Sample records for shield cooling system

  1. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.; Pan, Heng; Liu, X. K.

    2009-07-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed betweenmore » the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.« less

  2. Induction plasma tube

    DOEpatents

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  3. Induction plasma tube

    DOEpatents

    Hull, Donald E.

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  4. Optimation of cooled shields in insulations

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Khodadadi, J. M.; Seyed-Yagoobi, J.

    1984-01-01

    A method to optimize the location, temperature, and heat dissipation rate of each cooled shield inside an insulation layer was developed. The method is based on the minimization of the entropy production rate which is proportional to the heat leak across the insulation. It is shown that the maximum number of shields to be used in most practical applications is three. However, cooled shields are useful only at low values of the overall, cold wall to hot wall absolute temperature ratio. The performance of the insulation system is relatively insensitive to deviations from the optimum values of the temperature and location of the cooling shields. Design curves for rapid estimates of the locations and temperatures of cooling shields in various types of insulations, and an equation for calculating the cooling loads for the shields are presented.

  5. High-fidelity cryothermal test of a subscale large space telescope

    NASA Astrophysics Data System (ADS)

    DiPirro, M.; Tuttle, J.; Ollendorf, S.; Mattern, A.; Leisawitz, D.; Jackson, M.; Francis, J.; Hait, T.; Cleveland, P.; Muheim, D.; Mastropietro, A. J.

    2007-09-01

    To take advantage of the unique environment of space and optimize infrared observations for faint sources, space telescopes must be cooled to low temperatures. The new paradigm in cooling large space telescopes is to use a combination of passive radiative cooling and mechanical cryocoolers. The passive system must shield the telescope from the Sun, Earth, and the warm spacecraft components while providing radiative cooling to deep space. This shield system is larger than the telescope itself, and must attenuate the incoming energy by over one million to limit heat input to the telescope. Testing of such a system on the ground is a daunting task due to the size of the thermal/vacuum chamber required and the degree of thermal isolation necessary between the room temperature and cryogenic parts of the shield. These problems have been attacked in two ways: by designing a subscale version of a larger sunshield and by carefully closing out radiation sneak paths. The 18% scale (the largest diameter shield was 1.5 m) version of the SPIRIT Origins Probe telescope shield was tested in a low cost helium shroud within a 3.1 m diameter x 4.6 m long LN II shrouded vacuum chamber. Thermal straps connected from three shield stages to the liquid helium cooled shroud were instrumented with heaters and thermometers to simulate mechanical cryocooler stages at 6 K, 18-20 K, and 45-51 K. Performance data showed that less than 10 microwatts of radiative heat leaked from the warm to cold sides of the shields during the test. The excellent agreement between the data and the thermal models is discussed along with shroud construction techniques.

  6. Design, fabrication and test of Load Bearing multilayer insulation to support a broad area cooled shield

    NASA Astrophysics Data System (ADS)

    Dye, S. A.; Johnson, W. L.; Plachta, D. W.; Mills, G. L.; Buchanan, L.; Kopelove, A. B.

    2014-11-01

    Improvements in cryogenic propellant storage are needed to achieve reduced or Zero Boil Off of cryopropellants, critical for long duration missions. Techniques for reducing heat leak into cryotanks include using passive multi-layer insulation (MLI) and vapor cooled or actively cooled thermal shields. Large scale shields cannot be supported by tank structural supports without heat leak through the supports. Traditional MLI also cannot support shield structural loads, and separate shield support mechanisms add significant heat leak. Quest Thermal Group and Ball Aerospace, with NASA SBIR support, have developed a novel Load Bearing multi-layer insulation (LBMLI) capable of self-supporting thermal shields and providing high thermal performance. We report on the development of LBMLI, including design, modeling and analysis, structural testing via vibe and acoustic loading, calorimeter thermal testing, and Reduced Boil-Off (RBO) testing on NASA large scale cryotanks. LBMLI uses the strength of discrete polymer spacers to control interlayer spacing and support the external load of an actively cooled shield and external MLI. Structural testing at NASA Marshall was performed to beyond maximum launch profiles without failure. LBMLI coupons were thermally tested on calorimeters, with superior performance to traditional MLI on a per layer basis. Thermal and structural tests were performed with LBMLI supporting an actively cooled shield, and comparisons are made to the performance of traditional MLI and thermal shield supports. LBMLI provided a 51% reduction in heat leak per layer over a previously tested traditional MLI with tank standoffs, a 38% reduction in mass, and was advanced to TRL5. Active thermal control using LBMLI and a broad area cooled shield offers significant advantages in total system heat flux, mass and structural robustness for future Reduced Boil-Off and Zero Boil-Off cryogenic missions with durations over a few weeks.

  7. Acoustic and Thermal Testing of an Integrated Multilayer Insulation and Broad Area Cooling Shield System

    NASA Technical Reports Server (NTRS)

    Wood, Jessica J.; Foster, Lee W.

    2013-01-01

    A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.

  8. Top shield temperatures, C and K Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agar, J.D.

    1964-12-28

    A modification program is now in progress at the C and K Reactors consisting of an extensive renovation of the graphite channels in the vertical safety rod ststems. The present VSR channels are being enlarged by a graphite coring operation and channel sleeves will be installed in the larger channels. One problem associated with the coring operation is the danger of damaging top thermal shield cooling tubes located close to the VSR channels to such an extent that these tubes will have to be removed from service. If such a condition should exist at one or a number of locationsmore » in the top shield of the reactors after reactor startup, the question remains -- what would the resulting temperatures be of the various components of the top shields? This study was initiated to determine temperature distributions in the top shield complex at the C and K Reactors for various top thermal shield coolant system conditions. Since the top thermal shield cooling system at C Reactor is different than those at the K Reactors, the study was conducted separately for the two different systems.« less

  9. Changes made on a 2.7-m long superconducting solenoid magnet cryogenic system that allowed the magnet to be kept cold using 4 K pulse tube coolers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M. A.; Pan, H.; Preece, R. M.

    2014-01-29

    Two 2.7-m long solenoid magnets with a cold mass of 1400 kg were fabricated in between 2007 and 2010. The magnet cryostat outside diameter is ∼1.4 meters and the cryostat length is ∼2.73 meters. The magnet warm bore is 0.4 meters. The magnet was designed to be cooled using three 1.5 W two-stage coolers. In both magnets, three coolers could not keep the cryostat filled with liquid helium. The temperatures of the shield and the tops of the HTS leads were too warm. A 140 W single stage cooler was added to magnet 2 to cool the HTS leads, themore » shield and the cold mass support intercepts. When the magnet 2 was retested in 2010, the net cooling at 4.2 K was −1.5 W with first-stage temperatures of the four coolers at ∼42 K. The tops of the HTS leads were <50 K, but the shield and cold mass support intercepts remained too warm. The solenoid cryostat and shield were modified during 2011 and 2012 to reduce the 4.2 K heat load and increase the cooling. This magnet was tested in 2012, with five 1.5 W two-stage coolers and the single stage cooler. The changes made in the magnet are described in this report. As a result of the cryostat and shield changes, and adding 3.0 W of cooling at 4.2 K, the net 4.2 K cooling changed from −1.6 W to +5.0 W. About half of the change in net cooling to this magnet was due changes that reduced the shield temperature. This report demonstrates the importance of running the shield cold (∼40 K) and reducing the heat loads from all sources on both the shield and the cold mass.« less

  10. A simplified analytical solution for thermal response of a one-dimensional, steady state transpiration cooling system in radiative and convective environment

    NASA Technical Reports Server (NTRS)

    Kubota, H.

    1976-01-01

    A simplified analytical method for calculation of thermal response within a transpiration-cooled porous heat shield material in an intense radiative-convective heating environment is presented. The essential assumptions of the radiative and convective transfer processes in the heat shield matrix are the two-temperature approximation and the specified radiative-convective heatings of the front surface. Sample calculations for porous silica with CO2 injection are presented for some typical parameters of mass injection rate, porosity, and material thickness. The effect of these parameters on the cooling system is discussed.

  11. Technique for Configuring an Actively Cooled Thermal Shield in a Flight System

    NASA Technical Reports Server (NTRS)

    Barkfknecht, Peter; Mustafi, Shuvo

    2011-01-01

    Broad area cooling shields are a mass-efficient alternative to conductively cooled thermal radiation shielding. The shield would actively intercept a large portion of incident thermal radiation and transport the heat away using cryogenic helium gas. The design concept consists of a conductive and conformable surface that maximizes heat transfer and formability. Broad Area Cooled (BAC) shields could potentially provide considerable mass savings for spaceflight applications by eliminating the need for a rigid thermal radiation shield for cryogen tanks. The BAC consists of a network of capillary tubes that are thermally connected to a conductive shield material. Chilled helium gas is circulated through the network and transports unwanted heat away from the cryogen tanks. The cryogenic helium gas is pumped and chilled simultaneously using a specialized pulse-tube cryocooler, which further improves the mass efficiency of the system. By reducing the thermal environment temperature from 300 to 100 K, the radiative heat load on a cryogen tank could be reduced by an order of magnitude. For a cryogenic liquid propellant scenario of oxygen and hydrogen, the boiloff of hydrogen would be significantly reduced and completely eliminated for oxygen. A major challenge in implementing this technology on large tanks is that the BAC system must be easily scalable from lab demonstrations to full-scale missions. Also, the BAC shield must be conformable to complex shapes like spheres without losing the ability to maintain constant temperature throughout. The initial design maximizes thermal conductivity between the capillary tube and the conductive radiation shielding by using thin, corrugated aluminum foil with the tube running transverse to the folds. This configuration has the added benefit of enabling the foil to stretch and contract longitudinally. This allows the BAC to conform to the complex curvature of a cryogen tank, which is key to its success. To demonstrate a BAC shield system with minimal impact to current cryogen tank designs, the shielding must be applied after the final assembly of the tank and supporting structure. One method is to pre-fabricate the shield in long strips. A spool of corrugated aluminum foil with a thermally sunk aluminum capillary running through the center could then be simply wound around the cryogen tanks and encapsulated within the multi-layer insulation (MLI) blanket. Then, on orbit, the BAC would intercept thermal radiation coming in through the MLI and transport it away from the cryogen tanks. An optimization of the design could be done to take into account mass savings from thinner MLI blankets, eliminating solid thermal shields, and ultimately, a reduction in the required cryogen tank size.

  12. Cooling system for a bearing of a turbine rotor

    DOEpatents

    Schmidt, Mark Christopher

    2002-01-01

    In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

  13. Design and Fabrication of a Tank-Applied Broad Area Cooling Shield Coupon

    NASA Technical Reports Server (NTRS)

    Wood, J. J.; Middlemas, M. R.

    2012-01-01

    The small-scale broad area cooling (BAC) shield test panel represents a section of the cryogenic propellant storage and transfer ground test article, a flight-like cryogenic propellant storage tank. The test panel design includes an aluminum tank shell, primer, spray-on foam insulation, multilayer insulation (MLI), and BAC shield hardware. This assembly was sized to accurately represent the character of the MLI/BAC shield system, be quickly and inexpensively assembled, and be tested in the Marshall Space Flight Center Acoustic Test Facility. Investigating the BAC shield response to a worst-case launch dynamic load was the key purpose for developing the test article and performing the test. A preliminary method for structurally supporting the BAC shield using low-conductivity standoffs was designed, manufactured, and evaluated as part of the test. The BAC tube-standoff interface and unsupported BAC tube lengths were key parameters for evaluation. No noticeable damage to any system hardware element was observed after acoustic testing.

  14. A Comparison of Fission Power System Options for Lunar and Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    This paper presents a comparison of reactor and power conversion design options for 50 kWe class lunar and Mars surface power applications with scaling from 25 to 200 kWe. Design concepts and integration approaches are provided for three reactor-converter combinations: gas-cooled Brayton, liquid-metal Stirling, and liquid-metal thermoelectric. The study examines the mass and performance of low temperature, stainless steel based reactors and higher temperature refractory reactors. The preferred system implementation approach uses crew-assisted assembly and in-situ radiation shielding via installation of the reactor in an excavated hole. As an alternative, self-deployable system concepts that use earth-delivered, on-board radiation shielding are evaluated. The analyses indicate that among the 50 kWe stainless steel reactor options, the liquid-metal Stirling system provides the lowest mass at about 5300 kg followed by the gas-cooled Brayton at 5700 kg and the liquid-metal thermoelectric at 8400 kg. The use of a higher temperature, refractory reactor favors the gas-cooled Brayton option with a system mass of about 4200 kg as compared to the Stirling and thermoelectric options at 4700 and 5600 kg, respectively. The self-deployed concepts with on-board shielding result in a factor of two system mass increase as compared to the in-situ shielded concepts.

  15. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  16. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  17. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application

    NASA Astrophysics Data System (ADS)

    Bergen, A.; van Weers, H. J.; Bruineman, C.; Dhallé, M. M. J.; Krooshoop, H. J. G.; ter Brake, H. J. M.; Ravensberg, K.; Jackson, B. D.; Wafelbakker, C. K.

    2016-10-01

    The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ˜100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 106, well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 μT, the residual internal DC field normal to the detector plane is less than 1 μT. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 μT.

  18. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application.

    PubMed

    Bergen, A; van Weers, H J; Bruineman, C; Dhallé, M M J; Krooshoop, H J G; Ter Brake, H J M; Ravensberg, K; Jackson, B D; Wafelbakker, C K

    2016-10-01

    The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ∼100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 10 6 , well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 μT, the residual internal DC field normal to the detector plane is less than 1 μT. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 μT.

  19. Development of New Cooling System Using Gm/jt Cryocoolers for the SKS Magnet

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Haruyama, T.; Makida, Y.; Araoka, O.; Kasami, K.; Takahashi, T.; Nagae, T.; Kakiguchi, Y.; Sekimoto, M.; Tosaka, T.; Miyazaki, H.; Kuriyama, T.; Ono, M.; Orikasa, T.; Tsuchihashi, T.; Hirata, Y.

    2008-03-01

    We plan to develop a new improved cooling system for the Superconducting Kaon Spectrometer (SKS) magnet and transfer the magnet to the K1.8 beamline of the Hadron Hall of the Japan Proton Accelerator Research Complex (J-PARC) for further use in nuclear physics experiments. To replace the present 300 W cryogenic system, we will adopt a new cooling method that uses 4 K Gifford-McMahon/Joule-Thomson (GM/JT) cryocoolers. In order to decide a practical design for the new liquid helium reservoir of the magnet, which will be equipped with GM/JT cryocoolers, cooling tests on a GM/JT cryocooler were performed from February to March 2007. We constructed a new cooling test stand with a GM/JT cryocooler and measured the cooling capacities under several thermal shield temperatures with or without a baffle, which helped prevent convection. Based on the test results, we have finally decided to adopt three GM/JT cryocoolers for the new SKS along with a baffle and an additional dedicated GM cooler to cool the thermal shield of the GM/JT ports.

  20. Parametric study for use of stainless steel as a material for thermal shield in PIP2IT transferline at FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rane, Tejas

    Proton Improvement Plant – II (PIP-II) has been planned at Fermilab for providing high-intensity proton beams to the laboratory’s experiments. Fermilab has undertaken the PIP-II Injector Test (PIP2IT) for integrated systems testing of critical components comprising the PIP-II front end. PIP2IT includes two cryomodules, to be tested using a pre-existing Supercritical helium refrigerator and distribution box. The PIP2IT transferline connects the Distribution box to the cryomodules of PI2IT. It contains 5 process lines as follows - supercritical 5K He supply and return lines, thermal shield supply(40K) and return(80K) lines and a sub-atmospheric 2K return line. Such cryogenic transferlines are generallymore » provided with cylindrical thermal shields at 80K, enclosing multiple process lines. The thermal shields are cooled by dedicated cooling lines welded/brazed to the shield at a single point along the circumference. Higher thermal diffusivity provides faster cooling and uniformity o f temperature along the shield surface. Hence, Copper/Aluminium is widely used to fabricate thermal shields. However, raw material price, the cost of fabrication depending on standard sizes of pipes/tubes, often drives up the final price of thermal shields. To reduce the cost by making use of easily available stock of standard pipe/tube, it is decided to use stainless steel as a material in thermal shields for the PIP2IT transferline. To this effect, a parametric study has been undertaken to evaluate the suitability of replacing Copper/Aluminium with stainless steel in thermal shields. The low thermal conductivity of steel results in bowing of the shield due to differential temperature distribution along the circumferential direction. The resulting suitable design has limiting parameters in terms of maximum allowable length of a shield section and the maximum allowable heat transfer coefficient for cooling flow. Starting with the design specific to PIP2IT transferline, an at tempt is made to have non-dimensionalised parameters for sim! ilar thermal shields.« less

  1. Webb's MIRI Shield Dropping in on Dropping Temperatures

    NASA Image and Video Library

    2013-12-04

    Goddard Technicians Tony Kiem (left) and George Mooney (right) guide the craned structure holding the Webb telescope's Mid-Infrared Instrument or MIRI Shield Environmental Test Unit into place in a cryogenic (cooling) test chamber. This shield will be used to simulate the MIRI instrument during prelaunch testing to verify that the MIRI cooling system will function properly in space. Goddard Safety Engineer Richard Bowlan watches from above. Image Credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Design and evaluation of active cooling systems for Mach 6 cruise vehicle wings

    NASA Technical Reports Server (NTRS)

    Mcconarty, W. A.; Anthony, F. M.

    1971-01-01

    Active cooling systems, which included transpiration, film, and convective cooling concepts, are examined. Coolants included hydrogen, helium, air, and water. Heat shields, radiation barriers, and thermal insulation are considered to reduce heat flow to the cooling systems. Wing sweep angles are varied from 0 deg to 75 deg and wing leading edge radii of 0.05 inch and 2.0 inches are examined. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy structural materials. Cooled wing concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.

  3. Design and Operation of the RHIC 80-K Cooler

    NASA Astrophysics Data System (ADS)

    Nicoletti, A.; Reuter, A.; Sidi-Yekhlef, A.; Talty, P.; Quimby, E.

    2004-06-01

    A stand-alone cryogenic system designed to maintain the magnets of the Relativistic Heavy Ion Collider (RHIC) at between 80 and 100 K during accelerator shutdown periods has been conceived and designed at Brookhaven National Laboratory and built by PHPK Technologies of Columbus, Ohio. Since most thermal contraction occurs above this temperature, this unit, referred to as the 80-K Cooler, will eliminate the stresses associated with thermal cycling. The cooling system will provide the necessary refrigeration by circulating cooled helium gas at approximately 1500 kPA through the RHIC heat shields and magnets. This helium is cooled by heat exchange with liquid nitrogen and circulated via three cold centrifugal pumps. The nominal delivered cooling capacity required to maintain the magnets at temperature is approximately 36 kW, primarily intercepted at the heat shield. The system also has separate heat exchangers for use as a pre-cooler from room temperature to 82 K. Selection of sextant or sextants for pre-cooling is designed into the RHIC cryogenic distribution system. Topics covered include Cooler design decisions, details of the Cooler as built, integration into the existing RHIC cryogenic system and initial operating experience.

  4. Apparatus and method for controlling the temperature of the core of a super-conducting transformer

    DOEpatents

    Golner, Thomas; Pleva, Edward; Mehta, Shirish

    2006-10-10

    An apparatus for controlling the temperature of a core of a transformer is provided that includes a core, a shield surrounding the core, a cast formed between the core and the shield, and tubing positioned on the shield. The cast directs heat from the core to the shield and cooling fluid is directed through the tubing to cool the shield.

  5. Cooling for SC devices of test cryomodule for ADS Injector II at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Wang, S. Y.; Sun, S.

    2014-01-29

    The superconducting half-wave resonance cavities connected in series with superconducting solenoids will be applied to the Injector II of the Accelerator Driven Sub-critical System (ADS) to be built at the Modern Physics Institute, China. A test system has been developed for the purpose of performance test of the HWR cavities as well as validating the relevant technique for cooling the cavity and the solenoids together. It mainly comprises a cryogenic valve box (TVB), a test cryomodule (TCM1) and transfer lines. The TCM1 includes one HWR cavity, two superconducting solenoids, one cold BPM and their cooling system. The design of themore » TCM1 cryostat was carried out by the Shanghai Institute of Applied Physics (SINAP), CAS. Both the cavity and the solenoids will work at 4.4 K by bath cooling. The fast cooling down for the cavity from around 100 K to 120 K is required to avoid degrading of the cavity performance. After cool down and before energization, the solenoids should be warmed up to above 10 K and re-cooled down for the purpose of degaussing. The TCM1 can not only be cooled by using the dewar-filling system, but also operated by the refrigerator system. For the purpose of reducing the heat loads to the cold mass at 4 K from room temperature, thermal radiation shields cooled by liquid nitrogen flowing in tubing were employed. This paper presents the design details of cooling circuits and thermal shields of the TCM1 as well as related calculations and analyses.« less

  6. Cooling for SC devices of test cryomodule for ADS Injector II at IMP

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, S. Y.; Sun, S.; Guo, X. L.; Wang, S. H.; Liu, Y. Y.

    2014-01-01

    The superconducting half-wave resonance cavities connected in series with superconducting solenoids will be applied to the Injector II of the Accelerator Driven Sub-critical System (ADS) to be built at the Modern Physics Institute, China. A test system has been developed for the purpose of performance test of the HWR cavities as well as validating the relevant technique for cooling the cavity and the solenoids together. It mainly comprises a cryogenic valve box (TVB), a test cryomodule (TCM1) and transfer lines. The TCM1 includes one HWR cavity, two superconducting solenoids, one cold BPM and their cooling system. The design of the TCM1 cryostat was carried out by the Shanghai Institute of Applied Physics (SINAP), CAS. Both the cavity and the solenoids will work at 4.4 K by bath cooling. The fast cooling down for the cavity from around 100 K to 120 K is required to avoid degrading of the cavity performance. After cool down and before energization, the solenoids should be warmed up to above 10 K and re-cooled down for the purpose of degaussing. The TCM1 can not only be cooled by using the dewar-filling system, but also operated by the refrigerator system. For the purpose of reducing the heat loads to the cold mass at 4 K from room temperature, thermal radiation shields cooled by liquid nitrogen flowing in tubing were employed. This paper presents the design details of cooling circuits and thermal shields of the TCM1 as well as related calculations and analyses.

  7. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  8. SIRTF thermal design modifications to increase lifetime

    NASA Astrophysics Data System (ADS)

    Petrick, S. W.

    1993-01-01

    An effort was made to increase the predicted lifetime of the SIRTF dewar by lowering the exterior shell temperature, increasing the radiated energy from the vapor cooled shields and reconfiguring the vapor cooled shields. The lifetime increases can be used to increase the scientific return from the mission and as a trade-off against mass and cost. This paper describes the configurations studied, the steady state thermal model used, the analytical methods and the results of the analysis. Much of the heat input to the outside dewar shell is radiative heat transfer from the solar panel. To lower the shell temperature, radiative cooled shields were placed between the solar panel and the dewar shell and between the bus and the dewar shell. Analysis showed that placing a radiator on the outer vapor cooled shield had a significant effect on lifetime. Lengthening the distance between the outer shell and the point where the vapor cooled shields are attached to the support straps also improved lifetime.

  9. Application of Cryocoolers to a Vintage Dilution Refrigerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Richard; Smith, Gary; Ruschman, Mark

    2011-06-06

    A dilution refrigerator is required for 50mK detector operation of CDMS (Cryogenic Dark Matter Search). Besides shielding the dilution refrigerator itself, the liquid nitrogen shield and liquid helium bath in the refrigerator cool the detector cryostat heat shields and cool electronics, resulting in significant external heat loads at 80K and at 4K. An Oxford Instruments Kelvinox 400 has served this role for ten years but required daily transfers of liquid nitrogen and liquid helium. Complicating the cryogen supply is the location 800 meters below ground in an RF shielded, class 10000 clean room at Soudan, MN. Nitrogen and helium re-liquefiersmore » using cryocoolers were installed outside the clean room and continuously condense room temperature gas and return the liquids to the dilution refrigerator through a transfer line. This paper will describe the design, installation, controls and performance of liquefaction systems.« less

  10. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, J. R.; Salerno, L. J.; Kashani, A.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network ofmore » narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.« less

  11. Technologies and Equipment For Military and Public Safety Emergency Response. Technology Needs Performance Deficiencies

    DTIC Science & Technology

    2001-04-30

    APPROACH - Reduce cooling system weight and power thru miniaturization of its compressor, heat exchangers , and other components; and thru highly...research, but a visualized concept provides direction – Microelectromechanical Systems – Nanotech based materials – Fused sensor displays – MCC microtubes ...and Spine impact protection • Anti-Fog Face shield • Flame/ Heat resistance • Compatible with Body Cooling System • Technology Transition to Public

  12. Closed bore XMR (CBXMR) systems for aortic valve replacement: Active magnetic shielding of x-ray tubes

    PubMed Central

    Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-01-01

    Hybrid closed bore x-ray∕MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (≈1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session. PMID:19544789

  13. Closed bore XMR (CBXMR) systems for aortic valve replacement: active magnetic shielding of x-ray tubes.

    PubMed

    Bracken, John A; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A

    2009-05-01

    Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (approximately 1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.

  14. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  15. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  16. Method of shielding a liquid-metal-cooled reactor

    DOEpatents

    Sayre, Robert K.

    1978-01-01

    The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.

  17. Experimental results on MgB2 used as ADR magnetic shields, and comparison to NbTi

    NASA Astrophysics Data System (ADS)

    Prouvé, T.; Duval, J. M.; Luchier, N.; D'escrivan, S.

    2014-11-01

    Adiabatic Demagnetization Refrigerator (ADR) is an efficient way to obtain sub-Kelvin temperatures in space environments. The SAFARI instrument for the Japanese spaceborne SPICA mission features detectors which will be cooled down to 50 mK. This cooling will be done by a hybrid cooler comprising a 300 mK sorption stage and a 50 mK ADR stage. For this cooler and ADR in general, the main contribution to the overall mass is in the magnetic system and particularly in the magnetic shielding required to keep the stray field within acceptable values. In order to reduce this mass, superconducting materials can be used as active magnetic shields thanks to un-attenuated eddy currents generated while ramping the magnet current. In this way they could reduce the need of heavy ferromagnetic material shields and increase the shielding efficiency to reach very low parasitic values. In the framework of SAFARI we have built a numerical model of a superconductor magnetic shield. The good results regarding the weight gain lead us to an experimental confirmation. In this paper we present an experimental study on MgB2 and NbTi superconducting materials. 2 pairs of rings of typical diameter of 80 mm have been tested using a superconducting magnet matching closely the dimensions of the SAFARI ADR cooler. The magnetic shielding measurements have been compared to a numerical model.

  18. Structural active cooling applications for the Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Masek, R. V.; Niblock, G. A.; Huneidi, F.

    1972-01-01

    Analytic and experimental studies have been conducted to evaluate a number of active cooling approaches to structural thermal protection for the Space Shuttle. The primary emphasis was directed toward the thermal protection system. Trade study results are presented for various heat shield material and TPS arrangements. Both metallic and reusable surface insulation (RSI) concepts were considered. Active systems heat sinks consisted of hydrogen, phase change materials, and expendable water. If consideration is given only to controlling the surface temperature, passive TPS was found to provide the most efficient system. Use of active cooling which incorporates some interior temperature control made the thermally less efficient RSI system more attractive.

  19. A small scale remote cooling system for a superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.

    2017-02-01

    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.

  20. Parametric study for use of stainless steel as a material for thermal shield in PIP2IT transferline at Fermilab

    NASA Astrophysics Data System (ADS)

    Rane, Tejas; Chakravarty, Anindya; Klebaner, Arkadiy

    2017-12-01

    Transferline thermal shields are cooled by dedicated cooling lines welded/brazed to the shield at a single point along the circumference. Copper/Aluminium is widely used to fabricate thermal shields because of their higher thermal diffusivity. This causes uniformity of temperature along the surface of the shield thus reducing thermal stresses within allowable values. However, factors such as raw material price, the cost of fabrication depending on standard sizes of pipes/tubes, often drives up the final price of thermal shields. To reduce the cost by making use of easily available stock of standard pipe/tube, it is decided to use stainless steel as a material for thermal shields in the PIP2IT transferline. The present paper discusses the design approach, various factors affecting the conservative selection of thermal shield design.

  1. The Structural Heat Intercept-Insulation-Vibration Evaluation Rig (SHIVER)

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Zoeckler, J. G.; Best-Ameen, L. M.

    2015-01-01

    NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into intercepting heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a representative test tank is currently being designed to include skirt structural systems with integral vapor cooling. The tank is 4 m in diameter and 6.8 m tall to contain 5000 kg of liquid hydrogen. A multilayer insulation system will be designed to insulate the tank and structure while being installed in a representative manner that can be extended to tanks up to 10 meters in diameter. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plumbrook Station both before and after being vibration tested at Plumbrooks Space Power Facility.

  2. Thermal architecture for the SPIDER flight cryostat

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. E.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bonetti, J. A.; Bryan, S. A.; Burger, B.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Doré, O.; Farhang, M.; Filippini, J.; Fissel, L. M.; Gandilo, N. N.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Montroy, T. E.; Morford, T. A.; Netterfield, C. B.; O'Dea, D. T.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Schenker, M. A.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.

    2010-07-01

    We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.

  3. Galileo Probe forebody thermal protection

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1981-01-01

    Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.

  4. Development of a Space-Flight ADR Providing Continuous Cooling at 50 Mk with Heat Rejection at 10 K

    NASA Technical Reports Server (NTRS)

    Tuttle, James; Canavan, Edgar; DeLee, Hudson; DiPirro, Michael; Jahromi, Amir; James, Byron; Kimball, Mark; Shirron, Peter; Sullivan, Dan; Switzer, Eric

    2017-01-01

    Future astronomical instruments will require sub-Kelvin detector temperatures to obtain high sensitivity. In many cases large arrays of detectors will be used, and the associated cooling systems will need performance surpassing the limits of present technologies. NASA is developing a compact cooling system that will lift heat continuously at temperatures below 50 mK and reject it at over 10 K. Based on Adiabatic Demagnetization Refrigerators (ADRs), it will have high thermodynamic efficiency and vibration-free operation with no moving parts. It will provide more than 10 times the current flight ADR cooling power at 50 mK and will also continuously cool a 4 K stage for instruments and optics. In addition, it will include an advanced magnetic shield resulting in external field variations below 5 T. We describe the cooling system here and report on the progress in its development.

  5. Development of a Space-Flight ADR Providing Continuous Cooling at 50 mK with Heat Rejection at 10 K

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Canavan, Ed; DeLee, Hudson; Dipirro, Michael; Jahromi, Amir; Kimball, Mark; Shirron, Peter; Sullivan, Dan; Switzer, Eric

    2017-01-01

    Future astronomical instruments will require sub-Kelvin detector temperatures to obtain high sensitivity. In many cases large arrays of detectors will be used, and the associated cooling systems will need performance surpassing the limits of present technologies. NASA is developing a compact cooling system that will lift heat continuously at temperatures below 50 mK and reject it at over 10 K. Based on Adiabatic Demagnetization Refrigerators (ADRs), it will have high thermodynamic efficiency and vibration-free operation with no moving parts. It will provide more than 10 times the current flight ADR cooling power at 50 mK and will also continuously cool a 4 K stage for instruments and optics. In addition, it will include an advanced magnetic shield resulting in external field variations below 5 T. We describe the cooling system here and report on the progress in its development.

  6. Cryogenic Selective Surface - How Cold Can We Go?

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark

    2015-01-01

    Selective surfaces have wavelength dependent emissivitya bsorption. These surfaces can be designed to reflect solar radiation, while maximizing infrared emittance, yielding a cooling effect even in sunlight. On earth cooling to -50 C below ambient has been achieved, but in space, outside of the atmosphere, theory using ideal materials has predicted a maximum cooling to 40 K! If this result holds up for real world materials and conditions, then superconducting systems and cryogenic storage can be achieved in space without active cooling. Such a result would enable long term cryogenic storage in deep space and the use of large scale superconducting systems for such applications as galactic cosmic radiation (GCR) shielding and large scale energy storage.

  7. Effect of Discontinuities and Penetrations on the Shielding Efficacy of High Temperature Superconducting Magnetic Shields

    NASA Astrophysics Data System (ADS)

    Hatwar, R.; Kvitkovic, J.; Herman, C.; Pamidi, S.

    2015-12-01

    High Temperature Superconducting (HTS) materials have been demonstrated to be suitable for applications in shielding of both DC and AC magnetic fields. Magnetic shielding is required for protecting sensitive instrumentation from external magnetic fields and for preventing the stray magnetic fields produced by high power density equipment from affecting neighbouring devices. HTS shields have high current densities at relatively high operating temperatures (40-77 K) and can be easily fabricated using commercial HTS conductor. High current densities in HTS materials allow design and fabrication of magnetic shields that are lighter and can be incorporated into the body and skin of high power density devices. HTS shields are particularly attractive for HTS devices because a single cryogenic system can be used for cooling the device and the associated shield. Typical power devices need penetrations for power and signal cabling and the penetrations create discontinuities in HTS shields. Hence it is important to assess the effect of the necessary discontinuities on the efficacy of the shields and the design modifications necessary to accommodate the penetrations.

  8. Preliminary Thermal Design of Cryogenic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  9. Cryogenic Technology: Ongoing Developments for the Next Decade

    NASA Technical Reports Server (NTRS)

    DiPirro, Michael

    2004-01-01

    To obtain optimum sensitivity a submillimeter space observatory will require low temperature mirrors (approx. 3K) and very low temperature detectors (< or approx. 0.1 K). Both of these temperatures have been achieved by space cryogenic systems, but neither for a 10 year duration. Past systems used superfluid helium to provide direct cooling in the 1 to 2 K range (IRAS, COBE, IRTS, ISO) or as an upper stage for an adiabatic demagnetization refrigerator to achieve temperatures down to 0.06 K (Astro-E/XRS). Boiloff vapor may be used to cool an otherwise warm telescope as in the Space InfraRed Telescope Facility (SIRTF). In SIRTF a 0.85 m telescope is cooled to 5.5 K by absorbing about 6 mW in the cold vapor. This residual heat is due to both radiation from a helium vapor cooled outer shield at about 20 K and from conduction through a structure mounting the cold telescope and instruments to the warm spacecraft. The boil off rate required to cool the telescope results in a 2.6 to 5 year lifetime, depending on whether other parasitic heat sources such as thermoacoustic oscillations are also present. A helium dewar results in a very heavy system to achieve 2 to 5 year lifetimes. For example it takes roughly 400 kg for XRS to achieve 0.06 K for two year life with a 250 K boundary temperature, and approx. 300 kg (including thermal shielding) for SIRTF to achieve 1.3 K for 5 year life with a 35 K boundary temperature. To go to longer duration and to lower the weight, active cooling methods are required combined with more aggressive passive cooling techniques. It is possible, with some development, to provide cooling for detectors to 0.05 K and telescopes and instruments to < 4 K for a 10 year mission with a 100 kg system including power sources, structural support, and vacuum enclosures for critical portions of the instruments.

  10. A superfluid helium system for an LST IR experiment

    NASA Technical Reports Server (NTRS)

    Breckenridge, R. W., Jr.; Moore, R. W., Jr.

    1975-01-01

    The results are presented of a study program directed toward evaluating the problems associated with cooling an LST instrument to 2 K for a year by using superfluid helium as the cooling means. The results include the parametric analysis of systems using helium only, and systems using helium plus a shield cryogen. A baseline system, using helium only is described. The baseline system is sized for an instrument heat leak of 50 mw. It contains 71 Kg of superfluid helium and has a total, filled weight of 217 Kg. A brief assessment of the technical problems associated with a long life, spaceborne superfluid helium storage system is also made. It is concluded that a one year life, superfluid helium cooling system is feasible, pending experimental verification of a suitable low g vent system.

  11. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  12. Cryogenic techniques for large superconducting magnets in space

    NASA Technical Reports Server (NTRS)

    Green, M. A.

    1989-01-01

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points.

  13. Compact cryocooling system for HTS sampler

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Maruyama, M.; Hato, T.; Wakana, H.; Tanabe, K.; Konno, T.; Uekusa, K.; Sato, N.; Kawabata, M.

    2007-10-01

    This paper describes a compact cooling system using a single-stage stirling-type cryocooler for a practical HTS sampler. The system was designed to cool down an HTS sampler module below 50 K, enabling a bandwidth of the chip more than 100 GHz. The system measures 150 mm in width, 140 mm in height and 310 mm in depth, and weighs 5 kg. Semi-rigid coaxial cables made of brass with a silver coated inner conductor were adopted for a signal to be measured and a trigger pulse. The loss for the signal line was less than 1.5 dB at 50 GHz with relatively small thermal inflow. Thermal inflows from low frequency lines, IF signal lines for control/output of the sampler and dc bias lines, were minimized by choosing proper wires. A new sampler module with reduced weight was placed on the cold stage, which was surrounded by double magnetic shields. The module was successfully cooled down to less than 50 K with cooling time of 1 h in the system. We have also succeeded in observing sinusoidal waveforms with the HTS sampler cooled by the compact cooling system.

  14. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  15. Lunar Surface Reactor Shielding Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shawn; McAlpine, William; Lipinski, Ronald

    A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate themore » mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.« less

  16. Cryopump

    DOEpatents

    McFarlin, David J.

    1980-01-01

    A cryopump having a cryopanel adapted for being cooled by a first refrigerant and shielded from radiation incident thereon by shields adapted for being cooled with a second refrigerant is disclosed. The cryopanel and the radiation shield are fabricated with a first material having high thermal conductivity, such as aluminum, while means for distributing refrigerant from refrigerant dewars to the cryopanel and shields are made of a second material, such as stainless steel. The stainless steel and aluminum sections are connected by an aluminum-steel transition connector adapted for providing vacuum tight connections at cryogenic temperatures. Both the cryopanel and chevrons comprising the shields are fabricated and extruded aluminum with coolant passages formed therein. Thermal distortions during operation are compensated by the use of stainless steel bellows within refrigerant distribution lines. Additionally the refrigerant distribution lines are utilized to suspend the cryopanel and shields within an evacuated environment of the cryopump.

  17. VAPOR SHIELD FOR INDUCTION FURNACE

    DOEpatents

    Reese, S.L.; Samoriga, S.A.

    1958-03-11

    This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

  18. Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson J. Boise; Reid, Robert S.

    2007-01-01

    As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).

  19. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  20. High voltage design structure for high temperature superconducting device

    DOEpatents

    Tekletsadik, Kasegn D [Rexford, NY

    2008-05-20

    In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.

  1. Precooling of a dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Pavlov, Valentin N.

    A non-trivial system for Precooling of the dilution refrigerator for low-temperatureexperiments on an ISOL-facility is described in detail. Neither exchange gas in the vacuum jacket of the cryostat nor a demantable window in the 4K shield are used in this system. Instead of that the dilution refrigerator is supplemented with two capillaries and a heater in order to cool all low-temperature parts of the refrigerator down to start conditions. The, time of cooling depends on the total impedance of the first heat exchanger. Such system has been developed and tested in Dubna, and it is in operation.

  2. RADIATION SHIELDING DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-09-23

    ABS>A radiation shield that is suitable for the protection of personnel from both gamma rays and nentrons is described. The shield is comprised of a hollow wall and an aggregate consisting of iron and water in approximately equal amounts by volume substantially filling the wall. A means is provided to circulate the water through the wall to cool the shield when in use.

  3. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Reid, Robert S.

    2006-01-01

    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  4. Active Costorage of Cryogenic Propellants for Exploration

    NASA Technical Reports Server (NTRS)

    Canavan, Edgar R.; Boyle, Rob; Mustafi, Shuvo

    2008-01-01

    Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used cryogens to cool instruments. In many cases, the lifetime of the primary cryogen tank has been extended by intercepting much of the heat incident on the tank at an intermediate-temperature shield cooled either by a second cryogen tank or a mechanical cryocooler. For an LH2/LO2 propellant system, a combination of these ideas can be used, in which the shield around the LO2 tank is attached to, and at the same temperature as, the LO2 tank, but is actively cooled so as to remove all heat impinging on the tank and shield. This configuration eliminates liquid oxygen boil-off and cuts the liquid hydrogen boil-off to a small fraction of the unshielded rate. This paper studies the concept of active costorage as a means of long-term cryogenic propellant storage. The paper describes the design impact of an active costorage system for the Crew Exploration Vehicle (CEV). This paper also compares the spacecraft level impact of the active costorage concept with a passive storage option in relation to two different scales of spacecraft that will be used for the lunar exploration effort, the CEV and the Earth Departure Stage (EDS). Spacecraft level studies are performed to investigate the impact of scaling of the costorage technologies for the different components of the Lunar Architecture and for different mission durations.

  5. Data and results from a study of internal convective cooling systems for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Dukes, W. H.; Helenbrook, R. G.

    1974-01-01

    An extensive survey of current and future airframe construction materials and coolants was conducted, so that the most promising candidates could be examined for cooled-panel, cooling-system and airframe concepts. Consideration was given to over 100 structural materials, 50 coolants, 6 classes of structural panel concepts, 4 classes of thermal panel concepts with numerous variations, and 3 overall cooled airframe design approaches, including unshielded, shielded, and dual temperature types. The concept identification and parametric comparison phase examined all major elements of the convectively cooled airframe, including the differing requirements at various locations on the aircraft. The parametric results were used for the investigation to two separate vehicles, a hypersonic transport with a length of 96 meters (314 feet) and a weight of 24,000 kg (528,600 lb) and a hypersonic research airplane, with a length of 25m (80 ft) and a weight of 20,300 kg (447,000 lb).

  6. MEANS FOR SHIELDING AND COOLING REACTORS

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  7. Development of an experimental system for characterization of high-temperature superconductors cooled by liquid hydrogen under the external magnetic field

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-05-01

    An experimental system has been developed to investigate electro-magnetic properties of high-Tc superconductors cooled by liquid hydrogen under the external magnetic field of up to 7 T. A LH2 cryostat is concentrically mounted on the inside of a LHe cryostat to cool a NbTi superconducting magnet. The experimental system is installed in an explosion-proof room. Explosion proof electrical devices are used and current leads are covered with an enclosure filled with nitrogen gas. A remote control system has been developed. Furthermore, the effects of stray magnetic field on the existing and the new devices are investigated and electro-magnetic shielding panels and enclosure made of iron were designed. It is confirmed through the cryogenic test that the experimental system meets the design requirements.

  8. DETECTION OF COATING FAILURES IN A NEUTRONIC REACTOR

    DOEpatents

    Snell, A.H.; Allison, S.K.

    1958-02-11

    This patent relates to water-cooled reactor systems and discloses a means to detect leaks in the jackets of jacketed fuel elements comprising a neutron detector located in the cooling water discharge pipe,the pipe being provided with an enlarged portion for housing the detector so that the latter is completely surrounded by the water in its passage through the pipe, said enlarged portion and detector being shielded from the reactor for the purpose of detecting only those delayed neutrons emitted in the cooling water and due to the latter picking up fission fragments from the defective fuel elements.

  9. Large panel design for containment air baffle

    DOEpatents

    Orr, Richard S.

    1992-01-01

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel.

  10. Large panel design for containment air baffle

    DOEpatents

    Orr, R.S.

    1992-12-08

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel. 9 figs.

  11. Thermal-hydraulic analysis of N Reactor graphite and shield cooling system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, J.O.; Schmitt, B.E.

    1988-02-01

    A series of bounding (worst-case) calculations were performed using a detailed hydrodynamic RELAP5 model of the N Reactor graphite and shield cooling system (GSCS). These calculations were specifically aimed to answer issues raised by the Westinghouse Independent Safety Review (WISR) committee. These questions address the operability of the GSCS during a worst-case degraded-core accident that requires the GDCS to mitigate the consequences of the accident. An accident scenario previously developed was designed as the hydrogen-mitigation design-basis accident (HMDBA). Previous HMDBA heat transfer analysis,, using the TRUMP-BD code, was used to define the thermal boundary conditions that the GSDS may bemore » exposed to. These TRUMP/HMDBA analysis results were used to define the bounding operating conditions of the GSCS during the course of an HMDBA transient. Nominal and degraded GSCS scenarios were investigated using RELAP5 within or at the bounds of the HMDBA transient. 10 refs., 42 figs., 10 tabs.« less

  12. Packed rod neutron shield for fast nuclear reactors

    DOEpatents

    Eck, John E.; Kasberg, Alvin H.

    1978-01-01

    A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

  13. Cooling system for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Pagel, L. L. (Inventor)

    1981-01-01

    The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.

  14. Radioactive waste disposal via electric propulsion

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  15. Evaluation of active cooling systems for a Mach 6 hypersonic transport airframe, part 2

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. G.; Mcconarty, W. A.; Anthony, F. M.

    1971-01-01

    Transpiration and convective cooling concepts are examined for the fuselage and tail surface of a Mach 6 hypersonic transport aircraft. Hydrogen, helium, and water are considered as coolants. Heat shields and radiation barriers are examined to reduce heat flow to the cooled structures. The weight and insulation requirements for the cryogenic fuel tanks are examined so that realistic totals can be estimated for the complete fuselage and tail. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy contruction materials. The results of the study are combined with results obtained on the wing structure, obtained in a previous study, to estimate weights for the complete airframe. The concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.

  16. Active Co-Storage of Cryogenic Propellants for Lunar Explortation

    NASA Technical Reports Server (NTRS)

    Mustafi, S.; Canavan, E. R.; Boyle, R. F.; Panek, J. S.; Riall, S. M.; Miller, F. K.

    2008-01-01

    Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used dual cryogens with different temperatures to cool instruments. This technology utilizes a higher temperature cryogen to provide a stage that efficiently intercepts a large fraction of the heat that would otherwise be incident on the lower temperature cryogen. This interception reduces the boil-off of the lower temperature cryogen and increasing the overall life-time of the mission. The Active Co-Storage concept is implemented similarly; the 101 K liquid oxygen thermally shields the 24 K liquid hydrogen. A thermal radiation shield that is linked to the liquid oxygen tank shrouds the liquid hydrogen tank, thereby preventing the liquid hydrogen tank from being directly exposed to the 300 K external environment. Modern cryocooler technology can eliminate the liquid oxygen boil-off and also cool the thermal radiation shield thereby reducing the liquid hydrogen boil-off to a small fraction of the unshielded rate. The thermal radiation shield can be a simple conductive shroud or a more sophisticated but lighter Broad Area Cooling (BAC) shroud. The paper describes the design impact of an active co-storage system for the Altair Descent Vehicle. This paper also compares the spacecraft-level impacts of the conductive shroud and the BAC shroud active co-storage concepts with a passive storage option in the context of the different scales of spacecraft that will be used for the lunar exploration effort - the Altair Ascent and Descent Vehicles, the Orion, and the Ares V Earth Departure Stage. The paper also reports on a subscale test of this active co-storage configuration. The test tank is 0.7 m in diameter, approximately one-third the dimension of tanks that would be needed in a lunar ascent module. A thin-walled fiberglass skirt supports and isolates the tank from a 100 K stage. A similar thin-walled skirt supports the lOOK stage from the ambient temperature structure. An aluminum shield with a heavy MLI blanket surrounds the tank and is attached at the 100 K stage. In this initial phase of the project, there is no tank on the 100 K stage, but it is actively cooled by a single-stage cryocooler similar in design to the one used on the RHESSI mission. The test configuration includes a number of innovative elements, including a helical support heat exchanger and an external thermodynamic vent/heat interception system. To avoid the complexity of an explosive gas handling system, testing will be done with liquid helium and liquid neon as simulant fluids. The properties of these fluids bracket the properties of liquid hydrogen. Instrumentation allows tank temperature and shield temperature profiles, tank liquid levels, and pressure drops through the flow lines, to be measured.

  17. The Hall D solenoid helium refrigeration system at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields withmore » liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.« less

  18. Thermal control of the GRASP detector section

    NASA Astrophysics Data System (ADS)

    Roig, P. B.

    1988-12-01

    The necessity of keeping GRASP telescope (Gamma Ray Astronomy with Spectroscopy and Positioning) detectors at working temperatures within an adequate range (85 + or - 15 K for the germanium and 283 + or - 20 K for CsI) is discussed. Thermal control based in cryogenic liquid tanks is not considered the most suitable solution because of mass and lifetime considerations. Instead of this conventional solution, a concept using a combination of passive and active cooling systems was chosen. It combines the features of a corrugated radiator panel, thermal shields, MLI blankets, and an extra cooling system based on the Stirling cycle engine.

  19. Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ellis, D. A.; Pagel, L. L.; Schaeffer, D. M.

    1978-01-01

    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi).

  20. SQUID readout and ultra-low magnetic fields for Gravity Probe-B (GP-B)

    NASA Technical Reports Server (NTRS)

    Lockhart, James M.

    1986-01-01

    The superconducting readout system to be used for resolving 0.001 arcsec changes in the gyroscope spin direction in the Relativity Gyroscope (GP-B) experiment is described. This system couples the London magnetic moment flux of the spinning gyro to a low noise superconducting quantum interference device (SQUID) detector. Resolution limits and noise performance of the detection system are discussed, and improvements obtained and expected with advanced SQUIDs are presented. Also described is the novel use of superconducting magnetic shielding techniques to obtain a 250 dB attenuation of the earth's magnetic field at the location of the gyroscopes. In this approach, expanded superconducting foil shields are coupled with fixed cylindrical superconducting shields and special geometric considerations to obtain the extremely high attenuation factor required. With these shielding techniques, it appears that the 0.5-Gauss earth field (which appears to the gyroscopes as an ac field at the satellite roll rate) can be reduced to the 10 to the -13th G level required by the experiment. Recent results concerning improvements in the performance of the superconducting foil techniques obtained with the use of a new computer-controlled cooling system are presented.

  1. INERT GAS SHIELD FOR WELDING

    DOEpatents

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  2. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  3. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200-870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000-20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  4. Performance of Superconducting Current Feeder System for SST-1

    NASA Astrophysics Data System (ADS)

    Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.

  5. VIEW OF GRAPHITE BLOCK SHIELDING WALL (NOT IN ORIGINAL LOCATION), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF GRAPHITE BLOCK SHIELDING WALL (NOT IN ORIGINAL LOCATION), LEVEL -15’, LABORATORY/OFFICE WING, SHOWING COOLING WATER PUMPS, LOOKING WEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  6. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercialmore » spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.« less

  7. Prompt radiation, shielding and induced radioactivity in a high-power 160 MeV proton linac

    NASA Astrophysics Data System (ADS)

    Magistris, Matteo; Silari, Marco

    2006-06-01

    CERN is designing a 160 MeV proton linear accelerator, both for a future intensity upgrade of the LHC and as a possible first stage of a 2.2 GeV superconducting proton linac. A first estimate of the required shielding was obtained by means of a simple analytical model. The source terms and the attenuation lengths used in the present study were calculated with the Monte Carlo cascade code FLUKA. Detailed FLUKA simulations were performed to investigate the contribution of neutron skyshine and backscattering to the expected dose rate in the areas around the linac tunnel. An estimate of the induced radioactivity in the magnets, vacuum chamber, the cooling system and the concrete shield was performed. A preliminary thermal study of the beam dump is also discussed.

  8. Nuclear thermal propulsion engine system design analysis code development

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.

    1992-01-01

    A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.

  9. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  10. A Robust Cooling Platform for NIS Junction Refrigeration and sub-Kelvin Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Atlas, M.; Lowell, P.; Moyerman, S.; Stebor, N.; Ullom, J.; Keating, B.

    2014-08-01

    Recent advances in Normal metal-insulator-superconductor (NIS) tunnel junctions (Clark et al. Appl Phys Lett 86: 173508, 2005, Appl Phys Lett 84: 4, 2004) have proven these devices to be a viable technology for sub-Kelvin refrigeration. NIS junction coolers, coupled to a separate cold stage, provide a flexible platform for cooling a wide range of user-supplied payloads. Recently, a stage was cooled from 290 to 256 mK (Lowell et al. Appl Phys Lett 102: 082601 2013), but further mechanical and electrical improvements are necessary for the stage to reach its full potential. We have designed and built a new Kevlar suspended cooling platform for NIS junction refrigeration that is both lightweight and well thermally isolated; the calculated parasitic loading is pW from 300 to 100 mK. The platform is structurally rigid with a measured deflection of 25 m under a 2.5 kg load and has an integrated mechanical heat switch driven by a superconducting stepper motor with thermal conductivity G W/K at 300 mK. An integrated radiation shield limits thermal loading and a modular platform accommodates enough junctions to provide nanowatts of continuous cooling power. The compact stage size of 7.6 cm 8.6 cm 4.8 cm and overall radiation shield size of 8.9 cm 10.0 cm 7.0 cm along with minimal electrical power requirements allow easy integration into a range of cryostats. We present the design, construction, and performance of this cooling platform as well as projections for coupling to arrays of NIS junctions and other future applications.

  11. Testimony of Fred R. Mynatt before the Energy Research and Development Subcommittee of the Committee on Science, Space, and Technology, US House of Representatives. [Advanced fuel technology, gas-cooled reactor technology, and liquid metal-cooled reactor technology programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mynatt, F.R.

    1987-03-18

    This report provides a description of the statements submitted for the record to the committee on Science, Space, and Technology of the United States House of Representatives. These statements describe three principal areas of activity of the Advanced Reactor Technology Program of the Department of Energy (DOE). These areas are advanced fuel cycle technology, modular high-temperature gas-cooled reactor technology, and liquid metal-cooled reactor. The areas of automated reactor control systems, robotics, materials and structural design shielding and international cooperation were included in these statements describing the Oak Ridge National Laboratory's efforts in these areas. (FI)

  12. Personal, closed-cycle cooling and protective apparatus and thermal battery therefor

    DOEpatents

    Klett, James W.; Klett, Lynn B.

    2004-07-20

    A closed-cycle apparatus for cooling a living body includes a heat pickup body or garment which permits evaporation of an evaporating fluid, transmission of the vapor to a condenser, and return of the condensate to the heat pickup body. A thermal battery cooling source is provided for removing heat from the condenser. The apparatus requires no external power and provides a cooling system for soldiers, race car drivers, police officers, firefighters, bomb squad technicians, and other personnel who may utilize protective clothing to work in hostile environments. An additional shield layer may simultaneously provide protection from discomfort, illness or injury due to harmful atmospheres, projectiles, edged weapons, impacts, explosions, heat, poisons, microbes, corrosive agents, or radiation, while simultaneously removing body heat from the wearer.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; De Monte, V.; Di Lieto, A.

    In the LEReC Cooling Section (CS) the RHIC ions are traveling together with and getting cooled by the LEReC electrons. The required cooling rate sets the limit of 150 urad on tolerable angles of the electrons in the CS. One of the components of overall electron angle is the angle of the e-beam trajectory with respect to the ion beam trajectory. We set the limit for electron trajectory angle to 100 urad. It is critical for preserving small trajectory angle to keep the transverse magnetic field inside the CS drifts within +/- 2.3 mG. The drifts in the CS mustmore » be shielded from the ambient magnetic fields of the RHIC tunnel, which can be as high as 0.5 G, to minimize the transverse field inside the CS vacuum chamber. In this paper we present the final design of the magnetic shielding of the LEReC CS and discuss the results of tests dedicated to studies of the shielding effectiveness.« less

  14. Flow distribution analysis on the cooling tube network of ITER thermal shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun

    2014-01-29

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube networkmore » for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.« less

  15. Exploring the imaging properties of thin lenses for cryogenic infrared cameras

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; Verdet, Sebastien; Guerineau, Nicolas; Magli, Serge; Chambon, Mathieu; Grulois, Tatiana; Matallah, Noura

    2016-05-01

    Designing a cryogenic camera is a good strategy to miniaturize and simplify an infrared camera using a cooled detector. Indeed, the integration of optics inside the cold shield allows to simply athermalize the design, guarantees a cold pupil and releases the constraint on having a high back focal length for small focal length systems. By this way, cameras made of a single lens or two lenses are viable systems with good optical features and a good stability in image correction. However it involves a relatively significant additional optical mass inside the dewar and thus increases the cool down time of the camera. ONERA is currently exploring a minimalist strategy consisting in giving an imaging function to thin optical plates that are found in conventional dewars. By this way, we could make a cryogenic camera that has the same cool down time as a traditional dewar without an imagery function. Two examples will be presented: the first one is a camera using a dual-band infrared detector made of a lens outside the dewar and a lens inside the cold shield, the later having the main optical power of the system. We were able to design a cold plano-convex lens with a thickness lower than 1mm. The second example is an evolution of a former cryogenic camera called SOIE. We replaced the cold meniscus by a plano-convex Fresnel lens with a decrease of the optical thermal mass of 66%. The performances of both cameras will be compared.

  16. The development of a containment vessel and Dewar for the particle astrophysics magnet facility (ASTROMAG)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The ASTROMAG facility is the heart of a large charged particle detection and resolution system. ASTROMAG utilizes a superconducting magnet consisting of a large superconducting magnet coil with a stored magnetic energy of approximately 15 MJ. The active coil will have a mass of 1200 kg. This magnet will be cooled by a cryostat using a liquid helium Dewar for storage. The cryostat will have a series of gas-cooled shields with an external guard vacuum shield and an internal Dewar. The magnet and cryostat will be designed for shuttle or Delta launch and will be designed to withstand the internal pressure of expanded helium under full quench conditions when venting is prevented. The external guard vacuum shell is required to maintain a vacuum for Earth based testing and for cold launch of the cryostat and magnet. The magnet is designed to operate at 4.4 K with a peak field of 7.0 tesla. The superconducting material within the magnet is niobium titanium in a conductive matrix.

  17. NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.

    1958-11-18

    Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.

  18. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive

    NASA Astrophysics Data System (ADS)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  19. Vasculature of the hive: heat dissipation in the honey bee (Apis mellifera) hive.

    PubMed

    Bonoan, Rachael E; Goldman, Rhyan R; Wong, Peter Y; Starks, Philip T

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees (Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  20. Optimized thin film coatings for passive radiative cooling applications

    NASA Astrophysics Data System (ADS)

    Naghshine, Babak B.; Saboonchi, Ahmad

    2018-03-01

    Passive radiative cooling is a very interesting method, which lays on low atmospheric downward radiation within 8-13 μm waveband at dry climates. Various thin film multilayer structures have been investigated in numerous experimental studies, in order to find better coatings to exploit the full potential of this method. However, theoretical works are handful and limited. In this paper, the Simulated Annealing and Genetic Algorithm are used to optimize a thin film multilayer structure for passive radiative cooling applications. Spectral radiative properties are calculated through the matrix formulation. Considering a wide range of materials, 30 high-potential convective shields are suggested. According to the calculations, cooling can be possible even under direct sunlight, using the introduced shields. Moreover, a few water-soluble materials are studied for the first time and the results show that, a KBr substrate coated by a thin CaF2 or polyethylene film can is very close to an ideal coating for passive radiative cooling at night.

  1. The impact of microwave stray radiation to in-vessel diagnostic components

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Oosterbeek, J.; Baldzuhn, J.; Biedermann, C.; v d Brand, H.; Cardella, A.; Erckmann, V.; Jimenez, R.; König, R.; Köppen, M.; Parquay, S.; Zhang, D.; W7-X Team

    2014-08-01

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m2 over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  2. Cryogenic Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  3. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-ray Spectrometer Instrument on Astro-H

    PubMed Central

    Shirron, Peter J; Kimball, Mark O; James, Bryan L; Muench, Theo; DiPirro, Michael J; Letmate, Richard V; Sampson, Michael A; Bialas, Tom G; Sneiderman, Gary A; Porter, Frederick S; Kelley, Richard L

    2017-01-01

    A 3-stage adiabatic demagnetization refrigerator (ADR)[1] is used on the Soft X-ray Spectrometer instrument[2] on Astro-H[3] to cool a 6×6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system[4] consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes. PMID:28111478

  4. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-ray Spectrometer Instrument on Astro-H.

    PubMed

    Shirron, Peter J; Kimball, Mark O; James, Bryan L; Muench, Theo; DiPirro, Michael J; Letmate, Richard V; Sampson, Michael A; Bialas, Tom G; Sneiderman, Gary A; Porter, Frederick S; Kelley, Richard L

    2016-03-01

    A 3-stage adiabatic demagnetization refrigerator (ADR)[1] is used on the Soft X-ray Spectrometer instrument[2] on Astro-H[3] to cool a 6×6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system[4] consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.

  5. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-Ray Spectrometer Instrument on Astro-H

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theo; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; hide

    2015-01-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) is used on the Soft X-ray Spectrometer instrument on Astro-H to cool a 6x6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes

  6. Radiation Shielding Design and Orientation Considerations for a 1 kWe Heat Pipe Cooled Reactor Utilized to Bore Through the Ice Caps of Mars

    NASA Astrophysics Data System (ADS)

    Fensin, Michael L.; Elliott, John O.; Lipinski, Ronald J.; Poston, David I.

    2006-01-01

    The goal in designing any space power system is to develop a system able to meet the mission requirements for success while minimizing the overall costs. The mission requirements for the this study was to develop a reactor (with Stirling engine power conversion) and shielding configuration able to fit, along with all the other necessary science equipment, in a Cryobot 3 m high with ~0.5 m diameter hull, produce 1 kWe for 5yrs, and not adversely affect the mission science by keeping the total integrated dose to the science equipment below 150 krad. Since in most space power missions the overall system mass dictates the mission cost, the shielding designs in this study incorporated Martian water extracted at the startup site in order to minimize the tungsten and LiH mass loading at launch. Different reliability and mass minimization concerns led to three design configuration evolutions. With the help of implementing Martian water and configuring the reactor as far from the science equipment as possible, the needed tungsten and LiH shield mass was minimized. This study further characterizes the startup dose and the necessary mission requirements in order to ensure integrity of the surface equipment during reactor startup phase.

  7. SU-E-T-400: Evaluation of Shielding and Activation at Two Pencil Beam Scanning Proton Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmes, N; Mundy, D; Classic, K

    2015-06-15

    Purpose: To verify acceptably low dose levels around two newly constructed identical pencil beam scanning proton therapy facilities and to evaluate accuracy of pre-construction shielding calculations. Methods: Dose measurements were taken at select points of interest using a WENDI-2 style wide-energy neutron detector. Measurements were compared to pre-construction shielding calculations. Radiation badges with neutron dose measurement capabilities were worn by personnel and also placed at points throughout the facilities. Seven neutron and gamma detectors were permanently installed throughout the facility, continuously logging data. Potential activation hazards have also been investigated. Dose rates near water tanks immediately after prolonged irradiation havemore » been measured. Equipment inside the treatment room and accelerator vault has been surveyed and/or wipe tested. Air filters from air handling units, sticky mats placed outside of the accelerator vault, and water samples from the magnet cooling water loops have also been tested. Results: All radiation badges have been returned with readings below the reporting minimum. Measurements of mats, air filters, cooling water, wipe tests and surveys of equipment that has not been placed in the beam have all come back at background levels. All survey measurements show the analytical shielding calculations to be conservative by at least a factor of 2. No anomalous events have been identified by the building radiation monitoring system. Measurements of dose rates close to scanning water tanks have shown dose rates of approximately 10 mrem/hr with a half-life less than 5 minutes. Measurements around the accelerator show some areas with dose rates slightly higher than 10 mrem/hr. Conclusion: The shielding design is shown to be adequate. Measured dose rates are below those predicted by shielding calculations. Activation hazards are minimal except in certain very well defined areas within the accelerator vault and for objects placed directly in the path of the beam.« less

  8. Integration of a Cryocooler into a SQUID Magnetospinography System for Reduction of Liquid Helium Consumption

    NASA Astrophysics Data System (ADS)

    Adachi, Yoshiaki; Oyama, Daisuke; Kawai, Jun; Ogata, Hisanao; Uehara, Gen

    We are currently developing a magnetospinography (MSG) system for noninvasive functional imaging of the spinal cord. The MSG system is a device for observing a weak magnetic field accompanied by the neural activity of the spinal cord by using an array of low-temperature superconducting quantum interference device (SQUID) magnetic flux sensors. As in the case of other biomagnetic measurement systems such as the magnetoencephalography (MEG) system, the running cost of the MSG system is mainly dependent on the liquid helium (LHe) consumption of a dewar vessel. We integrated a cryocooler into the MSG system to reduce LHe consumption. A pulse tube cryocooler with a cooling power of 0.5Wat 4 K was placed adjacent to a magnetically shielded room and was directly connected to the thermal radiation shield of the dewar by an electrically isolated transfer tube. Cold helium gas was circulated between the cryocooler and the radiation shield. Consequently, the temperature of the radiation shield decreased below 40 K. Previous studies have shown that the detection of a weak magnetic field is often hindered by severe low-frequency band noise from the cryocooler. However, the band of the MSG signals is much higher than that of the cryocooler noise. Therefore, the noise can be filtered out and has a less detrimental effect on MSG measurement than on other biomagnetic field measurements such as MEG measurement. As a result, LHe consumption was reduced by 46%, with no increase in the noise floor.

  9. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  10. A compact 3 T all HTS cryogen-free MRI system

    NASA Astrophysics Data System (ADS)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Fedotov, A.; Gassner, D.

    The goal of this note is to set basic parameters for the magnetic shielding of LEReC CS with required design attenuation. We considered physical design of magnetic shielding of LEReC cooling section. The schematic of this design along with the list of its basic parameters is shown. We are planning to use 2 layers of 1 mm thick cylindrical mu-metal shields with μ=11000. The radius of the first layer sitting on top of vacuum chamber is 63.5 mm. The second layer radius is 150 mm. Such shielding guarantees adequate transverse angles of electron beam trajectory in the CS.

  12. Wind tunnel investigation of simulated helicopter engine exhaust interacting with windstream

    NASA Technical Reports Server (NTRS)

    Shaw, C. S.; Wilson, J. C.

    1974-01-01

    A wind tunnel investigation of the windstream-engine exhaust flow interaction on a light observation helicopter model has been conducted in the Langley V/STOL tunnel. The investigation utilized flow visualization techniques to determine the cause to determine the cause of exhaust shield overheating during cruise and to find a means of eliminating the problem. Exhaust flow attachment to the exhaust shield during cruise was found to cause the overheating. Several flow-altering devices were evaluated to find a suitable way to correct the problem. A flow deflector located on the model cowling upstream of the exhaust in addition to aerodynamic shield fairings provided the best solution. Also evaluated was heat transfer concept employing pin fins to cool future exhaust hardware. The primary flow visualization technique used in the investigation was a newly developed system employing neutrally buoyant helium-filled bubbles. The resultant flow patterns were recorded on motion picture film and on television magnetic tape.

  13. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  14. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  15. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  16. Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau, Mark William

    Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and/or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the moltenmore » material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.« less

  17. Design and optimisation of low heat load liquid helium cryostat to house cryogenic current comparator in antiproton decelerator at CERN

    NASA Astrophysics Data System (ADS)

    Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.

    2017-02-01

    The Cryogenic Current Comparator (CCC) is installed in the low-energy Antiproton Decelerator (AD) at CERN to make an absolute measurement of the beam intensity. Operating below 4.2 K, it is based on a superconducting quantum interference device (SQUID) and employs a superconducting niobium shield to supress magnetic field components not linked to the beam current. The AD contains no permanent cryogenic infrastructure so the local continuous liquefaction of helium using a pulse-tube is required; limiting the available cooling power to 0.69 W at 4.2K. Due to the sensitivity of the SQUID to variations in magnetic fields, the CCC is highly sensitive to mechanical vibration which is limited to a minimum by the support systems of the cryostat. This article presents the cooling system of the cryostat and discusses the design challenges overcome to minimise the transmission of vibration to the CCC while operating within the cryogenic limits imposed by the cooling system.

  18. System and method for liquid silicon containment

    DOEpatents

    Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

    2013-05-28

    This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding member adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

  19. System and method for liquid silicon containment

    DOEpatents

    Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

    2014-06-03

    This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding ember adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

  20. Bulk shielding facility quarterly report, October, November, and December 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, III, S. S.; Lance, E. D.; Thomas, J. R.

    1977-08-01

    The BSR operated at an average power level of 1,836 kw for 78.01 percent of the time during October, November, and December. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training programs and was operated on two occasions when the University of Kentucky students actively participated in training laboratories.

  1. High-performance magnetic field sensor based on superconducting quantum interference filters

    NASA Astrophysics Data System (ADS)

    Caputo, P.; Oppenländer, J.; Häussler, Ch.; Tomes, J.; Friesch, A.; Träuble, T.; Schopohl, N.

    2004-08-01

    We have developed an absolute magnetic field sensor using a superconducting quantum interference filter (SQIF) made of high-Tc grain-boundary Josephson junctions. The device shows the typical magnetic-field-dependent voltage response V(B ), which is a sharp deltalike dip in the vicinity of zero-magnetic field. When the SQIF is cooled with magnetic shield, and then the shield is removed, the presence of the ambient magnetic field induces a shift of the dip position from B0≈0 to a value B ≈B1, which is about the average value of the Earth's magnetic field, at our latitude. When the SQIF is cooled in the ambient field without shielding, the dip is first found at B ≈B1, and the further shielding of the SQIF results in a shift of the dip towards B0≈0. The low hysteresis observed in the sequence of experiments (less than 5% of B1) makes SQIFs suitable for high precision measurements of the absolute magnetic field. The experimental results are discussed in view of potential applications of high-Tc SQIFs in magnetometry.

  2. Evaluation of a large capacity heat pump concept for active cooling of hypersonic aircraft structure

    NASA Technical Reports Server (NTRS)

    Pagel, L. L.; Herring, R. L.

    1978-01-01

    Results of engineering analyses assessing the conceptual feasibility of a large capacity heat pump for enhancing active cooling of hypersonic aircraft structure are presented. A unique heat pump arrangement which permits cooling the structure of a Mach 6 transport to aluminum temperatures without the aid of thermal shielding is described. The selected concept is compatible with the use of conventional refrigerants, with Freon R-11 selected as the preferred refrigerant. Condenser temperatures were limited to levels compatible with the use of conventional refrigerants by incorporating a unique multipass condenser design, which extracts mechanical energy from the hydrogen fuel, prior to each subsequent pass through the condenser. Results show that it is technically feasible to use a large capacity heat pump in lieu of external shielding. Additional analyses are required to optimally apply this concept.

  3. COOLED NEUTRONIC REACTOR

    DOEpatents

    Binner, C.R.; Wilkie, C.B.

    1958-03-18

    This patent relates to a design for a reactor of the type in which a fluid coolant is flowed through the active portion of the reactor. This design provides for the cooling of the shielding material as well as the reactor core by the same fluid coolant. The core structure is a solid moderator having coolant channels in which are disposed the fuel elements in rod or slug form. The coolant fluid enters the chamber in the shield, in which the core is located, passes over the inner surface of said chamber, enters the core structure at the center, passes through the coolant channels over the fuel elements and out through exhaust ducts.

  4. Operating modes and cooling capabilities of the 3-stage ADR developed for the Soft-X-ray Spectrometer instrument on Astro-H

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2016-03-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 × 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.

  5. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig

    1986-02-04

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  6. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig

    1986-01-01

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  7. Thermal Design and Analysis of a Multi-Stage 30K Radiative Cooling System for EPIC

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Bock, Jamie; Holmes, Warren; Raab, Jeff

    2009-01-01

    The Experimental Probe of Inflationary Cosmology (EPIC) is an implementation of the NASA Einstein Inflation Probe mission, to answer questions about the physics of Inflation in the early Universe by measuring the polarization of the Cosmic Microwave Background (CMB). The mission relies on a passive cooling system to cool the enclosure of a telescope to 30 K; a cryocooler then cools this enclosure to 18 K and the telescope to 4 K. Subsequently, an adiabatic demagnetization refrigerator further cools a large focal plane to approx.100 mK. For this mission, the telescope has an aperture of 1.4 m, and the spacecraft's symmetry axis is oriented approx. 45 degrees relative to the direction of the sun. The spacecraft will be spun at approx. 0.5 rpm around this axis, which then precesses on the sky at 1 rph. The passive system must both supply the necessary cooling power for the cryocooler and meet demanding temperature stability requirements. We describe the thermal design of a passive cooling system consisting of four V-groove radiators for shielding of solar radiation and cooling the telescope to 30 K. The design realizes loads of 20 and 68 mW at the 4 K and 18 K stages on the cooler, respectively. A lower cost option for reaching 40 K with three V-groove radiators is also described. The analysis includes radiation coupling between stages of the radiators and sunshields, and parasitic conduction in the bipod support, harnesses, and ADR leads. Dynamic effects are also estimated, including the very small variations in temperature due to the scan motion of the spacecraft.

  8. Flightweight radiantly and actively cooled panel: Thermal and structural performance

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Nowak, R. J.; Kelly, H. N.

    1982-01-01

    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.

  9. The use of the long modular diagnostics shield module to mitigate shutdown dose rates in the ITER diagnostics equatorial ports

    NASA Astrophysics Data System (ADS)

    Juárez, R.; Guirao, J.; Kolsek, A.; Lopez, A.; Pedroche, G.; Bertalot, L.; Udintsev, V. S.; Walsh, M. J.; Sauvan, P.; Sanz, J.

    2018-05-01

    The ITER equatorial port plugs are submitted to a drained weight limit of 45 T. This limitation can conflict with their radiation shielding demands, although some weight margin is being discussed. The port interspaces are subject to a shutdown dose rate limit of 100 µSv h‑1 after 106 s of cooling time. To meet it, the port plugs must show a neutron flux attenuation comparable to their neighborhood, despite considering penetrations to host systems. Most of this task relies on the drawer shield module (DSM). In this work, two DSM concepts are analyzed with this perspective: the box-based DSM and the modular DSM. Regardless the penetrations, the box-based DSM leads to unsatisfactory port plugs to meet both weight and SDDR requirements. On the contrary, the modular DSM shows a performance which allows for the adoption of such DSM concept, or equivalent, a port may comply with both requirements at the same time, provided the penetrations are well designed.

  10. Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodak, A.; Zhai, Y.; Wang, W.

    As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less

  11. Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module

    DOE PAGES

    Khodak, A.; Zhai, Y.; Wang, W.; ...

    2017-06-19

    As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less

  12. Helium Transfer System for the Superconducting Devices at NSRRC

    NASA Astrophysics Data System (ADS)

    Li, H. C.; Hsiao, F. Z.; Chang, S. H.; Chiou, W. S.

    2006-04-01

    A helium cryogenic plant with a maximum cooling power of 450 W at 4.5K was installed at the end of the year 2003. This plant has provide the cooling power for the test of one superconducting cavity and the commission of one superconducting magnet for nine months. In November 2004, we installed one helium transfer system in NSRRC's storage ring to fulfill the cooling requirement for the operation of one superconducting cavity and two superconducting magnets. This helium transfer system consists of a switch valve box and the nitrogen-shielding multi-channel transfer lines. The averaged heat leak to the helium process line (including the straight section, the joint, the elbow, the coupling) at liquid helium temperature is specified to be less than 0.1 W/m at 4.2K; the total heat leak of the switching valve box to helium process lines is less than 16 W at 4.2K. In this paper we present the function, design parameters and test result of the helium transfer system. Commissioning results of both the cavity and the magnets using this helium transfer system will be shown as well.

  13. Low-cost, compact, cooled photomultiplier assembly for use in magnetic fields up to 1400 Gauss

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Tashjian, R. A.; Jentner, T. A.

    1975-01-01

    Use of vortex tube for cooling and concentric shielding have produced smaller and more compact unit than was previously available. Future uses of device could include installation in gas chromatographs and mass spectrometers. Additional uses would include measurements and controls in magnetohydrodynamic power generators and fusion reactors.

  14. Cockrell and Rominger go through de-orbit preparations in the flight deck

    NASA Image and Video Library

    1996-12-06

    STS080-360-002 (19 Nov.-7 Dec. 1996) --- From the commander's station on the port side of the space shuttle Columbia's forward flight deck, astronaut Kenneth D. Cockrell prepares for a minor firing of Reaction Control System (RCS) engines during operations with the Wake Shield Facility (WSF). The activity was recorded with a 35mm camera on flight day seven. The commander is attired in a liquid-cooled biological garment.

  15. Bulk Shielding Facility quarterly report, April, May and June 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbett, B.L.; Lance, E.D.

    1984-12-01

    The BSR operated at an average power level of 1310 kW for 3.8% of the time during April, May, and June. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training startups and was operated on five occasions for the NBS and HEDL recheck of a previous experiment run on the LWR pressure vessel surveillance dosimetry improvement program.

  16. Assessment of Alphamagnetic Spectrometer (AMS) Upper Experiment Structural Configuration Shielding Effectiveness Associated with Change from Cryo-Cooled Magnet to Permanent Magnet

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2012-01-01

    In the spring of 2010, the Alpha Magnetic Spectrometer 2 (AMS-02) underwent a series of system level electromagnetic interference control measurements, followed by thermal vacuum testing. Shortly after completion of the thermal vacuum testing, the project decided to remove the cryogenically cooled superconducting magnet, and replace it with the original permanent magnet design employed in the earlier AMS- 01 assembly. Doing so necessitated several structural changes, as well as removal or modification of numerous electronic and thermal control devices and systems. At this stage, the project was rapidly approaching key milestone dates for hardware completion and delivery for launch, and had little time for additional testing or assessment of any impact to the electromagnetic signature of the AMS-02. Therefore, an analytical assessment of the radiated emissions behavioural changes associated with the system changes was requested.

  17. Progress in the Development of a Continuous Adiabatic Demagnetization Refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Tuttle, James; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    We report on recent progress in the development of a continuous adiabatic demagnetization refrigerator (CADR). Continuous operation avoids the constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, allowing us to achieve an order of magnitude larger cooling power per unit mass. Our current design goal is 10 micro W of cooling at 50 mK using a 6-10 K heat sink. The estimated mass is less than 10 kg, including magnetic shielding of each stage. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long mission life and reduced complexity and cost. We have assembled a three-stage CADR and have demonstrated continuous cooling using a superfluid helium bath as the heat sink. The temperature stability is 8 micro K rms or better over the entire cycle, and the cooling power is 2.5 micro W at 60 mK rising to 10 micro W at 100 mK.

  18. A Continuous Adiabatic Demagnetization Refrigerator for Far-IR/Sub-mm Astronomy

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Tuttle, James

    2004-01-01

    We report on recent progress in the development of a continuous adiabatic demagnetization refrigerator (CADR). Continuous operation avoids the constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, allowing us to achieve an order of magnitude larger cooling power per unit mass. Our current design goal is 10 microW of cooling at 50 mK using a 6-10 K heat sink. The estimated mass is less than 10 kg, including magnetic shielding of each stage. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long mission life and reduced complexity and cost. We have assembled a three-stage CADR and have demonstrated continuous cooling using a superfluid helium bath as the heat sink. The temperature stability is 8 microK rms or better over the entire cycle, and the cooling power is 2.5 microW at 60 mK rising to 10 microW at 100 mK.

  19. Numerical calculation of the parameters of the efflux from a helium dewar used for cooling of heat shields in a satellite

    NASA Technical Reports Server (NTRS)

    Brendley, K.; Chato, J. C.

    1982-01-01

    The parameters of the efflux from a helium dewar in space were numerically calculated. The flow was modeled as a one dimensional compressible ideal gas with variable properties. The primary boundary conditions are flow with friction and flow with heat transfer and friction. Two PASCAL programs were developed to calculate the efflux parameters: EFFLUZD and EFFLUXM. EFFLUXD calculates the minimum mass flow for the given shield temperatures and shield heat inputs. It then calculates the pipe lengths, diameter, and fluid parameters which satisfy all boundary conditions. Since the diameter returned by EFFLUXD is only rarely of nominal size, EFFLUXM calculates the mass flow and shield heat exchange for given pipe lengths, diameter, and shield temperatures.

  20. Thermal Analysis of the ILC Superconductin Quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ian; /Rose-Hulman Inst., Terre Haute /SLAC

    2006-09-13

    Critical to a particle accelerator's functioning, superconducting magnets serve to focus and aim the particle beam. The Stanford Linear Accelerator Center (SLAC) has received a prototype superconducting quadrupole designed and built by the Centro de Investigaciones Energ{acute e}ticas, Medioambientales y Tecnol{acute o}gicas (CIEMAT) to be evaluated for the International Linear Collider (ILC) project. To ensure proper functioning of the magnet, the device must be maintained at cryogenic temperatures by use of a cooling system containing liquid nitrogen and liquid helium. The cool down period of a low temperature cryostat is critical to the success of an experiment, especially a prototypemore » setup such as this one. The magnet and the dewar each contain unique heat leaks and material properties. These differences can lead to tremendous thermal stresses. The system was analyzed mathematically, leading to ideal liquid helium and liquid nitrogen flow rates during the magnet's cool-down to 4.2 K, along with a reasonable estimate of how long this cool-down will take. With a flow rate of ten gaseous liters of liquid nitrogen per minute, the nitrogen shield will take approximately five hours to cool down to 77 K. With a gaseous helium flow rate of sixty liters per minute, the magnet will take at least nineteen hours to cool down to a temperature of 4.2 K.« less

  1. Performances of single and two-stage pulse tube cryocoolers under different vacuum levels with and without thermal radiation shields

    NASA Astrophysics Data System (ADS)

    Kasthurirengan, Srinivasan; Behera, Upendra; Nadig, D. S.; Krishnamoorthy, V.

    2012-06-01

    Single and two-stage Pulse Tube Cryocoolers (PTC) have been designed, fabricated and experimentally studied. The single stage PTC reaches a no-load temperature of ~ 29 K at its cold end, the two-stage PTC reaches ~ 2.9 K in its second stage cold end and ~ 60 K in its first stage cold end. The two-stage Pulse Tube Cryocooler provides a cooling power of ~ 250 mW at 4.2 K. The single stage system uses stainless steel meshes along with Pb granules as its regenerator materials, while the two-stage PTC uses combinations of Pb along with Er3Ni / HoCu2 as the second stage regenerator materials. Normally, the above systems are insulated by thermal radiation shields and mounted inside a vacuum chamber which is maintained at high vacuum. To evaluate the performance of these systems in the possible conditions of loss of vacuum with and without radiation shields, experimental studies have been performed. The heat-in-leak under such severe conditions has been estimated from the heat load characteristics of the respective stages. The experimental results are analyzed to obtain surface emissivities and effective thermal conductivities as a function of interspace pressure.

  2. Impact of cool-down conditions at Tc on the superconducting rf cavity quality factor

    NASA Astrophysics Data System (ADS)

    Vogt, J.-M.; Kugeler, O.; Knobloch, J.

    2013-10-01

    Many next-generation, high-gradient accelerator applications, from energy-recovery linacs to accelerator-driven systems (ADS) rely on continuous wave (CW) operation for which superconducting radio-frequency (SRF) systems are the enabling technology. However, while SRF cavities dissipate little power, they must be cooled by liquid helium and for many CW accelerators the complexity as well as the investment and operating costs of the cryoplant can prove to be prohibitive. We investigated ways to reduce the dynamic losses by improving the residual resistance (Rres) of niobium cavities. Both the material treatment and the magnetic shielding are known to have an impact. In addition, we found that Rres can be reduced significantly when the cool-down conditions during the superconducting phase transition of the niobium are optimized. We believe that not only do the cool-down conditions impact the level to which external magnetic flux is trapped in the cavity but also that thermoelectric currents are generated which in turn create additional flux that can be trapped. Therefore, we investigated the generation of flux and the dynamics of flux trapping and release in a simple model niobium-titanium system that mimics an SRF cavity in its helium tank. We indeed found that thermal gradients along the system during the superconducting transition can generate a thermoelectric current and magnetic flux, which subsequently can be trapped. These effects may explain the observed variation of the cavity’s Rres with cool-down conditions.

  3. Radiation detection system for portable gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S [Alamo, CA; Howard, Douglas E [Livermore, CA; Wong, James L [Dublin, CA; Jessup, James L [Tracy, CA; Bianchini, Greg M [Livermore, CA; Miller, Wayne O [Livermore, CA

    2006-06-20

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  4. Jefferson Lab CLAS12 Superconducting Solenoid magnet Requirements and Design Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajput-Ghoshal, Renuka; Hogan, John P.; Fair, Ruben J.

    2014-12-01

    As part of the Jefferson Lab 12GeV accelerator upgrade project, one of the experimental halls (Hall B) requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. In this presentation the physics requirements for the 5 T solenoid magnet, design constraints, conductor decision, and cooling choice will be discussed. The various design iterations to meet the specification will also be discussed in this presentation.

  5. PBF Cooling Tower (PER720), and Auxiliary Building (PER624). Camera faces ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720), and Auxiliary Building (PER-624). Camera faces north to show south facades. Oblong vertical structure at left of center is weather shield for stairway. Date: August 2003. INEEL negative no. HD-35-10-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. Shield materials recommended for space power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kaszubinski, L. J.

    1973-01-01

    Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.

  7. Shielding activated return water at the ESS

    NASA Astrophysics Data System (ADS)

    Klinkby, Esben; Muhrer, Günter; Carlsson, H.; Eriksson, Björn

    2018-06-01

    ESS utilises water both for moderating neutrons to thermal energies, as well as to cool beryllium- and steel reflectors, the shielding and plugs. This means that the water, in separate loops, will be subject to a significant proton and neutron irradiation causing the water to activate. After irradiation, the water is led to delay tanks situated inside the target building. Before returned to the target monolith ∼ 10% is led to the ion exchanger. This paper aims at determining the shielding required to ensure that the biological dose-rate requirements in the target building and neighbouring instrument halls are met during operation of facility.

  8. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  9. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  10. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  11. Operating Modes and Cooling Capabilities of the Flight ADR for the SXS Instrument on Astro-H

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; DiPirro, Michael

    2015-01-01

    The microcalorimeter array on the Soft X-ray Spectrometer instrument on Astro-H requires cooling to 50 mK, which will be accomplished by a 3-stage adiabatic demagnetization refrigerator (ADR). The ADR is surrounded by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and radiation shields within the cryostat. The unique ADR design allows the instrument to meet all of its science requirements using either the stored cryogen or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated in early 2014, and have since been extensively characterized and calibrated. At present, the four instruments are being integrated with the spacecraft in preparation for an early 2016 launch. This presentation summarizes the operation and performance of the ADR in all of its operating modes.

  12. A miniature continuous adiabatic demagnetization refrigerator with compact shielded superconducting magnets

    NASA Astrophysics Data System (ADS)

    Duval, Jean-Marc; Cain, Benjamin M.; Timbie, Peter T.

    2004-10-01

    Cryogenic detectors for astrophysics depend on cryocoolers capable of achieving temperatures below ~ 100 mK. In order to provide continuous cooling at 50 mK for space or laboratory applications, we are designing a miniature adiabatic demagnetization refrigerator (MADR) anchored at a reservoir at 5 K. Continuous cooling is obtained by the use of several paramagnetic pills placed in series with heat switches. All operations are fully electronic and this technology can be adapted fairly easily for a wide range of temperatures and cooling powers. We are focusing on reducing the size and mass of the cooler. For that purpose we have developed and tested magnetoresistive heat switches based on single crystals of tungsten. Several superconducting magnets are required for this cooler and we have designed and manufactured compact magnets. A special focus has been put on the reduction of parasitic magnetic fields in the cold stage, while minimizing the mass of the shields. A prototype continuous MADR, using magnetoresistive heat switches, small paramagnetic pills and compact magnets has been tested. A design of MADR that will provide ~ 5 uW of continuous cooling down to 50 mK is described.

  13. Reduced Boil-Off System Sizing

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Feller, Jeffrey R.

    2015-01-01

    NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers.

  14. Mars transit vehicle thermal protection system: Issues, options, and trades

    NASA Technical Reports Server (NTRS)

    Brown, Norman

    1986-01-01

    A Mars mission is characterized by different mission phases. The thermal control of cryogenic propellant in a propulsive vehicle must withstand the different mission environments. Long term cryogenic storage may be achieved by passive or active systems. Passive cryo boiloff management features will include multilayer insulation, vapor cooled shield, and low conductance structural supports and penetrations. Active boiloff management incorporates the use of a refrigeration system. Key system trade areas include active verses passive system boiloff management (with respect to safety, reliability, and cost) and propellant tank insulation optimizations. Technology requirements include refrigeration technology advancements, insulation performance during long exposure, and cryogenic fluid transfer system for mission vehicle propellant tanking during vehicle buildip in LEO.

  15. Development of High vacuum facility for baking and cool down experiments for SST-1 Tokamak components

    NASA Astrophysics Data System (ADS)

    Khan, Ziauddin; Pathan, Firozkhan S.; Yuvakiran, Paravastu; George, Siju; Manthena, Himabindu; Raval, Dilip C.; Thankey, Prashant L.; Dhanani, Kalpesh R.; Gupta, Manoj Kumar; Pradhan, Subrata

    2012-11-01

    SST-1 Tokamak, a steady state super-conducting device, is under refurbishment to demonstrate the plasma discharge for the duration of 1000 second. The major fabricated components of SST-1 like vacuum vessel, thermal shields, superconducting magnets etc have to be tested for their functional parameters. During machine operation, vacuum vessel will be baked at 150 °C, thermal shields will be operated at 85 K and magnet system will be operated at 4.5 K. All these components must have helium leak tightness under these conditions so far as the machine operation is concerned. In order to validate the helium leak tightness of these components, in-house high vacuum chamber is fabricated. This paper describes the analysis, design and fabrication of high vacuum chamber to demonstrate these functionalities. Also some results will be presented.

  16. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - I. Theory

    DOE PAGES

    Williams, Mark L.; Lee, Deokjung; Choi, Sooyoung

    2015-03-04

    A new methodology has been developed to treat resonance self-shielding in doubly heterogeneous very high temperature gas-cooled reactor systems in which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. This new method first homogenizes the fuel grain and matrix materials using an analytically derived disadvantage factor from a two-region problem with equivalence theory and intermediate resonance method. This disadvantage factor accounts for spatial self-shielding effects inside each grain within the framework of an infinite array of grains. Then the homogenized fuel compact is self-shielded using a Bondarenko method to accountmore » for interactions between the fuel compact regions in the fuel lattice. In the final form of the equations for actual implementations, the double-heterogeneity effects are accounted for by simply using a modified definition of a background cross section, which includes geometry parameters and cross sections for both the grain and fuel compact regions. With the new method, the doubly heterogeneous resonance self-shielding effect can be treated easily even with legacy codes programmed only for a singly heterogeneous system by simple modifications in the background cross section for resonance integral interpolations. This paper presents a detailed derivation of the new method and a sensitivity study of double-heterogeneity parameters introduced during the derivation. The implementation of the method and verification results for various test cases are presented in the companion paper.« less

  17. Cooling the Origins Space Telescope

    NASA Technical Reports Server (NTRS)

    Dipirro, M.; Canavan, E.; Fantano, L.

    2017-01-01

    The NASA Astrophysics Division has commissioned 4 studies for consideration by the 2020 Decadal Survey to be the next flagship mission following WFIRST (Wide Field Infrared Survey Telescope). One of the four studies is the Origins Space Telescope (OST), which will cover wavelengths from 6 microns to 600 microns. To perform at the level of the zodiacal, galactic, and cosmic background, the telescope must be cooled to 4 degrees Kelvin. 4 degrees Kelvin multi-stage mechanical cryocoolers will be employed along with a multilayer sunshield/thermal shield to achieve this temperature with a manageable parasitic heat load. Current state-of-the-art cryocoolers can achieve close to 4 degrees Kelvin, providing about 50 megawatts of cooling at 4 degrees Kelvin with an input power of 500 watts. Multiple coolers at this power level will be used in parallel. These coolers also provide extra cooling power at intermediate temperature stages of 15-20 degrees Kelvin and 50-70 degrees Kelvin . This upper stage cooling will be used to limit the heat conducted to 4 degrees Kelvin . The multi-layer sunshield will limit the radiated thermal energy to the 4 degrees Kelvin volume. This paper will describe the architecture of the cryogenic system for OST along with preliminary thermal models.

  18. Performance of the Conduction-Cooled LDX Levitation Coil

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Schultz, J. H.; Smith, B. A.; Titus, P. H.; Radovinsky, A.; Zhukovsky, A.; Hwang, K. P.; Naumovich, G. J.; Camille, R. J.

    2004-06-01

    The Levitated Dipole Experiment (LDX) was developed to study plasma confinement in a dipole magnetic field. Plasma is confined in the magnetic field of a 680-kg Nb3Sn Floating Coil (F-coil) that is electromagnetically supported at the center of a 5-m diameter by 3-m tall vacuum chamber. The Levitation Coil (L-coil) is a 2800-turn, double pancake winding that supports the weight of the F-coil and controls its vertical position within the vacuum chamber. The use of high-temperature superconductor (HTS) Bi-2223 for the L-coil minimizes the electrical and cooling power needed for levitation. The L-coil winding pack and support plate are suspended within the L-coil cryostat and cooled by conduction to a single-stage cryocooler rated for 25-W heat load at approximately 20 K. The coil current leads consist of conduction-cooled copper running from room temperature to 80 K and a pair of commercially-available, 150-A HTS leads. An automatically filled liquid-nitrogen reservoir provides cooling for the coil's radiation shield and for the leads' 80-K heat stations. This paper discusses the L-coil system design and its observed cryogenic performance.

  19. OAST Space Theme Workshop. Volume 3: Working group summary. 7: Material (M-1). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The approach of matching technology areas with various themes needs was not effective for the materials and thermal control discipline because of the diversity of requirements for each. Top priorities were evolved from the advanced space transportation system and the space power platform because these are essential building blocks in fulfilling some of the other themes. Important needs identified include life long-life cryogenic cooling systems for sensors, masers, and other devices and the needs for lightweight nuclear shielding materials for nuclear electric propulsion.

  20. Composition for radiation shielding

    DOEpatents

    Kronberg, J.W.

    1994-08-02

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  1. Composition for radiation shielding

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  2. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  3. Magnetic shielding of interplanetary spacecraft against solar flare radiation

    NASA Technical Reports Server (NTRS)

    Cocks, Franklin H.; Watkins, Seth

    1993-01-01

    The ultimate objective of this work is to design, build, and fly a dual-purpose, piggyback payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field (1) to protect spacecraft against solar flare protons, (2) to produce a thrust of sufficient magnitude to stabilize low satellite orbits against orbital decay from atmospheric drag, and (3) to test the magsail concept. These all appear to be capable of being tested using the same deployed high temperature superconducting coil. In certain orbits, high temperature superconducting wire, which has now been developed to the point where silver-sheathed high T sub c wires one mm in diameter are commercially available, can be used to produce the magnetic moments required for shielding without requiring any mechanical cooling system. The potential benefits of this concept apply directly to both earth-orbital and interplanetary missions. The usefulness of a protective shield for manned missions needs scarcely to be emphasized. Similarly, the usefulness of increasing orbit perigee without expenditure of propellant is obvious. This payload would be a first step in assessing the true potential of large volume magnetic fields in the US space program. The objective of this design research is to develop an innovative, prototype deployed high temperature superconducting coil (DHTSC) system.

  4. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid to transition section

    DOEpatents

    Charron, Richard; Pierce, Daniel

    2015-08-11

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.

  5. A Compact, High-Performance Continuous Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Panek, John; Tuttle, James; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    We present test results of the first adiabatic demagnetization refrigerator (ADR) that can produce continuous cooling at sub-kelvin temperatures. This system uses multiple stages that operate in sequence to cascade heat from a continuous stage up to a heat sink. Continuous operation aids the usual constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, and allows us to achieve much higher cooling power per unit mass. Our design goal is 10 microW of cooling at 50 mK while rejecting heat to a 6-10 K heat sink. The total cold mass is estimated to be less than 10 kg, including magnetic shielding of each stage. These parameters envelop the requirements for currently planned astronomy missions. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long, mission life and reduced complexity and cost. At present, we have assembled a three-stage ADR that operates with a superfluid helium bath. Additional work is underway to develop magnetocaloric materials that can extend its heat rejection capability up to 10 K. This paper discusses the design and operation of the ADR, as well as interface requirements for cryocooler-based operation.

  6. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jerr; Plachta, Dave

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing both thermally and structurally were performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  7. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jeffrey R.; Plachta, David W.

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing, both thermal and structural was performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  8. Cryogenic Design of a Large Superconducting Magnet for Astro-particle Shielding on Deep Space Travel Missions

    NASA Astrophysics Data System (ADS)

    Bruce, Romain; Baudouy, Bertrand

    The Space Radiation Superconducting Shield (SR2S) European project aims at studying a large superconducting toroid magnet to protect the human habitat from the ionizing radiations coming from Galactic Cosmic Ray during long term missions in deep space. Titanium clad MgB2 conductor is used to afford a bending power greater than 5 T.m at 10 K. A specific cryogenic design is needed to cool down this 10 m long and 12.8 m in diameter magnet. A passive cooling system, using a V-groove sunshield, is considered to reduce the heat flux coming from the Sun or Mars. An active configuration, using pulse tube cryocoolers, will be linked to the 80 K thermal screen intercepting most of the heat fluxes coming from the human habitat. The toroid magnet will be connected also to cryocoolers to absorb the few watts reaching its surface. Two kinds of thermal link are being considered to absorb the heat on the 80 K thermal screen. The first one is active, with a pump circulating helium gas in a network of exchange tubes. The second one is passive using long cryogenic pulse heat pipe (PHP) with the evaporator on the surface of the thermal screen and the condenser attached to the pulse tube.

  9. Cryogenic storage tank thermal analysis

    NASA Technical Reports Server (NTRS)

    Wright, J. P.

    1976-01-01

    Parametric study discusses relationship between cryogenic boil-off and factors such as tank size, insulation thickness and performance, structural-support heat leaks and use of vapor-cooled shields. Data presented as series of nomographs and curves.

  10. 46 CFR 190.20-50 - Heating and cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the space. (b) Radiators and other heating apparatus must be so placed and shielded, where necessary, to avoid risk of fire, danger or discomfort to the occupants. Pipes leading to radiators or heating...

  11. Analysis of internal ablation for the thermal control of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Camberos, Jose A.; Roberts, Leonard

    1989-01-01

    A new method of thermal protection for transatmospheric vehicles is introduced. The method involves the combination of radiation, ablation and transpiration cooling. By placing an ablating material behind a fixed-shape, porous outer shield, the effectiveness of transpiration cooling is made possible while retaining the simplicity of a passive mechanism. A simplified one-dimensional approach is used to derive the governing equations. Reduction of these equations to non-dimensional form yields two parameters which characterize the thermal protection effectiveness of the shield and ablator combination for a given trajectory. The non-dimensional equations are solved numerically for a sample trajectory corresponding to glide re-entry. Four typical ablators are tested and compared with results obtained by using the thermal properties of water. For the present level of analysis, the numerical computations adequately support the analytical model.

  12. THERMAL PROPERTIES AND HEATING AND COOLING DURABILITY OF REACTOR SHIELDING CONCRETE (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoi, J.; Chujo, K.; Saji, K.

    1959-01-01

    A study was made of the thermal properties of various concretes made of domestic raw materials for radiation shields of a power reactor and of a high- flux research reactor. The results of measurements of thermal expansion coefficient, specific heat, thermal diffusivity, thermal conductivity, cyclical heating, and cooling durability are described. Relationships between thermal properties and durability are discussed and several photographs of the concretes are given. It is shown that the heating and cooling durability of such a concrete which has a large thermal expansion coefficient or a considerable difference between the thermal expansion of coarse aggregate and themore » one of cement mortar part or aggregates of lower strength is very poor. The decreasing rates of bending strength and dynamical modulus of elasticity and the residual elongation of the concrete tested show interesting relations with the modified thermal stress resistance factor containing a ratio of bending strength and thermal expansion coefficient. The thermal stress resistance factor seems to depend on the conditions of heat transfer on the surface and on heat release in the concrete. (auth)« less

  13. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  14. Improved Assembly for Gas Shielding During Welding or Brazing

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  15. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  16. Concepts and Tests for the Remote-Controlled Dismantling of the Biological Shield and Form work of the KNK Reactor - 13425

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neff, Sylvia; Graf, Anja; Petrick, Holger

    The compact sodium-cooled nuclear reactor facility Karlsruhe (KNK), a prototype Fast Breeder, is currently in an advanced stage of dismantling. Complete dismantling is based on 10 partial licensing steps. In the frame of the 9. decommissioning permit, which is currently ongoing, the dismantling of the biological shield is foreseen. The biological shield consists of heavy reinforced concrete with built-in steel fitments, such as form-work of the reactor tank, pipe sleeves, ventilation channels, and measuring devices. Due to the activation of the inner part of the biological shield, dismantling has to be done remote-controlled. During a comprehensive basic design phase amore » practical dismantling strategy was developed. Necessary equipment and tools were defined. Preliminary tests revealed that hot wire plasma cutting is the most favorable cutting technology due to the geometrical boundary conditions, the varying distance between cutter and material, and the heavy concrete behind the steel form-work. The cutting devices will be operated remotely via a carrier system with an industrial manipulator. The carrier system has expandable claws to adjust to the varying diameter of the reactor shaft during dismantling progress. For design approval of this prototype development, interaction between manipulator and hot wire plasma cutting was tested in a real configuration. For the demolition of the concrete structure, an excavator with appropriate tools, such as a hydraulic hammer, was selected. Other mechanical cutting devices, such as a grinder or rope saw, were eliminated because of concrete containing steel spheres added to increase the shielding factor of the heavy concrete. Dismantling of the biological shield will be done in a ring-wise manner due to static reasons. During the demolition process, the excavator is positioned on its tripod in three concrete recesses made prior to the dismantling of the separate concrete rings. The excavator and the manipulator carrier system will be operated alternately. Main boundary condition for all the newly designed equipment is the decommissioning housing of limited space within the reactor building containment. To allow for a continuous removal of the concrete rubble, an additional opening on the lowest level of the reactor shaft will be made. All equipment and the interaction of the tools have to be tested before use in the controlled area. Therefore a full-scale model of the biological shield will be provided in a mock-up. The tests will be performed in early 2014. The dismantling of the biological shield is scheduled for 2015. (authors)« less

  17. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    NASA Astrophysics Data System (ADS)

    Porter, F. S.; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C. K.; Szymkowiak, A. E.; Sanders, W. T.

    2000-04-01

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.

  18. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    NASA Astrophysics Data System (ADS)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  19. Development of a 30-50 K dual-stage pulse tube space cooler

    NASA Astrophysics Data System (ADS)

    Leenders, H.; de Jonge, G.; Mullié, J.; Prouvé, T.; Charles, I.; Trollier, T.; Tanchon, J.

    2017-12-01

    There has been a trend towards increasing heat loads for cryogenically cooled Earth Observation instruments in recent years. This is the case at both the current operational temperature levels (∼50K), as well as at lower operational temperature levels (30-50 K). One solution to meet this trend is to use existing pulse tube technology in a double stage configuration. With such technology increased cooling power at a lower temperature can be achieved at the payload detector. Another advantage of such a system is the possibility to increase overall system efficiency by cooling an intermediate shield to avoid parasitic heat losses towards the detector. Therefore a consortium consisting of Thales Cryogenics B.V. (TCBV), Alternative Energies and Atomic Energy Commission (CEA) and Absolut System (AS) is working on the development of a space cryostat actively cooled by a 2-stage high reliability pulse tube cryocooler. This work is being performed in the frame of an European Space Agency (ESA) Technical Research Program (TRP) (refer 4000109933/14/NL/RA) with a target TRL of 6. This paper presents the design of the overall equipped cryostat and cryostat itself but is mainly focused on the 2-stage cryocooler. Design, manufacturing and test aspects of cryocooler and its the lower level components such as the compressor and cold finger are discussed in detail in this paper. The cryocooler test campaign is meanwhile in final stages of completion and the obtained test results are in line with program objectives.

  20. A Gas-Cooled-Reactor Closed-Brayton-Cycle Demonstration with Nuclear Heating

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Peters, Curtis D.; Brown, Nicholas; Williamson, Joshua; Jablonski, Jennifer

    2005-02-01

    A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.

  1. Sublid Speeds Growth Of Silicon Ribbon

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Mchugh, J. P.

    1988-01-01

    Heat shield permits enhancement of exit cooling without formation of unwanted crystals. Thermal barrier between molten silicon and lid of susceptor and crucible allows solidifying ribbon of silicon to be withdrawn faster. Barrier, or sublid, increases production rate.

  2. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOEpatents

    Phillips, John R.; Halbig, James K.; Menlove, Howard O.; Klosterbuer, Shirley F.

    1985-01-01

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  3. Drop Tower Facility at Queensland University of Technology

    NASA Astrophysics Data System (ADS)

    Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong

    The Queensland University of Technology (QUT) Drop Tower Facility is a {raise.17exscriptstyle˜}2.1 second, 21.3 m fall, dual capsule drop tower system. The dual capsule comprises of an uncoupled exterior hollow drag shield that experiences drag by the ambient atmosphere with the experimental capsule falling within the drag shield. The dual capsule system is lifted to the top of the drop tower via a mechanical crane and the dropping process is initiated by the cutting of a wire coupling the experimental package and suspending the drag shield. The internal experimental capsule reaches the bottom of the drag shield floor just prior to the deceleration stage at the air bag and during this time experience gravity levels of {raise.17exscriptstyle˜}10textsuperscript{-6} g. The deceleration system utilizes an inflatable airbag where experimental packages can be designed to experience a maximum deceleration of {raise.17exscriptstyle˜}10textsuperscript{18} g for {raise.17exscriptstyle˜}0.1 seconds. The drag shield can house experimental packages with a maximum diameter of 0.8 m and height of 0.9 m. The drag shield can also be used in foam mode, where the walls are lined with foam and small experiments can be dropped completely untethered. This mode is generally used for the study of microsatellite manipulation. Payloads can be powered by on-board power systems with power delivered to the experiment until free fall occurs. Experimental data that can be collected includes but is not limited to video, temperature, pressure, voltage/current from the power supply, and triggering mechanisms outputs which are simultaneously collected via data logging systems and high speed video recording systems. Academic and commercial projects are currently under investigation at the QUT Drop Tower Facility and collaboration is openly welcome at this facility. Current research includes the study of heterogeneously burning metals in oxygen which is aimed at fire safety applications and identifying size distributions and morphologies of particles produced during the combustion of bulk metals. Materials produced via self-propagating high-temperature synthesis in microgravity are investigated to produce high electroluminescent materials and high efficient dye sensitized electrolyte materials. The rapid cooling and quenching of ZBLAN glass in a microgravity environment is studied to reduce crystallization in the glass. Convective pool boiling and nucleate bubble formation in nano-fluids is aimed at investigating heat transfer properties in these new materials which are masked by gravity. Novel carbon nanotubes are produced in low gravity via an arch discharge to investigate the formation mechanisms of these materials.

  4. Crossover from impurity-controlled to granular superconductivity in (TMTSF) 2ClO4

    NASA Astrophysics Data System (ADS)

    Yonezawa, Shingo; Marrache-Kikuchi, Claire A.; Bechgaard, Klaus; Jérome, Denis

    2018-01-01

    Using a proper cooling procedure, a controllable amount of nonmagnetic structural disorder can be introduced at low temperature in (TMTSF) 2ClO4 . Here we performed simultaneous measurements of transport and magnetic properties of (TMTSF) 2ClO4 in its normal and superconducting states, while finely covering three orders of magnitude of the cooling rate around the anion ordering temperature. Our result reveals, with increasing density of disorder, the existence of a crossover between homogeneous defect-controlled d -wave superconductivity and granular superconductivity. At slow cooling rates, with small amount of disorder, the evolution of superconducting properties is well described with the Abrikosov-Gorkov theory, providing further confirmation of non-s -wave pairing in this compound. In contrast, at fast cooling rates, zero resistance and diamagnetic shielding are achieved through a randomly distributed network of superconducting puddles embedded in a normal conducting background and interconnected by proximity effect coupling. The temperature dependence of the ac complex susceptibility reveals features typical for a network of granular superconductors. This makes (TMTSF) 2ClO4 a model system for granular superconductivity where the grain size and their concentration are tunable within the same sample.

  5. Physical installation of Pelletron and electron cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurh, P.

    1997-09-01

    Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure areamore » and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here.« less

  6. Reference Reactor Module for the Affordable Fission Surface Power System

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.

    2008-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO2-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important ``affordability'' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.

  7. Upgrade of the gas flow control system of the resistive current leads of the LHC inner triplet magnets: Simulation and experimental validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perin, A.; Casas-Cubillos, J.; Pezzetti, M.

    2014-01-29

    The 600 A and 120 A circuits of the inner triplet magnets of the Large Hadron Collider are powered by resistive gas cooled current leads. The current solution for controlling the gas flow of these leads has shown severe operability limitations. In order to allow a more precise and more reliable control of the cooling gas flow, new flowmeters will be installed during the first long shutdown of the LHC. Because of the high level of radiation in the area next to the current leads, the flowmeters will be installed in shielded areas located up to 50 m away frommore » the current leads. The control valves being located next to the current leads, this configuration leads to long piping between the valves and the flowmeters. In order to determine its dynamic behaviour, the proposed system was simulated with a numerical model and validated with experimental measurements performed on a dedicated test bench.« less

  8. Wetting a rail tanker behind a noise shield.

    PubMed

    Rosmuller, Nils

    2009-05-30

    In the Netherlands, the Betuweline is a dedicated freight railway. It will, among other things, be used for transportation of all kinds of hazardous materials from the Port of Rotterdam to the German Hinterland and vice versa. The line is approximately 150 km long. Alongside the line, over more than 100 km noise shields are apparent. The question is to what extent this noise shield hinders the cooling of a rail tanker, carrying flammable liquid such as liquefied petroleum gas (LPG)? To answer this question, a full scale test was conducted on an already constructed part of the Betuweline [N. Rosmuller, D.W.G. Arentsen, (2005). Praktijkproeven Betuweroute: Instantane uitstroming en koeling 24 juni 2005, Nibra, Arnhem, The Netherlands]. Two railcars and a rail tanker were placed behind a 3m high noise shield. First, it was tested as to whether firemen or water canons should be used to deliver the water. Water canons were best next, four positions of the water canons to wet the rail tanker were tested. Three camera's and three observers recorded the locations and the extent of water that hit the rail tanker. The results indicate that the noise shield, to a large extent, prevents the water from hitting, and therefore cooling, the rail tanker. The upper parts of the rail tanker were minimally struck by the water canons and the small amount of water flowing down the rail tanker did not reach the lower parts of it because of the armatures at the rail tanker. Also, the amount of water in the ditches to be used for wetting was too small. The ditch nearby ran empty. These insights are both relevant to emergency responders for disaster abatement purposes and to water management organizations. The Ministry of Transport is examining the possible strategies to deal with these findings. The results are based upon one single full scale test near a 3m high noise shield. In addition, it would be valuable to determine what the influence would be of other heights of the noise shields.

  9. Neutronic reactor thermal shield

    DOEpatents

    Wende, Charles W. J.

    1976-06-15

    1. The method of operating a water-cooled neutronic reactor having a graphite moderator which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40-60 volume percent of the mixture, in contact with the graphite moderator.

  10. Results from the decontamination of and the shielding arrangements in the reactor pressure vessel in Oskarshamn 1-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowendahl, B.

    1995-03-01

    In September 1992 Oskarshamn 1 was shut down in order to carry out measures to correct discovered deficiencies in the emergency cooling systems. Due to the results of a comprehensive non destructive test programme it was decided to perform a major replacement of pipes in the primary systems including a full system decontamination using the Siemens CORD process. The paper briefly presents the satisfying result of the decontamination performed in May-June 1993. When in late June 1993 cracks also were detected in the feed-water pipes situated inside the reactor pressure vessel (RPV) the plans were reconsidered and a large projectmore » was formed with the aim, in a first phase, to verify the integrity of the RPV. In order to make it possible to perform work manually inside the RPV special radiation protection measures had to be carried out. In January 1994 the lower region of the RPV was decontaminated, again using the CORD-process, followed by the installation of a special shielding construction in the RPV. The surprisingly good results of these efforts are also briefly described in the paper.« less

  11. Long term orbital storage of cryogenic propellants for advanced space transportation missions

    NASA Technical Reports Server (NTRS)

    Schuster, John R.; Brown, Norman S.

    1987-01-01

    A comprehensive study has developed the major features of a large capacity orbital propellant depot for the space-based, cryogenic OTV. The study has treated both the Dual-Keel Space Station and co-orbiting platforms as the accommodations base for the propellant storage facilities, and trades have examined both tethered and hard-docked options. Five tank set concepts were developed for storing the propellants, and along with layout options for the station and platform, were evaluated from the standpoints of servicing, propellant delivery, boiloff, micrometeoroid/debris shielding, development requirements, and cost. These trades led to the recommendation that an all-passive storage concept be considered for the platform and an actively refrigerated concept providing for reliquefaction of all boiloff be considered for the Space Station. The tank sets are modular, each storing up to 45,400 kg of LO2/LH2, and employ many advanced features to provide for microgravity fluid management and to limit boiloff. The features include such technologies as zero-gravity mass gauging, total communication capillary liquid acquisition devices, autogenous pressurization, thermodynamic vent systems, thick multilayer insulation, vapor-cooled shields, solar-selective coatings, advanced micrometeoroid/debris protection systems, and long-lived cryogenic refrigeration systems.

  12. Study of radioisotope safety devices for electric propulsion system, Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. B.; Homeyer, W. G.; Postula, F. D.; Steeger, E. J.

    1972-01-01

    A new reference design was prepared for the 5 kW(e) thermionic power supply. The safety equipment in this design is a passive containment system which does not rely on the operation of any mechanisms such as a launch escape rocket or deployment of parachutes. It includes: (1) a blast shield to protect against the explosion of the launch vehicle; (2) a combination of refractory thermal insulation and heat storage material to protect against a sustained launch pad fire; (3) a reentry body with a spherical nose and a large conical flare at the aft end to stabilize the reentry attitude and lower the terminal velocity in air; (4) composite graphite thermal protection to sustain the reentry heat pulse; (5) crushable honeycomb behind the nose to limit the deceleration of the radioisotope source due to impact on land at terminal velocity; (6) a double-walled secondary containment vessel surrounding the isotopic capsules; (7) neutron shielding to reduce external dose rates; (8) an auxiliary cooling system employing redundant heat pipes to remove the radioactive decay heat from the heat source and reject it to the surroundings or to a forced convection loop.

  13. Development of mechanical structure for the compact space IR camera MIRIS

    NASA Astrophysics Data System (ADS)

    Moon, Bongkon; Jeong, Woong-Seob; Cha, Sang-Mok; Park, Youngsik; Ree, Chang-Hee; Lee, Dae-Hee; Park, Sung-Joon; Nam, Uk-Won; Park, Jang-Hyun; Ka, Nung Hyun; Lee, Mi Hyun; Lee, Duk-Hang; Pyo, Jeonghyun; Rhee, Seung-Woo; Park, Jong-Oh; Lee, Hyung-Mok; Matsumoto, Toshio; Yang, Sun Choel; Han, Wonyong

    2010-07-01

    MIRIS is a compact near-infrared camera with a wide field of view of 3.67°×3.67° in the Korea Science and Technology Satellite 3 (STSAT-3). MIRIS will be launched warm and cool the telescope optics below 200K by pointing to the deep space on Sun-synchronous orbit. In order to realize the passive cooling, the mechanical structure was designed to consider thermal analysis results on orbit. Structural analysis was also conducted to ensure safety and stability in launching environments. To achieve structural and thermal requirements, we fabricated the thermal shielding parts such as Glass Fiber Reinforced Plastic (GFRP) pipe supports, a Winston cone baffle, aluminum-shield plates, a sunshade, a radiator and 30 layers of Multi Layer Insulation (MLI). These structures prevent the heat load from the spacecraft and the earth effectively, and maintain the temperature of the telescope optics within operating range. A micro cooler was installed in a cold box including a PICNIC detector and a filter-wheel, and cooled the detector down to a operating temperature range. We tested the passive cooling in the simulated space environment and confirmed that the required temperature of telescope can be achieved. Driving mechanism of the filter-wheel and the cold box structure were also developed for the compact space IR camera. Finally, we present the assembly procedures and the test result for the mechanical parts of MIRIS.

  14. Production of large Bose-Einstein condensates in a magnetic-shield-compatible hybrid trap

    NASA Astrophysics Data System (ADS)

    Colzi, Giacomo; Fava, Eleonora; Barbiero, Matteo; Mordini, Carmelo; Lamporesi, Giacomo; Ferrari, Gabriele

    2018-05-01

    We describe the production of large 23Na Bose-Einstein condensates in a hybrid trap characterized by a weak magnetic field quadrupole and a tightly focused infrared beam. The use of small magnetic field gradients makes the trap compatible with the state-of-the-art magnetic shields. By taking advantage of the deep cooling and high efficiency of gray molasses to improve the initial trap loading conditions, we produce condensates composed of as many as 7 million atoms in less than 30 s .

  15. Scalable Loading of a Two-Dimensional Trapped-Ion Array

    DTIC Science & Technology

    2015-11-25

    ion -trap array based on two crossed photo-ionization laser beams . With the use of a continuous flux of pre-cooled neutral...push laser Atomic beam Dierential pumping tube Push laser 2D-MOT 50 K Shield 4 K Shield 4 K stage Trap chip MOT laser Ion To ion pump 5s2 1S0 461...conducted a series of Ramsey experiments on a single trapped ion in the presence and absence of neu- tral atom flux as well as each of the PI laser

  16. A photoionization model for the optical line emission from cooling flows

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Voit, G. M.

    1991-01-01

    The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.

  17. A simple model for molecular hydrogen chemistry coupled to radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Nickerson, Sarah; Teyssier, Romain; Rosdahl, Joakim

    2018-06-01

    We introduce non-equilibrium molecular hydrogen chemistry into the radiation-hydrodynamics code RAMSES-RT. This is an adaptive mesh refinement grid code with radiation hydrodynamics that couples the thermal chemistry of hydrogen and helium to moment-based radiative transfer with the Eddington tensor closure model. The H2 physics that we include are formation on dust grains, gas phase formation, formation by three-body collisions, collisional destruction, photodissociation, photoionisation, cosmic ray ionisation and self-shielding. In particular, we implement the first model for H2 self-shielding that is tied locally to moment-based radiative transfer by enhancing photo-destruction. This self-shielding from Lyman-Werner line overlap is critical to H2 formation and gas cooling. We can now track the non-equilibrium evolution of molecular, atomic, and ionised hydrogen species with their corresponding dissociating and ionising photon groups. Over a series of tests we show that our model works well compared to specialised photodissociation region codes. We successfully reproduce the transition depth between molecular and atomic hydrogen, molecular cooling of the gas, and a realistic Strömgren sphere embedded in a molecular medium. In this paper we focus on test cases to demonstrate the validity of our model on small scales. Our ultimate goal is to implement this in large-scale galactic simulations.

  18. Interior of the Plum Brook Reactor Facility

    NASA Image and Video Library

    1961-02-21

    A view inside the 55-foot high containment vessel of the National Aeronautics and Space Administration (NASA) Plum Brook Reactor Facility in Sandusky, Ohio. The 60-megawatt test reactor went critical for the first time in 1961 and began its full-power research operations in 1963. From 1961 to 1973, this reactor performed some of the nation’s most advanced nuclear research. The reactor was designed to determine the behavior of metals and other materials after long durations of irradiation. The materials would be used to construct a nuclear-powered rocket. The reactor core, where the chain reaction occurred, sat at the bottom of the tubular pressure vessel, seen here at the center of the shielding pool. The core contained fuel rods with uranium isotopes. A cooling system was needed to reduce the heat levels during the reaction. A neutron-impervious reflector was also employed to send many of the neutrons back to the core. The Plum Brook Reactor Facility was constructed from high-density concrete and steel to prevent the excess neutrons from escaping the facility, but the water in the pool shielded most of the radiation. The water, found in three of the four quadrants served as a reflector, moderator, and coolant. In this photograph, the three 20-ton protective shrapnel shields and hatch have been removed from the top of the pressure tank revealing the reactor tank. An overhead crane could be manipulated to reach any section of this room. It was used to remove the shrapnel shields and transfer equipment.

  19. Adiabatic Demagnetization Refrigerator Field Mapping and Shielding Models for a 70 mK Superconducting Transition Edge Sensor Array and Associated Electronics

    NASA Astrophysics Data System (ADS)

    Ladner, D. R.; Martinez-Galarce, D. S.; McCammon, D.

    2006-04-01

    An X-ray detection instrument to be flown on a sounding rocket experiment (the Advanced Technology Solar Spectroscopic Imager - ATSSI) for solar physics observations is being developed by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL). The detector is a novel class of microcalorimeter, a superconducting Transition-Edge Sensor (TES), that coupled with associated SQUID and feedback electronics requires high temperature stability at ~70 mK to resolve the energy of absorbed X-ray photons emitted from the solar corona. The cooling system incorporates an existing Adiabatic Demagnetization Refrigerator (ADR) developed at the University of Wisconsin (UW), which was previously flown to study the diffuse cosmic X-ray background. The Si thermistor detectors for that project required 130 K shielded JFET electronic components that are much less sensitive to the external field of the ADR solenoid than are the 1st (~70 mK) and 2nd (~2 K) SQUID stages used with TESs for solar observations. Modification of the Wisconsin ADR design, including TES focal plane and electronics re-positioning, therefore requires a tradeoff between the existing ADR solenoid nulling coil geometry and a low mass passive solenoid shield, while preserving the vibration isolation features of the existing design. We have developed models to accurately compute the magnetic field with and without shielding or nulling coils at critical locations to guide the re-design of the detector subsystem. The models and their application are described.

  20. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE PAGES

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; ...

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore » close proximity.« less

  1. Heat Pipes Cool Power Magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I.; Chester, M.; Luedke, E.

    1983-01-01

    Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.

  2. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  3. Mercury Orbiter: Report of the Science Working Team

    NASA Technical Reports Server (NTRS)

    Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.

    1991-01-01

    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.

  4. Welding processes and ocular hazards and protection.

    PubMed

    Pabley, A S; Keeney, A H

    1981-07-01

    There are approximately 60 different forms of welding, but only six of these are commonly used. Shielded metal-arc or stick welding, gas metal-arc welding, and oxyacetylene welding are the most frequently used. All produce ultraviolet, visible, and infrared radiation at damaging levels. Conventional glass welding shields contain ultraviolet, visible, and infrared absorbers. Infrared absorbers, however, cause heating and secondary re-radiation. New polycarbonate lenses offer greater impact resistance, and have less tendency to welding spatter. Early abrasion-resistant and reflective coatings on plastics were ineffective. Thin layers of gold with proprietary coatings provide cool reflection and surface resistance. Thermal monitoring of welding indicated that these new shields reduce temperature rises above the ambient by 150% to 175% compared to green glass filter plates without interfering with the welder's vision.

  5. Conceptual study of the cryostats for the cold powering system for the triplets of the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Ballarino, A.; Giannelli, S.; Jacquemod, A.; Leclercq, Y.; Ortiz Ferrer, C.; Parma, V.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project aiming to upgrade the Large Hadron Collider (LHC) after 2020-2025 in order to increase the integrated luminosity by about one order of magnitude and extend the operational capabilities until 2035. The upgrade of the focusing triplet insertions for the Atlas and CMS experiments foresees using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. The increased radiation levels from the particle debris produced by particle collisions in the experiments require that the power converters are placed in radiation shielded zones located in a service gallery adjacent to the main tunnel. The powering of the magnets from the gallery is achieved by means of MgB2 superconducting cables in a 100-m long flexible cryostat transfer line, actively cooled by 4.5 K to 20 K gaseous helium generated close to the magnets. At the highest temperature end, the helium flow cools the High Temperature Superconducting (HTS) current leads before being recovered at room temperature. At the magnet connection side, a dedicated connection box allows connection to the magnets and a controlled boil-off production of helium for the cooling needs of the powering system. This paper presents the overall concept of the cryostat system from the magnet connection boxes, through the flexible cryostat transfer line, to the connection box of the current leads.

  6. Process simulations for the LCLS-II cryogenic systems

    NASA Astrophysics Data System (ADS)

    Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.

    2017-12-01

    Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.

  7. Experimental System of Solar Adsorption Refrigeration with Concentrated Collector.

    PubMed

    Yuan, Z X; Li, Y X; Du, C X

    2017-10-18

    To improve the performance of solar adsorption refrigeration, an experimental system with a solar concentration collector was set up and investigated. The main components of the system were the adsorbent bed, the condenser, the evaporator, the cooling sub-system, and the solar collector. In the first step of the experiment, the vapor-saturated bed was heated by the solar radiation under closed conditions, which caused the bed temperature and pressure to increase. When the bed pressure became high enough, the bed was switched to connect to the condenser, thus water vapor flowed continually from the bed to the condenser to be liquefied. Next, the bed needed to cool down after the desorption. In the solar-shielded condition, achieved by aluminum foil, the circulating water loop was opened to the bed. With the water continually circulating in the bed, the stored heat in the bed was took out and the bed pressure decreased accordingly. When the bed pressure dropped below the saturation pressure at the evaporation temperature, the valve to the evaporator was opened. A mass of water vapor rushed into the bed and was adsorbed by the zeolite material. With the massive vaporization of the water in the evaporator, the refrigeration effect was generated finally. The experimental result has revealed that both the COP (coefficient of the performance of the system) and the SCP (specific cooling power of the system) of the SAPO-34 zeolite was greater than that of the ZSM-5 zeolite, no matter whether the adsorption time was longer or shorter. The system of the SAPO-34 zeolite generated a maximum COP of 0.169.

  8. Initial Evaluation of Space Environmental Effects on the NGST Sunshield

    NASA Technical Reports Server (NTRS)

    Wooldridge, Eve M.; Powers, Charles

    1998-01-01

    The "Next Generation Space Telescope" (NGST), the follow-on telescope to the Hubble Space Telescope, will carry on exploration of the early universe with a primary mirror 6-8 meters in diameter optimized to operate in the infrared. The mirror and its instruments will perform extremely deep exposures at near infra-red wavelengths (0.5-30 microns), and will operate for 5-10 years. In order to achieve the requirements, cryogenic temperatures between 30-60 Kelvin must be maintained on the telescope (OTA) and in the science module (SIM). A primary feature for passive cooling in the designs presented is that of an enormous, light-weight deployable sunshield. As a result, issues of contamination from the sunshield and space environmental effects on the sunshield itself present a critical matter: if the sunshield becomes a source of contamination, or if environmental effects damage the sunshield, the NGST mission could be compromised or could fail completely. A molecular redistribution analysis has been performed on the Goddard Space Flight Center (GSFC) design for NGST. The analysis revealed that because the shield will initially cool down faster than the OTA, the shield would not be a significant source of molecular contamination during the cooling phase. However, if the shield were ever to warm up, it would be a very large source of molecular contamination. The sunshield itself is susceptible to degradation from an external source of contamination: the space environment at L2 or at 1 x 3 AU. It is therefore necessary to design the sunshield to withstand the space environment. Thin films and coatings on the sunshield have been evaluated and testing has begun so that a suitable film and/or coating can be chosen or developed for the NGST mission. The evaluation and test results will be presented.

  9. Resent Status of ITER Equatorial Launcher Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Kajiwara, K.; Kasugai, A.

    2009-11-26

    The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. Themore » high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.« less

  10. Fusion reactor blanket/shield design study

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Clemmer, R. G.; Harkness, S. D.; Jung, J.; Krazinski, J. L.; Mattas, R. F.; Stevens, H. C.; Youngdahl, C. K.; Trachsel, C.; Bowers, D.

    1979-07-01

    A joint study of Tokamak reactor first wall/blanket/shield technology was conducted to identify key technological limitations for various tritium breeding blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium breeding blanket concepts were evaluated according to the proposed coolant. The effort concentrated on evaluation of lithium and water cooled blanket designs and helium and molten salt cooled designs. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a Tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  11. Toward the Active Control of Heat Transfer in the Hot Gas Path of Gas Turbines

    NASA Technical Reports Server (NTRS)

    Oertling, Jeremiah E.

    2003-01-01

    The work at NASA this summer has focused on assisting the Professor's project, namely "Toward the Active Control of Heat Transfer in the Hot Gas Path of Gas Turbines." The mode of controlling the Heat Transfer that the project focuses on is film cooling. Film cooling is used in high temperature regions of a gas turbine and extends the life of the components exposed to these extreme temperatures. A "cool" jet of air is injected along the surface of the blade and this layer of cool air shields the blade from the high temperatures. Cool is a relative term. The hot gas path temperatures reach on the order of 1500 to 2000 K. The "coo" air is on the order of 700 to 1000 K. This cooler air is bled off of an appropriate compressor stage. The next parameter of interest is the jet s position and orientation in the flow-field.

  12. Radiative cooling in shock-heated hydrogen-helium plasmas. [for planetary entry probe heat shields

    NASA Technical Reports Server (NTRS)

    Poon, P. T. Y.; Stickford, G. H., Jr.

    1978-01-01

    Axial and off-axis radiative cooling of cylindrical shock-heated hydrogen-helium plasmas is investigated theoretically and experimentally. The coupled fluid dynamic-radiative transfer equations are solved by a combination of approximation techniques aimed at simplifying the computation of the flux divergence term, namely, the quasi-isothermal approximation and the exponential approximation developed for the solid angle integration. The accuracy of the approximation schemes has been assessed and found acceptable for applying the methods to the rapid computation of the radiatively coupled flow problem. Radiative cooling experiments were conducted in a 6-inch annular arc accelerator shock tube (ANAA) for an initial pressure of 1 torr and shock speeds from 35 to 45 Km/sec. The results indicate that the lateral cooling is small compared with the axial cooling, and that better agreement is achieved between the data and the theoretical results by inclusion of the lateral temperature gradient.

  13. Prototyping a new, high-temperature SQUID magnetometer system

    NASA Astrophysics Data System (ADS)

    Grappone, J. Michael; Shaw, John; Biggin, Andrew J.

    2017-04-01

    High-sensitivity Superconducting Quantum Inference Devices (SQUIDs) and μ-metal shielding have largely solved paleomagnetic noise problems. Combing the two allows successful measurements of previously unusable samples, generally sediments with very weak (<10 pAm2) magnetizations. The improved sensitivity increases the fidelity of magnetic field variation surveys, but surveys continue to be somewhat slow. SQUIDs have historically been expensive to buy and operate, but technological advances now allow them to operate at liquid nitrogen temperatures (77 K), drastically reducing their costs. Step-wise thermal paleomagnetics studies cause large lag times during later steps as a result of heating from and cooling to room temperature for measurements. If the cooling step is removed entirely, however, the lag time drops by at least half. Available magnetometers currently provide either SQUID-level (0.1 - 1 pAm2) sensitivity or continuous heating. Combining a SQUID magnetometer with a high temperature oven is the logical next step to uncover the mysteries of the paleofield. However, the few that currently offer high temperature capabilities with noise levels approaching 10 pAm2 require either spinning or vibrating the sample, necessitating additional handling and potentially causing damage to the sample. Two primary factors have plagued previous developments: noise levels and temperature gradients. Our entire system is shielded from the environment using 4 layers of μ-metal. Our sample oven (designed for 7 mm diameter samples) sits inside a copper pipe and operates at high-frequency AC voltages. High frequency (10 kHz) AC current reduces the skin depth of radio frequency (RF) electromagnetic noise, which allows the 2 mm-thick copper shielding to reduce RF noise by ˜94%, leaving a residual field of ˜1.5 nT at the SQUID's location, 14.9 mm from the oven. A computer-controlled Eurotherm 3216 thermal controller regulates the temperature within ± 0.5 ˚ C. To reach 700 ˚ C, just above the Curie temperature of Hematite, a temperature difference of nearly 900 ˚ C between the sample and the SQUID is required. Since dipole fields decay rapidly with distance (∝ r -3 ), the equipment is designed to handle temperature gradients above 500 ˚ C cm-1 for maximum sensitivity using a passive double-vacuum separation system. All the parts used are commercially available to help reduce the operating costs and increase versatility.

  14. Zircon, titanite, and apatite (U-Th)/He ages and age-eU correlations from the Fennoscandian Shield, southern Sweden

    NASA Astrophysics Data System (ADS)

    Guenthner, William R.; Reiners, Peter W.; Drake, Henrik; Tillberg, Mikael

    2017-07-01

    Craton cores far from plate boundaries have traditionally been viewed as stable features that experience minimal vertical motion over 100-1000 Ma time scales. Here we show that the Fennoscandian Shield in southeastern Sweden experienced several episodes of burial and exhumation from 1800 Ma to the present. Apatite, titanite, and zircon (U-Th)/He ages from surface samples and drill cores constrain the long-term, low-temperature history of the Laxemar region. Single grain titanite and zircon (U-Th)/He ages are negatively correlated (104-838 Ma for zircon and 160-945 Ma for titanite) with effective uranium (eU = U + 0.235 × Th), a measurement proportional to radiation damage. Apatite ages are 102-258 Ma and are positively correlated with eU. These correlations are interpreted with damage-diffusivity models, and the modeled zircon He age-eU correlations constrain multiple episodes of heating and cooling from 1800 Ma to the present, which we interpret in the context of foreland basin systems related to the Neoproterozoic Sveconorwegian and Paleozoic Caledonian orogens. Inverse time-temperature models constrain an average burial temperature of 217°C during the Sveconorwegian, achieved between 944 Ma and 851 Ma, and 154°C during the Caledonian, achieved between 366 Ma and 224 Ma. Subsequent cooling to near-surface temperatures in both cases could be related to long-term exhumation caused by either postorogenic collapse or mantle dynamics related to the final assembly of Rodinia and Pangaea. Our titanite He age-eU correlations cannot currently be interpreted in the same fashion; however, this study represents one of the first examples of a damage-diffusivity relationship in this system, which deserves further research attention.

  15. Operation of A Sunpower M87 Cryocooler In A Magnetic Field

    NASA Technical Reports Server (NTRS)

    Breon, S. R.; Shirey, K. A.; Banks, I. S.; Warner, B. A.; Boyle, R. F.; Mustafi, S.; Krebs,Carolyn A. (Technical Monitor)

    2002-01-01

    The Alpha Magnetic Spectrometer-02 (AMS-02) is an experiment that will be flown as an attached payload on the International Space Station to detect dark matter and antimatter. It uses large superconducting magnets cooled with superfluid helium to bend the path of cosmic particles through a series of detectors, which then measure the mass, speed, charge, and direction of the particles. Four Sunpower M87N Stirling-cycle cryocoolers are used to extend the mission life by cooling the outer vapor-cooled shield of the dewar. The main magnet coils are separated by a distance of approximately 1 m and the coolers are located approximately 1.5 m from the center line of the magnet, where the field is as high as 925 gauss perpendicular to the cryocooler axis and 400 gauss along the cryocooler axis. Interactions between the applied magnetic field and the linear motor may result in additional forces and torques on the compressor piston. Motion of the compressor arid displacer pistons through the magnetic field spatial gradients will generate eddy currents. Additional eddy currents are created during magnet charge, discharge, and quench by the time-varying magnetic field. The results of tests to determine the magnitude of the forces, torques, and heating effects, as well as the need for additional magnetic shielding, are presented.

  16. AIR COOLED NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  17. Modular first wall concept for steady state operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotzlowski, H.E.

    1981-01-01

    On the basis of the limiter design proposed for ZEPHYR a first wall concept has been developed which can also be used as a large area limiter, heat shield or beam pump. Its specific feature is the thermal contact of the wall armour elements with the water-cooled base plates. The combination of radiation and contact cooling, compared with radiation only, helps to lower the steady state temperatures of the first wall by approximately 50 % and to reduce the cooling-time between discharges. Particulary the lower wall temperature give a larger margin for additional heating of the wall by plasma disruptionmore » or neutral beams until excessive erosion or damage of the armour takes place.« less

  18. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures.

    NASA Astrophysics Data System (ADS)

    Garion, C.; Dufay-Chanat, L.; Koettig, T.; Machiocha, W.; Morrone, M.

    2015-12-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented.

  19. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less

  20. Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.

    PubMed

    Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V

    2005-01-01

    The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be < 100 microSv h(-1) after 100 d of Large Hadron Collider (LHC) operation and 10 d of cooling.

  1. Palaeomagnetism of Precambrian dyke swarms in the North China Shield: The ˜1.8 Ga LIP event and crustal consolidation in late Palaeoproterozoic times

    NASA Astrophysics Data System (ADS)

    Piper, John D. A.; Jiasheng, Zhang; Huang, Baochung; Roberts, Andrew P.

    2011-06-01

    The North China Shield (NCS) is cut by a laterally-extensive dyke swarm emplaced at 1.78-1.76 Ga when an extensional regime succeeded regional metamorphism and completion of cratonisation by ˜1.85 Ga. Palaeomagnetic study of these dykes and adjoining metamorphic country rocks identifies a dominant shallow axis comprising a contiguous population with NE to N declinations and rare opposite polarity. Dykes with NE shallow magnetic declination (A1, D/ I = 36/-1°) recognised from previous study and emplaced in granulite terranes in the north are displaced by more northerly declinations (A2, D/ I = 8/2°) in lower grade metamorphic terranes to the south. Contact tests indicate a primary cooling-related origin to these magnetisations although tests are in part ambiguous because magnetisations in the granulite basement are comparable. Petrologic and rock magnetic considerations imply that magnetisation of the dykes occurred during uplift from depths as deep as 20 km following the peak of metamorphism at ˜1.85 Ga. A temporal migration A2 → A1 is implied by the higher crustal level and earlier acquisition of the former, and the deeper source and later acquisition of the latter. A third population of dyke magnetisations (A3, D/ I = 18/43°) is distributed towards steeper inclinations and close to the Mesozoic-Recent palaeofield. These are either partial or complete overprints of A1-A2 magnetisations with greater degrees of alteration indicated by demagnetisation and thermomagenetic spectra, or are much younger dykes of Mesozoic-Tertiary age. A minority fourth (later Precambrian but presently undated) dual polarity population has a magnetisation (11 dykes, D/ I = 108/7°) with contact tests indicating a primary cooling-related origin. The ˜1.78-1.76 Ga time of emplacement of the dominant dyke swarms in this study is widely represented by contemporaneous igneous rocks in other major shields linked to major Large Igneous Province (LIP)-related events. The new definition of a ˜1.83-1.76 Ga APW swathe from the North China Shield permits a comparison with other shields and yields a constraint to continental configurations during the late Palaeoproterozoic. A quasi-integral reconstruction of Palaeopangaea is tested here and supported by conformity of predominantly of uplift-related palaeopoles from the ˜1.90-1.70 Ga tectono-thermal belts and from SW → NE trending APW implied by the distribution of poles from the ˜1.80 Ga igneous suites including the LIP events. This trend incorporates the A2 → A1 migration and the granulite terrane cooling polar swathe from North China. The reconstruction indicates that continental crust consolidated in Palaeoproterozoic times by accretion of ˜2.3-1.7 Ga orogenic belts around a hemispheric and crescent-shape core already established by Late Archaean times. The North China Shield is interpreted to have bordered the western cratonic margin of the Indian Shield in a proximity supported by correlation of geological features and suggested by a number of previous workers. The Central Orogenic Zone of the North China shield characterised by tectono-thermal activity prior to ˜1.85 Ga was then contiguous with a comparable zone running through the centre of the Indian Shield and continuing into the Capricorn Belt of Western Australia. The ˜1.78-1.76 Ga dykes in North China continue into dyke swarms in the South India Shield and may have been sourced in a plume-related LIP focussed near the continental margin in the Xiong'er Aulacogen.

  2. Cryocooler Coldfinger Heat Interceptor

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Ross, R. G., Jr.

    1994-01-01

    Spacecraft instruments requiring cryocoolers in their design struggle to keep overall power requirements in line with feasible solar array dimensions and launch vehicle lift capacities. Intermediate temperature (150 K to 200 K) radiators to cool radiation shields or optics on spacecraft instruments provide an as yet untapped resource for reducing the cryocooler power requirments.

  3. Steam exit flow design for aft cavities of an airfoil

    DOEpatents

    Storey, James Michael; Tesh, Stephen William

    2002-01-01

    Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

  4. Continuous Cooling from 10 K to 4 K Using a Toroidal ADR

    NASA Technical Reports Server (NTRS)

    DiPirro, Michael J.; Canavan, Edgar R.; Shirron, Peter J.; Tuttle, James G.

    2003-01-01

    Future large infrared space telescopes will require cooling to 4K to achieve background limited performance for submillimeter wavelengths. These observatories will require lifetimes of many years and will have relatively large cooling requirements making stored helium dewars impractical. We have designed and are building an adiabatic demagnetization refrigerator (ADR) for use in cooling relatively large loads (10- 100 mW) at 4K and rejecting that heat to a cryocooler operating at 1 OK. Cryocoolers below 1 OK have poor thermodynamic efficiency and ADRs can operate in this temperature range with an efficiency of 75% of Carnot or better. Overall, this can save as much as 2/3 of the input power required to operate a 4K cryocooler. The ADR magnet consists of 8 short coils wired in series and arranged in a toroid to provide self shielding of its magnetic field. This will save mass (about 30% of the mass or about 1.5 kg in our small version, higher percentages in higher cooling power, larger versions) that would have been used for passive or active shields in an ordinary solenoid. The toroid has a 100 mm outer diameter and will produce an approximately 3T average field. In the initial demonstration model the toroid coils will be wound with ordinary NbTi wire and operated at 4K. A second version will then use Nb3Sn wire to provide complete 10K operation. As a refrigerant for this temperature range we will use either GdLiF4 or GdF3 crystals, pending tests of these crystals' cooling capacity per field and thermal conductance. Preliminary indications are that these materials are superior to GGG. We will use gas gap heat switches to alternately connect the toroid to the cold load and the warm heat sink. A small continuous stage will maintain the cold end at 4K while the main toroid is recycled.

  5. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  6. Thermal analysis and optimization of the EAST ICRH antenna

    NASA Astrophysics Data System (ADS)

    Qingxi, YANG; Wei, SONG; Qunshan, DU; Yuntao, SONG; Chengming, QIN; Xinjun, ZHANG; Yanping, ZHAO

    2018-02-01

    The ion cyclotron resonance of frequency heating (ICRH) plays an important role in plasma heating. Two ICRH antennas were designed and applied on the EAST tokamak. In order to meet the requirement imposed by high-power and long-pulse operation of EAST in the future, an active cooling system is mandatory to be designed to remove the heat load deposited on the components. Thermal analyses for high heat-load components have been carried out, which presented clear temperature distribution on each component and provided the reference data to do the optimization. Meanwhile, heat pipes were designed to satisfy the high requirement imposed by a Faraday shield and lateral limiter.

  7. Achievements in the development of the Water Cooled Solid Breeder Test Blanket Module of Japan to the milestones for installation in ITER

    NASA Astrophysics Data System (ADS)

    Tsuru, Daigo; Tanigawa, Hisashi; Hirose, Takanori; Mohri, Kensuke; Seki, Yohji; Enoeda, Mikio; Ezato, Koichiro; Suzuki, Satoshi; Nishi, Hiroshi; Akiba, Masato

    2009-06-01

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, a water cooled solid breeder (WCSB) TBM is being developed. This paper shows the recent achievements towards the milestones of ITER TBMs prior to the installation, which consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, targeting the detailed design final report in 2012, structure designs of the WCSB TBM and the interfacing components (common frame and backside shielding) that are placed in a test port of ITER and the layout of the cooling system are presented. As for the module qualification, a real-scale first wall mock-up fabricated by using the hot isostatic pressing method by structural material of reduced activation martensitic ferritic steel, F82H, and flow and irradiation test of the mock-up are presented. As for safety milestones, the contents of the preliminary safety report in 2008 consisting of source term identification, failure mode and effect analysis (FMEA) and identification of postulated initiating events (PIEs) and safety analyses are presented.

  8. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfister, A.; Goossen, C.; Coogler, K.

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plantmore » is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is further surrounded by a substantial 'steel concrete' composite shield building. The containment vessel is not affected by external flooding, and the shield building design provides hazard protection beyond that provided by a comparable reinforced concrete structure. The intent of this paper is to demonstrate the robustness of the AP1000 design against extreme events. The paper will focus on the plants ability to withstand extreme external events such as beyond design basis flooding, seismic events, and malicious aircraft impact. The paper will highlight the robustness of the AP1000 nuclear island design including the protection provided by the unique AP1000 composite shield building. (authors)« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, R.A.; Cron, J.

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existingmore » equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made, further refinements of this analysis are needed as the project parameters change. The designs of the drip shield, the Emplacement Drift, and the other drip shield emplacement equipment all have a direct effect on the overall design feasibility.« less

  10. Commissioning of horizontal-bend superconducting magnet for Jefferson Lab's 11-GeV super high momentum spectrometer

    DOE PAGES

    Sun, Eric; Brindza, Paul D.; Lassiter, Steven R.; ...

    2016-03-02

    Commissioning characteristics of the Superconducting High Momentum Spectrometer (SHMS) Horizontal Bend (HB) magnet was presented. Pre-commissioning peer review of the magnet uncovered issues with eddy currents in the thermal shield, resulting in additional testing and modeling of the magnet. A three-stage test plan was discussed. A solution of using a small dump resistor and a warm thermal shield was presented. Analyses illustrated that it was safe to run the magnet to full test current. As a result, the HB magnet was successfully cooled to 4 K and reached its maximum test current of 4000 A.

  11. Solar powered dehumidifier apparatus

    DOEpatents

    Jebens, Robert W.

    1980-12-30

    A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

  12. Facility target insert shielding assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In themore » present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.« less

  13. Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem

    NASA Astrophysics Data System (ADS)

    Lai, Tianwei; Fu, Bao; Chen, Shuangtao; Zhang, Qiyong; Hou, Yu

    2017-02-01

    The EAST superconducting tokamak, an advanced steady-state plasma physics experimental device, has been built at the Institute of Plasma Physics, Chinese Academy of Sciences. All the toroidal field magnets and poloidal field magnets, made of NbTi/Cu cable-in-conduit conductor, are cooled with forced flow supercritical helium at 3.8 K. The cryogenic system of EAST consists of a 2 kW/4 K helium refrigerator and a helium distribution system for the cooling of coils, structures, thermal shields, bus-lines, etc. The high-speed turbo-expander is an important refrigerating component of the EAST cryogenic system. In the turbo-expander, the axial supporting technology is critical for the smooth operation of the rotor bearing system. In this paper, hydrostatic thrust bearings are designed based on the axial load of the turbo-expander. Thereafter, a computational fluid dynamics-based numerical model of the aerostatic thrust bearing is set up to evaluate the bearing performance. Tilting effect on the pressure distribution and bearing load is analyzed for the thrust bearing. Bearing load and stiffness are compared with different static supply pressures. The net force from the thrust bearings can be calculated for different combinations of bearing clearance and supply pressure.

  14. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    NASA Astrophysics Data System (ADS)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  15. SP-100 GES/NAT radiation shielding systems design and development testing

    NASA Astrophysics Data System (ADS)

    Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.

  16. Preliminary design trade-offs for a multi-mission stored cryogen cooler

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1978-01-01

    Preliminary design studies were performed for a multi-mission solid cryogen cooler having a wide range of application for both the shuttle sortie and free flyer missions. This multi-mission cooler (MMC) is designed to be utilized with various solid cryogens to meet a wide range of instrument cooling from 10 K (with solid hydrogen) to 90 K. The baseline cooler utilizes two stages of solid cryogen and incorporates an optional, higher temperature third stage which is cooled by either a passive radiator or a thermoelectric cooler. The MMC has an interface which can accommodate a wide variety of instrument configurations. A shrink fit adapter is incorporated which allows a drop-in instrument integration. The baseline design provides cooling of approximately 1 watt over a 60 to 100 K temperature range and about 0.5 watts from 15 to 60 K for a one year lifetime. For low cooling loads and with use of the optional radiator shield, cooling lifetimes as great as 8 years are predicted.

  17. Open microwave cavity for use in a Purcell enhancement cooling scheme.

    PubMed

    Evetts, N; Martens, I; Bizzotto, D; Longuevergne, D; Hardy, W N

    2016-10-01

    A microwave cavity is described which can be used to cool lepton plasmas for potential use in synthesis of antihydrogen. The cooling scheme is an incarnation of the Purcell effect: when plasmas are coupled to a microwave cavity, the plasma cooling rate is resonantly enhanced through increased spontaneous emission of cyclotron radiation. The cavity forms a three electrode section of a Penning-Malmberg trap and has a bulged cylindrical geometry with open ends aligned with the magnetic trapping axis. This allows plasmas to be injected and removed from the cavity without the need for moving parts while maintaining high quality factors for resonant modes. The cavity includes unique surface preparations for adjusting the cavity quality factor and achieving anti-static shielding using thin layers of nichrome and colloidal graphite, respectively. Geometric design considerations for a cavity with strong cooling power and low equilibrium plasma temperatures are discussed. Cavities of this weak-bulge design will be applicable to many situations where an open geometry is required.

  18. Photodetectors with passive thermal radiation control

    DOEpatents

    Lin, Shawn-Yu; Fleming, James G.; Dodson, Brian W.

    2001-10-02

    A new class of photodetectors which include means for passive shielding against undesired thermal radiation is disclosed. Such devices can substitute in applications currently requiring cooled optical sensors, such as IR detection and imaging. This description is included for purposes of searching, and is not intended to limit or otherwise influence the interpretation of the present invention.

  19. National Synchrotron Light Source II storage ring vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  20. SP-100 GES/NAT radiation shielding systems design and development testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.

    1991-01-10

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less

  1. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  2. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  3. Adimensional theory of shielding in ultracold collisions of dipolar rotors

    NASA Astrophysics Data System (ADS)

    González-Martínez, Maykel L.; Bohn, John L.; Quéméner, Goulven

    2017-09-01

    We investigate the electric field shielding of ultracold collisions of dipolar rotors, initially in their first rotational excited state, using an adimensional approach. We establish a map of good and bad candidates for efficient evaporative cooling based on this shielding mechanism, by presenting the ratio of elastic over quenching processes as a function of a rescaled rotational constant B ˜=B /sE3 and a rescaled electric field F ˜=d F /B . B ,d ,F ,andsE 3 are respectively the rotational constant, the full electric dipole moment of the molecules, the applied electric field, and a characteristic dipole-dipole energy. We identify two groups of bi-alkali-metal dipolar molecules. The first group, including RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs, and LiCs, is favorable with a ratio over 1000 at collision energies equal to (or even higher than) their characteristic dipolar energy. The second group, including LiNa and KRb, is not favorable. More generally, for molecules well described by Hund's case b, our adimensional study provides the conditions of efficient evaporative cooling. The range of appropriate rescaled rotational constant and rescaled field is approximately B ˜≥108 and 3.25 ≤F ˜≤3.8 , with a maximum ratio reached for F ˜≃3.4 for a given B ˜. We also discuss the importance of the electronic van der Waals interaction on the adimensional character of our study.

  4. Thermal testing techniques for space shuttle thermal protection system panels

    NASA Technical Reports Server (NTRS)

    Cox, B. G.

    1972-01-01

    An experimental system was developed for evaluation of the effects of aerodynamic heating and cooling, vacuum, and pressure loading on candidate insulation packages proposed for use on the space shuttle. The system includes a number of design features which facilitate rapid recycle times. This is necessary to efficiently conduct extensive thermal cycling tests on these insulation packages to determine their reuse capabilities. The heart of the system is a 26-inch graphite element radiant heater. A susceptor plate functions as a uniform-temperature intermediate radiating surface. The susceptor also forms the lid of an inert atmosphere enclosure which separates the heater from the oxidizing test atmosphere. In some tests the plate properly simulates the heating from an actual flight heat-shield panel. Although other materials were used at lower required test temperatures, 2500 F was routinely achieved using a coated columbium susceptor plate.

  5. Contamination Control Considerations for the Next Generation Space Telescope (NGST)

    NASA Technical Reports Server (NTRS)

    Wooldridge, Eve M.

    1998-01-01

    The NASA Space Science Program, in its ongoing mission to study the universe, has begun planning for a telescope that will carry on the Hubble Space Telescope's exploration. This telescope, the 'Next Generation Space Telescope' (NGST), will be 6-8 meters in diameter, will be radiatively cooled to 30-60 Kelvin in order to enable extremely deep exposures at near infrared wavelengths, and will operate for a lifetime of 5-10 years. The requirement will be to measure wavelengths from 1-5 microns, with a goal to measure wavelengths from 0.6-30 microns. As such, NGST will present a new contamination control challenge. The Goddard Space Flight Center (GSFC) performed one of three preliminary feasibility studies for the NGST, presenting a telescope with an 8 meter, deployable primary mirror and a deployable secondary mirror. The telescope would be radiatively cooled, with the optical telescope assembly (OTA) and the science instrument module (SIM) isolated from the warmer spacecraft support module (SSM). The OTA and the SIM would also be shielded from sunlight with an enormous, inflatable sun-shield. The GSFC telescope was designed for launch on an Atlas HAS, which would require launching the telescope in a stowed configuration, with the SSM, antennae, sun-shield, primary mirror 'petals', and secondary mirror deployed once on-orbit. The launch configuration and deployment scenario of an exposed telescope measuring near infrared and cooled to 30-60 K are the factors presenting contamination hazards to the NGST mission. Preliminary science requirements established are: less than 20% reflectance decrease on optical surfaces over the wavelength range, and less than 0.3% obscuration of optical surfaces. In order to meet these requirements, NGST must be built and launched with careful attention to contamination control. Initial contamination control design options include strict selecting of materials and baking out of hardware down to the component level, minimizing or eliminating exposure of the OTA to sunlight or earth albedo during deployment and early on-orbit operations, cleaning of the primary and secondary mirrors at the launch site, cleaning of the launch vehicle fairing, locating thrusters and vents on the warm side of the sun shield only, and the possibility of including a deployable cover if that is shown to be necessary.

  6. Folding Elastic Thermal Surface - FETS

    NASA Technical Reports Server (NTRS)

    Urquiza, Eugenio; Zhang, Burt X.; Thelen, Michael P.; Rodriquez, Jose I.; Pellegrino, Sergio

    2013-01-01

    The FETS is a light and compact thermal surface (sun shade, IR thermal shield, cover, and/or deployable radiator) that is mounted on a set of offset tape-spring hinges. The thermal surface is constrained during launch and activated in space by a thermomechanical latch such as a wax actuator. An application-specific embodiment of this technology developed for the MATMOS (Mars Atmospheric Trace Molecule Occultation Spectrometer) project serves as a deployable cover and thermal shield for its passive cooler. The FETS fits compactly against the instrument within the constrained launch envelope, and then unfolds into a larger area once in space. In this application, the FETS protects the passive cooler from thermal damage and contamination during ground operations, launch, and during orbit insertion. Once unfolded or deployed, the FETS serves as a heat shield, intercepting parasitic heat loads by blocking the passive cooler s view of the warm spacecraft. The technology significantly enhances the capabilities of instruments requiring either active or passive cooling of optical detectors. This can be particularly important for instruments where performance is limited by the available radiator area. Examples would be IR optical instruments on CubeSATs or those launched as hosted payloads because radiator area is limited and views are often undesirable. As a deployable radiator, the panels making up the FETS are linked thermally by thermal straps and heat pipes; the structural support and deployment energy is provided using tape-spring hinges. The FETS is a novel combination of existing technologies. Prior art for deployable heat shields uses rotating hinges that typically must be lubricated to avoid cold welding or static friction. By using tape-spring hinges, the FETS avoids the need for lubricants by avoiding friction altogether. This also eliminates the potential for contamination of nearby cooled optics by outgassing lubricants. Furthermore, the tape-spring design of the FETS is also self-locking so the panels stay in a rigid and extended configuration after deployment. This unexpected benefit makes the tape-spring hinge design of the FETS a light, simple, reliable, compact, non-outgassing hinge, spring, and latch. While tape-spring hinges are not novel, they have never been used to deploy passive unfolding thermal surfaces (radiator panels, covers, sun shades, or IR thermal shields). Furthermore, because this technology is compact, it has minimal impact on the launch envelope and mass specifications. FETS enhances the performance of hosted payload instruments where the science data is limited by dark noise. Incorporating FETS into a thermal control system increases radiator area, which lowers the optical detector temperature. This results in higher SNR (signal-to-noise ratio) and improved science data.

  7. Radiation shielding materials and containers incorporating same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  8. Radiation Shielding Materials and Containers Incorporating Same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  9. Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation

    NASA Astrophysics Data System (ADS)

    Martukanitz, R. P.; Babu, S. S.

    2004-06-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit.

  10. Passive magnetic shielding in MRI-Linac systems.

    PubMed

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul

    2018-03-26

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  11. Passive magnetic shielding in MRI-Linac systems

    NASA Astrophysics Data System (ADS)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  12. STEAM GENERATOR FOR GAS COOLED NUCLEAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-03-14

    A steam generator for a gas-cooled nuclear reactor is disposed inside the same pressure vessel as the reactor and has a tube system heated by the gas circulating through the reactor; the pressure vessel is double-walled, and the interspace between these two walls is filled with concrete serving as radiation shielding. The steam generator has a cylindricaIly shaped vertical casing, through which the heating gas circulates, while the tubes are arranged in a plurality of parallel horizontal planes and each of them have the shape of an involute of a circle. The tubes are uniformly distributed over the available surfacemore » in the plane, all the tubes of the same plane being connected in parallel. The exterior extremities of these involute-shaped tubes are each connected with similar tubes disposed in the adjacent lower situated plane, while the interior extremities are connected with tubes in the adjacent higher situated plane. The alimentation of the tubes is performed over annular headers. The tube system is self-supporting, the tubes being joined together by welded spacers. The fluid flow in the tubes is performed by forced circulation. (NPO)« less

  13. Operation Results of the Kstar Helium Refrigeration System

    NASA Astrophysics Data System (ADS)

    Chang, H.-S.; Fauve, E.; Park, D.-S.; Joo, J.-J.; Moon, K.-M.; Cho, K.-W.; Na, H. K.; Kwon, M.; Yang, S.-H.; Gistau-Baguer, G.

    2010-04-01

    The "first plasma" (100 kA of controllable plasma current for 100 ms) of KSTAR has been successfully generated in July 2008. The major outstanding feature of KSTAR compared to most other Tokamaks is that all the magnet coils are superconducting (SC), which enables higher plasma current values for a longer time duration when the nominal operation status has been reached. However, to establish the operating condition for the SC coils, other cold components, such as thermal shields, coil-supporting structures, SC buslines, and current leads also must be maintained at proper cryogenic temperature levels. A helium refrigeration system (HRS) with an exergetic equivalent cooling power of 9 kW at 4.5 K has been installed for such purposes and successfully commissioned. In this proceeding, we will report on the operation results of the HRS during the first plasma campaign of KSTAR. Using the HRS, the 300-ton cold mass of KSTAR was cooled down from ambient to the operating temperature levels of each cold component. Stable and steady cryogenic conditions, proper for the generation of the "first plasma" have been maintained for three months, after which, all of the cold mass was warmed up again to ambient temperature.

  14. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA s Space Environment Simulation Laboratory s (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN cooling with centrifugal pumps, requiring 220,000 liters of LN to cool-down and consuming 180,000 liters per day of LN in steady operation. The LN system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the subcontractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC s request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 68,000 liters to cool-down and less than 91,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  15. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber-A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA's Space Environment Simulation Laboratory's (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN2) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN2 cooling with centrifugal pumps, requiring 200,000 liters of LN2 to cool-down and consuming 180,000 liters per day of LN2 in steady operation. The LN2 system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the sub-contractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC's request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 70,000 liters to cool-down and less than 90,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  16. Design Status of the Cryogenic System and Operation Modes Analysys of the JT-60SA Tokamak

    NASA Astrophysics Data System (ADS)

    Roussel, P.; Hoa, C.; Lamaison, V.; Michel, F.; Reynaud, P.; Wanner, M.

    2010-04-01

    The JT-60SA project is part of the Broader Approach Programme signed between Japan and Europe. This superconducting upgrade of the existing JT-60U tokamak in Naka, Japan shall start operation in 2016 and shall support ITER exploitation and research towards DEMO fusion reactor. JT-60SA is currently in the basic design phase. The cryogenic system of JT-60SA shall provide supercritical helium to cool the superconducting magnets and their structures at 4.4 K, and the divertor cryopumps at a temperature of 3.7 K. In addition it shall provide refrigeration for the thermal shields at 80 K and deliver helium at 50 K for the current leads. The equivalent refrigeration capacity at 4.5 K will be about 10 kW. The refrigeration process has to be optimised for different operation modes. During the day, in plasma operation state, the refrigerator will cope with the pulsed heat loads which may increase up to 100% of the average power, representing a big challenge compared to other tokamaks. Fast discharge quenches of the magnets, the impact from baking of the vacuum vessel, cool down and warm up modes are presented from the cryogenic system point of view and their impact on the cryogenic design is described.

  17. Trapping ultracold gases near cryogenic materials with rapid reconfigurability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naides, Matthew A.; Turner, Richard W.; Lai, Ruby A.

    We demonstrate an atom chip trapping system that allows the placement and high-resolution imaging of ultracold atoms within microns from any ≲100 μm-thin, UHV-compatible material, while also allowing sample exchange with minimal experimental downtime. The sample is not connected to the atom chip, allowing rapid exchange without perturbing the atom chip or laser cooling apparatus. Exchange of the sample and retrapping of atoms has been performed within a week turnaround, limited only by chamber baking. Moreover, the decoupling of sample and atom chip provides the ability to independently tune the sample temperature and its position with respect to the trapped ultracoldmore » gas, which itself may remain in the focus of a high-resolution imaging system. As a first demonstration of this system, we have confined a 700-nK cloud of 8 × 10{sup 4} {sup 87}Rb atoms within 100 μm of a gold-mirrored 100-μm-thick silicon substrate. The substrate was cooled to 35 K without use of a heat shield, while the atom chip, 120 μm away, remained at room temperature. Atoms may be imaged and retrapped every 16 s, allowing rapid data collection.« less

  18. Temperature Distribution and Critical Current of Long HTS Cables Cooled with Subcooled Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Ivanov, Y. V.; Watanabe, H.; Chikumoto, N.; Yamaguchi, S.

    2017-07-01

    Cooling of the long HTS power transmission lines performs by pumping of subcooled liquid nitrogen (LN2) along the cable. The temperature of LN2 along the cable increases due to the heat losses of the cryostat and heat generation in the HTS cable. The experiment using test cable line in Ishikari shows that flow rate of 35 L/min retains increasing of LN2 temperature by 1 K per 1 km of length. The technology when the back flow of LN2 cools the radiation shield surrounding the cable pipe is also applied in Ishikari-2 project. In this case the ambient heat flow into cable pipe is 50 times less than that without radiation shield. Back flow of LN2 removes almost all heat coming from the environment. When transport current is close to the critical value the Joule heat of HTS cable is significant. This heat additionally increases the temperature of LN2 flowing along the HTS cable. Near the outlet the temperature of HTS cable is maximal and the local critical current is minimal. The current matching critical current criterion of average electrical field of E 0 = 10-4 V/m provides the voltage drop and significant Joule heat at the hot end of the cable. It can lead the damage of the cable. The present work contains analysis of temperature distribution along the cable and the way to achieve the fail-safe operation of long HTS cable cooled by subcooled LN2. We also performed extrapolation of obtained results for several times longer cable lines by decreasing the LN2 flow rate.

  19. Active magnetic compensation composed of shielding panels.

    PubMed

    Kato, K; Yamazaki, K; Sato, T; Haga, A; Okitsu, T; Muramatsu, K; Ueda, T; Kobayashi, K; Yoshizawa, M

    2004-11-30

    Magnetically shielded rooms (MSRs) with materials of high permeability and active shield systems have been used to shield magnetic noise for biomagnetic measurements up to now. However, these techniques have various disadvantages. Therefore, we have developed a new shielding system composed of shielding panels using an active compensation technique. In this study, we evaluated the shielding performance of several unit panels attached together. Numerical and experimental approaches indicated that the shielding factor of a cubic model composed of 24 panels was 17 for uniform fields, and 7 for disturbances due to car movement. Furthermore, the compensation space is larger than that of an ordinary active system using large coils rather than panels. Moreover, the new active compensation system has the important advantage that panels of any shape can be assembled for occasional use because the unit panels are small and light.

  20. Thermal performance of the CrIS passive cryocooler

    NASA Astrophysics Data System (ADS)

    Ghaffarian, B.; Kohrman, R.; Magner, A.

    2006-02-01

    The configuration, performance, and test validation of a passive radiant cooler for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Crosstrack Infrared Sounder (CrIS) Instrument are presented. The cooler is required to provide cryogenic operation of IR focal planes. The 11 kg device, based on prior ITT Industries Space Systems Division coolers, requires virtually no power. It uses multiple thermally isolated cooling stages, each with an independent cryoradiator, operating at successively colder temperatures. The coldest stage, with a controlled set point at 81 K, cools a longwave IR (LWIR) focal plane. An intermediate stage, with a 98 K control point, cools detectors operating in MWIR and SWIR spectral regions. The warmest stage includes a fixed, integral earth shield that limits the thermal load from the earth in the NPOESS Operational Low-earth Orbiting (LEO) orbit. A study of the thermal balance and loads analysis used to evaluate the predicted cooler performance is discussed. High performance margins have been retained throughout the cooler development, fabrication and test phases of the program. The achievable in-orbit temperatures for this cooler are anticipated to be 73 K for the LWIR cooling stage and 91 K for the midwave IR (MWIR)/shortwave IR (SWIR) stage. Test results from two iterations of thermal vacuum verification testing are presented. Lessons learned from the first test, which failed to produce the predicted performance are included. The thermal model of the cooler and test configuration was used to identify deficiencies in the test targets resulting in unexpected heat loads. Corrective action was implemented to remove the heat leaks and a second test verified both the cooler performance and the correlation of the detailed thermal model.

  1. Effects of materials and design on the criticality and shielding assessment of canister concepts for the disposal of spent nuclear fuel.

    PubMed

    Gutiérrez, Miguel Morales; Caruso, Stefano; Diomidis, Nikitas

    2018-05-19

    According to the Swiss disposal concept, the safety of a deep geological repository for spent nuclear fuel (SNF) is based on a multi-barrier system. The disposal canister is an important component of the engineered barrier system, aiming to provide containment of the SNF for thousands of years. This study evaluates the criticality safety and shielding of candidate disposal canister concepts, focusing on the fulfilment of the sub-criticality criterion and on limiting radiolysis processes at the outer surface of the canister which can enhance corrosion mechanisms. The effective neutron multiplication factor (k-eff) and the surface dose rates are calculated for three different canister designs and material combinations for boiling water reactor (BWR) canisters, containing 12 spent fuel assemblies (SFA), and pressurized water reactor (PWR) canisters, with 4 SFAs. For each configuration, individual criticality and shielding calculations were carried out. The results show that k-eff falls below the defined upper safety limit (USL) of 0.95 for all BWR configurations, while staying above USL for the PWR ones. Therefore, the application of a burnup credit methodology for the PWR case is required, being currently under development. Relevant is also the influence of canister material and internal geometry on criticality, enabling the identification of safer fuel arrangements. For a final burnup of 55MWd/kgHM and 30y cooling time, the combined photon-neutron surface dose rate is well below the threshold of 1 Gy/h defined to limit radiation-induced corrosion of the canister in all cases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Control of melt-crystal interface shape during sapphire crystal growth by heat exchanger method

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Liu, Lijun; Ma, Wencheng

    2017-09-01

    We numerically investigate the melt-crystal interface shape during the early stage of the solidification process when the crystal diameter increases. The contact angle between the melt-crystal interface and the crucible bottom wall is found obtuse during this stage, which is unfavorable for the crystal quality. We found that the obtuse contact angle is caused by the thermal resistance difference between the sapphire crystal and melt as well as the insufficient cooling effect of the crucible bottom. Two approaches are proposed to suppress the obtuse contact angle. The first approach is to increase the emissivity of the outer surface of crucible bottom. The second approach is to install a heat shield near the crucible bottom. The reduction of the emissivity of the heat shield is also favorable for the suppression of the obtuse contact angle. Compared with the increase of the emissivity of the crucible bottom, the installation of a heat shield is a more effective approach to prevent the appearance of an obtuse contact angle for the sake of reliability since a molybdenum heat shield can be reused and will not induce other impurities.

  3. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  4. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, P.H.

    1984-09-14

    A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

  5. Heat shield manifold system for a midframe case of a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Clinton A.; Eng, Jesse; Schopf, Cheryl A.

    A heat shield manifold system for an inner casing between a compressor and turbine assembly is disclosed. The heat shield manifold system protects the outer case from high temperature compressor discharge air, thereby enabling the outer case extending between a compressor and a turbine assembly to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system may be configured such that compressor bleed air is passed from the compressor into the heat shield manifold system without passing through a conventional flange to flange joint that is susceptible to leakage.

  6. Effect of metal shielding on a wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng

    2017-05-01

    In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.

  7. A METHOD TO IMPROVE DOSE ASSESSMENT BY RECONSTRUCTION OF THE COMPLETE ISOTOPES INVENTORY.

    PubMed

    Bonin, Alice; Tsilanizara, Aimé

    2017-06-01

    Radiation shielding assessments may underestimate the expected dose if some isotopes at trace level are not considered in the isotopes inventory of the shielded radioactive materials. Indeed, information about traces is not often available. Nevertheless, the activation of some minor isotopic traces may significantly contribute to the dose build-up. This paper presents a new method (Isotopes Inventory Reconstruction-IIR) estimating the concentration of the minor isotopes in the irradiated material at the beginning of the cooling period. The method requires the solution of the inverse problem describing the irradiated material's decay. In a mixture of an irradiated uranium-plutonium oxide shielded by a set-up made of stainless-steel, porous polyethylene plaster and lead methyl methacrylate, the comparison between different methods proves that the IIR-method allows better assessment of the dose than other approximate methods. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Nuclear reactor removable radial shielding assembly having a self-bowing feature

    DOEpatents

    Pennell, William E.; Kalinowski, Joseph E.; Waldby, Robert N.; Rylatt, John A.; Swenson, Daniel V.

    1978-01-01

    A removable radial shielding assembly for use in the periphery of the core of a liquid-metal-cooled fast-breeder reactor, for closing interassembly gaps in the reactor core assembly load plane prior to reactor criticality and power operation to prevent positive reactivity insertion. The assembly has a lower nozzle portion for inserting into the core support and a flexible heat-sensitive bimetallic central spine surrounded by blocks of shielding material. At refueling temperature and below the spine is relaxed and in a vertical position so that the tolerances permitted by the interassembly gaps allow removal and replacement of the various reactor core assemblies. During an increase in reactor temperature from refueling to hot standby, the bimetallic spine expands, bowing the assembly toward the core center line, exerting a radially inward gap-closing-force on the above core load plane of the reactor core assembly, closing load plane interassembly gaps throughout the core prior to startup and preventing positive reactivity insertion.

  9. METHODS OF CALCULATION FOR THE TREATMENT OF SHIELD HETEROGENEITIES IN THE PROTOTYPE FAST REACTOR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broughton, J.; Butler, J.; Brimstone, M.

    1969-10-31

    The radial shield of the sodium-cooled Prototype Fast Reactor is composed of graphite rods enclosed in steel tubes which are arranged in a lattice of seven rows round the periphery of the breeder. The outside diameter of these rods increases by about a factor of 2 between the inner temperature of about 600 deg C. The dimensions of the steel, graphite and sodium regions are large compared with the mean free paths of the predomination neutrons at intermediate energies; and homogenisation of the shield seriously underestimates the penetration, which is also enhanced by the presence of numerous irregularities associated withmore » nucleonic instrument thimbels, refuelling mechanisms and the primary coolant circuit. Methods of calculation have been developed for the solution of these problems, using both diffusion-theory and Monte Carlo techniques. The diffusion calculations have been accomplished with the COMPRASH and ATTOW codes; and a prototype Monet Carlo code named MOB has been developed, which takes a proper account of the radial shield geometry. The theoretical predictions are compared with measurements made in typical shield arrays on LIDO at Harwell and on the zero-energy fast reactor, ZEBRA, at Winfrith. The diffusion-theory and Monte Carlo approaches are also assessed as design tools taking into consideration accuracy, data preparation and computing time requirements. (auth)« less

  10. Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Imai, T.; Kobayashi, N.

    2005-01-15

    The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguidemore » lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.« less

  11. Thermodynamic Analysis of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; DiPirro, Michael; Bialas, Tom; Sneiderman, Gary; Porter, Scott; Kelley, Richard

    2015-01-01

    The Soft X-ray Spectrometer (SXS) instrument on Astro-H will use a 3-stage ADR to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at 1.20 K as the heat sink. In the secondary mode, which is activated when the liquid helium is depleted, two of the stages continuously cool the (empty) helium tank using a 4.5 K Joule-Thomson cooler as the heat sink, and the third stage cools the detectors. In the design phase, a high-fidelity model of the ADR was developed in order to predict both the cooling capacity and heat rejection rates in both operating modes. The primary sources of heat flow are from the salt pills, hysteresis heat from the magnets and magnetic shields, and power dissipated by the heat switches. The flight instrument dewar, ADR, detectors and electronics were integrated in mid-2014 and have since undergone extensive performance testing, in part to validate the performance model. This paper will present the thermodynamic performance of the ADR, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.

  12. Hotspot evolution and Venusian tectonic style

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1994-01-01

    Because hotspots represent an important manifestation of heat loss on Venus, their geological evolution is of fundamental importance for any attempt to understand Venusian tectonics. Eistla Regio is an approximately 7500-km-long, moderately elevated region inferred to overlie one or more large mantle upwellings or hotspots. It also contains many shield volcanoes and coronae believed due to the rise of thermal plumes in the mantle. Central Eistla Regio includes two large volcanoes, Sappho and Anala, and several coronae in close proximity. Detailed mapping in this region results in two conclusions of tectonic significance: (1) Sappho and Anala occur near the intersection of two major extensional deformation zones, and (2) the coronae are older than the large volcanoes. Several of the coronae occur as a chain along Guor Linea, one of the major extensional deformation zones. Stratigraphic relationships indicate that the coronae began forming very soon after the emplacement of the widespread regional plains materials. Thus Central Eistla Regio was the site of a swarm of plumes that first formed coronae and then later formed shield volcanoes. The expected result of such a swarm would be thermal thinning of the elastic lithosphere with time. However, model results, geological observations, and gravity data suggest that the change from coronae to shield volcanoes was accompanied by a thickening of the lithosphere with time. This thickening is interpreted to be the result of global cooling of the lithosphere following the most recent episode of near-global resurfacing. The global cooling must have occurred faster than local heating of the lithosphere due to the impingement of thermal plumes.

  13. Microchemical Analysis of Non-Metallic Inclusions in C-Mn Steel Shielded Metal Arc Welds by Analytical Transmission Electron Microscopy.

    DTIC Science & Technology

    1998-06-01

    transformation ( CCT ) diagram Figure 2.2. The microstructures that develop are determined by the cooling rate, alloying element and oxygen content of the weld...TIME Figure 2.2 CCT Diagram for the weld metal of low-carbon, low-alloy steels [From Ref. 2] To assist material scientists in microstructure

  14. Effect of Porosity Content of Arc-Sprayed Alloy 625 Skins on the Flexural Behavior of Nickel Foam Core Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Salavati, S.; Pershin, L.; Coyle, T. W.; Mostaghimi, J.

    2015-01-01

    Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades because of their unique mechanical and physical properties. Thermal spraying techniques have been recently introduced as a novel low-cost method for production of these structures with complex shapes. One of the potential applications of the metallic foam core sandwich structures prepared by thermal spray techniques is as heat shield devices. Open porosity in the microstructure of the coating may allow the cooling efficiency of the heat shield to be improved through the film cooling phenomenon. A modified twin wire-arc spraying process was employed to deposit high temperature resistant alloy 625 coatings with a high percentage of the open porosity. The effect of skin porosity on the mechanical properties (flexural rigidity) of the sandwich structures was studied using a four-point bending test. It was concluded from the four-point bending test results that increase in the porosity content of the coatings leads to decrease in the flexural rigidity of the sandwich panels. The ductility of the porous and conventional arc-sprayed alloy 625 coatings was improved after heat treatment at 1100 °C for 3 h.

  15. Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Singh, Rakesh Kumar; Sharma, Bhupesh; Tyagi, Ajay Kumar

    2017-09-01

    Lead based X-ray shielding systems are widely being used in healthcare and radiation processing centers to protect technicians, operators and patients from unwanted exposure to ionizing radiation. However, the use of lead is avoided mainly due to its toxic effects on human health and environment, and also discomfort due to heavier in weight. Hence, production of non-toxic, environment friendly, lead-free X-ray shielding system with less weight and good radiation shielding efficiency compared to conventional lead-based shielding systems is a challenging issue and need of the day. The objectives of present study are to develop, characterize and establish synergy of the materials making radiation shielding composition and their biocompatibility without compromising on radiation shielding efficiency and physico-mechanical attributes vis-à-vis lead based systems.

  16. Dismantlement of the TSF-SNAP Reactor Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peretz, Fred J

    2009-01-01

    This paper describes the dismantlement of the Tower Shielding Facility (TSF)?Systems for Nuclear Auxiliary Power (SNAP) reactor, a SNAP-10A reactor used to validate radiation source terms and shield performance models at Oak Ridge National Laboratory (ORNL) from 1967 through 1973. After shutdown, it was placed in storage at the Y-12 National Security Complex (Y-12), eventually falling under the auspices of the Highly Enriched Uranium (HEU) Disposition Program. To facilitate downblending of the HEU present in the fuel elements, the TSF-SNAP was moved to ORNL on June 24, 2006. The reactor assembly was removed from its packaging, inspected, and the sodium-potassiummore » (NaK) coolant was drained. A superheated steam process was used to chemically react the residual NaK inside the reactor assembly. The heat exchanger assembly was removed from the top of the reactor vessel, and the criticality safety sleeve was exchanged for a new safety sleeve that allowed for the removal of the vessel lid. A chain-mounted tubing cutter was used to separate the lid from the vessel, and the 36 fuel elements were removed and packaged in four U.S. Department of Transportation 2R/6M containers. The fuel elements were returned to Y-12 on July 13, 2006. The return of the fuel elements and disposal of all other reactor materials accomplished the formal objectives of the dismantlement project. In addition, a project model was established for the handling of a fully fueled liquid-metal?cooled reactor assembly. Current criticality safety codes have been benchmarked against experiments performed by Atomics International in the 1950s and 1960s. Execution of this project provides valuable experience applicable to future projects addressing space and liquid-metal-cooled reactors.« less

  17. Aluminum/vacuum multilayer configuration for spatial high-energy electron shielding via electron return effects induced by magnetic field.

    PubMed

    Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da

    2017-06-26

    Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.

  18. Portable imaging system method and apparatus

    DOEpatents

    Freifeld, Barry M.; Kneafsley, Timothy J.; Pruess, Jacob; Tomutsa, Liviu; Reiter, Paul A.; deCastro, Ted M.

    2006-07-25

    An operator shielded X-ray imaging system has sufficiently low mass (less than 300 kg) and is compact enough to enable portability by reducing operator shielding requirements to a minimum shielded volume. The resultant shielded volume may require a relatively small mass of shielding in addition to the already integrally shielded X-ray source, intensifier, and detector. The system is suitable for portable imaging of well cores at remotely located well drilling sites. The system accommodates either small samples, or small cross-sectioned objects of unlimited length. By rotating samples relative to the imaging device, the information required for computer aided tomographic reconstruction may be obtained. By further translating the samples relative to the imaging system, fully three dimensional (3D) tomographic reconstructions may be obtained of samples having arbitrary length.

  19. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virostek, S.P.; Green, M.A.; Trillaud, F.

    2010-05-16

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniformmore » field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.« less

  20. Integrated shielding systems for manned interplanetary spaceflight

    NASA Astrophysics Data System (ADS)

    George, Jeffrey A.

    1992-01-01

    The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.

  1. Instrumentation concepts and requirements for a space vacuum research facility. [molecular shield for spaceborne experiments

    NASA Technical Reports Server (NTRS)

    Norton, H. N.

    1979-01-01

    An earth-orbiting molecular shield that offers a unique opportunity for conducting physics, chemistry, and material processing experiments under a combination of environmental conditions that are not available in terrestrial laboratories is equipped with apparatus for forming a molecular beam from the freestream. Experiments are carried out using a moderate energy, high flux density, high purity atomic oxygen beam in the very low density environment within the molecular shield. As a minimum, the following instruments are required for the molecular shield: (1) a mass spectrometer; (2) a multifunction material analysis instrumentation system; and (3) optical spectrometry equipment. The design is given of a furlable molecular shield that allows deployment and retrieval of the system (including instrumentation and experiments) to be performed without contamination. Interfaces between the molecular shield system and the associated spacecraft are given. An in-flight deployment sequence is discussed that minimizes the spacecraft-induced contamination in the vicinity of the shield. Design approaches toward a precursor molecular shield system are shown.

  2. Safety and environmental aspects of organic coolants for fusion facilities

    NASA Astrophysics Data System (ADS)

    Natalizio, A.; Hollies, R. E.; Gierszewski, P.

    1993-06-01

    Organic coolants, such as OS-84, offer unique advantages for fusion reactor applications. These advantages are with respect to both reactor operation and safety. The key operational advantage is a coolant that can provide high temperature (350-400°C) at modest pressure (2-4 MPa). These temperatures are needed for conditioning the plasma-facing components and, in reactors, for achieving high thermodynamic conversion efficiencies (>40%). The key safety advantage of organic coolants is the low vapor pressure, which significantly reduces the containment pressurization transient (relative to water) following a loss of coolant event. Also, from an occupational dose viewpoint, organic coolants significantly reduce corrosion and erosion inside the cooling system and consequently reduce the quantity of activation products deposited in cooling system equipment. On the negative side, organic coolants undergo both pyrolytic and radiolytic decomposition, and are flammable. While the decomposition rate can be minimized by coolant system design (by reducing coolant inventories exposed to neutron flux and to high temperatures), decomposition products are formed and these degrade the coolant properties. Both heavy compounds and light gases are produced from the decomposition process, and both must be removed to maintain adequate coolant properties. As these hydrocarbons may become tritiated by permeation, or activated through impurities, their disposal could create an environmental concern. Because of this potential waste disposal problem, consideration has been given to the recycling of both the light and heavy products, thereby reducing the quantity of waste to be disposed. Preliminary assessments made for various fusion reactor designs, including ITER, suggest that it is feasible to use organic coolants for several applications. These applications range from first wall and blanket coolant (the most demanding with respect to decomposition), to shield and vacuum vessel cooling, to an intermediate cooling loop removing heat from a liquid metal loop and transferring it to a steam generator or heat exchanger.

  3. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    NASA Astrophysics Data System (ADS)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  4. Summary of the Normal-Conducting Accelerating Structures for LEDA and APT

    NASA Astrophysics Data System (ADS)

    Schneider, J. David

    1998-04-01

    The accelerator production of tritium (APT) plant requires a continuous (100% duty-factor), 100-mA, 1000--1700-MeV proton beam. Superconducting structures will accelerate protons above about 200 MeV, but room-temperature, normal-conducting (NC) copper structures will be used for lower energies. We will assemble the front 11-MeV portion of this NC accelerator as the low-energy demonstration accelerator (LEDA). This presentation will cover the demonstated operation of the proton injector, the design, fabrication, and tuning status of the 6.7-MeV RFQ, and the design features of the CCDTL (coupled-cavity drift-tube linac) that will accelerate protons to 100 MeV, before use of a conventional CCL (coupled-cavity linac). Several innovative features result in improved performance, ease of use, and improved reliabiltiy. The75-keV injector features a microwave ion source, dual-solenoid transport, and has no electronics at high potential. Its demonstrated high efficiency (less than 800 Watts), excellent proton fraction (>90%), high current (>110 mA), and reliability make it attractive for several other high-current applications. The 6.7-MeV, 350-MHz RFQ is an 8-meter-long, brazed-copper structure with hundreds of cooling channels that carry away the 1.3 MW of waste heat. During beam operation, only the cooling-water temperature is adjustable to maintain structure resonance. LEDA's 700-MHz CCDTL structure is new, combining features of the conventional DTL and CCL structures. All focus magnets are external to the copper accelerating cavities, each of which contains either one or two drift tubes. A `hot model' will validate fabrication, cooling, tuning, and coupling techniques. The LEDA facility is being upgraded with 15 MW of power and cooling utiliites, to support seven 1-MW cw RF systems needed to power all structures. The first few of these 1.3 MW 350-MHz systems are operational, and extensive testing was completed on the critical RF windows. Updates will be given on the development of vacuum, diagnostic, control, and cooling systems, as well as transport lines and beam stops. The unique and very compact, thin-walled beam stop is surrounded by an integral water shield for the prompt neutrons.

  5. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  6. Design of the LBNF Beamline Target Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tariq, S.; Ammigan, K.; Anderson, K.

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding inmore » a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.« less

  7. Advanced shield development for a fission surface power system for the lunar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. E. Craft; I. J. Silver; C. M. Clark

    A nuclear reactor power system such as the affordable fission surface power system enables a potential outpostonthemoon.Aradiation shieldmustbe included in the reactor system to reduce the otherwise excessive dose to the astronauts and other vital system components. The radiation shield is typically the most massive component of a space reactor system, and thus must be optimized to reduce mass asmuchas possible while still providing the required protection.Various shield options for an on-lander reactor system are examined for outpost distances of 400m and 1 kmfromthe reactor. Also investigated is the resulting mass savings from the use of a high performance cermetmore » fuel. A thermal analysis is performed to determine the thermal behaviours of radiation shields using borated water. For an outpost located 1000m from the core, a tetramethylammonium borohydride shield is the lightest (5148.4 kg), followed by a trilayer shield (boron carbide–tungsten–borated water; 5832.3 kg), and finally a borated water shield (6020.7 kg). In all of the final design cases, the temperature of the borated water remains below 400 K.« less

  8. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  9. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  10. Atmospheric reentry of the in-core thermionic SP-100 reactor system

    NASA Technical Reports Server (NTRS)

    Stamatelatos, M. G.; Barsell, A. W.; Harris, P. A.; Francisco, J.

    1987-01-01

    Presumed end-of-life atmospheric reentry of the GA SP-100 system was studied to assess dispersal feasibility and associated hazards. Reentry was studied by sequential use of an orbital trajectory and a heat analysis computer program. Two heating models were used. The first model assumed a thermal equilibrium condition between the stagnation point aerodynamic heating and the radiative cooling of the skin material surface. The second model allowed for infinite conductivity of the skin material. Four reentering configurations were studied representing stages of increased SP-100 breakup: (1) radiator, shield and reactor, (2) shield and reactor, (3) reactor with control drums, and (4) reactor without control drums. Each reentering configuration was started from a circular orbit at 116 km having an inertial velocity near Mach 25. The assumed failing criterion was the attainment of melting temperature of a critical system component. The reentry analysis revealed breakup of the vessel in the neighborhood of 61 km altitude and scattering of the fuel elements. Subsequent breakup of the fuel elements was not predicted. Oxidation of the niobium skin material was calculated to cause an increase in surface temperature of less than ten percent. The concept of thermite analogs for enhancing reactor reentry dispersal was assessed and found to be feasible in principle. A conservative worst-case hazards analysis was performed for radioactive and nonradioactive toxic SP-100 materials assumed to be dispersed during end-of-life reentry. The hazards associated with this phase of the SP-100 mission were calculated to be insignificant.

  11. NACA Conference on Aircraft Ice Prevention - A Compilation of the Paper Presented by NACA Staff Members on 26-27 Jun 1947

    DTIC Science & Technology

    1947-06-01

    by two shielded thermocouples located approximately 15 feet dom1stream of the cooling fan. A battery of four stroboscopic flash lamps ~ermitted...8217emaining on the blades after cyclical de-icing wi tll the exter.no.l beater . IH tb tbe exce;_;tion of investiga- liions ruade at alr cemperatures

  12. Development, Testing and Validation of a Waste Assay System for the Measurement and Characterisation of Active Spent Fuel Element Debris From UK Magnox Reactors - 12533

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, John A.; Burke, Kevin J.; Looman, Marc R.

    2012-07-01

    This paper describes the development, testing and validation of a waste measurement instrument for characterising active remote handled radioactive waste arising from the operation of Magnox reactors in the United Kingdom. Following operation in UK Magnox gas cooled reactors and a subsequent period of cooling, parts of the magnesium-aluminium alloy cladding were removed from spent fuel and the uranium fuel rods with the remaining cladding were removed to Sellafield for treatment. The resultant Magnox based spent fuel element debris (FED), which constitutes active intermediate level waste (ILW) has been stored in concrete vaults at the reactor sites. As part ofmore » the decommissioning of the FED vaults the FED must be removed, measured and characterised and placed in intermediate storage containers. The present system was developed for use at the Trawsfynydd nuclear power station (NPS), which is in the decommissioning phase, but the approach is potentially applicable to FED characterisation at all of the Magnox reactors. The measurement system consists of a heavily shielded and collimated high purity Germanium (HPGe) detector with electromechanical cooling and a high count-rate preamplifier and digital multichannel pulse height analyser. The HPGe based detector system is controlled by a software code, which stores the measurement result and allows a comprehensive analysis of the measured FED data. Fuel element debris is removed from the vault and placed on a tray to a uniform depth of typically 10 cm for measurement. The tray is positioned approximately 1.2 meters above the detector which views the FED through a tungsten collimator with an inverted pyramid shape. At other Magnox sites the positions may be reversed with the shielded and collimated HPGe detector located above the tray on which the FED is measured. A comprehensive Monte Carlo modelling and analysis of the measurement process has been performed in order to optimise the measurement geometry and eliminate interferences from radioactive sources and FED in the immediate vicinity of the measurement position. The detector system has been calibrated and high activity radioactive sources of Cs-137, Co-60 and Na-22 have been used to validate the measurement process. The data acquisition and analysis software code has been tested and validated in keeping with the software quality assurance requirements of both ISO:9001-2008 - TICK-IT in the UK and NQA-1. The measurement and analysis system has been comprehensively tested with high activity sources, is flexible and may be applicable to a wide range of remote handled radioactive waste measurement applications. It is due to be installed at Trawsfynydd NPS later this year. This paper describes the Waste Tray Assay System (WTAS) that has been developed for the measurement of Magnox FED waste. The WTAS has been tested with a range of radioactive sources and its operation has been simulated with benchmarked MCNP Monte Carlo calculations. The measurement software has been validated as has the operation of the system for a range of strong radioactive sources. A system based on the design is due for installation and operation in 2012. The system has application to the measurement of Magnox Fuel Element Debris (FED) waste at other Magnox reactor sites. The major design objective of the WTAS that has been achieved is the ability of the assay system to determine the content of Cs-137, and in turn to enable the fissile burden to be assessed using a radionuclide fingerprint, in the presence of higher and highly variable quantities of Co-60, typically from nimonic springs. The approach can be used in other Magnox FED waste configurations where the detector is located above the FED waste sorting tray and where the collimation is fixed below the detector and at a distance above the tray. In this case, which has also been investigated, there are different shielding problems and mechanical support issues. The extensive use of MCNP Monte Carlo modelling to simulate the geometry of the sorting cell and the distribution of radioactive sources has helped to ensure that all of the detector shielding requirements are addressed and suitable Cs-137 and Co-60 discrimination can be achieved. The WTAS in its present form or in other configurations has relevance to the measurement of other active ILW and highly active RH waste. Examples include high activity RH LLW and RH TRU (Transuranic) waste as defined in the United States arising from both commercial nuclear and Department of Energy (DOE) operations. The analysis is able to analyse a range of radionuclides beyong those expected in the Magnox FED cases. (authors)« less

  13. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project will investigate three methods to fabricate heat shield using extraterrestrial regolith.

  14. Welding shield for coupling heaters

    DOEpatents

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  15. AstroBiology Explorer (ABE) MIDEX mission concept

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Cox, Sylvia; Ellis, Benton; Gallagher, Dennis J.; Gautier, Nick; Greene, Thomas P.; McCreight, Craig R.; Mills, Gary; Purcell, William R.

    2002-02-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept under study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp. ABE will conduct IR spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Cassegrain telescope and two moderate resolution (R equals 2000-3000) spectrographs covering the 2.5-16 micron spectral region. Large format (1024x1024 pixel or larger) IR detector arrays and bandpass filters will allow each spectrograph to cover an entire octave of spectral range or more per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~8K. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1-2 year mission lifetime.

  16. Current Lead Design for the Accelerator Project for Upgrade of LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchangemore » section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.« less

  17. 21. View from the work area of the front face ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View from the work area of the front face of the pile in the 105 building, in this case at the F Reactor in February 1945. The 2,004 pigtails and process tube nozzles are neatly aligned in rows and columns across the face of the pile. The cooling water risers stand at the left and right of the pile and the distribution crossheaders run across its face. The pipes running vertically at the bottom of the pile carry cooling water to the thermal shield. The low railing along the floor in front of the face prevented workers from accidentally falling into the charging elevator pit. D-8326 - B Reactor, Richland, Benton County, WA

  18. Power converter having improved fluid cooling

    DOEpatents

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2007-03-06

    A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  19. Commissioning of the JT-60SA helium refrigerator

    NASA Astrophysics Data System (ADS)

    Kamiya, Koji; Natsume, Kyohei; Ohtsu, Kiichi; Oishi, Makoto; Honda, Atsushi; Kashiwa, Yoshitoshi; Kizu, Kaname; Koide, Yoshihiko; Hoa, Christine; Michel, Frederic; Roussel, Pascal; Lamaison, Valerie; Bonne, Francois; Dipietro, Enrico; Cardella, Antonino; Wanner, Manfred; Legrand, Jerome; Pudys, Vincent; Langevin, Baptiste

    2017-09-01

    The JT-60SA project will use superconducting magnets to confine the plasma and achieve a plasma current with a typical flat top duration of 100 second in purely inductive mode. The helium refrigerator has an equivalent cooling power of 9 kW at 4.5 K providing 3.7 K, 4.5 K, 50 K and 80 K for the diverter cryopump, the superconducting magnets, the HTS current leads, and the thermal shields, respectively. This paper summarizes the JT-60SA helium refrigerator commissioning activities aiming at successful operation of heat load smoothing technology to manage the 12 kW heat pulses by 9 kW cooling power using a 7000 liter liquid helium.

  20. Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Alice; Popov, Emilian L

    2011-01-01

    ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and tomore » provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.« less

  1. NASA Tech Briefs, October 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: Laser Truss Sensor for Segmented Telescope Phasing; Qualifications of Bonding Process of Temperature Sensors to Deep-Space Missions; Optical Sensors for Monitoring Gamma and Neutron Radiation; Compliant Tactile Sensors; Cytometer on a Chip; Measuring Input Thresholds on an Existing Board; Scanning and Defocusing Properties of Microstrip Reflectarray Antennas; Cable Tester Box; Programmable Oscillator; Fault-Tolerant, Radiation-Hard DSP; Sub-Shot Noise Power Source for Microelectronics; Asynchronous Message Service Reference Implementation; Zero-Copy Objects System; Delay and Disruption Tolerant Networking MACHETE Model; Contact Graph Routing; Parallel Eclipse Project Checkout; Technique for Configuring an Actively Cooled Thermal Shield in a Flight System; Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes; Li-Ion Cells Employing Electrolytes with Methyl Propionate and Ethyl Butyrate Co-Solvents; Improved Devices for Collecting Sweat for Chemical Analysis; Tissue Photolithography; Method for Impeding Degradation of Porous Silicon Structures; External Cooling Coupled to Reduced Extremity Pressure Device; A Zero-Gravity Cup for Drinking Beverages in Microgravity; Co-Flow Hollow Cathode Technology; Programmable Aperture with MEMS Microshutter Arrays; Polished Panel Optical Receiver for Simultaneous RF/Optical Telemetry with Large DSN Antennas; Adaptive System Modeling for Spacecraft Simulation; Lidar-Based Navigation Algorithm for Safe Lunar Landing; Tracking Object Existence From an Autonomous Patrol Vehicle; Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications; and Architecture for a 1-GHz Digital RADAR.

  2. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  3. Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Zhu, Qingjun; Li, Jia; Liu, Songlin

    2016-07-01

    In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  4. Potential impact of high temperature superconductors on MAGLEV transportation

    NASA Astrophysics Data System (ADS)

    Hull, J. R.

    1992-02-01

    This report describes the potential impact that high-temperature superconductors (HTS's) may have on transportation by magnetically levitated vehicles. It is not intended as a planning document, but rather as an overview of potential HTS applications to magnetic-levitation (maglev) transportation. The present maglev program in the United States is summarized, and the present status of development of HTS's is described. Areas identified for possible impact on maglev technology are: (1) liquid-nitrogen-cooled levitation magnets; (2) magnetic-field shielding of the passenger compartment; (3) superconducting magnetic energy storage for wayside power; (4) superconducting bearings for flywheel energy storage for wayside power; (5) downleads to continuously powered liquid-helium-cooled levitation magnets; and (6) liquid-hydrogen-cooled levitation magnets and linear motor propulsion windings. Major technical issues that remain to be resolved for the use of HTS's in maglev applications include thermal magnetic stability, mechanical properties, and critical current density at liquid-nitrogen temperatures.

  5. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable out of low earth orbit (LEO) missions by using these tested material concepts as shielding for sensitive components and new spaceflight hardware

  6. Design of visible and IR infrared dual-band common-path telescope system

    NASA Astrophysics Data System (ADS)

    Guo, YuLin; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    The use of visible and IR infrared dual-band combination can effectively improve the performance of photoelectric detection system,TV and IR system were designed with the common path by the common reflection optical system.A TV/IR infrared common-caliber and common-path system is designed,which can realize the Remote and all-day information.For the 640×512 cooled focal plane array,an infrared middle wave system was presented with a focal length of 600mm F number of 4 field of view(FOV) of 0.38°×0.43°, the system uses optical passive thermal design, has o compact structure and can meet 100% cold shield efficiency,meanwhile it meets the design requirements of lightweight and athermalization. For the 1920×1080 pixels CCD,a visible (TV) system ,which had 500mm focal length, 4F number,was completed.The final optical design along with their modulation transfer function is presented,showing excellent imaging performance in dual-band at the temperature range between -40° and 60°.

  7. Upgrades of edge, divertor and scrape-off layer diagnostics of W7-X for OP1.2

    DOE PAGES

    Hathiramani, D.; Ali, A.; Anda, G.; ...

    2018-02-07

    In this work, Wendelstein 7-X (W7-X) is the world’s largest superconducting nuclear fusion experiment of the optimized stellarator type. In the first Operation Phase (OP1.1) helium and hydrogen plasmas were studied in limiter configuration. The heating energy was limited to 4 MJ and the main purpose of that campaign was the integral commissioning of the machine and diagnostics, which was achieved very successfully. Already from the beginning a comprehensive set of diagnostics was available to study the plasma. On the path towards high-power, high-performance plasmas, W7-X will be stepwise upgraded from an inertially cooled (OP1.2, limited to 80 MJ) tomore » an actively cooled island divertor (OP2, 10 MW steady-state plasma operation). The machine is prepared for OP1.2 with 10 inertially cooled divertor units, and the experimental campaign has started recently.The paper describes a subset of diagnostics which will be available for OP1.2 to study the plasma edge, divertor and scrape-off layer physics including those already available for OP1.1, plus modifications, upgrades and new systems. In conclusion, the focus of this summary will be on technical and engineering aspects, like feasibility and assembly but also on reliability, thermal loads and shielding against magnetic fields.« less

  8. Nuclear Fuel Assay through analysis of Uranium L-shell by Hybrid L-edge/XRF Densitometer using a Surrogate Material

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Joung, Sungyeop; Park, Jerry AB(; ), AC(; )

    2018-01-01

    Assay of L-series of nuclear material solution is useful for determination of amount of nuclear materials and ratio of minor actinide in the materials. The hybrid system of energy dispersive X-ray absorption edge spectrometry, i.e. L-edge densitometry, and X-ray fluorescence spectrometry is one of the analysis methods. The hybrid L-edge/XRF densitometer can be a promising candidate for a portable and compact equipment due to advantage of using low energy X-ray beams without heavy shielding systems and liquid nitrogen cooling compared to hybrid K-edge/XRF densitometer. A prototype of the equipment was evaluated for feasibility of the nuclear material assay using a surrogate material (lead) to avoid radiation effects from nuclear materials. The uncertainty of L-edge and XRF characteristics of the sample material and volume effects was discussed in the article.

  9. Comparative thermal analysis of alternate Cryogenic Fluid Management Experiment (CFME) configurations

    NASA Technical Reports Server (NTRS)

    Merino, F.; Oneill, R. F.

    1980-01-01

    The Cryogenic Fluid Management Experiment (CFME) was analyzed to assess the feasibility and advisability of deleting the vapor cooled shield (VCS) from the baseline CFME insulation and pressure control system. Two alternate concepts of CFME insulation and pressure control, neither of which incorporated the VCS, were investigated. The first concept employed a thermodynamic vent system (TVS) to throttle the flow through an internal wall mounted heat exchanger (HX) within the pressure vessel to decrease boiloff and pressure rise rate, while the second concept utilized a TVS without an internal heat exchanger. Only the first concept was viable. Its performance was assessed for a seven day mission and found to be satisfactory. It was also concluded that VCS development costs would be greater than for an internal HX installation. Based upon the above comparisons, the HX was recommended as a replacement for the VCS.

  10. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shieldmore » was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.« less

  11. Transmutation and activation of reduced activation ferritic martensitic steel in molten salt cooled fusion power plants

    NASA Astrophysics Data System (ADS)

    Cheng, E. T.

    2004-08-01

    Neutron activation analysis was conducted for the reduced activation ferritic/martensitic (RAFM) steel used in flibe molten-salt cooled fusion blankets. After 22.4 MW yr/m 2 of neutron exposure, the RAFM steel first wall in a molten salt blanket with 40% lithium-6 enrichment in lithium was found to be within 1 mSv/h in contact dose rate after 100 yr of cooling. The contact dose rate drops to 30 and 20 μSv/h or less, respectively, when the cooling times are 300 and 500 yr after discharge. The RAFM steel discharged from the high-temperature shield component would be allowed for hands-on recycling after 100 yr of cooling, when the contact dose rate is 10 μSv/h or less. The most significant changes found in the RAFM steel first wall due to nuclear transmutation, are 10% decrease in W and 10% increase in Ti. Additionally, there are minor elements produced: Mn - <1.2%, V - <0.26%, Re - <0.2%, Ta - <0.08%, and Os - <0.1%, all in weight percent. The gaseous elements generated are H and He, and the, respectively, accumulated quantities are about 260 and 190 wppm.

  12. Current status of final design and R&D for ITER blanket shield blocks in Korea

    NASA Astrophysics Data System (ADS)

    Ha, M. S.; Kim, S. W.; Jung, H. C.; Hwang, H. S.; Heo, Y. G.; Kim, D. H.; Ahn, H. J.; Lee, H. G.; Jung, K. J.

    2015-07-01

    The main function of the ITER blanket shield block (SB) is to provide nuclear shielding and support the first wall (FW) panel. It needs to accommodate all the components located on the vacuum vessel (in particular the in-vessel coils, blanket manifolds and the diagnostics). The conceptual, preliminary and final design reviews have been completed in the framework of the Blanket Integrated Product Team. The Korean Domestic Agency has successfully completed not only the final design activities, including thermo-hydraulic and thermo-mechanical analyses for SBs #2, #6, #8 and #16, but also the SB full scale prototype (FSP) pre-qualification program prior to issuing of the procurement agreement. SBs #2 and #6 are located at the in-board region of the tokamak. The pressure drop was less than 0.3 MPa and fully satisfied the design criteria. The thermo-mechanical stresses were also allowable even though the peak stresses occurred at nearby radial slit end holes, and their fatigue lives were evaluated over many more than 30 000 cycles. SB #8 is one of the most difficult modules to design, since this module will endure severe thermal loading not only from nuclear heating but also from plasma heat flux at uncovered regions by the FW. In order to resolve this design issue, the neutral beam shine-through module concept was applied to the FW uncovered region and it has been successfully verified as a possible design solution. SB #16 is located at the out-board central region of the tokamak. This module is under much higher nuclear loading than other modules and is covered by an enhanced heat flux FW panel. In the early design stage, many cooling headers on the front region were inserted to mitigate peak stresses near the access hole and radial slit end hole. However, the cooling headers on the front region needed to be removed in order to reduce the risk from cover welding during manufacturing. A few cooling headers now remain after efforts through several iterations to remove them and to optimize the cooling channels. The SB #8 FSP was manufactured and tested in accordance with the pre-qualification program based on the preliminary design, and related R&D activities were implemented to resolve the fabrication issues. This paper provides the current status of the final design and relevant R&D activities of the blanket SB.

  13. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  14. Self-Shielding Analysis of the Zap-X System

    PubMed Central

    Schneider, M. Bret; Adler, John R.

    2017-01-01

    The Zap-X is a self-contained and first-of-its-kind self-shielded therapeutic radiation device dedicated to brain as well as head and neck stereotactic radiosurgery (SRS). By utilizing an S-band linear accelerator (linac) with a 2.7 megavolt (MV) accelerating potential and incorporating radiation-shielded mechanical structures, the Zap-X does not typically require a radiation bunker, thereby saving SRS facilities considerable cost. At the same time, the self-shielded features of the Zap-X are designed for more consistency of radiation protection, reducing the risk to radiation workers and others potentially exposed from a poorly designed or constructed radiotherapy vault. The hypothesis of the present study is that a radiosurgical system can be self-shielded such that it produces radiation exposure levels deemed safe to the public while operating under a full clinical workload. This study summarizes the Zap-X system shielding and found that the overall system radiation leakage values are reduced by a factor of 50 compared to the occupational radiation limit stipulated by the Nuclear Regulatory Commission (NRC) or agreement states. The goal of self-shielding is achieved under all but the most exceptional conditions for which additional room shielding or a larger restricted area in the vicinity of the Zap-X system would be required. PMID:29441251

  15. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1, secured on a transporter, arrives at the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  16. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  17. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project investigated three methods to fabricate heat shield using extraterrestrial regolith and performed preliminary work on mission architectures.

  18. Thermal Examination of an Orbiting Cryogenic Fuel Depot

    NASA Technical Reports Server (NTRS)

    Hull, Patrick V.; Canfield, Steven L.; Carrington, Connie; Fikes, John

    2002-01-01

    For many years NASA has been interested in the storage and transfer of cryogenic fuels in space. Lunar, L2 and other chemical propulsive space vehicle missions now have staged refueling needs that a fuel depot would satisfy. The depot considered is located in lower earth orbit. Many considerations must go into designing and building such a station. Multi-layer insulation systems, thermal shielding and low conductive structural supports are the principal means of protecting the system from excessive heat loss due to boiloff. This study focuses on the thermal losses associated with storing LH2 in a passively cooled fuel depot in a lower earth equatorial orbit. The corresponding examination looks at several configurations of the fuel depot. An analytical model has been developed to determine the thermal advantages and disadvantages of three different fuel depot configurations. Each of the systems consists of three Boeing rocket bodies arranged in various configurations. The first two configurations are gravity gradient stabilized while the third one is a spin-stabilized concept. Each concept was chosen for self-righting capabilities as well as the fuel settling capabilities, however the purpose of this paper is to prove which of the three concepts is the most efficient passively cooled system. The specific areas to be discussed are the heating time from the fusion temperature to the vaporization temperature and the amount of boiloff for a specific number of orbits. Each of the previous points is compared using various sun exposed surface areas of the tanks.

  19. The evolutionary origin of feathers.

    PubMed

    Regal, P J

    1975-03-01

    Previous theories relating the origin of feathers to flight or to heat conservation are considered to be inadequate. There is need for a model of feather evolution that gives attention to the function and adaptive advantage of intermediate structures. The present model attempts to reveal and to deal with, the spectrum of complex questions that must be considered. In several genera of modern lizards, scales are elongated in warm climates. It is argued that these scales act as small shields to solar radiation. Experiments are reported that tend to confirm this. Using lizards as a conceptual model, it is argued that feathers likewise arose as adaptations to intense solar radiation. Elongated scales are assumed to have subdivided into finely branched structures that produced a heat-shield, flexible as well as long and broad. Associated muscles had the function of allowing the organism fine control over rates of heat gain and loss: the specialized scales or early feathers could be moved to allow basking in cool weather or protection in hot weather. Subdivision of the scales also allowed a close fit between the elements of the insulative integument. There would have been mechanical and thermal advantages to having branches that interlocked into a pennaceous structure early in evolution, so the first feathers may have been pennaceous. A versatile insulation of movable, branched scales would have been a preadaptation for endothermy. As birds took to the air they faced cooling problems despite their insulative covering because of high convective heat loss. Short glides may have initially been advantageous in cooling an animal under heat stress, but at some point the problem may have shifted from one of heat exclusion to one of heat retention. Endothermy probably evolved in conjunction with flight. If so, it is an unnecessary assumption to postulate that the climate cooled and made endothermy advantageous. The development of feathers is complex and a model is proposed that gives attention to the fundamental problems of deriving a branched structure with a cylindrical base from an elongated scale.

  20. SIELETERS: A Static Fourier Transform Infrared Imaging Spectrometer for Airborne Hyperspectral Measurements

    DTIC Science & Technology

    2009-10-01

    cryostat and cooled at a temperature under 77K by a Stirling cryocooler , as represented on the following Figure 5 : Cryostat...Figure 5. Detector cryostat and cryocooler The read-out frequency of the detectors is adapted to the ground speed of the plane above...Cold shield Detector plane Cryocoole r Cryocoole r compresso r Fixed frame Roll frame Pitch frame Yaw frame SIELETERS: a Static Fourier

  1. ETR, TRA642. CONSOLE FLOOR. CAMERA IS ON WEST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. CONSOLE FLOOR. CAMERA IS ON WEST SIDE OF FLOOR AND FACES NORTH. OUTER WALL OF STORAGE CANAL IS AT RIGHT. SHIELDING IS THICKER AT LOWER LEVEL, WHERE SPENT FUEL ELEMENTS WILL COOL AFTER REMOVAL FROM REACTOR. INL NEGATIVE NO. 56-1401. Jack L. Anderson, Photographer, 5/1/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. Baffles Promote Wider, Thinner Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Seidensticker, Raymond G.; Mchugh, James P.; Hundal, Rolv; Sprecace, Richard P.

    1989-01-01

    Set of baffles just below exit duct of silicon-ribbon-growing furnace reduces thermal stresses in ribbons so wider ribbons grown. Productivity of furnace increased. Diverts plume of hot gas from ribbon and allows cooler gas from top of furnace to flow around. Also shields ribbon from thermal radiation from hot growth assembly. Ribbon cooled to lower temperature before reaching cooler exit duct, avoiding abrupt drop in temperature as entering duct.

  3. Lightweight Magnetic Cooler With a Reversible Circulator

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; McCormick, John

    2011-01-01

    A design of a highly efficient and lightweight space magnetic cooler has been developed that can continuously provide remote/distributed cooling at temperatures in the range of 2 K with a heat sink at about 15 K. The innovative design uses a cryogenic circulator that enables the cooler to operate at a high cycle frequency to achieve a large cooling capacity. The ability to provide remote/distributed cooling not only allows flexible integration with a payload and spacecraft, but also reduces the mass of the magnetic shields needed. The active magnetic regenerative refrigerator (AMRR) system is shown in the figure. This design mainly consists of two identical magnetic regenerators surrounded by their superconducting magnets and a reversible circulator. Each regenerator also has a heat exchanger at its warm end to reject the magnetization heat to the heat sink, and the two regenerators share a cold-end heat exchanger to absorb heat from a cooling target. The circulator controls the flow direction, which cycles in concert with the magnetic fields, to facilitate heat transfer. Helium enters the hot end of the demagnetized column, is cooled by the refrigerant, and passes into the cold-end heat exchanger to absorb heat. The helium then enters the cold end of the magnetized column, absorbing heat from the refrigerant, and enters the hot-end heat exchanger to reject the magnetization heat. The efficient heat transfer in the AMRR allows the system to operate at a relatively short cycle period to achieve a large cooling power. The key mechanical components in the magnetic cooler are the reversible circulator and the magnetic regenerators. The circulator uses non-contacting, self-acting gas bearings and clearance seals to achieve long life and vibration- free operation. There are no valves or mechanical wear in this circulator, so the reliability is predicted to be very high. The magnetic regenerator employs a structured bed configuration. The core consists of a stack of thin GGG disks alternating with thin polymer insulating films. The structured bed reduces flow resistance in the regenerator and therefore the pumping work by the cryogenic circulator. This magnetic cooler will enable cryogenic detectors for sensing infrared, x-ray, gamma-ray, and submillimeter radiation in future science satellites, as well as the detector systems in the Constellation-X (Con-X) and the Single Aperture Far-Infrared observatory (SAFIR). Scientific ap p - lica tions for this innovation include cooling for x-ray micro calorimeter spectrometers used for microanalysis, cryogenic particle detectors, and superconducting tunnel junction de tectors for biomolecule mass spectrometry. The cooler can be scaled to provide very large cooling capacities at very low temperatures, ideal for liquid helium and liquid hydrogen productions.

  4. MCG measurement in the environment of active magnetic shield.

    PubMed

    Yamazaki, K; Kato, K; Kobayashi, K; Igarashi, A; Sato, T; Haga, A; Kasai, N

    2004-11-30

    MCG (Magnetocardiography) measurement by a SQUID gradiometer was attempted with only active magnetic shielding (active shielding). A three-axis-canceling-coil active shielding system, where three 16-10-16 turns-coil sets were put in the orthogonal directions, produces a homogeneous magnetic field in a considerable volume surrounding the center. Fluxgate sensors were used as the reference sensors of the system. The system can reduce environmental magnetic noise at low frequencies of less than a few Hz, at 50 Hz and at 150 Hz. Reducing such disturbances stabilizes biomagnetic measurement conditions for SQUIDs in the absence of magnetically shielded rooms (MSR). After filtering and averaging the measured MCG data by a first-order SQUID gradiometer with only the active shielding during the daytime, the QRS complex and T wave was clearly presented.

  5. Preliminary Analysis of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise

    2006-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.

  6. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    NASA Astrophysics Data System (ADS)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  7. 76 FR 28376 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 1000, 2000, 3000, and 4000 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Configuration Control Limitations (CDCCL) task to make certain that the by-pass wire remains installed. On later... in-tank Fuel Quantity Indication (FQI) cable plug and the cable shield of the shielded FQI system... (FQI) cable plug and the cable shield of the shielded FQI system cables in the main and collector fuel...

  8. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1975-01-01

    The design, fabrication, and testing of a full-size, full-scale TD Ni-20Cr heat shield test array in simulated mission environments is described along with the design and fabrication of two additional full-size, full-scale test arrays to be tested in flowing gas test facilities at the NASA Langley Research Center. Cost and reusability evaluations of TD Ni-20Cr heat shield systems are presented, and weight estimates of a TD Ni-20Cr heat shield system for use on a shuttle orbiter vehicle are made. Safe-line expectancy of a TD Ni-20Cr heat shield system is assessed. Non-destructive test techniques are evaluated to determine their effectiveness in quality assurance checks of TD Ni-20Cr components such as heat shields, heat shield supports, close-out panels, formed cover strips, and edge seals. Results of tests on a braze reinforced full-scale, subsize panel are included. Results show only minor structural degradation in the main TD Ni-20Cr heat shields of the test array during simulated mission test cycles.

  9. Noise Modeling From Conductive Shields Using Kirchhoff Equations.

    PubMed

    Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J

    2010-10-09

    Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.

  10. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, prepares to back into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  11. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, backs into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  12. Orion Heat Shield Move

    NASA Image and Video Library

    2017-10-23

    Technicians move the Orion heat shield for Exploration Mission-1 toward the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Protective pads are being attached to the heat shield surface. The heat shield will undergo a thermal cycle test to verify acceptable workmanship and material quality. The test also serves to verify the heat shield's thermal protection systems have been manufactured and assembled correctly. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  13. Final Technical Report [Cosmogenic background and shielding R&D for a Ge Neutrinoless Double Beta Decay Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiseppe, Vince

    2013-10-01

    The USD Majorana group focused all of its effort in support of the MAJORANA DEMONSTRATOR (MJD) experiment. Final designs of the shielding subsystems are complete. Construction of the MJD shielding systems at SURF has begun and the proposed activities directly support the completion of the shield systems. The PI and the group contribute heavily to the onsite construction activities of the MJD experiment. The group led investigations into neutron and neutron-­induced backgrounds, shielding effectiveness and design, and radon backgrounds.

  14. Whole-head SQUID system in a superconducting magnetic shield.

    PubMed

    Ohta, H; Matsui, T; Uchikawa, Y

    2004-11-30

    We have constructed a mobile whole-head SQUID system in a superconducting magnetic shield - a cylinder of high Tc superconductor BSCCO of 65 cm in diameter and 160 cm in length. We compared the noise spectra of several SQUID sensors of SNS Josephson junctions in the superconducting magnetic shield with those of the same SQUID sensors in a magnetically shielded room of Permalloy. The SQUID sensors in the superconducting magnetic shield are more than 100 times more sensitive than those in a magnetically shielded room of Permalloy below 1 Hz. We tested the whole-head SQUID system in the superconducting magnetic shield observing somatosensory signals evoked by stimulating the median nerve in the right wrist of patients by current pulses. We present data of 64 and 128 traces versus the common time axis for comparison. Most sensory responses of human brains phase out near 250 ms. However monotonic rhythms still remain even at longer latencies than 250 ms. The nodes of these rhythm are very narrow even at these longer latencies just indicating low noise characteristics of the SQUID system at low-frequencies. The current dipoles at the secondary somatosensory area SII are evoked at longer latencies than 250 ms contributing to a higher-level brain function. The SQUID system in a superconducting magnetic shield will also have advantages when it is used as a DC MEG to study very slow activities and function of the brain.

  15. Space crew radiation exposure analysis system based on a commercial stand-alone CAD system

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew H.; Golightly, Michael J.; Hardy, Alva C.

    1992-01-01

    Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.

  16. Method and system for determining radiation shielding thickness and gamma-ray energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klann, Raymond T.; Vilim, Richard B.; de la Barrera, Sergio

    2015-12-15

    A system and method for determining the shielding thickness of a detected radiation source. The gamma ray spectrum of a radiation detector is utilized to estimate the shielding between the detector and the radiation source. The determination of the shielding may be used to adjust the information from known source-localization techniques to provide improved performance and accuracy of locating the source of radiation.

  17. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  18. Method for achieving sustained anisotropic crystal growth on the surface of a silicon melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackintosh, Brian H.; Kellerman, Peter L.; Sun, Dawei

    An apparatus for growing a crystalline sheet from a melt includes a cold block assembly. The cold block assembly may include a cold block and a shield surrounding the cold block and being at an elevated temperature with respect to that of the cold block, the shield defining an opening disposed along a surface of the cold block proximate a melt surface that defines a cold area comprising a width along a first direction of the cold block, the cold area operable to provide localized cooling of a region of the melt surface proximate the cold block. The apparatus maymore » further include a crystal puller arranged to draw a crystalline seed in a direction perpendicular to the first direction when the cold block assembly is disposed proximate the melt surface.« less

  19. A bulk superconducting MgB2 cylinder for holding transversely polarized targets

    NASA Astrophysics Data System (ADS)

    Statera, M.; Balossino, I.; Barion, L.; Ciullo, G.; Contalbrigo, M.; Lenisa, P.; Lowry, M. M.; Sandorfi, A. M.; Tagliente, G.

    2018-02-01

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.

  20. Protective shield for an instrument probe

    DOEpatents

    Johnsen, Howard A.; Ross, James R.; Birtola, Sal R.

    2004-10-26

    A shield is disclosed that is particularly useful for protecting exposed optical elements at the end of optical probes used in the analysis of hazardous emissions in and around an industrial environment from the contaminating effects of those emissions. The instant invention provides a hood or cowl in the shape of a right circular cylinder that can be fitted over the end of such optical probes. The hood provides a clear aperture through which the probe can perform unobstructed analysis. The probe optical elements are protected from the external environment by passing a dry gas through the interior of the hood and out through the hood aperture in sufficient quantity and velocity to prevent any significant mixing between the internal and external environments. Additionally, the hood is provided with a cooling jacket to lessen the potential for damaging the probe due to temperature excursions.

  1. ENGINEERING TEST REACTOR

    DOEpatents

    De Boisblanc, D.R.; Thomas, M.E.; Jones, R.M.; Hanson, G.H.

    1958-10-21

    Heterogeneous reactors of the type which is both cooled and moderated by the same fluid, preferably water, and employs highly enriched fuel are reported. In this design, an inner pressure vessel is located within a main outer pressure vessel. The reactor core and its surrounding reflector are disposed in the inner pressure vessel which in turn is surrounded by a thermal shield, Coolant fluid enters the main pressure vessel, fiows downward into the inner vessel where it passes through the core containing tbe fissionable fuel assemblies and control rods, through the reflector, thence out through the bottom of the inner vessel and up past the thermal shield to the discharge port in the main vessel. The fuel assemblles are arranged in the core in the form of a cross having an opening extending therethrough to serve as a high fast flux test facility.

  2. Preliminary Shielding Analysis for HCCB TBM Transport

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Zhao, Fengchao; Cao, Qixiang; Zhang, Guoshu; Feng, Kaiming

    2015-09-01

    A preliminary shielding analysis on the transport of the Chinese helium cooled ceramic breeder test blanket module (HCCB TBM) from France back to China after being irradiated in ITER is presented in this contribution. Emphasis was placed on irradiation safety during transport. The dose rate calculated by MCNP/4C for the conceptual package design satisfies the relevant dose limits from IAEA that the dose rate 3 m away from the surface of the package containing low specific activity III materials should be less than 10 mSv/h. The change with location and the time evolution of dose rates after shutdown have also been studied. This will be helpful for devising the detailed transport plan of HCCB TBM back to China in the near future. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)

  3. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  4. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  5. Turbine airfoil degradation in the persian gulf war

    NASA Astrophysics Data System (ADS)

    Smialek, James L.; Archer, Frances A.; Garlick, Ralph G.

    1994-12-01

    Helicopter turbine engines used in the Desert Shield and Desert Storm operations experienced excessive sand ingestion. Fine particles were able to bypass filters and proceed through the combustor or cooling gaspaths. The first-stage turbine vanes were impacted with viscous silicate particles, forming a deposit on the leading-edge root platform and resulting in overheating and oxidation. The chemistry of the raw sand determines that of the ingested powders, the deposits, and the material reactions.

  6. Research on High-Strength Steels with an Improved Resistance against Weld Cracking.

    DTIC Science & Technology

    1984-06-01

    rate. The cooling rate is also dependent upon the welding process selected. Gas Tungsten Arc Welding ( GTAW ), Gas Metal Arc Welding (GMAW), and Shielded...displacement (COD) was used to measure the magnitude 45 GTAW , GMAW, SMAW - SAW j ESW APPROXIMATE RANGES FOR WELDING PROCESSES Increased Martensite...following processes when joining metal, in order of decreasing frequency: GMAW, SMAW, GTAW , SAW, FCAW, and Electrogas welding. 0 The various regulatory

  7. Radioactivity of the Cooling Water

    DOE R&D Accomplishments Database

    Wigner, E. P.

    1943-03-01

    The most important source of radioactivity at the exit manifold of the pile will be due to O{sup 19}, formed by neutron absorption of O{sup 18}. A recent measurement of Fermi and Weil permits to estimate that it will be safe to stay about 80 minutes daily close to the exit manifolds without any shield. Estimates are given for the radioactivities from other sources both in the neighborhood and farther away from the pile.

  8. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G.

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ˜ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets.

  9. A shielded measurement system for irradiated nuclear fuel measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosby, W.R.; Aumeier, S.E.; Klann, R.T.

    1999-07-01

    The US Department of Energy (DOE) is driving a transition toward dry storage of irradiated nuclear fuel (INF), toward characterization of INF for final disposition, and toward resumption of measurement-based material control and accountability (MC and A) efforts for INF. For these reasons, the ability to efficiently acquire radiological measurements of INF in a dry environment is important. The DOE has recently developed a guidance document proposing MC and A requirements for INF. The intent of this document is to encourage the direct measurement of INF on inventory within DOE. The guidance document reinforces and clarifies existing material safeguards requirementsmore » as they pertain to INF. Validation of nuclear material contents of non-self-protecting INF must be accomplished by direct measurement, application of validated burnup codes using qualified initial fissile content, burnup data, and age or by other valid means. The fuel units must remain intact with readable identification numbers. INF may be subject to periodic inventories with visual item accountability checks. Quantitative measurements may provide greater assurance of the integrity of INF inventories at a lower cost and with less personnel exposure than visual item accountability checks. Currently, several different approaches are used to measure the radiological attributes of INF. Although these systems are useful for a wide variety of applications, there is currently no relatively inexpensive measurement system that is readily deployable for INF measurements for materials located in dry storage. The authors present the conceptual design of a shielded measurement system (SMS) that could be used for this purpose. The SMS consists of a shielded enclosure designed to house a collection of measurement systems to allow measurements on spent fuel outside of a hot cell. The phase 1 SMS will contain {sup 3}He detectors and ionization chambers to allow for gross neutron and gamma-ray measurements. The phase 2 SMS will be developed by adding additional measurement capabilities to the phase 1 SMS. Planned additions include medium-resolution gamma-ray detectors (CdZnTe or high-pressure Xe), additional {sup 3}He tubes to allow coincidence measurements, and a {sup 252}Cf neutron source and motion control system to allow active neutron interrogation measurements. The phase 2 SMS will be capable of performing more direct measurements of INF properties such as burnup, cooling time, spontaneous fission isotope contents, and total fissile contents.« less

  10. Combined measurement system for double shield tunnel boring machine guidance based on optical and visual methods.

    PubMed

    Lin, Jiarui; Gao, Kai; Gao, Yang; Wang, Zheng

    2017-10-01

    In order to detect the position of the cutting shield at the head of a double shield tunnel boring machine (TBM) during the excavation, this paper develops a combined measurement system which is mainly composed of several optical feature points, a monocular vision sensor, a laser target sensor, and a total station. The different elements of the combined system are mounted on the TBM in suitable sequence, and the position of the cutting shield in the reference total station frame is determined by coordinate transformations. Subsequently, the structure of the feature points and matching technique for them are expounded, the position measurement method based on monocular vision is presented, and the calibration methods for the unknown relationships among different parts of the system are proposed. Finally, a set of experimental platforms to simulate the double shield TBM is established, and accuracy verification experiments are conducted. Experimental results show that the mean deviation of the system is 6.8 mm, which satisfies the requirements of double shield TBM guidance.

  11. Blanket design and optimization demonstrations of the first wall/blanket/shield design and optimization system (BSDOS).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Y.; Nuclear Engineering Division

    2005-05-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to definemore » the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.« less

  12. Blanket Design and Optimization Demonstrations of the First Wall/Blanket/Shield Design and Optimization System (BSDOS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Yousry

    2005-05-15

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to definemore » the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.« less

  13. Whole Planet Coupling from Climate to Core: Implications for the Evolution of Rocky Planets and their Prospects for Habitability

    NASA Astrophysics Data System (ADS)

    Foley, B. J.; Driscoll, P. E.

    2015-12-01

    Many factors have conspired to make Earth a home to complex life. Earth has abundant water due to a combination of factors, including orbital distance and the climate regulating feedbacks of the long-term carbon cycle. Earth has plate tectonics, which is crucial for maintaining long-term carbon cycling and may have been an important energy source for the origin of life in seafloor hydrothermal systems. Earth also has a strong magnetic field that shields the atmosphere from the solar wind and the surface from high-energy particles. Synthesizing recent work on these topics shows that water, a temperate climate, plate tectonics, and a strong magnetic field are linked together through a series of negative feedbacks that stabilize the system over geologic timescales. Although the physical mechanism behind plate tectonics on Earth is still poorly understood, climate is thought to be important. In particular, temperate surface temperatures are likely necessary for plate tectonics because they allow for liquid water that may be capable of significantly lowering lithospheric strength, increase convective stresses in the lithosphere, and enhance the effectiveness of "damage" processes such as grainsize reduction. Likewise, plate tectonics is probably crucial for maintaining a temperate climate on Earth through its role in facilitating the long-term carbon cycle, which regulates atmospheric CO2 levels. Therefore, the coupling between plate tectonics and climate is a feedback that is likely of first order importance for the evolution of rocky planets. Finally, plate tectonics is thought to be important for driving the geodynamo. Plate tectonics efficiently cools the mantle, leading to vigorous thermo-chemical convection in the outer core and dynamo action; without plate tectonics inefficient mantle cooling beneath a stagnant lid may prevent a long-lived magnetic field. As the magnetic field shields a planet's atmosphere from the solar wind, the magnetic field may be important for preserving hydrogen, and therefore water, on the surface. Thus whole planet coupling between the magnetic field, atmosphere, mantle, and core is possible. We lay out the basic physics governing whole planet coupling, and discuss the implications this coupling has for the evolution of rocky planets and their prospects for hosting life.

  14. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  15. Performance demonstration of hydrogen advanced loop heat pipe for 20-30K cryocooling of far infrared sensors

    NASA Astrophysics Data System (ADS)

    Hoang, Triem T.; O'Connell, Tamara A.; Ku, Jentung; Butler, C. D.; Swanson, Theodore D.

    2005-08-01

    The James Webb Space Telescope (JWST) program have identified the need for cryogenic cooling transport devices that (i) provide robust/reliable thermal management for Infrared (IR) sensors/detectors in the temperature range of 20-30K, (ii) minimize vibration effects of mechanical cryocoolers on the instruments, (iii) reduce spatial temperature gradients in cryogenic components, and (iv) afford long continuous service life of the telescope. Passive two-phase capillary cooling technologies such as heat pipes, Loop Heat Pipes (LHPs), and Capillary pumped Loops (CPLs) have proven themselves capable of performing necessary thermal control functions for room temperature applications. They have no mechanical moving part to wear out or to introduce unwanted vibration to the instruments and, hence, are reliable and maintenancefree. However, utilizing these capillary devices for cryogenic cooling still remains a challenge because of difficulties involving the system start-up and operation in a warm environment. An advanced concept of LHP using Hydrogen as the working fluid was recently developed to demonstrate the cryocooling transport capabilities in the temperature range of 20-30K. A full-size demonstration test loop - appropriately called H2-ALHP_2 - was constructed and performance tested extensively in a thermal vacuum chamber. It was designed specifically to manage "heat parasitics" from a warm surrounding, enabling it to start up from an initially supercritical state and operate without requiring a rigid heat shield. Like room temperature LHPs, the H2-ALHP transport lines were made of small-diameter stainless steel tubing that are flexible enough to isolate the cryocooler-induced vibration from the IR instruments. In addition, focus of the H2-ALHP research and development effort was also placed on the system weight saving for space-based applications.

  16. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Allamandola, Louis; Bregman, Jesse D.; Cohen, Martin; Cruikshank, Dale; Greene, Thomas P.; Hudgins, Douglas; Kwok, Sun; Lord, Steven D.; Madden, Suzanne; McCreight, Craig R.; Roellig, Thomas L.; Strecker, Donald W.; Tielens, A. G. G. M.; Werner, Michael W.

    2003-03-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace &Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1.5 year mission lifetime.

  17. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. B.; Reid, R.; Sadasivan, P.; Stewart, E.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A representative lunar surface reactor design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The evaluation compares the experimental data from the WST to CFD models. Performance of a water shield on the lunar surface is predicted by CFD models anchored to test data, and by matching relevant dimensionless parameters.

  18. Distribution and size of lava shields on the Al Haruj al Aswad and the Al Haruj al Abyad Volcanic Systems, Central Libya

    NASA Astrophysics Data System (ADS)

    Elshaafi, Abdelsalam; Gudmundsson, Agust

    2017-05-01

    The Al Haruj Volcanic Province (AHVP) consists of two distinct volcanic systems. In the north is the system of Al Haruj al Aswad, covering an area of 34,200 km2, while in the south the system of Al Haruj al Abyad, covering an area of 7,850 km2. The systems have produced some 432 monogenetic volcanoes, primarily scoria (cinder) cones, lava shields, and maars. The density distribution of the volcanoes in each system, plotted as eruption points or sites, has a roughly elliptical surface expression, suggesting similar plan-view geometry of the magma sources, here suggested as deep-seated reservoirs. More specifically, the Al Haruj al Aswad magma reservoir has major and minor axes of 210 km and 119 km, respectively, and an area of 19,176 km2, the corresponding figures for the Haruj al Abyad reservoir being 108 km and 74 km, for the axes, and 6209 km2 for the area. We measured 55 lava shields on the AHVP. They are mostly restricted to the northern and southern parts of AHVP and date from late Miocene to (at least) the end of Pleistocene, while some may have been active into Holocene. In fact, although primarily monogenetic, some of the lava shields show evidence of (possibly Holocene) fissure eruptions in the summit parts. The early lava shields tend to be located at the edges of volcanic systems and with greater volumes than later (more central) shields. The average lava shield basal diameter is 4.5 km and height 63 m. There is strong linear correlation between lava shield volume and basal area, the coefficient of determination (R2) being about 0.75. When 22 Holocene Icelandic lava shields are added to the dataset, for comparison, the correlation between volume and basal area becomes R2 = 0.95. Numerical models suggest that the local stress fields favoured rupture and dyke injection at the margins of the source reservoirs during late Miocene - early Pliocene, in agreement with the distribution of the early, large-volume shields.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wroe, A; Slater, J; McAuley, G

    Purpose: To design, implement and evaluate a shielding system that will reduce out-of-field dose experienced by the patient and associated electronic systems in passively scattered proton therapy treatment. Methods: A multi-stage neutron shielding system was retrofitted to the Gantry 1 treatment nozzle at Loma Linda University Medical Center. The system uses multiple borated polyethylene plates staged after the primary beam modifying devices to attenuate and absorb neutrons produced by such devices. This arrangement locates increasing levels of shielding between the sources of secondary particles in the nozzle and the patient. Additionally, the design of this shielding structure allows it tomore » be easily retrofitted to an existing proton nozzle system without impacting design or treatment beam characteristics. The effectiveness of the shielding was evaluated both through experimental measurements and Geant4 Monte Carlo simulations. Results: Measurements were completed with Landauer Luxel+ dosimeters that use optically stimulated luminescence and CR-39 to detect fast neutrons, thermal neutrons, protons, photons and beta particles. Measurements of a 250 MeV proton beam indicated that the shielding system reduced out-of-field dose to the patient by almost half with dose equivalent values at 50 and 40 cm from the field edge decreasing from 0.965 and 1.262 mSv/Gy to 0.596 and 0.777 mSv/Gy respectively. The installation of the multi-stage shielding system also reduced dose equivalent experienced by electronic systems installed in the treatment room by up to 80%. Geant4 simulations were also used to evaluate the neutron fluence at various positions in the treatment room as well as provide information on microdosimetry spectra within the patient and treatment room. Conclusion: The shielding system described above proved to be an effective an inexpensive method of reducing out-of-field doses to the patient and electronic systems and can be easily retrofitted to existing passive scattering nozzles.« less

  20. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.

  1. Electromagnetic interference and shielding: An introduction (revised version of 1991-23)

    NASA Astrophysics Data System (ADS)

    Dehoop, A. T.; Quak, D.

    The basic equations of the electromagnetic field are summarized as far as they are needed in the theory of electromagnetic interference and shielding. Through the analysis of the planar electric current emitter, the propagation coefficient, attenuation coefficient, phase coefficient, wave-speed, wavelength, wave impedance, wave admittance, and power flow density of a wave are introduced. Next, the shielding effectiveness of a shielding plate and the shielding effectiveness of a shielding parallel-plate box are determined. In the latter, particular attention is given to the occurrence of internal resonance effects, which may degrade the shielding effectiveness. Further, a survey of some fundamental properties of a system of low frequency, multiconductor transmission lines is given. For a three conductor system with a plane of symmetry, the decomposition into the common mode and the differential mode of operation is discussed. Finally, expressions for the voltages and electric currents induced by external sources along a single transmission line are derived.

  2. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    NASA Technical Reports Server (NTRS)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  3. Electromagnetic shielding of thermal protection system for hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Albano, M.; Micheli, D.; Gradoni, G.; Morles, R. B.; Marchetti, M.; Moglie, F.; Mariani Primiani, V.

    2013-06-01

    The numerical simulation and the measurement of electromagnetic shielding at microwave frequencies of thermal protection system for hypersonic vehicles is presented using nested reverberation chamber. An example of a possible thermal protection system for a re-entry vehicle is presented. This system based on carbon material is electromagnetically characterized. The characterization takes into account not only the materials but also the final assembly configuration of the thermal protection system. The frequency range is 2-8 GHz. The results of measurements and simulations show that the microwave shielding effectiveness of carbon materials is above 60 dB for a single tile and that the tile inter-distance is able to downgrade the shielding effectiveness on the average to about 40 dB.

  4. Gamma ray shielding and structural properties of Bi2O3-PbO-B2O3-V2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2014-04-01

    The present work has been undertaken to evaluate the applicability of Bi2O3-PbO-B2O3-V2O5 glass system as gamma ray shielding material. Gamma ray mass attenuation coefficient has been determined theoretically using WinXcom computer software developed by National Institute of Standards and Technology. A meaningful comparison of their radiation shielding properties has been made in terms of their half value layer parameter with standard radiation shielding concrete 'barite'. Structural properties of the prepared glass system have been investigated in terms of XRD and FTIR techniques in order to check the possibility of their commercial utility as alternate to conventional concrete for gamma ray shielding applications.

  5. Electromagnetic Interactions in a Shielded PET/MRI System for Simultaneous PET/MR Imaging in 9.4 T: Evaluation and Results

    NASA Astrophysics Data System (ADS)

    Maramraju, Sri Harsha; Smith, S. David; Rescia, Sergio; Stoll, Sean; Budassi, Michael; Vaska, Paul; Woody, Craig; Schlyer, David

    2012-10-01

    We previously integrated a magnetic resonance-(MR-) compatible small-animal positron emission tomograph (PET) in a Bruker 9.4 T microMRI system to obtain simultaneous PET/MR images of a rat's brain and of a gated mouse-heart. To minimize electromagnetic interactions in our MR-PET system, viz., the effect of radiofrequency (RF) pulses on the PET, we tested our modular front-end PET electronics with various shield configurations, including a solid aluminum shield and one of thin segmented layers of copper. We noted that the gradient-echo RF pulses did not affect PET data when the PET electronics were shielded with either the aluminum- or the segmented copper-shields. However, there were spurious counts in the PET data resulting from high-intensity fast spin-echo RF pulses. Compared to the unshielded condition, they were attenuated effectively by the aluminum shield ( 97%) and the segmented copper shield ( 90%). We noted a decline in the noise rates as a function of increasing PET energy-discriminator threshold. In addition, we observed a notable decrease in the signal-to-noise ratio in spin-echo MR images with the segmented copper shields in place; however, this did not substantially degrade the quality of the MR images we obtained. Our results demonstrate that by surrounding a compact PET scanner with thin layers of segmented copper shields and integrating it inside a 9.4 T MR system, we can mitigate the impact of the RF on PET, while acquiring good-quality MR images.

  6. Scoping studies of shielding to reduce the shutdown dose rates in the ITER ports

    NASA Astrophysics Data System (ADS)

    Juárez, R.; Guirao, J.; Pampin, R.; Loughlin, M.; Polunovskiy, E.; Le Tonqueze, Y.; Bertalot, L.; Kolsek, A.; Ogando, F.; Udintsev, V.; Walsh, M.

    2018-07-01

    The planned in situ maintenance tasks in the ITER port interspace are fundamental to ensure the operation of equipment to control, evaluate and optimize the plasma performance during the entire facility lifetime. They are subject to a limit of shutdown dose rates (SDDR) of 100 µSv h‑1 after 106 s of cooling time, which is nowadays a design driver for the port plugs as well as the application of ALARA. Three conceptual shielding proposals outside the ITER ports are studied in this work to support the achievement of this objective. Considered one by one, they offer reductions ranging from 25% to 50%, which are rather significant. This paper shows that, by combining these shields, the SDDR as low as 57Δ µSv h‑1 can be achieved with a local approach considering only radiation from one port (no cross-talk form neighboring ports). The locally evaluated SDDR are well below the limit which is an essential pre-requisite for achieving 100µSv h‑1 in a global analysis including all contributions. Further studies will have to deal with a realistic port plug design and the cross-talks from neighbour ports.

  7. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  8. An adiabatic demagnetization refrigerator for SIRTF

    NASA Technical Reports Server (NTRS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-01-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  9. Cosmic-ray transport in the heliosphere: A global perspective

    NASA Astrophysics Data System (ADS)

    Florinski, Vladimir

    2013-02-01

    Earth is shielded from the hazardous galactic radiation in the form or cosmic ray ions by the outwardly flow of the solar wind plasma and by the geomagnetic field. Understanding the effects of the global structure of the heliosphere on the transport of energetic charged particles remains an important challenge in space physics. The expanding bubble of the supersonic solar wind cools the populations of GeV ions that penetrate deeply into the interplanetary space. Beyond the solar wind lies the heliosheath that is believed to act as a long-term storage reservoir for the cosmic rays. The heliosheath and its magnetic field topology play an important role in modulating cosmic rays at large heliocentric distances. Understanding this role is crucial for interpreting the the puzzling Voyager spacecraft observations near the edge of the solar system.

  10. ITER Cryoplant Infrastructures

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Monneret, E.; Voigt, T.; Vincent, G.; Forgeas, A.; Simon, M.

    2017-02-01

    The ITER Tokamak requires an average 75 kW of refrigeration power at 4.5 K and 600 kW of refrigeration Power at 80 K to maintain the nominal operation condition of the ITER thermal shields, superconducting magnets and cryopumps. This is produced by the ITER Cryoplant, a complex cluster of refrigeration systems including in particular three identical Liquid Helium Plants and two identical Liquid Nitrogen Plants. Beyond the equipment directly part of the Cryoplant, colossal infrastructures are required. These infrastructures account for a large part of the Cryoplants lay-out, budget and engineering efforts. It is ITER Organization responsibility to ensure that all infrastructures are adequately sized and designed to interface with the Cryoplant. This proceeding presents the overall architecture of the cryoplant. It provides order of magnitude related to the cryoplant building and utilities: electricity, cooling water, heating, ventilation and air conditioning (HVAC).

  11. Cryogenic thermal control technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

    1974-01-01

    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  12. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  13. Orion Heat Shield Move

    NASA Image and Video Library

    2017-10-23

    Lockheed Martin engineers and technicians prepare the Orion heat shield for Exploration Mission-1 for its move to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The heat shield will undergo a thermal cycle test to verify acceptable workmanship and material quality. The test serves to verify the heat shield's thermal protection systems have been manufactured and assembled correctly. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  14. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on a transporter and ready for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  15. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being loaded onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  16. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a crane lowers the Orion heat shield from Exploration Flight Test-1 onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  17. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1, secured on a transporter, departs the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  18. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being prepared for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  19. Experiment definition and integration study for the accommodation of magnetic spectrometer payload on Spacelab/shuttle missions

    NASA Technical Reports Server (NTRS)

    Buffington, A.

    1978-01-01

    A super-cooled magnetic spectrometer for a cosmic-ray experiment is considered for application in the high energy astronomical observatory which may be used on a space shuttle spacelab mission. New cryostat parameters are reported which are appropriate to shuttle mission weight and mission duration constraints. Since a super-conducting magnetic spectrometer has a magnetic fringe field, methods for shielding sensitive electronic and mechanical components on nearby experiments are described.

  20. Timing of uplift peripheral to the Red Sea, Saudi Arabia

    USGS Publications Warehouse

    Naeser, C.W.; Zimmermann, R.A.; Bohannon, R.G.; Schmidt, D.L.; ,

    1990-01-01

    A Prominent escarpment is found along the western margin of the Arabian Shield. Elevations along this escarpment are up to 3200 m above the Red Sea. Between the Red Sea and the crest of the escarpment is a relatively featureless coastal plane that is ??? 50 km across. The coastal plane abruptly gives way to the steep mountainous terrain, the elevation of which increases abruptly towards the high crest. The elevation slowly decreases to the east of the high crest. Forty-four apatite fission-track ages have been determined on rocks from the Proterozoic Arabian Shield in southwestern Saudi Arabia. These ages range from 13.8 to 568 Ma. In general, the youngest ages are found at low elevations along the base of the escarpment near the eastern edge of the coastal plane. The oldest ages are from along and to the east of the crest. The fission-track data from Saudi Arabia show that there was a period of minor uplift and cooling during the Cretaceous. This was followed by a relatively stable period which lasted until the Mid to Upper Miocene. The latest uplift and erosion began slightly younger than 13.8 Ma. This latest episode resulted in a minimum uplift of 3 km and is related to the Red Sea Rift. Samples totally annealed prior to this latest episode of uplift and cooling have not yet reached the surface.

  1. Simulations of Early Structure Formation: Primordial Gas Clouds

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki; Abel, Tom; Hernquist, Lars; Sugiyama, Naoshi

    2003-08-01

    We use cosmological simulations to study the origin of primordial star-forming clouds in a ΛCDM universe, by following the formation of dark matter halos and the cooling of gas within them. To model the physics of chemically pristine gas, we employ a nonequilibrium treatment of the chemistry of nine species (e-, H, H+, He, He+, He++, H2, H+2, H-) and include cooling by molecular hydrogen. By considering cosmological volumes, we are able to study the statistical properties of primordial halos, and the high resolution of our simulations enables us to examine these objects in detail. In particular, we explore the hierarchical growth of bound structures forming at redshifts z~25-30 with total masses in the range ~105-106Msolar. We find that when the amount of molecular hydrogen in these objects reaches a critical level, cooling by rotational line emission is efficient, and dense clumps of cold gas form. We identify these ``gas clouds'' as sites for primordial star formation. In our simulations, the threshold for gas cloud formation by molecular cooling corresponds to a critical halo mass of ~5×105h-1Msolar, in agreement with earlier estimates, but with a weak dependence on redshift in the range z>16. The complex interplay between the gravitational formation of dark halos and the thermodynamic and chemical evolution of the gas clouds compromises analytic estimates of the critical H2 fraction. Dynamical heating from mass accretion and mergers opposes relatively inefficient cooling by molecular hydrogen, delaying the production of star-forming clouds in rapidly growing halos. We also investigate the effect of photodissociating ultraviolet radiation on the formation of primordial gas clouds. We consider two extreme cases, first by including a uniform radiation field in the optically thin limit and second by accounting for the maximum effect of gas self-shielding in virialized regions. For radiation with Lyman-Werner band flux J>10-23 ergs s-1 cm-2 Hz-1 sr-1, hydrogen molecules are rapidly dissociated, rendering gas cooling inefficient. In both the cases we consider, the overall effect can be described by computing an equilibrium H2 abundance for the radiation flux and defining an effective shielding factor. Based on our numerical results, we develop a semianalytic model of the formation of the first stars and demonstrate how it can be coupled with large N-body simulations to predict the star formation rate in the early universe.

  2. A bulk superconducting MgB 2 cylinder for holding transversely polarized targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Statera, M.; Balossino, I.; Barion, L.

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less

  3. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  4. A bulk superconducting MgB 2 cylinder for holding transversely polarized targets

    DOE PAGES

    Statera, M.; Balossino, I.; Barion, L.; ...

    2017-11-06

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less

  5. Shield system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, D.R.; Chandler, J.R.; Church, J.P.

    1979-01-01

    The SHIELD system is a powerful new computational tool for calculation of isotopic inventory, radiation sources, decay heat, and shielding assessment in part of the nuclear fuel cycle. The integrated approach used in this system permitss the communication and management of large fields of numbers efficiently thus permitting the user to address the technical rather than computer aspects of a problem. Emphasis on graphical outputs permits large fields of resulting numbers to be efficiently displayed.

  6. Thermal Protection System (Heat Shield) Development - Advanced Development Project

    NASA Technical Reports Server (NTRS)

    Kowal, T. John

    2010-01-01

    The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.

  7. Calculating the electric field in real human head by transcranial magnetic stimulation with shield plate

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2009-04-01

    In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.

  8. Acoustic Shielding for a Model Scale Counter-rotation Open Rotor

    NASA Technical Reports Server (NTRS)

    Stephens, David B.; Edmane, Envia

    2012-01-01

    The noise shielding benefit of installing an open rotor above a simplified wing or tail is explored experimentally. The test results provide both a benchmark data set for validating shielding prediction tools and an opportunity for a system level evaluation of the noise reduction potential of propulsion noise shielding by an airframe component. A short barrier near the open rotor was found to provide up to 8.5 dB of attenuation at some directivity angles, with tonal sound particularly well shielded. Predictions from two simple shielding theories were found to overestimate the shielding benefit.

  9. The Thermal Evolution of the Southeast Baffin Island Continental Margin: An Integrated Apatite Fission Track and Apatite (U-Th)/He Study

    NASA Astrophysics Data System (ADS)

    Jess, S.; Stephenson, R.; Brown, R. W.

    2017-12-01

    The elevated continental margins of the North Atlantic continue to be a focus of considerable geological and geomorphological debate, as the timing of major tectonic events and the age of topographic relief remain controversial. The West Greenland margin, on the eastern flank of Baffin Bay, is believed by some authors to have experienced tectonic rejuvenation and uplift during the Neogene. However, the opposing flank, Baffin Island, is considered to have experienced a protracted erosional regime with little tectonic activity since the Cretaceous. This work examines the thermal evolution of the Cumberland Peninsula, SE Baffin Island, using published apatite fission track (AFT) data with the addition of 103 apatite (U-Th)/He (AHe) ages. This expansion of available thermochronological data introduces a higher resolution of thermal modelling, whilst the application of the newly developed `Broken Crystals' technique provides a greater number of thermal constraints for an area dominated by AHe age dispersion. Results of joint thermal modelling of the AFT and AHe data exhibit two significant periods of cooling across the Cumberland Peninsula: Devonian/Carboniferous to the Triassic and Late Cretaceous to present. The earliest phase of cooling is interpreted as the result of major fluvial systems present throughout the Paleozoic that flowed across the Canadian Shield to basins in the north and south. The later stage of cooling is believed to result from rift controlled fluvial systems that flowed into Baffin Bay during the Mesozoic and Cenozoic during the early stages and culmination of rifting along the Labrador-Baffin margins. Glaciation in the Late Cenozoic has likely overprinted these later river systems creating a complex fjordal distribution that has shaped the modern elevated topography. This work demonstrates how surface processes, and not tectonism, can explain the formation of elevated continental margins and that recent methodological developments in the field of low temperature thermochronology are improving our understanding of onshore passive margin development.

  10. A survey of industry practices regarding shielding of substations against direct lightning strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, A.M.; Wehling, R.J.

    1993-01-01

    A survey of industry practices regarding shielding of substations against direct lightning strokes is presented and analyzed. The survey is based on responses from 114 companies including consultants and utilities both from within and from outside North America. The survey identifies the shielding design methods in use, the factors affecting the selection of a shielding method, the shielding design criteria and the governing factors, the performance of the different shielding methods and miscellaneous related aspects. The survey revealed a large number (35) of shielding failure incidents; 34 of which occurred in systems designed using either the fixed shielding angle methodmore » or Wagner's 1942 method.« less

  11. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Wang, J.; Zheng, J.; Lin, Q.; Zhang, Y.; Wang, S.

    2009-05-01

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  12. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  13. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs formore » off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.« less

  14. Solar probe shield developmental testing

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    1991-01-01

    The objectives of the Solar Probe mission and the current status of the Solar Probe thermal shield subsystem development are described. In particular, the discussion includes a brief description of the mission concepts, spacecraft configuration and shield concept, material selection criteria, and the required material testing to provide a database to support the development of the shield system.

  15. Effect of molybdenum on gamma ray shielding and structural properties of PbO-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder

    2018-04-01

    The present study is aimed at developing new shielding materials for gamma ray shielding applications. Transparent glasses of the composition xMoO3-0.7PbO-(0.3-x)B2O3 where x= 0.03 to 0. 06 (mole fraction) have been prepared by using melt-quenchingtechnique. Gamma ray shielding properties have been evaluated in terms of mass attenuation coefficient and half value layer parameter at photon energies 662 and 1173 keV. These shielding parameters are also compared with standard shielding material`concretes'. It has been found that prepared glass system shows better shielding properties than barite and ordinary concretes proving the possibility of its usage as an alternate to conventional concrete for gamma ray shielding applications. The density, molar volume, X-Ray Diffraction, Fourier Transform InfraRed and Raman studies have been performed to study the structural properties of the glass system. It has been analyzed from FTIR and Raman studies that bridging oxygens increase with the decrease of MoO3 content in the glass composition.

  16. Safety shield for vacuum/pressure-chamber windows

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Spencer, R.

    1980-01-01

    Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.

  17. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol

    PubMed Central

    Lou, Sijia; Zelenyuk, Alla; Easter, Richard C.; Corley, Richard A.; Thrall, Brian D.; Rasch, Philip J.; Fast, Jerome D.; Massey Simonich, Staci L.; Tao, Shu

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on humans and ecosystems. One of the most carcinogenic PAHs, benzo(a)pyrene (BaP), is efficiently bound to and transported with atmospheric particles. Laboratory measurements show that particle-bound BaP degrades in a few hours by heterogeneous reaction with ozone, yet field observations indicate BaP persists much longer in the atmosphere, and some previous chemical transport modeling studies have ignored heterogeneous oxidation of BaP to bring model predictions into better agreement with field observations. We attribute this unexplained discrepancy to the shielding of BaP from oxidation by coatings of viscous organic aerosol (OA). Accounting for this OA viscosity-dependent shielding, which varies with temperature and humidity, in a global climate/chemistry model brings model predictions into much better agreement with BaP measurements, and demonstrates stronger long-range transport, greater deposition fluxes, and substantially elevated lung cancer risk from PAHs. Model results indicate that the OA coating is more effective in shielding BaP in the middle/high latitudes compared with the tropics because of differences in OA properties (semisolid when cool/dry vs. liquid-like when warm/humid). Faster chemical degradation of BaP in the tropics leads to higher concentrations of BaP oxidation products over the tropics compared with higher latitudes. This study has profound implications demonstrating that OA strongly modulates the atmospheric persistence of PAHs and their cancer risks. PMID:28115713

  18. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish; Lou, Silja; Zelenyuk, Alla; Easter, Richard C.; Corley, Richard A.; Thrall, Brian D.; Rasch, Philip J.; Fast, Jerome D.; Massey Simonich, Staci L.; Shen, Huizhong; Tao, Shu

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on humans and ecosystems. One of the most carcinogenic PAHs, benzo(a)pyrene (BaP), is efficiently bound to and transported with atmospheric particles. Laboratory measurements show that particle-bound BaP degrades in a few hours by heterogeneous reaction with ozone, yet field observations indicate BaP persists much longer in the atmosphere, and some previous chemical transport modeling studies have ignored heterogeneous oxidation of BaP to bring model predictions into better agreement with field observations. We attribute this unexplained discrepancy to the shielding of BaP from oxidation by coatings of viscous organic aerosol (OA). Accounting for this OA viscosity-dependent shielding, which varies with temperature and humidity, in a global climate/chemistry model brings model predictions into much better agreement with BaP measurements, and demonstrates stronger long-range transport, greater deposition fluxes, and substantially elevated lung cancer risk from PAHs. Model results indicate that the OA coating is more effective in shielding BaP in the middle/high latitudes compared with the tropics because of differences in OA properties (semisolid when cool/dry vs. liquid-like when warm/humid). Faster chemical degradation of BaP in the tropics leads to higher concentrations of BaP oxidation products over the tropics compared with higher latitudes. This study has profound implications demonstrating that OA strongly modulates the atmospheric persistence of PAHs and their cancer risks.

  19. Study on the adjustment capability of the excitation system located inside superconducting machine electromagnetic shield

    NASA Astrophysics Data System (ADS)

    Xia, D.; Xia, Z.

    2017-12-01

    The ability for the excitation system to adjust quickly plays a very important role in maintaining the normal operation of superconducting machines and power systems. However, the eddy currents in the electromagnetic shield of superconducting machines hinder the exciting magnetic field change and weaken the adjustment capability of the excitation system. To analyze this problem, a finite element calculation model for the transient electromagnetic field with moving parts is established. The effects of three different electromagnetic shields on the exciting magnetic field are analyzed using finite element method. The results show that the electromagnetic shield hinders the field changes significantly, the better its conductivity, the greater the effect on the superconducting machine excitation.

  20. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    NASA Astrophysics Data System (ADS)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  1. Structural Analysis of Thermal Shields During a Quench of a Torus Magnet for the 12 GeV Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastor, Orlando; Willard, Thomas; Ghoshal, Probir K.

    A toroidal magnet system consisting of six superconducting coils is being built for the Jefferson Lab 12- GeV accelerator upgrade project. This paper details the analysis of eddy current effects during a quench event on the aluminum thermal shield. The shield has been analyzed for mechanical stresses induced as a result of a coil quench as well as a fast discharge of the complete magnet system. The shield has been designed to reduce the eddy current effects and result in stresses within allowable limits.

  2. The initial flight anomalies of Skylab 1

    NASA Astrophysics Data System (ADS)

    At approximately 63 seconds into the flight of Skylab 1 on May 14, 1973, an anomaly occurred which resulted in the complete loss of the meteoroid shield around the orbital workshop. This was followed by the loss of one of the two solar array systems on the workshop and a failure of the inter stage adapter to separate from the S-II stage of the Saturn V launch vehicle. The investigation reported herein identified the most probable cause of this flight anomaly to be the breakup and loss of the meteoroid shield due to aerodynamic loads that were not accounted for in its design. The breakup of the meteoroid shield, in turn, broke the tie downs that secured one of the solar array systems to the workshop. Complete loss of this solar array system occurred at 593 seconds when the exhaust plume of the S-II stage retro-rockets impacted the partially deployed solar array system. Falling debris from the meteoroid shield also damaged the S-II inter stage adapter ordnance system in such a manner as to preclude separation. Of several possible failure modes of the meteoroid shield that were identified, the most probable in this particular flight was internal pressurization of its auxiliary tunnel which acted to force the forward end of the meteoroid shield away from the shell of the workshop and into the supersonic air stream. The pressurization of the auxiliary tunnel was due to the existence of several openings in the aft region of the tunnel. Another possible failure mode was the separation of the leading edge of the meteoroid shield from the shell of the workshop (particularly in the region of the folded ordnance panel) of sufficient extent to admit ram air pressures under the shield.

  3. Biggest-Ever Heat Shield Prepared for Mars Spacecraft

    NASA Image and Video Library

    2011-05-13

    The heat shield for NASA Mars Science Laboratory is the largest ever built for a planetary mission. This image shows the heat shield being prepared at Lockheed Martin Space Systems, Denver, in April 2011.

  4. Large Heat Shield for Mars Science Laboratory

    NASA Image and Video Library

    2009-07-10

    This image shows NASA Mars Science Laboratory heat shield, and a spacecraft worker at Lockheed Martin Space Systems, Denver. It is the largest heat shield ever built for descending through the atmosphere of any planet.

  5. A Coating That Cools and Cuts Costs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To enable low-cost space access for advanced exploration vehicles, researchers from NASA's Ames Research Center invented and patented a protective coating for ceramic materials (PCCM) in 1994. The technology, originally intended to coat the heat shields of the X-33 and X-34 next-generation vehicles for optimum protection during atmospheric reentry, greatly reduces surface temperature of a thermal control structure while it reradiates absorbed energy to a cooler surface or body, thus preventing degradation of the underlying ceramic material.

  6. TU-H-BRA-07: Design, Construction, and Installation of An Experimental Beam Line for the Development of MRI-Linac Compatible Electron Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, B; Keall, P; Holloway, L

    Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energiesmore » up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate in-silico design work, and provide the first published experimental data relating to accelerator functionality for MRIgRT.« less

  7. InfuShield: a shielded enclosure for administering therapeutic radioisotope treatments using standard syringe pumps

    PubMed Central

    Pratt, Brenda E.; Chittenden, Sarah J.; Murray, Iain S.; Causer, Louise; Grey, Matthew J.; Gear, Jonathan I.; Du, Yong; Flux, Glenn D.

    2017-01-01

    The administration of radionuclide therapies presents significant radiation protection challenges. The aim of this work was to develop a delivery system for intravenous radioisotope therapies to substantially moderate radiation exposures to staff and operators. A novel device (InfuShield) was designed and tested before being used clinically. The device consists of a shielded enclosure which contains the therapeutic activity and, through the hydraulic action of back-to-back syringes, allows the activity to be administered using a syringe pump external to the enclosure. This enables full access to the pump controls while simultaneously reducing dose to the operator. The system is suitable for use with all commercially available syringe pumps and does not require specific consumables, maximising both the flexibility and economy of the system. Dose rate measurements showed that at key stages in an 131I mIBG treatment procedure, InfuShield can reduce dose to operators by several orders of magnitude. Tests using typical syringes and infusion speeds show no significant alteration in administered flow rates (maximum of 1.2%). The InfuShield system provides a simple, safe and low cost method of radioisotope administration. PMID:28187040

  8. Modeling and Analysis of Geoelectric Fields: Extended Solar Shield

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.

    2016-12-01

    In the NASA Applied Sciences Program Solar Shield project, an unprecedented first-principles-based system to forecast geomagnetically induced current (GIC) in high-voltage power transmission systems was developed. Rapid progress in the field of numerical physics-based space environment modeling has led to major developments over the past few years. In this study modeling and analysis of induced geoelectric fields is discussed. Specifically, we focus on the successful incorporation of 3-D EM transfer functions in the modeling of E-fields, and on the analysis of near real-time simulation outputs used in the Solar Shield forecast system. The extended Solar Shield is a collaborative project between DHS, NASA, NOAA, CUA and EPRI.

  9. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2014-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved.

  10. Preparing Mars Science Laboratory Heat Shield

    NASA Image and Video Library

    2011-05-13

    Technicians at Lockheed Martin Space Systems, Denver, prepare the heat shield for NASA Mars Science Laboratory. With a diameter of 4.5 meters nearly 15 feet, this heat shield is the largest ever built for a planetary mission.

  11. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be usedmore » to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.« less

  12. Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.

  13. High speed maglev design

    DOEpatents

    Rote, Donald M.; He, Jianliang; Coffey, Howard

    1993-01-01

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.

  14. High speed maglev design

    DOEpatents

    Rote, D.M.; Jianliang He; Coffey, H.

    1993-10-19

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields. 4 figures.

  15. Improved high speed maglev design

    DOEpatents

    Rote, D.M.; He, Jianliang; Coffey, H.T.

    1992-01-01

    This report discusses a propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the be vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.

  16. Thermal, Radiation and Impact Protective Shields (TRIPS) for Robotic and Human Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Loomis, M. P.; Arnold, J. L.

    2005-01-01

    New concepts for protective shields for NASA s Crew Exploration Vehicles (CEVs) and planetary probes offer improved mission safety and affordability. Hazards include radiation from cosmic rays and solar particle events, hypervelocity impacts from orbital debris/ micrometeorites, and the extreme heating environment experienced during entry into planetary atmospheres. The traditional approach for the design of protection systems for these hazards has been to create single-function shields, i.e. ablative and blanket-based heat shields for thermal protection systems (TPS), polymer or other low-molecular-weight materials for radiation shields, and multilayer, Whipple-type shields for protection from hypervelocity impacts. This paper introduces an approach for the development of a single, multifunctional protective shield, employing nanotechnology- based materials, to serve simultaneously as a TPS, an impact shield and as the first line of defense against radiation. The approach is first to choose low molecular weight ablative TPS materials, (existing and planned for development) and add functionalized carbon nanotubes. Together they provide both thermal and radiation (TR) shielding. Next, impact protection (IP) is furnished through a tough skin, consisting of hard, ceramic outer layers (to fracture the impactor) and sublayers of tough, nanostructured fabrics to contain the debris cloud from the impactor before it can penetrate the spacecraft s interior.

  17. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    NASA Astrophysics Data System (ADS)

    Pathan, F. S.; Khan, Z.; Semwal, P.; Raval, D. C.; Joshi, K. S.; Thankey, P. L.; Dhanani, K. R.

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN2 panels during sniffer test and pressure drop test using helium gas.

  18. Shuttle Spacesuit: Fabric/LCVG Model Validation

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tweed, J.; Zeitlin, C.; Kim, M.-H. Y.; Anderson, B. M.; Cucinotta, F. A.; Ware, J.; Persans, A. E.

    2001-01-01

    A detailed spacesuit computational model is being developed at the Langley Research Center for radiation exposure evaluation studies. The details of the construction of the spacesuit are critical to estimation of exposures and assessing the risk to the astronaut on EVA. Past evaluations of spacesuit shielding properties assumed the basic fabric lay-up (Thermal Micrometeroid Garment, fabric restraints, and pressure envelope) and Liquid Cooling and Ventilation Garment (LCVG) could be homogenized as a single layer overestimating the protective properties over 60 percent of the fabric area. The present spacesuit model represents the inhomogeneous distributions of LCVG materials (mainly the water filled cooling tubes). An experimental test is performed using a 34-MeV proton beam and highresolution detectors to compare with model-predicted transmission factors. Some suggestions are made on possible improved construction methods to improve the spacesuit's protection properties.

  19. The Dynomak: An advanced spheromak reactor system with imposed-dynamo current drive and next-generation nuclear power technologies

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.

    2013-10-01

    A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.

  20. Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell

    2006-01-01

    An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.

  1. Reducing absorbed dose to eye lenses in head CT examinations: the effect of bismuth shielding.

    PubMed

    Ciarmatori, Alberto; Nocetti, L; Mistretta, G; Zambelli, G; Costi, T

    2016-06-01

    The eye lens is considered to be among the most radiosensitive human tissues. Brain CT scans may unnecessarily expose it to radiation even if the area of clinical interest is far from the eyes. The aim of this study is to implement a bismuth eye lens shielding system for Head-CT acquisitions in these cases. The study is focused on the assessment of the dosimetric characteristics of the shielding system as well as on its effect on image quality. The shielding system was tested in two set-ups which differ for distance ("contact" and "4 cm" Set up respectively). Scans were performed on a CTDI phantom and an anthropomorphic phantom. A reference set up without shielding system was acquired to establish a baseline. Image quality was assessed by signal (not HU converted), noise and contrast-to-noise ratio (CNR) evaluation. The overall dose reduction was evaluated by measuring the CTDIvol while the eye lens dose reduction was assessed by placing thermoluminescent dosimeters (TLDs) on an anthropomorphic phantom. The image quality analysis exhibits the presence of an artefact that mildly increases the CT number up to 3 cm below the shielding system. Below the artefact, the difference of the Signal and the CNR are negligible between the three different set-ups. Regarding the CTDI, the analysis demonstrates a decrease by almost 12 % (in the "contact" set-up) and 9 % (in the "4 cm" set-up). TLD measurements exhibit an eye lens dose reduction by 28.5 ± 5 and 21.1 ± 5 % respectively at the "contact" and the "4 cm" distance. No relevant artefact was found and image quality was not affected by the shielding system. Significant dose reductions were measured. These features make the shielding set-up useful for clinical implementation in both studied positions.

  2. ATHENA X-IFU 300 K-50 mK cryochain demonstrator cryostat

    NASA Astrophysics Data System (ADS)

    Prouvé, T.; Duval, J. M.; Charles, I.; Yamasaki, N. Y.; Mitsuda, K.; Nakagawa, T.; Shinozaki, K.; Tokoku, C.; Yamamoto, R.; Minami, Y.; Le Du, M.; Andre, J.; Daniel, C.; Linder, M.

    2018-01-01

    In the framework of the ESA X-ray mission ATHENA, scheduled for launch in 2028, an ESA Core Technology Program (CTP) was started in 2016 to build a flight like cryostat demonstrator in parallel with the phase A studies of the ATHENA/X-IFU instrument [1,2]. As part of this CTP, called the Detector Cooling System (DCS), design, manufacturing and test of a cryostat including existing space coolers will be done. In addition to the validation of thermal performance, a Focal Plan Assembly (FPA) demonstrator using Transition Edge Sensors (TES) detector technology will be also integrated and its performance characterized versus the environment provided by the cryostat. This is a unique opportunity to validate many crucial issues of the cryogenic part of such a sensitive instrument. A dedicated activity within this CTP-DCS is the demonstration of the 300 K-50 mK cooling chain in a Ground System Equipment (GSE) cryostat. The studies are focused on the operation of the space coolers, which is made possible by the use of a ground cooler for cooling cryogenic shields and mechanical supports. Thanks to the modularity of the cryostat, several cooling chains could be tested. In the base line configuration described here, the low temperature stage is the CEA hybrid sorption/ADR 50 mK cooler with thermal interfaces at 4 K and 2 K. 4 K cooling is accomplished by a 4 K Joule-Thomson (JT) cryocooler and its Stirling precooler provided by JAXA. Regarding the 2 K stage, at first a 2 K JT from JAXA will be used. Alternatively, a 2 K JT cooler from RAL could replace the JAXA 2 K JT. In both cases new prototype(s) of a 2 K JT will be implemented, precooled by the EM 15 K pule tube cooler from Air Liquide. This test program is also the opportunity to validate the operation of the cryochain with respect to various requirements, such as time constant and temperature stabilities. This would bring us valuable inputs to integrate the cryochain in DCS cryostat or for the X-IFU phase A studies. This cryochain demonstration is also a critical milestone for the SPICA mission [3]. The design of the cryostat and first thermal validations both before and after integration of the JAXA JT coolers are presented in this paper.

  3. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  4. Design and evaluation of thin metal surface insulation for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Petach, A. M.

    1976-01-01

    An all-metal insulation was studied as a thermal protection system for hypersonic vehicles. Key program goals included fabricating the insulation in thin packages which are optimized for high temperature insulation of an actively cooled aluminum structure, and the use of state-of-the-art alloys. The insulation was fabricated from 300 series stainless steel in thicknesses of 0.8 to 12 mm. The outer, 0.127 mm thick, skin was textured to accommodate thermal expansion and oxidized to increase emittance. The thin insulating package was achieved using an insulation concept consisting of foil radiation shields spaced within the package, and conical foil supports to carry loads from the skin and maintain package dimensions. Samples of the metal-insulation were tested to evaluate thermal insulation capability, rain and sand erosion resistance, high temperature oxidation resistance, applied load capability, and high temperature emittance.

  5. A multiphoton laser scanning microscope setup for transcranial in vivo brain imaging on mice

    NASA Astrophysics Data System (ADS)

    Nase, Gabriele; Helm, P. Johannes; Reppen, Trond; Ottersen, Ole Petter

    2005-12-01

    We describe a multiphoton laser scanning microscope setup for transcranial in vivo brain imaging in mice. The modular system is based on a modified industrial standard Confocal Scanning Laser Microscope (CSLM) and is assembled mainly from commercially available components. A special multifunctional stage, which is optimized for both laser scanning microscopic observation and preparative animal surgery, has been developed and built. The detection unit includes a highly efficient photomultiplier tube installed in a Peltier-cooled thermal box shielding the detector from changes in room temperature and from distortions caused by external electromagnetic fields. The images are recorded using a 12-bit analog-to-digital converter. Depending on the characteristics of the staining, individual nerve cells can be imaged down to at least 100μm below the intact cranium and down to at least 200μm below the opened cranium.

  6. Opto-box: Optical modules and mini-crate for ATLAS pixel and IBL detectors

    NASA Astrophysics Data System (ADS)

    Bertsche, David

    2016-11-01

    The opto-box is a custom mini-crate for housing optical modules which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35×10x8 cm3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits, were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain. This conference proceeding is in support of the poster presented at the International Conference on New Frontiers in Physics (ICNFP) 2015 [1].

  7. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.

  8. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; hide

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  9. A 10 deg K triple-expansion Stirling-cycle cryocooler

    NASA Technical Reports Server (NTRS)

    Newman, W.; Keung, C. S.

    1983-01-01

    The design of a triple expansion closed cycle Stirling cryocooler optimized for a cooling load of 50 mW at 10 K is described. The cooler was designed with the objectives of low power, low weight, compactness, low mechanical motion, low electromagnetic noise, and low output temperature fluctuations. The design employs a direct drive linear motion piston motor and a triple expansion free displacer. Piston motion is controlled by feedback from an optical position transducer. Mechanical vibrations are attenuated with a passive resonant counterbalance. Electromagnetic noise is attenuated with layered high permeability magnetic shielding. The regenerators move with the displacer within a thin titanium cold finger. The piston and displacer oscillate at 8.33 Hz on bearings and seals of reinforced Teflon. The cooler is designed to provide the desired 50 mW of cooling at 10 K with a power input of less than 100 W. The piston can be driven at a greater stroke to produce up to 200 mW of cooling with an input power of 250 W. A lead and copper cold tip heat exchanger will limit temperature fluctuations to within 0.01 K.

  10. Flexible shielding system for radiation protection

    NASA Technical Reports Server (NTRS)

    Babin, A.

    1972-01-01

    Modular construction of low cost flexible radiation shielding panels consists of water filled steels cans, zinc bromide windows, turntable unit, master-slave manipulators, and interlocking lead bricks. Easy modifications of shielding wall thicknesses are obtained by rearranging overall geometry of portable components.

  11. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  12. Preliminary design of the thermal protection system for solar probe

    NASA Technical Reports Server (NTRS)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  13. Design of a plastic minicolpostat applicator with shields.

    PubMed

    Weeks, K J; Montana, G S; Bentel, G C

    1991-09-01

    A plastic intracavitary applicator system for the treatment of cancer of the uterine cervix is described. This applicator has a minicolpostat and a mechanism for affixing the tandem to the colpostats. Traditional afterloading refers only to the radioactive source. Both the source and the ovoid shield are afterloaded together in this applicator in contrast to traditional afterloading systems which afterload the source alone. A potential advantage of our applicator system is that it allows high quality CT localization because the sources and shields can be removed and the applicator is made of plastic. The advantages and disadvantages of this variation to the Fletcher system as well as other aspects of applicator design are discussed. An experimentally verified dose calculation method for shielded sources is applied to the design problems associated with this applicator. The dose distribution calculated for a source-shield configuration of the plastic applicator is compared to that obtained with a commercial Fletcher-Suit-Delclos (FSD) applicator. Significant shielding improvements can be achieved for the smallest diameter ovoid, that is, in the minicolpostat. The plastic minicolpostat dose distributions are similar to those produced by the conventional larger diameter colpostats. In particular, the colpostat shielding for rectum and bladder, which is reduced in the metal applicator's minicolpostat configuration, is maintained for the plastic minicolpostat. Further, it is shown that, if desired, relative to the FSD minicolpostat, the mucosa dose can be reduced by a suitable change of the minicolpostat source position.

  14. Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.

    2017-12-01

    The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m-2·s-1 to 70 kg·m-2·s-1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.

  15. SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research

    NASA Astrophysics Data System (ADS)

    Bassler, N.; Hansen, D. C.; Lühr, A.; Thomsen, B.; Petersen, J. B.; Sobolevsky, N.

    2014-03-01

    Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The "-A" fork of SHIELD-HIT also aims to attach SHIELD-HIT to a heavy ion dose optimization algorithm to provide MC-optimized treatment plans that include radiobiology. Methods: SHIELD-HIT12A is written in FORTRAN and carefully retains platform independence. A powerful scoring engine is implemented scoring relevant quantities such as dose and track-average LET. It supports native formats compatible with the heavy ion treatment planning system TRiP. Stopping power files follow ICRU standard and are generated using the libdEdx library, which allows the user to choose from a multitude of stopping power tables. Results: SHIELD-HIT12A runs on Linux and Windows platforms. We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More information about SHIELD-HIT12A and a demo version can be found on http://www.shieldhit.org.

  16. Active shielding to reduce low frequency disturbances in direct current near biomagnetic measurements

    NASA Astrophysics Data System (ADS)

    Platzek, D.; Nowak, H.; Giessler, F.; Röther, J.; Eiselt, M.

    1999-05-01

    Measurements of dc near biomagnetic fields are disturbed by low frequency noise that is not reduced sufficiently by most of the magnetically shielded rooms or gradiometers. For this reason an active shielding system has been developed at the Biomagnetic Center of the University of Jena. This work describes the principle of the active shielding system and demonstrates its properties concerning the attenuation of disturbing fields, frequency range, and some applications in biomedical measurements. We achieved a reduction of external low frequency magnetic fields by more than 50 dB and an attenuation of the field gradient by about 25 dB. This active shielding enables measurements of near dc biomagnetic fields in investigations of periinfarct depolarizations after ischemic stroke and spreading depression in migraine patients.

  17. Progress Toward Electrostatic Radiation Shielding of Interplanetary Spacecraft: Strategies, Concepts and Technical Challenges of Human Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Lane, John E.; Youngquist, Robert C.

    2004-01-01

    The radiation problem is a serious obstacle to solar system exploration. Electrostatic shielding was previously dismissed as unworkable. This was based on the false assumption that radial symmetry is needed to provide isotropic protection. KSC recently demonstrated the feasibility of asymmetric, multipole electrostatic shielding. Combined with passive shielding it might solve the radiation problem

  18. HVI Ballistic Performance Characterization of Non-Parallel Walls

    NASA Technical Reports Server (NTRS)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  19. Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling

    NASA Astrophysics Data System (ADS)

    Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao

    2018-05-01

    Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.

  20. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    PubMed Central

    Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G.

    2016-01-01

    Abstract Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8–2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7–2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze—Archean Earth—Exoplanets—Spectra—Biosignatures—Planetary habitability. Astrobiology 16, 873–899. PMID:27792417

  1. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth.

    PubMed

    Arney, Giada; Domagal-Goldman, Shawn D; Meadows, Victoria S; Wolf, Eric T; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO 2 . Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze-Archean Earth-Exoplanets-Spectra-Biosignatures-Planetary habitability. Astrobiology 16, 873-899.

  2. An analytical and experimental evaluation of shadow shields and their support members

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.; Boyle, R. J.

    1972-01-01

    Experimental tests were performed on a model shadow shield thermal protection system to examine the effect of certain configuration variables. The experimental results were used to verify the ability of an analytical program to predict the shadow shield performance including the shield-support interaction. In general, the analysis (assuming diffuse surfaces) agreed well with the experimental support temperature profiles. The agreement for the shield profiles was not as good. The results demonstrated: (1) shadow shields can be effective in reducing the heat transfer into cryogenic propellant tanks, and (2) the conductive heat transfer through supports can be reduced by selective surface coatings.

  3. Radiation damage-He diffusivity models applied to deep-time thermochronology: Zircon and titanite (U-Th)/He datasets from cratonic settings

    NASA Astrophysics Data System (ADS)

    Guenthner, W.; DeLucia, M. S.; Marshak, S.; Reiners, P. W.; Drake, H.; Thomson, S.; Ault, A. K.; Tillberg, M.

    2017-12-01

    Advances in understanding the effects of radiation damage on He diffusion in uranium-bearing accessory minerals have shown the utility of damage-diffusivity models for interpreting datasets from geologic settings with long-term, low-temperature thermal histories. Craton interiors preserve a billion-year record of long-term, long-wavelength vertical motions of the lithosphere. Prior thermochronologic work in these settings has focused on radiation damage models used in conjunction with apatite (U-Th)/He dates to constrain Phanerozoic thermal histories. Owing to the more complex damage-diffusivity relationship in zircon, the zircon (U-Th)/He system yields both higher and, in some cases, lower temperature sensitivities than the apatite system, and this greater range in turn allows researchers to access deeper time (i.e., Proterozoic) segments of craton time-temperature histories. Here, we show two examples of this approach by focusing on zircon (U-Th)/He datasets from 1.8 Ga granitoids of the Fennoscandian Shield in southeastern Sweden, and 1.4 Ga granites and rhyolites of the Ozark Plateau in southeastern Missouri. In the Ozark dataset, the zircon (U-Th)/He data, combined with a damage-diffusivity model, predict negative correlations between date and effective uranium (eU) concentration (a measurement proportional to radiation damage) from thermal histories that include an episode of Proterozoic cooling (interpreted as exhumation) following reheating (interpreted as burial) to temperature of 260°C at 850-680 Ma. In the Fennoscandian Shield, a similar damage model-based approach yields time-temperature constraints with burial to 217°C between 944 Ma and 851 Ma, followed by exhumation from 850 to 500 Ma, and burial to 154°C between 366 Ma and 224 Ma. Our Fennoscandian Shield samples also include titanite (U-Th)/He dates that span a wide range (945-160 Ma) and are negatively correlated with eU concentration, analogous to our zircon He dataset. These results support the initial findings of Baughman et al. (2017, Tectonics), and suggest that further research into the radiation damage effect on He diffusion in titanite could yield a comprehensive damage-diffusivity model for the titanite (U-Th)/He thermochronometer.

  4. Inorganic/organic hybrid nanocomposite coating applications: Formulation, characterization, and evaluation

    NASA Astrophysics Data System (ADS)

    Eyassu, Tsehaye

    Nanotechnology applications in coatings have shown significant growth in recent years. Systematic incorporation of nano-sized inorganic materials into polymer coating enhances optical, electrical, thermal and mechanical properties significantly. The present dissertation will focus on formulation, characterization and evaluation of inorganic/organic hybrid nanocomposite coatings for heat dissipation, corrosion inhibition and ultraviolet (UV) and near infrared (NIR) cut applications. In addition, the dissertation will cover synthesis, characterization and dispersion of functional inorganic fillers. In the first project, we investigated factors that can affect the "Molecular Fan" cooling performance and efficiency. The investigated factors and conditions include types of nanomaterials, size, loading amount, coating thickness, heat sink substrate, substrate surface modification, and power input. Using the optimal factors, MF coating was formulated and applied on commercial HDUs, and cooling efficiencies up to 22% and 23% were achieved using multi-walled carbon nanotube and graphene fillers. The result suggests that molecular fan action can reduce the size and mass of heat-sink module and thus offer a low cost of LED light unit. In the second project, we report the use of thin organic/inorganic hybrid coating as a protection for corrosion and as a thermal management to dissipate heat from galvanized steel. Here, we employed the in-situ phosphatization method for corrosion inhibition and "Molecular fan" technique to dissipate heat from galvanized steel panels and sheets. Salt fog tests reveal successful completion of 72 hours corrosion protection time frame for samples coated with as low as ~0.7microm thickness. Heat dissipation measurement shows 9% and 13% temperature cooling for GI and GL panels with the same coating thickness of ~0.7microm respectively. The effect of different factors, in-situ phosphatization reagent (ISPR), cross-linkers and nanomaterial on corrosion and heat dissipation was discussed on this project. In the third project, optically transparent UV and NIR light cut coating for solar control application was studied. On separate study for UV cut coatings, we have formulated UV-shielding coatings using ZnO nanoparticles fillers that have more than 90% UV absorption and above 90% visible transparency. In a separate part of the same project, we synthesized NIR-absorbing CsxWO 3 nanorods with uniform particle size distribution in 2 hours using a solvothermal method. Aqueous dispersion of the nanorods has showed high transparency (80-90%) in the visible range with strong NIR light shielding (80-90%). Preliminary work on sol-gel coatings of CsxWO3 showed high visible light transparency with excellent NIR shielding.

  5. Development of a Body Shield for Small Animal PET System to Reduce Random and Scatter Coincidences

    NASA Astrophysics Data System (ADS)

    Wada, Yasuhiro; Yamamoto, Seiichi; Watanabe, Yasuyoshi

    2015-02-01

    For small animal positron emission tomography (PET) research using high radioactivity, such as dynamic studies, the resulting high random coincidence rate of the system degrades image quality. The random coincidence rate is increased not only by the gamma photons from inside the axial-field-of-view (axial-FOV) of the PET system but also by those from outside the axial-FOV. For brain imaging in small animal studies, significant interference is observed from gamma photons emitted from the body. Single gamma photons from the body enter the axial-FOV and increase the random and scatter coincidences. Shielding against the gamma photons from outside the axial-FOV would improve the image quality. For this purpose, we developed a body shield for a small animal PET system, the microPET Primate 4-ring system, and evaluated its performance. The body shield is made of 9-mm-thick lead and it surrounds most of a rat's body. We evaluated the effectiveness of the body shield using a head phantom and a body phantom with a radioactivity concentration ratio of 1:2 and a maximum total activity of approximately 250 MBq. The random coincidence rate was dramatically decreased to 1/10, and the noise equivalent count rate (NECR) was increased 6 times with an activity of 7 MBq in the head phantom. The true count rate was increased to 35% due to the decrease in system deadtime. The average scatter fraction was decreased to 1/2.5 with the body shield. Count rate measurements of rat were also conducted with an injection activity of approximately 25 MBq of [C-11]N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine ([C-11]DASB) and approximately 70 and 310 MBq of 2-deoxy-2-(F-18)fluoro-D-glucose ([F-18]FDG). Using the body shield, [F-18]FDG images of rats were improved by increasing the amount of radioactivity injected. The body shield designed for small animal PET systems is a promising tool for improving image quality and quantitation accuracy in small animal molecular imaging research.

  6. Design of a long focal length mid-wavelength infrared optical system

    NASA Astrophysics Data System (ADS)

    Duan, Jing; Zhang, Zhanpeng; Liu, Kai; Shan, Qiusha; Jiang, Kai; Yan, Peipei

    2018-02-01

    Based on a 640×512 cooled staring focal plane array (FPA) detector, pixel size 15μm×15μm, a long focal length mid-wavelength infrared optical system was designed. In this paper, the working wavelength is 3μm 5μm, the temperature range is -30°C +50°C, this system can realize 1000mm focal length, the F-number is 4, the full field of view is 0.70°, satisfy 100% cold shield efficiency. A re-imaging refractive system was adopted in this designed optical system consists of a main objective group and a projection group. First of all, the structural selection and the initial parameter calculation were introduced. Secondly, on the basis of variety of the temperature, a focusing len was presented in this system to adjust to produce a clear image. Last but not the least, to improve image quality and environment adaptability, the analysis of temperature change and ghost image were described particularly. The design results prove that at the spatial frequency of 33 lp/mm, the axis MTF of the optical system is greater than 0.35, the system can offer a high resolution and excellent images, and it has the advantages of good adaptability, simple structure, easy to adjust, and high transmittance.

  7. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.

    PubMed

    Yamamoto, Takahiko; Koshiji, Kohji; Homma, Akihiko; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2008-01-01

    Transcutaneous energy transmission (TET) that uses electromagnetic induction between the external and internal coils of a transformer is the most promising method to supply driving energy to a totally implantable artificial heart without invasion. Induction-heating (IH) cookers generate magnetic flux, and if a cooker is operated near a transcutaneous transformer, the magnetic flux generated will link with the external and internal coils of the transcutaneous transformer. This will affect the performance of the TET and the artificial heart system. Hence, it is necessary to improve the magnetic field immunity of the TET system. During operation of the system, if the transcutaneous transformer is in close proximity to an IH cooker, the electric power generated by the cooker and coupled to the transformer can drive the artificial heart system. To prevent this coupling, the external coil was shielded with a conductive shield that had a slit in it. This reduces the coupling between the transformer and the magnetic field generated by the induction cooker. However, the temperature of the shield increased due to heating by eddy currents. The temperature of the shield can be reduced by separating the IH cooker and the shield.

  8. Development of a single-phase 30 m HTS power cable

    NASA Astrophysics Data System (ADS)

    Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook

    2006-05-01

    HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.

  9. X-Ray Computed Tomography Inspection of the Stardust Heat Shield

    NASA Technical Reports Server (NTRS)

    McNamara, Karen M.; Schneberk, Daniel J.; Empey, Daniel M.; Koshti, Ajay; Pugel, D. Elizabeth; Cozmuta, Ioana; Stackpoole, Mairead; Ruffino, Norman P.; Pompa, Eddie C.; Oliveras, Ovidio; hide

    2010-01-01

    The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses of this technology as a tool for non-destructively inspecting and verifying both pre and post flight heat shields.

  10. CAD-based stand-alone spacecraft radiation exposure analysis system: An application of the early man-tended Space Station

    NASA Technical Reports Server (NTRS)

    Appleby, M. H.; Golightly, M. J.; Hardy, A. C.

    1993-01-01

    Major improvements have been completed in the approach to analyses and simulation of spacecraft radiation shielding and exposure. A computer-aided design (CAD)-based system has been developed for determining the amount of shielding provided by a spacecraft and simulating transmission of an incident radiation environment to any point within or external to the vehicle. Shielding analysis is performed using a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design programs such as a Mars transfer habitat, pressurized lunar rover, and the redesigned international Space Station. Results of analysis performed for the Space Station astronaut exposure assessment are provided to demonastrate the applicability and versatility of the system.

  11. Electronics Shielding and Reliability Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2006-01-01

    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.

  12. Qualifying the Sunpower M-87N Cryocooler for Operation in the AMS-02 Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Banks, Stuart; Shirey, Kimberly; Warner, Brent; Leidecker, Henning; Breon, Susan; Boyle, Rob

    2003-01-01

    The Alpha Magnetic Spectrometer-02 (AMs-02) experiment consists of a superfluid helium dewar. The outer vapor cooled shields of the dewar are to be held at 77 K by four Sunpower M87N cryocoolers. These cryocoolers have magnetic components that might interact with the external applied field generated by the superconducting magnet, thereby degrading the cryocoolers' performance. Engineering models of the Sunpower M87N are being tested at NASA Goddard Space Flight in order to qualify them to operate in a magnetic environment similar to the AMS-02 magnetic environment. AMS-02 will be a space station based particle detector studying the properties and origin of cosmic particles including antimatter and dark matter. It uses a superconducting magnet that is cooled by the superfluid helium dewar. Highly sensitive detector plates inside the magnet will measure a particle's momentum and charge.

  13. Prospects for a Muon Spin Resonance Facility in the MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.

    2017-04-12

    This paper investigates the feasibility of re-purposing the MuCool Test Area beamline and experimental hall to support a Muon Spin Resonance facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application to the MTA facility. Two scenarios were determined feasible. One represents an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that transports the primary beam to an existing high-intensity beam absorber located outside of the hall. Another, upgraded stage, involves an optimized productionmore » target pile and high-intensity absorber installed inside the experimental hall and potentially multiple secondary muon lines. In either scenario, with attention to target design, the MTA can host enabling and competitive Muon Spin Resonance experiments« less

  14. Induction melter apparatus

    DOEpatents

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  15. Operating an induction melter apparatus

    DOEpatents

    Roach, Jay A.; Richardson, John G.; Raivo, Brian D.; Soelberg, Nicholas R.

    2006-01-31

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  16. Thermoelectric generator having a resiliently mounted removable thermoelectric module

    DOEpatents

    Purdy, David L.; Shapiro, Zalman M.; Hursen, Thomas F.; Maurer, Gerould W.

    1976-11-02

    An electrical generator having an Isotopic Heat Capsule including radioactive fuel rod 21 as a primary heat source and Thermoelectric Modules 41 and 43 as converters. The Biological Shield for the Capsule is suspended from Spiders at each end each consisting of pretensioned rods 237 and 239 defining planes at right angles to each other. The Modules are mounted in cups 171 of transition members 173 of a heat rejection Fin Assembly whose fins 195 and 197 extend from both sides of the transition member 173 for effective cooling.

  17. Performance of solar shields. [Skylab 1 micrometeoroid shield difficulties

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1974-01-01

    The loss of the micrometeoroid shield from the Orbital Workshop section of Skylab 1 about 63 seconds after lift-off, was the catalyst for a prodigious effort to develop a substitute for the passive portion of the thermal control system. An intensive effort is described in which numerous potential thermal shield materials were assessed, and during which period ten specific shield designs were developed and carried through various stages of development and test. Thermal shield materials data are discussed, including optical, strength, fatigue, outgassing, tackiness, ultraviolet radiation, and material memory properties. Specifically addressed are thermal shield materials selection criteria and the design, development, and test requirements associated with the successful development of Skylab thermal shields, and specifically the two thermal shields subsequently deployed over the exposed gold foil skin of the Orbital Workshop. Also considered are the general performance and thermal improvements provided by both the parasol design deployed by the Skylab 1 crew, and the sail design deployed by the Skylab 2 crew.

  18. Thermal design of the Mu2e detector solenoid

    DOE PAGES

    Dhanaraj, N.; Wands, R.; Buehler, M.; ...

    2014-12-18

    The reference design for a superconducting detector solenoid (DS) for the Mu2e experiment has been completed. In this study, the main functions of the DS are to provide a graded field in the region of the stopping target, which ranges from 2 to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section withmore » a uniform magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.« less

  19. Selective cooling on land supports cloud formation by cosmic ray during geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Kitaba, I.; Hyodo, M.; Nakagawa, T.; Katoh, S.; Dettman, D. L.; Sato, H.

    2017-12-01

    On geological time scales, the galactic cosmic ray (GCR) flux at the Earth's surface has increased significantly during many short time intervals. There is a growing body of evidence that suggests that climatic cooling occurred during these episodes. Cloud formation by GCR has been claimed as the most likely cause of the linkage. However, the mechanism is not fully understood due to the difficulty of accurately estimating the amount of cloud cover in the geologic past. Our study focused on the geomagnetic field and climate in East Asia. The Earth's magnetic field provides a shield against GCR. The East Asian climate reflects the temperature balance between the Eurasian landmass and the Pacific Ocean that drives monsoon circulation.Two geomagnetic polarity reversals occurred at 780 ka and 1,070 ka. At these times the geomagnetic field decreased to about 10% of its present level causing a near doubling of the GCR flux. Temperature and rainfall amounts during these episodes were reconstructed using pollen in sediment cores from Osaka Bay, Japan. The results show a more significant temperature drop on the Eurasian continent than over the Pacific, and a decrease of summer rainfall in East Asia (i.e. a weakening of East Asian summer monsoon). These observed climate changes can be accounted for if the landmasses were more strongly cooled than the oceans. The simplest mechanism behind such asymmetric cooling is the so-called `umbrella effect' (increased cloud cover blocking solar radiation) that induces greater cooling of objects with smaller heat capacities.

  20. Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth, and byproduct aspects

    NASA Astrophysics Data System (ADS)

    Barthel, Joseph; Sarigul-Klijn, Nesrin

    2018-03-01

    Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.

  1. NSLS-II BPM System Protection from Rogue Mode Coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blednykh, A.; Bach, B.; Borrelli, A.

    2011-03-28

    Rogue mode RF shielding has been successfully designed and implemented into the production multipole vacuum chambers. In order to avoid systematic errors in the NSLS-II BPM system we introduced frequency shift of HOM's by using RF metal shielding located in the antechamber slot of each multipole vacuum chamber. To satisfy the pumping requirement the face of the shielding has been perforated with roughly 50 percent transparency. It stays clear of synchrotron radiation in each chamber.

  2. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.

  3. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    NASA Astrophysics Data System (ADS)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and manufacture of the scanning infrared imaging system, the infrared remote sensing system, the infrared early-warning satellite, and so on.

  4. Effectiveness-weighted control method for a cooling system

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  5. Effectiveness-weighted control of cooling system components

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  6. Experience with helium leak and thermal shocks test of SST-1 cryo components

    NASA Astrophysics Data System (ADS)

    Sharma, Rajiv; Nimavat, Hiren; Srikanth, G. L. N.; Bairagi, Nitin; Shah, Pankil; Tanna, V. L.; Pradhan, S.

    2012-11-01

    A steady state superconducting Tokamak SST-1 is presently under its assembly stage at the Institute for Plasma Research. The SST-1 machine is a family of Superconducting SC coils for both Toroidal field and Poloidal Field. An ultra high vacuum compatible vacuum vessel, placed in the bore of the TF coils, houses the plasma facing components. A high vacuum cryostat encloses all the SC coils and the vacuum vessel. Liquid Nitrogen (LN2) cooled thermal shield between the vacuum vessel & SC coils as well as between cryostat and the SC coils. There are number of crucial cryogenic components as Electrical isolators, 80 K thermal shield, Cryogenic flexible hose etc., which have to be passed the performance validation tests as part of fulfillment of the stringent QA/QC before incorporated in the main assembly. The individual leak tests of components at RT as well as after thermal cycle from 300 K to 77 K ensure us to make final overall leak proof system. These components include, Large numbers of Electrical Isolators for Helium as well as LN2 services, Flexible Bellows and Hoses for Helium as well as LN2 services, Thermal shock tests of large numbers of 80 K Bubble shields In order to validate the helium leak tightness of these components, we have used the calibrated mass spectrometer leak detector (MSLD) at 300 K, 77 K and 4.2. Since it is very difficult to locate the leaks, which are appearing at rather lower temperatures e.g. less than 20 K, We have invented different approaches to resolve the issue of such leaks. This paper, in general describes the design of cryogenic flexible hose, assembly, couplings for leak testing, test method and techniques of thermal cycles test at 77 K inflow conditions and leak testing aspects of different cryogenic components. The test results, the problems encountered and its solutions techniques are discussed.

  7. A food contaminant detection system based on high-Tc SQUIDs

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Fujita, H.; Hatsukade, Y.; Nagaishi, T.; Nishi, K.; Ota, H.; Otani, T.; Suzuki, S.

    2006-05-01

    We have designed and constructed a computer controlled food contaminant detection system for practical use, based on high-Tc SQUID detectors. The system, which features waterproof stainless steel construction, is acceptable under the HACCP (Hazard Analysis and Critical Control Point) programme guidelines. The outer dimensions of the system are 1500 mm length × 477 mm width × 1445 mm height, and it can accept objects up to 200 mm wide × 80 mm high. An automatic liquid nitrogen filling system was installed in the standard model. This system employed a double-layered permeable metallic shield with a thickness of 1 mm as a magnetically shielded box. The distribution of the magnetic field in the box was simulated by FEM; the gap between each shield layer was optimized before fabrication. A shielding factor of 732 in the Z-component was achieved. This value is high enough to safely operate the system in a non-laboratory environment, i.e., a factory. During testing, we successfully detected a steel contaminant as small as 0.3 mm in diameter at a distance of 75 mm.

  8. Design, fabrication, and structural testing of a lightweight shadow shield for deep-space application

    NASA Technical Reports Server (NTRS)

    Miao, D.; Barber, J. R.; Dewitt, R. L.

    1977-01-01

    Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application.

  9. Tunable Protein Stabilization In Vivo Mediated by Shield-1 in Transgenic Medaka

    PubMed Central

    Froschauer, Alexander; Kube, Lisa; Kegler, Alexandra; Rieger, Christiane; Gutzeit, Herwig O.

    2015-01-01

    Techniques for conditional gene or protein expression are important tools in developmental biology and in the analysis of physiology and disease. On the protein level, the tunable and reversible expression of proteins can be achieved by the fusion of the protein of interest to a destabilizing domain (DD). In the absence of its specific ligand (Shield-1), the protein is degraded by the proteasome. The DD-Shield system has proven to be an excellent tool to regulate the expression of proteins of interests in mammalian systems but has not been applied in teleosts like the medaka. We present the application of the DD-Shield technique in transgenic medaka and show the ubiquitous conditional expression throughout life. Shield-1 administration to the water leads to concentration-dependent induction of a YFP reporter gene in various organs and in spermatogonia at the cellular level. PMID:26148066

  10. Radiation exposure to the operator performing cardiac angiography with U-arm systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balter, S.; Sones, F.M. Jr.; Brancato, R.

    The radiation exposure received by a group of operators performing 700 coronary angiograms was measured using the brachial artery approach and the Philips Cardio Diagnost. Nineteen sites were monitored on each operator, using lithium fluoride thermoluminescent dosimeters. Four hundred examinations were performed with a table-mounted protective shield in place. Three hundred were performed without the shield. The average exposures (in mR per study) with and without the shield were 1.9/6 for the eyes and 1.4/8.3 for the thyroid. The resulting operator exposure with the shield in place is low enough so that an operator performing 25 procedures per week onmore » a continuous basis will not exceed the recommendations of the National Commission on Radiological Protection and Units. We therefore strongly recommend the use of properly designed and appropriately positioned shield with all U-arm systems.« less

  11. Radiation exposure to the operator performing cardiac angiography with U-arm systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balter, S.; Sones, F.M. Jr.; Brancato, R.

    We measured the radiation exposure received by a group of operators performing 700 coronary angiograms. All studies were performed using the brachial artery approach and the Philips Cardio Diagnost. Nineteen sites were monitored on each operator, using lithium fluoride thermoluminescent dosimeters. Four hundred examinations were performed with a table-mounted protective shield in place. Three hundred were performed without the shield. The averge exposures (in mR per study) with and without the shield were 1.9/6 for the eyes and 1.4/8.3 for the thyroid. The resulting operator exposure with the shield in place is low enough so that an operator performing 25more » procedures per week on a continuous basis will not exceed the recommendations of the National Commission on Radiological Protection and Units. We therefore strongly recommend the use of properly designed and appropriately positioned shield with all U-arm systems.« less

  12. Orion Heat Shield Manufacturing Producibility Improvements for the EM-1 Flight Test Program

    NASA Technical Reports Server (NTRS)

    Koenig, William J.; Stewart, Michael; Harris, Richard F.

    2018-01-01

    This paper describes how the ORION program is incorporating improvements in the heat shield design and manufacturing processes reducing programmatic risk and ensuring crew safety in support of NASA's Exploration missions. The approach for the EFT-1 heat shield utilized a low risk Apollo heritage design and manufacturing process using an Avcoat TPS ablator with a honeycomb substrate to provide a one piece heat shield to meet the mission re-entry heating environments. The EM-1 mission will have additional flight systems installed to fly to the moon and return to Earth. Heat shield design and producibility improvements have been incorporated in the EM-1 vehicle to meet deep space mission requirements. The design continues to use the Avcoat material, but in a block configuration to enable improvements in consistant and repeatable application processes using tile bonding experience developed on the Space Shuttle Transportation System Program.

  13. A Launch Requirements Trade Study for Active Space Radiation Shielding for Long Duration Human Missions

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer

    2015-01-01

    A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.

  14. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.; ASTRO-H HXI/SGD Team

    2016-09-01

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.

  15. PBF Reactor Building (PER620) basement, inside cubicle 13. Lead bricks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) basement, inside cubicle 13. Lead bricks shield the fission product detection system (FPDS). The system detected fission products in pressure loop from in-pile tube. shielding was to prevent other radiation in cubicle from interfering. Assembly of bricks in foreground will slide back to enclose and shield equipment in the three chambers. Date: 1982. INEEL negative no. 82-6376 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  17. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  18. Realization of the electrical Sentinel 4 detector integration

    NASA Astrophysics Data System (ADS)

    Hermsen, M.; Hohn, R.; Skegg, M.; Woffinden, C.; Reulke, R.

    2017-09-01

    The detectors of the Sentinel 4 multi spectral imager are operated in flight at 215K while the analog electronics is operated at ambient temperature. The detector is cooled by means of a radiator. For thermal reasons no active component has been allowed in the cooled area closest to the detector as the passive radiator is restricted in its size. For thermal decoupling of detector and electronics a long distance between detector and electronics is considered ideal as thermal conductivity decreases with the length of the connection. In contradiction a short connection between detector and electronics is ideal for the electronic signals. Only a short connection ensures the signal integrity of both the weak detector output signal but similarly also the clock signals for driving the detector. From a mechanical and thermal point of view the connection requires a certain minimum length. The selected solution serves all these needs but had to approach the limits of what is electrically, mechanically and thermally feasible. In addition, shielding from internal (self distortion) and external distorting signals has to be realized for the connection between FEE(Front End Electronics) and detectors. At the time of the design of the flex it was not defined whether the mechanical structure between FEE and FPA (Focal Plane Assembly) would act as a shielding structure. The physical separation between CCD detector and the Front-end Electronics, the adverse EMI environment in which the instrument will be operated in (the location of the instrument on the satellite is in vicinity to a down-link K-band communication antenna of the S/C) require at least the video output signals to be shielded. Both detectors (a NIR and a UVVIS detector) are sensitive to contamination and difficult to be cleaned in case of any contamination. This brings up extreme cleanliness requirements for the detector in manufacturing and assembly. Effectively the detector has to be kept in an ISO 5 environment and additionally humidity has to be avoided - which does not comply with the usual clean-room atmosphere. This paper describes how in Sentinel 4 the given challenges have been overcome, how the limited load drive capability of the detector component has been considered on a flex length of about 20 cm (7.87 in) and how EMC shielding of the highly sensitive analog signals of the detector has been realized. Also covered are design/manufacturing aspects and a glance on testing results is provided

  19. The NSCL cyclotron gas stopper - Entering commissioning

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J. J.; Green, M.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A. C. C.; Zeller, A.

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These 'stopped beams' have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN2-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet's two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  20. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    OVERSEEING ORION HEAT SHIELD WORK IN MARSHALL'S SEVEN-AXIS MILLING AND MACHINING FACILITY ARE, FROM LEFT, JOHN KOWAL, MANAGER OF ORION'S THERMAL PROTECTION SYSTEM AT JOHNSON SPACE CENTER; NICHOLAS CROWLEY, AN AMES ENGINEERING TECHNICIAN; AND ROB KORNIENKO, AMES ENGINEERING BRANCH CHIEF. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALE FLIGHT TEST OF ORION IN DECEMBER, 2014

  1. How Task Representations Guide Attention: Further Evidence for the Shielding Function of Task Sets

    ERIC Educational Resources Information Center

    Dreisbach, Gesine; Haider, Hilde

    2009-01-01

    To pursue goal directed behavior, the cognitive system must be shielded against interference from irrelevant information. Aside from the online adjustment of cognitive control widely discussed in the literature, an additional mechanism of preventive goal shielding is suggested that circumvents irrelevant information from being processed in the…

  2. Retro Rocket Motor Self-Penetrating Scheme for Heat Shield Exhaust Ports

    NASA Technical Reports Server (NTRS)

    Marrese-Reading, Colleen; St.Vaughn, Josh; Zell, Peter; Hamm, Ken; Corliss, Jim; Gayle, Steve; Pain, Rob; Rooney, Dan; Ramos, Amadi; Lewis, Doug; hide

    2009-01-01

    A preliminary scheme was developed for base-mounted solid-propellant retro rocket motors to self-penetrate the Orion Crew Module heat shield for configurations with the heat shield retained during landings on Earth. In this system the motors propel impactors into structural push plates, which in turn push through the heat shield ablator material. The push plates are sized such that the remaining port in the ablator material is large enough to provide adequate flow area for the motor exhaust plume. The push plate thickness is sized to assure structural integrity behind the ablative thermal protection material. The concept feasibility was demonstrated and the performance was characterized using a gas gun to launch representative impactors into heat shield targets with push plates. The tests were conducted using targets equipped with Fiberform(R) and PICA as the heat shield ablator material layer. The PICA penetration event times were estimated to be under 30 ms from the start of motor ignition. The mass of the system (not including motors) was estimated to be less than 2.3 kg (5 lbs) per motor. The configuration and demonstrations are discussed.

  3. 29 CFR 1926.650 - Scope, application, and definitions applicable to this subpart.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... excavation face or into an excavation, or from the collapse of adjacent structures. Protective systems... point from another, and is constructed from earth or from structural materials such as steel or wood... other members of the shoring system. Shield (Shield system) means a structure that is able to withstand...

  4. 29 CFR 1926.650 - Scope, application, and definitions applicable to this subpart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... excavation face or into an excavation, or from the collapse of adjacent structures. Protective systems... point from another, and is constructed from earth or from structural materials such as steel or wood... other members of the shoring system. Shield (Shield system) means a structure that is able to withstand...

  5. 29 CFR 1926.650 - Scope, application, and definitions applicable to this subpart.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... excavation face or into an excavation, or from the collapse of adjacent structures. Protective systems... point from another, and is constructed from earth or from structural materials such as steel or wood... other members of the shoring system. Shield (Shield system) means a structure that is able to withstand...

  6. 29 CFR 1926.650 - Scope, application, and definitions applicable to this subpart.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... excavation face or into an excavation, or from the collapse of adjacent structures. Protective systems... point from another, and is constructed from earth or from structural materials such as steel or wood... other members of the shoring system. Shield (Shield system) means a structure that is able to withstand...

  7. A persistent-mode 0.5 T solid-nitrogen-cooled MgB2 magnet for MRI.

    PubMed

    Ling, Jiayin; Voccio, John P; Hahn, Seungyong; Qu, Timing; Bascuñán, Juan; Iwasa, Yukikazu

    2017-02-01

    This paper presents construction details and test results of a persistent-mode 0.5-T MgB 2 magnet developed at the Francis Bitter Magnet Lab, MIT. The magnet, of 276-mm inner diameter and 290-mm outer diameter, consisted of a stack of 8 solenoidal coils with a total height of 460 mm. Each coil was wound with monofilament MgB 2 wire, equipped with a persistent-current switch and terminated with a superconducting joint, forming an individual superconducting loop. Resistive solder joints connected the 8 coils in series. The magnet, after being integrated into a testing system, immersed in solid nitrogen, was operated in a temperature range of 10-13 K. A two-stage cryocooler was deployed to cool a radiation shield and the cold mass that included mainly ~60 kg of solid nitrogen and the magnet. The solid nitrogen was capable of providing a uniform and stable cryogenic environment to the magnet. The magnet sustained a 0.47-T magnetic field at its center persistently in a range of 10-13 K. The current in each coil was inversely calculated from the measured field profile to determine the performance of each coil in persistent-mode operation. Persistent-current switches were successfully operated in solid nitrogen for ramping the magnet. They were also designed to absorb magnetic energy in a protection mechanism; its effectiveness was evaluated in an induced quench.

  8. Design of horizontal test cryostat for testing two 650 MHz cavities: cryogenic considerations

    NASA Astrophysics Data System (ADS)

    Khare, P.; Gilankar, S.; Kush, P. K.; Lakshminarayanan, A.; Choubey, R.; Ghosh, R.; Jain, A.; Patel, H.; Gupta, P. D.; Hocker, A.; Ozelis, J. P.; Geynisman, M.; Reid, C.; Poloubotko, V.; Mitchell, D.; Peterson, T. J.; Nicol, T. H.

    2017-02-01

    Horizontal Test Cryostat has been designed for testing two 650 MHz "dressed" Superconducting Radio Frequency (SCRF) cavities in a single testing cycle at Raja Ramanna Centre for Advanced Technology, India (RRCAT) in collaboration with Fermi National Accelerator Laboratory, USA (FNAL). This cryostat will facilitate testing of two 5-cell 650 MHz SCRF cavities, in CW or pulsed regime, for upcoming High Intensity Superconducting Proton Accelerator projects at both countries. Two such HTS facilities are planned, one at RRCAT for Indian Spallation Neutron Source project (ISNS), which is on the horizon, and the other at FNAL, USA. A test cryostat, a part of horizontal test stand-2 (HTS-2) will be set up at RRCAT for Indian project. In order to maximize the utility of this facility, it can also be used to test two dressed 9-cell 1.3 GHz cavities and other similarly-sized devices. The facility assumes, as an input, the availability of liquid nitrogen at 80 K and liquid helium at 4.5 K and 2 K, with a refrigeration capacity of approximately 50 W at 2 K. Design work of cryostat has been completed and now procurement process is in progress. This paper discusses salient features of the cryostat. It also describes different design calculations and ANSYS analysis for cool down of few subsystems like cavity support system and liquid nitrogen cooled thermal radiation shield of horizontal test cryostat..

  9. Gas-cooled reactor programs. High-temperature gas-cooled reactor technology development program. Annual progress report, December 31, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1984-06-01

    ORNL continues to make significant contributions to the national program. In the HTR fuels area, we are providing detailed statistical information on the fission product retention performance of irradiated fuel. Our studies are also providing basic data on the mechanical, physical, and chemical behavior of HTR materials, including metals, ceramics, graphite, and concrete. The ORNL has an important role in the development of improved HTR graphites and in the specification of criteria that need to be met by commercial products. We are also developing improved reactor physics design methods. Our work in component development and testing centers in the Componentmore » Flow Test Loop (CFTL), which is being used to evaluate the performance of the HTR core support structure. Other work includes experimental evaluation of the shielding effectiveness of the lower portions of an HTR core. This evaluation is being performed at the ORNL Tower Shielding Facility. Researchers at ORNL are developing welding techniques for attaching steam generator tubing to the tubesheets and are testing ceramic pads on which the core posts rest. They are also performing extensive testing of aggregate materials obtained from potential HTR site areas for possible use in prestressed concrete reactor vessels. During the past year we continued to serve as a peer reviewer of small modular reactor designs being developed by GA and GE with balance-of-plant layouts being developed by Bechtel Group, Inc. We have also evaluated the national need for developing HTRs with emphasis on the longer term applications of the HTRs to fossil conversion processes.« less

  10. A passively-safe fusion reactor blanket with helium coolant and steel structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosswait, Kenneth Mitchell

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel asmore » a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.« less

  11. Controlled cooling of an electronic system for reduced energy consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the coolingmore » system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.« less

  12. Shielded resistive electromagnets of arbitrary surface geometry using the boundary element method and a minimum energy constraint.

    PubMed

    Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A

    2013-09-01

    Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker monitors the progress as a crane lowers the Orion heat shield from Exploration Flight Test-1 onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  14. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress as a crane lowers the Orion heat shield from Exploration Flight Test-1 onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  15. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a crane is attached to the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  16. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers help prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  17. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker helps prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  18. Planetary surface reactor shielding using indigenous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials.

  19. Adhesion of Silicone Elastomer Seals for NASA's Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Miller, Sharon K. R.; Smith, Ian M.; Daniels, Christopher C.; Steinetz, Bruce M

    2008-01-01

    Silicone rubber seals are being considered for a number of interfaces on NASA's Crew Exploration Vehicle (CEV). Some of these joints include the docking system, hatches, and heat shield-to-back shell interface. A large diameter molded silicone seal is being developed for the Low Impact Docking System (LIDS) that forms an effective seal between the CEV and International Space Station (ISS) and other future Constellation Program spacecraft. Seals between the heat shield and back shell prevent high temperature reentry gases from leaking into the interface. Silicone rubber seals being considered for these locations have inherent adhesive tendencies that would result in excessive forces required to separate the joints if left unchecked. This paper summarizes adhesion assessments for both as-received and adhesion-mitigated seals for the docking system and the heat shield interface location. Three silicone elastomers were examined: Parker Hannifin S0899-50 and S0383-70 compounds, and Esterline ELA-SA-401 compound. For the docking system application various levels of exposure to atomic oxygen (AO) were evaluated. Moderate AO treatments did not lower the adhesive properties of S0899-50 sufficiently. However, AO pretreatments of approximately 10(exp 20) atoms/sq cm did lower the adhesion of S0383-70 and ELA-SA-401 to acceptable levels. For the heat shield-to-back shell interface application, a fabric covering was also considered. Molding Nomex fabric into the heat shield pressure seal appreciably reduced seal adhesion for the heat shield-to-back shell interface application.

  20. A direct method for fabricating tongue-shielding stent.

    PubMed

    Wang, R R; Olmsted, L W

    1995-08-01

    During oral cancer radiotherapy, a tongue-shielding radiation stent guides the patient's upper and lower jaws to a repeatable position, attenuates radiation doses, and protects the tongue and structures adjacent to the irradiated field. Conventionally, a tongue-shielding radiation stent is made of heat-cured polymethyl methacrylate resin in which a low-melting Pb-Bi-Sn alloy is embedded as a shielding layer. Its use involves multiple and lengthy clinical and laboratory procedures. An improved polyvinyl siloxane-metal composite shielding system for radioprotection has recently been developed. This two-component, base and catalyst, putty material offers a shielding effect similar to that of the conventional shielding alloys. Its major advantages are that it is simple to use, requires only one clinical appointment, and affords efficient collaboration between dental and medical teams during cancer treatment. This article describes a simplified direct method of fabricating a tongue-shielding stent with the use of a new polyvinylsiloxane-metal composite in conjunction with impression putty material.

Top