. S.
2009-10-01
This work discusses optical singularities and electrical conductivity behavior in a thin electrooptical cell filled with composites including multi-walled carbon nanotubes (MWCNTs) and nematic liquid crystal (LC). The MWCNTs with high aspect ratio L/d~300 ÷ 1000 and nematic LC 5CB (4-pentyl-40-cyanobiphenyl) were used. The composites were prepared by introduction of MWCNTs (0.0001÷0.1% wt) into LC solvent with subsequent sonication. The increase of MWCNT concentration (between 0.005÷0.05 % wt) resulted in self-organization of MWCNTs and formation of micronsized aggregates with fractal boundaries. The visually observed formation of spanning MWCNT networks near the percolation threshold at ~0.025 % wt was accompanied with transition from non-conductive to conductive state and generation of optical singularities. The observed effects were explained by the strong interactions between MWCNTs and LC medium and planar orientation of 5CB molecules near the lateral surface of MWCNTs. It was speculated that optical singularities arose as a results of interaction of an incident laser beam with LC perturbed interfacial shells covering the MWCNT clusters. Behavior of the interfacial shell thickness in external electric field and in the vicinity of the nematic to isotropic transition was discussed.
Method of altering the effective bulk density of solid material and the resulting product
Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.
1983-01-01
A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.
Zhou, Weidong; Xiao, Xingcheng; Cai, Mei; Yang, Li
2014-09-10
To better confine the sulfur/polysulfides in the electrode of lithium-sulfur (Li/S) batteries and improve the cycling stability, we developed a double-layered core-shell structure of polymer-coated carbon-sulfur. Carbon-sulfur was first prepared through the impregnation of sulfur into hollow carbon spheres under heat treatment, followed by a coating polymerization to give a double-layered core-shell structure. From the study of scanning transmission electron microscopy (STEM) images, we demonstrated that the sulfur not only successfully penetrated through the porous carbon shell but also aggregated along the inner wall of the carbon shell, which, for the first time, provided visible and convincing evidence that sulfur preferred diffusing into the hollow carbon rather than aggregating in/on the porous wall of the carbon. Taking advantage of this structure, a stable capacity of 900 mA h g(-1) at 0.2 C after 150 cycles and 630 mA h g(-1) at 0.6 C after 600 cycles could be obtained in Li/S batteries. We also demonstrated the feasibility of full cells using the sulfur electrodes to couple with the silicon film electrodes, which exhibited significantly improved cycling stability and efficiency. The remarkable electrochemical performance could be attributed to the desirable confinement of sulfur through the unique double-layered core-shell architectures.
A Galerkin approximation for linear elastic shallow shells
NASA Astrophysics Data System (ADS)
Figueiredo, I. N.; Trabucho, L.
1992-03-01
This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.
NASA Astrophysics Data System (ADS)
Al-Masri, M. R.; Guenther, K. D.
1999-07-01
The effects of different doses of gamma irradiation (0, 100, 150, 200 kGy) or different concentrations of urea (0, 2, 3 and 5 g urea/100 g DM) on in-vitro organic matter digestibility (IVOMD), digestible energy (IVDE), gross energy (GE) and cell-wall constituents: neutral-detergent fibre, acid-detergent fibre and acid-detergent lignin, have been evaluated in wheat straw, cotton seed shell, peanut shell, soybean shell, extracted olive cake and extracted unpeeled sunflower seeds. The results indicated that gamma irradiation or urea treatments increased the digestible energy values significantly ( P<0.05) and these were attributed to the increases IVOMD and decreases cell-wall constituents of treated samples. The experimental agricultural by-products do not respond to the treatments in the same amount in increasing the IVOMD. There was no significant effect of irradiation and urea treatments on GE. Combined treatments had slightly less effect in increasing IVDE as the addition of both effects. The treatment of 200 kGy and 5% urea resulted in a larger increase in the digestible energy and a better effect by reducing the concentration of the cell-wall constituents even more than what occurred using a single treatment. However, the combination of irradiation with urea treatments could reduce the applied irradiation doses for increasing the IVDE in some studied agricultural by-products.
Production of footbridge with double curvature made of UHPC
NASA Astrophysics Data System (ADS)
Kolísko, J.; Čítek, D.; Tej, P.; Rydval, M.
2017-09-01
This article present a mix design, preparation and production of thin-walled footbridge made from UHPFRC. In this case an experimental pedestrian bridge was design and prepared. Bridge with span of 10 m and the clear width of 1.50 m designed as single-span bridge. Optimization of UHPFRC matrix and parameters of this material leads to the design of very thin structures. Total thickness of shell structure 30 - 45 mm. Bridge was cast as a prefabricated element in one piece. Self-compacting character of UHPFRC with high flowability allows the production of the final structure. Extensive research was done before production of footbridge. Experimental reached data were compared with extensive numerical analysis and the final design of structure and UHPFRC matrix were optimized in many details. Two versions of large scale mock-ups were casted and tested. According to the complexity of whole experiment a casting technology and production of formwork were tested and optimized many times.
Synthesis of barium-strontium titanate hollow tubes using Kirkendall effect
NASA Astrophysics Data System (ADS)
Chen, Xuncai; Im, SangHyuk; Kim, Jinsoo; Kim, Woo-Sik
2018-02-01
(BaSr)TiO3 hexagonal hollow tubes was fabricated by a solid-state interfacial reaction including a Kirkendall diffusion. Using a co-precipitation and sol-gel process, a core@shell structure of (BaSr)CO3@TiO2 rods were prepared, and then converted to (BaSr)TiO3 hollow tubes at 750 °C. This was a first achievement of single-phase crystal hollow tube. Here, the inner diameter and wall thickness of hollow tube were about 700 nm and 130 nm, respectively. The fabrication of (BaSr)TiO3 hollow tubes was monitored with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to investigate their formation mechanism. The present synthetic approach would provide a new insight into the design and fabrication of hollow architectures of many perovskite oxides.
49 CFR 179.400-8 - Thickness of plates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... welded joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of..., except that for seamless heads, E=1.0. (c) The minimum wall thickness, after forming, of a flanged and...
Conjugate Heat Transfer in Rayleigh-Bénard Convection in a Square Enclosure
Hashim, Ishak
2014-01-01
Conjugate natural convection-conduction heat transfer in a square enclosure with a finite wall thickness is studied numerically in the present paper. The governing parameters considered are the Rayleigh number (5 × 103 ≤ Ra ≤ 106), the wall-to-fluid thermal conductivity ratio (0.5 ≤ Kr ≤ 10), and the ratio of wall thickness to its height (0.2 ≤ D ≤ 0.4). The staggered grid arrangement together with MAC method was employed to solve the governing equations. It is found that the fluid flow and the heat transfer can be controlled by the thickness of the bottom wall, the thermal conductivity ratio, and the Rayleigh number. PMID:24971390
Pulsed plasmoid electric propulsion
NASA Technical Reports Server (NTRS)
Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo
1990-01-01
A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.
NASA Astrophysics Data System (ADS)
Brochu, Christine; Larouche, André; Hark, Robert
Shell thickness is an important quality factor for lithographic and anodizing quality aluminum alloys. Increasing pressure is placed on casting plants to produce a thinner shell zone for these alloys. This study, based on plant trials and mathematical modelling highlights the most significant parameters influencing shell zone formation. Results obtained show the importance of metal temperature and distribution and mould metal level on shell zone formation. As an answer to specific plant problems, this study led to the development of improved metal distribution systems for DC casting of litho and anodizing quality alloys.
Developing core-shell upconversion nanoparticles for optical encoding
NASA Astrophysics Data System (ADS)
Huang, Kai
Lanthanide-doped upconversion nanoparticles (UCNPs) are an emerging class of luminescent materials that emit UV or visible light under near infra-red (NIR) excitations, thereby possessing a large anti-Stokes shift property. Also considering their sharp emission bands, excellent photo- and chemical stability, and almost zero auto-fluorescence of their NIR excitation, UCNPs are advantageous for optical encoding. Fabricating core-shell structured UCNPs provides a promising strategy to tune and enhance their upconverting luminescence. However, the energy transfer between core and shell had been rarely studied. Moreover, this strategy had been limited by the difficulty of coating thick shells onto the large cores of UCNPs. To overcome these constraints, the overall aim of this project is to study the inter-layers energy transfer in core-shell UCNPs and to develop an approach for coating thicker shell onto the core UCNPs, in order to fabricate UCNPs with enhanced and tunable luminescence for optical encoding. The strategy for encapsulating UCNPs into hydrogel droplet to fabricate multi-color bead barcodes has also been developed. Firstly, to study the inter-layers energy transfer between the core and shell of coreshell UCNPs, the activator and sensitizer ions were separately doped in the core or shell by fabricating NaYF4:Er NaYF4:Yb and NaYF4:Yb NaYF4:Er UCNPs. This eliminated the intra-layer energy transfer, resulting in a luminescence that is solely based on the energy transfer between layers, which facilitated the study of inter-layers energy transfer. The results demonstrated that the NaYF4:Yb NaYF4:Er structure, with sensitizer ions doped in the core, was preferable because of the strong luminescence, through minimizing the cross relaxations between Er3+ and Yb3+ and the surface quenching. Based on these information, a strategy of enhancing and tuning upconversion luminescence of core-shell UCNPs by accumulating sensitizer in the core has been developed. Next, a strategy of coating a thick shell by lutetium doping has been developed. With a smaller ion radius compared to Y3+, when Lu3+ partially replace Y3+ in the NaYF4 UCNPs during nanoparticle synthesis, nucleation process is suppressed and the growth process is promoted, which are favorable for increasing the nanoparticle size and coating a thicker shell onto the core UCNPs. Through the rational doping of Lu3+, core UCNPs with bigger sizes and enhanced luminescence were produced. Using NaLuF4 as the shell material, shells with tremendous thickness were coated onto core UCNPs, with the shell/core ratio of up to 10:1. This led to the fabrication of multi-color UCNPs with well-designed core-shell structures with multiple layers and controllable thicknesses. Finally, a strategy of encapsulating these UCNPs to produce optically encoded micro-beads through high-throughput microfluidics has been developed. The hydrophobic UCNPs were first modified with Pluronic F127 to render them hydrophilic and uniformly distributed in the poly (ethylene glycol) diacrylate (PEGDA) hydrogel precursor. Droplets of the hydrogel precursor were formed in a microfluidic device and cross-linked into micro-beads under UV irradiation. Through encapsulation of multi-color UCNPs and by controlling their ratio, optically encoded multi-color micro-beads have been easily fabricated. These multi-color UCNPs and micro-bead barcodes have great potential for use in multiplexed bioimaging and detection.