Sample records for shield design comparison

  1. Description of Transport Codes for Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.

    2011-01-01

    This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.

  2. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservativemore » assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.« less

  3. Shielding Analyses for VISION Beam Line at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Irina; Gallmeier, Franz X

    2014-01-01

    Full-scale neutron and gamma transport analyses were performed to design shielding around the VISION beam line, instrument shielding enclosure, beam stop, secondary shutter including a temporary beam stop for the still closed neighboring beam line to meet requirement is to achieve dose rates below 0.25 mrem/h at 30 cm from the shielding surface. The beam stop and the temporary beam stop analyses were performed with the discrete ordinate code DORT additionally to Monte Carlo analyses with the MCNPX code. Comparison of the results is presented.

  4. Design of orbital debris shields for oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1994-01-01

    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  5. A comparison study of different RF shields for an 8-element transceive small animal array at 9.4T.

    PubMed

    Jin, Jin; Li, Yu; Liu, Feng; Weber, Ewald; Crozier, Stuart

    2011-01-01

    In this study, three types of radio-frequency shields are studied and compared in the context of ultra-high field small-animal magnetic resonance imaging. It has been demonstrated that the coil penetration depth and mutual coupling between the coils depend heavily on the type of shield employed. The results were used to guide the design of a 9.4T 8-element transceive small animal array, which provides high overall coil penetration.

  6. Effect of environmental parameters on habitat structural weight and cost

    NASA Technical Reports Server (NTRS)

    Bock, E.; Lambrou, F., Jr.; Simon, M.

    1979-01-01

    Space-settlement conceptual designs were previously accomplished using earth-normal physiological conditions. The habitat weight and cost penalties associated with this conservative design approach are quantified. These penalties are identified by comparison of conservative earth-normal designs with habitats designed to less than earth-normal conditions. Physiological research areas are also recommended as a necessary prerequisite to realizing these potential weight and cost savings. Major habitat structural elements, that is, pressure shell and radiation shielding, for populations of 100, 10,000, and 1,000,000, are evaluated for effects of atmospheric pressure, pseudogravity level, radiation shielding thickness, and habitat configuration.

  7. Shielding design for the front end of the CERN SPL.

    PubMed

    Magistris, Matteo; Silari, Marco; Vincke, Helmut

    2005-01-01

    CERN is designing a 2.2-GeV Superconducting Proton Linac (SPL) with a beam power of 4 MW, to be used for the production of a neutrino superbeam. The SPL front end will initially accelerate 2 x 10(14) negative hydrogen ions per second up to an energy of 120 MeV. The FLUKA Monte Carlo code was employed for shielding design. The proposed shielding is a combined iron-concrete structure, which also takes into consideration the required RF wave-guide ducts and access labyrinths to the machine. Two beam-loss scenarios were investigated: (1) constant beam loss of 1 Wm(-1) over the whole accelerator length and (2) full beam loss occurring at various locations. A comparison with results based on simplified approaches is also presented.

  8. Shielded Heavy-Ion Environment Linear Detector (SHIELD): an experiment for the Radiation and Technology Demonstration (RTD) Mission.

    PubMed

    Shavers, M R; Cucinotta, F A; Miller, J; Zeitlin, C; Heilbronn, L; Wilson, J W; Singleterry, R C

    2001-01-01

    Radiological assessment of the many cosmic ion species of widely distributed energies requires the use of theoretical transport models to accurately describe diverse physical processes related to nuclear reactions in spacecraft structures, planetary atmospheres and surfaces, and tissues. Heavy-ion transport models that were designed to characterize shielded radiation fields have been validated through comparison with data from thick-target irradiation experiments at particle accelerators. With the RTD Mission comes a unique opportunity to validate existing radiation transport models and guide the development of tools for shield design. For the first time, transport properties will be measured in free-space to characterize the shielding effectiveness of materials that are likely to be aboard interplanetary space missions. Target materials composed of aluminum, advanced composite spacecraft structure and other shielding materials, helium (a propellant) and tissue equivalent matrices will be evaluated. Large solid state detectors will provide kinetic energy and charge identification for incident heavy-ions and for secondary ions created in the target material. Transport calculations using the HZETRN model suggest that 8 g cm -2 thick targets would be adequate to evaluate the shielding effectiveness during solar minimum activity conditions for a period of 30 days or more.

  9. A Comparison of Fission Power System Options for Lunar and Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    This paper presents a comparison of reactor and power conversion design options for 50 kWe class lunar and Mars surface power applications with scaling from 25 to 200 kWe. Design concepts and integration approaches are provided for three reactor-converter combinations: gas-cooled Brayton, liquid-metal Stirling, and liquid-metal thermoelectric. The study examines the mass and performance of low temperature, stainless steel based reactors and higher temperature refractory reactors. The preferred system implementation approach uses crew-assisted assembly and in-situ radiation shielding via installation of the reactor in an excavated hole. As an alternative, self-deployable system concepts that use earth-delivered, on-board radiation shielding are evaluated. The analyses indicate that among the 50 kWe stainless steel reactor options, the liquid-metal Stirling system provides the lowest mass at about 5300 kg followed by the gas-cooled Brayton at 5700 kg and the liquid-metal thermoelectric at 8400 kg. The use of a higher temperature, refractory reactor favors the gas-cooled Brayton option with a system mass of about 4200 kg as compared to the Stirling and thermoelectric options at 4700 and 5600 kg, respectively. The self-deployed concepts with on-board shielding result in a factor of two system mass increase as compared to the in-situ shielded concepts.

  10. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization.

    PubMed

    Boyle, Christopher; Kim, Il Yong

    2011-06-03

    Since the late 1980s, computational analysis of total hip arthroplasty (THA) prosthesis components has been completed using macro-level bone remodeling algorithms. The utilization of macro-sized elements requires apparent bone densities to predict cancellous bone strength, thereby, preventing visualization and analysis of realistic trabecular architecture. In this study, we utilized a recently developed structural optimization algorithm, design space optimization (DSO), to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur pre- and post-THA. The computational simulation facilitated direct performance comparison between two commercially available prosthetic implant stems from Zimmer Inc.: the Alloclassic and the Mayo conservative. The novel micro-level approach allowed the unique ability to visualize the trabecular bone adaption post-operation and to quantify the changes in bone mineral content by region. Stress-shielding and strain energy distribution were also quantified for the immediate post-operation and the stably fixated, post-remodeling conditions. Stress-shielding was highest in the proximal region and remained unchanged post-remodeling; conversely, the mid and distal portions show large increases in stress, suggesting a distal shift in the loadpath. The Mayo design conserves bone mass, while simultaneously reducing the incidence of stress-shielding compared to the Alloclassic, revealing a key benefit of the distinctive geometry. Several important factors for stable fixation, determined in clinical evaluations from the literature, were evident in both designs: high levels of proximal bone loss and distal bone densification. The results suggest this novel computational framework can be utilized for comparative hip prosthesis shape, uniquely considering the post-operation bone remodeling as a design criterion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    PubMed

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect

    NASA Astrophysics Data System (ADS)

    Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng

    2018-05-01

    The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.

  13. Comparison of Radiation Transport Codes, HZETRN, HETC and FLUKA, Using the 1956 Webber SPE Spectrum

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Slaba, Tony C.; Blattnig, Steve R.; Tripathi, Ram K.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.; Reddell, Brandon; Clowdsley, Martha S.; hide

    2009-01-01

    Protection of astronauts and instrumentation from galactic cosmic rays (GCR) and solar particle events (SPE) in the harsh environment of space is of prime importance in the design of personal shielding, spacec raft, and mission planning. Early entry of radiation constraints into the design process enables optimal shielding strategies, but demands efficient and accurate tools that can be used by design engineers in every phase of an evolving space project. The radiation transport code , HZETRN, is an efficient tool for analyzing the shielding effectiveness of materials exposed to space radiation. In this paper, HZETRN is compared to the Monte Carlo codes HETC-HEDS and FLUKA, for a shield/target configuration comprised of a 20 g/sq cm Aluminum slab in front of a 30 g/cm^2 slab of water exposed to the February 1956 SPE, as mode led by the Webber spectrum. Neutron and proton fluence spectra, as well as dose and dose equivalent values, are compared at various depths in the water target. This study shows that there are many regions where HZETRN agrees with both HETC-HEDS and FLUKA for this shield/target configuration and the SPE environment. However, there are also regions where there are appreciable differences between the three computer c odes.

  14. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    PubMed

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  15. Acceleration of MCNP calculations for small pipes configurations by using Weigth Windows Importance cards created by the SN-3D ATTILA

    NASA Astrophysics Data System (ADS)

    Castanier, Eric; Paterne, Loic; Louis, Céline

    2017-09-01

    In the nuclear engineering, you have to manage time and precision. Especially in shielding design, you have to be more accurate and efficient to reduce cost (shielding thickness optimization), and for this, you use 3D codes. In this paper, we want to see if we can easily applicate the CADIS methods for design shielding of small pipes which go through large concrete walls. We assess the impact of the WW generated by the 3D-deterministic code ATTILA versus WW directly generated by MCNP (iterative and manual process). The comparison is based on the quality of the convergence (estimated relative error (σ), Variance of Variance (VOV) and Figure of Merit (FOM)), on time (computer time + modelling) and on the implement for the engineer.

  16. Design, fabrication and test of Load Bearing multilayer insulation to support a broad area cooled shield

    NASA Astrophysics Data System (ADS)

    Dye, S. A.; Johnson, W. L.; Plachta, D. W.; Mills, G. L.; Buchanan, L.; Kopelove, A. B.

    2014-11-01

    Improvements in cryogenic propellant storage are needed to achieve reduced or Zero Boil Off of cryopropellants, critical for long duration missions. Techniques for reducing heat leak into cryotanks include using passive multi-layer insulation (MLI) and vapor cooled or actively cooled thermal shields. Large scale shields cannot be supported by tank structural supports without heat leak through the supports. Traditional MLI also cannot support shield structural loads, and separate shield support mechanisms add significant heat leak. Quest Thermal Group and Ball Aerospace, with NASA SBIR support, have developed a novel Load Bearing multi-layer insulation (LBMLI) capable of self-supporting thermal shields and providing high thermal performance. We report on the development of LBMLI, including design, modeling and analysis, structural testing via vibe and acoustic loading, calorimeter thermal testing, and Reduced Boil-Off (RBO) testing on NASA large scale cryotanks. LBMLI uses the strength of discrete polymer spacers to control interlayer spacing and support the external load of an actively cooled shield and external MLI. Structural testing at NASA Marshall was performed to beyond maximum launch profiles without failure. LBMLI coupons were thermally tested on calorimeters, with superior performance to traditional MLI on a per layer basis. Thermal and structural tests were performed with LBMLI supporting an actively cooled shield, and comparisons are made to the performance of traditional MLI and thermal shield supports. LBMLI provided a 51% reduction in heat leak per layer over a previously tested traditional MLI with tank standoffs, a 38% reduction in mass, and was advanced to TRL5. Active thermal control using LBMLI and a broad area cooled shield offers significant advantages in total system heat flux, mass and structural robustness for future Reduced Boil-Off and Zero Boil-Off cryogenic missions with durations over a few weeks.

  17. Effect of Alternate Supply of Shielding Gases of Tungsten Inert Gas Welding on Mechanical Properties of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shinde, Neelam Vilas; Telsang, Martand Tamanacharya

    2016-07-01

    In the present study, an attempt is made to study the effect of alternate supply of the shielding gas in comparison with the conventional method of TIG welding with pure argon gas. The two sets of combination are used as 10-10 and 40-20 s for alternate supply of the Argon and Helium shielding gas respectively. The effect of alternate supply of shielding gas is studied on the mechanical properties like bend test, tensile test and impact test. The full factorial experimental design is applied for three set of combinations. The ANOVA is used to find significant parameters for the process and regression analysis used to develop the mathematical model. The result shows that the alternate supply of the shielding gas for 10-10 s provides better result for the bend, tensile and impact test as compared with the conventional argon gas and the alternate supply of 40-20 s argon and helium gas respectively. Welding speed can be increased for alternate supply of the shielding gas that can reduce the total welding cost.

  18. Shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    Perturbation theory formulas were derived and applied to determine changes in neutron and gamma-ray doses due to changes in various radiation shield layers for fixed sources. For a given source and detector position, the perturbation method enables dose derivatives with respect to density, or equivalently thickness, for every layer to be determined from one forward and one inhomogeneous adjoint calculation. A direct determination without the perturbation approach would require two forward calculations to evaluate the dose derivative due to a change in a single layer. Hence, the perturbation method for obtaining dose derivatives requires fewer computations for design studies of multilayer shields. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer in a two-layer spherical configuration as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  19. Fusion reactor blanket/shield design study

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Clemmer, R. G.; Harkness, S. D.; Jung, J.; Krazinski, J. L.; Mattas, R. F.; Stevens, H. C.; Youngdahl, C. K.; Trachsel, C.; Bowers, D.

    1979-07-01

    A joint study of Tokamak reactor first wall/blanket/shield technology was conducted to identify key technological limitations for various tritium breeding blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium breeding blanket concepts were evaluated according to the proposed coolant. The effort concentrated on evaluation of lithium and water cooled blanket designs and helium and molten salt cooled designs. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a Tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  20. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.

  1. Analysis of the propagation of neutrons and gamma-rays from the fast neutron source reactor YAYOI

    NASA Astrophysics Data System (ADS)

    Yoshida, Shigeo; Murata, Isao; Nakagawa, Tsutomu; Saito, Isao

    2011-10-01

    The skyshine effect is crucial for designing appropriate shielding. To investigate the skyshine effect, the propagation of neutrons was measured and analyzed at the fast neutron source reactor YAYOI. Pulse height spectra and dose distributions of neutron and secondary gamma-ray were measured outside YAYOI, and analyzed with MCNP-5 and JENDL-3.3. Comparison with the experimental results showed good agreement. Also, a semi-empirical formula was successfully derived to describe the dose distribution. The formulae can be used to predict the skyshine effect at YAYOI, and will be useful for estimating the skyshine effect and designing the shield structure for fusion facilities.

  2. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application

    NASA Astrophysics Data System (ADS)

    Bergen, A.; van Weers, H. J.; Bruineman, C.; Dhallé, M. M. J.; Krooshoop, H. J. G.; ter Brake, H. J. M.; Ravensberg, K.; Jackson, B. D.; Wafelbakker, C. K.

    2016-10-01

    The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ˜100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 106, well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 μT, the residual internal DC field normal to the detector plane is less than 1 μT. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 μT.

  3. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application.

    PubMed

    Bergen, A; van Weers, H J; Bruineman, C; Dhallé, M M J; Krooshoop, H J G; Ter Brake, H J M; Ravensberg, K; Jackson, B D; Wafelbakker, C K

    2016-10-01

    The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ∼100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 10 6 , well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 μT, the residual internal DC field normal to the detector plane is less than 1 μT. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 μT.

  4. Electromagnetic simulation of helicon plasma antennas for their electrostatic shield design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakos, Yorgos, E-mail: y.stratakos@gmail.com; Zeniou, Angelos, E-mail: a.zeniou@inn.demokritos.gr; Gogolides, Evangelos, E-mail: e.gogolides@inn.demokritos.gr

    A detailed electromagnetic parametric analysis of the helicon antenna (half Nagoya type) is shown at 13.56 MHz using a CST Microwave Studio 2012. The antenna is used to excite plasma inside a dielectric cylinder similar to a commercial reactor. Instead of focusing on the plasma state, the authors focus on the penetration and the three dimensional distribution of electric fields through the dielectric wall. Our aim is to reduce capacitive coupling which produces unwanted longitudinal and radial electric fields. Comparison of the helicon antenna electromagnetic performance under diverse boundary conditions shows that one is allowed to use vacuum simulations without plasmamore » present in the cylinder, or approximate the plasma as a column of gyrotropic material with a tensor dielectric permittivity and with a sheath of a few millimeters in order to qualitatively predict the electric field distribution, thus avoiding a full plasma simulation. This way the analysis of the full problem is much faster and allows an optimal shield design. A detailed study of various shields shows that one can reduce the radial and axial fields by more than 1 order of magnitude compared to the unshielded antenna, while the azimuthal field is reduced only by a factor of 2. Optimal shield design in terms of pitch and spacing of openings is determined. Finally, an experimental proof of concept of the effect of shielding on reduced wall sputtering is provided, by monitoring the roughness created during oxygen plasma etching of an organic polymer.« less

  5. Faraday Shields within a Solenoidal Coil to Reduce Sample Heating: Numerical Comparison of Designs and Experimental Verification

    PubMed Central

    Park, BuSik; Neuberger, Thomas; Webb, Andrew G.; Bigler, Don C.; Collins, Christopher M.

    2009-01-01

    A comparison of methods to decrease RF power dissipation and related heating in conductive samples using passive conductors surrounding a sample in a solenoid coil is presented. Full-Maxwell finite difference time domain numerical calculations were performed to evaluate the effect of the passive conductors by calculating conservative and magnetically-induced electric field and magnetic field distributions. To validate the simulation method, experimental measurements of temperature increase were conducted using a solenoidal coil (diameter 3 mm), a saline sample (10 mM NaCl) and passive copper shielding wires (50 μm diameter). The temperature increase was 58% lower with the copper wires present for several different input powers to the coil. This was in good agreement with simulation for the same geometry, which indicated 57% lower power dissipated in the sample with conductors present. Simulations indicate that some designs should be capable of reducing temperature increase by more than 85%. PMID:19879784

  6. SP-100 GES/NAT radiation shielding systems design and development testing

    NASA Astrophysics Data System (ADS)

    Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.

  7. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Lun; Sheu, Rong-Jiun

    2017-09-01

    Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.

  8. Design and Performance of a Metal-Shielded Piezoelectric Sensor

    PubMed Central

    Sáenz de Inestrillas, Álvaro; Camarena, Francisco; Bou Cabo, Manuel; Barreiro, Julián M.; Reig, Antonio

    2017-01-01

    In certain circumstances when acoustic measurements are required in the presence of explosive atmospheres the sensor must be placed inside a Faraday Cage. Piezoelectric active materials are suitable for this purpose as they do not need an electrical power supply, although the metal shielding can considerably reduce sensor sensitivity, which is already low at the acoustic frequency range (<20 kHz). This paper describes a metal-shielded piezoelectric sensor designed to work in the range of frequencies between 1 and 2 kHz and in these environmental conditions. The main idea was to add a thin material layer to the front face of the piezoelectric ceramic in order to force the system to vibrate in flexure mode at low frequencies. The resonant frequency and sensitivity of the system was studied as a function of the radius, thickness, and material of the thin layer. The study includes a comparison of theoretical model, FEM simulation, and real data measured using three aluminum and three steel prototypes of different sizes. PMID:28587224

  9. Design and Performance of a Metal-Shielded Piezoelectric Sensor.

    PubMed

    Sáenz de Inestrillas, Álvaro; Camarena, Francisco; Bou Cabo, Manuel; Barreiro, Julián M; Reig, Antonio

    2017-06-04

    In certain circumstances when acoustic measurements are required in the presence of explosive atmospheres the sensor must be placed inside a Faraday Cage. Piezoelectric active materials are suitable for this purpose as they do not need an electrical power supply, although the metal shielding can considerably reduce sensor sensitivity, which is already low at the acoustic frequency range (<20 kHz). This paper describes a metal-shielded piezoelectric sensor designed to work in the range of frequencies between 1 and 2 kHz and in these environmental conditions. The main idea was to add a thin material layer to the front face of the piezoelectric ceramic in order to force the system to vibrate in flexure mode at low frequencies. The resonant frequency and sensitivity of the system was studied as a function of the radius, thickness, and material of the thin layer. The study includes a comparison of theoretical model, FEM simulation, and real data measured using three aluminum and three steel prototypes of different sizes.

  10. Extensive Radiation Shielding Analysis for Different Spacecraft Orbits

    NASA Astrophysics Data System (ADS)

    Çay, Yiǧit; Kaymaz, Zerefsan

    2016-07-01

    Radiation environment around Earth poses a great danger for spacecraft and causes immature de-orbiting or loss of the spacecraft in near Earth space environment. In this study, a student project has been designed to build a CubeSat, PolarBeeSail (PBS), with an orbit having inclination of 80°, 4 Re in perigee and 20 Re in apogee to study the polar magnetospheric environment. An extensive radiation dose analyses were carried out for PBS orbit, and integral and differential fluxes were calculated using SPENVIS tools. A shielding analysis was performed and an optimum Aluminum thickness, 3 mm, was obtained. These results for PBS were then compared for other orbits at different altitudes both for polar and equatorial orbits. For this purpose, orbital characteristics of POES-19 and GOES-15 were used. The resulting proton flux analyses, TID analyses, and further shielding studies were conducted; comparisons and recommendations were made for future design of spacecraft that will use these environments.

  11. A Fast Code for Jupiter Atmospheric Entry Analysis

    NASA Technical Reports Server (NTRS)

    Yauber, Michael E.; Wercinski, Paul; Yang, Lily; Chen, Yih-Kanq

    1999-01-01

    A fast code was developed to calculate the forebody heating environment and heat shielding that is required for Jupiter atmospheric entry probes. A carbon phenolic heat shield material was assumed and, since computational efficiency was a major goal, analytic expressions were used, primarily, to calculate the heating, ablation and the required insulation. The code was verified by comparison with flight measurements from the Galileo probe's entry. The calculation required 3.5 sec of CPU time on a work station, or three to four orders of magnitude less than for previous Jovian entry heat shields. The computed surface recessions from ablation were compared with the flight values at six body stations. The average, absolute, predicted difference in the recession was 13.7% too high. The forebody's mass loss was overpredicted by 5.3% and the heat shield mass was calculated to be 15% less than the probe's actual heat shield. However, the calculated heat shield mass did not include contingencies for the various uncertainties that must be considered in the design of probes. Therefore, the agreement with the Galileo probe's values was satisfactory in view of the code's fast running time and the methods' approximations.

  12. Neutron Energy and Time-of-flight Spectra Behind the Lateral Shield of a High Energy Electron Accelerator Beam Dump, Part II: Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roesler, Stefan

    2002-09-19

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code.more » The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.« less

  13. A Fast Code for Jupiter Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.; Wercinski, Paul; Yang, Lily; Chen, Yih-Kanq; Arnold, James (Technical Monitor)

    1998-01-01

    A fast code was developed to calculate the forebody heating environment and heat shielding that is required for Jupiter atmospheric entry probes. A carbon phenolic heat shield material was assumed and, since computational efficiency was a major goal, analytic expressions were used, primarily, to calculate the heating, ablation and the required insulation. The code was verified by comparison with flight measurements from the Galileo probe's entry; the calculation required 3.5 sec of CPU time on a work station. The computed surface recessions from ablation were compared with the flight values at six body stations. The average, absolute, predicted difference in the recession was 12.5% too high. The forebody's mass loss was overpredicted by 5.5% and the heat shield mass was calculated to be 15% less than the probe's actual heat shield. However, the calculated heat shield mass did not include contingencies for the various uncertainties that must be considered in the design of probes. Therefore, the agreement with the Galileo probe's values was considered satisfactory, especially in view of the code's fast running time and the methods' approximations.

  14. SP-100 GES/NAT radiation shielding systems design and development testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.

    1991-01-10

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less

  15. Double-layer neutron shield design as neutron shielding application

    NASA Astrophysics Data System (ADS)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  16. Applicability of a Bonner Shere technique for pulsed neutron in 120 GeV proton facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanami, T.; Hagiwara, M.; Iwase, H.

    2008-02-01

    The data on neutron spectra and intensity behind shielding are important for radiation safety design of high-energy accelerators since neutrons are capable of penetrating thick shielding and activating materials. Corresponding particle transport codes--that involve physics models of neutron and other particle production, transportation, and interaction--have been developed and used world-wide [1-8]. The results of these codes have been ensured through plenty of comparisons with experimental results taken in simple geometries. For neutron generation and transport, several related experiments have been performed to measure neutron spectra, attenuation length and reaction rates behind shielding walls of various thicknesses and materials in energymore » range up to several hundred of MeV [9-11]. The data have been used to benchmark--and modify if needed--the simulation modes and parameters in the codes, as well as the reference data for radiation safety design. To obtain such kind of data above several hundred of MeV, Japan-Fermi National Accelerator Laboratory (FNAL) collaboration for shielding experiments has been started in 2007, based on suggestion from the specialist meeting of shielding, Shielding Aspects of Target, Irradiation Facilities (SATIF), because of very limited data available in high-energy region (see, for example, [12]). As a part of this shielding experiment, a set of Bonner sphere (BS) was tested at the antiproton production target facility (pbar target station) at FNAL to obtain neutron spectra induced by a 120-GeV proton beam in concrete and iron shielding. Generally, utilization of an active detector around high-energy accelerators requires an improvement on its readout to overcome burst of secondary radiation since the accelerator delivers an intense beam to a target in a short period after relatively long acceleration period. In this paper, we employ BS for a spectrum measurement of neutrons that penetrate the shielding wall of the pbar target station in FNAL.« less

  17. Traceless Bioresponsive Shielding of Adenovirus Hexon with HPMA Copolymers Maintains Transduction Capacity In Vitro and In Vivo

    PubMed Central

    Prill, Jan-Michael; Šubr, Vladimír; Pasquarelli, Noemi; Engler, Tatjana; Hoffmeister, Andrea; Kochanek, Stefan; Ulbrich, Karel; Kreppel, Florian

    2014-01-01

    Capsid surface shielding of adenovirus vectors with synthetic polymers is an emerging technology to reduce unwanted interactions of the vector particles with cellular and non-cellular host components. While it has been shown that attachment of shielding polymers allows prevention of undesired interactions, it has become evident that a shield which is covalently attached to the vector surface can negatively affect gene transfer efficiency. Reasons are not only a limited receptor-binding ability of the shielded vectors but also a disturbance of intracellular trafficking processes, the latter depending on the interaction of the vector surface with the cellular transport machinery. A solution might be the development of bioresponsive shields that are stably maintained outside the host cell but released upon cell entry to allow for efficient gene delivery to the nucleus. Here we provide a systematic comparison of irreversible versus bioresponsive shields based on synthetic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. In addition, the chemical strategy used for generation of the shield allowed for a traceless bioresponsive shielding, i.e., polymers could be released from the vector particles without leaving residual linker residues. Our data demonstrated that only a bioresponsive shield maintained the high gene transfer efficiency of adenovirus vectors both in vitro and in vivo. As an example for bioresponsive HPMA copolymer release, we analyzed the in vivo gene transfer in the liver. We demonstrated that both the copolymer's charge and the mode of shielding (irreversible versus traceless bioresponsive) profoundly affected liver gene transfer and that traceless bioresponsive shielding with positively charged HPMA copolymers mediated FX independent transduction of hepatocytes. In addition, we demonstrated that shielding with HPMA copolymers can mediate a prolonged blood circulation of vector particles in mice. Our results have significant implications for the future design of polymer-shielded Ad and provide a deeper insight into the interaction of shielded adenovirus vector particles with the host after systemic delivery. PMID:24475024

  18. Morphometric comparison of Icelandic lava shield volcanoes versus selected Venusian edifices

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Williams, Richard S., Jr.

    1993-01-01

    Shield volcanoes are common landforms on the silicate planets of the inner Solar System, and a wide variety have recently been documented on Venus by means of Magellan observations. In this report, we emphasize our recently completed morphometric analysis of three representative Icelandic lava shields: the classic Skjaldbreidur edifice, the low-reflief Lambahraun feature, and the monogenetic Sandfellshaed shield, as the basis for comparison with representative venusian edifices (greater than 60 km in diameter). Our detailed morphometric measurements of a representative and well-studied set of Icelandic volcanoes permits us to make comparisons with our measurements of a reasonable subset of shield-like edifices on Venus on the basis of Magellan global radar altimetry. Our study has been restricted to venusian features larger than approximately 60 km in basal diameter, on the basis of the minimum intrinsic spatial resolution (8 km) of the Magellan radar altimetry data. Finally, in order to examine the implications of landform scaling from terrestrial simple and composite shields to larger venusian varieties, we have considered the morphometry of the subaerial component of Mauna Loa, a type-locality for a composite shield edifice on Earth.

  19. Comparison of continuous and discontinuous collisional bumpers: Dimensionally scaled impact experiments into single wire meshes

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Cintala, Mark; See, Thomas; Bernhard, Ronald; Cardenas, Frank; Davidson, William; Haynes, Jerry

    1992-01-01

    An experimental inquiry into the utility of discontinuous bumpers was conducted to investigate the collisional outcomes of impacts into single grid-like targets and to compare the results with more traditional bumper designs that employ continuous sheet stock. We performed some 35 experiments using 6.3 and 3.2 mm diameter spherical soda-lime glass projectiles at low velocities (less than 2.5 km/s) and 13 at velocities between 5 and 6 km/s, using 3.2 mm spheres only. The thrust of the experiments related to the characterization of collisional fragments as a function of target thickness or areal shield mass of both bumper designs. The primary product of these experiments was witness plates that record the resulting population of collisional fragments. Substantial interpretive and predictive insights into bumper performance were obtained. All qualitative observations (on the witness plates) and detailed measurements of displaced masses seem simply and consistently related only to bumper mass available for interaction with the impactor. This renders the grid bumper into the superior shield design. These findings present evidence that discontinuous bumpers are a viable concept for collisional shields, possibly superior to continuous geometries.

  20. Comparative thermal analysis of the Space Station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling acting within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  1. Comparative thermal analysis of the space station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling action within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  2. Accuracy of a simplified method for shielded gamma-ray skyshine sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassett, M.S.; Shultis, J.K.

    1989-11-01

    Rigorous transport or Monte Carlo methods for estimating far-field gamma-ray skyshine doses generally are computationally intensive. consequently, several simplified techniques such as point-kernel methods and methods based on beam response functions have been proposed. For unshielded skyshine sources, these simplified methods have been shown to be quite accurate from comparisons to benchmark problems and to benchmark experimental results. For shielded sources, the simplified methods typically use exponential attenuation and photon buildup factors to describe the effect of the shield. However, the energy and directional redistribution of photons scattered in the shield is usually ignored, i.e., scattered photons are assumed tomore » emerge from the shield with the same energy and direction as the uncollided photons. The accuracy of this shield treatment is largely unknown due to the paucity of benchmark results for shielded sources. In this paper, the validity of such a shield treatment is assessed by comparison to a composite method, which accurately calculates the energy and angular distribution of photons penetrating the shield.« less

  3. SU-E-T-474: Improvements to Intra-Oral Shield Design for Electron Beam Treatments: Use of Multi-Layered Metal Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butson, M

    Purpose: Intraoral electron shields used in radiotherapy are designed to minimize radiation exposure to non-treatment tissue. Sites where shields are used include but are not limited to, the treatment of lips, cheeks and ears whilst shielding the underlying oral cavity, tongue, gingival or temporal region. However their use produces an enhancement in dose on the beam side caused by an increase in electron backscatter radiation. This work designs a new shield incorporating copper, aluminium and wax in a step down filter arrangement to minimise backscatter whilst minimizing overall shield thickness. Methods: For electron beams ranging from 6 MeV to 10more » MeV, shields of varying designs and thicknesses were assessed to determine the thinnest shield design that could be produced whilst minimising backscattered radiation to a clinically acceptable level. This was performed with conventional lead and wax shields as well as varying quantities of aluminium and copper foils. Results: From tested shield designs, a new shield design of 4 mm lead, 0.6 mm copper, 1.0 mm aluminium and 1.5 mm wax (3.1 mm added filtration, 7.1 mm total thickness) provided a clinically acceptable (no greater than 110% dose) backscatter and transmission reduction and matched a standard 4.5 mm lead and 10 mm wax (total thickness 14.5 mm) electron shield. Dose enhancement values of no more than 10 % were measured utilising this shield design with a 50 % reduction in shield thickness. Conclusion: The thinner layered shield reduced backscattered radiation dose to less than 10% enhancement for beam energies on 10 MeV and less and will allow easier patient set up. The thinner shields are tolerated better by patients when mucosal reactions occur as they place less physical pressure on these sites during treatment due to their smaller size and thickness.« less

  4. Magnetic shielding structure optimization design for wireless power transmission coil

    NASA Astrophysics Data System (ADS)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  5. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  6. Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, L. B.; Kolb, J. O.

    1970-01-01

    Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.

  7. Designing dual-plate meteoroid shields: A new analysis

    NASA Technical Reports Server (NTRS)

    Swift, H. F.; Bamford, R.; Chen, R.

    1982-01-01

    Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.

  8. Theoretical gas to liquid shift of (15)N isotropic nuclear magnetic shielding in nitromethane using ab initio molecular dynamics and GIAO/GIPAW calculations.

    PubMed

    Gerber, Iann C; Jolibois, Franck

    2015-05-14

    Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, R.A.; Cron, J.

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existingmore » equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made, further refinements of this analysis are needed as the project parameters change. The designs of the drip shield, the Emplacement Drift, and the other drip shield emplacement equipment all have a direct effect on the overall design feasibility.« less

  10. A survey of industry practices regarding shielding of substations against direct lightning strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, A.M.; Wehling, R.J.

    1993-01-01

    A survey of industry practices regarding shielding of substations against direct lightning strokes is presented and analyzed. The survey is based on responses from 114 companies including consultants and utilities both from within and from outside North America. The survey identifies the shielding design methods in use, the factors affecting the selection of a shielding method, the shielding design criteria and the governing factors, the performance of the different shielding methods and miscellaneous related aspects. The survey revealed a large number (35) of shielding failure incidents; 34 of which occurred in systems designed using either the fixed shielding angle methodmore » or Wagner's 1942 method.« less

  11. NPR Reactor shield calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, E.G.

    1961-09-27

    At the request of IPD Personnel, calculations on neutron and gamma attenuation were made for the NPR shield. The calculations were made using a new shielding computer code developed for the IBM 7090. The calculations show the thermal neutron flux, total neutron dose rate, and gamma dose rate distribution through the entire shield assembly. The calculations show that the side and top primary shield design is adequate to reduce the radiation level below design tolerances. The radiation leakage through the front shield was higher than the design tolerances. Two alternate biological shield materials were studied for use on the frontmore » face. These two materials were iron serpentine concrete mixtures with densities of 245 lb/ft{sup 3} and 265 lb/ft{sup 3} (designated by I-S-245-P and I-S-265-P, respectively). Both of these concretes reduced the radiation below design tolerances. It is recommended that the present front face biological shield be changed from I-S-220-P to I-S-245-P. With this change the NPR shield is adequate according to these calculations. The calculations reported here do not include leakage through penetration in the shield.« less

  12. Performance of solar shields. [Skylab 1 micrometeoroid shield difficulties

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1974-01-01

    The loss of the micrometeoroid shield from the Orbital Workshop section of Skylab 1 about 63 seconds after lift-off, was the catalyst for a prodigious effort to develop a substitute for the passive portion of the thermal control system. An intensive effort is described in which numerous potential thermal shield materials were assessed, and during which period ten specific shield designs were developed and carried through various stages of development and test. Thermal shield materials data are discussed, including optical, strength, fatigue, outgassing, tackiness, ultraviolet radiation, and material memory properties. Specifically addressed are thermal shield materials selection criteria and the design, development, and test requirements associated with the successful development of Skylab thermal shields, and specifically the two thermal shields subsequently deployed over the exposed gold foil skin of the Orbital Workshop. Also considered are the general performance and thermal improvements provided by both the parasol design deployed by the Skylab 1 crew, and the sail design deployed by the Skylab 2 crew.

  13. Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics

    NASA Astrophysics Data System (ADS)

    Kyoung, Sinsu; Hong, Young-sung; Lee, Myung-hwan; Nam, Tae-jin

    2018-02-01

    In order to enhance specific on-resistance (Ron,sp), the trench gate structure was also introduced into 4H-SiC MOSFET as Si MOSFET. But the 4H-SiC trench gate has worse off-state characteristics than the Si trench gate due to the incomplete gate oxidation process (Šimonka et al., 2017). In order to overcome this problem, P-shielding trench gate MOSFET (TMOS) was proposed and researched in previous studies. But P-shielding has to be designed with minimum design rule in order to protect gate oxide effectively. P-shielding TMOS also has the drawback of on-state characteristics degradation corresponding to off state improvement for minimum design rule. Therefore optimized design is needed to satisfy both on and off characteristics. In this paper, the design parameters were analyzed and optimized so that the 4H-SiC P-shielding TMOS satisfies both on and off characteristics. Design limitations were proposed such that P-shielding is able to defend the gate oxide. The P-shielding layer should have the proper junction depth and concentration to defend the electric field to gate oxide during the off-state. However, overmuch P-shielding junction depth disturbs the on-state current flow, a problem which can be solved by increasing the trench depth. As trench depth increases, however, the breakdown voltage decreases. Therefore, trench depth should be designed with due consideration for on-off characteristics. For this, design conditions and modeling were proposed which allow P-shielding to operate without degradation of on-state characteristics. Based on this proposed model, the 1200 V 4H-SiC P-shielding trench gate MOSFET was designed and optimized.

  14. Shielding of medical imaging X-ray facilities: a simple and practical method.

    PubMed

    Bibbo, Giovanni

    2017-12-01

    The most widely accepted method for shielding design of X-ray facilities is that contained in the National Council on Radiation Protection and Measurements Report 147 whereby the computation of the barrier thickness for primary, secondary and leakage radiations is based on the knowledge of the distances from the radiation sources, the assumptions of the clinical workload, and usage and occupancy of adjacent areas. The shielding methodology used in this report is complex. With this methodology, the shielding designers need to make assumptions regarding the use of the X-ray room and the adjoining areas. Different shielding designers may make different assumptions resulting in different shielding requirements for a particular X-ray room. A more simple and practical method is to base the shielding design on the shielding principle used to shield X-ray tube housing to limit the leakage radiation from the X-ray tube. In this case, the shielding requirements of the X-ray room would depend only on the maximum radiation output of the X-ray equipment regardless of workload, usage or occupancy of the adjacent areas of the room. This shielding methodology, which has been used in South Australia since 1985, has proven to be practical and, to my knowledge, has not led to excess shielding of X-ray installations.

  15. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    NASA Astrophysics Data System (ADS)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de

    2017-09-01

    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  16. Design of magnets inside cylindrical superconducting shields

    NASA Technical Reports Server (NTRS)

    Rigby, K. W.

    1988-01-01

    The design of magnets inside closed, cylindrical, superconducting shields is discussed. The Green function is given for the magnetic vector potential for cylindrically symmetric currents inside such a shield. The magnetic field everywhere inside the shield can be obtained from this function, which includes the effects of the induced shield currents exactly. The field is given for a thin solenoid as an example and the convergence of the series solution for this case is discussed. The shield can significantly reduce the strength and improve the homogeneity of a magnet. The improvement in homogeneity is of particular importance in the design of correction coils. These effects, and the maximum field on the shield, are examined for a typical solenoid. The results given are also useful, although not exact, for long shields with one or two open ends.

  17. Effectiveness of low-cost electromagnetic shielding using nail-together galvanized steel: Test results. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.F.; Kennedy, E.L.; McCormack, R.G.

    1992-09-01

    The sensitivity of modern electronic equipment has increased the need for costly electromagnetic shielding. To reduce this cost, the U.S. Army Construction Engineering Research Laboratories (USACERL) has developed a new concept for shielding design that uses 28-gauge galvanized steel and standard galvanized nails. In this study, an electromagnetically shielded structure using the concept was designed, built, and evaluated for shielding effectiveness. The galvanized material was mounted to the standard USACERL test aperture and nailed to the wooden module frame, and the shielding effectiveness of the new construction design was measured using radio frequency antennas and receivers. Evaluations showed that themore » nail-together structure proved adequate for many shielding applications. However, while the galvanized steel met most shielding application requirements, this process added multiple seams to the structure, which decreased shielding in many instances by as much as 40 dB. Electromagnetic shielding, Electromagnetic pulse C3I Facilities.« less

  18. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  19. Optimal shielding thickness for galactic cosmic ray environments

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Bahadori, Amir A.; Reddell, Brandon D.; Singleterry, Robert C.; Clowdsley, Martha S.; Blattnig, Steve R.

    2017-02-01

    Models have been extensively used in the past to evaluate and develop material optimization and shield design strategies for astronauts exposed to galactic cosmic rays (GCR) on long duration missions. A persistent conclusion from many of these studies was that passive shielding strategies are inefficient at reducing astronaut exposure levels and the mass required to significantly reduce the exposure is infeasible, given launch and associated cost constraints. An important assumption of this paradigm is that adding shielding mass does not substantially increase astronaut exposure levels. Recent studies with HZETRN have suggested, however, that dose equivalent values actually increase beyond ∼20 g/cm2 of aluminum shielding, primarily as a result of neutron build-up in the shielding geometry. In this work, various Monte Carlo (MC) codes and 3DHZETRN are evaluated in slab geometry to verify the existence of a local minimum in the dose equivalent versus aluminum thickness curve near 20 g/cm2. The same codes are also evaluated in polyethylene shielding, where no local minimum is observed, to provide a comparison between the two materials. Results are presented so that the physical interactions driving build-up in dose equivalent values can be easily observed and explained. Variation of transport model results for light ions (Z ≤ 2) and neutron-induced target fragments, which contribute significantly to dose equivalent for thick shielding, is also highlighted and indicates that significant uncertainties are still present in the models for some particles. The 3DHZETRN code is then further evaluated over a range of related slab geometries to draw closer connection to more realistic scenarios. Future work will examine these related geometries in more detail.

  20. Optimal shielding thickness for galactic cosmic ray environments.

    PubMed

    Slaba, Tony C; Bahadori, Amir A; Reddell, Brandon D; Singleterry, Robert C; Clowdsley, Martha S; Blattnig, Steve R

    2017-02-01

    Models have been extensively used in the past to evaluate and develop material optimization and shield design strategies for astronauts exposed to galactic cosmic rays (GCR) on long duration missions. A persistent conclusion from many of these studies was that passive shielding strategies are inefficient at reducing astronaut exposure levels and the mass required to significantly reduce the exposure is infeasible, given launch and associated cost constraints. An important assumption of this paradigm is that adding shielding mass does not substantially increase astronaut exposure levels. Recent studies with HZETRN have suggested, however, that dose equivalent values actually increase beyond ∼20g/cm 2 of aluminum shielding, primarily as a result of neutron build-up in the shielding geometry. In this work, various Monte Carlo (MC) codes and 3DHZETRN are evaluated in slab geometry to verify the existence of a local minimum in the dose equivalent versus aluminum thickness curve near 20g/cm 2 . The same codes are also evaluated in polyethylene shielding, where no local minimum is observed, to provide a comparison between the two materials. Results are presented so that the physical interactions driving build-up in dose equivalent values can be easily observed and explained. Variation of transport model results for light ions (Z ≤ 2) and neutron-induced target fragments, which contribute significantly to dose equivalent for thick shielding, is also highlighted and indicates that significant uncertainties are still present in the models for some particles. The 3DHZETRN code is then further evaluated over a range of related slab geometries to draw closer connection to more realistic scenarios. Future work will examine these related geometries in more detail. Published by Elsevier Ltd.

  1. Comparison of graphite, aluminum, and TransHab shielding material characteristics in a high-energy neutron field

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Huff, H.; Wilkins, R.; Thibeault, Sheila

    2002-01-01

    Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study. Published by Elsevier Science Ltd.

  2. A thermal shield concept for the Solar Probe mission

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.

    1991-01-01

    The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.

  3. Analytical-HZETRN Model for Rapid Assessment of Active Magnetic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than 15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  4. Radiation shielding materials and containers incorporating same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  5. Radiation Shielding Materials and Containers Incorporating Same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  6. Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.

  7. Radiation skyshine from a 6 MeV medical accelerator.

    PubMed

    Gossman, Michael S; McGinley, Patton H; Rising, Mary B; Pahikkala, A Jussi

    2010-05-06

    This study assesses the dose level from skyshine produced by a 6 MeV medical accelerator. The analysis of data collected on skyshine yields professional guidance for future investigators as they attempt to quantify and qualify radiation protection concerns in shielding therapy vaults. Survey measurements using various field sizes and at varying distances from a primary barrier have enabled us to identify unique skyshine behavior in comparison to other energies already seen in literature. In order to correctly quantify such measurements outside a shielded barrier, one must take into consideration the fact that a skyshine maximum may not be observed at the same distance for all field sizes. A physical attribute of the skyshine scatter component was shown to increase to a maximum value at 4.6 m from the barrier for the largest field size used. We recommend that the largest field sizes be used in the field for the determination of skyshine effect and that the peak value be further analyzed specifically when considering shielding designs.

  8. Assimilation and implications of AE-9/AP-9 in the design process of JPL missions

    NASA Astrophysics Data System (ADS)

    de Soria-Santacruz Pich, M.; Jun, I.

    2015-12-01

    The NASA AE-8/AP-8 has been the standard geospace environment specification for decades. This model describes the energetic particle environment around the Earth and is currently the default model used in the design of space missions at the Jet Propulsion Laboratory (JPL). Moreover, the model plays a critical role in the determination of the shielding and survivability of the satellites orbiting our planet. A recent update supported by the Air Force Research Laboratory (AFRL) and the National Reconnaissance Office (NRO), the AE-9/AP-9 model, was released in September 2012 and included many improvements like increased spatial resolution and the specification of the uncertainty due to instrument errors or space weather variability. A current effort at JPL is in place with the objective of making a decision within the Laboratory on the transition from AE-8/AP-8 to the new AE-9/AP-9. In this study we present the results of this effort, which involves the comparison between both versions of the model for different satellite orbits, the comparison between AE-9/AP-9 and in-situ satellite data from the Van Allen Probes and the OSTM/Jason 2 satellite, and the implications of adopting the new model for spacecraft design in terms of survivability, shielding, single event effects, and spacecraft charging.

  9. Radiation Shielding for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  10. SU-G-206-17: RadShield: Semi-Automated Shielding Design for CT Using NCRP 147 and Isodose Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, M; Rutel, I; Yang, K

    2016-06-15

    Purpose: Computed tomography (CT) exam rooms are shielded more quickly and accurately compared to manual calculations using RadShield, a semi-automated diagnostic shielding software package. Last year, we presented RadShield’s approach to shielding radiographic and fluoroscopic rooms calculating air kerma rate and barrier thickness at many points on the floor plan and reporting the maximum values for each barrier. RadShield has now been expanded to include CT shielding design using not only NCRP 147 methodology but also by overlaying vendor provided isodose curves onto the floor plan. Methods: The floor plan image is imported onto the RadShield workspace to serve asmore » a template for drawing barriers, occupied regions and CT locations. SubGUIs are used to set design goals, occupancy factors, workload, and overlay isodose curve files. CTDI and DLP methods are solved following NCRP 147. RadShield’s isodose curve method employs radial scanning to extract data point sets to fit kerma to a generalized power law equation of the form K(r) = ar^b. RadShield’s semiautomated shielding recommendations were compared against a board certified medical physicist’s design using dose length product (DLP) and isodose curves. Results: The percentage error found between the physicist’s manual calculation and RadShield’s semi-automated calculation of lead barrier thickness was 3.42% and 21.17% for the DLP and isodose curve methods, respectively. The medical physicist’s selection of calculation points for recommending lead thickness was roughly the same as those found by RadShield for the DLP method but differed greatly using the isodose method. Conclusion: RadShield improves accuracy in calculating air-kerma rate and barrier thickness over manual calculations using isodose curves. Isodose curves were less intuitive and more prone to error for the physicist than inverse square methods. RadShield can now perform shielding design calculations for general scattering bodies for which isodose curves are provided.« less

  11. SU-F-P-53: RadShield: Semi-Automated Shielding Design for CT Using NCRP 147 and Isodose Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, M; Rutel, I; Wu, D

    Purpose: Computed tomography (CT) exam rooms are shielded more quickly and accurately compared to manual calculations using RadShield, a semi-automated diagnostic shielding software package. Last year, we presented RadShield’s approach to shielding radiographic and fluoroscopic rooms calculating air kerma rate and barrier thickness at many points on the floor plan and reporting the maximum values for each barrier. RadShield has now been expanded to include CT shielding design using not only NCRP 147 methodology but also by overlaying vendor provided isodose curves onto the floor plan. Methods: The floor plan image is imported onto the RadShield workspace to serve asmore » a template for drawing barriers, occupied regions and CT locations. SubGUIs are used to set design goals, occupancy factors, workload, and overlay isodose curve files. CTDI and DLP methods are solved following NCRP 147. RadShield’s isodose curve method employs radial scanning to extract data point sets to fit kerma to a generalized power law equation of the form K(r) = ar^b. RadShield’s semi-automated shielding recommendations were compared against a board certified medical physicist’s design using dose length product (DLP) and isodose curves. Results: The percentage error found between the physicist’s manual calculation and RadShield’s semi-automated calculation of lead barrier thickness was 3.42% and 21.17% for the DLP and isodose curve methods, respectively. The medical physicist’s selection of calculation points for recommending lead thickness was roughly the same as those found by RadShield for the DLP method but differed greatly using the isodose method. Conclusion: RadShield improves accuracy in calculating air-kerma rate and barrier thickness over manual calculations using isodose curves. Isodose curves were less intuitive and more prone to error for the physicist than inverse square methods. RadShield can now perform shielding design calculations for general scattering bodies for which isodose curves are provided.« less

  12. Reliability Methods for Shield Design Process

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.

    2002-01-01

    Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space operations. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. An important component of this technology is the estimation of two most commonly identified uncertainties in radiation shield design, the shielding properties of materials used and the understanding of the biological response of the astronaut to the radiation leaking through the materials into the living space. The largest uncertainty, of course, is in the biological response to especially high charge and energy (HZE) ions of the galactic cosmic rays. These uncertainties are blended with the optimization design procedure to formulate reliability-based methods for shield design processes. The details of the methods will be discussed.

  13. Optimal shielding design for minimum materials cost or mass

    DOE PAGES

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very smallmore » changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.« less

  14. Magnetic decoupling of the linac in a low field biplanar linac-MR system.

    PubMed

    St Aubin, J; Steciw, S; Fallone, B G

    2010-09-01

    The integration of a low field biplanar magnetic resonance (MR) imager and linear accelerator (linac) causes magnetic interference at the linac due to the MR fringe fields. In order to eliminate this interference, passive and active magnetic shielding designs are investigated. The optimized design of passive magnetic shielding was performed using the finite element method. The design was required to achieve no greater than a 20% electron beam loss within the linac waveguide and electron gun, no greater than 0.06 T at the multileaf collimator (MLC) motors, and generate a distortion of the main MR imaging volume of no greater than 300 ppm. Through the superposition of the analytical solution for a single current carrying wire loop, active shielding designs in the form of three and four sets of coil pairs surrounding the linac waveguide and electron gun were also investigated. The optimized current and coil center locations that yielded the best cancellation of the MR fringe fields at the linac were determined using sequential quadratic programming. Optimized passive shielding in the form of two steel cylinders was designed to meet the required constraints. When shielding the MLC motors along with the waveguide and electron gun, the thickness of the cylinders was less than 1 mm. If magnetically insensitive MLC motors are used, no MLC shielding would be required and the waveguide shield (shielding the waveguide and electron gun) became 1.58 mm thick. In addition, the optimized current and coil spacing for active shielding was determined for both three and four coil pair configurations. The results of the active shielding optimization produced no beam loss within the waveguide and electron gun and a maximum MR field distortion of 91 ppm over a 30 cm diameter spherical volume. Very simple passive and active shielding designs have been shown to magnetically decouple the linac from the MR imager in a low field biplanar linac-MR system. The MLC passive shielding produced the largest distortion of the MR field over the imaging volume. With the use of magnetically insensitive motors, the MR field distortion drops substantially since no MLC shield is required. The active shielding designs yielded no electron beam loss within the linac.

  15. Shielding of longitudinal magnetic fields with thin, closely, spaced concentric cylindrical shells with applications to atomic clocks

    NASA Technical Reports Server (NTRS)

    Wolf, S. A.; Gubser, D. U.; Cox, J. E.

    1978-01-01

    A general formula is given for the longitudinal shielding effectiveness of N closed concentric cylinders. The use of these equations is demonstrated by application to the design of magnetic shields for hydrogen maser atomic clocks. Examples of design tradeoffs such as size, weight, and material thickness are discussed. Experimental results on three sets of shields fabricated by three manufacturers are presented. Two of the sets were designed employing the techniques described. Agreement between the experimental results and the design calculations is then demonstrated.

  16. Design and Shielding of Radiotherapy Treatment Facilities; IPEM Report 75, 2nd Edition

    NASA Astrophysics Data System (ADS)

    Horton, Patrick; Eaton, David

    2017-07-01

    Design and Shielding of Radiotherapy Treatment Facilities provides readers with a single point of reference for protection advice to the construction and modification of radiotherapy facilities. The book assembles a faculty of national and international experts on all modalities including megavoltage and kilovoltage photons, brachytherapy and high-energy particles, and on conventional and Monte Carlo shielding calculations. This book is a comprehensive reference for qualified experts and radiation-shielding designers in radiation physics and also useful to anyone involved in the design of radiotherapy facilities.

  17. A Comparison of Interventional Approaches for Increasing Power Take-off Shielding on New York Farms.

    PubMed

    Sorensen, Julie A; Tinc, Pamela J; Dalton, Deb; Scott, Erika E; Jenkins, Paul L

    2017-01-01

    Power take-off (PTO) driveline entanglements are a primary source of injury on US farms. As with many farm injury concerns, hazard control technology is widely available for mitigating the risk of these entanglements. Despite the availability of hazard control technology, PTO shields are damaged or missing on approximately 57% of PTO driveline implements in New York. Given the catastrophic nature of entanglements and the ready access to safety technology, a better understanding of what motivates farmers to install or replace PTO shields is warranted. To examine this question, agricultural health and safety researchers in New York State conducted an initial comparison of PTO shield sales on farms receiving one of three different interventional approaches. These included PTO shield audits, a social marketing campaign, and on-farm safety services. PTO shield purchases were tracked from January 2011 through June 2016 on farms receiving these interventions and on other farms that were not exposed to interventional strategies. Results indicate that a significantly higher number of PTO shields were purchased on farms that requested and received on-farm safety services versus farms that were exposed to PTO shield audits, the social marketing campaign, or the control group. PTO shield sales were slightly elevated on farms receiving driveline audits, as compared with control farms (although these differences were not significant). No marked differences in sales were noted between control farms and farms exposed to the social marketing campaign. Only one of the three interventional strategies (on-farm safety services) approached the number of PTO shield sales necessary to prevent an entanglement.

  18. Solar Probe thermal shield design and testing

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Miyake, Robert N.; Rainen, Richard A.

    1992-01-01

    This paper discusses the major thermal shield subsystem development activities in support of the Solar Probe study being conducted at JPL. The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center to perform fundamental experiments in space physics. Exposure to 2900 earth suns at perihelion requires the spacecraft to be protected within the shadow envelope of a protective shield. In addition, the mass loss rate off of the shield at elevated temperature must comply with plasma instrument requirements and has become the driver of the shield design. This paper will focus on the analytical design work to size the shield and control the shield mass loss rate for the various spacecraft options under study, the application of carbon-carbon materials for shield components, development and preparation of carbon-carbon samples for materials testing, and a materials testing program for carbon-carbon and tungsten alloys to investigate thermal/optical properties, mass loss (carbon-carbon only), material integrity, and high velocity impact behavior.

  19. Biomechanical investigation of a novel ratcheting arthrodesis nail.

    PubMed

    McCormick, Jeremy J; Li, Xinning; Weiss, Douglas R; Billiar, Kristen L; Wixted, John J

    2010-10-14

    Knee or tibiotalocalcaneal arthrodesis is a salvage procedure, often with unacceptable rates of nonunion. Basic science of fracture healing suggests that compression across a fusion site may decrease nonunion. A novel ratcheting arthrodesis nail designed to improve dynamic compression is mechanically tested in comparison to existing nails. A novel ratcheting nail was designed and mechanically tested in comparison to a solid nail and a threaded nail using sawbones models (Pacific Research Laboratories, Inc.). Intramedullary nails (IM) were implanted with a load cell (Futek LTH 500) between fusion surfaces. Constructs were then placed into a servo-hydraulic test frame (Model 858 Mini-bionix, MTS Systems) for application of 3 mm and 6 mm dynamic axial displacement (n = 3/group). Load to failure was also measured. Mean percent of initial load after 3-mm and 6-mm displacement was 190.4% and 186.0% for the solid nail, 80.7% and 63.0% for the threaded nail, and 286.4% and 829.0% for the ratcheting nail, respectively. Stress-shielding (as percentage of maximum load per test) after 3-mm and 6-mm displacement averaged 34.8% and 28.7% (solid nail), 40.3% and 40.9% (threaded nail), and 18.5% and 11.5% (ratcheting nail), respectively. In the 6-mm trials, statistically significant increase in initial load and decrease in stress-shielding for the ratcheting vs. solid nail (p = 0.029, p = 0.001) and vs. threaded nail (p = 0.012, p = 0.002) was observed. Load to failure for the ratcheting nail; 599.0 lbs, threaded nail; 508.8 lbs, and solid nail; 688.1 lbs. With significantly increase of compressive load while decreasing stress-shielding at 6-mm of dynamic displacement, the ratcheting mechanism in IM nails may clinically improve rates of fusion.

  20. Biomechanical investigation of a novel ratcheting arthrodesis nail

    PubMed Central

    2010-01-01

    Background Knee or tibiotalocalcaneal arthrodesis is a salvage procedure, often with unacceptable rates of nonunion. Basic science of fracture healing suggests that compression across a fusion site may decrease nonunion. A novel ratcheting arthrodesis nail designed to improve dynamic compression is mechanically tested in comparison to existing nails. Methods A novel ratcheting nail was designed and mechanically tested in comparison to a solid nail and a threaded nail using sawbones models (Pacific Research Laboratories, Inc.). Intramedullary nails (IM) were implanted with a load cell (Futek LTH 500) between fusion surfaces. Constructs were then placed into a servo-hydraulic test frame (Model 858 Mini-bionix, MTS Systems) for application of 3 mm and 6 mm dynamic axial displacement (n = 3/group). Load to failure was also measured. Results Mean percent of initial load after 3-mm and 6-mm displacement was 190.4% and 186.0% for the solid nail, 80.7% and 63.0% for the threaded nail, and 286.4% and 829.0% for the ratcheting nail, respectively. Stress-shielding (as percentage of maximum load per test) after 3-mm and 6-mm displacement averaged 34.8% and 28.7% (solid nail), 40.3% and 40.9% (threaded nail), and 18.5% and 11.5% (ratcheting nail), respectively. In the 6-mm trials, statistically significant increase in initial load and decrease in stress-shielding for the ratcheting vs. solid nail (p = 0.029, p = 0.001) and vs. threaded nail (p = 0.012, p = 0.002) was observed. Load to failure for the ratcheting nail; 599.0 lbs, threaded nail; 508.8 lbs, and solid nail; 688.1 lbs. Conclusion With significantly increase of compressive load while decreasing stress-shielding at 6-mm of dynamic displacement, the ratcheting mechanism in IM nails may clinically improve rates of fusion. PMID:20942976

  1. Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1999-01-01

    Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.

  2. Cost Assessment for Shielding of C3 Type. Facilities

    DTIC Science & Technology

    1980-03-01

    imperfections and on penetrations . Long-conductor penetrants are assumed to enter the building through a one-quarter-inch thick entry plate and a shielded...Effects 21 3.2.3 Currents from Penetrants 21 3.2.4 Numerical Examples 23 3.3 Design Approach 23 3.3.1 Design Assuming Linear Behavior of Shield 23...General 36 4.1.1 Envelope Shield 36 4.1.2 Penetrations 41 4.2 Condition I, New Construction, External Shield 46 4.3 Condition II, New

  3. Space radiation shielding studies for astronaut and electronic component risk assessment

    NASA Astrophysics Data System (ADS)

    Fuchs, Jordan; Gersey, Brad; Wilkins, Richard

    The space radiation environment is comprised of a complex and variable mix of high energy charged particles, gamma rays and other exotic species. Elements of this radiation field may also interact with intervening matter (such as a spaceship wall) and create secondary radiation particles such as neutrons. Some of the components of the space radiation environment are highly penetrating and can cause adverse effects in humans and electronic components aboard spacecraft. Developing and testing materials capable of providing effective shielding against the space radiation environment presents special challenges to researchers. Researchers at the Cen-ter for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View AM University (PVAMU) perform accelerator based experiments testing the effectiveness of various materials for use as space radiation shields. These experiments take place at the NASA Space Radiation Laboratory at Brookhaven National Laboratory, the proton synchrotron at Loma Linda University Medical Center, and the Los Alamos Neutron Science Center at Los Alamos National Laboratory where charged particles and neutrons are produced at energies similar to those found in the space radiation environment. The work presented in this paper constitutes the beginning phase of an undergraduate research project created to contribute to this ongoing space radiation shielding project. Specifically, this student project entails devel-oping and maintaining a database of information concerning the historical data from shielding experiments along with a systematic categorization and storage system for the actual shielding materials. The shielding materials referred to here range in composition from standard materi-als such as high density polyethylene and aluminum to exotic multifunctional materials such as spectra-fiber infused composites. The categorization process for each material includes deter-mination of the density thickness of individual samples and a clear labeling and filing method that allows immediate cross referencing with other material samples during the experimental design process. Density thickness measurements will be performed using a precision scale that will allow for the fabrication of sets of standard density thicknesses of selected materials for ready use in shielding experiments. The historical data from previous shielding experiments consists primarily of measurements of absorbed dose, dose equivalent and dose distributions from a Tissue Equivalent Proportional Counter (TEPC) as measured downstream of various thicknesses of the materials while being irradiated in one of the aforementioned particle beams. This data has been digitally stored and linked to the composition of each material and may be easily accessed for shielding effectiveness inter-comparisons. This work was designed to facili-tate and increase the efficiency of ongoing space radiation shielding research performed at the CRESSE as well as serve as a way to educate new generations of space radiation researchers.

  4. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, S

    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have alsomore » provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be reported.« less

  5. Design of platform for removing screws from LCD display shields

    NASA Astrophysics Data System (ADS)

    Tu, Zimei; Qin, Qin; Dou, Jianfang; Zhu, Dongdong

    2017-11-01

    Removing the screws on the sides of a shield is a necessary process in disassembling a computer LCD display. To solve this issue, a platform has been designed for removing the screws on display shields. This platform uses virtual instrument technology with LabVIEW as the development environment to design the mechanical structure with the technologies of motion control, human-computer interaction and target recognition. This platform removes the screws from the sides of the shield of an LCD display mechanically thus to guarantee follow-up separation and recycle.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Fedotov, A.; Gassner, D.

    The goal of this note is to set basic parameters for the magnetic shielding of LEReC CS with required design attenuation. We considered physical design of magnetic shielding of LEReC cooling section. The schematic of this design along with the list of its basic parameters is shown. We are planning to use 2 layers of 1 mm thick cylindrical mu-metal shields with μ=11000. The radius of the first layer sitting on top of vacuum chamber is 63.5 mm. The second layer radius is 150 mm. Such shielding guarantees adequate transverse angles of electron beam trajectory in the CS.

  7. Design and Characterization of a Gradient-Transparent RF Copper Shield for PET Detector Modules in Hybrid MR-PET Imaging

    NASA Astrophysics Data System (ADS)

    Berneking, Arne; Trinchero, Riccardo; Ha, YongHyun; Finster, Felix; Cerello, Piergiorgio; Lerche, Christoph; Shah, Nadim Jon

    2017-05-01

    This paper focuses on the design and the characterization of a frequency-selective shield for positron emission tomography (PET) detector modules of hybrid magnetic resonance-PET scanners, where the shielding of the PET cassettes is located close to the observed object. The proposed shielding configuration is designed and optimized to guarantee a high shielding effectiveness (SE) of up to 60 dB for B1-fields at the Larmor frequency of 64 MHz, thus preventing interactions between the radio-frequency (RF) coil and PET electronics. On the other hand, the shield is transparent to the gradient fields with the consequence that eddy-current artifacts in the acquired EPI images are significantly reduced with respect to the standard solid-shield configuration. The frequency-selective behavior of the shield is characterized and validated via simulation studies with CST MICROWAVE STUDIO in the megahertz and kilohertz range. Bench measurements with an RF coil built in-house demonstrated the high SE at the Larmor frequency. Moreover, measurements on a 4-T human scanner confirmed the abolishment of eddy current artifact and also provided an understanding of where the eddy currents occur with respect to the sequence parameters. Simulations and measurements for the proposed shielding concept were compared with a solid copper shielding configuration.

  8. Dosimetric characteristics of a new unshielded silicon diode and its application in clinical photon and electron beams.

    PubMed

    Griessbach, Irmgard; Lapp, Markus; Bohsung, Jörg; Gademann, Günther; Harder, Dietrich

    2005-12-01

    Shielded p-silicon diodes, frequently applied in general photon-beam dosimetry, show certain imperfections when applied in the small photon fields occurring in stereotactic or intensity modulated radiotherapy (IMRT), in electron beams and in the buildup region of photon beam dose distributions. Using as a study object the shielded p-silicon diode PTW 60008, well known for its reliable performance in general photon dosimetry, we have identified these imperfections as effects of electron scattering at the metallic parts of the shielding. In order to overcome these difficulties a new, unshielded diode PTW 60012 has been designed and manufactured by PTW Freiburg. By comparison with reference detectors, such as thimble and plane-parallel ionization chambers and a diamond detector, we could show the absence of these imperfections. An excellent performance of the new unshielded diode for the special dosimetric tasks in small photon fields, electron beams and build-up regions of photon beams has been observed. The new diode also has an improved angular response. However, due to its over-response to low-energy scattered photons, its recommended range of use does not include output factor measurements in large photon fields, although this effect can be compensated by a thin auxiliary lead shield.

  9. Low eddy current RF shielding enclosure designs for 3T MR applications.

    PubMed

    Lee, Brian J; Watkins, Ronald D; Chang, Chen-Ming; Levin, Craig S

    2018-03-01

    Magnetic resonance-compatible medical devices operate within the MR environment while benefitting from the superior anatomic information of MRI. Avoiding electromagnetic interference between such instrumentation and the MR system is crucial. In this work, various shielding configurations for positron emission tomography (PET) detectors were studied and analyzed regarding radiofrequency (RF) shielding effectiveness and gradient-induced eddy current performances. However, the results of this work apply to shielding considerations for any MR-compatible devices. Six shielding enclosure configurations with various thicknesses, patterns, and materials were designed: solid and segmented copper, phosphor bronze mesh (PBM), and carbon fiber composite (CFC). A series of tests was performed on RF shielding effectiveness and the gradient-induced eddy current. For the shielding effectiveness, the solid copper with various thickness and PBM configurations yield significantly better shielding effectiveness (>15 dB) compared with CFC and segmented configurations. For the gradient-induced eddy current performance, the solid copper shielding configurations with different thicknesses showed significantly worse results, up to a factor of 3.89 dB, compared with the segmented copper, PBM, and the CFC configurations. We evaluated the RF shielding effectiveness and the gradient-induced eddy current artifacts of several shielding designs, and only the PBM showed positive outcomes for both aspects. Magn Reson Med 79:1745-1752, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  11. Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling

    NASA Astrophysics Data System (ADS)

    Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao

    2018-05-01

    Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.

  12. Numerical Electromagnetics Simulations of the Leakage Through the Pump-out Holes in the DISC Electromagnetic Interference Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jr., Charles G.; Cooper, Amy; Moore, Alastair S.

    In order to prevent electromagnetic interference (EMI) from affecting the DISC diagnostic, an EMI shield was added. Figure 1 is a cross section from a CAD model of DISC and shows the EMI shield in situ. The shield is orange and at the top of the figure. Figure 2 is a drawing of just the EMI shield. The slit in the center of the EMI shield is covered by a metal mesh, which is not shown in this drawing. The small holes toward the base of the conical portion of the EMI shield are the pump-out holes, and the electromagneticmore » leakage through these holes is the subject of this report1. An alternate design for the EMI shield is considered in order to determine how to increase the EMI effectiveness of the pump-out holes in the shield without compromising the flow rate through the shield. Both the original and alternate designs are simulated and compared.« less

  13. Inhibited Shaped Charge Launcher Testing of Spacecraft Shield Designs

    NASA Technical Reports Server (NTRS)

    Grosch, Donald J.

    1996-01-01

    This report describes a test program in which several orbital debris shield designs were impact tested using the inhibited shaped charge launcher facility at Southwest Research Institute. This facility enables researchers to study the impact of one-gram aluminum projectiles on various shielding designs at velocities above 11 km/s. A total of twenty tests were conducted on targets provided by NASA-MSFC. This report discusses in detail the shield design, the projectile parameters and the test configuration used for each test. A brief discussion of the target damage is provided, as the detailed analysis of the target response will be done by NASA-MSFC.

  14. Final Technical Report [Cosmogenic background and shielding R&D for a Ge Neutrinoless Double Beta Decay Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiseppe, Vince

    2013-10-01

    The USD Majorana group focused all of its effort in support of the MAJORANA DEMONSTRATOR (MJD) experiment. Final designs of the shielding subsystems are complete. Construction of the MJD shielding systems at SURF has begun and the proposed activities directly support the completion of the shield systems. The PI and the group contribute heavily to the onsite construction activities of the MJD experiment. The group led investigations into neutron and neutron-­induced backgrounds, shielding effectiveness and design, and radon backgrounds.

  15. Major uncertainties influencing entry probe heat shield design

    NASA Technical Reports Server (NTRS)

    Congdon, W.

    1974-01-01

    Factors influencing the design of an outer planet probe heat shield are discussed. Major factors included are: uncertainties in composition and scale height of the planet atmospheres; the augmentation/attenuation of entry heating by ablation products requires more computer study and testing; carbon heat shields, especially carbon phenolic, possessing improved resistance to spallation need developing; and white silica reflecting heat shields with improved resistance to bulk vitrification need further developing.

  16. Evaluation of an alternative shielding materials for F-127 transport package

    NASA Astrophysics Data System (ADS)

    Gual, Maritza R.; Mesquita, Amir Z.; Pereira, Cláubia

    2018-03-01

    Lead is used as radiation shielding material for the Nordion's F-127 source shipping container is used for transport and storage of the GammaBeam -127's cobalt-60 source of the Nuclear Technology Development Center (CDTN) located in Belo Horizonte, Brazil. As an alternative, Th, Tl and WC have been evaluated as radiation shielding material. The goal is to check their behavior regarding shielding and dosing. Monte Carlo MCNPX code is used for the simulations. In the MCNPX calculation was used one cylinder as exclusion surface instead one sphere. Validation of MCNPX gamma doses calculations was carried out through comparison with experimental measurements. The results show that tungsten carbide WC is better shielding material for γ-ray than lead shielding.

  17. Electrodeposition in microgravity: Ground-based experiments

    NASA Technical Reports Server (NTRS)

    Riley, C.; Coble, H. D.

    1982-01-01

    Electrodeposition was studied at one-hundreth g and compared with bench studies at 1 g. The low gravity was achieved during KC-135 aircraft parobolic flights. Flow in a simple cobalt cell (1 M CoSO4) operating under typical commercial conditions (10 to 20 mA/sq cm and 1 V) was monitored with a Schlieren optical system. Natural convection was absent at one-hundreth g. Quantitative comparisons on a cobalt cell with shielded electrodes using interferometry were carried out. Fringe shift differences indicate greater semi-infinite linear diffusion at 1 g than at one-hundreth g for cobalt. Since a shielded electrode operates under diffusion controlled conditions, no differences between 1 g and one-hundreth g would be expected. Similar comparisons on a shielded electrode copper cell were inconclusive. Bench codeposition experiments using polystyrene neutral buoyancy particles coupled with a shielded electrode cobalt cell were begun. Tracking of 12 micron particles showed no measurable difference between thermal/Brownian motion when the cell was operational or nonoperational. Initial experiments on codeposition quality showed a strong dependence upon cathode surface preparation in a shielded electrode configuration.

  18. Simbol-X Mirror Module Thermal Shields: I-Design and X-Ray Transmission

    NASA Astrophysics Data System (ADS)

    Collura, A.; Barbera, M.; Varisco, S.; Basso, S.; Pareschi, G.; Tagliaferri, G.; Ayers, T.

    2009-05-01

    The Simbol-X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X-ray transmission.

  19. Shields for Enhanced Protection Against High-Speed Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Kerr, Justin H.

    2003-01-01

    A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arise mainly from breakup of older spacecraft. The improved shields include exterior bumper layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cm3, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape-memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.

  20. Shields for Enhanced Protection Against High-Speed Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Kerr, Justin H.

    2003-01-01

    A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arises mainly from breakup of older spacecraft. The improved shields include exterior "bumper" layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cubic cm, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.

  1. Parametric study for use of stainless steel as a material for thermal shield in PIP2IT transferline at Fermilab

    NASA Astrophysics Data System (ADS)

    Rane, Tejas; Chakravarty, Anindya; Klebaner, Arkadiy

    2017-12-01

    Transferline thermal shields are cooled by dedicated cooling lines welded/brazed to the shield at a single point along the circumference. Copper/Aluminium is widely used to fabricate thermal shields because of their higher thermal diffusivity. This causes uniformity of temperature along the surface of the shield thus reducing thermal stresses within allowable values. However, factors such as raw material price, the cost of fabrication depending on standard sizes of pipes/tubes, often drives up the final price of thermal shields. To reduce the cost by making use of easily available stock of standard pipe/tube, it is decided to use stainless steel as a material for thermal shields in the PIP2IT transferline. The present paper discusses the design approach, various factors affecting the conservative selection of thermal shield design.

  2. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  3. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.; Pan, Heng; Liu, X. K.

    2009-07-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed betweenmore » the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.« less

  4. A high-performance magnetic shield with large length-to-diameter ratio.

    PubMed

    Dickerson, Susannah; Hogan, Jason M; Johnson, David M S; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-wey; Kasevich, Mark A

    2012-06-01

    We have demonstrated a 100-fold improvement in the magnetic field uniformity on the axis of a large aspect ratio, cylindrical, mumetal magnetic shield by reducing discontinuities in the material of the shield through the welding and re-annealing of a segmented shield. The three-layer shield reduces Earth's magnetic field along an 8 m region to 420 μG (rms) in the axial direction, and 460 and 730 μG (rms) in the two transverse directions. Each cylindrical shield is a continuous welded tube which has been annealed after manufacture and degaussed in the apparatus. We present both experiments and finite element analysis that show the importance of uniform shield material for large aspect ratio shields, favoring a welded design over a segmented design. In addition, we present finite element results demonstrating the smoothing of spatial variations in the applied magnetic field by cylindrical magnetic shields. Such homogenization is a potentially useful feature for precision atom interferometric measurements.

  5. Magnetic shield for turbomolecular pump of the Magnetized Plasma Linear Experimental device at Saha Institute of Nuclear Physics.

    PubMed

    Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath

    2011-01-01

    The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.

  6. NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.

    1958-11-18

    Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.

  7. Design, fabrication, and structural testing of a lightweight shadow shield for deep-space application

    NASA Technical Reports Server (NTRS)

    Miao, D.; Barber, J. R.; Dewitt, R. L.

    1977-01-01

    Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application.

  8. Orion Heat Shield Manufacturing Producibility Improvements for the EM-1 Flight Test Program

    NASA Technical Reports Server (NTRS)

    Koenig, William J.; Stewart, Michael; Harris, Richard F.

    2018-01-01

    This paper describes how the ORION program is incorporating improvements in the heat shield design and manufacturing processes reducing programmatic risk and ensuring crew safety in support of NASA's Exploration missions. The approach for the EFT-1 heat shield utilized a low risk Apollo heritage design and manufacturing process using an Avcoat TPS ablator with a honeycomb substrate to provide a one piece heat shield to meet the mission re-entry heating environments. The EM-1 mission will have additional flight systems installed to fly to the moon and return to Earth. Heat shield design and producibility improvements have been incorporated in the EM-1 vehicle to meet deep space mission requirements. The design continues to use the Avcoat material, but in a block configuration to enable improvements in consistant and repeatable application processes using tile bonding experience developed on the Space Shuttle Transportation System Program.

  9. RadShield: semiautomated shielding design using a floor plan driven graphical user interface

    PubMed Central

    Wu, Dee H.; Yang, Kai; Rutel, Isaac B.

    2016-01-01

    The purpose of this study was to introduce and describe the development of RadShield, a Java‐based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air‐kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry‐based approach and a manual approach. A series of geometry‐based equations were derived giving the maximum air‐kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)‐certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air‐kerma rate was compared against the geometry‐based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry‐based approach and RadShield's approach in finding the magnitude and location of the maximum air‐kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheterization labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air‐kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X‐ray exam distribution by a medical physicist may not be sufficient to accurately select the point of maximum air‐kerma rate or barrier thickness. PACS number(s): 87.55.N, 87.52.‐g, 87.59.Bh, 87.57.‐s PMID:27685128

  10. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    PubMed

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-08

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not be sufficient to accurately select the point of maximum air-kerma rate or barrier thickness. © 2016 The Authors.

  11. Designing Spacecraft and Mission Operations Plans to Meet Flight Crew Radiation Dose Requirements: Why is this an "Epic Challenge" for Long-Term Manned Interplanetary Flight

    NASA Technical Reports Server (NTRS)

    Koontz, Steven

    2012-01-01

    Outline of presentation: (1) Radiation Shielding Concepts and Performance - Galactic Cosmic Rays (GCRs) (1a) Some general considerations (1b) Galactic Cosmic Rays (2)GCR Shielding I: What material should I use and how much do I need? (2a) GCR shielding materials design and verification (2b) Spacecraft materials point dose cosmic ray shielding performance - hydrogen content and atomic number (2c) Accelerator point dose materials testing (2d) Material ranking and selection guidelines (2e) Development directions and return on investment (point dose metric) (2f) Secondary particle showers in the human body (2f-1) limited return of investment for low-Z, high-hydrogen content materials (3) GCR shielding II: How much will it cost? (3a) Spacecraft design and verification for mission radiation dose to the crew (3b) Habitat volume, shielding areal density, total weight, and launch cost for two habitat volumes (3c) It's All about the Money - Historical NASA budgets and budget limits (4) So, what can I do about all this? (4a) Program Design Architecture Trade Space (4b) The Vehicle Design Trade Space (4c) Some Near Term Recommendations

  12. SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanny, S; Parsai, E

    2014-06-01

    Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, withinmore » various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction measurement, and simulation of photo-nuclear interaction within the maze barrier for high-energy beams.« less

  13. Gadolinium Oxide / Silicon Thin Film Heterojunction Solid-State Neutron Detector

    DTIC Science & Technology

    2010-03-01

    PRODUCED AS A MEDICAL APPLICATOR SHOWN IN „A‟. THE SOURCE, PICTURED IN „B‟ HAS A PLASTIC SHIELD THAT SLIDES UP AND DOWN THE SHAFT WHICH IS DESIGNED TO...down the shaft which is designed to shield the operator from radiation. The source is sitting head-down and is covered by a thick aluminum shield for...EXPERIMENT, RESULTS, AND ANALYSIS ........................................................ 37 4.1 Experimental Design & Apparatus

  14. Effect of Discontinuities and Penetrations on the Shielding Efficacy of High Temperature Superconducting Magnetic Shields

    NASA Astrophysics Data System (ADS)

    Hatwar, R.; Kvitkovic, J.; Herman, C.; Pamidi, S.

    2015-12-01

    High Temperature Superconducting (HTS) materials have been demonstrated to be suitable for applications in shielding of both DC and AC magnetic fields. Magnetic shielding is required for protecting sensitive instrumentation from external magnetic fields and for preventing the stray magnetic fields produced by high power density equipment from affecting neighbouring devices. HTS shields have high current densities at relatively high operating temperatures (40-77 K) and can be easily fabricated using commercial HTS conductor. High current densities in HTS materials allow design and fabrication of magnetic shields that are lighter and can be incorporated into the body and skin of high power density devices. HTS shields are particularly attractive for HTS devices because a single cryogenic system can be used for cooling the device and the associated shield. Typical power devices need penetrations for power and signal cabling and the penetrations create discontinuities in HTS shields. Hence it is important to assess the effect of the necessary discontinuities on the efficacy of the shields and the design modifications necessary to accommodate the penetrations.

  15. Nuclear design of a very-low-activation fusion reactor

    NASA Astrophysics Data System (ADS)

    Cheng, E. T.; Hopkins, G. R.

    1983-06-01

    The nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications were investigated. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a Tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE Tokamak reactor design.

  16. Validation of PHITS Spallation Models from the Perspective of the Shielding Design of Transmutation Experimental Facility

    NASA Astrophysics Data System (ADS)

    Iwamoto, Hiroki; Meigo, Shin-ichiro

    2017-09-01

    The impact of different spallation models implemented in the particle transport code PHITS on the shielding design of Transmutation Experimental Facility is investigated. For 400-MeV proton incident on a lead-bismuth eutectic target, an effective dose rate at the end of a thick radiation shield (3-m-thick iron and 3-m-thick concrete) calculated by the Liège intranuclear cascade (INC) model version 4.6 (INCL4.6) coupled with the GEMcode (INCL4.6/GEM) yields about twice as high as the Bertini INC model (Bertini/GEM). A comparison with experimental data for 500-MeV proton incident on a thick lead target suggest that the prediction accuracy of INCL4.6/GEM would be better than that of Bertini/GEM. In contrast, it is found that the dose rates in beam ducts in front of targets calculated by the INCL4.6/GEMare lower than those by the Bertini/GEM. Since both models underestimate the experimental results for neutron-production doubledifferential cross sections at 180° for 140-MeV proton incident on carbon, iron, and gold targets, it is concluded that it is necessary to allow a margin for uncertainty caused by the spallation models, which is a factor of two, in estimating the dose rate induced by neutron streaming through a beam duct.

  17. Shield Optimization in Simple Geometry for the Gateway Concept

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Simonsen, L. C.; Nealy, J. E.; Troutman, P. A.; Wilson, J. W.

    2002-01-01

    The great cost of added radiation shielding is a potential limiting factor in many deep space missions. For this enabling technology, we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of various space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space missions, improved shield materials will be required. The details of this new method and its impact on space missions and other technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context. Providing protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs. We will use the mission optimization software to scope the impact of Gateway operations on human exposures and the effectiveness of alternate shielding materials on Gateway infrastructure designs. This study will provide a guide to the effectiveness of multifunctional materials in preparation to more detailed geometry studies in progress.

  18. Shielding techniques tackle EMI excesses. V - EMI shielding

    NASA Astrophysics Data System (ADS)

    Grant, P.

    1982-10-01

    The utilization of shielding gaskets in EMI design is presented in terms of seam design, gasket design, groove design, and fastener spacing. The main function of seam design is to minimize the coupling efficiency of a seam, and for effective shielding, seam design should include mating surfaces which are as flat as possible, and a flange width at least five times the maximum anticipated separation between mating surfaces. Seam surface contact with a gasket should be firm, continuous, and uniform. Gasket height, closure pressure, and compression set as a function of the applied pressure parameters are determined using compression/deflection curves. Environmental seal requirements are given and the most common materials used are neoprene, silicone, butadiene-acrylonitrile, and natural rubber. Groove design is also discussed, considering gasket heights and cross-sectional areas. Finally, fastener spacing is considered, by examining deflection as a percentage of gasket height.

  19. Electronics Shielding and Reliability Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2006-01-01

    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.

  20. A versatile program for the calculation of linear accelerator room shielding.

    PubMed

    Hassan, Zeinab El-Taher; Farag, Nehad M; Elshemey, Wael M

    2018-03-22

    This work aims at designing a computer program to calculate the necessary amount of shielding for a given or proposed linear accelerator room design in radiotherapy. The program (Shield Calculation in Radiotherapy, SCR) has been developed using Microsoft Visual Basic. It applies the treatment room shielding calculations of NCRP report no. 151 to calculate proper shielding thicknesses for a given linear accelerator treatment room design. The program is composed of six main user-friendly interfaces. The first enables the user to upload their choice of treatment room design and to measure the distances required for shielding calculations. The second interface enables the user to calculate the primary barrier thickness in case of three-dimensional conventional radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT) and total body irradiation (TBI). The third interface calculates the required secondary barrier thickness due to both scattered and leakage radiation. The fourth and fifth interfaces provide a means to calculate the photon dose equivalent for low and high energy radiation, respectively, in door and maze areas. The sixth interface enables the user to calculate the skyshine radiation for photons and neutrons. The SCR program has been successfully validated, precisely reproducing all of the calculated examples presented in NCRP report no. 151 in a simple and fast manner. Moreover, it easily performed the same calculations for a test design that was also calculated manually, and produced the same results. The program includes a new and important feature that is the ability to calculate required treatment room thickness in case of IMRT and TBI. It is characterised by simplicity, precision, data saving, printing and retrieval, in addition to providing a means for uploading and testing any proposed treatment room shielding design. The SCR program provides comprehensive, simple, fast and accurate room shielding calculations in radiotherapy.

  1. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase III: Comparison of Theory with Experiment

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2012-01-01

    A proof-of-principle effort to demonstrate a technique by which erosion of the acceleration channel in Hall thrusters of the magnetic-layer type can be eliminated has been completed. The first principles of the technique, now known as "magnetic shielding," were derived based on the findings of numerical simulations in 2-D axisymmetric geometry. The simulations, in turn, guided the modification of an existing 6-kW laboratory Hall thruster. This magnetically shielded (MS) thruster was then built and tested. Because neither theory nor experiment alone can validate fully the first principles of the technique, the objective of the 2-yr effort was twofold: (1) to demonstrate in the laboratory that the erosion rates can be reduced by >order of magnitude, and (2) to demonstrate that the near-wall plasma properties can be altered according to the theoretical predictions. This paper concludes the demonstration of magnetic shielding by reporting on a wide range of comparisons between results from numerical simulations and laboratory diagnostics. Collectively, we find that the comparisons validate the theory. Near the walls of the MS thruster, theory and experiment agree: (1) the plasma potential has been sustained at values near the discharge voltage, and (2) the electron temperature has been lowered by at least 2.5-3 times compared to the unshielded (US) thruster. Also, based on carbon deposition measurements, the erosion rates at the inner and outer walls of the MS thruster are found to be lower by at least 2300 and 1875 times, respectively. Erosion was so low along these walls that the rates were below the resolution of the profilometer. Using a sputtering yield model with an energy threshold of 25 V, the simulations predict a reduction of 600 at the MS inner wall. At the outer wall ion energies are computed to be below 25 V, for which case we set the erosion to zero in the simulations. When a 50-V threshold is used the computed ion energies are below the threshold at both sides of the channel. Uncertainties, sensitivities and differences between theory and experiment are also discussed.

  2. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less

  3. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less

  4. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    NASA Technical Reports Server (NTRS)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  5. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.

  6. Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results.

  7. A Ballistic Limit Analysis Program for Shielding Against Micrometeoroids and Orbital Debris

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Erie

    2010-01-01

    A software program has been developed that enables the user to quickly and simply perform ballistic limit calculations for common spacecraft structures that are subject to hypervelocity impact of micrometeoroid and orbital debris (MMOD) projectiles. This analysis program consists of two core modules: design, and; performance. The design module enables a user to calculate preliminary dimensions of a shield configuration (e.g., thicknesses/areal densities, spacing, etc.) for a ?design? particle (diameter, density, impact velocity, incidence). The performance module enables a more detailed shielding analysis, providing the performance of a user-defined shielding configuration over the range of relevant in-orbit impact conditions.

  8. [Shielding design and detection of neutrons from medical and industrial electron accelerators--simple method of design calculation for neutron shielding].

    PubMed

    Nakamura, T; Uwamino, Y

    1986-02-01

    The neutron leakage from medical and industrial electron accelerators has become an important problem and its detection and shielding is being performed in their facilities. This study provides a new simple method of design calculation for neutron shielding of those electron accelerator facilities by dividing into the following five categories; neutron dose distribution in the accelerator room, neutron attenuation through the wall and the door in the accelerator room, neutron and secondary photon dose distributions in the maze, neutron and secondary photon attenuation through the door at the end of the maze, neutron leakage outside the facility-skyshine.

  9. Multiplate Radiation Shields: Investigating Radiational Heating Errors

    NASA Astrophysics Data System (ADS)

    Richardson, Scott James

    1995-01-01

    Multiplate radiation shield errors are examined using the following techniques: (1) analytic heat transfer analysis, (2) optical ray tracing, (3) numerical fluid flow modeling, (4) laboratory testing, (5) wind tunnel testing, and (6) field testing. Guidelines for reducing radiational heating errors are given that are based on knowledge of the temperature sensor to be used, with the shield being chosen to match the sensor design. Small, reflective sensors that are exposed directly to the air stream (not inside a filter as is the case for many temperature and relative humidity probes) should be housed in a shield that provides ample mechanical and rain protection while impeding the air flow as little as possible; protection from radiation sources is of secondary importance. If a sensor does not meet the above criteria (i.e., is large or absorbing), then a standard Gill shield performs reasonably well. A new class of shields, called part-time aspirated multiplate radiation shields, are introduced. This type of shield consists of a multiplate design usually operated in a passive manner but equipped with a fan-forced aspiration capability to be used when necessary (e.g., low wind speed). The fans used here are 12 V DC that can be operated with a small dedicated solar panel. This feature allows the fan to operate when global solar radiation is high, which is when the largest radiational heating errors usually occur. A prototype shield was constructed and field tested and an example is given in which radiational heating errors were reduced from 2 ^circC to 1.2 ^circC. The fan was run continuously to investigate night-time low wind speed errors and the prototype shield reduced errors from 1.6 ^ circC to 0.3 ^circC. Part-time aspirated shields are an inexpensive alternative to fully aspirated shields and represent a good compromise between cost, power consumption, reliability (because they should be no worse than a standard multiplate shield if the fan fails), and accuracy. In addition, it is possible to modify existing passive shields to incorporate part-time aspiration, thus making them even more cost-effective. Finally, a new shield is described that incorporates a large diameter top plate that is designed to shade the lower portion of the shield. This shield increases flow through it by 60%, compared to the Gill design and it is likely to reduce radiational heating errors, although it has not been tested.

  10. [The economics of preventing psycho-social risks].

    PubMed

    Golzio, Luigi

    2014-01-01

    The aim of the essay is to show the SHIELD methodology for helping the firm management to improve the risks prevention policy. It has been tested in the field with positive results. SHIELD is a cost-benefit analysis application to compare prevention and non-prevention costs, which arise from non-market risks. In the economic perspective safety risks (which include psycho-social risks) are non-market ones as they cause injures to workers during the job. SHIELD (Social Health Indicators for Economic Labour Decisions), is the original method proposed by the author. It is a cost benefits analysis application, which compares safety prevention and non-prevention costs. The comparison allow stop management to evaluate the efficiency of the current safety prevention policy as it helps top management to answer to the policy question: how much to invest in prevention costs? The costs comparison is obtained through the reclassification of safety costs between prevention and non-prevention costs (which are composed by claim damages and penalty sanction costs). SHIELD has been tested empirically in four companies operating in the agribusiness sector during a research financed by the Assessorato all'Agricoltura and INAI Regionale of Emilia Romagna Region. Results are postive: it has been found that the increase of prevention costs causes the cut of non-prevention costs in all companies looked into, as assumed by the high reliability organization theory. SHIELD can be applied to all companies which must have an accounting system by law, no matter of the industry they act. Its application has limited costs as SHIELD doesn't need changes in the accounting system. Safety costs sustained by the company are simply reclassified in prevention and non-prevention costs. The comparison of these two costs categories has been appreciated by top management of companies investigated as a useful support to decide the risks prevention policy for the company. The SHIELD original feature compared with others cost benefit analysis application is to compute registered costs in the company accounting system.

  11. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    NASA Technical Reports Server (NTRS)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; hide

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  12. Space Station MMOD Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric

    2006-01-01

    This paper describes International Space Station (ISS) shielding for micrometeoroid orbital debris (MMOD) protection, requirements for protection, and the technical approach to meeting requirements. Current activities in MMOD protection for ISS will be described, including efforts to augment MMOD protection by adding shields on-orbit. Observed MMOD impacts on ISS elements such as radiators, modules and returned hardware will be described. Comparisons of the observed damage with predicted damage using risk assessment software will be made.

  13. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasin, Zafar, E-mail: zafar.yasin@eli-np.ro; Matei, Catalin; Ur, Calin A.

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKAmore » and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.« less

  14. Innovative Research Program: Supershields for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hailey, Charles J.

    2000-01-01

    The supershield project evaluated the importance of novel shield configurations for suppressing neutron induced background in new classes of gamma-ray detectors such as CZT. The basic concept was to use a two-part shield. The outer shield material heavily moderates the incoming neutron spectrum. This moderated neutron beam is then more easily absorbed by the inner material, which is an efficient neutron absorber. This approach is, in principle, more efficient than that in previous attempts to make neutron shields. These previous attempts involved biatomic, monlithic shields (eg. LiH) in which the shield consisted of a single material but with two types of atoms - one for moderating and one for absorbing. The problem with this type of monolithic shield is that moderating neutrons, without the efficient absorption of them, leads to the leakage into the detector of neutrons with a low energy component (approx. 10-100 KeV). These energy neutrons are particularly problematic for many types of detectors. The project was roughly divided into phases. In the first phase we attempted to carefully define the neutron source function incident on any space instrument. This is essential since the design of any shield depends on the shape of the incident neutron spectrum. We found that approximations commonly used in gamma-ray astronomy for photon background is inadequate. In addition, we found that secondary neutrons produced in any passive shield, and dominated by inelastic neutron scattering, are far more important than background due to neutron activation. The second phase of our work involved design of supershield geometries (one and three dimensional) in order to compare different shield configurations and materials for their effectiveness as neutron shields. Moreover we wanted to compare these supershields with previous neutron shields to confirm the performance differences between the supershield (two material) and monolithic (one material) designs and to understand the physics origins of these differences more clearly. The third phase of the supershield program involved the benchmarking of the supershield designs through direct experimental verification. This required fabricating various supershields and exposing them to beams of neutrons to directly characterize their performance. With explicit verification that our modeling procedures can be used with confidence, we are now in a position to design shields for realistic space geometries. Using the supershield modeling capacity developed as part of this program we are attempting to evaluate their utility for a specific proposed mission--the Energetic X-ray Imaging Survey Telescope (EXIST). It is anticipated that this experiment, which is limited by internal background at high energies, might benefit from a neutron shield.

  15. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  16. Design and Fabrication of a Tank-Applied Broad Area Cooling Shield Coupon

    NASA Technical Reports Server (NTRS)

    Wood, J. J.; Middlemas, M. R.

    2012-01-01

    The small-scale broad area cooling (BAC) shield test panel represents a section of the cryogenic propellant storage and transfer ground test article, a flight-like cryogenic propellant storage tank. The test panel design includes an aluminum tank shell, primer, spray-on foam insulation, multilayer insulation (MLI), and BAC shield hardware. This assembly was sized to accurately represent the character of the MLI/BAC shield system, be quickly and inexpensively assembled, and be tested in the Marshall Space Flight Center Acoustic Test Facility. Investigating the BAC shield response to a worst-case launch dynamic load was the key purpose for developing the test article and performing the test. A preliminary method for structurally supporting the BAC shield using low-conductivity standoffs was designed, manufactured, and evaluated as part of the test. The BAC tube-standoff interface and unsupported BAC tube lengths were key parameters for evaluation. No noticeable damage to any system hardware element was observed after acoustic testing.

  17. Thermal Protection System (Heat Shield) Development - Advanced Development Project

    NASA Technical Reports Server (NTRS)

    Kowal, T. John

    2010-01-01

    The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.

  18. Instrumentation concepts and requirements for a space vacuum research facility. [molecular shield for spaceborne experiments

    NASA Technical Reports Server (NTRS)

    Norton, H. N.

    1979-01-01

    An earth-orbiting molecular shield that offers a unique opportunity for conducting physics, chemistry, and material processing experiments under a combination of environmental conditions that are not available in terrestrial laboratories is equipped with apparatus for forming a molecular beam from the freestream. Experiments are carried out using a moderate energy, high flux density, high purity atomic oxygen beam in the very low density environment within the molecular shield. As a minimum, the following instruments are required for the molecular shield: (1) a mass spectrometer; (2) a multifunction material analysis instrumentation system; and (3) optical spectrometry equipment. The design is given of a furlable molecular shield that allows deployment and retrieval of the system (including instrumentation and experiments) to be performed without contamination. Interfaces between the molecular shield system and the associated spacecraft are given. An in-flight deployment sequence is discussed that minimizes the spacecraft-induced contamination in the vicinity of the shield. Design approaches toward a precursor molecular shield system are shown.

  19. Building A New Kind of Graded-Z Shield for Swift's Burst Alert Telescope

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2002-01-01

    The Burst Alert Telescope (BAT) on Swift has a graded-Z Shield that closes out the volume between the coded aperture mask and the Cadmium-Zinc-Telluride (CZT) detector array. The purpose of the 37 kilogram shield is to attenuate gamma rays that have not penetrated the coded aperture mask of the BAT instrument and are therefore a major source of noise on the detector array. Unlike previous shields made from plates and panels, this shield consists of multiple layers of thin metal foils (lead, tantalum, tin, and copper) that are stitched together much like standard multi-layer insulation blankets. The shield sections are fastened around BAT, forming a curtain around the instrument aperture. Strength tests were performed to validate and improve the design, and the shield will be vibration tested along with BAT in late 2002. Practical aspects such as the layup design, methods of manufacture, and testing of this new kind of graded-Z Shield are presented.

  20. Polypyrrole-MWCNT-Ag composites for electromagnetic shielding: Comparison between chemical deposition and UV-reduction approaches

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh

    2018-07-01

    In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.

  1. Space Radiation and the Challenges Towards Effective Shielding Solutions

    NASA Technical Reports Server (NTRS)

    Barghouty, Abdulnasser

    2014-01-01

    The hazards of space radiation and their effective mitigation strategies continue to pose special science and technology challenges to NASA. It is widely accepted now that shielding space vehicles and structures will have to rely on new and innovative materials since aluminum, like all high Z materials, are poor shields against the particulate and highly ionizing nature of space radiation. Shielding solutions, motivated and constrained by power and mass limitations, couple this realization with "multifunctionality," both in design concept as well as in material function and composition. Materials endowed with effective shielding properties as well as with some degree of multi-functionality may be the kernel of the so-called "radiation-smart" structures and designs. This talk will present some of the challenges and potential mitigation ideas towards the realization of such structures and designs.

  2. Two-dimensional over-all neutronics analysis of the ITER device

    NASA Astrophysics Data System (ADS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi

    1993-07-01

    The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.

  3. Enabling a Better Aft Heat Shield Solution for Future Mars Science Laboratory Class Vehicles

    NASA Technical Reports Server (NTRS)

    McGuire, Mary K.; Covington, Melmoth A.; Goldstein, Howard E.; Arnold, James O.; Beck, Robin

    2013-01-01

    System studies are described that compare masses and estimated manufacturing costs of options for the as-flown Mars Science Laboratory (MSL) aft body Thermal Light Weight Ablator (SLA) 561-V and its thickness was not optimized using the standard TPS Sizer Tool widely used for heat shield design. Use of the TPS sizing tool suggests that optimization of the SLA thickness could reduce the aft heat shield mass by 40 percent. Analysis of the predicted aft-shell aerothermodynamics suggests that the bulk of MSL class entry vehicle heat shields could incorporate Advanced Flexible Reusable Surface Insulation (AFRSI). AFRSI has a wellestablished record of relatively inexpensive manufacturing and flight certification based on its use on the lee side of the Space Shuttle. Runs with the TPS Sizer show that the AFRSI solution would be 60 percent lighter than the as-flown SLA. The issue of Reaction Control System (RCS) heating on the aft shell could be addressed by locally impregnating the AFRSI with silicone to enhance its robustness to short bursts ofheating. Stagnation point arcjet testing has shown that silicone impregnated AFRSI performs well at heat rates of 115 W/cm2 and 0.1 atmospheres for a duration of 40 seconds, far beyond conditions that are expected for MSL class vehicles. The paper concludes with a discussion of manufacturing processes for AFRSI, impregnation approaches and relative cost comparisons to the SLA solution.

  4. Smaller but Fully Functional Backshell for Cable Connector

    NASA Technical Reports Server (NTRS)

    Stephenson, Gregory

    2009-01-01

    An improved design for the backshell of a connector for a shielded, multiplewire cable reduces the size of the backshell, relative to traditional designs of backshells of otherwise identical cable connectors. Notwithstanding the reduction in size, the design provides all the functionality typically demanded of such a backshell, including (1) termination of the cable shield (that is, grounding of the shield to the backshell), (2) strain relief for the cable, and (3) protection against electromagnetic interference (EMI).

  5. Characterization and reduction of gradient-induced eddy currents in the RF shield of a TEM resonator.

    PubMed

    Alecci, Marcello; Jezzard, Peter

    2002-08-01

    Radiofrequency (RF) shields that surround MRI transmit/receive coils should provide effective RF screening, without introducing unwanted eddy currents induced by gradient switching. Results are presented from a detailed examination of an effective RF shield design for a prototype transverse electromagnetic (TEM) resonator suitable for use at 3 Tesla. It was found that effective RF shielding and low eddy current sensitivity could be achieved by axial segmentation (gap width = 2.4 mm) of a relatively thick (35 microm) copper shield, etched on a kapton polyimide substrate. This design has two main advantages: first, it makes the TEM less sensitive to the external environment and RF interference; and second, it makes the RF shield mechanically robust and easy to handle and assemble. Copyright 2002 Wiley-Liss, Inc.

  6. Magnetic Shield for Adiabatic Demagnetization Refrigerators (ADR)

    NASA Technical Reports Server (NTRS)

    Chui, Talso C.; Haddad, Nicolas E.

    2013-01-01

    A new method was developed for creating a less expensive shield for ADRs using 1018 carbon steel. This shield has been designed to have similar performance to the expensive vanadium permendur shields, but the cost is 30 to 50% less. Also, these shields can be stocked in a variety of sizes, eliminating the need for special forgings, which also greatly reduces cost.

  7. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REID, ROBERT S.; PEARSON, J. BOSIE; STEWART, ERIC T.

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WSTmore » is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sager, P.H.

    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcingmore » between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept.« less

  9. Electroless shielding of plastic electronic enclosures

    NASA Astrophysics Data System (ADS)

    Thompson, D.

    1985-12-01

    The containment or exclusion of radio frequency interference (RFI) via metallized plastic enclosures and the electroless plating as a solution are examined. The electroless coating and process, shielding principles and test data, shielding design requirements, and shielding advantages and limitations are reviewed. It is found that electroless shielding provides high shielding effectiveness to plastic substrates. After application of a conductive metallic coating by electroless plating, various plastics have passed the ASTM adhesion test after thermal cycle and severe environmental testing. Electroless shielding provides a lightweight, totally metallized housing to EMI/RFI shielding. Various compositions of electroless deposits are found to optimize electroless shielding cost/benefit ratio.

  10. Self-Shielding Of Transmission Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christodoulou, Christos

    The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust componentmore » must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.« less

  11. A qualitative analysis of power take-off driveline shields: barriers and motivators to shield use for New York State farmers.

    PubMed

    Weil, R; Mellors, P; Fiske, T; Sorensen, J A

    2014-01-01

    Machinery entanglements are one of the top three causes of death in farming. Education on the risks of unshielded power take-off (PTO) equipment does not appear to significantly alter farmers' willingness to replace missing or broken shielding. Different assessments conducted in various regions of the U.S. indicate that as many as one-third to one-half of PTOs are inadequately shielded. Qualitative research was conducted with New York farmers to identify the factors that influence the decision to replace damaged or missing PTO driveline shields. Interview topics included: knowledge of entanglement risks, decisions regarding safety in general, decisions relating to PTO driveline shielding specifically, and the barriers and motivators to replacing missing or broken PTO driveline shields. Interviews with 38 farmers revealed the following themes: (1) farmers are fully aware of PTO entanglement risk, (2) insufficient time and money are primary barriers to purchasing or replacing damaged or missing PTO driveline shields, (3) PTO driveline shield designs are problematic and have led to negative experiences with shielding, and (4) risk acceptance and alternate work strategies are preferred alternatives to replacing shields. Our findings indicate that more innovative approaches will be required to make PTO driveline shield use a viable and attractive choice for farmers. New shield designs that address the practical barriers farmers face, as well as the provision of logistical and financial assistance for shield replacement, may alter the decision environment sufficiently to make replacing PTO driveline shielding a more attractive option for farmers.

  12. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle production in massive structural shielding.

  13. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  14. Synthesis of calculational methods for design and analysis of radiation shields for nuclear rocket systems

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.

    1969-01-01

    Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.

  15. Comfort Assessment of Personal Protection Systems During Total Joint Arthroplasty Using a Novel Multidimensional Evaluation Tool

    PubMed Central

    Malik, MHA; Handford, Elizabeth; Staniford, Elaine; Gambhir, AK; Kay, PR

    2006-01-01

    INTRODUCTION A number of studies have assessed the usefulness of surgical gowns and exhaust suits with regards to barrier function and protection afforded to healthcare workers from blood strike-through, splashes and aerosols. PATIENTS AND METHODS We have performed a comfort assessment comparison between the Charnley exhaust suit, disposable gown plus visor and the Stryker Steri-Shield system using a newly developed objective multidimensional ergonomic tool designed to measure wearable comfort across the dimensions of emotion, attachment, harm, perceived change, movement and anxiety. RESULTS The total mean Comfort Rating Scale value for a disposable gown plus visor was 16.1 with a mean dimensional score of 2.7 (range, 0.2–8.4), for the Charnley system the values were 51.4 and 8.6 (range, 5.9–12.8), respectively, and for the Stryker Steri-Shield 15.4 and 2.6 (range, 0.8–5.6). CONCLUSIONS The Steri-Shield system provides the least variation in comfort and, as such, may offer the best combination of comfort, protective qualities and form or style of personal protection equipment for lower limb arthroplasty operations. PMID:17002852

  16. Radiation skyshine from a 6 MeV medical accelerator

    PubMed Central

    McGinley, Patton H.; Rising, Mary B.; Pahikkala, A. Jussi

    2010-01-01

    This study assesses the dose level from skyshine produced by a 6 MeV medical accelerator. The analysis of data collected on skyshine yields professional guidance for future investigators as they attempt to quantify and qualify radiation protection concerns in shielding therapy vaults. Survey measurements using various field sizes and at varying distances from a primary barrier have enabled us to identify unique skyshine behavior in comparison to other energies already seen in literature. In order to correctly quantify such measurements outside a shielded barrier, one must take into consideration the fact that a skyshine maximum may not be observed at the same distance for all field sizes. A physical attribute of the skyshine scatter component was shown to increase to a maximum value at 4.6 m from the barrier for the largest field size used. We recommend that the largest field sizes be used in the field for the determination of skyshine effect and that the peak value be further analyzed specifically when considering shielding designs. PACS numbers: 87.52.‐g, 87.52.Df, 87.52.Tr, 87.53.‐j, 87.53.Bn, 87.53.Dq, 87.66.‐a, 89., 89.60.+x

  17. Comparison of different shielding methods in acquisition of physiological signals.

    PubMed

    Yanbing Jiang; Ning Ji; Hui Wang; Xueyu Liu; Yanjuan Geng; Peng Li; Shixiong Chen; Guanglin Li

    2017-07-01

    Power line interference in the surrounding environment could usually introduce many difficulties when collecting and analyzing physiological signals. Since power line interference is usually several orders of amplitude larger than the physiological electrical signals, methods of suppressing power line interference should be considered during the signal acquisition. Many studies used a hardware or software band-stop filter to suppress power line interference but it could easily cause attenuations and distortions to the signal of interest. In this study, two kinds of methods that used different signals to drive the shields of the electrodes were proposed to reduce the impacts of power line interference. Three channels of two physiological signals (ECG and EMG) were simultaneously collected when the electrodes were not shielded (No-Shield), shielded by ground signals (GND-Shield) and shielded by buffered signals of the corresponding electrodes (Active-Shield), respectively, on a custom hardware platform based on TI ADS1299. The results showed that power line interference would be significantly suppressed when using shielding approaches, and the Active-Shield method could achieve the best performance with a power line interference reduction up to 36dB. The study suggested that the Active-Shield method at the analog front-end was a great candidate to reduce power line interference in routine acquisitions of physiological signals.

  18. Effect of a semi-annular thermal acoustic shield on jet exhaust noise

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J.

    1980-01-01

    The effect of a semi-annular acoustic shield on jet exhaust noise is investigated with the rationale that such a configuration would reduce or eliminate the multiple reflection mechanism. A limited range of flow conditions for one nozzle/shield configuration were studied at model scale. Noise measurements for a 10 cm conical nozzle with a semi-annular acoustical shield are presented in terms of lossless free field data at various angular locations with respect to the nozzle. Measurements were made on both the shielded and unshielded sides of the nozzle. Model scale overall sound pressure level directivity patterns and comparisons of model scale spectral data are provided. The results show that a semi-annular thermal acoustic shield consisting of a low velocity, high temperature gas stream partially surrounding a central jet exhibits lower noise levels than when the central jet is operated alone. The results are presented parametrically, showing the effects of various shield and central system velocities and temperatures.

  19. Calculation of self–shielding factor for neutron activation experiments using GEANT4 and MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero–Barrientos, Jaime, E-mail: jaromero@ing.uchile.cl; Universidad de Chile, DFI, Facultad de Ciencias Físicas Y Matemáticas, Avenida Blanco Encalada 2008, Santiago; Molina, F.

    2016-07-07

    The neutron self–shielding factor G as a function of the neutron energy was obtained for 14 pure metallic samples in 1000 isolethargic energy bins from 1·10{sup −5}eV to 2·10{sup 7}eV using Monte Carlo simulations in GEANT4 and MCNP6. The comparison of these two Monte Carlo codes shows small differences in the final self–shielding factor mostly due to the different cross section databases that each program uses.

  20. SOC-DS computer code provides tool for design evaluation of homogeneous two-material nuclear shield

    NASA Technical Reports Server (NTRS)

    Disney, R. K.; Ricks, L. O.

    1967-01-01

    SOC-DS Code /Shield Optimization Code-Direc Search/, selects a nuclear shield material of optimum volume, weight, or cost to meet the requirments of a given radiation dose rate or energy transmission constraint. It is applicable to evaluating neutron and gamma ray shields for all nuclear reactors.

  1. A shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    The perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  2. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1975-01-01

    The design, fabrication, and testing of a full-size, full-scale TD Ni-20Cr heat shield test array in simulated mission environments is described along with the design and fabrication of two additional full-size, full-scale test arrays to be tested in flowing gas test facilities at the NASA Langley Research Center. Cost and reusability evaluations of TD Ni-20Cr heat shield systems are presented, and weight estimates of a TD Ni-20Cr heat shield system for use on a shuttle orbiter vehicle are made. Safe-line expectancy of a TD Ni-20Cr heat shield system is assessed. Non-destructive test techniques are evaluated to determine their effectiveness in quality assurance checks of TD Ni-20Cr components such as heat shields, heat shield supports, close-out panels, formed cover strips, and edge seals. Results of tests on a braze reinforced full-scale, subsize panel are included. Results show only minor structural degradation in the main TD Ni-20Cr heat shields of the test array during simulated mission test cycles.

  3. Low-cost electromagnetic shielding using drywall composites: results of RFI (radio-frequency interference) testing of a shielding effectiveness. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.F.; Heyen, K.K.; McCormack, R.G.

    1987-10-01

    Because of developments in electronics technology, the need for electromagnetic shielding has increased. To reduce the cost of this shielding, new materials are needed. The U.S. Army Corps of Engineers, Fort Worth District (FWD), and the U.S. Army Construction Engineering Research Laboratory (USA-CERL) have developed composite materials that use standard, construction-grade, aluminum foil-backed gypsum board in combination with either a metal mesh or lead foil. Special seams for these composites were designed by U.S. Gypsum Company. USA-CERL evaluated the adequacy of each material and seam design by using radio-frequency antennas and receivers to measure its shielding effectiveness when mounted inmore » the wall of a shielded room. These evaluations showed that the composite panels met the specified requirement of 60 decibels (dB) of shielding. The composites were also shown to be adequate for most communications security applications. However, the addition of a seam decreased shielding by as much as 10 dB.« less

  4. Optimized technical and scientific design approach for high performance anticoincidence shields

    NASA Astrophysics Data System (ADS)

    Graue, Roland; Stuffler, Timo; Monzani, Franco; Bastia, Paolo; Gryksa, Werner; Pahl, Germit

    2018-04-01

    This paper, "Optimized technical and scientific design approach for high performance anticoincidence shields," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  5. Evaluation of lens dose from anterior electron beams: comparison of Pinnacle and Gafchromic EBT3 film.

    PubMed

    Sonier, Marcus; Wronski, Matt; Yeboah, Collins

    2015-03-08

    Lens dose is a concern during the treatment of facial lesions with anterior electron beams. Lead shielding is routinely employed to reduce lens dose and minimize late complications. The purpose of this work is twofold: 1) to measure dose pro-files under large-area lead shielding at the lens depth for clinical electron energies via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment planning system in calculating doses under lead shields. First, to simulate the clinical geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid Water phantom. With the lead shield inside the phantom, the film was positioned at a depth of 0.7 cm below the lead, while a variable thickness of solid water, simulating bolus, was placed on top. This geometry was reproduced in Pinnacle to calculate dose profiles using the pencil beam electron algorithm. The measured and calculated dose profiles were normalized to the central-axis dose maximum in a homogeneous phantom with no lead shielding. The resulting measured profiles, functions of bolus thickness and incident electron energy, can be used to estimate the lens dose under various clinical scenarios. These profiles showed a minimum lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to ≤ 10% of the dose maximum. Comparisons with Pinnacle showed a consistent overestimation of dose under the lead shield with discrepancies of ~ 25% occur-ring near the shield edge. This discrepancy was found to increase with electron energy and bolus thickness and decrease with distance from the lead edge. Thus, the Pinnacle electron algorithm is not recommended for estimating lens dose in this situation. The film measurements, however, allow for a reasonable estimate of lens dose from electron beams and for clinicians to assess the lead margin required to reduce the lens dose to an acceptable level.

  6. 10 CFR 36.39 - Design requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... concrete and design the walls, wall penetrations, and entranceways to meet the radiation shielding... that the number, location, and spacing of the smoke and heat detectors are appropriate to detect fires... licensee shall design the reinforced concrete radiation shields to retain their integrity in the event of...

  7. 10 CFR 36.39 - Design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... concrete and design the walls, wall penetrations, and entranceways to meet the radiation shielding... that the number, location, and spacing of the smoke and heat detectors are appropriate to detect fires... licensee shall design the reinforced concrete radiation shields to retain their integrity in the event of...

  8. 10 CFR 36.39 - Design requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... concrete and design the walls, wall penetrations, and entranceways to meet the radiation shielding... that the number, location, and spacing of the smoke and heat detectors are appropriate to detect fires... licensee shall design the reinforced concrete radiation shields to retain their integrity in the event of...

  9. 10 CFR 36.39 - Design requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... concrete and design the walls, wall penetrations, and entranceways to meet the radiation shielding... that the number, location, and spacing of the smoke and heat detectors are appropriate to detect fires... licensee shall design the reinforced concrete radiation shields to retain their integrity in the event of...

  10. 10 CFR 36.39 - Design requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... concrete and design the walls, wall penetrations, and entranceways to meet the radiation shielding... that the number, location, and spacing of the smoke and heat detectors are appropriate to detect fires... licensee shall design the reinforced concrete radiation shields to retain their integrity in the event of...

  11. Determination of shielding requirements for mammography.

    PubMed

    Okunade, Akintunde Akangbe; Ademoroti, Olalekan Albert

    2004-05-01

    Shielding requirements for mammography when considerations are to be given to attenuation by compression paddle, breast tissue, grid and image receptor (intervening materials) has been investigated. By matching of the attenuation and hardening properties, comparisons are made between shielding afforded by breast tissue materials (water, Lucite and 50%-50% adipose-glandular tissue) and some materials considered for shielding diagnostic x-ray beams, namely lead, steel and gypsum wallboard. Results show that significant differences exist between the thickness required to produce equal attenuation and that required to produce equal hardening of a given incident beam. While attenuation equivalent thickness produces equal exposure, it does not produce equal hardening. For shielding purposes, equivalence in exposure reduction without equivalence in penetrating power of an emerging beam does not amount to equivalence in shielding affordable by two different materials. Presented are models and results of sample calculations of additional shielding requirements apart from that provided by intervening materials. The shielding requirements for the integrated beam emerging from intervening materials are different from those for the integrated beam emerging from materials (lead/steel/gypsum wallboard) with attenuation equivalent thicknesses of these intervening materials.

  12. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    PubMed Central

    Ran, L.; Ye, X. W.; Ming, G.; Dong, X. B.

    2014-01-01

    Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented. PMID:25032238

  13. Preliminary design of the thermal protection system for solar probe

    NASA Technical Reports Server (NTRS)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  14. The importance of applicator design for intraluminal brachytherapy of rectal cancer.

    PubMed

    Hansen, Johnny Witterseh; Jakobsen, Anders

    2006-09-01

    An important aspect of designing an applicator for radiation treatment of rectal cancer is the ability to minimize dose to the mucosa and noninvolved parts of the rectum wall. For this reason we investigated a construction of a flexible multichannel applicator with several channels placed along the periphery of a cylinder and a construction of a rigid cylinder with a central channel and interchangeable shields. Calculations of the dose gradient, dose homogeneity in the tumor, and shielding ability were performed for the two applicators in question. Furthermore, the influence on dose distribution around a flexible multichannel applicator from an unintended off-axis positioning of the source inside a bent channel was investigated by film measurements on a single bent catheter. Calculations showed that a single-channel applicator with interchangeable shields yields a higher degree of shielding and has a better dose homogeneity in the tumor volume than that of a multi-channel applicator. A single-channel applicator with interchangeable shields was manufactured, and the influence of different size of shield angle on dose rate in front of and behind the shields was measured. While dose rate in front of the shield and shielding ability are closely independent of the size of the shield angle when measured 1 cm from the applicator surface, dose rate in more distant volumes will to some extent be influenced by shield angle due to volume scatter conditions.

  15. The importance of applicator design for intraluminal brachytherapy of rectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Johnny Witterseh; Jakobsen, Anders; Department of Oncology, Hospital of Vejle, DK-7100 Vejle

    2006-09-15

    An important aspect of designing an applicator for radiation treatment of rectal cancer is the ability to minimize dose to the mucosa and noninvolved parts of the rectum wall. For this reason we investigated a construction of a flexible multichannel applicator with several channels placed along the periphery of a cylinder and a construction of a rigid cylinder with a central channel and interchangeable shields. Calculations of the dose gradient, dose homogeneity in the tumor, and shielding ability were performed for the two applicators in question. Furthermore, the influence on dose distribution around a flexible multichannel applicator from an unintendedmore » off-axis positioning of the source inside a bent channel was investigated by film measurements on a single bent catheter. Calculations showed that a single-channel applicator with interchangeable shields yields a higher degree of shielding and has a better dose homogeneity in the tumor volume than that of a multichannel applicator. A single-channel applicator with interchangeable shields was manufactured, and the influence of different size of shield angle on dose rate in front of and behind the shields was measured. While dose rate in front of the shield and shielding ability are closely independent of the size of the shield angle when measured 1 cm from the applicator surface, dose rate in more distant volumes will to some extent be influenced by shield angle due to volume scatter conditions.« less

  16. Gamma ray shielding and structural properties of Bi2O3-PbO-B2O3-V2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2014-04-01

    The present work has been undertaken to evaluate the applicability of Bi2O3-PbO-B2O3-V2O5 glass system as gamma ray shielding material. Gamma ray mass attenuation coefficient has been determined theoretically using WinXcom computer software developed by National Institute of Standards and Technology. A meaningful comparison of their radiation shielding properties has been made in terms of their half value layer parameter with standard radiation shielding concrete 'barite'. Structural properties of the prepared glass system have been investigated in terms of XRD and FTIR techniques in order to check the possibility of their commercial utility as alternate to conventional concrete for gamma ray shielding applications.

  17. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    NASA Astrophysics Data System (ADS)

    Berg, Thomas A.; Disney, Richard K.

    2004-02-01

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  18. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Thomas A.; Disney, Richard K.

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  19. SU-E-T-243: Design of a Novel Testing Port for Radiation Protection and Shielding Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanny, S; Parsai, E; Harrell, D

    2015-06-15

    Purpose: The majority of radiation shielding research utilizes Monte Carlo simulation because of the difficulty in eliminating secondary radiations from measurements. We have designed a test port into a primary barrier of our newest vault to allow for shielding measurements while ensuring adequate protection to the public and staff during normal machine operation. This port allows for measurement of attenuation values of shielding materials, differential dose albedos, and radiation scatter fractions. Methods: The vault design utilized the maze as part of a compound primary barrier. The test port is contained within the maze and is centered along isocenter. The innermore » 30 cm has a 20×20 cm{sup 2} opening, while the remaining length has a 30×30 cm{sup 2} opening. The block that contains the port has a density of 200 pcf to minimize internal scatter. The 30×30 cm{sup 2} opening is occupied by removable 215 pcf concrete blocks. The innermost and outermost blocks activate an interlock wired into the beam-enable loop. This disallows beam-on in treatment mode if the interlock isn’t closed. The interlock can be overridden in service mode, or by-passed via an override switch in case of circuit failure. Results: The test port was installed in August. The beam is disabled when the interlock is tripped. Measurements taken when the primary beam is not incident on the port are indistinguishable from background. Ambient dose levels surrounding the vault with the designed shielding blocks in place are all within allowable limits for occupational workers. Conclusions: We have designed and installed a unique testing port for radiation protection and shielding measurements. This port is appropriately interlocked and designed to mitigate any risks of incidental exposure to staff or members of the public. The test port design allows measurements with “good geometry” and efficient removal of contaminating sources of radiation present in many shielding measurements. Daniel Harrell and Jim Noller are employees of Shielding Construction Solutions, Inc, the shielding construction company that built the vault discussed in this abstract. Manjit Chopra is an employee of Universal Minerals International, Inc, the company that provided the aggregates for the high density concretes used in the vault construction.« less

  20. Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, C.O.; Cramer, S.N.; Ingersoll, D.T.

    1979-08-01

    The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experimentmore » were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel.« less

  1. Comparison of lead attenuation and lead hardening equivalence of materials used in respect of diagnostic X-ray shielding.

    PubMed

    Okunade, Akintunde Akangbe

    2002-12-01

    Present interest is in the shielding of diagnostic X-ray units. Numerical comparison has been made of the attenuation and hardening properties of lead and some particular alternative materials: steel, plate glass and gypsum wallboard. Results show, for particular choices of thickness, that lead and steel can be made to provide closely similar attenuation and spectral hardening, values of lead attenuation equivalent (LAE) and lead hardening equivalent (LHE) thicknesses being nearly the same. Significant differences in the attenuation and hardening properties of lead are found in comparison with plate glass and gypsum wallboard. LAE produces better matching of exposure for lead-plate glass and lead-gypsum wallboard than LHE.

  2. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    DTIC Science & Technology

    2013-03-01

    greater degree of flexibility in design and engineering of specialized space vehicle shielding applications compared to aluminum. A new design for...photon/electron transport. Specific areas of application include, but are not limited to, radiation protection and dosimetry, radiation shielding...of 37.8%. The reaction of interest is 64Zn(n,p)64Cu, where 64Cu has a half-life of 12.7 hours [5]. When this reaction occurs a positron

  3. Optimization Shield Materials Trade Study for Lunar/Gateway Mission

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.; Anderson, B. M.; Simonsen, L. C.

    2002-01-01

    The great cost of added radiation shielding is a potential limiting factor in many deep space missions. For this enabling technology, we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of various space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space missions, improved shield materials will be required. The details of this new method and its impact on space missions and other technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context. Providing protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs. We will use the mission optimization software to scope the impact of Gateway operations on human exposures and the effectiveness of alternate shielding materials on Gateway infrastructure designs. It is being proposed to use Moon and the Lagrange points as the hub for deep space missions. This study will provide a guide to the effectiveness of multifunctional materials in preparation to more detailed geometry studies in progress.

  4. Preliminary Design of a Galactic Cosmic Ray Shielding Materials Testbed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Berkebile, Stephen; Sechkar, Edward A.; Panko, Scott R.

    2012-01-01

    The preliminary design of a testbed to evaluate the effectiveness of galactic cosmic ray (GCR) shielding materials, the MISSE Radiation Shielding Testbed (MRSMAT) is presented. The intent is to mount the testbed on the Materials International Space Station Experiment-X (MISSE-X) which is to be mounted on the International Space Station (ISS) in 2016. A key feature is the ability to simultaneously test nine samples, including standards, which are 5.25 cm thick. This thickness will enable most samples to have an areal density greater than 5 g/sq cm. It features a novel and compact GCR telescope which will be able to distinguish which cosmic rays have penetrated which shielding material, and will be able to evaluate the dose transmitted through the shield. The testbed could play a pivotal role in the development and qualification of new cosmic ray shielding technologies.

  5. Contribution of High Charge and Energy (HZE) Ions During Solar-Particle Event of September 29, 1989

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.; Simonsen, Lisa C.; Atwell, William; Badavi, Francis F.; Miller, Jack

    1999-01-01

    The solar-particle event (SPE) of September 29, 1989, produced an iron-rich spectrum with energies approaching 1 A GeV with an approximate spectral slope parameter of 2.5. These high charge and energy (HZE) ions challenge conventional methods of shield design and assessment of astronaut risks. In the past, shield design and risk assessment have relied on proton shielding codes and biological response models derived from X-ray and neutron exposure data. Because the HZE spectra decline rapidly with energy and HZE attenuation in materials is limited by their penetration power, details of the mass distributions about the sensitive tissues (shielding materials and the astronaut's body) are important determining factors of the exposure levels and distributions of linear energy transfer. Local tissue environments during the SPE of September 29, 1989, with its f= components are examined to analyze the importance of these ions to human SPE exposure. Typical space suit and lightly shielded structures leave significant contributions from HZE components to certain critical body tissues and have important implications on the models for risk assessment. A heavily shielded equipment room of a space vehicle or habitat requires knowledge of the breakup of these ions into lighter components, including neutrons, for shield design specifications.

  6. Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials

    DTIC Science & Technology

    2016-05-23

    another application, electromagnetic wave shielding . Electromagnetic wave induces current which results in loss of energy. Thus magnetic nanoparticles...applicable for electromagnetic wave shielding . For better electromagnetic wave shielding capability, i) high dielectric constant, ii) high magnetic ...electromagnetic wave shielding properties7,8. In such point of view, designing a structure, magnetic nanoparticles in two dimensional electric conductive matrix

  7. Development of fiber shields for engine containment. [mathematical models

    NASA Technical Reports Server (NTRS)

    Bristow, R. J.; Davidson, C. D.

    1977-01-01

    Tests were conducted in translational launchers and spin pits to generate empirical data used in the design of a Kevlar shield for containing engine burst debris. Methods are given for modeling the relationship of fragment characteristics to shielding requirements. The change in relative importance of shield mounting provisions as fragment energy is increased is discussed.

  8. MO-D-213-07: RadShield: Semi- Automated Calculation of Air Kerma Rate and Barrier Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, M; Wu, D; Rutel, I

    2015-06-15

    Purpose: To develop the first Java-based semi-automated calculation program intended to aid professional radiation shielding design. Air-kerma rate and barrier thickness calculations are performed by implementing NCRP Report 147 formalism into a Graphical User Interface (GUI). The ultimate aim of this newly created software package is to reduce errors and improve radiographic and fluoroscopic room designs over manual approaches. Methods: Floor plans are first imported as images into the RadShield software program. These plans serve as templates for drawing barriers, occupied regions and x-ray tube locations. We have implemented sub-GUIs that allow the specification in regions and equipment for occupancymore » factors, design goals, number of patients, primary beam directions, source-to-patient distances and workload distributions. Once the user enters the above parameters, the program automatically calculates air-kerma rate at sampled points beyond all barriers. For each sample point, a corresponding minimum barrier thickness is calculated to meet the design goal. RadShield allows control over preshielding, sample point location and material types. Results: A functional GUI package was developed and tested. Examination of sample walls and source distributions yields a maximum percent difference of less than 0.1% between hand-calculated air-kerma rates and RadShield. Conclusion: The initial results demonstrated that RadShield calculates air-kerma rates and required barrier thicknesses with reliable accuracy and can be used to make radiation shielding design more efficient and accurate. This newly developed approach differs from conventional calculation methods in that it finds air-kerma rates and thickness requirements for many points outside the barriers, stores the information and selects the largest value needed to comply with NCRP Report 147 design goals. Floor plans, parameters, designs and reports can be saved and accessed later for modification and recalculation. We have confirmed that this software accurately calculates air-kerma rates and required barrier thicknesses for diagnostic radiography and fluoroscopic rooms.« less

  9. Initial measurement of site boundary neutron dose and comparison with calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Degtyarenko; D. Dotson; R. May

    1996-10-01

    For most accelerators adequate side shielding can be provided at minimal cost to meet the most aggressive radiation protection regulations and, further, the likely requirement to increase shielding thickness still more at a later date can be done usually by heaping more earth or applying local shielding at minimal expense and inconvenience. This moderately happy state of affairs does not unfortunately hold true with roof shielding. The cost of roof shielding is largely predicated on the roof span and the necessary structural engineering requirements for its support. These measures can be extremely expensive and where one is dealing with themore » rather extensive unsupported spans typical of experimental halls devoted to experiments with high energy electron beams; it is necessary to specify the roof thickness as carefully as possible with the constant concern that adding more earth later is not likely to be possible without rebuilding the hall. Because of the nature of roof skyshine, and for most high energy accelerator facilities neutron skyshine, the effect of the radiation is likely to extend to the facility fence-line where one is concerned about the exposure of the general population. Very properly the dose limit for the general population is set at a rather low value (1 mSv y{sup {minus}1}) and in order for the Jefferson Lab (JLab) to ensure strict compliance with this limit they have a design goal for the fence line of 0.1 mSv y{sup {minus}1}. However, because natural neutron backgrounds are low (30--40 {micro}Sv y{sup {minus}1}) and the methods of detection and measurement permit rejection of background interference from photons, they can measure the JLab produced neutron radiation with good sensitivity and precision.« less

  10. Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.

    PubMed

    Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J

    1996-06-01

    The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated with 2-3 mm of dental acrylic, the lid dose was increased from 85 to 98.5% at 6 MeV and 86 to 106% at 9 MeV. Commercially available eye shields were evaluated and found to be clearly inadequate to protect the ocular structures for electron beam energies equal to or greater than 6 MeV. A tungsten eye shield has been found to provide adequate protection for electrons up to 9 MeV. The increase in lid dose due to electrons backscattered off the tungsten eye shield should be considered in the dose prescription. A minimum thickness of 2 mm dental acrylic on the beam entrance surface of the tungsten eye shield was found to reduce the backscattered electron effect to acceptable levels.

  11. Is protective equipment useful in preventing concussion? A systematic review of the literature.

    PubMed

    Benson, B W; Hamilton, G M; Meeuwisse, W H; McCrory, P; Dvorak, J

    2009-05-01

    To determine if there is evidence that equipment use reduces sport concussion risk and/or severity. 12 electronic databases were searched using a combination of Medical Subject Headings and text words to identify relevant articles. Specific inclusion and exclusion criteria were used to select studies for review. Data extracted included design, study population, exposure/outcome measures and results. The quality of evidence was assessed based on epidemiologic criteria regarding internal and external validity (ie, strength of design, sample size/power calculation, selection bias, misclassification bias, control of potential confounding and effect modification). In total, 51 studies were selected for review. A comparison between studies was difficult due to the variability in research designs, definition of concussion, mouthguard/helmet/headgear/face shield types, measurements used to assess exposure and outcomes, and variety of sports assessed. The majority of studies were observational, with 23 analytical epidemiologic designs related to the subject area. Selection bias was a concern in the reviewed studies, as was the lack of measurement and control for potentially confounding variables. There is evidence that helmet use reduces head injury risk in skiing, snowboarding and bicycling, but the effect on concussion risk is inconclusive. No strong evidence exists for the use of mouthguards or face shields to reduce concussion risk. Evidence is provided to suggest that full facial protection in ice hockey may reduce concussion severity, as measured by time loss from competition.

  12. Extended Monopole antenna Array with individual Shield (EMAS) coil: An improved monopole antenna design for brain imaging at 7 tesla MRI.

    PubMed

    Woo, Myung-Kyun; Hong, Suk-Min; Lee, Jongho; Kang, Chang-Ki; Park, Sung-Yeon; Son, Young-Don; Kim, Young-Bo; Cho, Zang-Hee

    2016-06-01

    To propose a new Extended Monopole antenna Array with individual Shields (EMAS) coil that improves the B1 field coverage and uniformity along the z-direction. To increase the spatial coverage of Monopole antenna Array (MA) coil, each monopole antenna was shielded and extended in length. Performance of this new coil, which is referred to as EMAS coil, was compared with the original MA coil and an Extended Monopole antenna Array coil with no shield (EMA). For comparison, flip angle, signal-to-noise ratio (SNR), and receive sensitivity maps were measured at multiple regions of interest (ROIs) in the brain. The EMAS coil demonstrated substantially larger flip angle and receive sensitivity than the MA and EMA coils in the inferior aspect of the brain. In the brainstem ROI, for example, the flip angle in the EMAS coil was increased by 45.5% (or 60.0%) and the receive sensitivity was increased by 26.9% (or 14.9%), resulting in an SNR gain of 84.8% (or 76.3%) when compared with the MA coil (or EMA). The EMAS coil provided 25.7% (or 24.4%) more uniform B1+ field distribution compared with the MA (or EMA) coil in sagittal. The EMAS coil successfully extended the imaging volume in lower part of the brain. Magn Reson Med 75:2566-2572, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Military Handbook. Grounding, Bonding, and Shielding for Electronic Equipments and Facilities. Volume 1. Basic Theory

    DTIC Science & Technology

    1987-12-29

    when the air or gas stream contains particulate matter. b. Pulverized materials passing through chutes or pneumatic conveyors . c. Nonconductive power...Hanover NH, 1971, AD 722 221. 146.Oakley, R.J., "Surface Transfer Impedance and Cable Shielding Design ," Wire Journal, Vol 4, No. 3, March 1971, pp...including considerations of grounding, bonding, and shielding in all phases of design , construction, operation, and maintenance of electronic equipment

  14. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation.

    PubMed

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.

  15. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation

    PubMed Central

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957

  16. Radiation protection design considerations for man in geosynchronous orbits

    NASA Technical Reports Server (NTRS)

    Rossi, M. L.; Stauber, M. C.

    1977-01-01

    A description is presented of preliminary studies which have been carried out to identify design requirements and mission constraints imposed by the geosynchronous radiation environment. The radiation species of dominant impact are the trapped electrons and solar flare particles. The criterion used in the conducted shielding design analysis has been to limit the skin dose to 100 rems for 3 months. The analysis included the optimization of an electron/bremsstrahlung shield for residence within the vehicle, the minimization of the dose received in extravehicular activity, and the calculation of special shield requirements for solar flares. An investigation was conducted of the potential benefits accruing from a three-layered composite shield with part of the aluminum layer replaced with a lower atomic number material. The materials considered were polyethylene, carbon, beryllium, and lithium hydride.

  17. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method

    PubMed Central

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-01-01

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This “open-shielded” device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities. PMID:27841358

  18. Shielding design of an underground experimental area at point 5 of the CERN Super Proton Synchrotron (SPS).

    PubMed

    Mueller, Mario J; Stevenson, Graham R

    2005-01-01

    Increasing projected values of the circulating beam intensity in the Super Proton Synchrotron (SPS) and decreasing limits to radiation exposure, taken with the increasing non-acceptance of unjustified and unoptimised radiation exposures, have led to the need to re-assess the shielding between the ECX and ECA5 underground experimental areas of the SPS. Twenty years ago, these experimental areas at SPS-Point 5 housed the UA1 experiment, where Carlo Rubbia and his team verified the existence of W and Z bosons. The study reported here describes such a re-assessment based on simulations using the multi-purpose FLUKA radiation transport code. This study concludes that while the main shield which is made of concrete blocks and is 4.8 m thick satisfactorily meets the current design limits even at the highest intensities presently planned for the SPS, dose rates calculated for liaison areas on both sides of the main shield significantly exceed the design limits. Possible ways of improving the shielding situation are discussed.

  19. Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.

    2016-09-01

    Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.

  20. Shielding of substations against direct lightning strokes by shield wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhuri, P.

    1994-01-01

    A new analysis for shielding outdoor substations against direct lightning strokes by shield wires is proposed. The basic assumption of this proposed method is that any lightning stroke which penetrates the shields will cause damage. The second assumption is that a certain level of risk of failure must be accepted, such as one or two failures per 100 years. The proposed method, using electrogeometric model, was applied to design shield wires for two outdoor substations: (1) 161-kV/69-kV station, and (2) 500-kV/161-kV station. The results of the proposed method were also compared with the shielding data of two other substations.

  1. Computer program optimizes design of nuclear radiation shields

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1971-01-01

    Computer program, OPEX 2, determines minimum weight, volume, or cost for shields. Program incorporates improved coding, simplified data input, spherical geometry, and an expanded output. Method is capable of altering dose-thickness relationship when a shield layer has been removed.

  2. Space crew radiation exposure analysis system based on a commercial stand-alone CAD system

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew H.; Golightly, Michael J.; Hardy, Alva C.

    1992-01-01

    Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.

  3. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  4. Technique for Configuring an Actively Cooled Thermal Shield in a Flight System

    NASA Technical Reports Server (NTRS)

    Barkfknecht, Peter; Mustafi, Shuvo

    2011-01-01

    Broad area cooling shields are a mass-efficient alternative to conductively cooled thermal radiation shielding. The shield would actively intercept a large portion of incident thermal radiation and transport the heat away using cryogenic helium gas. The design concept consists of a conductive and conformable surface that maximizes heat transfer and formability. Broad Area Cooled (BAC) shields could potentially provide considerable mass savings for spaceflight applications by eliminating the need for a rigid thermal radiation shield for cryogen tanks. The BAC consists of a network of capillary tubes that are thermally connected to a conductive shield material. Chilled helium gas is circulated through the network and transports unwanted heat away from the cryogen tanks. The cryogenic helium gas is pumped and chilled simultaneously using a specialized pulse-tube cryocooler, which further improves the mass efficiency of the system. By reducing the thermal environment temperature from 300 to 100 K, the radiative heat load on a cryogen tank could be reduced by an order of magnitude. For a cryogenic liquid propellant scenario of oxygen and hydrogen, the boiloff of hydrogen would be significantly reduced and completely eliminated for oxygen. A major challenge in implementing this technology on large tanks is that the BAC system must be easily scalable from lab demonstrations to full-scale missions. Also, the BAC shield must be conformable to complex shapes like spheres without losing the ability to maintain constant temperature throughout. The initial design maximizes thermal conductivity between the capillary tube and the conductive radiation shielding by using thin, corrugated aluminum foil with the tube running transverse to the folds. This configuration has the added benefit of enabling the foil to stretch and contract longitudinally. This allows the BAC to conform to the complex curvature of a cryogen tank, which is key to its success. To demonstrate a BAC shield system with minimal impact to current cryogen tank designs, the shielding must be applied after the final assembly of the tank and supporting structure. One method is to pre-fabricate the shield in long strips. A spool of corrugated aluminum foil with a thermally sunk aluminum capillary running through the center could then be simply wound around the cryogen tanks and encapsulated within the multi-layer insulation (MLI) blanket. Then, on orbit, the BAC would intercept thermal radiation coming in through the MLI and transport it away from the cryogen tanks. An optimization of the design could be done to take into account mass savings from thinner MLI blankets, eliminating solid thermal shields, and ultimately, a reduction in the required cryogen tank size.

  5. Preliminary results of the calculated and experimental studies of the basic aerothermodynamic parameters of the ExoMars landing module

    NASA Astrophysics Data System (ADS)

    Finchenko, V. S.; Ivankov, A. A.; Shmatov, S. I.; Mordvinkin, A. S.

    2015-12-01

    The article presents the initial data for the ExoMars landing module aerothermodynamic calculations, used calculation methods, the calculation results of aerodynamic characteristics of the landing module shape and structural parameters of thermal protection selected during the conceptual design phase. Also, the test results of the destruction of the thermal protection material and comparison of the basic characteristics of the landing module with a front shield in the form of a cone and a spherical segment are presented.

  6. Space proton transport in one dimension

    NASA Technical Reports Server (NTRS)

    Lamkin, S. L.; Khandelwal, G. S.; Shinn, J. L.; Wilson, J. W.

    1994-01-01

    An approximate evaluation procedure is derived for a second-order theory of coupled nucleon transport in one dimension. An analytical solution with a simplified interaction model is used to determine quadrature parameters to minimize truncation error. Effects of the improved method on transport solutions with the BRYNTRN data base are evaluated. Comparisons with Monte Carlo benchmarks are given. Using different shield materials, the computational procedure is used to study the physics of space protons. A transition effect occurs in tissue near the shield interface and is most important in shields of high atomic number.

  7. Accelerator shield design of KIPT neutron source facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.; Gohar, Y.

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generatedmore » by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)« less

  8. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  9. A novel approach to spacecraft re-entry and recovery

    NASA Astrophysics Data System (ADS)

    Patten, Richard; Hedgecock, Judson C.

    1990-01-01

    A deployable radiative heat shield design for spacecraft reentry is discussed. The design would allow the spacecraft to be cylindrical instead of the the traditional conical shape, providing a greater internal volume and thus enhancing mission capabilities. The heat shield uses a flexible thermal blanket material which is deployed in a manner similar to an umbrella. Based on the radiative properties of this blanket material, heating constraints have been established which allow a descent trajectory to be designed. The heat shield and capsule configuration are analyzed for resistance to heat flux and aerodynamic stability based on reentry trajectory. Experimental tests are proposed.

  10. JWST NIRSpec Cryogenic Light Shield Mechanism

    NASA Technical Reports Server (NTRS)

    Hale, Kathleen; Sharma, Rajeev

    2006-01-01

    The focal plane detectors for the Near-Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST) require a light tight cover for calibration along with an open field-of-view during ground performance testing within a cryogenic dewar. In order to meet the light attenuation requirements and provide open and closed fields of view without breaking vacuum, a light shield mechanism was designed. This paper describes the details of the light shield mechanism design and test results. Included is information on the labyrinth light path design, motor capability and performance, dry film lubrication, mechanism control, and mechanism cryogenic performance results.

  11. Safe bunker designing for the 18 MV Varian 2100 Clinac: a comparison between Monte Carlo simulation based upon data and new protocol recommendations.

    PubMed

    Beigi, Manije; Afarande, Fatemeh; Ghiasi, Hosein

    2016-01-01

    The aim of this study was to compare two bunkers designed by only protocols recommendations and Monte Carlo (MC) based upon data derived for an 18 MV Varian 2100Clinac accelerator. High energy radiation therapy is associated with fast and thermal photoneutrons. Adequate shielding against the contaminant neutron has been recommended by IAEA and NCRP new protocols. The latest protocols released by the IAEA (safety report No. 47) and NCRP report No. 151 were used for the bunker designing calculations. MC method based upon data was also derived. Two bunkers using protocols and MC upon data were designed and discussed. From designed door's thickness, the door designed by the MC simulation and Wu-McGinley analytical method was closer in both BPE and lead thickness. In the case of the primary and secondary barriers, MC simulation resulted in 440.11 mm for the ordinary concrete, total concrete thickness of 1709 mm was required. Calculating the same parameters value with the recommended analytical methods resulted in 1762 mm for the required thickness using 445 mm as recommended by TVL for the concrete. Additionally, for the secondary barrier the thickness of 752.05 mm was obtained. Our results showed MC simulation and the followed protocols recommendations in dose calculation are in good agreement in the radiation contamination dose calculation. Difference between the two analytical and MC simulation methods revealed that the application of only one method for the bunker design may lead to underestimation or overestimation in dose and shielding calculations.

  12. Impact experiments into multiple-mesh targets: Concept development of a lightweight collisional bumper

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William; Haynes, Gerald; See, Thomas H.; Winkler, Jerry; Gray, Barry

    1993-01-01

    The utility of multiple-mesh targets as potential lightweight shields to protect spacecraft in low-Earth orbit against collisional damage is explored. Earlier studies revealed that single meshes comminute hypervelocity impactors with efficiencies comparable to contiguous targets. Multiple interaction of projectile fragments with any number of meshes should lead to increased comminution, deceleration, and dispersion of the projectile, such that all debris exiting the mesh stack possesses low specific energies (ergs/sq cm) that would readily be tolerated by many flight systems. The study is conceptually exploring the sensitivity of major variables such as impact velocity, the specific areal mass (g/sq cm) of the total mesh stack (SM), and the separation distance (S) between individual meshes. Most experiments employed five or ten meshes with total SM typically less than 0.5 the specific mass of the impactor, and silicate glass impactors rather than metal projectiles. While projectile comminution increases with increasing impact velocity due to progressively higher shock stresses, encounters with multiple-meshes at low velocity (1-2 km/s) already lead to significant disruption of the glass impactors, with the resulting fragments being additionally decelerated and dispersed by subsequent meshes, and, unlike most contiguous single-plate bumpers, leading to respectable performance at low velocity. Total specific bumper mass must be the subject of careful trade-off studies; relatively massive bumpers will generate too much debris being dislodged from the bumper itself, while exceptionally lightweight designs will not cause sufficient comminution, deceleration, or dispersion of the impactor. Separation distance was found to be a crucial design parameter, as it controls the dispersion of the fragment cloud. Substantial mass savings could result if maximum separation distances were employed. The total mass of debris dislodged by multiple-mesh stacks is modestly smaller than that of single, contiguous-membrane shields. The cumulative surface area of all penetration holes in multiple mesh stacks is an order of magnitude smaller than that in analog multiple-foil shields, suggesting good long-term performance of the mesh designs. Due to different experimental conditions, direct and quantitative comparison with other lightweight shields is not possible at present.

  13. Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell

    2006-01-01

    An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.

  14. The 1990-1991 project summaries

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Georgia Tech's School of Textile & Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. One group designed a thermal shield for a lunar telescope. The second group designed a selenotextile habitat shielding structure. The third group designed a pneumatically assisted elbow joint for the NASA zero-prebreathe suit (ZPS). The final group designed an electromechanical system to power an astronaut's finger joints. Summaries of these projects are presented.

  15. The 1990-1991 project summaries

    NASA Astrophysics Data System (ADS)

    Georgia Tech's School of Textile & Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. One group designed a thermal shield for a lunar telescope. The second group designed a selenotextile habitat shielding structure. The third group designed a pneumatically assisted elbow joint for the NASA zero-prebreathe suit (ZPS). The final group designed an electromechanical system to power an astronaut's finger joints. Summaries of these projects are presented.

  16. Investigation of Natural and Man-Made Radiation Effects on Crews on Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Bolch, Wesley E.; Parlos, Alexander

    1996-01-01

    Over the past several years, NASA has studied a variety of mission scenarios designed to establish a permanent human presence on the surface of Mars. Nuclear electric propulsion (NEP) is one of the possible elements in this program. During the initial stages of vehicle design work, careful consideration must be given to not only the shielding requirements of natural space radiation, but to the shielding and configuration requirements of the on-board reactors. In this work, the radiation transport code MCNP has been used to make initial estimates of crew exposures to reactor radiation fields for a specific manned NEP vehicle design. In this design, three 25 MW(sub th), scaled SP-100-class reactors are shielded by three identical shields. Each shield has layers of beryllium, tungsten, and lithium hydride between the reactor and the crew compartment. Separate calculations are made of both the exiting neutron and gamma fluxes from the reactors during beginning-of-life, full-power operation. This data is then used as the source terms for particle transport in MCNP. The total gamma and neutron fluxes exiting the reactor shields are recorded and separate transport calculations are then performed for a 10 g/sq cm crew compartment aluminum thickness. Estimates of crew exposures have been assessed for various thicknesses of the shield tungsten and lithium hydride layers. A minimal tungsten thickness of 20 cm is required to shield the reactor photons below the 0.05 Sv/y man-made radiation limit. In addition to a 20-cm thick tungsten layer, a 40-cm thick lithium hydride layer is required to shield the reactor neutrons below the annual limit. If the tungsten layer is 30-cm thick, the lithium hydride layer should be at least 30-cm thick. These estimates do not take into account the photons generated by neutron interactions inside the shield because the MCNP neutron cross sections did not allow reliable estimates of photon production in these materials. These results, along with natural space radiation shielding estimates calculated by NASA Langley Research Center, have been used to provide preliminary input data into a new Macintosh-based software tool. A skeletal version of this tool being developed will allow rapid radiation exposure and risk analyses to be performed on a variety of Lunar and Mars missions utilizing nuclear-powered vehicles.

  17. Evaluation of lens dose from anterior electron beams: comparison of Pinnacle and Gafchromic EBT3 film

    PubMed Central

    Wronski, Matt; Yeboah, Collins

    2015-01-01

    Lens dose is a concern during the treatment of facial lesions with anterior electron beams. Lead shielding is routinely employed to reduce lens dose and minimize late complications. The purpose of this work is twofold: 1) to measure dose profiles under large‐area lead shielding at the lens depth for clinical electron energies via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment planning system in calculating doses under lead shields. First, to simulate the clinical geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid Water phantom. With the lead shield inside the phantom, the film was positioned at a depth of 0.7 cm below the lead, while a variable thickness of solid water, simulating bolus, was placed on top. This geometry was reproduced in Pinnacle to calculate dose profiles using the pencil beam electron algorithm. The measured and calculated dose profiles were normalized to the central‐axis dose maximum in a homogeneous phantom with no lead shielding. The resulting measured profiles, functions of bolus thickness and incident electron energy, can be used to estimate the lens dose under various clinical scenarios. These profiles showed a minimum lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to ≤10% of the dose maximum. Comparisons with Pinnacle showed a consistent overestimation of dose under the lead shield with discrepancies of ∼25% occurring near the shield edge. This discrepancy was found to increase with electron energy and bolus thickness and decrease with distance from the lead edge. Thus, the Pinnacle electron algorithm is not recommended for estimating lens dose in this situation. The film measurements, however, allow for a reasonable estimate of lens dose from electron beams and for clinicians to assess the lead margin required to reduce the lens dose to an acceptable level. PACS number(s): 87.53.Bn, 87.53.Kn, 87.55.‐x, 87.55.D‐ PMID:27074448

  18. KENNEDY SPACE CENTER, FLA. - United Space Alliance employees Jeremy Schwarz (left) and Chris Keeling install new tiles on the heat shield of main engine 1 for the orbiter Discovery. A heat shield is a protective layer on a spacecraft designed to protect it from the high temperatures, usually those that result from aerobraking during reentry into the Earth’s atmosphere.

    NASA Image and Video Library

    2003-09-23

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employees Jeremy Schwarz (left) and Chris Keeling install new tiles on the heat shield of main engine 1 for the orbiter Discovery. A heat shield is a protective layer on a spacecraft designed to protect it from the high temperatures, usually those that result from aerobraking during reentry into the Earth’s atmosphere.

  19. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.

  20. Design of Multilayer Insulation for the Multipurpose Hydrogen Test Bed

    NASA Technical Reports Server (NTRS)

    Marlow, Weston A.

    2011-01-01

    Multilayer insulation (MLI) is a critical component for future, long term space missions. These missions will require the storage of cryogenic fuels for extended periods of time with little to no boil-off and MLI is vital due to its exceptional radiation shielding properties. Several MLI test articles were designed and fabricated which explored methods of assembling and connecting blankets, yielding results for evaluation. Insight gained, along with previous design experience, will be used in the design of the replacement blanket for the Multipurpose Hydrogen Test Bed (MHTB), which is slated for upcoming tests. Future design considerations are discussed which include mechanical testing to determine robustness of such a system, as well as cryostat testing of samples to give insight to the loss of thermal performance of sewn panels in comparison to the highly efficient, albeit laborious application of the original MHTB blanket.

  1. Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.

    PubMed

    Slaba, Tony C; Wilson, John W; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A

    2016-06-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency. Published by Elsevier Ltd.

  2. A Reliability Comparison of Classical and Stochastic Thickness Margin Approaches to Address Material Property Uncertainties for the Orion Heat Shield

    NASA Technical Reports Server (NTRS)

    Sepka, Steve; Vander Kam, Jeremy; McGuire, Kathy

    2018-01-01

    The Orion Thermal Protection System (TPS) margin process uses a root-sum-square approach with branches addressing trajectory, aerothermodynamics, and material response uncertainties in ablator thickness design. The material response branch applies a bond line temperature reduction between the Avcoat ablator and EA9394 adhesive by 60 C (108 F) from its peak allowed value of 260 C (500 F). This process is known as the Bond Line Temperature Material Margin (BTMM) and is intended to cover material property and performance uncertainties. The value of 60 C (108 F) is a constant, applied at any spacecraft body location and for any trajectory. By varying only material properties in a random (monte carlo) manner, the perl-based script mcCHAR is used to investigate the confidence interval provided by the BTMM. In particular, this study will look at various locations on the Orion heat shield forebody for a guided and an abort (ballistic) trajectory.

  3. A Reliability Comparison of Classical and Stochastic Thickness Margin Approaches to Address Material Property Uncertainties for the Orion Heat Shield

    NASA Technical Reports Server (NTRS)

    Sepka, Steven A.; McGuire, Mary Kathleen; Vander Kam, Jeremy C.

    2018-01-01

    The Orion Thermal Protection System (TPS) margin process uses a root-sum-square approach with branches addressing trajectory, aerothermodynamics, and material response uncertainties in ablator thickness design. The material response branch applies a bondline temperature reduction between the Avcoat ablator and EA9394 adhesive by 60 C (108 F) from its peak allowed value of 260 C (500 F). This process is known as the Bond Line Temperature Material Margin (BTMM) and is intended to cover material property and performance uncertainties. The value of 60 C (108 F) is a constant, applied at any spacecraft body location and for any trajectory. By varying only material properties in a random (monte carlo) manner, the perl-based script mcCHAR is used to investigate the confidence interval provided by the BTMM. In particular, this study will look at various locations on the Orion heat shield forebody for a guided and an abort (ballistic) trajectory.

  4. Integrated shielding systems for manned interplanetary spaceflight

    NASA Astrophysics Data System (ADS)

    George, Jeffrey A.

    1992-01-01

    The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.

  5. Self-Shielding Analysis of the Zap-X System

    PubMed Central

    Schneider, M. Bret; Adler, John R.

    2017-01-01

    The Zap-X is a self-contained and first-of-its-kind self-shielded therapeutic radiation device dedicated to brain as well as head and neck stereotactic radiosurgery (SRS). By utilizing an S-band linear accelerator (linac) with a 2.7 megavolt (MV) accelerating potential and incorporating radiation-shielded mechanical structures, the Zap-X does not typically require a radiation bunker, thereby saving SRS facilities considerable cost. At the same time, the self-shielded features of the Zap-X are designed for more consistency of radiation protection, reducing the risk to radiation workers and others potentially exposed from a poorly designed or constructed radiotherapy vault. The hypothesis of the present study is that a radiosurgical system can be self-shielded such that it produces radiation exposure levels deemed safe to the public while operating under a full clinical workload. This study summarizes the Zap-X system shielding and found that the overall system radiation leakage values are reduced by a factor of 50 compared to the occupational radiation limit stipulated by the Nuclear Regulatory Commission (NRC) or agreement states. The goal of self-shielding is achieved under all but the most exceptional conditions for which additional room shielding or a larger restricted area in the vicinity of the Zap-X system would be required. PMID:29441251

  6. Comparison of Martian Meteorites and Martian Regolith as Shield Materials for Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Thibeault, Sheila A.; Simonsen, Lisa C.; Wilson, John W.

    1998-01-01

    Theoretical calculations of radiation attenuation due to energetic galactic cosmic rays behind Martian rock and Martian regolith material have been made to compare their utilization as shields for advanced manned missions to Mars because the detailed chemical signature of Mars is distinctly different from Earth. The modified radiation fields behind the Martian rocks and the soil model were generated by solving the Boltzmann equation using a HZETRN system with the 1977 Solar Minimum environmental model. For the comparison of the attenuation characteristics, dose and dose equivalent are calculated for the five different subgroups of Martian rocks and the Martian regolith. The results indicate that changes in composition of subgroups of Martian rocks have negligible effects on the overall shielding properties because of the similarity of their constituents. The differences for dose and dose equivalent of these materials relative to those of Martian regolith are within 0.5 and 1 percent, respectively. Therefore, the analysis of Martian habitat construction options using in situ materials according to the Martian regolith model composition is reasonably accurate. Adding an epoxy to Martian regolith, which changes the major constituents of the material, enhances shielding properties because of the added hydrogenous constituents.

  7. Post-Flight Evaluation of PICA and PICA-X - Comparisons of the Stardust SRC and Space-X Dragon 1 Forebody Heatshield Materials

    NASA Technical Reports Server (NTRS)

    Stackpoole, M.; Kao, D.; Qu, V.; Gonzales, G.

    2013-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center. As a thermal protection material, PICA has the advantages of being able to withstand high heat fluxes with a relatively low density. This ablative material was used as the forebody heat shield material for the Stardust sample return capsule, which re-entered the Earths atmosphere in 2006. Based on PICA, SpaceX developed a variant, PICA-X, and used it as the heat shield material for its Dragon spacecraft, which successfully orbited the Earth and re-entered the atmosphere during the COTS Demo Flight 1 in 2010. Post-flight analysis was previously performed on the Stardust PICA heat shield material. Similarly, a near-stagnation core was obtained from the post-flight Dragon 1 heat shield, which was retrieved from the Pacific Ocean. Materials testing and analyses were performed on the core to evaluate its ablation performance and post-flight properties. Comparisons between PICA and PICA-X are made where applicable. Stardust and Dragon offer rare opportunities to evaluate materials post-flight - this data is beneficial in understanding material performance and also improves modeling capabilities.

  8. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  9. Radiation shielding for gamma stereotactic radiosurgery units

    PubMed Central

    2007-01-01

    Shielding calculations for gamma stereotactic radiosurgery units are complicated by the fact that the radiation is highly anisotropic. Shielding design for these devices is unique. Although manufacturers will answer questions about the data that they provide for shielding evaluation, they will not perform calculations for customers. More than 237 such units are now installed in centers worldwide. Centers installing a gamma radiosurgery unit find themselves in the position of having to either invent or reinvent a method for performing shielding design. This paper introduces a rigorous and conservative method for barrier design for gamma stereotactic radiosurgery treatment rooms. This method should be useful to centers planning either to install a new unit or to replace an existing unit. The method described here is consistent with the principles outlined in Report No. 151 from the U.S. National Council on Radiation Protection and Measurements. In as little as 1 hour, a simple electronic spreadsheet can be set up, which will provide radiation levels on planes parallel to the barriers and 0.3 m outside the barriers. PACS numbers: 87.53.Ly, 87.56By, 87.52Tr

  10. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    PubMed

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  11. Preliminary Thermal Design of Cryogenic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  12. Frost-Shielding Methodology and Demonstration for Shallow Burial of Water and Sewer Utility Lines.

    DTIC Science & Technology

    1998-06-01

    Research and Engineering Laboratory (CRREL), and the Owens - Corning Specialty and Foam Products Division as partners. Test sites utilizing shielded pipes...predictions and provided valuable guidance for the frost shield design. The industry partner participant in the CPAR project, Owens - Corning Specialty and Foam

  13. Magnetic Materials Characterization and Modeling for the Enhanced Design of Magnetic Shielding of Cryomodules in Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sah, Sanjay

    Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge canmore » be used for the enhanced design of magnetic shields of cryomodes (CM) in particle accelerators. To this end, we first studied the temperature dependent magnetization behavior (M-H curves) of Amumetal and A4K under different annealing and deformation conditions. This characterized the effect of stress or deformation induced during the manufacturing processes and subsequent restoration of high permeability with appropriate heat treatment. Next, an energy based stochastic model for temperature dependent anhysteretic magnetization behavior of ferromagnetic materials was proposed and benchmarked against experimental data. We show that this model is able to simulate and explain the magnetic behavior of as rolled, deformed and annealed amumetal and A4K over a large range of temperatures. The experimental results for permeability are then used in a finite element model (FEM) in COMSOL to evaluate the shielding effectiveness of multiple shield designs at room temperature as well as cryogenic temperature. This work could serve as a guideline for future design, development and fabrication of magnetic shields of CMs.« less

  14. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  15. Recovery and radiation corrections and time constants of several sizes of shielded and unshielded thermocouple probes for measuring gas temperature

    NASA Technical Reports Server (NTRS)

    Glawe, G. E.; Holanda, R.; Krause, L. N.

    1978-01-01

    Performance characteristics were experimentally determined for several sizes of a shielded and unshielded thermocouple probe design. The probes are of swaged construction and were made of type K wire with a stainless steel sheath and shield and MgO insulation. The wire sizes ranged from 0.03- to 1.02-mm diameter for the unshielded design and from 0.16- to 0.81-mm diameter for the shielded design. The probes were tested through a Mach number range of 0.2 to 0.9, through a temperature range of room ambient to 1420 K, and through a total-pressure range of 0.03 to 0.2.2 MPa (0.3 to 22 atm). Tables and graphs are presented to aid in selecting a particular type and size. Recovery corrections, radiation corrections, and time constants were determined.

  16. Improved field localization in transcranial magnetic stimulation of the brain with the utilization of a conductive shield plate in the stimulator.

    PubMed

    Kim, Dong-Hun; Georghiou, George E; Won, Chulho

    2006-04-01

    In this paper, a carefully designed conductive shield plate is presented, which helps to improve localization of the electric field distribution induced by transcranial magnetic stimulation for neuron stimulation. The shield plate is introduced between a figure-of-eight coil and the head. In order to accurately predict the field distribution inside the brain and to examine the effects of the shield plate, a realistic head model is constructed from magnetic resonance image data with the help of image processing tools and the finite-element method in three dimensions is employed. Finally, to show the improvements obtained, the results are compared with two conventional coil designs. It is found that an incorporation of the shield plate into the coil, effectively improves the induced field localization by more than 50%, and prevents other parts of the brain from exposure to high pulsed magnetic fields.

  17. Cloud immersion building shielding factors for US residential structures.

    PubMed

    Dickson, E D; Hamby, D M

    2014-12-01

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario within a semi-infinite cloud of radioactive material. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement, as well for single-wide manufactured housing-units.

  18. Dual optimization method of radiofrequency and quasistatic field simulations for reduction of eddy currents generated on 7T radiofrequency coil shielding.

    PubMed

    Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T; Handler, William B; Chronik, Blaine A; Ibrahim, Tamer S

    2015-11-01

    To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents were quantitatively studied in the time and frequency domains. The RF characteristics were studied using the finite difference time domain method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in vivo human subjects. The eddy current simulation method was verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding significantly distorted the gradient fields. Echo-planar images, B1+ maps, and S matrix measurements verified that the proposed slot pattern suppressed the eddy currents while maintaining the RF characteristics of the transmit coil. The presented dual-optimization method could be used to design RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. © 2014 Wiley Periodicals, Inc.

  19. Design of a plastic minicolpostat applicator with shields.

    PubMed

    Weeks, K J; Montana, G S; Bentel, G C

    1991-09-01

    A plastic intracavitary applicator system for the treatment of cancer of the uterine cervix is described. This applicator has a minicolpostat and a mechanism for affixing the tandem to the colpostats. Traditional afterloading refers only to the radioactive source. Both the source and the ovoid shield are afterloaded together in this applicator in contrast to traditional afterloading systems which afterload the source alone. A potential advantage of our applicator system is that it allows high quality CT localization because the sources and shields can be removed and the applicator is made of plastic. The advantages and disadvantages of this variation to the Fletcher system as well as other aspects of applicator design are discussed. An experimentally verified dose calculation method for shielded sources is applied to the design problems associated with this applicator. The dose distribution calculated for a source-shield configuration of the plastic applicator is compared to that obtained with a commercial Fletcher-Suit-Delclos (FSD) applicator. Significant shielding improvements can be achieved for the smallest diameter ovoid, that is, in the minicolpostat. The plastic minicolpostat dose distributions are similar to those produced by the conventional larger diameter colpostats. In particular, the colpostat shielding for rectum and bladder, which is reduced in the metal applicator's minicolpostat configuration, is maintained for the plastic minicolpostat. Further, it is shown that, if desired, relative to the FSD minicolpostat, the mucosa dose can be reduced by a suitable change of the minicolpostat source position.

  20. Assessing the shielding of engine noise by the wings for current aircraft using model predictions and measurements.

    PubMed

    Vieira, Ana; Snellen, Mirjam; Simons, Dick G

    2018-01-01

    Reducing aircraft noise is a major issue to be dealt with by the aerospace industry. In addition to lowering noise emissions from the engine and airframe, also the shielding of engine noise by the aircraft is considered as a promising means for reducing the perceived noise on the ground. In literature, noise shielding predictions indicate significant reductions in received noise levels for blended wing body configurations, but also for conventional aircraft with the engines placed above the wings. Little work has been done in assessing these potential shielding effects for full aircraft under real operational conditions. Therefore, in this work, noise shielding for current aircraft is investigated using both measurements and model predictions. The predictions are based on the Kirchhoff integral theory and the Modified Theory of Physical Optics. For the comparison between the predictions and measurements, Twenty Fokker 70 flyovers are considered. The data analysis approach for the extraction of shielding levels for aircraft under these operational conditions is presented. Directly under the flight path, the simulations predict an engine noise shielding of 6 dB overall sound pressure level. This is confirmed by some of the flyover data. On average, the measurements show somewhat lower shielding levels.

  1. Method for reducing measurement errors of a Langmuir probe with a protective RF shield

    NASA Astrophysics Data System (ADS)

    Riaby, V.; Masherov, P.; Savinov, V.; Yakunin, V.

    2018-04-01

    Probe measurements were conducted in the middle cross-section of an inductive, low-pressure xenon plasma using a straight cylindrical Langmuir probe with a bare metal shield that protected the probe from radio frequency interference. As a result, reliable radial distributions of the plasma parameters were obtained. Subsequent analyses of these measurements revealed that the electron energy distribution function (EEDF) deviated substantially from the Maxwellian functions and that this deviation depended on the length of the probe shield. To evaluate the shield's influence on the measurement results, in addition to the probe (which was moved radially as its shield length varied in the range of lsh1 = lmax-0), an additional L-shaped probe was inserted at a different location. This probe was moved differently from the first probe and provided confirmational measurements in the common special position where lsh1 = 0 and lsh2 ≠ 0. In this position, the second shield decreased all the plasma parameters. A comparison of the probe datasets identified the principles of the relationships between measurement errors and EEDF distortions caused by the bare probe shields. This dependence was used to correct the measurements performed using the first probe by eliminating the influence of its shield. Physical analyses based on earlier studies showed that these peculiarities are caused by a short-circuited double-probe effect that occurs in bare metal probe protective shields.

  2. Optimization of NTP System Truss to Reduce Radiation Shield Mass

    NASA Technical Reports Server (NTRS)

    Scharber, Luke L.; Kharofa, Adam; Caffrey, Jarvis A.

    2016-01-01

    The benefits of nuclear thermal propulsion are numerous and relevant to the current NASA mission goals involving but not limited to the crewed missions to mars and the moon. They do however also present new and unique challenges to the design and logistics of launching/operating spacecraft. One of these challenges, relevant to this discussion, is the significant mass of the shielding which is required to ensure an acceptable radiation environment for the spacecraft and crew. Efforts to reduce shielding mass are difficult to accomplish from material and geometric design points of the shield itself, however by increasing the distance between the nuclear engines and the main body of the spacecraft the required mass of the shielding is lessened considerably. The mass can be reduced significantly per unit length, though any additional mass added by the structure to create this distance serves to offset those savings, thus the design of a lightweight structure is ideal. The challenges of designing the truss are bounded by several limiting factors including; the loading conditions, the capabilities of the launch vehicle, and achieving the ideal truss length when factoring for the overall mass reduced. Determining the overall set of mass values for a truss of varying length is difficult since to maintain an optimally designed truss the geometry of the truss or its members must change. Thus the relation between truss mass and length for these loading scenarios is not linear, and instead has relation determined by the truss design. In order to establish a mass versus length trend for various truss designs to compare with the mass saved from the shield versus length, optimization software was used to find optimal geometric properties that still met the design requirements at established lengths. By solving for optimal designs at various lengths, mass trends could be determined. The initial design findings show a clear benefit to extending the engines as far from the main structure of the spacecraft as the launch vehicle's payload volume would allow when comparing mass savings verse the additional structure.

  3. Preliminary Analysis of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise

    2006-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.

  4. Ceramic port shields cast in an iron engine head

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.; Groeneweg, Mark A.

    1989-01-01

    Silicon nitride exhaust and intake port shields have been successfully cast into a gray iron cylinder head of a heavy duty diesel single cylinder research engine. Careful design considerations, finite element, and probability of survival analyses indicated viability of the design. Foundry experience, NDE, and failure investigations are reported.

  5. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    NASA Astrophysics Data System (ADS)

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  6. KENNEDY SPACE CENTER, FLA. - United Space Alliance employees (from left) Daryl Burke, Jay Beason and Tom Summers check new tiles installed on the heat shield of main engine 1 for the orbiter Discovery. A heat shield is a protective layer on a spacecraft designed to protect it from the high temperatures, usually those that result from aerobraking during reentry into the Earth’s atmosphere.

    NASA Image and Video Library

    2003-09-23

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employees (from left) Daryl Burke, Jay Beason and Tom Summers check new tiles installed on the heat shield of main engine 1 for the orbiter Discovery. A heat shield is a protective layer on a spacecraft designed to protect it from the high temperatures, usually those that result from aerobraking during reentry into the Earth’s atmosphere.

  7. Magnetic shielding and vacuum test for passive hydrogen masers

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.; Wolf, S. A.; Jacoby, A. B.; Jones, L. D.

    1982-01-01

    Vibration tests on high permeability magnetic shields used in the SAO-NRL Advanced Development Model (ADM) hydrogen maser were made. Magnetic shielding factors were measured before and after vibration. Preliminary results indicate considerable (25%) degradation. Test results on the NRL designed vacuum pumping station for the ADM hydrogen maser are also discussed. This system employs sintered zirconium carbon getter pumps to pump hydrogen plus small ion pumps to pump the inert gases. In situ activation tests and pumping characteristics indicate that the system can meet design specifications.

  8. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    ENGINEERS FROM AMES RESEARCH CENTER AND MARSHALL SPACE FLIGHT CENTER REMOVE AVCOAT SEGMENTS FROM THE SURFACE OF THE ORION HEAT SHIELD, THE PROTECTIVE SHELL DESIGNED TO HELP THE NEXT GENERATION CREW MODULE WITHSTAND THE HEAT OF ATMOSPHERIC REENTRY. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALL FLIGHT TEST OF ORION IN DECEMBER 2014

  9. Design and preliminary test results at Mach 5 of an axisymmetric slotted sound shield. [for supersonic wind tunnels (noise reduction in wind tunnel nozzles)

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.; Spokowski, A. J.; Harvey, W. D.; Stainback, P. C.

    1975-01-01

    The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown.

  10. Effect of bedside shielding on air-kerma rates around gynecologic intracavitary brachytherapy patients containing sup 226 Ra or sup 137 Cs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papin, P.J.; Ramsey, M.J.; LaFontaine, R.L.

    An anthropomorphic phantom was implanted with 226Ra or 137Cs gynecologic intracavitary brachytherapy sources. Air-kerma rate measurements were taken at 10-cm increments along a horizontal plane from the side of the bed at 50 cm, 87 cm, and 136 cm heights above the floor. Five portable lead shields were placed at the head, at the foot and along one side of the bed and readings were taken again at the corresponding heights above, below and behind the shields. The readings were normalized to 100-mg Ra equivalence, and air-kerma rate curves were drawn allowing for the comparison of 226Ra and 137Cs withmore » and without lead shields. The data demonstrated that the air-kerma rates for 137Cs were reduced more than those for 226Ra with the use of the portable lead shields. There was four times the transmission with 226Ra than with 137Cs. The optimal placement was with the lateral bedside shields proximal to the head and foot closest to the bed, with the middle shield overlapping in back. The shields at the head and foot should extend out and overlap the bedside shields. The level of the sources should be positioned near the bottom of the shields. This information will provide the medical health physicist with an estimate of air-kerma rates for both 226Ra and 137Cs with and without shielding for evaluating personnel exposures as well as the effectiveness of current shielding in relation to radiation protection requirements in adjacent rooms or hallways.« less

  11. Study on the Shielding Effectiveness of an Arc Thermal Metal Spraying Method against an Electromagnetic Pulse

    PubMed Central

    Lee, Han-Seung; Choe, Hong-Bok; Baek, In-Young

    2017-01-01

    An electromagnetic pulse (EMP) explodes in real-time and causes critical damage within a short period to not only electric devices, but also to national infrastructures. In terms of EMP shielding rooms, metal plate has been used due to its excellent shielding effectiveness (SE). However, it has difficulties in manufacturing, as the fabrication of welded parts of metal plates and the cost of construction are non-economical. The objective of this study is to examine the applicability of the arc thermal metal spraying (ATMS) method as a new EMP shielding method to replace metal plate. The experimental parameters, metal types (Cu, Zn-Al), and coating thickness (100–700 μm) used for the ATMS method were considered. As an experiment, a SE test against an EMP in the range of 103 to 1010 Hz was conducted. Results showed that the ATMS coating with Zn-Al had similar shielding performance in comparison with metal plate. In conclusion, the ATMS method is judged to have a high possibility of actual application as a new EMP shielding material. PMID:28976931

  12. Study on the Shielding Effectiveness of an Arc Thermal Metal Spraying Method against an Electromagnetic Pulse.

    PubMed

    Lee, Han-Seung; Choe, Hong-Bok; Baek, In-Young; Singh, Jitendra Kumar; Ismail, Mohamed A

    2017-10-04

    An electromagnetic pulse (EMP) explodes in real-time and causes critical damage within a short period to not only electric devices, but also to national infrastructures. In terms of EMP shielding rooms, metal plate has been used due to its excellent shielding effectiveness (SE). However, it has difficulties in manufacturing, as the fabrication of welded parts of metal plates and the cost of construction are non-economical. The objective of this study is to examine the applicability of the arc thermal metal spraying (ATMS) method as a new EMP shielding method to replace metal plate. The experimental parameters, metal types (Cu, Zn-Al), and coating thickness (100-700 μm) used for the ATMS method were considered. As an experiment, a SE test against an EMP in the range of 103 to 1010 Hz was conducted. Results showed that the ATMS coating with Zn-Al had similar shielding performance in comparison with metal plate. In conclusion, the ATMS method is judged to have a high possibility of actual application as a new EMP shielding material.

  13. Utilizing electromagnetic shielding textiles in wireless body area networks.

    PubMed

    Sung, Grace H H; Aoyagi, Takahiro; Hernandez, Marco; Hamaguchi, Kiyoshi; Kohno, Ryuji

    2010-01-01

    For privacy and radio propagation controls, electromagnetic shielding textile could be adopted in WBANs. The effect of including a commercially available electromagnetic shielding apron in WBANs was examined in this paper. By having both the coordinator and the sensor covered by the shielding apron, signal could be confined around the body; however signal strength can be greatly influenced by body movements. Placing the shielding apron underneath both antennas, the transmission coefficient could be on average enhanced by at least 10dB, with less variation comparing to the case when apron does not exist. Shielding textiles could be utilized in designing a smart suit to enhance WBANs performance, and to prevent signals travelling beyond its intended area.

  14. Comparison of three and four-field radiotherapy technique and the effect of laryngeal shield on vocal and spinal cord radiation dose in radiotherapy of non-laryngeal head and neck tumors

    NASA Astrophysics Data System (ADS)

    Pour, Noushin Hassan; Farajollahi, Alireza; Jamali, Masoud; Zeinali, Ahad; Jangjou, Amir Ghasemi

    2018-03-01

    Introduction: Due to the effect of radiation on both the tumor and the surrounding normal tissues, the side effects of radiation in normal tissues are expected. One of the important complications in the head and neck radiotherapy is the doses reached to the larynx and spinal cord of patients with non-laryngeal head and neck tumors. Materials and Methods: In this study, CT scan images of 25 patients with non-laryngeal tumors including; lymph nodes, tongue, oropharynx and nasopharynx were used. A three-field and a four-field treatment planning with and without laryngeal shield in 3D CRT technique were planned for each patient. Subsequently, the values of Dmin, Dmean, Dmax and Dose Volume Histogram from the treatment planning system and NTCP values of spinal cord and larynx were calculated with BIOPLAN and MATLAB software for all patients. Results: Statistical results showed that mean values of doses of larynx in both three and four-field methods were significantly different between with and without shield groups. Comparison of absorbed dose didn't show any difference between the three and four field methods (P>0.05). Using Shield, just the mean and minimum doses of spinal cord decreased in both three and four fields. The NTCP of the spinal cord and larynx by three and four-field methods with shield in the LKB and EUD models significantly are less than that of the three and four fields without shields, and in the four-field method NTCP of larynx is less than three radiation field. Conclusion: The results of this study indicate that there is no significant difference in doses reached to larynx and spinal cord between the treatments techniques, but laryngeal shield reduce dose and NTCP values in larynx considerably.

  15. Optimation of cooled shields in insulations

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Khodadadi, J. M.; Seyed-Yagoobi, J.

    1984-01-01

    A method to optimize the location, temperature, and heat dissipation rate of each cooled shield inside an insulation layer was developed. The method is based on the minimization of the entropy production rate which is proportional to the heat leak across the insulation. It is shown that the maximum number of shields to be used in most practical applications is three. However, cooled shields are useful only at low values of the overall, cold wall to hot wall absolute temperature ratio. The performance of the insulation system is relatively insensitive to deviations from the optimum values of the temperature and location of the cooling shields. Design curves for rapid estimates of the locations and temperatures of cooling shields in various types of insulations, and an equation for calculating the cooling loads for the shields are presented.

  16. Safe bunker designing for the 18 MV Varian 2100 Clinac: a comparison between Monte Carlo simulation based upon data and new protocol recommendations

    PubMed Central

    Beigi, Manije; Afarande, Fatemeh; Ghiasi, Hosein

    2016-01-01

    Aim The aim of this study was to compare two bunkers designed by only protocols recommendations and Monte Carlo (MC) based upon data derived for an 18 MV Varian 2100Clinac accelerator. Background High energy radiation therapy is associated with fast and thermal photoneutrons. Adequate shielding against the contaminant neutron has been recommended by IAEA and NCRP new protocols. Materials and methods The latest protocols released by the IAEA (safety report No. 47) and NCRP report No. 151 were used for the bunker designing calculations. MC method based upon data was also derived. Two bunkers using protocols and MC upon data were designed and discussed. Results From designed door's thickness, the door designed by the MC simulation and Wu–McGinley analytical method was closer in both BPE and lead thickness. In the case of the primary and secondary barriers, MC simulation resulted in 440.11 mm for the ordinary concrete, total concrete thickness of 1709 mm was required. Calculating the same parameters value with the recommended analytical methods resulted in 1762 mm for the required thickness using 445 mm as recommended by TVL for the concrete. Additionally, for the secondary barrier the thickness of 752.05 mm was obtained. Conclusion Our results showed MC simulation and the followed protocols recommendations in dose calculation are in good agreement in the radiation contamination dose calculation. Difference between the two analytical and MC simulation methods revealed that the application of only one method for the bunker design may lead to underestimation or overestimation in dose and shielding calculations. PMID:26900357

  17. Effect of metal shielding on a wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng

    2017-05-01

    In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.

  18. Shield evaluation and performance testing at the USMB`s Strategic Structures Testing Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barczak, T.M.; Gearhart, D.F.

    1996-12-31

    Historically, shield performance testing is conducted by the support manufacturers at European facilities. The U.S. Bureau of Mines (USBM) has conducted extensive research in shield Mechanics and is now opening its Strategic Structures Testing (SST) Laboratory to the mining industry for shield performance testing. The SST Laboratory provides unique shield testing capabilities using the Mine Roof Simulator (MRS) load frame. The MRS provides realistic and cost-effective shield evaluation by combining both vertical and horizontal loading into a single load cycle; whereas, several load cycles would be required to obtain this loading in a static frame. In addition to these advantages,more » the USBM acts as an independent research organization to provide an unbiased assessment of shield performance. This paper describes the USBM`s shield testing program that is designed specifically to simulate in-service mining conditions using the unique the capabilities of the SST Laboratory.« less

  19. Efficacy of corneal eye shields in protecting patients' eyes from laser irradiation.

    PubMed

    Russell, S W; Dinehart, S M; Davis, I; Flock, S T

    1996-07-01

    The continuing development of new types and applications of lasers has appeared to surpass the development of specific eye protection for these lasers. There are a variety of eye shields on the market, but few are specifically designed for laser protection. Our purpose was to test a variety of eye shields by two parameters, light transmission and temperature rise, and to determine from these measurements the most protective shield for patients. We tested four plastic shields, one metal shield, and two sets of tanning goggles for temperature rise and light transmission when irradiated with a beam from a flashlamp-pumped, pulsed-dye laser. The temperature rise at the surface of the shield opposite the laser impacts was no more than 0.2 degree C in any case. White light was transmitted at significant levels through several of the shields, but yellow light transmittance was noted only through the green eye shield. Our measurements indicate that all except the green shield appeared safe from transmission of the 585-nm radiant energy. However, the optimal laser eye shield, in our opinion, would be a composite of several different shields' characteristics.

  20. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module crew quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M.; Zapp, N.; Barber, R.; Wilson, J.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F.

    With 5 to 7-month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through an dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (Cn Hn ), is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in dose equivalent to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  2. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  3. Shielding analyses for repetitive high energy pulsed power accelerators

    NASA Astrophysics Data System (ADS)

    Jow, H. N.; Rao, D. V.

    Sandia National Laboratories (SNL) designs, tests and operates a variety of accelerators that generate large amounts of high energy Bremsstrahlung radiation over an extended time. Typically, groups of similar accelerators are housed in a large building that is inaccessible to the general public. To facilitate independent operation of each accelerator, test cells are constructed around each accelerator to shield it from the radiation workers occupying surrounding test cells and work-areas. These test cells, about 9 ft. high, are constructed of high density concrete block walls that provide direct radiation shielding. Above the target areas (radiation sources), lead or steel plates are used to minimize skyshine radiation. Space, accessibility and cost considerations impose certain restrictions on the design of these test cells. SNL Health Physics division is tasked to evaluate the adequacy of each test cell design and compare resultant dose rates with the design criteria stated in DOE Order 5480.11. In response, SNL Health Physics has undertaken an intensive effort to assess existing radiation shielding codes and compare their predictions against measured dose rates. This paper provides a summary of the effort and its results.

  4. Shielded cables with optimal braided shields

    NASA Astrophysics Data System (ADS)

    Homann, E.

    1991-01-01

    Extensive tests were done in order to determine what factors govern the design of braids with good shielding effectiveness. The results are purely empirical and relate to the geometrical relationships between the braid parameters. The influence of various parameters on the shape of the transfer impedance versus frequency curve were investigated step by step. It was found that the optical coverage had been overestimated in the past. Good shielding effectiveness results not from high optical coverage as such, but from the proper type of coverage, which is a function of the braid angle and the element width. These dependences were measured for the ordinary range of braid angles (20 to 40 degrees). They apply to all plaiting machines and all gages of braid wire. The design rules are largely the same for bright, tinned, silver-plated and even lacquered copper wires. A new type of braid, which has marked advantages over the conventional design, was proposed. With the 'mixed-element' technique, an optimal braid design can be specified on any plaiting machine, for any possible cable diameter, and for any desired angle. This is not possible for the conventional type of braid.

  5. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimatedmore » to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.« less

  6. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  7. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE PAGES

    Swadling, G. F.; Ross, J. S.; Datte, P.; ...

    2016-07-21

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  8. Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodak, A.; Zhai, Y.; Wang, W.

    As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less

  9. Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module

    DOE PAGES

    Khodak, A.; Zhai, Y.; Wang, W.; ...

    2017-06-19

    As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less

  10. Exploration Design Challenge 2014

    NASA Image and Video Library

    2014-04-25

    Team Titan Shielding Systems poses with NASA Administrator Charles Bolden and Lockheed Martin CEO, Marillyn Hewson. Team Titan Shielding Systems was one of the semi-finalists in the Exploration Design Challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winner of the challenge was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)

  11. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and rampedmore » operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.« less

  12. Radiation Shielding Optimization on Mars

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  13. Performance study of galactic cosmic ray shield materials

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.

    1994-01-01

    The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.

  14. Exploring the Feasibility of Electrostatic Shielding for Spacecrafts

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Youngquist, R. C.

    2005-01-01

    NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation explores the feasibility of using electrostatic shielding in concert with innovative materials shielding and protection technologies. The asymmetries of the radiation shielding problem would be exploited in the electrostatics shielding process. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn about the advantages the electrostatic shielding, should it be successful, would bring to the radiation protection design process.

  15. Contaminant deposition building shielding factors for US residential structures.

    PubMed

    Dickson, Elijah; Hamby, David; Eckerman, Keith

    2017-10-10

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. © 2017 IOP Publishing Ltd.

  16. Contaminant deposition building shielding factors for US residential structures.

    PubMed

    Dickson, E D; Hamby, D M; Eckerman, K F

    2015-06-01

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit.

  17. Eddy current heating in magnetic refrigerators

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1990-01-01

    Eddy current heating can be a significant source of parasitic heating in low temperature magnetic refrigerators. To study this problem a technique to approximate the heating due to eddy currents has been developed. A formula is presented for estimating the heating within a variety of shapes commonly found in magnetic refrigerators. These shapes include circular, square, and rectangular rods; cylindrical and split cylindrical shells; wire loops; and 'coil foil. One set of components evaluated are different types of thermal radiation shields. This comparison shows that a simple split shield is almost as effective (only 23 percent more heating) as using a shield, with the same axial thermal conductivity, made of 'coil foil'.

  18. Multihelix rotating shield brachytherapy for cervical cancer

    PubMed Central

    Dadkhah, Hossein; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.

    2015-01-01

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D90 of HR-CTV) were the two metrics used as the basis for evaluation and comparison. For all the generated treatment plans, the D90 of the HR-CTV in units of equivalent dose in 2 Gy fractions (EQD2) was escalated until the D2cc (minimum dose to hottest 2 cm3) tolerance of either the bladder (90 Gy3), rectum (75 Gy3), or sigmoid colon (75 Gy3) was reached. Results: Treatment time changed for H-RSBT versus S-RSBT by −7.62% to 1.17% with an average change of −2.8%, thus H-RSBT treatments times tended to be shorter than for S-RSBT. The HR-CTV D90 also changed by −2.7% to 2.38% with an average of −0.65%. Conclusions: H-RSBT is a mechanically feasible delivery technique for use in the curved applicators needed for cervical cancer brachytherapy. S-RSBT and H-RSBT were clinically equivalent for all patients considered, with the H-RSBT technique tending to require less time for delivery. PMID:26520749

  19. CAD-based stand-alone spacecraft radiation exposure analysis system: An application of the early man-tended Space Station

    NASA Technical Reports Server (NTRS)

    Appleby, M. H.; Golightly, M. J.; Hardy, A. C.

    1993-01-01

    Major improvements have been completed in the approach to analyses and simulation of spacecraft radiation shielding and exposure. A computer-aided design (CAD)-based system has been developed for determining the amount of shielding provided by a spacecraft and simulating transmission of an incident radiation environment to any point within or external to the vehicle. Shielding analysis is performed using a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design programs such as a Mars transfer habitat, pressurized lunar rover, and the redesigned international Space Station. Results of analysis performed for the Space Station astronaut exposure assessment are provided to demonastrate the applicability and versatility of the system.

  20. KENNEDY SPACE CENTER, FLA. - While Jay Beason (left), with United Space Alliance, looks on, Jeremy Schwarz (front) and Tom Summers (behind), also with USA, place new tiles on the heat shield of main engine 1 for the orbiter Discovery. A heat shield is a protective layer on a spacecraft designed to protect it from the high temperatures, usually those that result from aerobraking during reentry into the Earth’s atmosphere.

    NASA Image and Video Library

    2003-09-23

    KENNEDY SPACE CENTER, FLA. - While Jay Beason (left), with United Space Alliance, looks on, Jeremy Schwarz (front) and Tom Summers (behind), also with USA, place new tiles on the heat shield of main engine 1 for the orbiter Discovery. A heat shield is a protective layer on a spacecraft designed to protect it from the high temperatures, usually those that result from aerobraking during reentry into the Earth’s atmosphere.

  1. Impact of the retained heat shield concept on science instruments

    NASA Technical Reports Server (NTRS)

    Kessler, W. C.

    1974-01-01

    Associated interface problems between the mass spectrometer and the actual probe design are considered along with the problem of producing a clean sample to the gas detection instrument. Of particular interest is the penetration of the heat shield by the mass spectrometer sampling tube, because it must be demonstrated that the sampling tube can penetrate the heat shield and that the mass spectrometer can be supplied with a contaminant-free gas sample, free of contaminants from out-gassing of the heat shield.

  2. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI.

    PubMed

    Bidinosti, C P; Kravchuk, I S; Hayden, M E

    2005-11-01

    We provide an exact expression for the magnetic field produced by cylindrical saddle-shaped coils and their ideal shield currents in the low-frequency limit. The stream function associated with the shield surface current is also determined. The results of the analysis are useful for the design of actively shielded radio-frequency (RF) coils. Examples pertinent to very low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are presented and discussed.

  3. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    NASA Astrophysics Data System (ADS)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  4. Mariner 9 photographs of small-scale volcanic structures on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1972-01-01

    Surface features on the flanks of Martian shield volcanoes photographed by Mariner 9 are identified as lava flow channels, rift zones, and partly collapsed lava tubes by comparisons with similar structures on the flanks of Mauna Loa shield volcano, Hawaii. From these identifications, the composition of the Martian lava flows is interpreted to be basaltic, with viscosities ranging from those of fluid pahoehoe to more viscous aa.

  5. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    PubMed

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  6. Dynamic Open-Rotor Composite Shield Impact Test Report

    NASA Technical Reports Server (NTRS)

    Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.

    2015-01-01

    The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.

  7. Preliminary Development of a Multifunctional Hot Structure Heat Shield

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Armand, Sasan C.; Perino, Scott V

    2014-01-01

    Development of a Multifunctional Hot Structure Heat Shield concept has initiated with the goal to provide advanced technology with significant benefits compared to the current state of the art heat shield technology. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heat shield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation has been sized for use underneath the hot structure to maintain desired internal temperatures. The approach was to develop a preliminary design to demonstrate feasibility of the concept. The preliminary results indicate that the concept has the potential to save both mass and volume with significantly less recession compared to traditional heat shield designs, and thus provide potential to enable new planetary missions.

  8. Electromagnetic fields and torque for a rotating gyroscope with a superconducting shield

    NASA Technical Reports Server (NTRS)

    Ebner, C.; Sung, C. C.

    1975-01-01

    In a proposed experiment, a measurement is to be made of the angular precession of a rotating superconducting gyroscope for the purpose of testing different general-relativity theories. For various reasons having to do with the design of the experiment, the superconducting shield surrounding the gyroscope is not spherically symmetric and produces a torque. There are two distinct features of the shield which lead to a torque on the gyroscope. First, its shape is a sphere intersected by a plane. If the angular momentum of the gyroscope is not parallel to the rotational symmetry axis of the shield, there is a torque which is calculated. Second, there are small holes in the spherical portion of the shield. The earth's field can penetrate through these holes and give an additional torque which is also calculated. In the actual experiment, these torques must be accurately known or made very small in order to obtain meaningful results. The present calculation is sufficiently general for application over a wide range of experimental design parameters.

  9. Ford Motor Company NDE facility shielding design.

    PubMed

    Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H

    2005-01-01

    Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.

  10. Experimental shielding evaluation of the radiation protection provided by the structurally significant components of residential structures.

    PubMed

    Dickson, E D; Hamby, D M

    2014-03-01

    The human health and environmental effects following a postulated accidental release of radioactive material to the environment have been a public and regulatory concern since the early development of nuclear technology. These postulated releases have been researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to provide an updated technical basis for contemporary building shielding factors for the US housing stock. Building shielding factors quantify the protection from ionising radiation provided by a certain building type. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950s era suburbia and is no longer applicable to the densely populated urban environments realised today. To analyse a building's radiation shielding properties, the ideal approach would be to subject a variety of building types to various radioactive sources and measure the radiation levels in and around the building. While this is not entirely practicable, this research analyses the shielding effectiveness of ten structurally significant US housing-stock models (walls and roofs) important for shielding against ionising radiation. The experimental data are used to benchmark computational models to calculate the shielding effectiveness of various building configurations under investigation from two types of realistic environmental source terms. Various combinations of these ten shielding models can be used to develop full-scale computational housing-unit models for building shielding factor calculations representing 69.6 million housing units (61.3%) in the United States. Results produced in this investigation provide a comparison between theory and experiment behind building shielding factor methodology.

  11. Whole-head SQUID system in a superconducting magnetic shield.

    PubMed

    Ohta, H; Matsui, T; Uchikawa, Y

    2004-11-30

    We have constructed a mobile whole-head SQUID system in a superconducting magnetic shield - a cylinder of high Tc superconductor BSCCO of 65 cm in diameter and 160 cm in length. We compared the noise spectra of several SQUID sensors of SNS Josephson junctions in the superconducting magnetic shield with those of the same SQUID sensors in a magnetically shielded room of Permalloy. The SQUID sensors in the superconducting magnetic shield are more than 100 times more sensitive than those in a magnetically shielded room of Permalloy below 1 Hz. We tested the whole-head SQUID system in the superconducting magnetic shield observing somatosensory signals evoked by stimulating the median nerve in the right wrist of patients by current pulses. We present data of 64 and 128 traces versus the common time axis for comparison. Most sensory responses of human brains phase out near 250 ms. However monotonic rhythms still remain even at longer latencies than 250 ms. The nodes of these rhythm are very narrow even at these longer latencies just indicating low noise characteristics of the SQUID system at low-frequencies. The current dipoles at the secondary somatosensory area SII are evoked at longer latencies than 250 ms contributing to a higher-level brain function. The SQUID system in a superconducting magnetic shield will also have advantages when it is used as a DC MEG to study very slow activities and function of the brain.

  12. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. B.; Reid, R.; Sadasivan, P.; Stewart, E.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A representative lunar surface reactor design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The evaluation compares the experimental data from the WST to CFD models. Performance of a water shield on the lunar surface is predicted by CFD models anchored to test data, and by matching relevant dimensionless parameters.

  13. Effects of radiobiological uncertainty on vehicle and habitat shield design for missions to the moon and Mars

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Schimmerling, Walter; Cucinotta, Francis A.; Wood, James S.

    1993-01-01

    Some consequences of uncertainties in radiobiological risk due to galactic cosmic ray (GCR) exposure are analyzed for their effect on engineering designs for the first lunar outpost and a mission to explore Mars. This report presents the plausible effect of biological uncertainties, the design changes necessary to reduce the uncertainties to acceptable levels for a safe mission, and an evaluation of the mission redesign cost. Estimates of the amount of shield mass required to compensate for radiobiological uncertainty are given for a simplified vehicle and habitat. The additional amount of shield mass required to provide a safety factor for uncertainty compensation is calculated from the expected response to GCR exposure. The amount of shield mass greatly increases in the estimated range of biological uncertainty, thus, escalating the estimated cost of the mission. The estimates are used as a quantitative example for the cost-effectiveness of research in radiation biophysics and radiation physics.

  14. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.

  15. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biologicalmore » dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, similar to 0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper. Copyright (C) 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.« less

  16. Neutron skyshine calculations for the PDX tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, F.J.; Nigg, D.W.

    1979-01-01

    The Poloidal Divertor Experiment (PDX) at Princeton will be the first operating tokamak to require a substantial radiation shield. The PDX shielding includes a water-filled roof shield over the machine to reduce air scattering skyshine dose in the PDX control room and at the site boundary. During the design of this roof shield a unique method was developed to compute the neutron source emerging from the top of the roof shield for use in Monte Carlo skyshine calculations. The method is based on simple, one-dimensional calculations rather than multidimensional calculations, resulting in considerable savings in computer time and input preparationmore » effort. This method is described.« less

  17. Shield Design for Lunar Surface Applications

    NASA Astrophysics Data System (ADS)

    Johnson, Gregory A.

    2006-01-01

    A shielding concept for lunar surface applications of nuclear power is presented herein. The reactor, primary shield, reactor equipment and power generation module are placed in a cavity in the lunar surface. Support structure and heat rejection radiator panels are on the surface, outside the cavity. The reactor power of 1,320 kWt was sized to deliver 50 kWe from a thermoelectric power conversion subsystem. The dose rate on the surface is less than 0.6 mRem/hr at 100 meters from the reactor. Unoptimized shield mass is 1,020 kg which is much lighter than a comparable 4π shield weighing in at 17,000 kg.

  18. X-Ray Computed Tomography Inspection of the Stardust Heat Shield

    NASA Technical Reports Server (NTRS)

    McNamara, Karen M.; Schneberk, Daniel J.; Empey, Daniel M.; Koshti, Ajay; Pugel, D. Elizabeth; Cozmuta, Ioana; Stackpoole, Mairead; Ruffino, Norman P.; Pompa, Eddie C.; Oliveras, Ovidio; hide

    2010-01-01

    The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses of this technology as a tool for non-destructively inspecting and verifying both pre and post flight heat shields.

  19. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures

    Treesearch

    Zachary A. Holden; Anna E. Klene; Robert F. Keefe; Gretchen G. Moisen

    2013-01-01

    Inexpensive temperature sensors are widely used in agricultural and forestry research. This paper describes a low-cost (~3 USD) radiation shield (radshield) designed for monitoring surface air temperatures in harsh outdoor environments. We compared the performance of the radshield paired with low-cost temperature sensors at three sites in western Montana to several...

  20. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic fieldmore » of 200 G.« less

  1. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, T. F.; Chen, Z. J.; Peng, X. Y.

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometermore » at EAST are studied for future data interpretation.« less

  2. Re-Shielding of Cobalt-60 Teletherapy Rooms for Tomotherapy and Conventional Linear Accelerators using Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Çeçen, Yiğit; Yazgan, Çağrı

    2017-09-01

    Purpose. Nearly all Cobalt-60 teletherapy machines were removed around the world during the last two decades. The remaining ones are being used for experimental purposes. However, the rooms of these teletherapy machines are valuable because of lack of space in radiotherapy clinics. In order to place a new technology treatment machine in one of these rooms, one should re-shield the room since it was designed only for 1.25 MeV gamma beams on average. Mostly, the vendor of the new machine constructs the new shielding of the room using their experience. However, every radiotherapy room has different surrounding work areas and it would be wise to shield the room considering these special conditions. Also, the shield design goal of the clinic may be much lower than the International Atomic Energy Agency (IAEA) or the local association accepts. The study shows re-shielding of a Cobalt-60 room, specific to the clinic, using Monte Carlo simulations. Materials & Methods: First, a 6 MV Tomotherapy machine, then a 10 MV conventional linear accelerator (LINAC) was placed inside the Cobalt-60 teletherapy room. The photon flux outside the room was simulated using Monte Carlo N-Particle (MCNP6.1) code before and after re-shielding. For the Tomotherapy simulation, flux distributions around the machine were obtained from the vendor and implemented as the source of the model. The LINAC model was more generic with the 10 MeV electron source, the tungsten target, first and secondary collimators. The aim of the model was to obtain the maximum (40x40 cm2) open field at the isocenter. Two different simulations were carried out for gantry angles 90o and 270o. The LINAC was placed in the room such that the primary walls were A' (Gantry 270o) and C' (Gantry 90o) (figure 1). The second part of the study was to model the re-shielding of the room for Tomotherapy and for the conventional LINAC, separately. The aim was to investigate the recommended shielding by the vendors. Left side of the room was adjacent to a LINAC room with 2 meters thick concrete wall (figure 1). No shielding was necessary for that wall. Behind wall A-A' there was an outdoors forbidden area; behind wall B-B' was the contouring room for the doctors; and the control room was behind wall C-C' (figure 1). After some modifications, the final shielding was designed. Results: The photon flux distributions outside the room before and after the re-shielding were compared. The re-shielding of Tomotherapy reduced the flux down to 1.89 % on average with respect to pre-shielding (table 1). For the conventional LINAC case; after re-shielding, the photon flux in the control room -which corresponds to gantry 90°- decreased down to 0.57% with respect to pre-shielding (table 2). The photon flux behind wall A' -which corresponds to gantry 270°- decreased down to 2.46%. Everybody was all safe behind wall B' even before re-shielding.

  3. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding

    NASA Astrophysics Data System (ADS)

    Verdipoor, Khatibeh; Alemi, Abdolali; Mesbahi, Asghar

    2018-06-01

    Novel shielding materials for photons based on silicon resin and WO3, PbO, and Bi2O3 Micro and Nano-particles were designed and their mass attenuation coefficients were calculated using Monte Carlo (MC) method. Using lattice cards in MCNPX code, micro and nanoparticles with sizes of 100 nm and 1 μm was designed inside a silicon resin matrix. Narrow beam geometry was simulated to calculate the attenuation coefficients of samples against mono-energetic beams of Co60 (1.17 and 1.33 MeV), Cs137 (663.8 KeV), and Ba133 (355.9 KeV). The shielding samples made of nanoparticles had higher mass attenuation coefficients, up to 17% relative to those made of microparticles. The superiority of nano-shields relative to micro-shields was dependent on the filler concentration and the energy of photons. PbO, and Bi2O3 nanoparticles showed higher attenuation compared to WO3 nanoparticles in studied energies. Fabrication of novel shielding materials using PbO, and Bi2O3 nanoparticles is recommended for application in radiation protection against photon beams.

  4. An approach to achieve progress in spacecraft shielding

    NASA Astrophysics Data System (ADS)

    Thoma, K.; Schäfer, F.; Hiermaier, S.; Schneider, E.

    2004-01-01

    Progress in shield design against space debris can be achieved only when a combined approach based on several tools is used. This approach depends on the combined application of advanced numerical methods, specific material models and experimental determination of input parameters for these models. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber-reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In this paper the benefits from combining numerical methods, material modelling and detailed experimental studies for shield design are demonstrated. The following examples are given: (1) Development of a material model for Nextel and Kevlar-Epoxy to enable numerical simulation of hypervelocity impacts on complex heavy protection shields for the International Space Station. (2) The influence of projectile shape on protection performance of Whipple Shields and how experimental problems in accelerating such shapes can be overcome by systematic numerical simulation. (3) The benefits of using metallic foams in "sandwich bumper shields" for spacecraft and how to approach systematic characterization of such materials.

  5. Parametric study for use of stainless steel as a material for thermal shield in PIP2IT transferline at FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rane, Tejas

    Proton Improvement Plant – II (PIP-II) has been planned at Fermilab for providing high-intensity proton beams to the laboratory’s experiments. Fermilab has undertaken the PIP-II Injector Test (PIP2IT) for integrated systems testing of critical components comprising the PIP-II front end. PIP2IT includes two cryomodules, to be tested using a pre-existing Supercritical helium refrigerator and distribution box. The PIP2IT transferline connects the Distribution box to the cryomodules of PI2IT. It contains 5 process lines as follows - supercritical 5K He supply and return lines, thermal shield supply(40K) and return(80K) lines and a sub-atmospheric 2K return line. Such cryogenic transferlines are generallymore » provided with cylindrical thermal shields at 80K, enclosing multiple process lines. The thermal shields are cooled by dedicated cooling lines welded/brazed to the shield at a single point along the circumference. Higher thermal diffusivity provides faster cooling and uniformity o f temperature along the shield surface. Hence, Copper/Aluminium is widely used to fabricate thermal shields. However, raw material price, the cost of fabrication depending on standard sizes of pipes/tubes, often drives up the final price of thermal shields. To reduce the cost by making use of easily available stock of standard pipe/tube, it is decided to use stainless steel as a material in thermal shields for the PIP2IT transferline. To this effect, a parametric study has been undertaken to evaluate the suitability of replacing Copper/Aluminium with stainless steel in thermal shields. The low thermal conductivity of steel results in bowing of the shield due to differential temperature distribution along the circumferential direction. The resulting suitable design has limiting parameters in terms of maximum allowable length of a shield section and the maximum allowable heat transfer coefficient for cooling flow. Starting with the design specific to PIP2IT transferline, an at tempt is made to have non-dimensionalised parameters for sim! ilar thermal shields.« less

  6. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.

  7. Passive magnetic shielding in MRI-Linac systems.

    PubMed

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul

    2018-03-26

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  8. Passive magnetic shielding in MRI-Linac systems

    NASA Astrophysics Data System (ADS)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  9. A Launch Requirements Trade Study for Active Space Radiation Shielding for Long Duration Human Missions

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer

    2015-01-01

    A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.

  10. Bone preserving level of osteotomy in short-stem total hip arthroplasty does not influence stress shielding dimensions - a comparing finite elements analysis.

    PubMed

    Burchard, Rene; Braas, Sabrina; Soost, Christian; Graw, Jan Adriaan; Schmitt, Jan

    2017-08-07

    The main objective of every new development in total hip arthroplasty (THA) is the longest possible survival of the implant. Periprosthetic stress shielding is a scientifically proven phenomenon which leads to inadvertent bone loss. So far, many studies have analysed whether implanting different hip stem prostheses result in significant preservation of bone stock. The aim of this preclinical study was to investigate design-depended differences of the stress shielding effect after implantation of a selection of short-stem THA-prostheses that are currently available. Based on computerised tomography (CT), a finite elements (FE) model was generated and a virtual THA was performed with different stem designs of the implant. Stems were chosen by osteotomy level at the femoral neck (collum, partial collum, trochanter sparing, trochanter harming). Analyses were performed with previously validated FE models to identify changes in the strain energy density (SED). In the trochanteric region, only the collum-type stem demonstrated a biomechanical behaviour similar to the native femur. In contrast, no difference in biomechanical behaviour was found between partial collum, trochanter harming and trochanter sparing models. All of the short stem-prostheses showed lower stress-shielding than a standard stem. Based on the results of this study, we cannot confirm that the design of current short stem THA-implants leads to a different stress shielding effect with regard to the level of osteotomy. Somehow unexpected, we found a bone stock protection in metadiaphyseal bone by simulating a more distal approach for osteotomy. Further clinical and biomechanical research including long-term results is needed to understand the influence of short-stem THA on bone remodelling and to find the optimal stem-design for a reduction of the stress shielding effect.

  11. Meeting Radiation Protection Requirements and Reducing Spacecraft Mass - A Multifunctional Materials Approach

    NASA Technical Reports Server (NTRS)

    Atwell, William; Koontz, Steve; Reddell, Brandon; Rojdev, Kristina; Franklin, Jennifer

    2010-01-01

    Both crew and radio-sensitive systems, especially electronics must be protected from the effects of the space radiation environment. One method of mitigating this radiation exposure is to use passive-shielding materials. In previous vehicle designs such as the International Space Station (ISS), materials such as aluminum and polyethylene have been used as parasitic shielding to protect crew and electronics from exposure, but these designs add mass and decrease the amount of usable volume inside the vehicle. Thus, it is of interest to understand whether structural materials can also be designed to provide the radiation shielding capability needed for crew and electronics, while still providing weight savings and increased useable volume when compared against previous vehicle shielding designs. In this paper, we present calculations and analysis using the HZETRN (deterministic) and FLUKA (Monte Carlo) codes to investigate the radiation mitigation properties of these structural shielding materials, which includes graded-Z and composite materials. This work is also a follow-on to an earlier paper, that compared computational results for three radiation transport codes, HZETRN, HETC, and FLUKA, using the Feb. 1956 solar particle event (SPE) spectrum. In the following analysis, we consider the October 1989 Ground Level Enhanced (GLE) SPE as the input source term based on the Band function fitting method. Using HZETRN and FLUKA, parametric absorbed doses at the center of a hemispherical structure on the lunar surface are calculated for various thicknesses of graded-Z layups and an all-aluminum structure. HZETRN and FLUKA calculations are compared and are in reasonable (18% to 27%) agreement. Both codes are in agreement with respect to the predicted shielding material performance trends. The results from both HZETRN and FLUKA are analyzed and the radiation protection properties and potential weight savings of various materials and materials lay-ups are compared.

  12. Some folded issues related to over-shielded and unplanned rooms for medical linear accelerators - A case study

    NASA Astrophysics Data System (ADS)

    Muhammad, Wazir; Ullah, Asad; Hussain, Amjad; Ali, Nawab; Alam, Khan; Khan, Gulzar; Matiullah; Maeng, Seongjin; Lee, Sang Hoon

    2015-08-01

    A medical linear accelerator (LINAC) room must be properly shielded to limit the outside radiation exposure to an acceptable safe level defined by individual state and international regulations. However, along with this prime objective, some additional issues are also important. The current case-study was designed to unfold the issues related to over-shielded and unplanned treatment rooms for LINACs. In this connection, an apparently unplanned and over-shielded treatment room of 610 × 610 cm2 in size was compared with a properly designed treatment room of 762 × 762 cm2 in size ( i.e., by following the procedures and recommendations of the IAEA Safety Reports Series No. 47 and NCRP 151). Evaluation of the unplanned room indicated that it was over-shielded and that its size was not suitable for total body irradiation (TBI), although the license for such a treatment facility had been acquired for the installed machine. An overall 14.96% reduction in the total shielding volume ( i.e., concrete) for an optimally planned room as compared to a non-planned room was estimated. Furthermore, the inner room's dimensions were increased by 25%, in order to accommodate TBI patients. These results show that planning and design of the treatment rooms are imperative to avoid extra financial burden to the hospitals and to provide enough space for easy and safe handling of the patients. A spacious room is ideal for storing treatment accessories and facilitates TBI treatment.

  13. Energetic Particle Measurements on Mars and in Lunar Orbit

    NASA Astrophysics Data System (ADS)

    Zeitlin, C. J.; Hassler, D.; Schwadron, N.; Spence, H. E.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. S.; Brinza, D. E.; Burmeister, S.; Ehresmann, B.; Guo, J.; Kohler, J.; Lohf, H.; Martin-Garcia, C.; Posner, A.; Rafkin, S. C.; weigle, G., II; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The Radiation Assessment Detector (RAD) aboard the Curiosity rover has been making measurements of energetic particles on the surface of Mars since the rover landed in August 2012. RAD also acquired data for most of the cruise to Mars, from Dec. 2011 through July 2012. In both cruise and on the surface, RAD is under considerable shielding, averaging 22 g cm-2 of CO2 during the surface mission, and ~ 16 g cm-2 during cruise. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the LRO spacecraft in lunar orbit has been making measurements since mid-2009. CRaTER contains three sets of detectors, of which one is unshielded, one is under 6 g cm-2 of tissue-equivalent plastic (TEP) shielding, and one is under 9 g cm-2 of TEP. Taken together, the two experiments provide a wealth of data concerning the effects of shielding on Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Comparison of data from the two instruments is complicated by their different locations in the heliosphere, which at most times causes them to be magnetically connected to different regions on the Sun. Variability of the atmospheric shielding above RAD, which is both diurnal and seasonal, also influences the comparison. During solar quiet time, when the energetic particle flux is due to GCRs, many similarities - and some small but significant differences - are seen in detailed time series data. In contrast, during SEP events, both the shielding and location disparities cause large differences in the measured particle fluxes.

  14. Parametric analysis: SOC meteoroid and debris protection

    NASA Technical Reports Server (NTRS)

    Kowalski, R.

    1985-01-01

    The meteoroid and man made space debris environments of an Earth orbital manned space operations center are discussed. Protective shielding thickness and design configurations for providing given levels of no penetration probability were also calculated. Meteoroid/debris protection consists of a radiator/shield thickness, which is actually an outer skin, separated from the pressure wall, thickness by a distance. An ideal shield thickness, will, upon impact with a particle, cause both the particle and shield to vaporize, allowing a minimum amount of debris to impact the pressure wall itself. A shield which is too thick will crater on the outside, and release small particles of shield from the inside causing damage to the pressure wall. Inversely, if the shield is too thin, it will afford no protection, and the backup must provide all necessary protection. It was concluded that a double wall concept is most effective.

  15. [An individual facial shield for a sportsman with an orofacial injury].

    PubMed

    de Baat, C; Peters, R; van Iperen-Keiman, C M; de Vleeschouwer, M

    2005-05-01

    Facial shields are used when practising contact sports, high speed sports, sports using hard balls, sticks or bats, sports using protective shields or covers, and sports using hard boardings around the sports ground. Examples of facial shields are commercially available, per branch of sport standardised helmets. Fabricating individual protective shields is primarily restricted to mouth guards. In individual cases a more extensive facial shield is demanded, for instance in case of a surgically stabilised facial bone fracture. In order to be able to fabricate an extensive individual facial shield, an accurate to the nearest model of the anterior part of the head is required. An accurate model can be provided by making an impression of the face, which is poured in dental stone. Another method is producing a stereolithographic model using computertomography or magnetic resonance imaging. On the accurate model the facial shield can be designed and fabricated from a strictly safe material, such as polyvinylchloride or polycarbonate.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wroe, A; Slater, J; McAuley, G

    Purpose: To design, implement and evaluate a shielding system that will reduce out-of-field dose experienced by the patient and associated electronic systems in passively scattered proton therapy treatment. Methods: A multi-stage neutron shielding system was retrofitted to the Gantry 1 treatment nozzle at Loma Linda University Medical Center. The system uses multiple borated polyethylene plates staged after the primary beam modifying devices to attenuate and absorb neutrons produced by such devices. This arrangement locates increasing levels of shielding between the sources of secondary particles in the nozzle and the patient. Additionally, the design of this shielding structure allows it tomore » be easily retrofitted to an existing proton nozzle system without impacting design or treatment beam characteristics. The effectiveness of the shielding was evaluated both through experimental measurements and Geant4 Monte Carlo simulations. Results: Measurements were completed with Landauer Luxel+ dosimeters that use optically stimulated luminescence and CR-39 to detect fast neutrons, thermal neutrons, protons, photons and beta particles. Measurements of a 250 MeV proton beam indicated that the shielding system reduced out-of-field dose to the patient by almost half with dose equivalent values at 50 and 40 cm from the field edge decreasing from 0.965 and 1.262 mSv/Gy to 0.596 and 0.777 mSv/Gy respectively. The installation of the multi-stage shielding system also reduced dose equivalent experienced by electronic systems installed in the treatment room by up to 80%. Geant4 simulations were also used to evaluate the neutron fluence at various positions in the treatment room as well as provide information on microdosimetry spectra within the patient and treatment room. Conclusion: The shielding system described above proved to be an effective an inexpensive method of reducing out-of-field doses to the patient and electronic systems and can be easily retrofitted to existing passive scattering nozzles.« less

  17. Structural Analysis of Thermal Shields During a Quench of a Torus Magnet for the 12 GeV Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastor, Orlando; Willard, Thomas; Ghoshal, Probir K.

    A toroidal magnet system consisting of six superconducting coils is being built for the Jefferson Lab 12- GeV accelerator upgrade project. This paper details the analysis of eddy current effects during a quench event on the aluminum thermal shield. The shield has been analyzed for mechanical stresses induced as a result of a coil quench as well as a fast discharge of the complete magnet system. The shield has been designed to reduce the eddy current effects and result in stresses within allowable limits.

  18. Measurements and Monte-Carlo simulations of the particle self-shielding effect of B4C grains in neutron shielding concrete

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.

    2018-06-01

    A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.

  19. Shielded resistive electromagnets of arbitrary surface geometry using the boundary element method and a minimum energy constraint.

    PubMed

    Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A

    2013-09-01

    Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding.

    PubMed

    Hong, Seong Kyung; Yang, Seongjin; Cho, Seong J; Jeon, Hyungkook; Lim, Geunbae

    2018-04-12

    This paper details the design of a poly(dimethylsiloxane) (PDMS)-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS) sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.

  1. Dynamics of the Venera 13 and 14 descent modules in the parachute segment of descent

    NASA Astrophysics Data System (ADS)

    Vishniak, A. A.; Kariagin, V. P.; Kovtunenko, V. M.; Kotov, B. B.; Kuznetsov, V. V.; Lopatkin, A. I.; Perov, O. V.; Pichkhadze, K. M.; Rysev, O. V.

    1983-05-01

    The parachute system for the Venera 13 and 14 descent modules was designed to assure the prescribed duration of descent in the Venus cloud layer as well as the separation of heat-shield elements from the module. A mathematical model is developed which makes possible a numerical analysis of the dynamics of the module-parachute system with allowance for parachute inertia, atmospheric turbulence, the means by which the parachute is attachead to the module, and the elasticity and damping of the suspended system. A formula is derived for determining the period of oscillations of the module in the parachute segment of descent. A comparison of theoretical and experimental results shows that this formula can be used in the design calculations, especially at the early stage of module development.

  2. Effect of freeze-dryer design on drying rate of an amorphous protein-formulation determined with a gravimetric technique.

    PubMed

    Gieseler, Henning; Lee, Geoffrey

    2008-01-01

    A freeze-drying balance was used to determine momentary drying-rate, m(t), of a sucrose/BSA formulation contained in a vial with varying shelf packing density, Ø2. A comparison between two different laboratory-scale freeze-dryers was made. The effects of Ø2 on m(t) differed between the two units, attributed to drying chamber design and its effects on heat transfer. At high Ø2 the differences are annulled because of the shielding effects of surrounding vials. Parallel effects of Ø2 were also found on product temperature, Tb, measured in the balance vial. Tb was used to calculate vial heat transfer coefficient, Kv. Kv was strongly reduced with increasing Ø2, but reached a plateau value at high Ø2.

  3. Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities.

    PubMed

    Glasgow, Glenn P

    2006-09-01

    Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities NCRP Report No. 151, 2005, 246 pp. (Hardcover $100). National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095. ISBN-10 0-0929600-87-8; http://www.NCRPonline.org. © 2006 American Association of Physicists in Medicine.

  4. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  5. Morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  6. NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, G.E.; Bell, F.R.

    1963-06-26

    A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)

  7. Galileo Probe forebody thermal protection

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1981-01-01

    Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.

  8. Environment Impact Analysis of Shield Passing Alongside Bridge Pile Platform Using Three Dimensional Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Shang, Yanliang; Shi, Wenjun; Han, Tongyin; Qin, Zhichao; Du, Shouji

    2017-10-01

    The shield method has many advantages in the construction of urban subway, and has become the preferred method for the construction of urban subway tunnel. Taking Shijiazhuang metro line 3 (administrative center station - garden park station interval) Passing alongside bridge as the engineering background, double shield crossing the bridge pile foundation model was set up. The deformation and internal force of the pile foundation during the construction of the shield were analyzed. Pile stress caused by shield construction increases, but the maximum stress is less than the design strength; the maximum surface settlement caused by the construction of 10.2 mm, the results meet the requirements of construction.

  9. Design of Measurement Apparatus for Electromagnetic Shielding Effectiveness Using Flanged Double Ridged Waveguide

    NASA Astrophysics Data System (ADS)

    Kwon, Jong Hwa; Choi, Jae Ick; Yook, Jong Gwan

    In this paper, we design and manufacture a flanged double ridged waveguide with a tapered section as a sample holder for measuring the electromagnetic shielding effectiveness (SE) of planar material in broadband frequency ranges up to 10GHz. The proposed technique overcomes the limitations of the conventional ASTM D4935 test method at high frequencies. The simulation results for the designed sample holders agree well with the fabricated ones in consideration of the design specification of S11 < -20dB within the frequency range of 1-10GHz. To verify the proposed measurement apparatus, the measured SE data of the commercial shielding materials from 1 to 10GHz were indirectly compared with those obtained from the ASTM D4935 from 30MHz to 1GHz. We observed that the SE data obtained by using both experimental techniques agree with each other.

  10. Analysis and optimization of Love wave liquid sensors.

    PubMed

    Jakoby, B; Vellekoop, M J

    1998-01-01

    Love wave sensors are highly sensitive microacoustic devices, which are well suited for liquid sensing applications thanks to the shear polarization of the wave. The sensing mechanism thereby relies on the mechanical (or acoustic) interaction of the device with the liquid. The successful utilization of Love wave devices for this purpose requires proper shielding to avoid unwanted electric interaction of the liquid with the wave and the transducers. In this work we describe the effects of this electric interaction and the proper design of a shield to prevent it. We present analysis methods, which illustrate the impact of the interaction and which help to obtain an optimized design of the proposed shield. We also present experimental results for devices that have been fabricated according to these design rules.

  11. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  12. DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Chichester; E. H. Seabury; J. M. Zabriskie

    2009-06-01

    A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault.more » The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.« less

  13. Design and evaluation of active cooling systems for Mach 6 cruise vehicle wings

    NASA Technical Reports Server (NTRS)

    Mcconarty, W. A.; Anthony, F. M.

    1971-01-01

    Active cooling systems, which included transpiration, film, and convective cooling concepts, are examined. Coolants included hydrogen, helium, air, and water. Heat shields, radiation barriers, and thermal insulation are considered to reduce heat flow to the cooling systems. Wing sweep angles are varied from 0 deg to 75 deg and wing leading edge radii of 0.05 inch and 2.0 inches are examined. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy structural materials. Cooled wing concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.

  14. Euro-African MAGSAT anomaly-tectonic observations

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Olivier, R.; Vonfrese, R. R. B.

    1985-01-01

    Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.

  15. Euro-african MAGSAT Anomaly-tectonic Observations

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.

    1984-01-01

    Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.

  16. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  17. Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon

    2013-01-01

    This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks.

  18. Electrostatic shielding of transformers

    DOEpatents

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  19. Shielding properties of fibre cement wallboard.

    PubMed

    Thiele, D L; Godwin, G A; Coakley, K S

    1998-09-01

    Transmission data for a fibre cement wallboard (villaboard) are determined for use in diagnostic shielding designs. Villaboard is found to be more attenuating than plasterboard e.g. 9 mm of villaboard is equivalent to 16 mm of plasterboard.

  20. NASA Crew Exploration Vehicle, Thermal Protection System, Lessons Learned

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Reuther, James

    2008-01-01

    The Orion (CEV) thermal protection system (TPS) advanced development project (ADP) was initiated in late 2006 to reduce developmental risk by significant investment in multiple heat shield architectural solutions that can meet the needs both the Low Earth orbit (LEO) and Lunar return missions. At the same time, the CEV TPS ADP was also charged with developing a preliminary design for the heat shield to meet the PDR requirement and at the time of the PDR, transfer the design to Lockheed- Martin, the prime contractor. We reported on the developmental activities of the first 18 months at the IPPW5 in Bordeaux, France, last summer. In June 08, at the time of the IPPW6, the CEV TPS ADP would have nearly completed the preparation for the Orion PDR and would be close to the original three-year mark. We plan to report on the progress at the Atlanta workshop. In the past year, Orion TPS ADP investment in TPS Technology, especially in PICA ablative Heat-shield design, development, testing and engineering (DDTE) has paid off in enabling MSL mission to switch from SLA 561 V heat shield to PICA heat shield. CEV TPS ADP considered SLA 561 V as a candidate for LEO missions and our testing identified failure modes in SLA and as a result, we dropped SLA for further evaluation. This close synergy between two projects is a highly visible example of how investment in technology areas can and does benefit multiple missions. In addition, CEV TPS ADP has been able to revive the Apollo ablative system namely AVCOAT honeycomb architecture as an alternate to the baseline PICA architecture and we plan to report the progress we have made in AVCOAT. CEV TPS ADP has invested considerable resources in developing analytical models for PICA and AVCOAT, material property measurements that is essential to the design of the heat-shield, in arcjet testing, in understanding the differences between different arc jet facilities, namely NASA Ames, NASA JSC and Air Force's AEDC, and in Non-Destructive Evaluation (NDE), and in integration of and manufacturing heat shield as a system. The capabilities of the two heat shield systems including failure modes via testing and analysis, once established, can serve the Probe Community and future mission designers to inner and outer planetary exploration very well. For example, missions to Venus, Mars and Titan can use either one of the system by selecting the mission design parameters that utilizes the full characteristics of these system to make use of system efficiency that will result in reduced heat shield mass, system robustness that will enhance mission success and cost. We plan to present significant progresses of the past three years and highlight the significant contributions CEV TPS ADP Project has made to advance the state of the art in Thermal Protection System technology that has and will continue to benefit future entry probe missions.

  1. Shielding and activation calculations around the reactor core for the MYRRHA ADS design

    NASA Astrophysics Data System (ADS)

    Ferrari, Anna; Mueller, Stefan; Konheiser, J.; Castelliti, D.; Sarotto, M.; Stankovskiy, A.

    2017-09-01

    In the frame of the FP7 European project MAXSIMA, an extensive simulation study has been done to assess the main shielding problems in view of the construction of the MYRRHA accelerator-driven system at SCK·CEN in Mol (Belgium). An innovative method based on the combined use of the two state-of-the-art Monte Carlo codes MCNPX and FLUKA has been used, with the goal to characterize complex, realistic neutron fields around the core barrel, to be used as source terms in detailed analyses of the radiation fields due to the system in operation, and of the coupled residual radiation. The main results of the shielding analysis are presented, as well as the construction of an activation database of all the key structural materials. The results evidenced a powerful way to analyse the shielding and activation problems, with direct and clear implications on the design solutions.

  2. MCNP and GADRAS Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klasky, Marc Louis; Myers, Steven Charles; James, Michael R.

    To facilitate the timely execution of System Threat Reviews (STRs) for DNDO, and also to develop a methodology for performing STRs, LANL performed comparisons of several radiation transport codes (MCNP, GADRAS, and Gamma-Designer) that have been previously utilized to compute radiation signatures. While each of these codes has strengths, it is of paramount interest to determine the limitations of each of the respective codes and also to identify the most time efficient means by which to produce computational results, given the large number of parametric cases that are anticipated in performing STR's. These comparisons serve to identify regions of applicabilitymore » for each code and provide estimates of uncertainty that may be anticipated. Furthermore, while performing these comparisons, examination of the sensitivity of the results to modeling assumptions was also examined. These investigations serve to enable the creation of the LANL methodology for performing STRs. Given the wide variety of radiation test sources, scenarios, and detectors, LANL calculated comparisons of the following parameters: decay data, multiplicity, device (n,γ) leakages, and radiation transport through representative scenes and shielding. This investigation was performed to understand potential limitations utilizing specific codes for different aspects of the STR challenges.« less

  3. Optimization of radiation shielding material aiming at compactness, lightweight, and low activation for a vehicle-mounted accelerator-driven D-T neutron source.

    PubMed

    Cai, Yao; Hu, Huasi; Lu, Shuangying; Jia, Qinggang

    2018-05-01

    To minimize the size and weight of a vehicle-mounted accelerator-driven D-T neutron source and protect workers from unnecessary irradiation after the equipment shutdown, a method to optimize radiation shielding material aiming at compactness, lightweight, and low activation for the fast neutrons was developed. The method employed genetic algorithm, combining MCNP and ORIGEN codes. A series of composite shielding material samples were obtained by the method step by step. The volume and weight needed to build a shield (assumed as a coaxial tapered cylinder) were adopted to compare the performance of the materials visually and conveniently. The results showed that the optimized materials have excellent performance in comparison with the conventional materials. The "MCNP6-ACT" method and the "rigorous two steps" (R2S) method were used to verify the activation grade of the shield irradiated by D-T neutrons. The types of radionuclide, the energy spectrum of corresponding decay gamma source, and the variation in decay gamma dose rate were also computed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Concepts and strategies for lunar base radiation protection - Prefabricated versus in-situ materials

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.

    1992-01-01

    The most recently accepted environment data are used as inputs for the Langley nucleon and heavy-ion transport codes, BRYNTRN and HZETRN, to examine the shield effectiveness of lunar regolith in comparison with commercially-used shield materials in nuclear facilities. Several of the fabricated materials categorized as neutron absorbers exhibit favorable characteristics for space radiation protection. In particular, polyethylene with additive boron is analyzed with regard to response to the predicted lunar galactic cosmic ray and solar proton flare environment during the course of a complete solar cycle. Although this effort is not intended to be a definitive trade study for specific shielding recommendations, attention is given to several factors that warrant consideration in such trade studies. For example, the transporting of bulk shield material to the lunar site as opposed to regolith-moving and processing equipment is assessed on the basis of recent scenario studies. The transporting of shield material from Earth may also be a viable alternative to the use of regolith from standpoints of cost-effectiveness, EVA time required, and risk factor.

  5. Multihelix rotating shield brachytherapy for cervical cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadkhah, Hossein; Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as amore » feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and comparison. For all the generated treatment plans, the D{sub 90} of the HR-CTV in units of equivalent dose in 2 Gy fractions (EQD2) was escalated until the D{sub 2cc} (minimum dose to hottest 2 cm{sup 3}) tolerance of either the bladder (90 Gy{sub 3}), rectum (75 Gy{sub 3}), or sigmoid colon (75 Gy{sub 3}) was reached. Results: Treatment time changed for H-RSBT versus S-RSBT by −7.62% to 1.17% with an average change of −2.8%, thus H-RSBT treatments times tended to be shorter than for S-RSBT. The HR-CTV D{sub 90} also changed by −2.7% to 2.38% with an average of −0.65%. Conclusions: H-RSBT is a mechanically feasible delivery technique for use in the curved applicators needed for cervical cancer brachytherapy. S-RSBT and H-RSBT were clinically equivalent for all patients considered, with the H-RSBT technique tending to require less time for delivery.« less

  6. Galactic and Solar Cosmic Ray Shielding in Deep Space

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Tai, H.; Simonsen, Lisa C.; Shinn, Judy L.; Thibeault, Shelia; Kim, M. Y.

    1997-01-01

    An analysis of the radiation hazards in support of NASA deep space exploration activities is presented. The emphasis is on materials required for radiation protection shielding. Aluminum has been found to be a poor shield material when dose equivalent is used with exposure limits for low Earth orbit (LEO) as a guide for shield requirements. Because the radiation issues are cost related-the parasitic shield mass has high launch costs, the use of aluminum as a basic construction material is clearly not cost-effective and alternate materials need to be developed. In this context, polyethylene is examined as a potentially useful material and demonstrates important advantages as an alternative to aluminum construction. Although polyethylene is useful as a shield material, it may not meet other design criteria (strength, stability, thermal); other polymer materials must be examined.

  7. Experimental results on MgB2 used as ADR magnetic shields, and comparison to NbTi

    NASA Astrophysics Data System (ADS)

    Prouvé, T.; Duval, J. M.; Luchier, N.; D'escrivan, S.

    2014-11-01

    Adiabatic Demagnetization Refrigerator (ADR) is an efficient way to obtain sub-Kelvin temperatures in space environments. The SAFARI instrument for the Japanese spaceborne SPICA mission features detectors which will be cooled down to 50 mK. This cooling will be done by a hybrid cooler comprising a 300 mK sorption stage and a 50 mK ADR stage. For this cooler and ADR in general, the main contribution to the overall mass is in the magnetic system and particularly in the magnetic shielding required to keep the stray field within acceptable values. In order to reduce this mass, superconducting materials can be used as active magnetic shields thanks to un-attenuated eddy currents generated while ramping the magnet current. In this way they could reduce the need of heavy ferromagnetic material shields and increase the shielding efficiency to reach very low parasitic values. In the framework of SAFARI we have built a numerical model of a superconductor magnetic shield. The good results regarding the weight gain lead us to an experimental confirmation. In this paper we present an experimental study on MgB2 and NbTi superconducting materials. 2 pairs of rings of typical diameter of 80 mm have been tested using a superconducting magnet matching closely the dimensions of the SAFARI ADR cooler. The magnetic shielding measurements have been compared to a numerical model.

  8. A randomised crossover comparison of mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation by surf lifeguards in a manikin.

    PubMed

    Adelborg, K; Bjørnshave, K; Mortensen, M B; Espeseth, E; Wolff, A; Løfgren, B

    2014-07-01

    Thirty surf lifeguards (mean (SD) age: 25.1 (4.8) years; 21 male, 9 female) were randomly assigned to perform 2 × 3 min of cardiopulmonary resuscitation on a manikin using mouth-to-face-shield ventilation (AMBU LifeKey) and mouth-to-pocket-mask ventilation (Laerdal Pocket Mask). Interruptions in chest compressions, effective ventilation (visible chest rise) ratio, tidal volume and inspiratory time were recorded. Interruptions in chest compressions per cycle were increased with mouth-to-face-shield ventilation (mean (SD) 8.6 (1.7) s) compared with mouth-to-pocket-mask ventilation (6.9 (1.2) s, p < 0.0001). The proportion of effective ventilations was less using mouth-to-face-shield ventilation (199/242 (82%)) compared with mouth-to-pocket-mask ventilation (239/240 (100%), p = 0.0002). Tidal volume was lower using mouth-to-face-shield ventilation (mean (SD) 0.36 (0.20) l) compared with mouth-to-pocket-mask ventilation (0.45 (0.20) l, p = 0.006). No differences in inspiratory times were observed between mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation. In conclusion, mouth-to-face-shield ventilation increases interruptions in chest compressions, reduces the proportion of effective ventilations and decreases delivered tidal volumes compared with mouth-to-pocket-mask ventilation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  9. Magnetic Shielding Design for Coupler of Wireless Electric Vehicle Charging Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Zhao, W. N.; Yang, X. J.; Yao, C.; Ma, D. G.; Tang, H. J.

    2017-10-01

    Inductive power transfer (IPT) is a practical and preferable method for wireless electric vehicle (EV) charging which proved to be safe, convenient and reliable. Due to the air gap between the magnetic coupler, the magnetic field coupling decreases and the magnetic leakage increases significantly compared to traditional transformer, and this may lead to the magnetic flux density around the coupler more than the safety limit for human. So magnetic shielding should be adding to the winding made from litz wire to enhance the magnetic field coupling effect in the working area and reduce magnetic field strength in non-working area. Magnetic shielding can be achieved by adding high-permeability material or high-conductivity material. For high-permeability material its magnetic reluctance is much lower than the surrounding air medium so most of the magnetic line goes through the high-permeability material rather than surrounding air. For high-conductivity material the eddy current in the material can produce reverse magnetic field to achieve magnetic shielding. This paper studies the effect of the two types of shielding material on coupler for wireless EV charging and designs combination shielding made from high-permeability material and high-conductivity material. The investigation of the paper is done with the help of finite element analysis.

  10. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  11. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2018-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional nonmagnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  12. Designing Shelter in New Buildings. A Manual for Architects on the Preliminary Designing of Shielding from Fallout Gamma Radiation in Normally Functioning Spaces in New Buildings.

    ERIC Educational Resources Information Center

    Knott, Albert

    Analysis of radiation fallout prevention factors in new construction is presented with emphasis on architectural shielding principles. Numerous diagrams and charts illustrate--(1) radiation and fallout properties, (2) building protection principles, (3) details and planning suggestions, and (4) tabular data interpretation. A series of charts is…

  13. System design of the Pioneer Venus spacecraft. Volume 5: Probe vehicle studies

    NASA Technical Reports Server (NTRS)

    Nolte, L. J.; Stephenson, D. S.

    1973-01-01

    A summary of the key issues and studies conducted for the Pioneer Venus spacecraft and the resulting probe designs are presented. The key deceleration module issues are aerodynamic configuration and heat shield material selection. The design and development of the pressure vessel module are explained. Thermal control and science integration of the pressure vessel module are explained. The deceleration module heat shield, parachute and separation/despin are reported. The Thor/Delta and Atlas/Centaur baseline descriptions are provided.

  14. Design and Analysis of the Aperture Shield Assembly for a Space Solar Receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Trinh, Tuan; Westelaken, William; Krystkowiak, Christopher; Avanessian, Vahe; Kerslake, Thomas W.

    1997-01-01

    A joint U.S./Russia program has been conducted to design, develop, fabricate, launch, and operate the world's first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.

  15. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable out of low earth orbit (LEO) missions by using these tested material concepts as shielding for sensitive components and new spaceflight hardware

  16. On the morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified distinction, taking into account the lava/pyroclasts ratio and the spatial distribution of eruptive vents.

  17. Experimental Shielding Evaluation of the Radiation Protection Provided by Residential Structures

    NASA Astrophysics Data System (ADS)

    Dickson, Elijah D.

    The human health and environmental effects following a postulated accidental release of radioactive material to the environment has been a public and regulatory concern since the early development of nuclear technology and researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to research and develop the technical basis for contemporary building shielding factors for the U.S. housing stock. Building shielding factors quantify the protection a certain building-type provides from ionizing radiation. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950's era suburbia and is no longer applicable to the densely populated urban environments seen today. To analyze a building's radiation shielding properties, the ideal approach would be to subject a variety of building-types to various radioactive materials and measure the radiation levels in and around the building. While this is not entirely practicable, this research uniquely analyzes the shielding effectiveness of a variety of likely U.S. residential buildings from a realistic source term in a laboratory setting. Results produced in the investigation provide a comparison between theory and experiment behind building shielding factor methodology by applying laboratory measurements to detailed computational models. These models are used to develop a series of validated building shielding factors for generic residential housing units using the computational code MCNP5. For these building shielding factors to be useful in radiologic consequence assessments and emergency response planning, two types of shielding factors have been developed for; (1) the shielding effectiveness of each structure within a semi-infinite cloud of radioactive material, and (2) the shielding effectiveness of each structure from contaminant deposition on the roof and surrounding surfaces. For example, results from this investigation estimate the building shielding factors from a semi-infinite plume between comparable two-story models with a basement constructed with either brick-and-mortar or vinyl siding composing the exterior wall weather and a typical single-wide manufactured home with vinyl siding to be 0.36, 0.65, and 0.82 respectively.

  18. Exploratory Environmental Tests of Several Heat Shields

    NASA Technical Reports Server (NTRS)

    Goodman, George P.; Betts, John, Jr.

    1961-01-01

    Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.

  19. High speed maglev design

    DOEpatents

    Rote, Donald M.; He, Jianliang; Coffey, Howard

    1993-01-01

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.

  20. High speed maglev design

    DOEpatents

    Rote, D.M.; Jianliang He; Coffey, H.

    1993-10-19

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields. 4 figures.

  1. Space mapping method for the design of passive shields

    NASA Astrophysics Data System (ADS)

    Sergeant, Peter; Dupré, Luc; Melkebeek, Jan

    2006-04-01

    The aim of the paper is to find the optimal geometry of a passive shield for the reduction of the magnetic stray field of an axisymmetric induction heater. For the optimization, a space mapping algorithm is used that requires two models. The first is an accurate model with a high computational effort as it contains finite element models. The second is less accurate, but it has a low computational effort as it uses an analytical model: the shield is replaced by a number of mutually coupled coils. The currents in the shield are found by solving an electrical circuit. Space mapping combines both models to obtain the optimal passive shield fast and accurately. The presented optimization technique is compared with gradient, simplex, and genetic algorithms.

  2. Improved high speed maglev design

    DOEpatents

    Rote, D.M.; He, Jianliang; Coffey, H.T.

    1992-01-01

    This report discusses a propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the be vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.

  3. Parasitic heat loss reduction in AMTEC cells by heat shield optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, C.A.; Svedberg, R.C.; Hendricks, T.J.

    1997-12-31

    Alkali metal thermal to electric conversion (AMTEC) cell performance can be increased by the proper design of thermal radiative shielding internal to the AMTEC cell. These heat shields essentially lower the radiative heat transfer between the heat input zone of the cell and the heat rejection zone of the cell. In addition to lowering the radiative heat transfer between the heat input and heat rejection surfaces of the cell, the shields raise the AMTEC cell performance by increasing the temperature of the beta alumina solid electrolyte (BASE). This increase in temperature of the BASE tube allows the evaporator temperature tomore » be increased without sodium condensing within the BASE tubes. Experimental testing and theoretical analysis have been performed to compare the relative merits of two candidate heat shield packages: (1) chevron, and (2) cylindrical heat shields. These two heat shield packages were compared to each other and a baseline cell which had no heat shields installed. For the two heat shield packages, the reduction in total heat transfer is between 17--27% for the heat input surface temperature varying from 700 C, 750 C, and 800 C with the heat rejection surface temperature kept at 300 C.« less

  4. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2006-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  5. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2004-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  6. Effects of electrons and protons on science instruments

    NASA Technical Reports Server (NTRS)

    Parker, R. H.

    1972-01-01

    The radiation effects on typical science instruments according to the Jupiter trapped radiation design restraint model are described, and specific aspects of the model where an improved understanding would be beneficial are suggested. The spacecraft design used is the TOPS 12L configuration. Ionization and displacement damage are considered, and damage criteria are placed on the most sensitive components. Possible protective measures are mentioned: selecting components as radiation resistant as possible, using a difference in desired and undesired signal shapes for electronic shielding, orienting and locating the component on the spacecraft for better shielding, and adding passive shields to protect specific components. Available options are listed in decreasing order of attractiveness: attempt to lower the design restraints without compromising the success of the missions, trade off experiment objectives for increased reliability, alter the trajectory, and remove sensitive instruments from the payload.

  7. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    PubMed

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  8. Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Imai, T.; Kobayashi, N.

    2005-01-15

    The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguidemore » lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.« less

  9. Test report dot 7A type a liquid packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E. T.; Brandjes, C.; Benoit, T. J.

    This test report documents the performance of Savannah River National Laboratory’s (SRNL’s) U.S. Department of Transportation (DOT) Specification 7A; General Packaging, Type A shielded liquid shipping packaging and compliance with the regulatory requirements of Title 49 of the Code of Federal Regulations (CFR). The primary use of this packaging design is for the transport of radioactive liquids of up to 1.3 liters in an unshielded configuration and up to 113 mL of radioactive liquids in a shielded configuration, with no more than an A2 quantity in either configuration, over public highways and/or commercial aircraft. The contents are liquid radioactive materialsmore » sufficiently shielded and within the activity limits specified in173.435 or 173.433 for A2 (normal form) materials, as well as within the analyzed thermal heat limits. Any contents must be compatibly packaged and must be compatible with the packaging. The basic packaging design is based on the U.S. Department of Energy’s (DOE’s) Model 9979 Type A fissile shipping packaging designed and tested by SRNL. The shielded liquid configuration consists of the outer and inner drums of the 9979 package with additional low density polyethylene (LDPE) dunnage nesting a tungsten shielded cask assembly (WSCA) within the 30-gallon inner drum. The packaging model for the DOT Specification 7A, Type A liquids packaging is HVYTAL.« less

  10. Constellation crew exploration vehicle, or CEV, is being prepare

    NASA Image and Video Library

    2007-11-27

    In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars.

  11. Effects of radiobiological uncertainty on shield design for a 60-day lunar mission

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Schimmerling, Walter

    1993-01-01

    Some consequences of uncertainties in radiobiological risk due to galactic cosmic ray exposure are analyzed to determine their effect on engineering designs for a first lunar outpost - a 60-day mission. Quantitative estimates of shield mass requirements as a function of a radiobiological uncertainty factor are given for a simplified vehicle structure. The additional shield mass required for compensation is calculated as a function of the uncertainty in galactic cosmic ray exposure, and this mass is found to be as large as a factor of 3 for a lunar transfer vehicle. The additional cost resulting from this mass is also calculated. These cost estimates are then used to exemplify the cost-effectiveness of research.

  12. GCR Simulator Reference Field and a Spectral Approach for Laboratory Simulation

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara; Walker, Steven A.

    2015-01-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, an approach for selecting beams at NSRL to simulate the designated reference field is presented. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the simulated field are discussed in this context.

  13. Extinction transition in bacterial colonies under forced convection

    NASA Astrophysics Data System (ADS)

    Neicu, T.; Pradhan, A.; Larochelle, D. A.; Kudrolli, A.

    2000-07-01

    We report the spatiotemporal response of Bacillus subtilis growing on a nutrient-rich layer of agar to ultraviolet (UV) radiation. Below a crossover temperature, the bacteria are confined to regions that are shielded from UV radiation. A forced convection of the population is effected by rotating a UV radiation shield relative to the Petri dish. The extinction speed at which the bacterial colony lags behind the shield is found to be qualitatively similar to the front velocity of the colony growing in the absence of a hostile environment as predicted by the model of Dahmen, Nelson, and Shnerb. A quantitative comparison is not possible without considering the slow dynamics and time-dependent interaction of the population with the hostile environment.

  14. Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE

    NASA Astrophysics Data System (ADS)

    Kochendorfer, John; Nitu, Rodica; Wolff, Mareile; Mekis, Eva; Rasmussen, Roy; Baker, Bruce; Earle, Michael E.; Reverdin, Audrey; Wong, Kai; Smith, Craig D.; Yang, Daqing; Roulet, Yves-Alain; Meyers, Tilden; Buisan, Samuel; Isaksen, Ketil; Brækkan, Ragnar; Landolt, Scott; Jachcik, Al

    2018-02-01

    Weighing precipitation gauges are used widely for the measurement of all forms of precipitation, and are typically more accurate than tipping-bucket precipitation gauges. This is especially true for the measurement of solid precipitation; however, weighing precipitation gauge measurements must still be adjusted for undercatch in snowy, windy conditions. In WMO-SPICE (World Meteorological Organization Solid Precipitation InterComparison Experiment), different types of weighing precipitation gauges and shields were compared, and adjustments were determined for the undercatch of solid precipitation caused by wind. For the various combinations of gauges and shields, adjustments using both new and previously existing transfer functions were evaluated. For most of the gauge and shield combinations, previously derived transfer functions were found to perform as well as those more recently derived. This indicates that wind shield type (or lack thereof) is more important in determining the magnitude of wind-induced undercatch than the type of weighing precipitation gauge. It also demonstrates the potential for widespread use of the previously developed transfer functions. Another overarching result was that, in general, the more effective shields, which were associated with smaller unadjusted errors, also produced more accurate measurements after adjustment. This indicates that although transfer functions can effectively reduce measurement biases, effective wind shielding is still required for the most accurate measurement of solid precipitation.

  15. A numerically optimized active shield for improved TMS targeting

    PubMed Central

    Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric

    2010-01-01

    Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region (“sharpness”), while simultaneously increase the induced electric field deep in the target region relative to the surface (“penetration”). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1 % and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9 %) PMID:20965451

  16. A numerically optimized active shield for improved transcranial magnetic stimulation targeting.

    PubMed

    Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric

    2010-10-01

    Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region ("sharpness"), whereas, simultaneously increase the induced electric field deep in the target region relative to the surface ("penetration"). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1% and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9%). Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Cordocentesis

    MedlinePlus

    ... blood will be taken before the procedure for comparison with the fetal blood samples. During the procedure ... Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation for Medical Education ...

  18. Space shuttle holddown post blast shield

    NASA Technical Reports Server (NTRS)

    Larracas, F. B.

    1991-01-01

    The original and subsequent designs of the Solid Rocket Booster/Holddown Post blast shield assemblies and their associated hardware are described. It presents the major problems encountered during their early use in the Space Shuttle Program, during the Return-to-Flight Modification Phase, and during their fabrication and validation testing phases. The actions taken to correct the problems are discussed, along with the various concepts now being considered to increase the useful life of the blast shield.

  19. Engineering Design Handbook. Electromagnetic Compatibility

    DTIC Science & Technology

    1977-03-01

    sliding action between turns. For more effective shielding, it may be covered with one or more layers of woven metal braid . The hose must be used in...shield. Details on this structure are given in Military Standards MS 51010 and 51011. In addition, flexible metal hoses of both braided and solid...signal cables. Flexible conduits for high- and low-voltage shield- ing usually consist of flexible metal hoses over which are wound one or more

  20. Minutes of the Explosives Safety Seminar (24th) Held in St. Louis, Missouri on 28-30 August 1990. Volume 1

    DTIC Science & Technology

    1990-08-30

    concrete-soil-concrete and other soil-filled elements as well as earth embankments of different shapes. The design of the shielding external walls...to vent entirely through the doors. This was required because the large amount of earth fill on the roofs, required for radiation shielding , precluded...Safety Window Shield to Protect Against External Explosions ...... ............... ................... 783 R. L. Shope, W. A. Keenan Strenghtening

  1. Efficient Receptor Mediated siRNA Delivery in Vitro by Folic Acid Targeted Pentablock Copolymer-Based Micelleplexes.

    PubMed

    Lehner, Roman; Liu, Kegang; Wang, Xueya; Hunziker, Patrick

    2017-08-14

    Novel, biocompatible polyplexes, based on the combination of cationic pentablock copolymers with folic acid functionalized copolymers, were designed and developed for target-specific siRNA delivery. The resulting micelleplexes spontaneously formed polymeric micelles with a hydrophobic core surrounded directly by a cationic poly-2-(4-aminobutyl)-oxazole (PABOXA) and subsequently shielded by hydrophilic poly-2-methyl-oxazole (PMOXA) layer. The described micelleplexes form highly stable particles even in complete serum after 24 h compared with the highly cationic polymer PEI, which show aggregate formation in serum containing buffer solution. Targeted siRNA delivery and gene knockdown could be shown using green fluorescent protein (GFP) expressing HeLa cells, resulting in ∼31% and ∼8% suppression of the expression of GFP for targeted and nontargeted micelleplexes, respectively. Comparison studies of folic-receptor positive HeLa cells with normal folic-receptor-negative HEK293 cells revealed involvement of receptor mediated cellular uptake of fluorescently labeled siRNA. The new designed nanocarrier showed no cytotoxicity, having a potential application. The presented concept of shielding a nucleic-acid complexing cationic chains with a stealth layer and combining it with receptor ligand overcomes typical problems with undesired protein and cell interactions in delivery of nucleic acids using polymeric systems, opening new doors for application if RNA inhibition in the organism.

  2. Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Longo, Mathew; Matheny, Matthew; Knudsen, Jasmine

    2016-03-01

    We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model.

  3. An evaluation of NCRP report 151--radiation shielding design for radiotherapy facilities, and a feasibility study for 6 MV open-door treatments in an existing high-energy radiation therapy bunker

    NASA Astrophysics Data System (ADS)

    Kildea, John

    This thesis describes a study of shielding design techniques used for radiation therapy facilities that employ megavoltage linear accelerators. Specifically, an evaluation of the shielding design formalism described in NCRP report 151 was undertaken and a feasibility study for open-door 6 MV radiation therapy treatments in existing 6 MV, 18 MV treatment rooms at the Montreal General Hospital (MGH) was conducted. To evaluate the shielding design formalism of NCRP 151, barrier-attenuated equivalent doses were measured for several of the treatment rooms at the MGH and compared with expectations from NCRP 151 calculations. It was found that, while the insight and recommendations of NCRP 151 are very valuable, its dose predictions are not always correct. As such, the NCRP 151 methodology is best used in conjunction with physical measurements. The feasibility study for 6 MV open-door treatments made use of the NCRP 151 formalism, together with physical measurements for realistic 6 MV workloads. The results suggest that, dosimetrically, 6 MV open door treatments are feasible. A conservative estimate for the increased dose at the door arising from such treatments is 0.1 mSv, with a 1/8 occupancy factor, as recommended in NCRP 151, included.

  4. Radiation Shielding Design and Orientation Considerations for a 1 kWe Heat Pipe Cooled Reactor Utilized to Bore Through the Ice Caps of Mars

    NASA Astrophysics Data System (ADS)

    Fensin, Michael L.; Elliott, John O.; Lipinski, Ronald J.; Poston, David I.

    2006-01-01

    The goal in designing any space power system is to develop a system able to meet the mission requirements for success while minimizing the overall costs. The mission requirements for the this study was to develop a reactor (with Stirling engine power conversion) and shielding configuration able to fit, along with all the other necessary science equipment, in a Cryobot 3 m high with ~0.5 m diameter hull, produce 1 kWe for 5yrs, and not adversely affect the mission science by keeping the total integrated dose to the science equipment below 150 krad. Since in most space power missions the overall system mass dictates the mission cost, the shielding designs in this study incorporated Martian water extracted at the startup site in order to minimize the tungsten and LiH mass loading at launch. Different reliability and mass minimization concerns led to three design configuration evolutions. With the help of implementing Martian water and configuring the reactor as far from the science equipment as possible, the needed tungsten and LiH shield mass was minimized. This study further characterizes the startup dose and the necessary mission requirements in order to ensure integrity of the surface equipment during reactor startup phase.

  5. New shielding material development for compact accelerator-driven neutron source

    NASA Astrophysics Data System (ADS)

    Hu, Guang; Hu, Huasi; Wang, Sheng; Han, Hetong; Otake, Y.; Pan, Ziheng; Taketani, A.; Ota, H.; Hashiguchi, Takao; Yan, Mingfei

    2017-04-01

    The Compact Accelerator-driven Neutron Source (CANS), especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE), PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.

  6. Mars Exploration Rover Heat Shield Recontact Analysis

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  7. Optimized Shielding and Fabrication Techniques for TiN and Al Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Kreikebaum, John Mark; Kim, Eunseong; Livingston, William; Dove, Allison; Calusine, Gregory; Hover, David; Rosenberg, Danna; Oliver, William; Siddiqi, Irfan

    We present a systematic study of the effects of shielding and packaging on the internal quality factor (Qi) of Al and TiN microwave resonators designed for use in qubit readout. Surprisingly, Qi =1.3x106 TiN samples investigated at 100 mK exhibited no significant changes in linewidth when operated without magnetic shielding and in an open cryo-package. In contrast, Al resonators showed systematic improvement in Qi with each successive shield. Measurements were performed in an adiabatic demagnetization refrigerator, where typical ambient fields of 0.2 mT are present at the sample stage. We discuss the effect of 100 mK and 500 mK Cu radiation shields and cryoperm magnetic shielding on resonator Q as a function of temperature and input power in samples prepared with a variety of surface treatments, fabrication recipes, and embedding circuits. This research was supported by the ARO and IARPA.

  8. Design and Development of an In-Space Deployable Sun Shield for the Atlas Centaur

    NASA Technical Reports Server (NTRS)

    Dew, Michael; Allwein, Kirk; Kutter, Bernard; Ware, Joanne; Lin, John; Madlangbayan, Albert; Willey, Cliff; Pitchford, Brian; O'Neil, Gary

    2008-01-01

    The Centaur, by virtue of its use of high specific-impulse (Isp) LO2/LH2 propellants, has initial mass-to-orbit launch requirements less than half of those upper stages using storable propellants. That is, for Earth escape or GSO missions the Centaur is half the launch weight of a storable propellant upper stage. A drawback to the use of Liquid oxygen and liquid hydrogen, at 90 K and 20 K respectively, over storable propellants is the necessity of efficient cryogen storage techniques that minimize boil-off from thermal radiation in space. Thermal blankets have been used successfully to shield both the Atlas Centaur and Titan Centaur. These blankets are protected from atmospheric air loads during launch by virtue of the fact that the Centaur is enclosed within the payload fairing. The smaller Atlas V vehicle, the Atlas 400, has the Centaur exposed to the atmosphere during launch, and therefore, to date has not flown with thermal blankets shielding the Centaur. A design and development effort is underway to fly a thermal shield on the Atlas V 400 vehicle that is not put in place until after the payload fairing jettisons. This can be accomplished by the use of an inflatable and deployable thermal blanket referred to as the Centaur Sun Shield (CSS). The CSS design is also scalable for use on a Delta upper stage, and the technology potentially could be used for telescope shades, re-entry shields, solar sails and propellant depots. A Phase I effort took place during 2007 in a partnership between ULA and ILC Dover which resulted in a deployable proof-of-concept Sun Shield being demonstrated at a test facility in Denver. A Phase H effort is underway during 2008 with a partnership between ULA, ILC, NASA Glenn Research Center (GRC) and NASA Kennedy Space Center (KSC) to define requirements, determine materials and fabrication techniques, and to test components in a vacuum chamber at cold temperatures. This paper describes the Sun Shield development work to date, and the future plans leading up to a flight test in the 2011 time frame.

  9. Dynamic modulated brachytherapy (DMBT) and intensity modulated brachytherapy (IMBT) for the treatment of rectal and breast carcinomas

    NASA Astrophysics Data System (ADS)

    Webster, Matthew Julian

    The ultimate goal of any treatment of cancer is to maximize the likelihood of killing the tumor while minimizing the chance of damaging healthy tissues. One of the most effective ways to accomplish this is through radiation therapy, which must be able to target the tumor volume with a high accuracy while minimizing the dose delivered to healthy tissues. A successful method of accomplishing this is brachytherapy which works by placing the radiation source in very close proximity to the tumor. However, most current applications of brachytherapy rely mostly on the geometric manipulation of isotropic sources, which limits the ability to specifically target the tumor. The purpose of this work is to introduce several types of shielded brachytherapy applicators which are capable of targeting tumors with much greater accuracy than existing technologies. These applicators rely on the modulation of the dose profile through a high-density tungsten alloy shields to create anisotropic dose distributions. Two classes of applicators have been developed in this work. The first relies on the active motion of the shield, to aim a highly directional radiation profile. This allows for very precise control of the dose distribution for treatment, achieving unparalleled dose coverage to the tumor while sparing healthy tissues. This technique has been given the moniker of Dynamic Modulated Brachytherapy (DMBT). The second class of applicators, designed to reduce treatment complexity uses static applicators. These applicators retain the use of the tungsten shield, but the shield is motionless during treatment. By intelligently designing the shield, significant improvements over current methods have been demonstrated. Although these static applicators fail to match the dosimetric quality of DMBT applicators the simplified setup and treatment procedure gives them significant appeal. The focus of this work has been to optimize these shield designs, specifically for the treatment of rectal and breast carcinomas. The use of Monte Carlo methods and development of optimization algorithms have played a prominent role in accomplishing this. The use of shielded applicators, such as the ones described here, is the next logical step in the rapidly evolving field of brachytherapy.

  10. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.

  11. Evaluation of a fiberglass instrument glare shield for protection against head injury.

    DOT National Transportation Integrated Search

    1972-02-01

    An all fiberglass prototype glare shield has been evaluated in terms of head injury protection. In 30-ft./sec. head impacts, a protrusion is designed to fold down over the heavy instruments, offering significant improvement in head injury protection ...

  12. Design Analysis of SNS Target StationBiological Shielding Monoligh with Proton Power Uprate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekar, Kursat B.; Ibrahim, Ahmad M.

    2017-05-01

    This report documents the analysis of the dose rate in the experiment area outside the Spallation Neutron Source (SNS) target station shielding monolith with proton beam energy of 1.3 GeV. The analysis implemented a coupled three dimensional (3D)/two dimensional (2D) approach that used both the Monte Carlo N-Particle Extended (MCNPX) 3D Monte Carlo code and the Discrete Ordinates Transport (DORT) two dimensional deterministic code. The analysis with proton beam energy of 1.3 GeV showed that the dose rate in continuously occupied areas on the lateral surface outside the SNS target station shielding monolith is less than 0.25 mrem/h, which compliesmore » with the SNS facility design objective. However, the methods and codes used in this analysis are out of date and unsupported, and the 2D approximation of the target shielding monolith does not accurately represent the geometry. We recommend that this analysis is updated with modern codes and libraries such as ADVANTG or SHIFT. These codes have demonstrated very high efficiency in performing full 3D radiation shielding analyses of similar and even more difficult problems.« less

  13. Metal-wool heat shields for space shuttle. [design, fabrication, and attachment to structure

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Clure, J. L.

    1974-01-01

    The packaging of metal wool for reusable thermal heat shields applied to aerodynamic and other surfaces for the space shuttle was analyzed and designed, and samples were fabricated and experimentally studied. Parametric trends were prepared for selected configurations. An all-metal thermally efficient, reliable, reusable and producible heat shield system was designed and structurally tested for use on spacecraft aerodynamic surfaces where temperatures do not exceed 810 K. Stainless steel sheet, primarily for structure and secondarily in the transverse plane for thermal expansion, was shown to accommodate thermal expansion in all directions when restrained at the edges and heated to 1360 K. Aerodynamic loads of 0.35 x 1000,000 newtons/sq meter, and higher, may be easily accepted by structures of this design. Seven all-metal thermal protection specimens, 12.7 cm square and 2.5 cm thick were fabricated and are being experimentally evaluated at simulated shuttle entry conditions in an arc jet facility.

  14. NSLS-II BPM System Protection from Rogue Mode Coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blednykh, A.; Bach, B.; Borrelli, A.

    2011-03-28

    Rogue mode RF shielding has been successfully designed and implemented into the production multipole vacuum chambers. In order to avoid systematic errors in the NSLS-II BPM system we introduced frequency shift of HOM's by using RF metal shielding located in the antechamber slot of each multipole vacuum chamber. To satisfy the pumping requirement the face of the shielding has been perforated with roughly 50 percent transparency. It stays clear of synchrotron radiation in each chamber.

  15. Nuclear thermal propulsion engine system design analysis code development

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.

    1992-01-01

    A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.

  16. Shielded, Automated Umbilical Mechanism

    NASA Technical Reports Server (NTRS)

    Barron, Daniel R.; Morrill, Brion F.; Jasulaitis, Vytas

    1995-01-01

    Umbilical mechanism automatically connects and disconnects various fluid couplings and/or electrical contacts while shielding mating parts from debris. Reacts mating and demating loads internally, without additional supporting structures. All functions - extension of plug, mating, and movement of debris shields - actuated by single motor. If mechanism jams or fails at any point in sequence, override feature in drive train allows manual operation. Designed for service in outer space, where its shields protect against micrometeoroids, debris, ultraviolet radiation, and atomic oxygen. Used on Earth to connect or disconnect fluid or electrical utilities in harsh environments like those of nuclear powerplants or undersea construction sites, or in presence of radioactive, chemical, or biological hazards, for example.

  17. Design of 3x3 Focusing Array for Heavy Ion Driver Final Report on CRADA TC-02082-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martovetsky, N.

    This memo presents a design of a 3x3 quadrupole array for HIF. It contains 3 D magnetic field computations of the array build with racetrack coils with and without different shields. It is shown that it is possible to have a low error magnetic field in the cells and shield the stray fields to acceptable levels. The array design seems to be a practical solution to any size array for future multi-beam heavy ion fusion drivers.

  18. Development of deterministic transport methods for low energy neutrons for shielding in space

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry

    1993-01-01

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in aluminum. As an external verification, the results from MGSLAB and MGSEMI were compared to ANISN/PC, a routinely used neutron transport code, showing excellent agreement. In an application to an aluminum shield, the FN method seems to generate reasonable results.

  19. Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit

    NASA Astrophysics Data System (ADS)

    Vuolo, M.; Baiocco, G.; Barbieri, S.; Bocchini, L.; Giraudo, M.; Gheysens, T.; Lobascio, C.; Ottolenghi, A.

    2017-11-01

    We present a design study for a wearable radiation-shielding spacesuit, designed to protect astronauts' most radiosensitive organs. The suit could be used in an emergency, to perform necessary interventions outside a radiation shelter in the space habitat in case of a Solar Proton Event (SPE). A wearable shielding system of the kind we propose has the potential to prevent the onset of acute radiation effects in this scenario. In this work, selection of materials for the spacesuit elements is performed based on the results of dedicated GRAS/Geant4 1-dimensional Monte Carlo simulations, and after a trade-off analysis between shielding performance and availability of resources in the space habitat. Water is the first choice material, but also organic compounds compatible with a human space habitat are considered (such as fatty acids, gels and liquid organic wastes). Different designs and material combinations are proposed for the spacesuits. To quantify shielding performance we use GRAS/Geant4 simulations of an anthropomorphic phantom in an average SPE environment, with and without the spacesuit, and we compare results for the dose to Blood Forming Organs (BFO) in Gy-Eq, i.e. physical absorbed dose multiplied by the proton Relative Biological Effectiveness (RBE) for non-cancer effects. In case of SPE occurrence for Intra-Vehicular Activities (IVA) outside a radiation shelter, dose reductions to BFO in the range of 44-57% are demonstrated to be achievable with the spacesuit designs made only of water elements, or of multi-layer protection elements (with a thin layer of a high density material covering the water filled volume). Suit elements have a thickness in the range 2-6 cm and the total mass for the garment sums up to 35-43 kg depending on model and material combination. Dose reduction is converted into time gain, i.e. the increase of time interval between the occurrence of a SPE and the moment the dose limit to the BFO for acute effects is reached. Wearing a radiation shielding spacesuit of the kind we propose, the astronaut could have up to more than the double the time (e.g. almost 6 instead of 2.5 h) to perform necessary interventions outside a radiation shelter during a SPE, his/her exposure remaining within dose limits. An indicative mass saving thanks to the shielding provided by the suits is also derived, calculating the amount of mass needed in addition to the 1.5 cm thick Al module considered for the IVA scenario to provide the same additional shielding given by the spacesuit. For an average 50% dose reduction to BFO this is equal to about 2.5 tons of Al. Overall, our results offer a proof-of-principle validation of a complementary personal shielding strategy in emergency situations in case of a SPE event. Such results pave the way for the design and realization of a prototype of a water-filled garment to be tested on board the International Space Station for wearability. A successful outcome will possibly lead to the further refining of the design of radiation protection spacesuits and their possible adoption in future long-duration manned missions in deep space.

  20. Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit.

    PubMed

    Vuolo, M; Baiocco, G; Barbieri, S; Bocchini, L; Giraudo, M; Gheysens, T; Lobascio, C; Ottolenghi, A

    2017-11-01

    We present a design study for a wearable radiation-shielding spacesuit, designed to protect astronauts' most radiosensitive organs. The suit could be used in an emergency, to perform necessary interventions outside a radiation shelter in the space habitat in case of a Solar Proton Event (SPE). A wearable shielding system of the kind we propose has the potential to prevent the onset of acute radiation effects in this scenario. In this work, selection of materials for the spacesuit elements is performed based on the results of dedicated GRAS/Geant4 1-dimensional Monte Carlo simulations, and after a trade-off analysis between shielding performance and availability of resources in the space habitat. Water is the first choice material, but also organic compounds compatible with a human space habitat are considered (such as fatty acids, gels and liquid organic wastes). Different designs and material combinations are proposed for the spacesuits. To quantify shielding performance we use GRAS/Geant4 simulations of an anthropomorphic phantom in an average SPE environment, with and without the spacesuit, and we compare results for the dose to Blood Forming Organs (BFO) in Gy-Eq, i.e. physical absorbed dose multiplied by the proton Relative Biological Effectiveness (RBE) for non-cancer effects. In case of SPE occurrence for Intra-Vehicular Activities (IVA) outside a radiation shelter, dose reductions to BFO in the range of 44-57% are demonstrated to be achievable with the spacesuit designs made only of water elements, or of multi-layer protection elements (with a thin layer of a high density material covering the water filled volume). Suit elements have a thickness in the range 2-6 cm and the total mass for the garment sums up to 35-43 kg depending on model and material combination. Dose reduction is converted into time gain, i.e. the increase of time interval between the occurrence of a SPE and the moment the dose limit to the BFO for acute effects is reached. Wearing a radiation shielding spacesuit of the kind we propose, the astronaut could have up to more than the double the time (e.g. almost 6 instead of 2.5 h) to perform necessary interventions outside a radiation shelter during a SPE, his/her exposure remaining within dose limits. An indicative mass saving thanks to the shielding provided by the suits is also derived, calculating the amount of mass needed in addition to the 1.5 cm thick Al module considered for the IVA scenario to provide the same additional shielding given by the spacesuit. For an average 50% dose reduction to BFO this is equal to about 2.5 tons of Al. Overall, our results offer a proof-of-principle validation of a complementary personal shielding strategy in emergency situations in case of a SPE event. Such results pave the way for the design and realization of a prototype of a water-filled garment to be tested on board the International Space Station for wearability. A successful outcome will possibly lead to the further refining of the design of radiation protection spacesuits and their possible adoption in future long-duration manned missions in deep space. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  1. Application Prospects of Multilayer Film Shields for Space Research Instrumentation

    NASA Astrophysics Data System (ADS)

    Nyunt, P. W.; Vlasik, K. F.; Grachev, V. M.; Dmitrenko, V. V.; Novikov, A. S.; Petrenko, D. V.; Ulin, S. E.; Uteshev, Z. M.; Chernysheva, I. V.; Shustov, A. E.

    We have studied the magnetic properties of multilayer film cylindrical configuration shields (MFS) based on NiFe / Cu. The studied samples were prepared by electrode position. MFS were constituted by alternating layers of NiFe and Cu, deposited on an aluminum cylinder with diameter of 4 cm, length of 13 cm and 0.5 cm thickness. The thickness of each ferromagnetic layer varied from 10 to 150 μm, and the thickness of Cu layers was 5 μm. Five-samples in which the number of ferromagnetic layers varied from 3 to 45 and copper - from 2 to 44 were tested. The best shielding efficiency was achieved at the maximum number of layers and comprised about 102. Permalloy multilayer foil shield at the same total thickness has several times less efficiency in comparison with MFS. The description of a prototype of the charged particles telescope for space application is presented. Results of its testing regarding sensitivity to the constant magnetic field are described.

  2. Computational Fluid Dynamic Solutions of Optimized Heat Shields Designed for Earth Entry

    DTIC Science & Technology

    2010-01-01

    domain ρ = Density (kg/m3) σ = Stefan Boltzmann constant τ = Shear stress tensor τT−V = T-V relaxation time τe−V = e-V relaxation time xi φ = Sweep angle...Vehicle DES = Differential evolutionary Scheme DOR = Design Optimization Tools DPLR = Data Parallel Line Relaxation GSLR = Gauss- Seidel Line... Stefan - Boltzmann constant. This model provides accurate heating predictions, especially for the non-ablating heat-shields explored in this work. Various

  3. Radiation shielding of the Fermilab 16 GeV proton driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolai V. Mokhov, Alexander I. Drozhdin and Oleg E. Krivosheev

    2001-07-12

    The radiation transport analysis in the proposed Fermi-lab 1.2 MWProton Driver (PD) [1] is fundamentally important because of the impact on machine performance, conventional facility design, maintenance operations, and related costs. The strategy adopted in the PD design is that the beam losses in the machine are localized and controlled as much as possible via the dedicated beam collimation system, with a high loss rate localized in that section and drastically lower uncontrolled beam loss rate in the rest of the lattice. Results of thorough Monte Carlo calculations of prompt and residual radiation in and around the PD components aremore » presented for realistic assumptions and geometry under normal operation and accidental conditions. This allowed one to conduct shielding design and analysis to meet regulatory requirements [2] for external shielding, hands-on maintenance and ground-water activation.« less

  4. 9 CFR 71.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 79.6 of this subchapter, for conducting an active State scrapie program involving the identification... shield. Beginning March 11, 2015, all official eartags applied to animals must bear an official eartag shield. The design, size, shape, color, and other characteristics of the official eartag will depend on...

  5. Shielding Strategies for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Wilson J. W. (Editor); Miller, J. (Editor); Konradi, A. (Editor); Cucinotta, F. A. (Editor)

    1997-01-01

    A group of twenty-nine scientists and engineers convened a 'Workshop on Shielding Strategies for Human Space Exploration' at the Lyndon B. Johnson Space Center in Houston, Texas. The provision of shielding for a Mars mission or a Lunar base from the hazards of space radiations is a critical technology since astronaut radiation safety depends on it and shielding safety factors to control risk uncertainty appear to be great. The purpose of the workshop was to define requirements for the development and evaluation of high performance shield materials and designs and to develop ideas regarding approaches to radiation shielding. The workshop was organized to review the recent experience on shielding strategies gained in studies of the 'Space Exploration Initiative (SEI),' to review the current knowledge base for making shield assessment, to examine a basis for new shielding strategies, and to recommend a strategy for developing the required technologies for a return to the moon or for Mars exploration. The uniqueness of the current workshop arises from the expected long duration of the missions without the protective cover of the geomagnetic field in which the usually small and even neglected effects of the galactic cosmic rays (GCR) can no longer be ignored. It is the peculiarity of these radiations for which the inter-action physics and biological action are yet to be fully understood.

  6. Thermal, Radiation and Impact Protective Shields (TRIPS) for Robotic and Human Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Loomis, M. P.; Arnold, J. L.

    2005-01-01

    New concepts for protective shields for NASA s Crew Exploration Vehicles (CEVs) and planetary probes offer improved mission safety and affordability. Hazards include radiation from cosmic rays and solar particle events, hypervelocity impacts from orbital debris/ micrometeorites, and the extreme heating environment experienced during entry into planetary atmospheres. The traditional approach for the design of protection systems for these hazards has been to create single-function shields, i.e. ablative and blanket-based heat shields for thermal protection systems (TPS), polymer or other low-molecular-weight materials for radiation shields, and multilayer, Whipple-type shields for protection from hypervelocity impacts. This paper introduces an approach for the development of a single, multifunctional protective shield, employing nanotechnology- based materials, to serve simultaneously as a TPS, an impact shield and as the first line of defense against radiation. The approach is first to choose low molecular weight ablative TPS materials, (existing and planned for development) and add functionalized carbon nanotubes. Together they provide both thermal and radiation (TR) shielding. Next, impact protection (IP) is furnished through a tough skin, consisting of hard, ceramic outer layers (to fracture the impactor) and sublayers of tough, nanostructured fabrics to contain the debris cloud from the impactor before it can penetrate the spacecraft s interior.

  7. Early Results from the Advanced Radiation Protection Thick GCR Shielding Project

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Clowdsley, Martha; Slaba, Tony; Heilbronn, Lawrence; Zeitlin, Cary; Kenny, Sean; Crespo, Luis; Giesy, Daniel; Warner, James; McGirl, Natalie; hide

    2017-01-01

    The Advanced Radiation Protection Thick Galactic Cosmic Ray (GCR) Shielding Project leverages experimental and modeling approaches to validate a predicted minimum in the radiation exposure versus shielding depth curve. Preliminary results of space radiation models indicate that a minimum in the dose equivalent versus aluminum shielding thickness may exist in the 20-30 g/cm2 region. For greater shield thickness, dose equivalent increases due to secondary neutron and light particle production. This result goes against the long held belief in the space radiation shielding community that increasing shielding thickness will decrease risk to crew health. A comprehensive modeling effort was undertaken to verify the preliminary modeling results using multiple Monte Carlo and deterministic space radiation transport codes. These results verified the preliminary findings of a minimum and helped drive the design of the experimental component of the project. In first-of-their-kind experiments performed at the NASA Space Radiation Laboratory, neutrons and light ions were measured between large thicknesses of aluminum shielding. Both an upstream and a downstream shield were incorporated into the experiment to represent the radiation environment inside a spacecraft. These measurements are used to validate the Monte Carlo codes and derive uncertainty distributions for exposure estimates behind thick shielding similar to that provided by spacecraft on a Mars mission. Preliminary results for all aspects of the project will be presented.

  8. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  9. Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect.

    PubMed

    Saravana Kumar, Gurunathan; George, Subin Philip

    2017-02-01

    This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress-strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.

  10. Orion Heat Shield Foam Blocks Prefitting

    NASA Image and Video Library

    2016-10-24

    Tile blocks have been prefitted around the heat shield for the Orion crew module inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The heat shield is one of the most critical elements of Orion and protects it and the future astronauts inside from searing temperatures experienced during reentry through Earth's atmosphere when they return home. For Exploration Mission-1, the top layer of Orion's heat shield that is primarily responsible for helping the crew module endure reentry heat will be composed of approximately 180 blocks, which are made of an ablative material called Avcoat designed to wear away as it heats up. Orion is being prepared for its flight on the agency's Space Launch System for Exploration Mission-1 in late 2018. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities.

  11. Resent Status of ITER Equatorial Launcher Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Kajiwara, K.; Kasugai, A.

    2009-11-26

    The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. Themore » high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.« less

  12. Acoustic metacages for sound shielding with steady air flow

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun

    2018-03-01

    Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. In-plane sound at an arbitrary angle of incidence is reflected due to the strong parallel momentum on the metacage surface, which leads to low sound transmission through the metacage. The performance of the proposed metacage is verified by numerical simulations and measurements on a three-dimensional printed prototype. The acoustic metacage has potential applications in sound insulation where steady fluid flow is necessary or advantageous.

  13. KSC-07pd3481

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd3479

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  15. KSC-07pd3482

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd3478

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd3477

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  18. KSC-07pd3480

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  19. Shielding Calculations on Waste Packages - The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    NASA Astrophysics Data System (ADS)

    Adams, Mike; Smalian, Silva

    2017-09-01

    For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like "Monte-Carlo N-Particle Transport Code System" (MCNP®) on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The problem here is to choose an appropriate program for a specific geometry. Therefore we compared the results of deterministic programs like MicroShield® and stochastic programs like MCNP®. These comparisons enable us to make a statement about the applicability of the various programs for chosen types of containers. As a conclusion we found that for thin-walled geometries deterministic programs like MicroShield® are well suited to calculate the dose rate. For cylindrical containers with inner shielding however, deterministic programs hit their limits. Furthermore we investigate the effect of an inhomogeneous material and activity distribution on the results. The calculations are still ongoing. Results will be presented in the final abstract.

  20. Comparison of Bone Remodeling Between an Anatomic Short Stem and a Straight Stem in 1-Stage Bilateral Total Hip Arthroplasty.

    PubMed

    Koyano, Gaku; Jinno, Tetsuya; Koga, Daisuke; Yamauchi, Yuki; Muneta, Takeshi; Okawa, Atsushi

    2017-02-01

    Femurs of dysplastic hips exhibit specific abnormalities, and use of modular or specially designed components is recommended. An anatomic short stem was previously designed specifically for dysplastic hips using 3-dimensional data acquired from dysplastic patients. To investigate effects of stem geometry on bone remodeling, we undertook a prospective, randomized study of patients who had undergone 1-stage bilateral total hip arthroplasty (THA) with the anatomic short stem on one side and a conventional straight stem on the other. The study included 36 patients who underwent the above THA procedure. We assessed bone mineral density as well as the presence of cancellous condensation or bony atrophy due to stress shielding based on the analysis of Gruen's zones and newly defined equal-interval zones, at an average follow-up period of 9.2 years. All stems were bone ingrown stable. Cancellous condensation was observed more proximally, and areas of bone atrophy were narrower on the anatomic short stem side than on the straight stem side. Bone mineral density values reflected results of cancellous condensation and stress shielding and were higher in more proximal zones on the anatomic short stem side than on the straight stem side. Although radiographic results indicated good midterm outcomes of THA with both stems, the loading pattern differed. The anatomic short stem achieved its design purpose in terms of proximal fixation and load transfer and led to better preservation of the proximal femur. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Hybrid Particle-Element Simulation of Impact on Composite Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    2004-01-01

    This report describes the development of new numerical methods and new constitutive models for the simulation of hypervelocity impact effects on spacecraft. The research has included parallel implementation of the numerical methods and material models developed under the project. Validation work has included both one dimensional simulations, for comparison with exact solutions, and three dimensional simulations of published hypervelocity impact experiments. The validated formulations have been applied to simulate impact effects in a velocity and kinetic energy regime outside the capabilities of current experimental methods. The research results presented here allow for the expanded use of numerical simulation, as a complement to experimental work, in future design of spacecraft for hypervelocity impact effects.

  2. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Ma, B; Kuang, Y

    2014-06-15

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was includedmore » in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less

  3. Ground-based simulations of cosmic ray heavy ion interactions in spacecraft and planetary habitat shielding materials

    NASA Technical Reports Server (NTRS)

    Miller, J.; Zeitlin, C.; Heilbronn, L.; Borak, T.; Carter, T.; Frankel, K. A.; Fukumura, A.; Murakami, T.; Rademacher, S. E.; Schimmerling, W.; hide

    1998-01-01

    This paper surveys some recent accelerator-based measurements of the nuclear fragmentation of high energy nuclei in shielding and tissue-equivalent materials. These data are needed to make accurate predictions of the radiation field produced at depth in spacecraft and planetary habitat shielding materials and in the human body by heavy charged particles in the galactic cosmic radiation. Projectile-target combinations include 1 GeV/nucleon 56Fe incident on aluminum and graphite and 600 MeV/nucleon 56Fe and 290 MeV/nucleon 12C on polyethylene. We present examples of the dependence of fragmentation on material type and thickness, of a comparison between data and a fragmentation model, and of multiple fragments produced along the beam axis.

  4. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  5. Advanced shield development for a fission surface power system for the lunar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. E. Craft; I. J. Silver; C. M. Clark

    A nuclear reactor power system such as the affordable fission surface power system enables a potential outpostonthemoon.Aradiation shieldmustbe included in the reactor system to reduce the otherwise excessive dose to the astronauts and other vital system components. The radiation shield is typically the most massive component of a space reactor system, and thus must be optimized to reduce mass asmuchas possible while still providing the required protection.Various shield options for an on-lander reactor system are examined for outpost distances of 400m and 1 kmfromthe reactor. Also investigated is the resulting mass savings from the use of a high performance cermetmore » fuel. A thermal analysis is performed to determine the thermal behaviours of radiation shields using borated water. For an outpost located 1000m from the core, a tetramethylammonium borohydride shield is the lightest (5148.4 kg), followed by a trilayer shield (boron carbide–tungsten–borated water; 5832.3 kg), and finally a borated water shield (6020.7 kg). In all of the final design cases, the temperature of the borated water remains below 400 K.« less

  6. Engineering design constraints of the lunar surface environment

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.

    1992-01-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  7. Engineering design constraints of the lunar surface environment

    NASA Astrophysics Data System (ADS)

    Morrison, D. A.

    1992-02-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  8. Analysis methods for Kevlar shield response to rotor fragments

    NASA Technical Reports Server (NTRS)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  9. Experimental realization of open magnetic shielding

    NASA Astrophysics Data System (ADS)

    Gu, C.; Chen, S.; Pang, T.; Qu, T.-M.

    2017-05-01

    The detection of extremely low magnetic fields has various applications in the area of fundamental research, medical diagnosis, and industry. Extracting the valuable signals from noises often requires magnetic shielding facilities. We demonstrated directly from Maxwell's equations that specifically designed superconductor coils can exactly shield the magnetic field to an extremely low value. We experimentally confirmed this effect in the frequency spectrum of 0.01-10 000 Hz and improved the electromagnetic environment in a hospital, a leading hospital in magnetocardiograph study in China.

  10. Shielding of Turbomachinery Broadband Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Stead, Daniel J.; Pope, D. Stuart

    2014-01-01

    The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.

  11. Analyses of risks associated with radiation exposure from past major solar particle events

    NASA Technical Reports Server (NTRS)

    Weyland, Mark D.; Atwell, William; Cucinotta, Francis A.; Wilson, John W.; Hardy, Alva C.

    1991-01-01

    Radiation exposures and cancer induction/mortality risks were investigated for several major solar particle events (SPE's). The SPE's included are: February 1956, November 1960, August 1972, October 1989, and the September, August, and October 1989 events combined. The three 1989 events were treated as one since all three could affect a single lunar or Mars mission. A baryon transport code was used to propagate particles through aluminum and tissue shield materials. A free space environment was utilized for all calculations. Results show the 30-day blood forming organs (BFO) limit of 25 rem was surpassed by all five events using 10 g/sq cm of shielding. The BFO limit is based on a depth dose of 5 cm of tissue, while a more detailed shield distribution of the BFO's was utilized. A comparison between the 5 cm depth dose and the dose found using the BFO shield distribution shows that the 5 cm depth value slightly higher than the BFO dose. The annual limit of 50 rem was exceeded by the August 1972, October 1989, and the three combined 1989 events with 5 g/sq cm of shielding. Cancer mortality risks ranged from 1.5 to 17 percent at 1 g/sq cm and 0.5 to 1.1 percent behind 10 g/sq cm of shielding for five events. These ranges correspond to those for a 45 year old male. It is shown that secondary particles comprise about 1/3 of the total risk at 10 g/sq cm of shielding. Utilizing a computerized Space Shuttle shielding model to represent a typical spacecraft configuration in free space at the August 1972 SPE, average crew doses exceeded the BFO dose limit.

  12. Monte Carlo simulations for the shielding of the future high-intensity accelerator facility FAIR at GSI.

    PubMed

    Radon, T; Gutermuth, F; Fehrenbacher, G

    2005-01-01

    The Gesellschaft für Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of approximately 15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam.

  13. Spacecraft Shielding: An Experimental Comparison Between Open Cell Aluminium Foam Core Sandwich Panel Structures and Whipple Shielding.

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.

  14. GERD: Can Certain Medications Increase Severity?

    MedlinePlus

    ... com/home. Accessed Dec. 31, 2014. Bisphosphonates. Facts & Comparisons. http://www.factsandcomparisons.com. Accessed Dec. 31, 2014. ... Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation for Medical Education ...

  15. Experimental approach to measure thick target neutron yields induced by heavy ions for shielding

    NASA Astrophysics Data System (ADS)

    Trinh, N. D.; Fadil, M.; Lewitowicz, M.; Brouillard, C.; Clerc, T.; Damoy, S.; Desmezières, V.; Dessay, E.; Dupuis, M.; Grinyer, G. F.; Grinyer, J.; Jacquot, B.; Ledoux, X.; Madeline, A.; Menard, N.; Michel, M.; Morel, V.; Porée, F.; Rannou, B.; Savalle, A.

    2017-09-01

    Double differential (angular and energy) neutron distributions were measured using an activation foil technique. Reactions were induced by impinging two low-energy heavy-ion beams accelerated with the GANIL CSS1 cyclotron: (36S (12 MeV/u) and 208Pb (6.25 MeV/u)) onto thick natCu targets. Results have been compared to Monte-Carlo calculations from two codes (PHITS and FLUKA) for the purpose of benchmarking radiation protection and shielding requirements. This comparison suggests a disagreement between calculations and experiment, particularly for high-energy neutrons.

  16. PHITS simulations of the Protective curtain experiment onboard the Service module of ISS: Comparison with absorbed doses measured with TLDs

    NASA Astrophysics Data System (ADS)

    Ploc, Ondřej; Sihver, Lembit; Kartashov, Dmitry; Shurshakov, Vyacheslav; Tolochek, Raisa

    2013-12-01

    "Protective curtain" was the physical experiment onboard the International Space Station (ISS) aimed on radiation measurement of the dose - reducing effect of the additional shielding made of hygienic water-soaked wipes and towels placed on the wall in the crew cabin of the Service module Zvezda. The measurements were performed with 12 detector packages composed of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs) placed at the Protective curtain, so that they created pairs of shielded and unshielded detectors.

  17. Differences in the stress distribution in the distal femur between patellofemoral joint replacement and total knee replacement: a finite element study

    PubMed Central

    2012-01-01

    Background Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis. Methods We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion. Results During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design. Conclusions Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding. PMID:22704638

  18. A large-scale magnetic shield with 10{sup 6} damping at millihertz frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altarev, I.; Bales, M.; Fierlinger, K.

    We present a magnetically shielded environment with a damping factor larger than 1 × 10{sup 6} at the mHz frequency regime and an extremely low field and gradient over an extended volume. This extraordinary shielding performance represents an improvement of the state-of-the-art in the difficult regime of damping very low-frequency distortions by more than an order of magnitude. This technology enables a new generation of high-precision measurements in fundamental physics and metrology, including searches for new physics far beyond the reach of accelerator-based experiments. We discuss the technical realization of the shield with its improvements in design.

  19. Decreasing radiation exposure on pediatric portable chest radiographs.

    PubMed

    Hawking, Nancy G; Sharp, Ted D

    2013-01-01

    To determine whether additional shielding designed for pediatric patients during portable chest exams that ascertain endotracheal tube placement would significantly decrease the amount of scatter radiation. Children aged 24 months or younger were intubated and received daily morning chest radiographs to determine endotracheal tube placement. For each measurement, the amount of scatter radiation decreased by more than 20% from a nonshielded exposure to a shielded exposure. There was a significant decrease in scatter radiation when using the lead shielding device along with appropriate collimation vs appropriate collimation alone. These results suggest that applying additional shielding to appropriately collimated chest radiographs could significantly reduce scatter radiation and therefore the overall dose to young children.

  20. Study on textile comfort properties of polypropylene blended stainless steel woven fabric for the application of electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Palanisamy, S.; Tunakova, V.; Karthik, D.; Ali, A.; Militky, J.

    2017-10-01

    In this study, the different proportion of conductive component blended with polypropylene yarn were taken for making conductive textile samples for analysis of electromagnetic shielding effectiveness, fabric bending moment and air permeability. The ASTM D4935 coaxial transmission line method was used to study the electromagnetic shielding. Electromagnetic shielding effectiveness of textile structures containing different percentage of metal content ranges from 1 to 50 dB at high frequency range. Breathability of structures, more precisely air permeability was considered as one of important parameters for designing of electromagnetic radiation protective fabrics for certain applications. The bending moment of samples is decreases with increasing metal component percent.

  1. HVI Ballistic Performance Characterization of Non-Parallel Walls

    NASA Technical Reports Server (NTRS)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  2. Supplemental shielding of BMIT SOE-1 at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Bassey, Bassey; Abueidda, Abdallah; Cubbon, Grant; Street, Darin; Sabbir Ahmed, Asm; Wysokinski, Tomasz W.; Belev, George; Chapman, Dean

    2014-07-01

    High field superconducting wiggler beamlines present shielding challenges due to the high critical energy of the synchrotron spectrum. An unexpected, but predictable, weakness in the secondary optical enclosure (SOE-1) was discovered on the BioMedical Imaging and Therapy (BMIT) insertion device (ID) beamline 05ID-2 at the Canadian Light Source (CLS). SOE-1 is a monochromatic beam hutch; the beam in it is supplied by three monochromators housed in an upstream primary optical enclosure (POE-3). The initial shielding of SOE-1 was based on a shielding calculation against target scattered and direct monochromatic (fundamental and harmonics) beams from the monochromators in POE-3. During a radiation survey of the hutch, radiation above the expected level was measured at the downstream end of SOE-1. This increment in radiation level is attributed to scattered white beam into SOE-1 by a K-Edge subtraction (KES) monochromator's crystal (a single crystal monochromator) in POE-3. Though this is peculiar to the BMIT beamline 05ID-2, it may not be uncommon for other beamlines that use single crystal monochromators. Calculations of the level of expected leakage radiation due to the scattered white beam arriving on the downstream wall of the SOE-1 are presented, as well as the supplemental shielding that will reduce the leakage to less than 1 μSv/h as required at the CLS. Also presented are the installed supplemental shielding, and a comparison of the calculations and measurements of the dose rates on the back wall of SOE-1 End Wall, before and after installation of the supplemental shielding.

  3. Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive

    NASA Astrophysics Data System (ADS)

    Yao, Ya; Zhang, Xiaowen; Li, Mi; Yang, Rong; Jiang, Tianjiao; Lv, Junwen

    2016-10-01

    Concrete has a proven ability to attenuate gamma rays and neutrons without compromising structural property; therefore, it is widely used as the primary shielding material in many nuclear facilities. Recently, there is a tendency toward using various additives to enhance the shielding properties of these concrete mixtures. However, most of these additives being used either pose hygiene hazards or require special handling processes. It would be ideal if environmentally friendly additives were available for use. The bismuth oxide (Bi2O3) additive shows promise in various shielding applications due to its proven radiation attenuation ability and environmentally friendly nature. To the best of our knowledge, however, Bi2O3 has never been used in concrete mixtures. Therefore, for this research, we fabricated the Bi2O3-based concrete mixtures by adding Bi2O3 powder in the ordinary concrete mixture. Concrete mixtures with lead oxide (PbO) additives were used for comparison. Radiation shielding parameters like the linear attenuation coefficients (LAC) of all these concrete mixtures showing the effects of the Bi2O3 additions are presented. The mechanical performances of concrete mixtures incorporated with Bi2O3 additive were also investigated. It suggested that the concrete mixture containing 25% Bi2O3 powder (B5 in this study) provided the best shielding capacity and mechanical performance among other mixes. It has a significant potential for application as a structural concrete where radiological protection capability is required.

  4. Au Foil Activation Measurement and Simulation of the Concrete Neutron Shielding Ability for the Proposed New SANRAD Facility

    NASA Astrophysics Data System (ADS)

    Radebe, M. J.; Korochinsky, S.; Strydom, W. J.; De Beer, F. C.

    The purpose of this study was to measure the effective neutron shielding characteristics of the new shielding material designed and manufactured to be used for the construction of the new SANRAD facility at Necsa, South Africa, through Au foil activation as well as MCNP simulations. The shielding capability of the high density shielding material was investigated in the worst case region (the neutron beam axis) of the experimental chamber for two operational modes. The everyday operational mode includes the 15 cm thick poly crystalline Bismuth filter at room temperature (assumed) to filter gamma-rays and some neutron spectrum energies. The second mode, dynamic imaging, will be conducted without the Bi-filter. The objective was achieved through a foil activation measurement at the current SANRAD facility and MCNP calculations. Several Au foilswere imbedded at different thicknesses(two at each position) of shielding material up to 80 cm thick to track the attenuation of the neutron beam over distance within the shielding material. The neutron flux and subsequently the associated dose rates were calculated from the activation levels of the Au foils. The concrete shielding material was found to provide adequate shielding for all energies of neutrons emerging from beam port no-2 of the SAFARI-1 research reactorwithin a thickness of 40 cm of concrete.

  5. Investigation of Woven Characteristics on Electromagnetic Shielding Behaviour

    NASA Astrophysics Data System (ADS)

    Javadi Toghchi, M.; Loghin, C.; Cristian, I.; Campagne, C.; Bruniaux, P.; Cayla, A.

    2018-06-01

    Textiles have been highly applied for electromagnetic shielding purposes due to the increasing concern about health issues caused by human exposure to radiation. Properties of conductive yarn, fabric structure, and garment design have extreme effects on the electromagnetic behaviour and comfort of the final product. Lots of electromagnetic shielding textiles are made of metallic yarns regarding their high electrical conductivity. Therefore, some researchers have worked on electromagnetic shielding textiles made of metals. For example; the shielding effectiveness of woven fabrics made of hybrid yarns containing stainless steel wire was investigated. As discussed earlier, the fabric structure has significant effects on electromagnetic protection. Consequently, woven samples were produced using two different commercial electroconductive yarns (PA12 coated with Ag and Inox) to investigate the effects of the fabric structure. The main purpose was to define the best pattern among three basic woven patterns leads to the highest electromagnetic shielding. Moreover, the different weft yarn densities were applied to examine the effects of yarn density on the level of electromagnetic shielding. The electromagnetic shielding effectiveness of all the 2-layer samples was evaluated in the frequency range from 0.8 to10 GHz in an anechoic chamber. The woven sample with higher yarn density of PA12 coated with Ag yarns shows higher protection against radiation. To conclude, the results show that the yarn properties play the main role in shielding as well as yarn density and fabric pattern.

  6. The Comet Halley dust and gas environment

    NASA Technical Reports Server (NTRS)

    Divine, N.; Hanner, M. S.; Newburn, R. L., Jr.; Sekanina, Z.; Yeomans, D. K.

    1986-01-01

    Quantitative descriptions of environments near the nucleus of comet P/Halley have been developed to support spacecraft and mission design for the flyby encounters in March, 1986. To summarize these models as they exist just before the encounters, the relevant data from prior Halley apparitions and from recent cometary research are reviewed. Orbital elements, visual magnitudes, and parameter values and analysis for the nucleus, gas and dust are combined to predict Halley's position, production rates, gas and dust distributions, and electromagnetic radiation field for the current perihelion passage. The predicted numerical results have been useful for estimating likely spacecraft effects, such as impact damage and attitude perturbations. Sample applications are cited, including design of a dust shield for spacecraft structure, and threshold and dynamic range selection for flight experiments. It is expected that the comet's activity may be more irregular than these smoothly varying models predict, and that comparison with the flyby data will be instructive.

  7. An equivalent n-source for WGPu derived from a spectrum-shifted PuBe source

    NASA Astrophysics Data System (ADS)

    Ghita, Gabriel; Sjoden, Glenn; Baciak, James; Walker, Scotty; Cornelison, Spring

    2008-04-01

    We have designed, built, and laboratory-tested a unique shield design that transforms the complex neutron spectrum from PuBe source neutrons, generated at high energies, to nearly exactly the neutron signature leaking from a significant spherical mass of weapons grade plutonium (WGPu). This equivalent "X-material shield assembly" (Patent Pending) enables the harder PuBe source spectrum (average energy of 4.61 MeV) from a small encapsulated standard 1-Ci PuBe source to be transformed, through interactions in the shield, so that leakage neutrons are shifted in energy and yield to become a close reproduction of the neutron spectrum leaking from a large subcritical mass of WGPu metal (mean energy 2.11 MeV). The utility of this shielded PuBe surrogate for WGPu is clear, since it directly enables detector field testing without the expense and risk of handling large amounts of Special Nuclear Materials (SNM) as WGPu. Also, conventional sources using Cf-252, which is difficult to produce, and decays with a 2.7 year half life, could be replaced by this shielded PuBe technology in order to simplify operational use, since a sealed PuBe source relies on Pu-239 (T½=24,110 y), and remains viable for more than hundreds of years.

  8. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    PubMed

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  9. SU-E-T-132: Assess the Shielding of Secondary Neutrons From Patient Collimator in Proton Therapy Considering Secondary Photons Generated in the Shielding Process with Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, M; Takashina, M; Kurosu, K

    Purpose: In this study we present Monte Carlo based evaluation of the shielding effect for secondary neutrons from patient collimator, and secondary photons emitted in the process of neutron shielding by combination of moderator and boron-10 placed around patient collimator. Methods: The PHITS Monte Carlo Simulation radiation transport code was used to simulate the proton beam (Ep = 64 to 93 MeV) from a proton therapy facility. In this study, moderators (water, polyethylene and paraffin) and boron (pure {sup 10}B) were placed around patient collimator in this order. The rate of moderator and boron thicknesses was changed fixing the totalmore » thickness at 3cm. The secondary neutron and photons doses were evaluated as the ambient dose equivalent per absorbed dose [H*(10)/D]. Results: The secondary neutrons are shielded more effectively by combination moderators and boron. The most effective combination of shielding neutrons is the polyethylene of 2.4 cm thick and the boron of 0.6 cm thick and the maximum reduction rate is 47.3 %. The H*(10)/D of secondary photons in the control case is less than that of neutrons by two orders of magnitude and the maximum increase of secondary photons is 1.0 µSv/Gy with the polyethylene of 2.8 cm thick and the boron of 0.2 cm thick. Conclusion: The combination of moderators and boron is beneficial for shielding secondary neutrons. Both the secondary photons of control and those emitted in the shielding neutrons are very lower than the secondary neutrons and photon has low RBE in comparison with neutron. Therefore the secondary photons can be ignored in the shielding neutrons.This work was supported by JSPS Core-to-Core Program (No.23003). This work was supported by JSPS Core-to-Core Program (No.23003)« less

  10. Is the use of the cervical vertebrae maturation method justified to determine skeletal age? A comparison of radiation dose of two strategies for skeletal age estimation.

    PubMed

    Patcas, Raphael; Signorelli, Luca; Peltomäki, Timo; Schätzle, Marc

    2013-10-01

    The aim of this study was to assess effective doses of a lateral cephalogram radiograph with and without thyroid shield and compare the differences with the radiation dose of a hand-wrist radiograph. Thermoluminescent dosimeters were placed at 19 different sites in the head and neck of a tissue-equivalent human skull (RANDO phantom). Analogue lateral cephalograms with and without thyroid shield (67 kV, 250 mA, 10 mAs) and hand-wrist radiographs (40 kV, 250 mA, 10 mAs) were obtained. The effective doses were calculated using the 2007 International Commission on Radiological Protection recommendations. The effective dose for conventional lateral cephalogram without a thyroid shield was 5.03 microsieverts (µSv). By applying a thyroid shield to the RANDO phantom, a remarkable dose reduction of 1.73 µSv could be achieved. The effective dose of a conventional hand-wrist radiograph was calculated to be 0.16 µSv. Adding the effective dose of the hand-wrist radiograph to the effective dose of the lateral cephalogram with thyroid shield resulted in a cumulative effective dose of 3.46 µSv. Without thyroid shield, the effective dose of a lateral cephalogram was approximately 1.5-fold increased than the cumulative effective dose of a hand-wrist radiograph and a lateral cephalogram with thyroid shield. Thyroid is an organ that is very sensitive to radiation exposure. Its shielding will significantly reduce the effective dose. An additional hand-wrist radiograph, involving no vulnerable tissues, however, causes very little radiation risk. In accordance with the ALARA (As Low As Reasonably Achievable) principle, if an evaluation of skeletal age is indicated, an additional hand-wrist radiograph seems much more justifiable than removing the thyroid shield.

  11. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar

    2018-06-01

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  12. Snacks: How They Fit into Your Weight-Loss Plan

    MedlinePlus

    ... 37 calories 20 pea pods: 28 calories For comparison, one reduced-fat cheese stick has about 60 ... Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation for Medical Education ...

  13. Adjuvant Therapy: Treatment to Keep Cancer from Returning

    MedlinePlus

    ... how well your treatment will work based on comparisons with data from studies of other people with ... Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation for Medical Education ...

  14. Tension-Type Headaches: Self-Care Measures for Relief

    MedlinePlus

    ... Accessed July 6, 2015. Durazzo TC, et al. Comparison of regional brain perfusion levels in chronically smoking ... Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation for Medical Education ...

  15. SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).

    PubMed

    Muhammad, W; Lee, S; Hussain, A

    2012-06-01

    The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.

  16. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2016-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. LS-DYNA® was used to predict the thickness of the composite shield required to prevent blade penetration. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test LS-DYNA predictions. This paper documents the analysis conducted to predict the required thickness of a composite shield, the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  17. Comparison of SPHC Hydrocode Results with Penetration Equations and Results of Other Codes

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Stallworth, Roderick; Stellingwerf, Robert F.

    2004-01-01

    The SPHC hydrodynamic code was used to simulate impacts of spherical aluminum projectiles on a single-wall aluminum plate and on a generic Whipple shield. Simulations were carried out in two and three dimensions. Projectile speeds ranged from 2 kilometers per second to 10 kilometers per second for the single-wall runs, and from 3 kilometers per second to 40 kilometers per second for the Whipple shield runs. Spallation limit results of the single-wall simulations are compared with predictions from five standard penetration equations, and are shown to fall comfortably within the envelope of these analytical relations. Ballistic limit results of the Whipple shield simulations are compared with results from the AUTODYN-2D and PAM-SHOCK-3D codes presented in a paper at the Hypervelocity Impact Symposium 2000 and the Christiansen formulation of 2003.

  18. Large panel design for containment air baffle

    DOEpatents

    Orr, Richard S.

    1992-01-01

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel.

  19. High voltage design structure for high temperature superconducting device

    DOEpatents

    Tekletsadik, Kasegn D [Rexford, NY

    2008-05-20

    In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.

  20. Large panel design for containment air baffle

    DOEpatents

    Orr, R.S.

    1992-12-08

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel. 9 figs.

  1. Radiation exposure to the operator performing cardiac angiography with U-arm systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balter, S.; Sones, F.M. Jr.; Brancato, R.

    The radiation exposure received by a group of operators performing 700 coronary angiograms was measured using the brachial artery approach and the Philips Cardio Diagnost. Nineteen sites were monitored on each operator, using lithium fluoride thermoluminescent dosimeters. Four hundred examinations were performed with a table-mounted protective shield in place. Three hundred were performed without the shield. The average exposures (in mR per study) with and without the shield were 1.9/6 for the eyes and 1.4/8.3 for the thyroid. The resulting operator exposure with the shield in place is low enough so that an operator performing 25 procedures per week onmore » a continuous basis will not exceed the recommendations of the National Commission on Radiological Protection and Units. We therefore strongly recommend the use of properly designed and appropriately positioned shield with all U-arm systems.« less

  2. Radiation exposure to the operator performing cardiac angiography with U-arm systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balter, S.; Sones, F.M. Jr.; Brancato, R.

    We measured the radiation exposure received by a group of operators performing 700 coronary angiograms. All studies were performed using the brachial artery approach and the Philips Cardio Diagnost. Nineteen sites were monitored on each operator, using lithium fluoride thermoluminescent dosimeters. Four hundred examinations were performed with a table-mounted protective shield in place. Three hundred were performed without the shield. The averge exposures (in mR per study) with and without the shield were 1.9/6 for the eyes and 1.4/8.3 for the thyroid. The resulting operator exposure with the shield in place is low enough so that an operator performing 25more » procedures per week on a continuous basis will not exceed the recommendations of the National Commission on Radiological Protection and Units. We therefore strongly recommend the use of properly designed and appropriately positioned shield with all U-arm systems.« less

  3. An Analysis of Radiation Penetration through the U-Shaped Cast Concrete Joints of Concrete Shielding in the Multipurpose Gamma Irradiator of BATAN

    NASA Astrophysics Data System (ADS)

    Ardiyati, Tanti; Rozali, Bang; Kasmudin

    2018-02-01

    An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.

  4. KSC-2014-2830

    NASA Image and Video Library

    2014-05-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  5. KSC-2014-2831

    NASA Image and Video Library

    2014-05-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  6. Nuclear shieldings with the SSB-D functional.

    PubMed

    Armangué, Lluís; Solà, Miquel; Swart, Marcel

    2011-02-24

    The recently reported SSB-D functional [J. Chem. Phys. 2009, 131, 094103] is used to check the performance for obtaining nuclear magnetic resonance (NMR) shielding constants. Four different databases were studied, which contain a diversity of molecules and nuclear shielding constants. The SSB-D functional is compared with its "parent" functionals (PBE, OPBE), the KT2 functional that was designed specially for NMR applications and the coupled cluster CCSD(T) method. The best performance for the experimentally most-used elements ((1)H, (13)C) is obtained for the SSB-D and KT2 functionals.

  7. Modeling and characterization of shielded low loss CPWs on 65 nm node silicon

    NASA Astrophysics Data System (ADS)

    Hongrui, Wang; Dongxu, Yang; Li, Zhang; Lei, Zhang; Zhiping, Yu

    2011-06-01

    Coplanar waveguides (CPWs) are promising candidates for high quality passive devices in millimeter-wave frequency bands. In this paper, CPW transmission lines with and without ground shields have been designed and fabricated on 65 nm CMOS technology. A physical-based model is proposed to describe the frequency-dependent per-unit-length L, C, R and G parameters. Starting with a basic CPW structure, the slow-wave effect and ground-shield influence have been analyzed and incorporated into the general model. The accuracy of the model is confirmed by experimental results.

  8. Radiation Analysis for the Human Lunar Return Mission

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.; Dubey, R. R.; Jordan, W.

    1997-01-01

    An analysis of the radiation hazards that are anticipated on an early Human Lunar Return (HLR) mission in support of NASA deep space exploration activities is presented. The HLR mission study emphasized a low cost lunar return to expand human capabilities in exploration, to answer fundamental science questions, and to seek opportunities for commercial development. As such, the radiation issues are cost related because the parasitic shield mass is expensive due to high launch costs. The present analysis examines the shield requirements and their impact on shield design.

  9. Investigation of the strength of shielded and unshielded underwater electrical cables

    NASA Astrophysics Data System (ADS)

    Glowe, D. E.; Arnett, S. L.

    1981-09-01

    The mechanical properties of shielded and unshielded submarine cables (MIL-C-915/8E) were investigated to determine the effect of shielding on cable life, performance, and reliability. Ten cables (five shielded and five unshielded) were selected for laboratory evaluation. A mission profile was developed to establish the mechanical stress limits that cables must endure in service and a test sequence designed to measure tensile strength, flexural abrasion endurance, crush resistance, creep under static tension, and performance in a hull-stuffing tube. The results of this program showed that: (1) DSS-2 cable does not have adequate tensile strength and should have a strength member added. DSS-3 and larger cables have adequate tensile strength with or without the shield; (2) Unshielded DSS-3 type cable does not perform satisfactorily in hull-stuffing tubes; (3) Shielding is not required to meet mission profile specifications for cable crush or flexural abrasion resistance; (4) Construction parameters other than shielding can significantly affect mechanical performance of cable; (5) Unshielded cable construction can result in increased reliability since it permits a thicker single-jacket construction; and (6) Unshielded cable construction can reduce the cost of cable by 8 to 20 percent.

  10. The Local Tissue Environment During the September 29, 1989 Solar Particle Event

    NASA Technical Reports Server (NTRS)

    Kim, M.-H. Y.; Wilson, J. W.; Cucinotta, F. A.; Simonsen, L. C.; Atwell, W.; Badavi, F. F.; Miller, J.

    2004-01-01

    The solar particle event (SPE) of September 29, 1989, produced an iron-rich spectrum with energies approaching 1 GeV/amu with an energy power index of 2.5. These high charge and energy (HZE) ions of the iron-rich SPEs challenge conventional methods of SPE shield design and assessment of astronaut risks. Shield and risk assessments are evaluated using the HZETRN code with computerized anatomical man (CAM) model for astronaut s body tissues. Since the HZE spectra decline rapidly with energy and HZE attenuation in materials is limited by their penetration power, details of the mass distributions about the sensitive tissues (shielding materials and the astronaut's body) are important determining factors of the exposure levels. Typical space suit and lightly shielded structures allow significant contributions from HZE components to some critical body tissues and have important implications on the models for risk assessment. Only a heavily shielded equipment room of a space vehicle or habitat provides sufficient shielding for the early response at sensitive organs from this event. The February 23, 1956 event of similar spectral characteristics and ten times this event may have important medical consequences without a well-shielded region.

  11. Radiation Exposure Analyses Supporting the Development of Solar Particle Event Shielding Technologies

    NASA Technical Reports Server (NTRS)

    Walker, Steven A.; Clowdsley, Martha S.; Abston, H. Lee; Simon, Hatthew A.; Gallegos, Adam M.

    2013-01-01

    NASA has plans for long duration missions beyond low Earth orbit (LEO). Outside of LEO, large solar particle events (SPEs), which occur sporadically, can deliver a very large dose in a short amount of time. The relatively low proton energies make SPE shielding practical, and the possibility of the occurrence of a large event drives the need for SPE shielding for all deep space missions. The Advanced Exploration Systems (AES) RadWorks Storm Shelter Team was charged with developing minimal mass SPE storm shelter concepts for missions beyond LEO. The concepts developed included "wearable" shields, shelters that could be deployed at the onset of an event, and augmentations to the crew quarters. The radiation transport codes, human body models, and vehicle geometry tools contained in the On-Line Tool for the Assessment of Radiation In Space (OLTARIS) were used to evaluate the protection provided by each concept within a realistic space habitat and provide the concept designers with shield thickness requirements. Several different SPE models were utilized to examine the dependence of the shield requirements on the event spectrum. This paper describes the radiation analysis methods and the results of these analyses for several of the shielding concepts.

  12. Shielded Metal Arc Welding. Welding Module 4. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in shielded metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety; theory, power sources, and…

  13. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1973-01-01

    The work reported constitutes the first phase of a two-phase program. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr material characteristics are reviewed and compared with TD Ni-20Cr produced in previous development efforts; cyclic load, temperature, and pressure effects on TD Ni-20Cr sheet material are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded, diffusion-bonded, or seam-welded joints are evaluated through tests of simple lap-shear joint samples; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full-scale subsize heat shield panels are described. Tests of full-scale subsize panels included simulated meteoroid impact tests; simulated entry flight aerodynamic heating in an arc-heated plasma stream; programmed differential pressure loads and temperatures simulating mission conditions; and acoustic tests simulating sound levels experienced by heat shields during about boost flight. Test results are described, and the performances of two heat shield designs are compared and evaluated.

  14. Design and analysis of a personnel blast shield for different explosives applications

    NASA Astrophysics Data System (ADS)

    Lozano, Eduardo

    The use of explosives brings countless benefits to our everyday lives in areas such as mining, oil and gas exploration, demolition, and avalanche control. However, because of the potential destructive power of explosives, strict safety procedures must be an integral part of any explosives operation. The goal of this work is to provide a solution to protect against the hazards that accompany the general use of explosives, specifically in avalanche control. For this reason, a blast shield was designed and tested to protect the Colorado Department of Transportation personnel against these unpredictable effects. This document will develop a complete analysis to answer the following questions: what are the potential hazards from the detonation of high explosives, what are their effects, and how can we protect ourselves against them. To answer these questions theoretical, analytical, and numerical calculations were performed. Finally, a full blast shield prototype was tested under different simulated operational environments proving its effectiveness as safety device. The Colorado Department of Transportation currently owns more than fifteen shields that are used during every operation involving explosive materials.

  15. Radiation health for a Mars mission

    NASA Technical Reports Server (NTRS)

    Robbins, Donald E.

    1992-01-01

    Uncertainties in risk assessments for exposure of a Mars mission crew to space radiation place limitations on mission design and operation. Large shielding penalties are imposed in order to obtain acceptable safety margins. Galactic cosmic rays (GCR) and solar particle events (SPE) are the major concern. A warning system and 'safe-haven' are needed to protect the crew from large SPE which produce lethal doses. A model developed at NASA Johnson Space Center (JSC) to describe solar modulation of GCR intensities reduces that uncertainty to less than 10 percent. Radiation transport models used to design spacecraft shielding have large uncertainties in nuclear fragmentation cross sections for GCR which interact with spacecraft materials. Planned space measurements of linear energy transfer (LET) spectra behind various shielding thicknesses will reduce uncertainties in dose-versus-shielding thickness relationships to 5-10 percent. The largest remaining uncertainty is in biological effects of space radiation. Data on effects of energetic ions in human are nonexistent. Experimental research on effects in animals and cell is needed to allow extrapolation to the risk of carcinogenesis in humans.

  16. Performance of a Haynes 188 metallic standoff thermal protection system at Mach 7

    NASA Technical Reports Server (NTRS)

    Avery, D. E.

    1981-01-01

    A flight weight, metallic thermal protection system (TPS) model applicable to reentry and hypersonic vehicles was subjected to multiple cycles of both radiant and aerothermal heating to evaluate its aerothermal performance and structural integrity. The TPS was designed for a maximum operating temperature of 1255 K and featured a shingled, corrugation stiffened corrugated skin heat shield of Haynes 188, a cobalt base alloy. The model was subjected to 3 radiant preheat/aerothermal tests for a total of 67 seconds and to 15 radiant heating tests for a total of 85.9 minutes at 1255 K. The TPS limited the primary structure to temperatures below 430 K in all tests. No catastrophic failures occurred in the heat shields, supports, or insulation system. The TPS continued to function even after exposure to a differential temperature 4 times the design value produced thermal buckles in the outer skin. The shingled thermal expansion joint effectively allowed for thermal expansion of the heat shield without allowing any appreciable hot gas flow into the model cavity, even though the overlap gap between shields increased after several thermal cycles.

  17. Adjoint acceleration of Monte Carlo simulations using TORT/MCNP coupling approach: a case study on the shielding improvement for the cyclotron room of the Buddhist Tzu Chi General Hospital.

    PubMed

    Sheu, R J; Sheu, R D; Jiang, S H; Kao, C H

    2005-01-01

    Full-scale Monte Carlo simulations of the cyclotron room of the Buddhist Tzu Chi General Hospital were carried out to improve the original inadequate maze design. Variance reduction techniques are indispensable in this study to facilitate the simulations for testing a variety of configurations of shielding modification. The TORT/MCNP manual coupling approach based on the Consistent Adjoint Driven Importance Sampling (CADIS) methodology has been used throughout this study. The CADIS utilises the source and transport biasing in a consistent manner. With this method, the computational efficiency was increased significantly by more than two orders of magnitude and the statistical convergence was also improved compared to the unbiased Monte Carlo run. This paper describes the shielding problem encountered, the procedure for coupling the TORT and MCNP codes to accelerate the calculations and the calculation results for the original and improved shielding designs. In order to verify the calculation results and seek additional accelerations, sensitivity studies on the space-dependent and energy-dependent parameters were also conducted.

  18. A high-temperature furnace for applications in microgravity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Technology in the area of material processing and crystal growth has been greatly furthered by research in microgravity environments. The role of efficient, lightweight furnaces with reliable performance is crucial in these experiments. A need exists for the development of a readily duplicated, high-temperature furnace satisfying stringent weight, volume, and power constraints. A furnace was designed and is referred to as the UAH SHIELD. Stringent physical and operating characteristics for the system were specified, including a maximum weight of 20 kg, a maximum power requirement of 60 W, and a volume of the furnace assembly, excluding the batteries, limited to half a Get-Away-Special canister. The UAH SHIELD furnace uses radiation shield and vacuum technology applied in the form of a series of concentric cylinders enclosed on either end with disks. Thermal testing of a furnace prototype was performed in addition to some thermal and structural analysis. Results indicate the need for spacing of the shields to accommodate the thermal expansion during furnace operation. In addition, a power dissipation of approximately 100 W and system weight of approximately 30 kg was found for the current design.

  19. On Structural Design of a Mobile Lunar Habitat With Multi- Layered Environmental Shielding

    NASA Technical Reports Server (NTRS)

    Pruitt, J. R. (Technical Monitor); Rais-Rohani, M.

    2005-01-01

    This report presents an overview of a Mobile Lunar Habitat (MLH) structural design consisting of advanced composite materials. The habitat design is derived from the cylindrical-shaped U.S. Lab module aboard the International Space Station (ISS) and includes two lateral ports and a hatch at each end that geometrically match those of the ISS Nodes. Thus, several MLH units can be connected together to form a larger lunar outpost of various architectures. For enhanced mobility over the lunar terrain, the MLH uses six articulated insect-like robotic, retractable legs enabling the habitat to .t aboard a launch vehicle. The carbon-composite shell is sandwiched between two layers of hydrogen-rich polyethylene for enhanced radiation shielding. The pressure vessel is covered by modular double-wall panels for meteoroid impact shielding supported by externally mounted stiffeners. The habitat s structure is an assembly of multiple parts manufactured separately and bonded together. Based on the geometric complexity of a part and its material system, an appropriate fabrication process is proposed.

  20. Ground-Based Testing of TiB2 and Al2O3/TiB2 Response to Space Environment

    NASA Technical Reports Server (NTRS)

    Jefferies, Sharon A.; Logan, Kathryn V.

    2007-01-01

    Two materials, titanium diboride and an alumina/titanium diboride composite, exhibit characteristics favorable for use in multiple space applications. These characteristics include low mass (4.52 gm/cc), high strain rate impact resistance, high temperature use (3000oC M.P.), thermal and electrical conductivity, thermal shock resistance, and high visible-range reflectivity. Additionally, the presence of boron in these materials gives them the potential to shield against neutron radiation as well as charged radiation. These materials are flying on MISSE 6 to assess material changes resulting from exposure to the space environment. This study provides a preliminary, ground-based examination of these materials' interactions with individual components of the space environment, in particular atomic oxygen (AO) and neutron radiation, in order to better predict and understand post-flight results. Individual specimens are exposed to ground state AO and surface oxidation is measured. Equivalent exposures of up to 13 months show no rapid oxidation, however evidence indicates some surface oxidation occurring. Other samples are placed near a polyethylene moderated, one Ci Am/Be neutron source to determine their shielding capability. Comparisons between exposed and shielded indium foil, which is activated by transmitted neutrons, measure each material's ability to shield neutrons. Preliminary results indicate a significant shielding benefit provided by both materials.

  1. Hybrid Magnetic Shielding

    NASA Astrophysics Data System (ADS)

    Royal, Kevin; Crawford, Christopher; Mullins, Andrew; Porter, Greg; Blanton, Hunter; Johnstone, Connor; Kistler, Ben; Olivera, Daniela

    2017-09-01

    The search for the electric dipole moment of the neutron requires the ambient magnetic field to be on the pT scale which is accomplished with large magnetic shielding rooms. These rooms are fitted with large mu-metal sheets to allow for passive cancellation of background magnetic fields. Active shielding technology cannot uniformly cancel background magnetic fields. These issues can be remedied by combining the methods into a hybrid system. The design used is composed of panels that have an active layer of cancellation between two sheets of mu-metal. The panels form a cube and draw in magnetic fields perpendicular to the surface which can then be reduced using active shielding. This work is supported by the Department of Energy under Contract DE-SC0008107.

  2. Rapid Analysis of Mass Distribution of Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Zapp, Edward

    2007-01-01

    Radiation Shielding Evaluation Toolset (RADSET) is a computer program that rapidly calculates the spatial distribution of mass of an arbitrary structure for use in ray-tracing analysis of the radiation-shielding properties of the structure. RADSET was written to be used in conjunction with unmodified commercial computer-aided design (CAD) software that provides access to data on the structure and generates selected three-dimensional-appearing views of the structure. RADSET obtains raw geometric, material, and mass data on the structure from the CAD software. From these data, RADSET calculates the distribution(s) of the masses of specific materials about any user-specified point(s). The results of these mass-distribution calculations are imported back into the CAD computing environment, wherein the radiation-shielding calculations are performed.

  3. Application of the Monte Carlo method to the analysis of doses and shielding around an X-ray fluorescence equipment

    NASA Astrophysics Data System (ADS)

    Ródenas, José; Juste, Belén; Gallardo, Sergio; Querol, Andrea

    2017-09-01

    An X-ray fluorescence equipment is used for practical exercises in the laboratory of Nuclear Engineering of the Polytechnic University of Valencia (Spain). This equipment includes a compact X-ray tube, ECLIPSE-III, and a Si-PIN XR-100T detector. The voltage (30 kV), and the current (100 μA) of the tube are low enough so that expected doses around the tube do not represent a risk for students working in the laboratory. Nevertheless, doses and shielding should be evaluated to accomplish the ALARA criterion. The Monte Carlo method has been applied to evaluate the dose rate around the installation provided with a shielding composed by a box of methacrylate. Dose rates calculated are compared with experimental measurements to validate the model. Obtained results show that doses are below allowable limits. Hence, no extra shielding is required for the X-ray beam. A previous Monte Carlo model was also developed to obtain the tube spectrum and validated by comparison with data from manufacturer.

  4. Xenon NMR of liquid crystals confined to cylindrical nanocavities: a simulation study.

    PubMed

    Karjalainen, Jouni; Vaara, Juha; Straka, Michal; Lantto, Perttu

    2015-03-21

    Applications of liquid crystals (LCs), such as smart windows and the ubiquitous display devices, are based on controlling the orientational and translational order in a small volume of LC medium. Hence, understanding the effects of confinement to the liquid crystal phase behaviour is essential. The NMR shielding of (129)Xe atoms dissolved in LCs constitutes a very sensitive probe to the details of LC environment. Linking the experimental results to microscopic phenomena calls for molecular simulations. In this work, the NMR shielding of atomic (129)Xe dissolved in a uniaxial thermotropic LC confined to nanosized cylindrical cavities is computed from coarse-grained (CG) isobaric Monte Carlo (MC) simulations with a quantum-chemically (QC) pre-parameterised pairwise-additive model for the Xe nuclear shielding tensor. We report the results for the (129)Xe nuclear shielding and its connection to the structure and order of the LC appropriate to two different cavity sizes, as well as a comparison to the results of bulk (non-confined) simulations. We find that the confinement changes the LC phase structure dramatically and gives rise to the coexistence of varying degrees of LC order, which is reflected in the Xe shielding. Furthermore, we qualitatively reproduce the behaviour of the mean (129)Xe chemical shift with respect to temperature for atomic Xe dissolved in LC confined to controlled-pore glass materials. In the small-radius cavity the nematic - paranematic phase transition is revealed only by the anisotropic component of the (129)Xe nuclear shielding. In the larger cavity, the nematic - paranematic - isotropic transition is clearly seen in the Xe shielding. The simulated (129)Xe NMR shielding is insensitive to the smectic-A - nematic transition, since in the smectic-A phase, the Xe atoms largely occupy the imperfect layer structure near the cavity walls. The direct contribution of the cavity wall to (129)Xe nuclear shielding is dependent on the cavity size but independent of temperature. Our results show that the combination of CG simulations and a QC pre-parameterised (129)Xe NMR shielding allows efficient studies of the phase behaviour and structure of complex systems containing thousands of molecules, and brings us closer to the simulation of NMR experiments.

  5. Distribution and size of lava shields on the Al Haruj al Aswad and the Al Haruj al Abyad Volcanic Systems, Central Libya

    NASA Astrophysics Data System (ADS)

    Elshaafi, Abdelsalam; Gudmundsson, Agust

    2017-05-01

    The Al Haruj Volcanic Province (AHVP) consists of two distinct volcanic systems. In the north is the system of Al Haruj al Aswad, covering an area of 34,200 km2, while in the south the system of Al Haruj al Abyad, covering an area of 7,850 km2. The systems have produced some 432 monogenetic volcanoes, primarily scoria (cinder) cones, lava shields, and maars. The density distribution of the volcanoes in each system, plotted as eruption points or sites, has a roughly elliptical surface expression, suggesting similar plan-view geometry of the magma sources, here suggested as deep-seated reservoirs. More specifically, the Al Haruj al Aswad magma reservoir has major and minor axes of 210 km and 119 km, respectively, and an area of 19,176 km2, the corresponding figures for the Haruj al Abyad reservoir being 108 km and 74 km, for the axes, and 6209 km2 for the area. We measured 55 lava shields on the AHVP. They are mostly restricted to the northern and southern parts of AHVP and date from late Miocene to (at least) the end of Pleistocene, while some may have been active into Holocene. In fact, although primarily monogenetic, some of the lava shields show evidence of (possibly Holocene) fissure eruptions in the summit parts. The early lava shields tend to be located at the edges of volcanic systems and with greater volumes than later (more central) shields. The average lava shield basal diameter is 4.5 km and height 63 m. There is strong linear correlation between lava shield volume and basal area, the coefficient of determination (R2) being about 0.75. When 22 Holocene Icelandic lava shields are added to the dataset, for comparison, the correlation between volume and basal area becomes R2 = 0.95. Numerical models suggest that the local stress fields favoured rupture and dyke injection at the margins of the source reservoirs during late Miocene - early Pliocene, in agreement with the distribution of the early, large-volume shields.

  6. Plasma Shield for In-Air and Under-Water Beam Processes

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2007-11-01

    As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.

  7. PWR upper/lower internals shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homyk, W.A.

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use ofmore » lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.« less

  8. Computer aided radiation analysis for manned spacecraft

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew H.; Griffin, Brand N.; Tanner, Ernest R., II; Pogue, William R.; Golightly, Michael J.

    1991-01-01

    In order to assist in the design of radiation shielding an analytical tool is presented that can be employed in combination with CAD facilities and NASA transport codes. The nature of radiation in space is described, and the operational requirements for protection are listed as background information for the use of the technique. The method is based on the Boeing radiation exposure model (BREM) for combining NASA radiation transport codes and CAD facilities, and the output is given as contour maps of the radiation-shield distribution so that dangerous areas can be identified. Computational models are used to solve the 1D Boltzmann transport equation and determine the shielding needs for the worst-case scenario. BREM can be employed directly with the radiation computations to assess radiation protection during all phases of design which saves time and ultimately spacecraft weight.

  9. Effect of curing condition on the concrete moisture retention and its shielding implication for the design of fusion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, S.; Chang, J.; Amin, S.

    1981-01-01

    Teste were conducted to determine the moisture retention for the 0.5 wt% borated concrete under three curing conditions. The three curing conditions are (1) curing at 100% relative humidity for a 28-day period at 21/degree/C, (2) curing at 100% relative humidity for a 7-day period, then at air-dry 50% relative humidity for the remaining 28-day curing period at 21/degree/C, and (3) curing at 100% relative humidity for a period of 7 days and then curing at air-dry 20% relative humidity for the remaining curing period at 21/degree/C. The concrete shielding curves are presented for several mositure contents. The results shouldmore » be helpful to assist the design of a cost effective concrete shield for fusion facilities.« less

  10. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2015-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test predictions. This paper documents the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  11. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    NASA Astrophysics Data System (ADS)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  12. A Deterministic Transport Code for Space Environment Electrons

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.

    2010-01-01

    A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.

  13. SHIELD and HZETRN comparisons of pion production cross sections

    NASA Astrophysics Data System (ADS)

    Norbury, John W.; Sobolevsky, Nikolai; Werneth, Charles M.

    2018-03-01

    A program of comparing American (NASA) and Russian (ROSCOSMOS) space radiation transport codes has recently begun, and the first paper directly comparing the NASA and ROSCOSMOS space radiation transport codes, HZETRN and SHIELD respectively has recently appeared. The present work represents the second time that NASA and ROSCOSMOS calculations have been directly compared, and the focus here is on models of pion production cross sections used in the two transport codes mentioned above. It was found that these models are in overall moderate agreement with each other and with experimental data. Disagreements that were found are discussed.

  14. Prediction and measurement of radiation damage to CMOS devices on board spacecraft

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.; Danchenko, V.; Stassinopoulos, E. G.; Sing, M.; Brucker, G. J.; Ohanian, R. S.

    1976-01-01

    The initial results obtained from the Complementary Metal Oxide Semiconductors Radiation Effects Measurement experiment are presented. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on the ground simulation experiment with Co 60, indicated that the measured space damage is greater than predicted by a factor of two for shields thicker than 100 mils (2.54 mm), but agrees well with predictions for the thinner shields.

  15. Radiation Engineering Analysis of Shielding Materials to Assess Their Ability to Protect Astronauts in Deep Space From Energetic Particle Radiation

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C.

    2013-01-01

    An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.

  16. Radiation Protection for Lunar Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Nealy, John E.; Wilson, John W.; Anderson, Brooke M.; Anderson, Mark S.; Krizan, Shawn A.

    2005-01-01

    Preliminary analyses of shielding requirements to protect astronauts from the harmful effects of radiation on both short-term and long-term lunar missions have been performed. Shielding needs for both solar particle events (SPEs) and galactic cosmic ray (GCR) exposure are discussed for transit vehicles and surface habitats. This work was performed under the aegis of two NASA initiatives. The first study was an architecture trade study led by Langley Research Center (LaRC) in which a broad range of vehicle types and mission scenarios were compared. The radiation analysis for this study primarily focused on the additional shielding mass required to protect astronauts from the rare occurrence of a large SPE. The second study, led by Johnson Space Center (JSC), involved the design of lunar habitats. Researchers at LaRC were asked to evaluate the changes to mission architecture that would be needed if the surface stay were lengthened from a shorter mission duration of 30 to 90 days to a longer stay of 500 days. Here, the primary radiation concern was GCR exposure. The methods used for these studies as well as the resulting shielding recommendations are discussed. Recommendations are also made for more detailed analyses to minimize shielding mass, once preliminary vehicle and habitat designs have been completed. Here, methodologies are mapped out and available radiation analysis tools are described. Since, as yet, no dosimetric limits have been adopted for missions beyond low earth orbit (LEO), radiation exposures are compared to LEO limits. Uncertainties associated with the LEO career effective dose limits and the effects of lowering these limits on shielding mass are also discussed.

  17. Poster — Thur Eve — 26: Evaluation of lens dose from anterior electron beams: comparison of Pinnacle and Gafchromic EBT3 film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanier, M; Wronski, M; Yeboah, C

    The purpose of this work is twofold: 1) to measure dose profiles under lead shielding at the level of the lens for a range of clinical electron energies via film dosimetry; and, 2) to assess the validity of the Pinnacle treatment planning system (TPS) in calculating the penumbral doses under lead shielding with the heterogeneous electron algorithm. First, a film calibration curve that spanned the electron energies of interest, 6–18MeV, was created. Next, EBT3 film and lead shielding were incorporated into a solid water phantom with the film positioned 7mm below the lead and a variable thickness of bolus onmore » top. This geometry was reproduced in the Pinnacle TPS and used to calculate dose profiles using the heterogeneous electron algorithm. The measured vs. calculated dose profiles were normalized to d{sub max} in a homogeneous phantom with no lead shielding and compared. Pinnacle consistently overestimated the dose distal to the lead shielding with significant discrepancies occurring near the edge of the lead shield reaching 25% at the edge and 35% in the open field region. The film measurements showed that a minimum lead margin of 5mm extending beyond the diameter of the lens is required to adequately shield the lens to ≤10% of the dose at d{sub max}. These measurements allow for a reasonable estimate of the dose to the lens from anterior electron beams. They also allow for clinicians to assess the extent of the lead margin required to reduce the lens dose to an acceptable amount prior to radiotherapy treatment.« less

  18. Comparison of Some Radiation Exposures to Mars-Trip Level

    NASA Image and Video Library

    2013-05-30

    This graphic compares the radiation dose equivalent for several types of experiences, including a calculation for a trip from Earth to Mars based on measurements made by the RAD instrument shielded inside NASA Mars Science Laboratory spacecraft.

  19. Double-layer rotor magnetic shield performance analysis in high temperature superconducting synchronous generators under short circuit fault conditions

    NASA Astrophysics Data System (ADS)

    Hekmati, Arsalan; Aliahmadi, Mehdi

    2016-12-01

    High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.

  20. Monte carlo simulation of innovative neutron and photon shielding material composing of high density concrete, waste rubber, lead and boron carbide

    NASA Astrophysics Data System (ADS)

    Aim-O, P.; Wongsawaeng, D.; Phruksarojanakun, P.; Tancharakorn, S.

    2017-06-01

    High-density concrete exhibits high strength and can perform an important role of gamma ray attenuation. In order to upgrade this material’s radiation-shielding performance, hydrogen-rich material can be incorporated. Waste rubber from vehicles has high hydrogen content which is the prominent characteristic to attenuate neutron. The objective of this work was to evaluate the radiation-shielding properties of this composite material against neutron and photon radiations. Monte Carlo transport simulation was conducted to simulate radiation through the composite material. Am-241/Be was utilized for neutron source and Co-60 for photon source. Parameters of the study included volume percentages of waste rubber, lead and boron carbide and thickness of the shielding material. These designs were also fabricated and the radiation shielding properties were experimentally evaluated. The best neutron and gamma ray shielding material was determined to be high-density concrete mixed with 5 vol% crumb rubber and 5 vol% lead powder. This shielding material increased the neutron attenuation by 64% and photon attenuation by 68% compared to ordinary concrete. Also, increasing the waste rubber content to greater than 5% resulted in a decrease in the radiation attenuation. This innovative composite radiation shielding material not only benefits nuclear science and engineering applications, but also helps solve the environmental issue of waste rubber.

Top