Science.gov

Sample records for shielding calculation methods

  1. Validation of source biasing method for its use in CSNS beamline shielding calculation.

    PubMed

    Liang, Tai-ran; Shen, Fei; Liang, Tian-jiao; Yin, Wen; Yu, Quan-zhi; Yu, Chun-xu

    2014-12-01

    The Chinese spallation neutron source (CSNS) is a high-performance pulsed neutron source, having 20 neutron beamlines for neutron scattering instruments. The shielding design of these beamlines is usually needed for Monte Carlo (MC) calculation, and the use of variance reduction methods is critical to carrying out an efficient, reliable MC shielding calculation. This paper discusses the source biasing method based on actual source term and geometry model of a CSNS neutron beamline. Dose distribution throughout the geometry model was calculated with the FLUKA MC code. Full analogue calculation and biased calculation were compared, and it was validated that the source biasing method can effectively promote the calculation efficiency.

  2. Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method.

    PubMed

    Beer, Matthias; Kussmann, Jörg; Ochsenfeld, Christian

    2011-02-21

    An ab initio method for the direct calculation of NMR shieldings for selected nuclei at the Hartree-Fock and density-functional theory level is presented. Our method shows a computational effort scaling only sublinearly with molecular size, as it is motivated by the physical consideration that the chemical shielding is dominated by its local environment. The key feature of our method is to avoid the conventionally performed calculation of all NMR shieldings but instead to solve directly for specific nuclear shieldings. This has important implications not only for the study of large molecules, but also for the simulation of solvent effects and molecular dynamics, since often just a few shieldings are of interest. Our theory relies on two major aspects both necessary to provide a sublinear scaling behavior: First, an alternative expression for the shielding tensor is derived, which involves the response density matrix with respect to the nuclear magnetic moment instead of the response to the external magnetic field. Second, as unphysical long-range contributions occur within the description of distributed gauge origin methods that do not influence the final expectation value, we present a screening procedure to truncate the B-field dependent basis set, which is crucial in order to ensure an early onset of the sublinear scaling. The screening is in line with the r(-2) distance decay of Biot-Savarts law for induced magnetic fields. Our present truncation relies on the introduced concept of "individual gauge shielding contributions" applied to a reformulated shielding tensor, the latter consisting of gauge-invariant terms. The presented method is generally applicable and shows typical speed-ups of about one order of magnitude; moreover, due to the reduced scaling behavior of O(1) as compared to O(N), the wins become larger with increasing system size. We illustrate the validity of our method for several test systems, including ring-current dominated systems and

  3. Synthesis of calculational methods for design and analysis of radiation shields for nuclear rocket systems

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.

    1969-01-01

    Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.

  4. SU-E-T-569: Neutron Shielding Calculation Using Analytical and Multi-Monte Carlo Method for Proton Therapy Facility

    SciTech Connect

    Cho, S; Shin, E H; Kim, J; Ahn, S H; Chung, K; Kim, D-H; Han, Y; Choi, D H

    2015-06-15

    Purpose: To evaluate the shielding wall design to protect patients, staff and member of the general public for secondary neutron using a simply analytic solution, multi-Monte Carlo code MCNPX, ANISN and FLUKA. Methods: An analytical and multi-Monte Carlo method were calculated for proton facility (Sumitomo Heavy Industry Ltd.) at Samsung Medical Center in Korea. The NCRP-144 analytical evaluation methods, which produced conservative estimates on the dose equivalent values for the shielding, were used for analytical evaluations. Then, the radiation transport was simulated with the multi-Monte Carlo code. The neutron dose at evaluation point is got by the value using the production of the simulation value and the neutron dose coefficient introduced in ICRP-74. Results: The evaluation points of accelerator control room and control room entrance are mainly influenced by the point of the proton beam loss. So the neutron dose equivalent of accelerator control room for evaluation point is 0.651, 1.530, 0.912, 0.943 mSv/yr and the entrance of cyclotron room is 0.465, 0.790, 0.522, 0.453 mSv/yr with calculation by the method of NCRP-144 formalism, ANISN, FLUKA and MCNP, respectively. The most of Result of MCNPX and FLUKA using the complicated geometry showed smaller values than Result of ANISN. Conclusion: The neutron shielding for a proton therapy facility has been evaluated by the analytic model and multi-Monte Carlo methods. We confirmed that the setting of shielding was located in well accessible area to people when the proton facility is operated.

  5. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method.

    PubMed

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-07

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σiso is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)(3) (M: number of basis functions).

  6. Background simulations and shielding calculations

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Vitaly A.

    2011-04-01

    Key improvements in the sensitivity of the underground particle astrophysics experiments can only be achieved if the radiation causing background events in detectors is well understood and proper measures are taken to suppress it. The background radiation arising from radioactivity and cosmic-ray muons is discussed here together with the methods of its suppression. Different shielding designs are considered to attenuate gamma-rays and neutrons coming from radioactivity in rock and lab walls. Purity of materials used in detector construction is analysed and the background event rates due to the presence of radioactive isotopes in detector components are discussed. Event rates in detectors caused by muon-induced neutrons with and without active veto systems are presented leading to the requirements for the depth of an underground laboratory and the efficiency of the veto system.

  7. RZ calculations for self shielded multigroup cross sections

    SciTech Connect

    Li, M.; Sanchez, R.; Zmijarevic, I.; Stankovski, Z.

    2006-07-01

    A collision probability method has been implemented for RZ geometries. The method accounts for white albedo, specular and translation boundary condition on the top and bottom surfaces of the geometry and for a white albedo condition on the outer radial surface. We have applied the RZ CP method to the calculation of multigroup self shielded cross sections for Gadolinia absorbers in BWRs. (authors)

  8. A linear- and sublinear-scaling method for calculating NMR shieldings in atomic orbital-based second-order Møller-Plesset perturbation theory.

    PubMed

    Maurer, Marina; Ochsenfeld, Christian

    2013-05-07

    An atomic-orbital (AO) based formulation for calculating nuclear magnetic resonance chemical shieldings at the second-order Møller-Plesset perturbation theory level is introduced, which provides a basis for reducing the scaling of the computational effort with the molecular size from the fifth power to linear and for a specific nucleus to sublinear. The latter sublinear scaling in the rate-determining steps becomes possible by avoiding global perturbations with respect to the magnetic field and by solving for quantities that involve the local nuclear magnetic spin perturbation instead. For avoiding the calculation of the second-order perturbed density matrix, we extend our AO-based reformulation of the Z-vector method within a density matrix-based scheme. Our pilot implementation illustrates the fast convergence with respect to the required number of Laplace points and the asymptotic scaling behavior in the rate-determining steps.

  9. Thermal neutron shield and method of manufacture

    DOEpatents

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  10. Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data

    SciTech Connect

    Zourari, K.; Peppa, V.; Papagiannis, P.; Ballester, Facundo; Siebert, Frank-André

    2014-04-15

    Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 20–1090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (20–1090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [“Diagnostic x-ray shielding design based on an empirical model of photon attenuation,” Health Phys. 44, 507–517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [“Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities,” Med. Phys. 34, 1398–1404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions

  11. Thermal neutron shield and method of manufacture

    SciTech Connect

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  12. Comparison of deterministic and Monte Carlo methods in shielding design.

    PubMed

    Oliveira, A D; Oliveira, C

    2005-01-01

    In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions.

  13. Shielding calculations for a production target for secondary beams

    SciTech Connect

    Rehm, K.E.; Back, B.B.; Jiang, C.L.

    1995-08-01

    In order to estimate the amount of shielding required for a radioactive beam facility dose rate were performed. The calculations for production targets with different geometries were performed. The calculations were performed with the MSU shielding code assuming a 500-p{mu}A 200-MeV deuteron beam stopped in a thick Al target. The target and the ion-optical elements for beam extraction are located in a 2 m{sup 3} large volume at the center of the production cell. These dose rate calculations show that with a combination of Fe and concrete it is possible to reduce the dose rate expected at the surface of a 7-m-wide cube housing the production target to less than 2 mrem/hr.

  14. Reliability Methods for Shield Design Process

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.

    2002-01-01

    Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space operations. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. An important component of this technology is the estimation of two most commonly identified uncertainties in radiation shield design, the shielding properties of materials used and the understanding of the biological response of the astronaut to the radiation leaking through the materials into the living space. The largest uncertainty, of course, is in the biological response to especially high charge and energy (HZE) ions of the galactic cosmic rays. These uncertainties are blended with the optimization design procedure to formulate reliability-based methods for shield design processes. The details of the methods will be discussed.

  15. Spacesuit Radiation Shield Design Methods

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Anderson, Brooke M.; Cucinotta, Francis A.; Ware, J.; Zeitlin, Cary J.

    2006-01-01

    Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable. Transition to a new spacesuit design including soft upper-torso and reconfigured life support hardware gives an opportunity to optimize the next generation spacesuit for reduced potential health effects during an accidental exposure.

  16. SUBGR: A Program to Generate Subgroup Data for the Subgroup Resonance Self-Shielding Calculation

    SciTech Connect

    Kim, Kang Seog

    2016-06-06

    The Subgroup Data Generation (SUBGR) program generates subgroup data, including levels and weights from the resonance self-shielded cross section table as a function of background cross section. Depending on the nuclide and the energy range, these subgroup data can be generated by (a) narrow resonance approximation, (b) pointwise flux calculations for homogeneous media; and (c) pointwise flux calculations for heterogeneous lattice cells. The latter two options are performed by the AMPX module IRFFACTOR. These subgroup data are to be used in the Consortium for Advanced Simulation of Light Water Reactors (CASL) neutronic simulator MPACT, for which the primary resonance self-shielding method is the subgroup method.

  17. Development of a New Shielding Model for JB-Line Dose Rate Calculations

    SciTech Connect

    Buckner, M.R.

    2001-08-09

    This report describes the shielding model development for the JB-Line Upgrade project. The product of this effort is a simple-to-use but accurate method of estimating the personnel dose expected for various operating conditions on the line. The current techniques for shielding calculations use transport codes such as ANISN which, while accurate for geometries which can be accurately approximated as one dimensional slabs, cylinders or spheres, fall short in calculating configurations in which two-or three-dimensional effects (e.g., streaming) play a role in the dose received by workers.

  18. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    NASA Astrophysics Data System (ADS)

    de Wijs, G. A.; Laskowski, R.; Blaha, P.; Havenith, R. W. A.; Kresse, G.; Marsman, M.

    2017-02-01

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  19. Methods of Making Z-Shielding

    NASA Technical Reports Server (NTRS)

    Thomsen, III, Donald Laurence (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor)

    2014-01-01

    Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.

  20. Calculation of an optimized design of magnetic shields with integrated demagnetization coils

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Schnabel, A.; Burghoff, M.; Li, L.

    2016-07-01

    Magnetic shielding made from permalloy is frequently used to provide a time-stable magnetic field environment. A low magnetic field and low field gradients inside the shield can be obtained by using demagnetization coils through the walls, encircling edges of the shield. We first introduce and test the computational models to calculate magnetic properties of large size shields with thin shielding walls. We then vary the size, location and shape of the openings for the demagnetization coils at the corners of a cubic shield. It turns out that the effect on the shielding factor and the expected influence on the residual magnetic field homogeneity in the vicinity of the center of the shield is negligible. Thus, a low-cost version for the openings can be chosen and their size could be enlarged to allow for additional cables and easier handling. A construction of a shield with beveled edges and open corners turned out to substantially improve the shielding factor.

  1. Temperature effects in first-principles solid state calculations of the chemical shielding tensor made simple

    SciTech Connect

    Monserrat, Bartomeu Needs, Richard J.; Pickard, Chris J.

    2014-10-07

    We study the effects of atomic vibrations on the solid-state chemical shielding tensor using first principles density functional theory calculations. At the harmonic level, we use a Monte Carlo method and a perturbative expansion. The Monte Carlo method is accurate but computationally expensive, while the perturbative method is computationally more efficient, but approximate. We find excellent agreement between the two methods for both the isotropic shift and the shielding anisotropy. The effects of zero-point quantum mechanical nuclear motion are important up to relatively high temperatures: at 500 K they still represent about half of the overall vibrational contribution. We also investigate the effects of anharmonic vibrations, finding that their contribution to the zero-point correction to the chemical shielding tensor is small. We exemplify these ideas using magnesium oxide and the molecular crystals L-alanine and β-aspartyl-L-alanine. We therefore propose as the method of choice to incorporate the effects of temperature in solid state chemical shielding tensor calculations using the perturbative expansion within the harmonic approximation. This approach is accurate and requires a computational effort that is about an order of magnitude smaller than that of dynamical or Monte Carlo approaches, so these effects might be routinely accounted for.

  2. Temperature effects in first-principles solid state calculations of the chemical shielding tensor made simple

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Needs, Richard J.; Pickard, Chris J.

    2014-10-01

    We study the effects of atomic vibrations on the solid-state chemical shielding tensor using first principles density functional theory calculations. At the harmonic level, we use a Monte Carlo method and a perturbative expansion. The Monte Carlo method is accurate but computationally expensive, while the perturbative method is computationally more efficient, but approximate. We find excellent agreement between the two methods for both the isotropic shift and the shielding anisotropy. The effects of zero-point quantum mechanical nuclear motion are important up to relatively high temperatures: at 500 K they still represent about half of the overall vibrational contribution. We also investigate the effects of anharmonic vibrations, finding that their contribution to the zero-point correction to the chemical shielding tensor is small. We exemplify these ideas using magnesium oxide and the molecular crystals L-alanine and β-aspartyl-L-alanine. We therefore propose as the method of choice to incorporate the effects of temperature in solid state chemical shielding tensor calculations using the perturbative expansion within the harmonic approximation. This approach is accurate and requires a computational effort that is about an order of magnitude smaller than that of dynamical or Monte Carlo approaches, so these effects might be routinely accounted for.

  3. MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model

    NASA Technical Reports Server (NTRS)

    James, Michael R.; Durkee, Joe W.; McKinney, Gregg; Singleterry Robert

    2008-01-01

    The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom.

  4. BAC: A computer program for calculating shielding in buildings against initial radiation

    NASA Astrophysics Data System (ADS)

    Danielson, G.

    1980-10-01

    Calculation methodology and transmission data for BAC in the event of a nuclear explosion are considered. The shielding factor is the rate between the radiation dose at one point in the building and the dose in open air. It is separately calculated for neutrons, gamma rays from fission products, and secondary gamma rays. For this calculation, BAC uses data for radiation transmission in concrete. This program is utilized for fallout shelters and other buildings where walls and floors/roofs are mostly made of concrete and bricks. Instructions for the program are given, and BAC results and values are in certain cases compared with those obtained with the Monte Carlo method.

  5. Standardized Radiation Shield Design Methods: 2005 HZETRN

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.

    2006-01-01

    Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.

  6. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.; Clem, J.R.

    1983-10-11

    Disclosed are a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped. 5 figs.

  7. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.

    1982-07-09

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  8. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, John R.; Clem, John R.

    1983-01-01

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  9. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Malkina, Olga L; Malkin, Vladimir G

    2013-12-27

    A four-component relativistic method for the calculation of NMR shielding constants of paramagnetic doublet systems has been developed and implemented in the ReSpect program package. The method uses a Kramer unrestricted noncollinear formulation of density functional theory (DFT), providing the best DFT framework for property calculations of open-shell species. The evaluation of paramagnetic nuclear magnetic resonance (pNMR) tensors reduces to the calculation of electronic g tensors, hyperfine coupling tensors, and NMR shielding tensors. For all properties, modern four-component formulations were adopted. The use of both restricted kinetically and magnetically balanced basis sets along with gauge-including atomic orbitals ensures rapid basis-set convergence. These approaches are exact in the framework of the Dirac-Coulomb Hamiltonian, thus providing useful reference data for more approximate methods. Benchmark calculations on Ru(III) complexes demonstrate good performance of the method in reproducing experimental data and also its applicability to chemically relevant medium-sized systems. Decomposition of the temperature-dependent part of the pNMR tensor into the traditional contact and pseudocontact terms is proposed.

  10. NMR Shielding in Metals Using the Augmented Plane Wave Method

    PubMed Central

    2015-01-01

    We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148

  11. Comparison of dose calculation algorithms for colorectal cancer brachytherapy treatment with a shielded applicator

    SciTech Connect

    Yan Xiangsheng; Poon, Emily; Reniers, Brigitte; Vuong, Te; Verhaegen, Frank

    2008-11-15

    Colorectal cancer patients are treated at our hospital with {sup 192}Ir high dose rate (HDR) brachytherapy using an applicator that allows the introduction of a lead or tungsten shielding rod to reduce the dose to healthy tissue. The clinical dose planning calculations are, however, currently performed without taking the shielding into account. To study the dose distributions in shielded cases, three techniques were employed. The first technique was to adapt a shielding algorithm which is part of the Nucletron PLATO HDR treatment planning system. The isodose pattern exhibited unexpected features but was found to be a reasonable approximation. The second technique employed a ray tracing algorithm that assigns a constant dose ratio with/without shielding behind the shielding along a radial line originating from the source. The dose calculation results were similar to the results from the first technique but with improved accuracy. The third and most accurate technique used a dose-matrix-superposition algorithm, based on Monte Carlo calculations. The results from the latter technique showed quantitatively that the dose to healthy tissue is reduced significantly in the presence of shielding. However, it was also found that the dose to the tumor may be affected by the presence of shielding; for about a quarter of the patients treated the volume covered by the 100% isodose lines was reduced by more than 5%, leading to potential tumor cold spots. Use of any of the three shielding algorithms results in improved dose estimates to healthy tissue and the tumor.

  12. Ab initio calculation of the NMR shielding constants for histamine

    NASA Astrophysics Data System (ADS)

    Mazurek, A. P.; Dobrowolski, J. Cz.; Sadlej, J.

    1997-12-01

    The gage-independent atomic orbital (GIAO) approach is used within the coupled Hartree-Fock approximation to compute the 1H, 13C and 15N NMR shielding constants in two tautomeric forms of both the histamine molecule and its protonated form. An analysis of the results shows that the protonation on the end of the chain changes its nitrogen shielding constants of the pyridine and pyrrole type. These changes are much higher for the N(3)-H than for the N(1)-H tautomer.

  13. MO-D-213-07: RadShield: Semi- Automated Calculation of Air Kerma Rate and Barrier Thickness

    SciTech Connect

    DeLorenzo, M; Wu, D; Rutel, I; Yang, K

    2015-06-15

    Purpose: To develop the first Java-based semi-automated calculation program intended to aid professional radiation shielding design. Air-kerma rate and barrier thickness calculations are performed by implementing NCRP Report 147 formalism into a Graphical User Interface (GUI). The ultimate aim of this newly created software package is to reduce errors and improve radiographic and fluoroscopic room designs over manual approaches. Methods: Floor plans are first imported as images into the RadShield software program. These plans serve as templates for drawing barriers, occupied regions and x-ray tube locations. We have implemented sub-GUIs that allow the specification in regions and equipment for occupancy factors, design goals, number of patients, primary beam directions, source-to-patient distances and workload distributions. Once the user enters the above parameters, the program automatically calculates air-kerma rate at sampled points beyond all barriers. For each sample point, a corresponding minimum barrier thickness is calculated to meet the design goal. RadShield allows control over preshielding, sample point location and material types. Results: A functional GUI package was developed and tested. Examination of sample walls and source distributions yields a maximum percent difference of less than 0.1% between hand-calculated air-kerma rates and RadShield. Conclusion: The initial results demonstrated that RadShield calculates air-kerma rates and required barrier thicknesses with reliable accuracy and can be used to make radiation shielding design more efficient and accurate. This newly developed approach differs from conventional calculation methods in that it finds air-kerma rates and thickness requirements for many points outside the barriers, stores the information and selects the largest value needed to comply with NCRP Report 147 design goals. Floor plans, parameters, designs and reports can be saved and accessed later for modification and recalculation

  14. MORSE Monte Carlo shielding calculations for the zirconium hydride reference reactor

    NASA Technical Reports Server (NTRS)

    Burgart, C. E.

    1972-01-01

    Verification of DOT-SPACETRAN transport calculations of a lithium hydride and tungsten shield for a SNAP reactor was performed using the MORSE (Monte Carlo) code. Transport of both neutrons and gamma rays was considered. Importance sampling was utilized in the MORSE calculations. Several quantities internal to the shield, as well as dose at several points outside of the configuration, were in satisfactory agreement with the DOT calculations of the same.

  15. Ab initio calculation of Ti NMR shieldings for titanium oxides and halides

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    Titanium NMR shielding constants have been calculated using ab initio coupled Hartree-Fock perturbation theory and polarized double-zeta basis sets for TiF 4, TiF 62-, TiCI 4, Ti(OH) 4, Ti(OH 2) 64+, Ti(OH) 4O, and Ti(OH) 3O -. In all cases the calculations were performed at Hartree-Fuck energy-optimized geometries. For Ti(OH) 4 a S4-symmetry geometry with nonlinear ∠ TiOH was employed. Relative shieldings are in reasonable agreement with experiment for TiF 62-, TiCI 4, and Ti(OR) 4, where R = H or alkyl. Ti(OH 2) 64+ is predicted to be more highly shielded than Ti(OH) 4 by about 340 ppm. The five-coordinate complex Ti(OH) 4O, whose calculated structure matches well that measured by extended X-ray absorption fine structure in K 2O · TiO 2 · SiO 2 glass, is actually deshielded compared to Ti(OH) 4 by about 40 ppm. X-ray absorption-near-edge spectral energies have also been calculated for TiF 4, TiCI 4, Ti(OH) 4, and Ti(OH) 4O using an equivalent ionic core virtual-orbital method and the observed reduction in term energy for the five-coordinate species compared to Ti(OH) 4 has been reproduced. Replacement of the H atoms in Ti(OH) 4 by point charges has only a slight effect upon σTi, suggesting a possible means of incorporating second-neighbor effects in NMR calculations for condensed phases.

  16. Shielded beam delivery apparatus and method

    DOEpatents

    Hershcovitch, Ady; Montano, Rory Dominick

    2006-07-11

    An apparatus includes a plasma generator aligned with a beam generator for producing a plasma to shield an energized beam. An electrode is coaxially aligned with the plasma generator and followed in turn by a vortex generator coaxially aligned with the electrode. A target is spaced from the vortex generator inside a fluid environment. The electrode is electrically biased relative to the electrically grounded target for driving the plasma toward the target inside a vortex shield.

  17. Efficient heterogeneous execution of Monte Carlo shielding calculations on a Beowulf cluster.

    PubMed

    Dewar, David; Hulse, Paul; Cooper, Andrew; Smith, Nigel

    2005-01-01

    Recent work has been done in using a high-performance 'Beowulf' cluster computer system for the efficient distribution of Monte Carlo shielding calculations. This has enabled the rapid solution of complex shielding problems at low cost and with greater modularity and scalability than traditional platforms. The work has shown that a simple approach to distributing the workload is as efficient as using more traditional techniques such as PVM (Parallel Virtual Machine). In addition, when used in an operational setting this technique is fairer with the use of resources than traditional methods, in that it does not tie up a single computing resource but instead shares the capacity with other tasks. These developments in computing technology have enabled shielding problems to be solved that would have taken an unacceptably long time to run on traditional platforms. This paper discusses the BNFL Beowulf cluster and a number of tests that have recently been run to demonstrate the efficiency of the asynchronous technique in running the MCBEND program. The BNFL Beowulf currently consists of 84 standard PCs running RedHat Linux. Current performance of the machine has been estimated to be between 40 and 100 Gflop s(-1). When the whole system is employed on one problem up to four million particles can be tracked per second. There are plans to review its size in line with future business needs.

  18. Shielding analysis methods available in the scale computational system

    SciTech Connect

    Parks, C.V.; Tang, J.S.; Hermann, O.W.; Bucholz, J.A.; Emmett, M.B.

    1986-01-01

    Computational tools have been included in the SCALE system to allow shielding analysis to be performed using both discrete-ordinates and Monte Carlo techniques. One-dimensional discrete ordinates analyses are performed with the XSDRNPM-S module, and point dose rates outside the shield are calculated with the XSDOSE module. Multidimensional analyses are performed with the MORSE-SGC/S Monte Carlo module. This paper will review the above modules and the four Shielding Analysis Sequences (SAS) developed for the SCALE system. 7 refs., 8 figs.

  19. Calculation of the BREN Japanese House Shielding Experiments.

    DTIC Science & Technology

    1983-08-22

    Radiation Effects Re- 8 search Foundation ( RERF ) data bases, such as Life Span Study (LSS), have been compiled from interviews and placed in shielding...vial . ." with-MORSE. Th- Uodel contins he goun and ai surounin .h struc- k’"’ ture inie h lekaesufae of hecylnd. Th djit fulto comne’tth eetrloaini...the T65D system to provide the doses at all ground ranges used by RERF . For small Ar, we can write 0(r) - 0(r+Ar) Ar1 (26) The relaxation length is on

  20. Radiation predictions and shielding calculations for RITS-6

    SciTech Connect

    Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick; Fan, Wesley C.; Bollinger, Lance

    2005-06-01

    The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electron beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access

  1. Calculations of cosmic-ray helium transport in shielding materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1993-01-01

    The transport of galactic cosmic-ray helium nuclei and their secondaries through bulk shielding is considered using the straight-ahead approximation to the Boltzmann equation. A data base for nuclear interaction cross sections and secondary particle energy spectra for high-energy light-ion breakup is presented. The importance of the light ions H-2, H-3, and He-3 for cosmic-ray risk estimation is discussed, and the estimates of the fractional contribution to the neutron flux from helium interactions compared with other particle interactions are presented using a 1977 solar minimum cosmic-ray spectrum.

  2. Application of automated weight windows to spallation neutron source shielding calculations using Geant4

    NASA Astrophysics Data System (ADS)

    Stenander, John; DiJulio, Douglas D.

    2015-10-01

    We present an implementation of a general weight-window generator for global variance reduction in Geant4 based applications. The implementation is flexible and can be easily adjusted to a user-defined model. In this work, the weight-window generator was applied to calculations based on an instrument shielding model of the European Spallation Source, which is currently under construction in Lund, Sweden. The results and performance of the implemented methods were evaluated through the definition of two figures of merit. It was found that the biased simulations showed an overall improvement in performance compared to the unbiased simulations. The present work demonstrates both the suitability of the generator method and Geant4 for these types of calculations.

  3. NASA-Lewis experiences with multigroup cross sections and shielding calculations

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.

  4. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  5. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  6. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified.

  7. Hybrid Monte Carlo/deterministic methods for radiation shielding problems

    NASA Astrophysics Data System (ADS)

    Becker, Troy L.

    For the past few decades, the most common type of deep-penetration (shielding) problem simulated using Monte Carlo methods has been the source-detector problem, in which a response is calculated at a single location in space. Traditionally, the nonanalog Monte Carlo methods used to solve these problems have required significant user input to generate and sufficiently optimize the biasing parameters necessary to obtain a statistically reliable solution. It has been demonstrated that this laborious task can be replaced by automated processes that rely on a deterministic adjoint solution to set the biasing parameters---the so-called hybrid methods. The increase in computational power over recent years has also led to interest in obtaining the solution in a region of space much larger than a point detector. In this thesis, we propose two methods for solving problems ranging from source-detector problems to more global calculations---weight windows and the Transform approach. These techniques employ sonic of the same biasing elements that have been used previously; however, the fundamental difference is that here the biasing techniques are used as elements of a comprehensive tool set to distribute Monte Carlo particles in a user-specified way. The weight window achieves the user-specified Monte Carlo particle distribution by imposing a particular weight window on the system, without altering the particle physics. The Transform approach introduces a transform into the neutron transport equation, which results in a complete modification of the particle physics to produce the user-specified Monte Carlo distribution. These methods are tested in a three-dimensional multigroup Monte Carlo code. For a basic shielding problem and a more realistic one, these methods adequately solved source-detector problems and more global calculations. Furthermore, they confirmed that theoretical Monte Carlo particle distributions correspond to the simulated ones, implying that these methods

  8. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    SciTech Connect

    T. Downar

    2009-03-31

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system.

  9. Evaluation of approximate methods for the prediction of noise shielding by airframe components

    NASA Technical Reports Server (NTRS)

    Ahtye, W. F.; Mcculley, G.

    1980-01-01

    An evaluation of some approximate methods for the prediction of shielding of monochromatic sound and broadband noise by aircraft components is reported. Anechoic-chamber measurements of the shielding of a point source by various simple geometric shapes were made and the measured values compared with those calculated by the superposition of asymptotic closed-form solutions for the shielding by a semi-infinite plane barrier. The shields used in the measurements consisted of rectangular plates, a circular cylinder, and a rectangular plate attached to the cylinder to simulate a wing-body combination. The normalized frequency, defined as a product of the acoustic wave number and either the plate width or cylinder diameter, ranged from 4.6 to 114. Microphone traverses in front of the rectangular plates and cylinders generally showed a series of diffraction bands that matched those predicted by the approximate methods, except for differences in the magnitudes of the attenuation minima which can be attributed to experimental inaccuracies. The shielding of wing-body combinations was predicted by modifications of the approximations used for rectangular and cylindrical shielding. Although the approximations failed to predict diffraction patterns in certain regions, they did predict the average level of wing-body shielding with an average deviation of less than 3 dB.

  10. A Code For Calculating Self-Shielded Multigroup Neutron Cross Sections and Self-Shielding Factors From Preprocessed ENDF/B Basic Data Files.

    SciTech Connect

    1990-11-20

    Version 00 REX2-87 is a computer code developed for the calculation of self-shielded multigroup average cross sections, and self-shielding factors for total, elastic, fission and capture processes from an ENDF/B formatted nuclear data file in which the tabulated cross sections follow linear interpolation throughout.

  11. Monte Carlo calculations of the energy deposited in biological samples and shielding materials

    NASA Astrophysics Data System (ADS)

    Akar Tarim, U.; Gurler, O.; Ozmutlu, E. N.; Yalcin, S.

    2014-03-01

    The energy deposited by gamma radiation from the Cs-137 isotope into body tissues (bone and muscle), tissue-like medium (water), and radiation shielding materials (concrete, lead, and water), which is of interest for radiation dosimetry, was obtained using a simple Monte Carlo algorithm. The algorithm also provides a realistic picture of the distribution of backscattered photons from the target and the distribution of photons scattered forward after several scatterings in the scatterer, which is useful in studying radiation shielding. The presented method in this work constitutes an attempt to evaluate the amount of energy absorbed by body tissues and shielding materials.

  12. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids.

    PubMed

    Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2015-11-10

    Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.

  13. Efficient time-independent method for conceptual design optimization of the national ignition facility primary shield

    SciTech Connect

    Greenspan, E.; Annese, C.E.; Miller, W.F. Jr.; Watkins, E.F.; Tobin, M.L.; Latkowski, J.F.; Lee, J.D.; Soran, P.

    1995-07-01

    Minimum-cost design concepts of the primary shield for the National (laser fusion) Ignition Facility are sought with the help of the SWAN optimization code. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables the time-dependent problem to be addressed using time-independent transport calculations, thus significantly simplifying and accelerating the design process. The search for constituents that will minimize the shield cost is guided by the newly defined equal cost replacement effectiveness functions. The minimum-cost shield design concept consists of a mixture of polyethylene and low-cost, low-activation materials, such as CaCO{sub 3} or silicon carbide, with boron added near the shield boundaries. An alternative approach to the target chamber design is analyzed. It involves placing the shield interior, rather than exterior to the main aluminum structural wall of the target chamber. The resulting inner shield design approach was found to be more expensive but inherently safer; the overall inventory of radioactive activation product it contains is one to two orders of magnitude lower than in the conventional design approach. 21 refs., 16 figs., 15 tabs.

  14. Method for expanding the uniformly shielded area in a short-length open-ended cylindrical magnetic shield

    NASA Astrophysics Data System (ADS)

    Oshita, K.; Sasada, I.; Naka, H.; Paperno, E.

    1999-04-01

    A compensation method is proposed by which the uniformly shielded area of the axial magnetic field in a relatively short, open-structure axial magnetic shield can be extended. An open-ended cylindrical magnetic shield of 120 cm in length, 52 cm inner diameter, and a ˜0.5 mm total thickness of the shielding material is used to demonstrate the idea. The shield axis is oriented along the horizontal component (˜320 mG) of the Earth's magnetic field. A simple way to increase the axial shielding factor is to use a pair of compensating coaxial ring coils set at both open ends of the shield. This increases, however, the radial gradient of the shielded field since the axial compensation field is stronger towards the shield axis. In order to decrease the radial gradient, an additional ring coil is wound around the middle part of the outer surface of the shield. The compensating field generated by this central ring coil is stronger towards the inner surface of the shield, and it helps, therefore, to unify the axial resultant field over a wider area inside the shield. The axial shielding factor obtained with this compensation according to the proposed method is 128, in contrast to only 16.4 obtained with compensation by a set of two ring coils. The field gradients observed are 1.2 μG/cm along the length direction and 2.7 μG/cm along the radial direction, in contrast to the 14 μG/cm axial and 78 μG/cm radial gradients obtained with compensation by a set of two ring coils.

  15. Calculation of Dental Exam Room X-Ray Shielding in Walls and Entrances

    DTIC Science & Technology

    2012-08-24

    currently uses 5/16 in drywall on all walls. No specialty shielding products (e.g., lead) are currently being used on any walls. f. The window and...needed for Q (Eq. 2). This calculation assumes the use of a 100-kVp beam. (3) With the use of 5/16 in drywall , no radiation shielding properties are...the doonl’ilay entry t o the room. Both sides of the room contain offices1 single sheet of 5/15n drywall on each side of each \\!Vall to combine

  16. Gas bremsstrahlung shielding calculation for first optic enclosure of ILSF medical beamline

    NASA Astrophysics Data System (ADS)

    Beigzadeh Jalali, H.; Salimi, E.; Rahighi, J.

    2016-10-01

    Gas bremsstrahlung is generated in high energy electron storage ring accompanies the synchrotron radiation into the beamlines and strike the various components of the beamline. In this paper, radiation shielding calculation for secondary gas bremsstrahlung is performed for the first optics enclosure (FOE) of medical beamline of the Iranian Light Source Facility (ILSF). Dose equivalent rate (DER) calculation is accomplished using FLUKA Monte Carlo code. A comprehensive study of DER distribution at the back wall, sides and roof is given.

  17. Measured and calculated fast neutron spectra in a depleted uranium and lithium hydride shielded reactor

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.; Mueller, R. A.

    1973-01-01

    Measurements of MeV neutron were made at the surface of a lithium hydride and depleted uranium shielded reactor. Four shield configurations were considered: these were assembled progressively with cylindrical shells of 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, and 3-centimeter-thick depleted uranium. Measurements were made with a NE-218 scintillation spectrometer; proton pulse height distributions were differentiated to obtain neutron spectra. Calculations were made using the two-dimensional discrete ordinates code DOT and ENDF/B (version 3) cross sections. Good agreement between measured and calculated spectral shape was observed. Absolute measured and calculated fluxes were within 50 percent of one another; observed discrepancies in absolute flux may be due to cross section errors.

  18. Use of the EUR LiB 15/5 data set for radiation shielding calculations in iron

    NASA Astrophysics Data System (ADS)

    Abdo, A. El-Sayed; Bashter, I. I.; Kansouh, W. A.

    The shielding effect of an iron sphere assembly has been tested for a Pu-α-Be neutron source placed in the center of the shield assembly. Emergent neutron and gamma spectra were measured with a stilbene scintillation counter. Discrimination between neutrons and gammas was achieved by the pulse shape discrimination technique based on the zero crossing method. Calculations have been made using the one-dimensional transport code ANISN-Westinghouse version (ANISN-W) and the EUR LiB 15/5 cross section data set. The agreement between measurements and calculations indicates that the cross section set and the calculation model are suitable for studying the iron shielding experiments over the neutron energy range 1.35-10 MeV and the gamma energy range 0.3-6 MeV. Total macroscopic cross sections for fast neutrons, linear attenuation coefficients for gamma rays and half-value thicknesses for neutrons and gammas for the whole energy range and at different energies have been obtained.

  19. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2

  20. Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures

    NASA Astrophysics Data System (ADS)

    Sharaf, J. M.; Saleh, H.

    2015-05-01

    The shielding properties of three different construction styles, and building materials, commonly used in Jordan, were evaluated using parameters such as attenuation coefficients, equivalent atomic number, penetration depth and energy buildup factor. Geometric progression (GP) method was used to calculate gamma-ray energy buildup factors of limestone, concrete, bricks, cement plaster and air for the energy range 0.05-3 MeV, and penetration depths up to 40 mfp. It has been observed that among the examined building materials, limestone offers highest value for equivalent atomic number and linear attenuation coefficient and the lowest values for penetration depth and energy buildup factor. The obtained buildup factors were used as basic data to establish the total equivalent energy buildup factors for three different multilayer construction styles using an iterative method. The three styles were then compared in terms of fractional transmission of photons at different incident photon energies. It is concluded that, in case of any nuclear accident, large multistory buildings with five layers exterior walls, style A, could effectively attenuate radiation more than small dwellings of any construction style.

  1. Converging Nuclear Magnetic Shielding Calculations with Respect to Basis and System Size in Protein Systems

    PubMed Central

    Hartman, Joshua D.; Neubauer, Thomas J.; Caulkins, Bethany G.; Mueller, Leonard J.; Beran, Gregory J. O.

    2015-01-01

    Ab initio chemical shielding calculations greatly facilitate the interpretation of nuclear magnetic resonance (NMR) chemical shifts in biological systems, but the large sizes of these systems requires approximations in the chemical models used to represent them. Achieving good convergence in the predicted chemical shieldings is necessary before one can unravel how other complex structural and dynamical factors affect the NMR measurements. Here, we investigate how to balance trade-offs between using a better basis set or a larger cluster model for predicting the chemical shieldings of the substrates in two representative examples of protein-substrate systems involving different domains in tryptophan synthase: the N-(4′-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F9) ligand which binds in the α active site, and the 2-aminophenol (2AP) quinonoid intermediate formed in the β active site. We first demonstrate that a chemically intuitive three-layer, locally dense basis model that uses a large basis on the substrate, a medium triple-zeta basis to describe its hydrogen-bonding partners and/or surrounding van derWaals cavity, and a crude basis set for more distant atoms provides chemical shieldings in good agreement with much more expensive large basis calculations. Second, long-range quantum mechanical interactions are important, and one can accurately estimate them as a small-basis correction to larger-basis calculations on a smaller cluster. The combination of these approaches enables one to perform density functional theory NMR chemical shift calculations in protein systems that are well-converged with respect to both basis set and cluster size. PMID:25993979

  2. Estimation of isotropic nuclear magnetic shieldings in the CCSD(T) and MP2 complete basis set limit using affordable correlation calculations.

    PubMed

    Kupka, Teobald; Stachów, Michał; Kaminsky, Jakub; Sauer, Stephan P A

    2013-08-01

    A linear correlation between isotropic nuclear magnetic shielding constants for seven model molecules (CH2 O, H2 O, HF, F2 , HCN, SiH4 and H2 S) calculated with 37 methods (34 density functionals, RHF, MP2 and CCSD(T)), with affordable pcS-2 basis set and corresponding complete basis set results, estimated from calculations with the family of polarization-consistent pcS-n basis sets is reported. This dependence was also supported by inspection of profiles of deviation between CBS estimated nuclear shieldings and shieldings obtained with the significantly smaller basis sets pcS-2 and aug-cc-pVTZ-J for the selected set of 37 calculation methods. It was possible to formulate a practical approach of estimating the values of isotropic nuclear magnetic shielding constants at the CCSD(T)/CBS and MP2/CBS levels from affordable CCSD(T)/pcS-2, MP2/pcS-2 and DFT/CBS calculations with pcS-n basis sets. The proposed method leads to a fairly accurate estimation of nuclear magnetic shieldings and considerable saving of computational efforts.

  3. SU-C-BRB-06: Utilizing 3D Scanner and Printer for Dummy Eye-Shield: Artifact-Free CT Images of Tungsten Eye-Shield for Accurate Dose Calculation

    SciTech Connect

    Park, J; Lee, J; Kim, H; Kim, I; Ye, S

    2015-06-15

    Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm{sup 2} applicator. The gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield.

  4. Organ shielding and doses in Low-Earth orbit calculated for spherical and anthropomorphic phantoms

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Reitz, Günther

    2013-08-01

    Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time. In this work, the mean shielding of organs in the different voxel phantoms exposed to isotropic irradiation is presented as well as the corresponding depth in a water sphere. Dose rates for Low-Earth orbit from galactic cosmic rays during solar minimum conditions were calculated using the different phantoms and are compared to the results for a spherical water phantom in combination with the mean organ shielding. For the spherical water phantom the impact of different aluminium shielding between 1 g/cm2 and 100 g/cm2 was calculated. The dose equivalent rates were used to estimate the effective dose rate.

  5. Modeling resonance interference by 0-D slowing-down solution with embedded self-shielding method

    SciTech Connect

    Liu, Y.; Martin, W.; Kim, K. S.; Williams, M.

    2013-07-01

    The resonance integral table based methods employing conventional multigroup structure for the resonance self-shielding calculation have a common difficulty on treating the resonance interference. The problem arises due to the lack of sufficient energy dependence of the resonance cross sections when the calculation is performed in the multigroup structure. To address this, a resonance interference factor model has been proposed to account for the interference effect by comparing the interfered and non-interfered effective cross sections obtained from 0-D homogeneous slowing-down solutions by continuous-energy cross sections. A rigorous homogeneous slowing-down solver is developed with two important features for reducing the calculation time and memory requirement for practical applications. The embedded self-shielding method (ESSM) is chosen as the multigroup resonance self-shielding solver as an integral component of the interference method. The interference method is implemented in the DeCART transport code. Verification results show that the code system provides more accurate effective cross sections and multiplication factors than the conventional interference method for UO{sub 2} and MOX fuel cases. The additional computing time and memory for the interference correction is acceptable for the test problems including a depletion case with 87 isotopes in the fuel region. (authors)

  6. Development and verification of design methods for ducts in a space nuclear shield

    NASA Technical Reports Server (NTRS)

    Cerbone, R. J.; Selph, W. E.; Read, P. A.

    1972-01-01

    A practical method for computing the effectiveness of a space nuclear shield perforated by small tubing and cavities is reported. Performed calculations use solutions for a two dimensional transport code and evaluate perturbations of that solution using last flight estimates and other kernel integration techniques. In general, perturbations are viewed as a change in source strength of scattered radiation and a change in attenuation properties of the region.

  7. A novel shielding scheme studied by the Monte Carlo method for electron beam radiotherapy.

    PubMed

    Yue, Kun; Yao, Yuan; Dong, Xiaoqing; Luo, Wenyun

    2013-03-01

    Lead that has been employed widely for shielding in electron beam radiotherapy can produce bremsstrahlung photons during the shielding process. A novel shielding scheme with a two-layer structure has been studied using a Monte Carlo method in order to reduce this bremsstrahlung effect. Compared with the conventional lead, the novel shielding scheme, comprised of a Styrene-Ethylene-Butylene-Styrene Block Co-polymer (SEBS) above and lead below, can efficiently reduce the generation of bremsstrahlung while providing better shielding for incident electrons. Therefore, this novel shielding scheme may play an important role in future applications.

  8. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    SciTech Connect

    Mocko, Michal

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report the resulting neutron and photon dose fields.

  9. [CALCULATION OF RADIATION LOADS ON THE ANTHROPOMORPHIC PHANTOM ONBOARD THE SPACE STATION IN THE CASE OF ADDITIONAL SHIELDING].

    PubMed

    Kartashov, D A; Shurshakov, V A

    2015-01-01

    The paper presents the results of calculating doses from space ionizing radiation for a modeled orbital station cabin outfitted with an additional shield aimed to reduce radiation loads on cosmonaut. The shield is a layer with the mass thickness of -6 g/cm2 (mean density = 0.62 g/cm3) that covers the outer cabin wall and consists of wet tissues and towels used by cosmonauts for hygienic purposes. A tissue-equivalent anthropomorphic phantom imitates human body. Doses were calculated for the standard orbit of the International space station (ISS) with consideration of the longitudinal and transverse phantom orientation relative to the wall with or without the additional shield. Calculation of dose distribution in the human body improves prediction of radiation loads. The additional shield reduces radiation exposure of human critical organs by -20% depending on their depth and body spatial orientation in the ISS compartment.

  10. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding.

    PubMed

    Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha

    2004-09-22

    Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.

  11. Early test facilities and analytic methods for radiation shielding: Proceedings

    SciTech Connect

    Ingersoll, D T; Ingersoll, J K

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

  12. Comparison of spent-fuel cask radiation doses calculated by one- and two-dimensional shielding codes

    SciTech Connect

    Carbajo, J.J. )

    1992-01-01

    Spent-fuel cask shield design and calculation of radiation doses are major parts of the overall cask design. This paper compares radiation doses calculated by one- and two-dimensional or three-dimensional shielding codes. The paper also investigates the appropriateness of using one-dimensional codes for two-dimensional geometries. From these results, it can be concluded that the one-dimensional XSDRNPM/XSDOSE codes are adequate for both radial and axial shielding calculations if appropriate bucklings are used. For radial calculations, no buckling or a buckling equal to the length of the fuel are appropriate. For axial calculations, a buckling at least equal to the diameter of the cask must be used for neutron doses. For gamma axial doses, a buckling around the diameter of the fuel region is adequate. More complicated two- or three-dimensional codes are not needed for these types of problems.

  13. Standard growth curve which was integrated to obtain a mathematical representation for calculating shielding requirements in diagnostic x-ray departments by computer

    NASA Astrophysics Data System (ADS)

    Rahimi, Ali

    2003-12-01

    Specifically, these methods reassess shielding calculations in X-ray areas with respect to the methodology of the calculation of the barrier thickness and the number of sources consider in the area. Thus, they generate an overall solution for the cases met at the medical radiation structural design. This report provides an extension of an existing method for the calculation of the barrier thickness required to reduce the three types of radiation exposure emitted from the source, the primary, secondary and leakage radiation, to a specified weekly design limit (MPD). Because each of these three types of radiation are of different beam quality, having different shielding requirements, NCRP 49 has provided means to calculate the necessary protective barrier thickness for each type of radiation individually. However, this report (NCRP 49) provides little guidance for the contribution of each of the three types of radiation to the barrier thickness requirement. The medical physicist have to estimate which components of the field are most important to be shielded and how they are to combine, if more than one component is significant to generate a single shielding requirement. In questionable situations, multiple half-value layers (HVLs) of material recommended to be added; by the general "add one half value layer (HVL)" approximation of NCRP 49.

  14. Weight optimization methods in space radiation shield design

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1975-01-01

    An empirical relation between proton range and material density is used to examine relations between shield weight, geometry, and material composition for shielding against a space proton environment. The optimum material resulting in minimum shield weight usually lies at the extremes of either the lightest or heaviest materials. Aluminum, which has special prominence in the space program, appears universally suboptimal as a radiation shielding material. Assuming square-box geometry (rectangular prisms with two square faces), the optimum shape for the shielded objects is found to be a cube, although moderate deviations from a cube result in only a small weight penalty.

  15. A temperature error correction method for a naturally ventilated radiation shield

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Rrenhui

    2016-11-01

    Due to solar radiation exposure, air flowing inside a naturally ventilated radiation shield may produce a measurement error of 0.8 °C or higher. To improve the air temperature observation accuracy, a temperature error correction method is proposed. The correction method is based on a Computational Fluid Dynamics (CFD) method and a Genetic Algorithm (GA) method. The CFD method is implemented to analyze and calculate the temperature errors of a naturally ventilated radiation shield under various environmental conditions. Then, a temperature error correction equation is obtained by fitting the CFD results using the GA method. To verify the performance of the correction equation, the naturally ventilated radiation shield and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean temperature error given by measurements is 0.36 °C, and the mean temperature error given by correction equation is 0.34 °C. This correction equation allows the temperature error to be reduced by approximately 95%. The mean absolute error (MAE) and the root mean square error (RMSE) between the temperature errors given by the correction equation and the temperature errors given by the measurements are 0.07 °C and 0.08 °C, respectively.

  16. Geant4 calculations for space radiation shielding material Al2O3

    NASA Astrophysics Data System (ADS)

    Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir

    2015-07-01

    Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.

  17. The calculation of some gamma shielding parameters for semiconductor CsPbBr3

    NASA Astrophysics Data System (ADS)

    Oto, Berna; Gulebaglan, Sinem Erden; Kanberoglu, Gulsah Saydan

    2017-02-01

    Recently, researchers produced perovskites structures used in optoelectronic devices as substrates, sensors. CsPbBr3 crystal is found in the cubic perovskite structure and its space group is Pm-3m. CsPbBr3 is a developing material for detection of X- and γ-ray radiations and the knowledge of the attenuation parameters of CsPbBr3 crystal is important. In this study, some photon shielding parameters such as mass attenuation coefficient (μρ), effective atomic number (Zeff) and electron density (Nel) have been investigated for CsPbBr3 compound. The theoretical values of μρ have been calculated in the energy range from 1 keV to 100 GeV using WinXCom computer code and these values have been used in order to calculate the values of Zeff and Nel in the same energy range.

  18. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    SciTech Connect

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-, medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.

  19. Processing and validation of JEFF-3.1.1 and ENDF/B-VII.0 group-wise cross section libraries for shielding calculations

    NASA Astrophysics Data System (ADS)

    Pescarini, M.; Sinitsa, V.; Orsi, R.; Frisoni, M.

    2013-03-01

    This paper presents a synthesis of the ENEA-Bologna Nuclear Data Group programme dedicated to generate and validate group-wise cross section libraries for shielding and radiation damage deterministic calculations in nuclear fission reactors, following the data processing methodology recommended in the ANSI/ANS-6.1.2-1999 (R2009) American Standard. The VITJEFF311.BOLIB and VITENDF70.BOLIB finegroup coupled n-γ (199 n + 42 γ - VITAMIN-B6 structure) multi-purpose cross section libraries, based on the Bondarenko method for neutron resonance self-shielding and respectively on JEFF-3.1.1 and ENDF/B-VII.0 evaluated nuclear data, were produced in AMPX format using the NJOY-99.259 and the ENEA-Bologna 2007 Revision of the SCAMPI nuclear data processing systems. Two derived broad-group coupled n-γ (47 n + 20 γ - BUGLE-96 structure) working cross section libraries in FIDO-ANISN format for LWR shielding and pressure vessel dosimetry calculations, named BUGJEFF311.BOLIB and BUGENDF70.BOLIB, were generated by the revised version of SCAMPI, through problem-dependent cross section collapsing and self-shielding from the cited fine-group libraries. The validation results on the criticality safety benchmark experiments for the fine-group libraries and the preliminary validation results for the broad-group working libraries on the PCA-Replica and VENUS-3 engineering neutron shielding benchmark experiments are reported in synthesis.

  20. Comparison of measured and calculated neutron and gamma-ray energy spectra behind an in-line shielded duct

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.; Tang, J.S.

    1982-05-01

    Integral experiments that measure the transport of approx. 14 MeV neutrons through a 0.30-m-diameter duct having a length-to-diameter ratio of 2.83 that is partially plugged with a 0.15 m diameter, 0.51 m long shield comprised of alternating layers of stainless steel type 304 and borated polyethylene have been carried out at the Oak Ridge National Laboratory. Measured and calculated neutron and gamma ray energy spectra are compared at several locations relative to the mouth of the duct. The measured spectra were obtained using an NE-213 liquid scintillator detector with pulse shape discrimination methods used to simultaneously resolve neutron and gamma ray events. The calculated spectra were obtained using a computer code network that incorporates two radiation transport methods: discrete ordinates (with P/sub 3/ multigroup cross sections) and Monte Carlo (with continuous point cross sections). The two radiation transport methods are required to account for neutrons that singly scatter from the duct to the detectors. The calculated and measured neutron energy spectra above 850 keV agree with 5 to 50% depending on detector location and neutron energy. The calculated and measured gamma ray energy spectra above 750 keV are also in favorable agreement, approx. 5 to 50%, depending on detector location and gamma ray energy.

  1. Graphene shield enhanced photocathodes and methods for making the same

    DOEpatents

    Moody, Nathan Andrew

    2014-09-02

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  2. Calculations of neutron shielding data for 10-100 MeV proton accelerators.

    PubMed

    Chen, C C; Sheu, R J; Jian, S H

    2005-01-01

    The characteristics of neutron sources and their attenuation in concrete were investigated in detail for protons with energies ranging from 10 to 100 MeV striking on target materials of C, N, Al, Fe, Cu and W. A two-step approach was adopted: thick-target double-differential neutron yields were first calculated from the (p, xn) cross sections recommended in the ICRU Report 63; further, transport simulations of those neutrons in concrete were performed by using the FLUKA Monte Carlo code. The purpose of this study is to provide reasonably accurate parameters for shielding design for 10-100 MeV proton accelerators. Source terms and the corresponding attenuation lengths in concrete for several target materials are given as a function of proton energies and neutron emission angles.

  3. Methods for Melting Temperature Calculation

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  4. Calculated volumes of individual shield volcanoes at the young end of the Hawaiian Ridge

    USGS Publications Warehouse

    Robinson, Joel E.; Eakins, Barry W.

    2006-01-01

    High-resolution multibeam bathymetry and a digital elevation model of the Hawaiian Islands are used to calculate the volumes of individual shield volcanoes and island complexes (Niihau, Kauai, Oahu, the Maui Nui complex, and Hawaii), taking into account subsidence of the Pacific plate under the load of the Hawaiian Ridge. Our calculated volume for the Island of Hawaii and its submarine extent (213 × 103 km3) is nearly twice the previous estimate (113 × 103 km3), due primarily to crustal subsidence that had not been accounted for in the earlier work. The volcanoes that make up the Island of Hawaii (Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea and Loihi) are generally considered to have been formed within the past million years, and our revised volume for the island indicates that magma supply rates are greater than previously estimated, 0.21 km3/yr as opposed to ∼ 0.1 km3/yr. This result also shows that compared with rates calculated for the Hawaiian Islands (0–6 Ma, 0.095 km3/yr), the Hawaiian Ridge (0–45 Ma, 0.017 km3/yr), and the Emperor Seamounts (45–80 Ma, 0.010 km3/yr), magma supply rates have increased dramatically to build the Island of Hawaii.

  5. Fast Neutron Albedo Calculations for a Concrete Shield with Different Curvatures

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, F. M.; Salama, M.

    The O5R Monte Carlo neutron transport Code had been used to calculate the neutron albedo for neutrons reflected from plane and curved concrete shields. The present calculations were performed to investigate the fast-neutron albedo in case of ordinary concrete shield, in order to perform comparative studies with the case of neutron reflection against a flat wall. The calculations were performed for three different neutron source energies of 1 MeV, 5 MeV and 15 MeV and at neutron incident angles of 5°, 30°, 45°, 60° and 90° and for surfaces with different curvatures (flat, 100, 50, 20 and 5 cm).The results obtained reveal that there will be an appreciable error on using the flat wall albedo value in the case of duct penetration calculations. The error was assumed to be due to the neglection of the curvature effect as well as to the improper choice of the neutron incident angle.Translated AbstractAlbedoberechnungen für schnelle Neutronen an einem Betonschild unterschiedlicher KrümmungDas O5R Monte Carlo Neutronentransport-Programm wurde benutzt, um die Albedo für Neutronen, reflektiert von ebenen oder gekrümmten Betonschilden, zu berechnen. Diese Berechnungen für die Albedo schneller Neutronen an gewöhnlichen Betonschilden wurden zum Vergleich mit ähnlichen Untersuchungen der Neutronenreflektion an flachen Wänden angestellt. Es wird bei drei verschiedenen Neutronenquellenenergien, 1 MeV, 5 MeV, und 15 MeV, Einfallswinkeln von 5°, 30°, 45°, 60° und 90° sowie für verschieden gekrümmte Oberflächen (flach, 100, 50, 20 und 5 cm) gerechnet.Diese Ergebnisse zeigen, daß die Verwendung von Albedowerten an flachen Wänden für den Fall von Durchlaßkanälen zu beträchtlichen Fehlern führt. Sie können sowohl der Vernachlässigung der Krümmung als auch der Wahl falscher Einfallswinkel zugeschrieben werden.

  6. CRYPTOSPORIDIUM LOG INACTIVATION CALCULATION METHODS

    EPA Science Inventory

    Appendix O of the Surface Water Treatment Rule (SWTR) Guidance Manual introduces the CeffT10 (i.e., reaction zone outlet C value and T10 time) method for calculating ozone CT value and Giardia and virus log inactivation. The LT2ESWTR Pre-proposal Draft Regulatory Language for St...

  7. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications. [Radiation dose rates from shielded spent fuels and high-level radioactive waste

    SciTech Connect

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs.

  8. Photon dose estimation from ultraintense laser-solid interactions and shielding calculation with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Qiu, Rui; Li, JunLi; Lu, Wei; Wu, Zhen; Li, Chunyan

    2017-02-01

    When a strong laser beam irradiates a solid target, a hot plasma is produced and high-energy electrons are usually generated (the so-called "hot electrons"). These energetic electrons subsequently generate hard X-rays in the solid target through the Bremsstrahlung process. To date, only limited studies have been conducted on this laser-induced radiological protection issue. In this study, extensive literature reviews on the physics and properties of hot electrons have been conducted. On the basis of these information, the photon dose generated by the interaction between hot electrons and a solid target was simulated with the Monte Carlo code FLUKA. With some reasonable assumptions, the calculated dose can be regarded as the upper boundary of the experimental results over the laser intensity ranging from 1019 to 1021 W/cm2. Furthermore, an equation to estimate the photon dose generated from ultraintense laser-solid interactions based on the normalized laser intensity is derived. The shielding effects of common materials including concrete and lead were also studied for the laser-driven X-ray source. The dose transmission curves and tenth-value layers (TVLs) in concrete and lead were calculated through Monte Carlo simulations. These results could be used to perform a preliminary and fast radiation safety assessment for the X-rays generated from ultraintense laser-solid interactions.

  9. Overview of active methods for shielding spacecraft from energetic space radiation.

    PubMed

    Townsend, L W

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made.

  10. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  11. Space mapping method for the design of passive shields

    NASA Astrophysics Data System (ADS)

    Sergeant, Peter; Dupré, Luc; Melkebeek, Jan

    2006-04-01

    The aim of the paper is to find the optimal geometry of a passive shield for the reduction of the magnetic stray field of an axisymmetric induction heater. For the optimization, a space mapping algorithm is used that requires two models. The first is an accurate model with a high computational effort as it contains finite element models. The second is less accurate, but it has a low computational effort as it uses an analytical model: the shield is replaced by a number of mutually coupled coils. The currents in the shield are found by solving an electrical circuit. Space mapping combines both models to obtain the optimal passive shield fast and accurately. The presented optimization technique is compared with gradient, simplex, and genetic algorithms.

  12. Revised Calculated Volumes Of Individual Shield Volcanoes At The Young End Of The Hawaiian Ridge

    NASA Astrophysics Data System (ADS)

    Robinson, J. E.; Eakins, B. W.

    2003-12-01

    Recent, high-resolution multibeam bathymetry and a digital elevation model of the Hawaiian Islands allow us to recalculate Bargar and Jackson's [1974] volumes of coalesced volcanic edifices (Hawaii, Maui-Nui, Oahu, Kauai, and Niihau) and individual shield volcanoes at the young end of the Hawaiian Ridge, taking into account subsidence of the Pacific plate under the load of the volcanoes as modeled by Watts and ten Brink [1989]. Our volume for the Island of Hawaii (2.48 x105 km3) is twice the previous estimate (1.13 x105 km3), due primarily to crustal subsidence, which had not been accounted for in the earlier work. The volcanoes that make up the Hawaii edifice (Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea, and Loihi) are generally considered to have formed within the past million years and our revised volume for Hawaii indicates that either magma-supply rates are greater than previously estimated (0.25 km3/yr as opposed to 0.1 km3/yr) or that Hawaii's volcanoes have erupted over a longer period of time (>1 million years). Our results also indicate that magma supply rates have increased dramatically to build the Hawaiian edifices: the average rate of the past 5 million years (0.096 km3/yr) is substantially greater than the overall average of the Hawaiian Ridge (0.018km3/yr) or Emperor Seamounts (0.012 km3/yr) as calculated by Bargar and Jackson, and that rates within the past million years are greater still (0.25 km3/yr). References: Bargar, K. E., and Jackson, E. D., 1974, Calculated volumes of individual shield volcanoes along the Hawaiian-Emperor Chain, Jour. Research U.S. Geol. Survey, Vol. 2, No. 5, p. 545-550. Watts, A. B., and ten Brink, U. S., 1989, Crustal structure, flexure, and subsidence history of the Hawaiian Islands, Jour. Geophys. Res., Vol. 94, No. B8, p. 10,473-10,500.

  13. Application of the method of steepest descent to laminated shield weight optimization with several constraints: Theory

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1971-01-01

    The method of steepest descent used in optimizing one-dimensional layered radiation shields is extended to multidimensional, multiconstraint situations. The multidimensional optimization algorithm and equations are developed for the case of a dose constraint in any one direction being dependent only on the shield thicknesses in that direction and independent of shield thicknesses in other directions. Expressions are derived for one-, two-, and three-dimensional cases (one, two, and three constraints). The precedure is applicable to the optimization of shields where there are different dose constraints and layering arrangements in the principal directions.

  14. PAPIN: A Fortran-IV program to calculate cross section probability tables, Bondarenko and transmission self-shielding factors for fertile isotopes in the unresolved resonance region

    SciTech Connect

    Munoz-Cobos, J.G.

    1981-08-01

    The Fortran IV code PAPIN has been developed to calculate cross section probability tables, Bondarenko self-shielding factors and average self-indication ratios for non-fissile isotopes, below the inelastic threshold, on the basis of the ENDF/B prescriptions for the unresolved resonance region. Monte-Carlo methods are utilized to generate ladders of resonance parameters in the unresolved resonance region, from average resonance parameters and their appropriate distribution functions. The neutron cross-sections are calculated by the single level Breit-Wigner (SLBW) formalism, with s, p and d-wave contributions. The cross section probability tables are constructed by sampling the Doppler-broadened cross sections. The various self-shielded factors are computed numerically as Lebesgue integrals over the cross section probability tables. The program PAPIN has been validated through extensive comparisons with several deterministic codes.

  15. Monte Carlo Modeling of Computed Tomography Ceiling Scatter for Shielding Calculations.

    PubMed

    Edwards, Stephen; Schick, Daniel

    2016-04-01

    Radiation protection for clinical staff and members of the public is of paramount importance, particularly in occupied areas adjacent to computed tomography scanner suites. Increased patient workloads and the adoption of multi-slice scanning systems may make unshielded secondary scatter from ceiling surfaces a significant contributor to dose. The present paper expands upon an existing analytical model for calculating ceiling scatter accounting for variable room geometries and provides calibration data for a range of clinical beam qualities. The practical effect of gantry, false ceiling, and wall attenuation in limiting ceiling scatter is also explored and incorporated into the model. Monte Carlo simulations were used to calibrate the model for scatter from both concrete and lead surfaces. Gantry attenuation experimental data showed an effective blocking of scatter directed toward the ceiling at angles up to 20-30° from the vertical for the scanners examined. The contribution of ceiling scatter from computed tomography operation to the effective dose of individuals in areas surrounding the scanner suite could be significant and therefore should be considered in shielding design according to the proposed analytical model.

  16. Calculations and measurements of the energy-dependent response of a shielded gamma-ray detector

    SciTech Connect

    Byrd, R.C.

    1996-03-01

    Instruments designed to record high-intensity gamma-ray flashes must have fast time response, wide dynamic range, and good rejection of photon backgrounds at lower energies. In principle, plastic scintillators can easily provide the necessary time response and dynamic range; like other photon detectors, however, they must be carefully shielded to reduce their low-energy sensitivity. This shielding is often complicated by the need to use different optical sensors to cover the full dynamic range, which each sensor requiring a separate opening through the shielding. In this detector, a high-sensitivity photomultiplier tube handles low-intensity signals, and a silicon photodiode covers high intensities. These electronic components, particularly the diode, may also respond directly to incident radiation, so localized shielding must be provided. To reduce the detector`s total mass, the scintillator and photodiode are enclosed in a relatively thick, tight-fitting inner shield, which is surrounded by a thin outer shield to reduce the leakage through any gaps. Although efficient, this arrangement demands careful design and testing. This report describes such an analysis, which uses Monte Carlo simulations to develop a comprehensive model of the detector at photon energies from threshold to above 10 MeV. Included are discussions of the fundamental responses of the unshielded silicon diode and plastic scintillator, explanations of the effectiveness of different shielding materials, studies of calibration sources, and comparisons with laboratory tests.

  17. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental

  18. Calculation of self-shielding factor for neutron activation experiments using GEANT4 and MCNP

    NASA Astrophysics Data System (ADS)

    Romero-Barrientos, Jaime; Molina, F.; Aguilera, Pablo; Arellano, H. F.

    2016-07-01

    The neutron self-shielding factor G as a function of the neutron energy was obtained for 14 pure metallic samples in 1000 isolethargic energy bins from 1.10-5eV to 2.107eV using Monte Carlo simulations in GEANT4 and MCNP6. The comparison of these two Monte Carlo codes shows small differences in the final self-shielding factor mostly due to the different cross section databases that each program uses.

  19. [A new approach to shielding function calculation: radiation dose estimation for a phantome inside space station compartment].

    PubMed

    Kartashov, D A; Shurshakov, V A

    2012-01-01

    The article presents a new procedure of calculating the shielding functions for irregular objects formed from a set of nonintersecting (adjacent) triangles covering completely the surface of each object. Calculated and experimentally derived distributions of space ionizing radiation doses in the spherical tissue-equivalent phantom (experiment MATRYOSHKA-R) inside the International space station were in good agreement in the mass of phantom depths with allowance for measurement error (-10%). The procedure can be applied in modeling radiation loads on cosmonauts, calculating effectiveness of secondary protection in spacecraft, and design review of radiation protection for future space exploration missions.

  20. Methods for shielding a flexible, PCB-made eddy current array probe against edge effects

    NASA Astrophysics Data System (ADS)

    Lepage, B.

    2012-05-01

    Probe shielding has been used in combination with eddy current and eddy current array sensors for quite some time to improve detection of defects located near component edges. Conventional methods of providing such shielding are not suitable for coils etched on printed circuit board. This paper describes an innovative shielded coil design suitable for highly flexible, printed circuit board eddy current array probes. The benefits of the new design will be demonstrated for the inspection of dovetails, where detection of defects along the edge is critical.

  1. Point Kernel Code System for Neutron and Gamma-Ray Shielding Calculations in Complex Geometry, Including a Graphical User Interface.

    SciTech Connect

    SUBBAIAH, K. V.

    2001-10-01

    Version 01 GUI2QAD is an aid in preparation of input for the included QAD-CGPIC program, which is based on CCC-493/QAD-CGGP and PICTURE. QAD-CGPIC is a Fortran code for fast neutron and gamma-ray shielding calculations through various shield configurations defined by combinatorial geometry specifications. Provision is available to interactively input the geometry and view the same in three dimensions with arbitrary rotations along x,y,z axis. The salient features of the present package include: a) Handles off centered multiple identical sources b) Axis of cylindrical sources can be parallel to any of the axes. c) Provides plots of buildup factors (ANSI-1990) and material cross sections d) Estimates dose rate for point source-slab shield situations e) Interactive input of CG geometry with 3D view and rotation f) Fission product decay power computation and plots for source term calculations. g) Provision to read and graphical 1y display picture input file.

  2. Numerical calculation of the parameters of the efflux from a helium dewar used for cooling of heat shields in a satellite

    NASA Technical Reports Server (NTRS)

    Brendley, K.; Chato, J. C.

    1982-01-01

    The parameters of the efflux from a helium dewar in space were numerically calculated. The flow was modeled as a one dimensional compressible ideal gas with variable properties. The primary boundary conditions are flow with friction and flow with heat transfer and friction. Two PASCAL programs were developed to calculate the efflux parameters: EFFLUZD and EFFLUXM. EFFLUXD calculates the minimum mass flow for the given shield temperatures and shield heat inputs. It then calculates the pipe lengths, diameter, and fluid parameters which satisfy all boundary conditions. Since the diameter returned by EFFLUXD is only rarely of nominal size, EFFLUXM calculates the mass flow and shield heat exchange for given pipe lengths, diameter, and shield temperatures.

  3. Calculated shielding characteristics of eight materials for neutrons and secondary photons produced by monoenergetic source neutrons with energies less than 400 MeV

    SciTech Connect

    Nakanishi, Noriyoshi; Shikata, Takashi; Fujita, Shin; Kosako, Toshiso

    1995-10-01

    Shielding characteristics of iron, lead, ordinary concrete, heavy concrete, graphite, marble, water, and paraffin were calculated for monoenergetic source neutrons with energies < 400 MeV. The depth dependence of neutron and secondary photon transmitted dose equivalents at the exit surfaces of shields of varying thickness is exhibited for some monoenergetic source neutrons and for each material. Their shielding characteristics are compared and discussed in terms of the degradation process of neutron energy and the change of neutron spectrum in typical shielding materials. Calculations were carried out by using the one-dimensional discrete ordinates code ANISN-JR and the cross-section library DLC-87/HILO. Systematic knowledge concerning the shielding of neutrons with energies < 400 MeV was successfully obtained.

  4. Dose estimation and shielding calculation for X-ray hazard at high intensity laser facilities

    NASA Astrophysics Data System (ADS)

    Qiu, Rui; Zhang, Hui; Yang, Bo; James, C. Liu; Sayed, H. Rokni; Michael, B. Woods; Li, Jun-Li

    2014-12-01

    An ionizing radiation hazard produced from the interaction between high intensity lasers and solid targets has been observed. Laser-plasma interactions create “hot” electrons, which generate bremsstrahlung X-rays when they interact with ions in the target. However, up to now only limited studies have been conducted on this laser-induced radiological protection issue. In this paper, the physical process and characteristics of the interaction between high intensity lasers and solid targets are analyzed. The parameters of the radiation sources are discussed, including the energy conversion efficiency from laser to hot electrons, hot electron energy spectrum and electron temperature, and the bremsstrahlung X-ray energy spectrum produced by hot electrons. Based on this information, the X-ray dose generated with high-Z targets for laser intensities between 1014 and 1020 W/cm2 is estimated. The shielding effects of common shielding items such as the glass view port, aluminum chamber wall and concrete wall are also studied using the FLUKA Monte Carlo code. This study provides a reference for the dose estimation and the shielding design of high intensity laser facilities.

  5. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  6. Method of shielding a liquid-metal-cooled reactor

    DOEpatents

    Sayre, Robert K.

    1978-01-01

    The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.

  7. [Radiation safety provisions in a piloted mission to Mars based on calculated risks of overdose behind shielding].

    PubMed

    Shafirkin, A V; Kolomenskiĭ, A V; Petrov, V M

    2007-01-01

    The article deals with the prime sources of radiation hazard in a mission to Mars, compares the radiation risk values in flight and over the life span with consideration for various shielding thicknesses in habitable compartments and radiation shelter, and estimates possible life shortening. Given the stochastic nature of solar cosmic rays effects in a two-year mission and probability of powerful solar proton events, calculated were not only the mean tissue-equivalent doses behind various thickness of the shelter but also probability of their violation, risks of immediate and delayed radiation consequences and conceivable approaches to risk mitigation.

  8. Solvent polarity and hydrogen-bonding effects on the nitrogen NMR shieldings of N-nitrosamines and DFT calculations of the shieldings of C-, N-, and O-nitroso systems

    NASA Astrophysics Data System (ADS)

    Witanowski, Michal; Biedrzycka, Zenobia; Sicinska, Wanda; Grabowski, Zbigniew

    2003-10-01

    High-precision nitrogen NMR shieldings, bulk susceptibility corrected, are reported for dimethyl- N-nitrosamine ( I) and diethyl- N-nitrosamine ( II) in a variety of solvents which represent a wide range of solvent properties from the point of view of polarity as well as hydrogen bond donor and acceptor strength. The observed range of solvent-induced nitrogen shielding variations of ( I) and ( II) is significant for the amino-type nitrogens, up to about 16 ppm, and originates essentially from the deshielding effect of the increasing polarity of solvent. On the other side, the nitroso nitrogen shieldings reveal an even stronger response to solvent effects, within about 20 ppm, but in this case the increasing polarity and hydrogen bond donor strength of solvent produce enhanced shielding. DFT quantum-mechanical calculations using the GIAO/B3PW91/6-311++G** approach and geometry optimizations employing the same basis set and hybrid density functionals show an excellent correlation with the experimental data on C-, N-, and O-nitroso moieties and reproduce not only major changes but also most of the subtle variations in the experimental nitrogen shieldings of the nitroso systems as a whole. A combination of the calculations involving the corresponding N and O-protonated species and the trends observed in the solvent-induced nitrogen shielding variations shows clearly that the prime acceptor site for hydrogen bonding is the nitroso oxygen atom.

  9. Method for calculating alloy energetics

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Smith, John R.

    1992-01-01

    A semiempirical method for the computation of alloy energies is introduced. It is based on the equivalent-crystal theory of defect-formation energies in elemental solids. The method is both simple and accurate. Heats of formation as a function of composition are computed for some binary alloys of Cu, Ni, Al, Ag, Pd, Pt, and Au using the heats of solution in the dilute limit as experimental input. The separation of heats into strain and chemical components helps in understanding the energetics. In addition, lattice-parameter contractions seen in solid solutions of Ag and Au are accurately predicted. Good agreement with experiment is obtained in all cases.

  10. An improved method for correction of air temperature measured using different radiation shields

    NASA Astrophysics Data System (ADS)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  11. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method.

    PubMed

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-11-14

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This "open-shielded" device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities.

  12. Radiation calculations and shielding considerations for the design of the Next Linear Collider

    SciTech Connect

    Nelson, W.R.; Rokni, S.H.; Vylet, V.

    1996-11-01

    The authors describe some of the work that they have done as a contribution to the Next Linear Collider (NLC) Zeroth-Order Design Report (ZDR), with specific emphasis placed on radiation-protection issues. However, because of the very nature of this machine--namely, extremely-small beam spots of high intensity--a new approach in accelerator radiation-protection philosophy appears to be warranted. Accordingly, the presentation will first take a look at recent design studies directed at protecting the machine itself, since this has resulted in a much better understanding of the very short exposure times involved whenever beam is lost and radiation sources are created. At the end of the paper, the authors suggest a Beam Containment System (BCS) that would provide an independent, redundant guarantee that exposure times are, indeed, kept very short. This, in turn, has guided them in the determination of the transverse shield thickness for the machine.

  13. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. II. Consideration of perturbations in the metric operator.

    PubMed

    Maeda, H; Ootani, Y; Fukui, H

    2007-05-07

    A previous relativistic shielding calculation theory based on the regular approximation to the normalized elimination of the small component approach is improved by the inclusion of the magnetic interaction term contained in the metric operator. In order to consider effects of the metric perturbation, the self-consistent perturbation theory is used for the case of perturbation-dependent overlap integrals. The calculation results show that the second-order regular approximation results obtained for the isotropic shielding constants of halogen nuclei are well improved by the inclusion of the metric perturbation to reproduce the fully relativistic four-component Dirac-Hartree-Fock results. However, it is shown that the metric perturbation hardly or does not affect the anisotropy of the halogen shielding tensors and the proton magnetic shieldings.

  14. Nuclei-selected atomic-orbital response-theory formulation for the calculation of NMR shielding tensors using density-fitting

    NASA Astrophysics Data System (ADS)

    Kumar, Chandan; Kjærgaard, Thomas; Helgaker, Trygve; Fliegl, Heike

    2016-12-01

    An atomic orbital density matrix based response formulation of the nuclei-selected approach of Beer, Kussmann, and Ochsenfeld [J. Chem. Phys. 134, 074102 (2011)] to calculate nuclear magnetic resonance (NMR) shielding tensors has been developed and implemented into LSDalton allowing for a simultaneous solution of the response equations, which significantly improves the performance. The response formulation to calculate nuclei-selected NMR shielding tensors can be used together with the density-fitting approximation that allows efficient calculation of Coulomb integrals. It is shown that using density-fitting does not lead to a significant loss in accuracy for both the nuclei-selected and the conventional ways to calculate NMR shielding constants and should thus be used for applications with LSDalton.

  15. Nuclei-selected atomic-orbital response-theory formulation for the calculation of NMR shielding tensors using density-fitting.

    PubMed

    Kumar, Chandan; Kjærgaard, Thomas; Helgaker, Trygve; Fliegl, Heike

    2016-12-21

    An atomic orbital density matrix based response formulation of the nuclei-selected approach of Beer, Kussmann, and Ochsenfeld [J. Chem. Phys. 134, 074102 (2011)] to calculate nuclear magnetic resonance (NMR) shielding tensors has been developed and implemented into LSDalton allowing for a simultaneous solution of the response equations, which significantly improves the performance. The response formulation to calculate nuclei-selected NMR shielding tensors can be used together with the density-fitting approximation that allows efficient calculation of Coulomb integrals. It is shown that using density-fitting does not lead to a significant loss in accuracy for both the nuclei-selected and the conventional ways to calculate NMR shielding constants and should thus be used for applications with LSDalton.

  16. Assessment of seismic margin calculation methods

    SciTech Connect

    Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

    1989-03-01

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.

  17. Including shielding effects in application of the TPCA method for detection of embedded radiation sources.

    SciTech Connect

    Johnson, William C.; Shokair, Isaac R.

    2011-12-01

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the radionuclides present in a measurement. For low-energy resolution detectors such as NaI, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the radionuclides present in the measurement. When many radionuclides are present it is difficult to make the correct identification and this process often requires many attempts to obtain a statistically valid solution by highly skilled spectroscopists. A previous report investigated using the targeted principal component analysis method (TPCA) for detection of embedded sources for RPM applications. This method uses spatial/temporal information from multiple spectral measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other radionuclides present. The previous analysis showed that the TPCA method has significant potential for automated detection of target radionuclides of interest, but did not include the effects of shielding. This report complements the previous analysis by including the effects of spectral distortion due to shielding effects for the same problem of detection of embedded sources. Two examples, one with one target radionuclide and the other with two, show that the TPCA method can successfully detect shielded targets in the presence of many other radionuclides. The shielding parameters are determined as part of the optimization process using interpolation of library spectra that are defined on a 2D grid of atomic numbers and areal densities.

  18. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method

    PubMed Central

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-01-01

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This “open-shielded” device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities. PMID:27841358

  19. Computing the 7Li NMR chemical shielding of hydrated Li+ using cluster calculations and time-averaged configurations from ab initio molecular dynamics simulations.

    PubMed

    Alam, Todd M; Hart, David; Rempe, Susan L B

    2011-08-14

    Ab initio molecular dynamics (AIMD) simulations have been used to predict the time-averaged Li NMR chemical shielding for a Li(+) solution. These results are compared to NMR shielding calculations on smaller Li(+)(H(2)O)(n) clusters optimized in either the gas phase or with a polarizable continuum model (PCM) solvent. The trends introduced by the PCM solvent are described and compared to the time-averaged chemical shielding observed in the AIMD simulations where large explicit water clusters hydrating the Li(+) are employed. Different inner- and outer-coordination sphere contributions to the Li NMR shielding are evaluated and discussed. It is demonstrated an implicit PCM solvent is not sufficient to correctly model the Li shielding, and that explicit inner hydration sphere waters are required during the NMR calculations. It is also shown that for hydrated Li(+), the time averaged chemical shielding cannot be simply described by the population-weighted average of coordination environments containing different number of waters.

  20. The design of asymmetric 4 pi shields for space reactors

    NASA Technical Reports Server (NTRS)

    Engle, W. W., Jr.; Childs, R. L.; Mynatt, F. R.

    1972-01-01

    A one dimensional shield optimization program based on the method of discrete ordinates has been developed and is used to determine material thicknesses used in asymmetric 4 pion shields for space power reactors. The two dimensional discrete ordinates program DOT is used to check the design, and the information generated in the DOT calculation is used as a guide in shaping the shield which may be considered a first step in two dimensional shield optimization.

  1. Neutron and photon shielding benchmark calculations by MCNP on the LR-0 experimental facility.

    PubMed

    Hordósy, G

    2005-01-01

    In the framework of the REDOS project, the space-energy distribution of the neutron and photon flux has been calculated over the pressure vessel simulator thickness of the LR-0 experimental reactor, Rez, Czech Republic. The results calculated by the Monte Carlo code MCNP4C are compared with the measurements performed in the Nuclear Research Institute, Rez. The spectra have been measured at the barrel, in front of, inside and behind the pressure vessel in different configurations. The neutron measurements were performed in the energy range 0.1-10 MeV. This work has been done in the frame of the 5th Frame Work Programme of the European Community 1998-2002.

  2. New method for calculating shell correction

    SciTech Connect

    Salamon, P.; Kruppa, A. T.; Vertse, T.

    2010-06-15

    A new method is presented for the calculation of the shell correction with the inclusion of the continuum part of the spectrum. The smoothing function used has a finite energy range in contrast to the Gaussian shape of the Strutinski method. The new method is especially useful for light nuclei where the generalized Strutinski procedure cannot be applied.

  3. An improved method of Nusselt number calculation

    NASA Technical Reports Server (NTRS)

    Ho-Liu, Phyllis; Hager, Bradford H.; Raefsky, Arthur

    1987-01-01

    A novel method for calculating the Nusselt number, Nu, in a steady-state Rayleigh-Benard convection problem is presented, in which calculations are done for a square box with constant temperature, free-slip boundary conditions at the top and bottom, and a reflection symmetry along the side walls. The element heat flux is obtained by averaging over the entire element; element heat fluxes are then projected to the adjacent nodes. Compared with previous methods, the approach reduces the calculated depth variation in horizontally averaged flux by more than a factor of 10 and shows more rapid convergence of Nu as a function of grid size.

  4. Shielded resistive electromagnets of arbitrary surface geometry using the boundary element method and a minimum energy constraint.

    PubMed

    Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A

    2013-09-01

    Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils.

  5. Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations.

    PubMed

    Teale, Andrew M; Lutnæs, Ola B; Helgaker, Trygve; Tozer, David J; Gauss, Jürgen

    2013-01-14

    Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.

  6. Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS

    NASA Astrophysics Data System (ADS)

    Klinkby, E. B.; Knudsen, E. B.; Willendrup, P. K.; Lauritzen, B.; Nonbøl, E.; Bentley, P.; Filges, U.

    2014-07-01

    Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed [1, 2]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides. The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the neutron beam extraction region, the individual neutron states are handed to McStas via the MCNPX-McStas interface. McStas transports the neutrons through the beam guide, and by using newly developed event logging capability, the neutron state parameters corresponding to un-reflected neutrons are recorded at each scattering. This information is handed back to MCNPX where it serves as neutron source input for a second MCNPX simulation. This simulation enables calculation of dose rates in the vicinity of the guide. In addition the logging mechanism is employed to record the scatterings along the guides which is exploited to simulate the supermirror quality requirements (i.e. m-values) needed at different positions along the beam guide to transport neutrons in the same guide/source setup.

  7. Comparison of four methods used in determination of secondary shielding requirements for a teletherapy facility: a case study of 137Cs room in Tanzania.

    PubMed

    Muhogora, W E; Nyanda, A M; Ngoye, W M

    2004-12-01

    The performance of four methods often used to calculate the secondary barrier requirements is evaluated for a typical 137Cs-therapy room as a case study. The first two methods are provided by the NCRP49 and IAEA and both consider the influence of the primary, leakage and scattered radiation at a point as corrected for the workload, use and occupancy factors. A different shielding model encompasses the third method, which determines the doses as corrected for build-up effects assuming the narrow beam geometry. The fourth method is based on the calculation of the dose rates from the source activity with a relevant gamma constant. In all four methods, an appropriate transmission factor for the protective barrier in question is applied. The results show that for controlled area, the similarity in the calculated thicknesses using all four methods was nearly within 50%. For uncontrolled areas, a significant difference of magnitude up to a factor of 2.4 was found, which is mainly attributed to the non-consideration of occupancy factors in the latter two methods. Nevertheless, the non-agreement is useful to validate the specific assumptions taken for the employed shielding method. Despite being slightly high, it is concluded that the current shielding methods based on NCRP fundamentals are satisfactorily optimal in planning new therapy facilities. However for existing facilities, such as those undesigned according to the standard requirements, the combination of the four different methods with the dose rate measurements tend to offer a better cost effective shielding option. Retrospectively, additional 41-cm thick concrete is recommended for the unshielded southern barrier of the 137Cs room. Interestingly, the recommended thickness agrees to within +/-5% with that estimated by using the recently recommended method by IAEA.

  8. Drag calculations of wings using Euler methods

    NASA Technical Reports Server (NTRS)

    Van Dam, C. P.; Chang, I. C.; Vijgen, P. M. H. W.; Nikfetrat, Koorosh

    1991-01-01

    Several techniques for the calculation of drag using Euler-equation formulations are discussed and compared. Surface-pressure integration (a nearfield technique) as well as two different farfield calculation techniques are described and applied to three-dimensional flow-field solutions for an aspect-ratio-7 wing with attached flow. The present calculations are limited to steady, low-Mach-number flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. Although the main focus of the paper is the calculation of aerodynamic drag, the calculation of aerodynamic lift is also briefly discussed. Three Euler methods are used to obtain the flowfield solutions. The farfield technique based on the evaluation of a wake-integral appears to provide the most consistent and accurate drag predictions.

  9. Calculations of neutron and photon source terms and attenuation profiles for the generic design of the SPEAR3 storage ring shield.

    PubMed

    Rokni, S H; Khater, H; Liu, J C; Mao, S; Vincke, H

    2005-01-01

    The FLUKA Monte Carlo particle generation and transport code was used to calculate shielding requirements for the 3 GeV, 500 mA SPEAR3 storage ring at the Stanford Synchrotron Radiation Laboratory. The photon and neutron dose equivalent source term data were simulated for a 3 GeV electron beam interacting with two typical target/shielding geometries in the ring. The targets simulated are a rectangular block of 0.7 cm thick copper and a 5 cm thick iron block, both tilted at 1 degree relative to the beam direction. Attenuation profiles for neutrons and photons in concrete and lead as a function of angle at different shield thicknesses were calculated. The first, second and equilibrium attenuation lengths of photons and neutrons in the shield materials are derived from the attenuation profiles. The source term data and the attenuation lengths were then used to evaluate the shielding requirements for the ratchet walls of all front-ends of the SPEAR3 storage ring.

  10. Evaluation of shielding effectiveness of composite wall with a time domain discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Kameni Ntichi, Abelin; Modave, Axel; Boubekeur, Mohamed; Preault, Valentin; Pichon, Lionel; Geuzaine, Christophe

    2013-11-01

    This article presents a time domain discontinuous Galerkin method applied for solving the con-servative form of Maxwells' equations and computing the radiated fields in electromagnetic compatibility problems. The results obtained in homogeneous media for the transverse magnetic waves are validated in two cases. We compare our solution to an analytical solution of Maxwells' equations based on characteristic method. Our results on shielding effectiveness of a conducting wall are same as those obtained from analytical expression in frequency domain. The propagation in heterogeneous medium is explored. The shielding effectiveness of a composite wall partially filled by circular conductives inclusions is computed. The proposed results are in conformity with the classical predictive homogenization rules. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.

  11. The role of the exchange-correlation response kernel and scaling corrections in relativistic density functional nuclear magnetic shielding calculations with the zeroth-order regular approximation

    NASA Astrophysics Data System (ADS)

    Autschbach, Jochen

    2013-09-01

    The relativistic NMR module of the Amsterdam Density Functional (ADF) package, which is frequently utilised in studies of heavy atom NMR chemical shifts, is extended to calculate a hitherto neglected term from the response of the exchange-correlation (XC) potential. The term vanishes in the absence of spin-orbit coupling. Further, corrections to the shielding arising from scaling factors in the zeroth-order regular approximation (zora) relativistic framework are investigated. The XC response markedly improves calculated proton chemical shifts for hydrogen halides. Mercury chemical shifts for mercury dihalides are also noticeably altered. Contributions from density-gradient dependent terms in the response kernel contribute about 30-40%. New fully relativistic density functional theory (DFT) benchmark data are compared with zora and literature reference values. In line with previous work, it is found that absolute shielding constants for Hg are not accurately predicted with zora. However, chemical shifts agree well with fully relativistic calculations. The application of 'scaled-zora' scaling factors deteriorates the shielding constants and is therefore not recommended. The scaling hardly affects chemical shifts. zora calculations are not suitable for absolute shielding of heavy atoms but they can be used safely for chemical shifts in most application scenarios.

  12. New K-Ar ages for calculating end-of-shield extrusion rates at West Maui volcano, Hawaiian island chain

    USGS Publications Warehouse

    Sherrod, D.R.; Murai, T.; Tagami, Takahiro

    2007-01-01

    Thirty-seven new K-Ar ages from West Maui volcano, Hawai'i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9-2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai'anae volcano (O'ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai'i). These rates diminish sharply during the final 0.3-0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative. ?? Springer-Verlag 2006.

  13. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-08-10

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  14. Calculation methods for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1976-01-01

    Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.

  15. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Jalali, M.; Mohammadi, A.

    2007-10-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required.

  16. A New Iterative Method to Calculate [pi

    ERIC Educational Resources Information Center

    Dion, Peter; Ho, Anthony

    2012-01-01

    For at least 2000 years people have been trying to calculate the value of [pi], the ratio of the circumference to the diameter of a circle. People know that [pi] is an irrational number; its decimal representation goes on forever. Early methods were geometric, involving the use of inscribed and circumscribed polygons of a circle. However, real…

  17. A new method for calculating loss coefficients

    SciTech Connect

    Chang, Y.C.; Yang, W.T.; Liu, C.C. . Dept. of Electrical Engineering)

    1994-08-01

    A method is proposed which avoids many limitations associated with traditional B-coefficient loss coefficient calculation. The proposed method, unlike the traditional B-coefficient method, is very fast and can handle line outages. The method utilizes network sensitivity factors which are established from DC load flow solutions. Line outage distribution factors (ODF's) are formulated using changes in network power generations to simulate the outaged line from the network. The method avoids the use of complicated reference frame transformations based upon Kron's tensor analysis. The necessity of data normalization used in least squares and the evaluation of the slope of [theta][sub j] versus PG[sub n] is not necessary with the proposed method. Using IEEE standard 14-bus and 30-bus systems, the method's results are compared against results obtained from an AC load flow program (LFED). The method's solution speed is compared to that of the LFED method, the base case database method and the conventional B-coefficient method based on A[sub jn]-factor. The proposed method is easy to implement and, when compared to other methods, has exhibited good accuracy and rapid execution times. The method is well suited to on-line dispatch applications.

  18. The Method of Characteristics for 2-D Multigroup and Pointwise Transport Calculations in SCALE/CENTRM

    SciTech Connect

    Kim, Kang Seog; Williams, Mark L

    2012-01-01

    SCALE 6 computes problem-dependent multigroup (MG) cross sections through a combination of the conventional Bondarenko shielding-factor method and a deterministic pointwise (PW) transport calculation of the fine-structure spectra in the resolved resonance and thermal energy ranges. The PW calculation is performed by the CENTRM code using a 1-D cylindrical Wigner-Seitz model with the white boundary condition instead of the real rectangular cell shape to represent a lattice unit cell. The pointwise fluxes computed by CENTRM are not exact because a 1-D model is used for the transport calculation, which introduces discrepancies in the MG self-shielded cross sections, resulting in some deviation in the eigenvalue. In order to solve this problem, the method of characteristics (MOC) has been applied to enable the CENTRM PW transport calculation for a 2-D square pin cell. The computation results show that the new BONAMI/CENTRM-MOC procedure produces very precise self-shielded cross sections compared to MCNP reaction rates.

  19. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing thismore » dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  20. Shielding requirements in helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Baechler, S.; Bochud, F. O.; Verellen, D.; Moeckli, R.

    2007-08-01

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest.

  1. Shielding requirements in helical tomotherapy.

    PubMed

    Baechler, S; Bochud, F O; Verellen, D; Moeckli, R

    2007-08-21

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest.

  2. Nuclear data calculation methods for medical applications

    SciTech Connect

    Shubin, Yu.N.; Lunev, V.P.; Masterov, V.S.; Kurenkov, N.V.; Kulikov, E.V.

    1994-12-31

    Neutron deficient radionuclides play an important role in medicine, where they are used for diagnostic with Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPET). Using some reactions connected with the producing most widely used radioisotopes {sup 123}I, {sup 201}Tl, {sup 99}Tc as example we calculated reaction cross sections and discuss the possibilities of the models and codes and recent progress in the methods to predict nuclear data for medical and other applications in medium energy region.

  3. SU-E-T-795: Validations of Dose Calculation Accuracy of Acuros BV in High-Dose-Rate (HDR) Brachytherapy with a Shielded Cylinder Applicator Using Monte Carlo Simulation

    SciTech Connect

    Li, Y; Tian, Z; Hrycushko, B; Jiang, S; Jia, X

    2015-06-15

    Purpose: Acuros BV has become available to perform accurate dose calculations in high-dose-rate (HDR) brachytherapy with phantom heterogeneity considered by solving the Boltzmann transport equation. In this work, we performed validation studies regarding the dose calculation accuracy of Acuros BV in cases with a shielded cylinder applicator using Monte Carlo (MC) simulations. Methods: Fifteen cases were considered in our studies, covering five different diameters of the applicator and three different shielding degrees. For each case, a digital phantom was created in Varian BrachyVision with the cylinder applicator inserted in the middle of a large water phantom. A treatment plan with eight dwell positions was generated for these fifteen cases. Dose calculations were performed with Acuros BV. We then generated a voxelized phantom of the same geometry, and the materials were modeled according to the vendor’s specifications. MC dose calculations were then performed using our in-house developed fast MC dose engine for HDR brachytherapy (gBMC) on a GPU platform, which is able to simulate both photon transport and electron transport in a voxelized geometry. A phase-space file for the Ir-192 HDR source was used as a source model for MC simulations. Results: Satisfactory agreements between the dose distributions calculated by Acuros BV and those calculated by gBMC were observed in all cases. Quantitatively, we computed point-wise dose difference within the region that receives a dose higher than 10% of the reference dose, defined to be the dose at 5mm outward away from the applicator surface. The mean dose difference was ∼0.45%–0.51% and the 95-percentile maximum difference was ∼1.24%–1.47%. Conclusion: Acuros BV is able to accurately perform dose calculations in HDR brachytherapy with a shielded cylinder applicator.

  4. Development of deterministic transport methods for low energy neutrons for shielding in space

    NASA Astrophysics Data System (ADS)

    Ganapol, Barry

    1993-09-01

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in

  5. Development of deterministic transport methods for low energy neutrons for shielding in space

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry

    1993-01-01

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in

  6. Technical Work Plan For: Calculation of Waste Packave and Drip Shield Response to Vibratory Ground Motion and Revision of the Seismic Consequence Abstraction

    SciTech Connect

    M. Gross

    2006-12-08

    The overall objective of the work scope covered by this technical work plan (TWP) is to develop new damage abstractions for the seismic scenario class in total system performance assessment (TSPA). The new abstractions will be based on a new set of waste package and drip shield damage calculations in response to vibratory ground motion and fault displacement. The new damage calculations, which are collectively referred to as damage models in this TWP, are required to represent recent changes in waste form packaging and in the regulatory time frame. The new damage models also respond to comments from the Independent Validation Review Team (IVRT) postvalidation review of the draft TSPA model regarding performance of the drip shield and to an Additional Information Need (AIN) from the U.S. Nuclear Regulatory Commission (NRC).

  7. Enhanced Whipple Shield

    NASA Technical Reports Server (NTRS)

    Crews, Jeanne L. (Inventor); Christiansen, Eric L. (Inventor); Williamsen, Joel E. (Inventor); Robinson, Jennifer R. (Inventor); Nolen, Angela M. (Inventor)

    1997-01-01

    A hypervelocity impact (HVI) Whipple Shield and a method for shielding a wall from penetration by high velocity particle impacts where the Whipple Shield is comprised of spaced apart inner and outer metal sheets or walls with an intermediate cloth barrier arrangement comprised of ceramic cloth and high strength cloth which are interrelated by ballistic formulae.

  8. The DOPEX code: An application of the method of steepest descent to laminated-shield-weight optimization with several constraints

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.

  9. Monte Carlo methods to calculate impact probabilities

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.

    2014-09-01

    Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward

  10. Group Contribution Methods for Phase Equilibrium Calculations.

    PubMed

    Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian

    2015-01-01

    The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.

  11. Singularity embedding method in potential flow calculations

    NASA Technical Reports Server (NTRS)

    Jou, W. H.; Huynh, H.

    1982-01-01

    The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.

  12. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.; Townsend, L. W. (Principal Investigator)

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the

  13. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  14. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    PubMed

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm(-2). This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10(19) cm(-2) Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  15. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  16. Open Rotor Tone Shielding Methods for System Noise Assessments Using Multiple Databases

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Thomas, Russell H.; Lopes, Leonard V.; Burley, Casey L.; Van Zante, Dale E.

    2014-01-01

    Advanced aircraft designs such as the hybrid wing body, in conjunction with open rotor engines, may allow for significant improvements in the environmental impact of aviation. System noise assessments allow for the prediction of the aircraft noise of such designs while they are still in the conceptual phase. Due to significant requirements of computational methods, these predictions still rely on experimental data to account for the interaction of the open rotor tones with the hybrid wing body airframe. Recently, multiple aircraft system noise assessments have been conducted for hybrid wing body designs with open rotor engines. These assessments utilized measured benchmark data from a Propulsion Airframe Aeroacoustic interaction effects test. The measured data demonstrated airframe shielding of open rotor tonal and broadband noise with legacy F7/A7 open rotor blades. Two methods are proposed for improving the use of these data on general open rotor designs in a system noise assessment. The first, direct difference, is a simple octave band subtraction which does not account for tone distribution within the rotor acoustic signal. The second, tone matching, is a higher-fidelity process incorporating additional physical aspects of the problem, where isolated rotor tones are matched by their directivity to determine tone-by-tone shielding. A case study is conducted with the two methods to assess how well each reproduces the measured data and identify the merits of each. Both methods perform similarly for system level results and successfully approach the experimental data for the case study. The tone matching method provides additional tools for assessing the quality of the match to the data set. Additionally, a potential path to improve the tone matching method is provided.

  17. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  18. RSMASS-D models: An improved method for estimating reactor and shield mass for space reactor applications

    SciTech Connect

    Marshall, A.C.

    1997-10-01

    Three relatively simple mathematical models have been developed to estimate minimum reactor and radiation shield masses for liquid-metal-cooled reactors (LMRs), in-core thermionic fuel element (TFE) reactors, and out-of-core thermionic reactors (OTRs). The approach was based on much of the methodology developed for the Reactor/Shield Mass (RSMASS) model. Like the original RSMASS models, the new RSMASS-derivative (RSMASS-D) models use a combination of simple equations derived from reactor physics and other fundamental considerations, along with tabulations of data from more detailed neutron and gamma transport theory computations. All three models vary basic design parameters within a range specified by the user to achieve a parameter choice that yields a minimum mass for the power level and operational time of interest. The impact of critical mass, fuel damage, and thermal limitations are accounted for to determine the required fuel mass. The effect of thermionic limitations are also taken into account for the thermionic reactor models. All major reactor component masses are estimated, as well as instrumentation and control (I&C), boom, and safety system masses. A new shield model was developed and incorporated into all three reactor concept models. The new shield model is more accurate and simpler to use than the approach used in the original RSMASS model. The estimated reactor and shield masses agree with the mass predictions from separate detailed calculations within 15 percent for all three models.

  19. A Method to Calculate Protein Dipole Moments

    NASA Astrophysics Data System (ADS)

    Mellor, Brett; Mazzeo, Brian

    2009-10-01

    The electric dipole moments of globular proteins, determined experimentally by dielectric relaxation spectroscopy, contribute to both protein function and structure. Numerical computations of dipole moments can be obtained from structures in the Protein Data Bank. However, previous computations in literature have agreed with experimental results for only a limited number of proteins. This paper presents a method to compute the pH-dependent dipole moment. The protein molecule is considered as an array of electrical point charges in aqueous solution. The dipole moment is calculated as the vector sum of two components: (1)the core dipole moment which emerges from the unequal sharing of electrons in covalent bonds; (2)the surface charge dipole moment resulting from pH-dependent side chain partial charges. pKa shifts for each side chain amino acid are determined by the H++ server employing the Poisson-Boltzmann equation. The net charge and dipole moment over a range of pH are calculated. The Oncley equation is used to predict the dielectric increment at arbitrary pH, temperature, and protein concentration.

  20. Proton Affinity Calculations with High Level Methods.

    PubMed

    Kolboe, Stein

    2014-08-12

    Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.

  1. Resonance self-shielding methodology in MPACT

    SciTech Connect

    Liu, Y.; Collins, B.; Kochunas, B.; Martin, W.; Kim, K. S.; Williams, M.

    2013-07-01

    The resonance self-shielding methods of the neutron transport code Michigan Parallel Characteristics based Transport (MPACT) are described in this paper. Two resonance-integral table based methods are utilized to resolve the resonance self-shielding effect. The subgroup method is a mature approach used in MPACT as the basic functionality for the resonance calculation. Another new iterative method, named the embedded self-shielding method is also implemented in MPACT. Comparisons of the two methods as well as their numerical verifications are presented. The results show that MPACT is capable of modeling the resonance self-shielding in a variety of PWR benchmarking cases, including difficult fuel lattice cases with poison, control rods or mixed gadolinia fuel rods. (authors)

  2. Numerical computation of lightning transfer functions for layered, anisotropically conducting shielding structures by the method of moments

    NASA Astrophysics Data System (ADS)

    Happ, Fabian; Brüns, Heinz-D.; Mavraj, Gazmend; Gronwald, Frank

    2016-09-01

    A formalism for the computation of lightning transfer functions by the method of moments, which involves shielding structures that may consist of layered, anisotropically conducting composite materials, is presented in this contribution. The composite materials, being of a type that is widely used in space- and aircraft design, are electrically characterized by an equivalent conductivity. As basis for the quantitative analysis the method of moments is used where shielding surfaces can be treated by a thin layer technique which utilizes analytical solutions inside the layer. Also the effect of an extended lightning channel can be taken into account. The method is applied to geometries that resemble an actual airplane fuselage.

  3. Improving Hiroshima Air-Over-Ground Thermal/Epithermal Activation Calculations Using a MUSH Model to Show the Importance of Local Shielding

    SciTech Connect

    Pace, J.V.

    2002-02-14

    Achieving agreement between measured and calculated neutron activation data resulting from Hiroshima and Nagasaki A-bomb detonations has been a major problem since the early 1980's. This has been particularly true for the materials that are activated by thermal and epithermal neutrons. Since thermal and epithermal neutrons are not transported very far from the weapon, the local shielding environment around the measurement location can be very important. A set of calculations incorporating an average density local-environment material (mush) has been made to demonstrate that the local environment plays an important role in the calculation-measurement agreement process. The optimum solution would be to include the local environment in all thermal neutron response calculations.

  4. A radiation emission shielding method for high intensity focus ultrasound probes.

    PubMed

    Wu, Hao; Shen, Guofeng; Chen, Yazhu

    2015-01-01

    Electromagnetic compatibility (EMC) is a key issue in the design and development of safe and effective medical instruments. The treatment probes of high intensity focused ultrasound (HIFU) systems not only receive and transmit electromagnetic waves, but also radiate ultrasound waves, resulting in electromagnetic coupling. In this paper, an electromagnetic shielding method involving the enclosure of the probe in a copper wire mesh was introduced. First, sound pressure distribution simulations and measurements were performed using a hydrophone in order to evaluate the effects of the wire mesh on the acoustic performance of the HIFU system. The results indicated that the wire mesh did not disturb the normalized sound pressure field. In addition, the attenuation of the maximum pressure in the focal plane was equal to 6.2%. Then, the electronic emission level was tested in a chamber. After the implementation of the wire mesh, the 10-100 MHz frequency band radiation was suppressed, and the HIFU system satisfied the national EMC standards.

  5. Multigrid Methods in Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil

    1996-03-01

    Multigrid techniques have become the method of choice for a broad range of computational problems. Their use in electronic structure calculations introduces a new set of issues when compared to traditional plane wave approaches. We have developed a set of techniques that address these issues and permit multigrid algorithms to be applied to the electronic structure problem in an efficient manner. In our approach the Kohn-Sham equations are discretized on a real-space mesh using a compact representation of the Hamiltonian. The resulting equations are solved directly on the mesh using multigrid iterations. This produces rapid convergence rates even for ill-conditioned systems with large length and/or energy scales. The method has been applied to both periodic and non-periodic systems containing over 400 atoms and the results are in very good agreement with both theory and experiment. Example applications include a vacancy in diamond, an isolated C60 molecule, and a 64-atom cell of GaN with the Ga d-electrons in valence which required a 250 Ry cutoff. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures. The compact representation of the Hamiltonian is especially well suited to such machines. Tests on the Cray-T3D have shown nearly linear scaling of the execution time up to the maximum number of processors (512). The MPP implementation has been used for studies of a large Amyloid Beta Peptide (C_146O_45N_42H_210) found in the brains of Alzheimers disease patients. Further applications of the multigrid method will also be described. (in collaboration D. J. Sullivan and J. Bernholc)

  6. Tests of a novel method to assay SNM using polarized photofission and its sensitivity in the presence of shielding

    NASA Astrophysics Data System (ADS)

    Mueller, J. M.; Ahmed, M. W.; Kafkarkou, A.; Kendellen, D. P.; Sikora, M. H.; Spraker, M. C.; Weller, H. R.; Zimmerman, W. R.

    2015-03-01

    A novel method to identify Special Nuclear Material was recently developed (Mueller et al., 2014) [1]. This method relies upon using a linearly polarized γ-ray beam to induce photofission of a sample and then comparing the prompt fission neutron yields in and out of the plane of beam polarization. The present paper will describe experimental tests of this new technique and assess its sensitivity in the presence of shielding. The capability of this technique to measure the enrichment of uranium was tested by using combinations of thin 235U and 238U foils of known enrichments. The sensitivity of this assay to shielding by lead, steel, and polyethylene was experimentally measured and simulated using GEANT4. These tests show that the measured asymmetry can indeed be used to determine the enrichment of materials composed of an admixture of 235U and 238U, and this asymmetry is relatively insensitive to moderate amounts of shielding.

  7. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis.

    PubMed

    Olejniczak, Małgorzata; Bast, Radovan; Saue, Trond; Pecul, Magdalena

    2012-01-07

    We report the implementation of nuclear magnetic resonance (NMR) shielding tensors within the four-component relativistic Kohn-Sham density functional theory including non-collinear spin magnetization and employing London atomic orbitals to ensure gauge origin independent results, together with a new and efficient scheme for assuring correct balance between the large and small components of a molecular four-component spinor in the presence of an external magnetic field (simple magnetic balance). To test our formalism we have carried out calculations of NMR shielding tensors for the HX series (X = F, Cl, Br, I, At), the Xe atom, and the Xe dimer. The advantage of simple magnetic balance scheme combined with the use of London atomic orbitals is the fast convergence of results (when compared with restricted kinetic balance) and elimination of linear dependencies in the basis set (when compared to unrestricted kinetic balance). The effect of including spin magnetization in the description of NMR shielding tensor has been found important for hydrogen atoms in heavy HX molecules, causing an increase of isotropic values of 10%, but negligible for heavy atoms.

  8. Shielding for thermal neutrons.

    PubMed

    McCall, R C

    1997-01-01

    The problem of calculating the neutron capture gamma-ray dose rate due to thermal neutron capture in a boron or cadmium rectangular shield is considered. An example is given for shielding for a door at the exit of medical accelerator room maze in order to determine the optimum location of lead relative to the borated polyethylene.

  9. Simulation of reflected and scattered laser radiation for designing laser shields.

    PubMed

    Konieczny, Piotr; Wolska, Agnieszka; Swiderski, Jacek; Zajac, Andrzej

    2008-01-01

    This paper presents a computer simulation of reflected and scattered laser radiation for calculating the angle of laser shields performed with the Laser Shield Solver computer program. The authors describe a method of calculating the shield angle for laser shields which protect workers against reflected and scattered laser radiation and which are made from different materials. The main assumptions of the program, which calculates and simulates reflected laser radiation from any material and which can be used for designing shield angles, are presented. Calculations are compared with measurements of reflected laser radiation. The results for one type of laser and different materials which interacted with a laser beam showed that the Laser Shield Solver was an appropriate tool for designing laser shields and its simulations of reflected laser radiation distribution have practical use.

  10. Program GROUPIE (version 79-1): calculation of Bondarenko self-shielded neutron cross sections and multiband parameters from data in the ENDF/B format

    SciTech Connect

    Cullen, D.E.

    1980-07-04

    Program GROUPIE reads evaluated data in the ENDF/B format and uses these data to calculate Bondarenko self-shielded cross sections and multiband parameters. To give as much generality as possible, the program allows the user to specify arbitrary energy groups and an arbitrary energy groups and an arbitrary energy-dependent neutron spectrum (weighing function). To guarantee the accuracy of the results, all integrals are performed analytically; in no case is iteration or any approximate form of integration used. The output from this program includes both listings and multiband parameters suitable for use either in a normal multigroup transport calculation or in a multiband transport calculation. A listing of the source deck is available on request.

  11. Evaluation of a method to shield a welding electron beam from magnetic interference

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.

  12. GCFR radial blanket and shield experiment

    SciTech Connect

    Muckenthaler, F.J.; Hull, J.L.; Manning, J.J.

    1980-12-01

    This report presents integral neutron flux, energy spectra, and gamma-ray heating measurements made for the Radial Blanket and Shield Experiment at the ORNL Tower Shielding Facility as part of a continuing Gas Cooled Fast Breeder Reactor program. The experimental configurations were divided into four basic segments: a spectrum modifier inserted into the Tower Shielding Reactor II beam; blanket slabs consisting of either ThO/sub 2/ or UO/sub 2/ placed directly behind the spectrum modifier; an inner radial shield behind the blankets; and an outer radial shield to complete the mockup. The segments were added in sequence, with selected measurements made within and beyond each segment. The integral experiment was performed to provide verification of calculational methods and nuclear data used in designing a radial shield for the GCFR and determining the effectiveness of the design. The ThO/sub 2/ blanket measurements were needed to bracket the uncertainties in the nuclear cross sections for calculating both the neutron transmission through the blanket and the gamma-ray heating rates within the blanket. Measurements with a UO/sub 2/ blanket were included both as a reference for the ThO/sub 2/ analysis, neutron transmission through UO/sub 2/ having been successfully calculated in previous experiments, and to provide comparison information for other breeder reactor designs.

  13. A shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    The perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  14. Comparison and physical interpretation of MCNP and TART neutron and γ Monte Carlo shielding calculations for a heavy-ion ICF system

    NASA Astrophysics Data System (ADS)

    Mainardi, E.; Premuda, F.; Lee, E.

    2004-01-01

    Inertial confinement fusion (ICF) aims to induce implosions of D-T pellets to obtain a extremely dense and hot plasma with lasers or heavy-ion beams. For heavy-ion fusion (HIF), recent research has focused on "liquid-protected" designs that allow highly compact target chambers. In the design of a reactor such as HYLIFE-II [Fus. Techol. 25 (1984); HYLIFE-II Progress Report, UCID-21816, 4.82-100], the liquid used is a molten salt made of F 10, Li 6, Li 7, Be 9 (called flibe). Flibe allows the final-focus magnets to be closer to the target, which helps to reduce the focus spot size and in turn the size of the driver, with a large reduction of the cost of HIF electricity. Consequently the superconducting coils of the magnets closer to the D-T neutron source will potentially suffer higher damage though they can stand only a certain amount of energy deposited before quenching. This work has been primarily focusing on verifying that total energy deposited by fusion neutrons and induced γ rays remain under such limit values and the final purpose is the optimization of the shielding of the magnetic lens system from the points of view of the geometrical configuration and of the physical nature of the materials adopted. The system is analyzed in terms of six geometrical models going from simplified up to much more realistic representations of a system of 192 beam lines, each focused by six magnets. A 3-D transport calculation of the radiation penetrating through ducts, that takes into account the complexity of the system, requires Monte Carlo methods. The technical nature of the design problem and the methodology followed were presented in a previous paper [Nucl. Instr. and Meth. A 464 (2001) 410] by summarizing briefly the results for the deposited energy distribution on the six focal magnets of a beam line. Now a comparison of the performances of the two codes TART98 [TART98: A Coupled Neutron-Photon 3-D Combinational Geometry Monte Carlo Transport Code, Lawrence Livermore

  15. Methods of calculating radiation absorbed dose.

    PubMed

    Wegst, A V

    1987-01-01

    The new tumoricidal radioactive agents being developed will require a careful estimate of radiation absorbed tumor and critical organ dose for each patient. Clinical methods will need to be developed using standard imaging or counting instruments to determine cumulated organ activities with tracer amounts before the therapeutic administration of the material. Standard MIRD dosimetry methods can then be applied.

  16. Methods of Stress Calculation in Rotating Disks

    NASA Technical Reports Server (NTRS)

    Tumarkin, S.

    1944-01-01

    The paper describes nethods of computing the stresses in disks of a given profile as well as methods of choosing the disk profiles for a given stress distribution for turhines, turbo blowers, and so forth. A new method of in tegrating the differential equations of Stodola leads to a simplification of the computation for disks of hyperbolic profile.

  17. Developpement de methodes de calcul de coefficients de sensibilite des sections efficaces multigroupes autoprotegees et de sensibilite implicite du keff aux densites isotopiques

    NASA Astrophysics Data System (ADS)

    Dion, Maxime

    Since deterministic codes use a multigroup scheme, self-shielding calculations are required before one can carry out neutron transport calculations. These calculations are used to obtain multigroup cross sections where flux depressions at resonance energies are properly taken into account. For each system where a transport solution is required, self-shielding calculations must be carried out beforehand. Multigroup cross sections in the resonant energy range are therefore system-dependent quantities. This means that a variation on a reactor parameter, an isotopic density for example, will have an impact on the resonant self-shielded cross sections. It is therefore relevant to distinguish between two types of effects resulting from a variation on a given parameter. This parameter can explicitly appear in the transport equation (for example, an isotopic density explicitly appears through the macroscopic cross sections of the corresponding mixture) and perturb the multiplication factor keff (or any other quantity obtained from solving the transport equation). This is called an explicit effect. This parameter variation can also affect self-shielding calculations and perturb resonant multigroup cross sections, which can themselves cause a variation of keff. This is what we refer to as an implicit effect. In general, the keff perturbations resulting from the implicit effect have the opposite sign of those resulting from the explicit effect. When a variation on a parameter leads to a perturbation on another parameter, following a transport calculation for instance, we can compute sensitivity coefficients between those two parameters. In this thesis, we consider the self-shielded cross sections and keff sensitivity coefficients to isotopic densities. More precisely, we develop methods to compute the self-shielded cross sections sensitivity to densities arising from two different self-shielding models, an equivalent dilution model and a subgroup model. Once these

  18. Heat Shielding: A Novel Method of Colonial Thermoregulation in Honey Bees

    NASA Astrophysics Data System (ADS)

    Starks, Philip T.; Gilley, David C.

    Honey bees, Apis mellifera, maintain constant colony temperatures throughout the year. Honey bees fan their wings to cool the colony, and often spread fluid in conjunction with this behavior to induce evaporative cooling. We present an additional, previously undescribed mechanism used by the honey bee to maintain constant colony temperature in response to localized temperature increases. Worker bees shield the comb from external heat sources by positioning themselves on hot interior regions of the hive's walls. Although honey comb and brood comb were both shielded, the temperature-sensitive brood received a greater number of heat shielders and was thus better protected from overheating. Heat shielding appears to be a context-dependent adaptive behavior performed by worker bees who would previously have been considered "unemployed."

  19. Calculating the response of NMR shielding tensor σ(31P) and 2J(31P,13C) coupling constants in nucleic acid phosphate to coordination of the Mg2+ cation.

    PubMed

    Benda, Ladislav; Schneider, Bohdan; Sychrovský, Vladimír

    2011-03-24

    Dependence of NMR (31)P shielding tensor and (2)J(P,C) coupling constants on solvation of nucleic acid phosphate by Mg(2+) and water was studied using methods of bioinformatic structural analyses of crystallographic data and DFT B3LYP calculations of NMR parameters. The effect of solvent dynamics on NMR parameters was calculated using molecular dynamic. The NMR calculations for representative solvation patterns determined in crystals of B-DNA and A-RNA molecules pointed out the crucial importance of local Mg(2+) coordination geometry, including hydration by explicit water molecules and necessity of dynamical averaging over the solvent reorientation. The dynamically averaged (31)P chemical shift decreased by 2-9.5 ppm upon Mg(2+) coordination, the chemical shielding anisotropy increased by 0-20 ppm, and the (2)J(P,C5') coupling magnitude decreased by 0.2-1.8 Hz upon Mg(2+) coordination. The calculated decrease of the (31)P chemical shift is in excellent agreement with the 1.5-10 ppm decrease of the phosphorothioate (31)P chemical shift upon Cd(2+) coordination probed experimentally in hammerhead ribozyme (Suzumura; et al. J. Am. Chem. Soc. 2002, 124, 8230-8236; Osborne; et al., Biochemistry 2009, 48, 10654-10664). None of the dynamically averaged NMR parameters unequivocally distinguishes the site-specific Mg(2+) coordination to one of the two nonesterified phosphate oxygen atoms of the phosphate determined by bioinformatic analyses. By comparing the limit cases of static and dynamically averaged solvation, we propose that mobility of the solvent has a dramatic impact on NMR parameters of nucleic acid phosphate and must be taken into account for their accurate modeling.

  20. Lie algebraic methods for particle tracking calculations

    SciTech Connect

    Douglas, D.R.; Dragt, A.J.

    1983-08-01

    A study of the nonlinear stability of an accelerator or storage ring lattice typically includes particle tracking simulations. Such simulations trace rays through linear and nonlinear lattice elements by numerically evaluating linear matrix or impulsive nonlinear transformations. Using the mathematical tools of Lie groups and algebras, one may construct a formalism which makes explicit use of Hamilton's equations and which allows the description of groups of linear and nonlinear lattice elements by a single transformation. Such a transformation will be exactly canonical and will describe finite length linear and nonlinear elements through third (octupole) order. It is presently possible to include effects such as fringing fields and potentially possible to extend the formalism to include nonlinearities of higher order, multipole errors, and magnet misalignments. We outline this Lie algebraic formalism and its use in particle tracking calculations. A computer code, MARYLIE, has been constructed on the basis of this formalism. We describe the use of this program for tracking and provide examples of its application. 6 references, 3 figures.

  1. Deconstructing Calculation Methods, Part 4: Division

    ERIC Educational Resources Information Center

    Thompson, Ian

    2008-01-01

    In the final article of a series of four, the author deconstructs the primary national strategy's approach to written division. The approach to division is divided into five stages: (1) mental division using partition; (2) short division of TU / U; (3) "expanded" method for HTU / U; (4) short division of HTU / U; and (5) long division.…

  2. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  3. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  4. Enhanced Method for Cavity Impedance Calculations

    SciTech Connect

    Frank Marhauser, Robert Rimmer, Kai Tian, Haipeng Wang

    2009-05-01

    With the proposal of medium to high average current accelerator facilities the demand for cavities with extremely low Higher Order Mode (HOM) impedances is increasing. Modern numerical tools are still under development to more thoroughly predict impedances that need to take into account complex absorbing boundaries and lossy materials. With the usually large problem size it is preferable to utilize massive parallel computing when applicable and available. Apart from such computational issues, we have developed methods using available computer resources to enhance the information that can be extracted from a cavities? wakefield computed in time domain. In particular this is helpful for a careful assessment of the extracted RF power and the mitigation of potential beam break-up or emittance diluting effects, a figure of merit for the cavity performance. The method is described as well as an example of its implementation.

  5. Calculating Pi Using the Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Williamson, Timothy

    2013-11-01

    During the summer of 2012, I had the opportunity to participate in a research experience for teachers at the center for sustainable energy at Notre Dame University (RET @ cSEND) working with Professor John LoSecco on the problem of using antineutrino detection to accurately determine the fuel makeup and operating power of nuclear reactors. During full power operation, a reactor may produce 1021 antineutrinos per second with approximately 100 per day being detected. While becoming familiar with the design and operation of the detectors, and how total antineutrino flux could be obtained from such a small sample, I read about a simulation program called Monte Carlo. Further investigation led me to the Monte Carlo method page of Wikipedia2 where I saw an example of approximating pi using this simulation. Other examples where this method was applied were typically done with computer simulations2 or purely mathematical.3 It is my belief that this method may be easily related to the students by performing the simple activity of sprinkling rice on an arc drawn in a square. The activity that follows was inspired by those simulations and was used by my AP Physics class last year with very good results.

  6. Algebraic method for calculating a neutron albedo

    NASA Astrophysics Data System (ADS)

    Ignatovich, V. K.; Shabalin, E. P.

    2007-02-01

    A neutron albedo from arbitrary homogeneous and finely grained substances is examined on the basis of a new, algebraic, method. In the approximation of an isotropic distribution of incident and reflected neutrons, it is shown that, in the case of thermal neutrons, coherent scattering on individual particles of finely grained media increases only slightly the transport cross section, but, at a given wall thickness, it reduces the albedo because of a decrease in the density of the substance. A significant increase in the albedo is possible only for neutrons of wavelength on the order of dimensions of a powder grain. The angular distribution of reflected neutrons is discussed, and it is proven that a deviation of this distribution from an isotropic one does not lead to a change in the magnitude of the albedo.

  7. Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)

    NASA Technical Reports Server (NTRS)

    Warner, Brent A.; Shirron, Peter J.; Castles, Stephen H.; Serlemitsos, Aristides T.

    1991-01-01

    The Goddard Space Flight Center has studied magnetic shielding for an adiabatic demagnetization refrigerator. Four types of shielding were studied: active coils, passive ferromagnetic shells, passive superconducting coils, and passive superconducting shells. The passive superconducting shells failed by allowing flux penetration. The other three methods were successful, singly or together. Experimental studies of passive ferromagnetic shielding are compared with calculations made using the Poisson Group of programs, distributed by the Los Alamos Accelerator Code Group of the Los Alamos National Laboratory. Agreement between calculation and experiment is good. The ferromagnetic material is a silicon iron alloy.

  8. Shielding of substations against direct lightning strokes by shield wires

    SciTech Connect

    Chowdhuri, P. )

    1994-01-01

    A new analysis for shielding outdoor substations against direct lightning strokes by shield wires is proposed. The basic assumption of this proposed method is that any lightning stroke which penetrates the shields will cause damage. The second assumption is that a certain level of risk of failure must be accepted, such as one or two failures per 100 years. The proposed method, using electrogeometric model, was applied to design shield wires for two outdoor substations: (1) 161-kV/69-kV station, and (2) 500-kV/161-kV station. The results of the proposed method were also compared with the shielding data of two other substations.

  9. Neutron streaming analysis for shield design of FMIT Facility

    SciTech Connect

    Carter, L.L.

    1980-12-01

    Applications of the Monte Carlo method have been summarized relevant to neutron streaming problems of interest in the shield design for the FMIT Facility. An improved angular biasing method has been implemented to further optimize the calculation of streaming and this method has been applied to calculate streaming within a double bend pipe.

  10. Improved analysis of electron penetration and numerical procedures for space radiation shielding

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Denn, F. M.

    1977-01-01

    Electron penetration calculational techniques are reviewed with regard to their suitability for shield analysis in future space operations. Methods based on the transmission factors of Mar are discussed and a correction term for low-energy electrons, which results in slightly conservative shield estimates, is derived. This modified Mar's method provides estimates of the dose for electrons that penetrate through shields of arbitrary elemental material with an atomic number greater than four. A complete computer algorithm is included.

  11. Shielding of elastic nonstationary waves by interfaces

    NASA Astrophysics Data System (ADS)

    Gulyaev, V. I.; Lugovoi, P. Z.; Zayets, Yu. A.

    2012-07-01

    The ray method is used to solve the problem of the propagation of discontinuous (weak shock) waves in inhomogeneous elastic media. A procedure for drawing the fronts of reflected and refracted waves at interfaces and calculating their intensities is proposed. The effect of shielding discontinuous waves by one or two interfaces is studied. The cases of slipping and non-slipping contact are examined

  12. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    DOEpatents

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  13. Complexity of Monte Carlo and deterministic dose-calculation methods.

    PubMed

    Börgers, C

    1998-03-01

    Grid-based deterministic dose-calculation methods for radiotherapy planning require the use of six-dimensional phase space grids. Because of the large number of phase space dimensions, a growing number of medical physicists appear to believe that grid-based deterministic dose-calculation methods are not competitive with Monte Carlo methods. We argue that this conclusion may be premature. Our results do suggest, however, that finite difference or finite element schemes with orders of accuracy greater than one will probably be needed if such methods are to compete well with Monte Carlo methods for dose calculations.

  14. Some methods for calculation of perturbations in nuclear reactors

    SciTech Connect

    Abramov, B. D.

    2015-12-15

    Some methods for calculation of local perturbations of neutron fields and reactivity effects accompanying them are considered. Existence, uniqueness, properties and methods for finding solutions to the considered problems are discussed.

  15. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  16. The heterogeneous anti-radiation shield for spacecraft*

    NASA Astrophysics Data System (ADS)

    Telegin, S. V.; Draganyuk, O. N.

    2016-04-01

    The paper deals with modeling of elemental composition and properties of heterogeneous layers in multilayered shields to protect spacecraft onboard equipment from radiation emitted by the natural Earth’s radiation belt. This radiation causes malfunctioning of semiconductor elements in electronic equipment and may result in a failure of the spacecraft as a whole. We consider four different shield designs and compare them to the most conventional radiation-protective material for spacecraft - aluminum. Out of light and heavy chemical elements we chose the materials with high reaction cross sections and low density. The mass attenuation coefficient of boron- containing compounds is 20% higher than that of aluminum. Heterogeneous shields consist of three layers: a glass cloth, borated material, and nickel. With a protective shield containing heavy metal the output bremsstrahlung can be reduced. The amount of gamma rays that succeed to penetrate the shield is 4 times less compared to aluminum. The shields under study have the thicknesses of 5.95 and 6.2 mm. A comparative analysis of homogeneous and multilayered protective coatings of the same chemical composition has been performed. A heterogeneous protective shield has been found to be advantageous in weight and shielding properties over its homogeneous counterparts and aluminum. The dose characteristics and transmittance were calculated by the Monte Carlo method. The results of our study lead us to conclude that a three-layer boron carbide shield provides the most effective protection from radiation. This shield ensures twice as low absorbed dose and 4 times less the number of penetrated gamma-ray photons compared to its aluminum analogue. Moreover, a heterogeneous shield will have a weight 10% lighter than aluminum, with the same attenuation coefficient of the electron flux. Such heterogeneous shields can be used to protect spacecraft launched to geostationary orbit. Furthermore, a protective boron-containing and

  17. A Multigroup Method for the Calculation of Neutron Fluence with a Source Term

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Clowdsley, M. S.

    1998-01-01

    Current research on the Grant involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects. By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.

  18. Calculation of transonic flows using an extended integral equation method

    NASA Technical Reports Server (NTRS)

    Nixon, D.

    1976-01-01

    An extended integral equation method for transonic flows is developed. In the extended integral equation method velocities in the flow field are calculated in addition to values on the aerofoil surface, in contrast with the less accurate 'standard' integral equation method in which only surface velocities are calculated. The results obtained for aerofoils in subcritical flow and in supercritical flow when shock waves are present compare satisfactorily with the results of recent finite difference methods.

  19. Shielding current analysis by current-vector-potential method: Application to HTS film with multiply-connected structure

    NASA Astrophysics Data System (ADS)

    Kamitani, A.; Takayama, T.; Ikuno, S.

    2013-11-01

    The performance of the virtual voltage method is compared with that of the conventional method in which integral forms of Faraday’s law along crack surfaces are treated as natural boundary conditions. As a result, it is found that there is a significant difference between numerical solutions by the two methods. In this sense, not the conventional method but the virtual voltage method should be employed to the shielding current analysis in a high-temperature superconducting film with cracks. By means of the virtual voltage method, the influence of a crack on the inductive method is investigated numerically. The results of computations show that, if the threshold current changes remarkably from its ambient value, a part of a crack is contained in the projection of the field-generating coil onto the film surface. Furthermore, the applicability of the inductive method to the crack detection is investigated numerically.

  20. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    SciTech Connect

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

  1. Dual Optimization Method of RF and Quasi-Static Field Simulations for Reduction of Eddy Currents Generated on 7T RF Coil Shielding

    PubMed Central

    Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B.; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T.; Handler, William B.; Chronik, Blaine A.; Ibrahim, Tamer S.

    2015-01-01

    Purpose To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. Methods One set of a four-element, 2×2 Tic-Tac-Toe (TTT) head coil structure is selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents are quantitatively studied in the time and frequency domains. The RF characteristics are studied using the finite-difference time-domain (FDTD) method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in-vivo human subjects. Results The eddy current simulation method is verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding can significantly distort the gradient fields. EPI images, B1+ maps and S matrix measurements verified that the proposed slot pattern can suppress the eddy currents while maintaining the RF characteristics of the transmit coil. Conclusion The presented dual-optimization method could be used to design the RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. PMID:25367703

  2. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    SciTech Connect

    Yang, W.; Wu, H.; Cao, L.

    2012-07-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO{sub 2} fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for {sup 240}Pu and {sup 242}Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  3. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  4. Determination of dosimetric parameters for shielded 153Gd source in prostate cancer brachytherapy

    PubMed Central

    Ghorbani, Mahdi; Ghatei, Najmeh; Mehrpouyan, Mohammad; Meigooni, Ali S.; Shahraini, Ramin

    2017-01-01

    Abstract Background Interstitial rotating shield brachytherapy (I-RSBT) is a recently developed method for treatment of prostate cancer. In the present study TG-43 dosimetric parameters of a 153Gd source were obtained for use in I-RSBT. Materials and methods A 153Gd source located inside a needle including a Pt shield and an aluminum window was simulated using MCNPX Monte Carlo code. Dosimetric parameters of this source model, including air kerma strength, dose rate constant, radial dose function and 2D anisotropy function, with and without the shields were calculated according to the TG-43 report. Results The air kerma strength was found to be 6.71 U for the non-shielded source with 1 GBq activity. This value was found to be 0.04 U and 6.19 U for the Pt shield and Al window cases, respectively. Dose rate constant for the non-shielded source was found to be 1.20 cGy/(hU). However, for a shielded source with Pt and aluminum window, dose rate constants were found to be 0.07 cGy/(hU) and 0.96 cGy/(hU), on the shielded and window sides, respectively. The values of radial dose function and anisotropy function were tabulated for these sources. Additionally, isodose curves were drawn for sources with and without shield, in order to evaluate the effect of shield on dose distribution. Conclusions Existence of the Pt shield may greatly reduce the dose to organs at risk and normal tissues which are located toward the shielded side. The calculated air kerma strength, dose rate constant, radial dose function and 2D anisotropy function data for the 153Gd source for the non-shielded and the shielded sources can be used in the treatment planning system (TPS). PMID:28265239

  5. Magnetic Shield for Adiabatic Demagnetization Refrigerators (ADR)

    NASA Technical Reports Server (NTRS)

    Chui, Talso C.; Haddad, Nicolas E.

    2013-01-01

    A new method was developed for creating a less expensive shield for ADRs using 1018 carbon steel. This shield has been designed to have similar performance to the expensive vanadium permendur shields, but the cost is 30 to 50% less. Also, these shields can be stocked in a variety of sizes, eliminating the need for special forgings, which also greatly reduces cost.

  6. Stellarator expansion methods for MHD equilibrium and stability calculations

    SciTech Connect

    Lynch, V.E.; Charlton, L.A.; Hicks, H.R.; Holmes, J.A.; Carreras, B.A.; Hender, T.C.; Garcia, L.

    1986-03-01

    Two methods for performing stellarator expansion, or average method, MHD calculations are described. The first method includes the calculation of vacuum, equilibrium, and stability, using the Greene and Johnson stellarator expansion in which the equilibrium is reduced to a 2-D problem by averaging over the geometric toroidal angle in real space coordinates. In the second method, the average is performed in a system of vacuum magnetic coordinates. Both methods are implemented to utilize realistic vacuum field information, making them applicable to configuration studies and machine design, as well as to basic research. Illustrative examples are presented to detail the sensitivities of the calculations to physical parameters and to show numerical convergence and the comparison of these methods with each other and with other methods.

  7. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  8. A Recursive Method for Calculating Certain Partition Functions.

    ERIC Educational Resources Information Center

    Woodrum, Luther; And Others

    1978-01-01

    Describes a simple recursive method for calculating the partition function and average energy of a system consisting of N electrons and L energy levels. Also, presents an efficient APL computer program to utilize the recursion relation. (Author/GA)

  9. Shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    Perturbation theory formulas were derived and applied to determine changes in neutron and gamma-ray doses due to changes in various radiation shield layers for fixed sources. For a given source and detector position, the perturbation method enables dose derivatives with respect to density, or equivalently thickness, for every layer to be determined from one forward and one inhomogeneous adjoint calculation. A direct determination without the perturbation approach would require two forward calculations to evaluate the dose derivative due to a change in a single layer. Hence, the perturbation method for obtaining dose derivatives requires fewer computations for design studies of multilayer shields. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer in a two-layer spherical configuration as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  10. Exploring Chemical Bonds through Variations in Magnetic Shielding.

    PubMed

    Karadakov, Peter B; Horner, Kate E

    2016-02-09

    Differences in nuclear isotropic magnetic shieldings give rise to the chemical shifts measured in NMR experiments. In contrast to existing NMR experimental techniques, quantum chemical methods are capable of calculating isotropic magnetic shieldings not just at nuclei, but also at any point in the space surrounding a molecule. Using s-trans-1,3-butadiene, ethane, ethene, and ethyne as examples, we show that the variations in isotropic magnetic shielding around a molecule, represented as isosurfaces and contour plots, provide an unexpectedly clear picture of chemical bonding, which is much more detailed than the traditional description in terms of the total electron density.

  11. Magsat investigation. [Canadian shield

    NASA Technical Reports Server (NTRS)

    Hall, D. H. (Principal Investigator)

    1980-01-01

    A computer program was prepared for modeling segments of the Earth's crust allowing for heterogeneity in magnetization in calculating the Earth's field at Magsat heights. This permits investigation of a large number of possible models in assessing the magnetic signatures of subprovinces of the Canadian shield. The fit between the model field and observed fields is optimized in a semi-automatic procedure.

  12. Shielding design for multiple-energy linear accelerators.

    PubMed

    Barish, Robert J

    2014-05-01

    The introduction of medical linear accelerators (linacs) capable of producing three different x-ray energies has complicated the process of designing shielding for these units. The conventional approach for the previous generation of dual-energy linacs relied on the addition of some amount of supplementary shielding to that calculated for the higher-energy beam, where the amount of that supplement followed the historical "two-source" rule, also known as the "add one HVL rule," a practice derived from other two-source shielding considerations. The author describes an iterative approach that calculates shielding requirements accurately for any number of multiple beam energies assuming the workload at each energy can be specified at the outset. This method is particularly useful when considering the requirements for possible modifications to an existing vault when new equipment is to be installed as a replacement for a previous unit.

  13. Radiation shielding effectiveness of newly developed superconductors

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  14. Cosmic ray particles with different LET values under various thicknesses of shielding in low altitude orbits: Calculations and Cosmos-2044 measurements

    SciTech Connect

    Benton, E.V.; Frank, A.L.; Benton, E.R.; Marenny, A.M.; Nymmik, R.A.; Suslov, A.A. |

    1995-03-01

    Fluxes of cosmic ray particles with different LET values were measured on board the COSMOS-2044 biosatellite under various thicknesses of shielding by stacks of CR-39 and nitrocellulose plastic nuclear track detectors (mounted outside the satellite). The component composition of the particles detected under shieldings of 0.1-2.5 g cm{sup {minus}2} is verified by comparing experimental data with the results of model simulations of the fluxes of galactic cosmic ray particles and of radiation belt protons.

  15. Cosmic ray particles with different LET values under various thicknesses of shielding in low altitude orbits: calculations and Cosmos-2044 measurements

    NASA Technical Reports Server (NTRS)

    Marenny, A. M.; Nymmik, R. A.; Suslov, A. A.; Benton, E. V.; Frank, A. L.; Benton, E. R.

    1992-01-01

    Fluxes of cosmic ray particles with different LET values were measured on board the Cosmos-2044 biosatellite under various thicknesses of shielding by stacks of CR-39 and nitrocellulose plastic nuclear track detectors (mounted outside the satellite). The component composition of the particles detected under shieldings of 0.1-2.5 g cm-2 is verified by comparing experimental data with the results of model simulations of the fluxes of galactic cosmic ray particles and of radiation belt protons.

  16. Cosmic ray particles with different LET values under various thicknesses of shielding in low altitude orbits: Calculations and Cosmos-2044 measurements

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Marenny, A. M.; Nymmik, R. A.; Suslov, A. A.

    1995-01-01

    Fluxes of cosmic ray particles with different LET values were measured on board the COSMOS-2044 biosatellite under various thicknesses of shielding by stacks of CR-39 and nitrocellulose plastic nuclear track detectors (mounted outside the satellite). The component composition of the particles detected under shieldings of 0.1-2.5 g cm(exp -2) is verified by comparing experimental data with the results of model simulations of the fluxes of galactic cosmic ray particles and of radiation belt protons.

  17. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model

    NASA Astrophysics Data System (ADS)

    Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.

    2008-12-01

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  18. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model.

    PubMed

    Hamaya, S; Maeda, H; Funaki, M; Fukui, H

    2008-12-14

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Delta sigma = sigma(parallel) - sigma(perpendicular), for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator sigma x piU/2c, in which pi = p + A, U is a nonunitary transformation operator, and c approximately = 137.036 a.u. is the velocity of light. The operator U depends on the vector potential A (i.e., the magnetic perturbations in the system) with the leading order c(-2) and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c(-4). It is shown that the small Delta sigma for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  19. Methods of Calculation of a Friction Coefficient: Application to Nanotubes

    NASA Astrophysics Data System (ADS)

    Servantie, J.; Gaspard, P.

    2003-10-01

    In this Letter we develop theoretical and numerical methods to calculate the dynamic friction coefficient. The theoretical method is based on an adiabatic approximation which allows us to express the dynamic friction coefficient in terms of the time integral of the autocorrelation function of the force between both sliding objects. The motion of the objects and the autocorrelation function can be numerically calculated by molecular-dynamics simulations. We have successfully applied these methods to the evaluation of the dynamic friction coefficient of the relative motion of two concentric carbon nanotubes. The dynamic friction coefficient is shown to increase with the temperature.

  20. Pressure algorithm for elliptic flow calculations with the PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  1. A Simple Method for Calculating Clebsch-Gordan Coefficients

    ERIC Educational Resources Information Center

    Klink, W. H.; Wickramasekara, S.

    2010-01-01

    This paper presents a simple method for calculating Clebsch-Gordan coefficients for the tensor product of two unitary irreducible representations (UIRs) of the rotation group. The method also works for multiplicity-free irreducible representations appearing in the tensor product of any number of UIRs of the rotation group. The generalization to…

  2. Method and models for R-curve instability calculations

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1988-01-01

    This paper presents a simple method for performing elastic R-curve instability calculations. For a single material-structure combination, the calculations can be done on some pocket calculators. On microcomputers and larger, it permits the development of a comprehensive program having libraries of driving force equations for different configurations and R-curve model equations for different materials. The paper also presents several model equations for fitting to experimental R-curve data, both linear elastic and elastoplastic. The models are fit to data from the literature to demonstrate their viability.

  3. Method and models for R-curve instability calculations

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1990-01-01

    This paper presents a simple method for performing elastic R-curve instability calculations. For a single material-structure combination, the calculations can be done on some pocket calculators. On microcomputers and larger, it permits the development of a comprehensive program having libraries of driving force equations for different configurations and R-curve model equations for different materials. The paper also presents several model equations for fitting to experimental R-curve data, both linear elastic and elastoplastic. The models are fit to data from the literature to demonstrate their viability.

  4. Description of an exact, recursive method to simplify shading calculations

    NASA Astrophysics Data System (ADS)

    Nawrocki, A. D.; Kammerud, R.

    An exact, recursive method called SHADE is described which attempts to simplify shading calculations as performed by a programmable calculator or microcomputer. Preliminary applications of SHADE using a Hewlett Packard HP-41C programmable calculator are outlined. For a given solar hour, SHADE is used to compute the following quantities for overhang and side fin combinations which shade various openings: the percentage of the total area of the opening which is shaded; the shaded area itself; the cosine of the angle of incidence between the Sun and glazing surface; the direct insolation at this surface, with and without shading; and the direct solar power at this surface, with and without shading.

  5. Refinement of thermal imager minimum resolvable temperature difference calculating method

    NASA Astrophysics Data System (ADS)

    Kolobrodov, V. G.; Mykytenko, V. I.

    2015-11-01

    Calculating methods, which accurately predict minimum resolvable temperature difference (MRTD), are of significant interest for many years. The article deals with improvement the accuracy of determining the thermal imaging system MRTD by elaboration the visual perception model. We suggest MRTD calculating algorithm, which is based on a reliable approximation of the human visual system modulation transfer function (MTF) proposed by N. Nill. There was obtained a new expression for the bandwidth evaluation, which is independent of angular size of the Foucault bar target.

  6. Segmented contracted basis sets optimized for nuclear magnetic shielding.

    PubMed

    Jensen, Frank

    2015-01-13

    A family of segmented contracted basis sets is proposed, denoted pcSseg-n, which are optimized for calculating nuclear magnetic shielding constants. For the elements H-Ar, these are computationally more efficient than the previously proposed general contracted pcS-n basis sets, and the new basis sets are extended to also include the elements K-Kr. The pcSseg-n basis sets are optimized at the density functional level of theory, but it has been shown previously that these property-optimized basis sets are also suitable for calculating shielding constants with correlated wave function methods. The pcSseg-n basis sets are available in qualities ranging from (unpolarized) double-ζ to pentuple-ζ quality and should be suitable for both routine and benchmark calculations of nuclear magnetic shielding constants. The ability to rigorously separate basis set and method errors should aid in developing more accurate methods.

  7. Correlated Uncertainties in Radiation Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  8. Fast calculation method for computer-generated cylindrical holograms.

    PubMed

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  9. Optimization of the National Ignition Facility primary shield design

    SciTech Connect

    Annese, C.E.; Watkins, E.F.; Greenspan, E.; Miller, W.F.; Latkowski, J.; Lee, J.D.; Soran, P.; Tobin, M.L.

    1993-10-01

    Minimum cost design concepts of the primary shield for the National Ignition laser fusion experimental Facility (NIF) are searched with the help of the optimization code SWAN. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables one to address the time-dependent problem using relatively simple, time-independent transport calculations, thus significantly simplifying the design process. A novel approach was used for the identification of the optimal combination of constituents that will minimize the shield cost; it involves the generation, with SWAN, of effectiveness functions for replacing materials on an equal cost basis. The minimum cost shield design concept was found to consist of a mixture of polyethylene and low cost, low activation materials such as SiC, with boron added near the shield boundaries.

  10. Thermocouple shield

    DOEpatents

    Ripley, Edward B.

    2009-11-24

    A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.

  11. Fast calculation method of complex space targets' optical cross section.

    PubMed

    Han, Yi; Sun, Huayan; Li, Yingchun; Guo, Huichao

    2013-06-10

    This paper utilizes the optical cross section (OCS) to characterize the optical scattering characteristics of a space target under the conditions of Sun lighting. We derive the mathematical expression of OCS according to the radiometric theory, and put forward a fast visualization calculation method of complex space targets' OCS based on an OpenGL and 3D model. Through the OCS simulation of Lambert bodies (cylinder and sphere), the computational accuracy and speed of the algorithm were verified. By using this method, the relative error for OCS will not exceed 0.1%, and it only takes 0.05 s to complete a complex calculation. Additionally, we calculated the OCS of three actual satellites with bidirectional reflectance distribution function model parameters in visible bands, and results indicate that it is easy to distinguish the three targets by comparing their OCS curves. This work is helpful for the identification and classification of unresolved space target based on photometric characteristics.

  12. A method to calculate synthetic waveforms in stratified VTI media

    NASA Astrophysics Data System (ADS)

    Wang, W.; Wen, L.

    2012-12-01

    Transverse isotropy with a vertical axis of symmetry (VTI) may be an important material property in the Earth's interior. In this presentation, we develop a method to calculate synthetic seismograms for wave propagation in stratified VTI media. Our method is based on the generalized reflection and transmission method (GRTM) (Luco & Apsel 1983). We extend it to transversely isotropic VTI media. GRTM has the advantage of remaining stable in high frequency calculations compared to the Haskell Matrix method (Haskell 1964), which explicitly excludes the exponential growth terms in the propagation matrix and is limited to low frequency computation. In the implementation, we also improve GRTM in two aspects. 1) We apply the Shanks transformation (Bender & Orszag 1999) to improve the convergence rate of convergence. This improvement is especially important when the depths of source and receiver are close. 2) We adopt a self-adaptive Simpson integration method (Chen & Zhang 2001) in the discrete wavenumber integration so that the integration can still be efficiently carried out at large epicentral distances. Because the calculation is independent in each frequency, the program can also be effectively implemented in parallel computing. Our method provides a powerful tool to synthesize broadband seismograms of VIT media at a large epicenter distance range. We will present examples of using the method to study possible transverse isotropy in the upper mantle and the lowermost mantle.

  13. A method for calculating externally blown flap noise

    NASA Technical Reports Server (NTRS)

    Fink, M. R.

    1978-01-01

    Several basic noise components were described. These components are: (1) compact lift dipoles associated with the wing and flaps; (2) trailing edge noise associated with the last trailing edge; and (3) quadrupole noise associated with the undeflected exhaust jet and the free jet located downstream of the trailing edge. These noise components were combined to allow prediction of directivity and spectra for under the wing (UTW) slotted flaps with conventional or mixer nozzles, UTW slotless flaps, upper surface blowing (USB) slotless flaps, and engine in front of the wing slotted flaps. A digital computer program listing was given for this calculation method. Directivities and spectra calculated by this method were compared with free field data for UTW and USB configurations. The UTRC method best predicted the details of the measured noise emission, but the ANOP method best estimated the noise levels directly below these configurations.

  14. Calculating Resonance Positions and Widths Using the Siegert Approximation Method

    ERIC Educational Resources Information Center

    Rapedius, Kevin

    2011-01-01

    Here, we present complex resonance states (or Siegert states) that describe the tunnelling decay of a trapped quantum particle from an intuitive point of view that naturally leads to the easily applicable Siegert approximation method. This can be used for analytical and numerical calculations of complex resonances of both the linear and nonlinear…

  15. Further Stable methods for the calculation of partition functions

    SciTech Connect

    Wilson, B G; Gilleron, F; Pain, J

    2007-06-27

    The extension to recursion over holes of the Gilleron and Pain method for calculating partition functions of a canonical ensemble of non-interacting bound electrons is presented as well as a generalization for the efficient computation of collisional line broadening.

  16. Calculating coherent pair production with Monte Carlo methods

    SciTech Connect

    Bottcher, C.; Strayer, M.R.

    1989-01-01

    We discuss calculations of the coherent electromagnetic pair production in ultra-relativistic hadron collisions. This type of production, in lowest order, is obtained from three diagrams which contain two virtual photons. We discuss simple Monte Carlo methods for evaluating these classes of diagrams without recourse to involved algebraic reduction schemes. 19 refs., 11 figs.

  17. LEGO-Method--New Strategy for Chemistry Calculation

    ERIC Educational Resources Information Center

    Molnar, Jozsef; Molnar-Hamvas, Livia

    2011-01-01

    The presented strategy of chemistry calculation is based on mole-concept, but it uses only one fundamental relationship of the amounts of substance as a basic panel. The name of LEGO-method comes from the famous toy of LEGO[R] because solving equations by grouping formulas is similar to that. The relations of mole and the molar amounts, as small…

  18. Emergy Algebra: Improving Matrix Methods for Calculating Tranformities

    EPA Science Inventory

    Transformity is one of the core concepts in Energy Systems Theory and it is fundamental to the calculation of emergy. Accurate evaluation of transformities and other emergy per unit values is essential for the broad acceptance, application and further development of emergy method...

  19. 30 CFR 282.41 - Method of royalty calculation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Method of royalty calculation. 282.41 Section 282.41 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER CONTINENTAL SHELF FOR MINERALS OTHER THAN OIL, GAS, AND SULPHUR Payments § 282.41...

  20. Cluster-cell calculation using the method of generalized homogenization

    SciTech Connect

    Laletin, N.I.; Boyarinov, V.F.

    1988-05-01

    The generalized-homogenization method (GHM), used for solving the neutron transfer equation, was applied to calculating the neutron distribution in the cluster cell with a series of cylindrical cells with cylindrically coaxial zones. Single-group calculations of the technological channel of the cell of an RBMK reactor were performed using GHM. The technological channel was understood to be the reactor channel, comprised of the zirconium rod, the water or steam-water mixture, the uranium dioxide fuel element, and the zirconium tube, together with the adjacent graphite layer. Calculations were performed for channels with no internal sources and with unit incoming current at the external boundary as well as for channels with internal sources and zero current at the external boundary. The PRAKTINETs program was used to calculate the symmetric neutron distributions in the microcell and in channels with homogenized annular zones. The ORAR-TsM program was used to calculate the antisymmetric distribution in the microcell. The accuracy of the calculations were compared for the two channel versions.

  1. First Principles Structure Calculations Using the General Potential Lapw Method

    NASA Astrophysics Data System (ADS)

    Wei, Su-Huai

    We have developed a completely general first principles self-consistent full-potential linearized-augmented-plane -wave (LAPW) method program within the density functional formalism to calculate electronic band structure, total energy, pressure and other quantities. No symmetry assumptions are used for the crystal structure. Shape unrestricted charge densities and potentials are calculated inside muffin -tin (MT) spheres as well as in the interstitial regions. All contributions to the Hamiltonian matrix elements are completely taken into account. The core states are treated fully relativistically using the spherical part of the potential only. Scalar relativistic effects are included for the band-states, and spin-orbit coupling is included using a second variation procedure. Both core states and valence states are treated self-consistently, the frozen core approximation is not required. The fast Fourier transformation method is used wherever it is applicable, and this greatly improves the efficiency. This state-of-the-art program has been tested extensively to check the accuracy and convergence properties by comparing calculated electronic band structures, ground state properties, equations of state and cohesive energies for bulk W and GaAs with other theoretical calculations and experimental results. It has been successfully applied to calculate and predict structural and metal-insulator phase transitions for close-packed crystal BaSe and BaTe and the geometric structure of the d-band metal W(001) surface. The results are in generally good agreement with experiment.

  2. Calculations of photoabsorption by atoms using a linear response method

    SciTech Connect

    Doolen, G.; Liberman, D.A.

    1986-06-19

    We have made extensive calculations of photoabsorption by all neutral atoms from hydrogen to lawrencium for photon energies up to one kilovolt. Our method was the relativistic time-dependent local density approximation with the usual configuration average for open shells. The most important collective effects are included through an induced field. Expected features such as resonant photoemission and autoionization are seen. Examples of the calculations will be shown. The computer program used is available from the Computer Physics Communications Program Library. 11 refs., 6 figs.

  3. Calculation of free-fall trajectories using numerical optimization methods.

    NASA Technical Reports Server (NTRS)

    Hull, D. G.; Fowler, W. T.; Gottlieb, R. G.

    1972-01-01

    An important problem in space flight is the calculation of trajectories for nonthrusting vehicles between fixed points in a given time. A new procedure based on Hamilton's principle for solving such two-point boundary-value problems is presented. It employs numerical optimization methods to perform the extremization required by Hamilton's principle. This procedure is applied to the calculation of an Earth-Moon trajectory. The results show that the initial guesses required to obtain an iteration procedure which converges are not critical and that convergence can be obtained to any predetermined degree of accuracy.

  4. Lunar Surface Reactor Shielding Study

    NASA Technical Reports Server (NTRS)

    King, Shawn; Lipinksi, Ronald; McAlpine, William

    2006-01-01

    Nuclear reactor system could provide power to support a long term human exploration to the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor (GCR) system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency (Wright, 2003). The goals of the shielding studies were to provide optimal material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX code, a Monte Carlo transport code.

  5. Real-space method for highly parallelizable electronic transport calculations

    NASA Astrophysics Data System (ADS)

    Feldman, Baruch; Seideman, Tamar; Hod, Oded; Kronik, Leeor

    2014-07-01

    We present a real-space method for first-principles nanoscale electronic transport calculations. We use the nonequilibrium Green's function method with density functional theory and implement absorbing boundary conditions (ABCs, also known as complex absorbing potentials, or CAPs) to represent the effects of the semi-infinite leads. In real space, the Kohn-Sham Hamiltonian matrix is highly sparse. As a result, the transport problem parallelizes naturally and can scale favorably with system size, enabling the computation of conductance in relatively large molecular junction models. Our use of ABCs circumvents the demanding task of explicitly calculating the leads' self-energies from surface Green's functions, and is expected to be more accurate than the use of the jellium approximation. In addition, we take advantage of the sparsity in real space to solve efficiently for the Green's function over the entire energy range relevant to low-bias transport. We illustrate the advantages of our method with calculations on several challenging test systems and find good agreement with reference calculation results.

  6. Comparison of analytical methods for calculation of wind loads

    NASA Technical Reports Server (NTRS)

    Minderman, Donald J.; Schultz, Larry L.

    1989-01-01

    The following analysis is a comparison of analytical methods for calculation of wind load pressures. The analytical methods specified in ASCE Paper No. 3269, ANSI A58.1-1982, the Standard Building Code, and the Uniform Building Code were analyzed using various hurricane speeds to determine the differences in the calculated results. The winds used for the analysis ranged from 100 mph to 125 mph and applied inland from the shoreline of a large open body of water (i.e., an enormous lake or the ocean) a distance of 1500 feet or ten times the height of the building or structure considered. For a building or structure less than or equal to 250 feet in height acted upon by a wind greater than or equal to 115 mph, it was determined that the method specified in ANSI A58.1-1982 calculates a larger wind load pressure than the other methods. For a building or structure between 250 feet and 500 feet tall acted upon by a wind rangind from 100 mph to 110 mph, there is no clear choice of which method to use; for these cases, factors that must be considered are the steady-state or peak wind velocity, the geographic location, the distance from a large open body of water, and the expected design life and its risk factor.

  7. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    NASA Astrophysics Data System (ADS)

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; Kwon, Jake

    2016-05-01

    We formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remain small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.

  8. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    SciTech Connect

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; Kwon, Jake

    2016-05-03

    Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remain small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.

  9. The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation

    DOE PAGES

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.; ...

    2015-12-01

    Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple becausemore » it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.« less

  10. The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation

    SciTech Connect

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.; Peterson, Joshua L.; Johnson, Seth R.

    2015-12-01

    Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple because it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.

  11. Expected Energy Method for Electro-Optical SNR Calculations.

    DTIC Science & Technology

    1984-02-02

    r’AD-Ri39 984 EXPECTED ENERGY METHOD FOR ELECTPO-OPTICRL SNR i/i CALCULRTIONS(U) MASSRCHUSETTS INST OF TECH LEXINGTON LINCOLN LAB G J MAYER 82 FEB 84...ENERGY METHOD FOR ELECTRO-OPTICAL SNR CALCULATIONS * Ci. MA YER Group 9 TECHNICAL REPORT 634 2 FEBRUARY 1984 Approved for public release; distribution...analysis of image and sensor element configuration. This method allows the optimal pixel size to be selected to maximize the expected SNR for any point

  12. Dose calculation for electron therapy using an improved LBR method

    SciTech Connect

    Gebreamlak, Wondesen T.; Alkhatib, Hassaan A.; Tedeschi, David J.

    2013-07-15

    Purpose: To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method.Methods: Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 Multiplication-Sign 6, 10 Multiplication-Sign 10, 14 Multiplication-Sign 14, and 20 Multiplication-Sign 20 cm{sup 2}. Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared.Results: The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 Multiplication-Sign 14 cm{sup 2} cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [{sigma}{sub R}(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that {sigma}{sub R}(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves.Conclusions: In this research, it is shown that the lateral spread parameter {sigma}{sub R}(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of {sigma}{sub R}(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV)

  13. Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas

    This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications. The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations. Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic

  14. Radiation shielding materials and containers incorporating same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  15. Radiation Shielding Materials and Containers Incorporating Same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  16. Description of an exact recursive method to simplify shading calculations

    SciTech Connect

    Nawrocki, A.D.; Kammerud, R.

    1981-04-01

    An exact, recursive method called SHADE is described which attempts to simplify shading calculations as performed by a programmable calculator or microcomputer. Preliminary applications of SHADE using a Hewlett Packard HP-41C programmable calculation are outlined. In particular, for a given solar hour, SHADE is used to compute the following quantities for overhang and side fin combinations which shade various openings: the percentage of the total area of the opening which is shaded; the shaded area itself; the cosine of the angle of incidence between sun and glazing surface; the direct insolation at this surface, with and without shading; and the direct solar power at this surface, with and without shading. Hence, in its present HP-41C application, SHADE can be used in preliminary design and comparative analyses of shading devices on an hourly, daily, or seasonal basis, provided that: (1) the fins and overhangs be square or rectangular, and lie in planes perpendicular to the plane of the opening; and (2) the opening itself be vertical and rectangular with arbitrary building azimuths. Design candidates include conventional overhangs and side fins, porches, and reveals. In principle, SHADE can be extended to awnings, slatted sun screens, and bevelled recesses; in addition, its HP-41C application can be extended to calculations of direct solar gain through vertical and non-vertical glazings, thereby providing a more useful tool in building heating and cooling load calculations.

  17. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  18. Tumor dosimetry in radioimmunotherapy: Methods of calculation for beta particles

    SciTech Connect

    Leichner, P.K. ); Kwok, C.S. )

    1993-03-01

    Calculational methods of beta-particle dosimetry in radioimmunotherapy (RIT) are reviewed for clinical and experimental studies and computer modeling of tumors. In clinical studies, absorbed-dose estimates are usually based on the [ital in]-[ital vivo] quantitation of the activity in tumors from gamma camera images. Because of the limited spatial resolution of gamma cameras, clinical dosimetry is necessarily limited to the macroscopic level (macrodosimetry) and the MIRD formalism for absorbed-dose calculations is appropriate. In experimental RIT, tumor dimensions are often comparable to or smaller than the beta-particle range of commonly used radionuclides (for example, [sup 131]I, [sup 67]Cu, [sup 186]Re, [sup 188]Re, [sup 90]Y) and deviations from the equilibrium dose must be taken into account in absorbed-dose calculations. Additionally, if small tumors are growing rapidly at the time of RIT, the effects of tumor growth will need to be included in absorbed-dose estimates. In computer modeling of absorbed-dose distributions, analytical, numerical, and Monte Carlo methods have been used to investigate the consequences of uniform and nonuniform activity distributions and the effects of inhomogeneous media. Measurements and calculations of the local absorbed dose at the multicellular level have shown that variations in this dose are large. Knowledge of the absorbed dose is essential for any form of radiotherapy. Therefore, it is important that clinical, experimental, and theoretical investigations continue to provide information on tumor dosimetry that is necessary for a better understanding of the radiobiological effects of RIT.

  19. Parameterizations for shielding electron accelerators based on Monte Carlo studies

    SciTech Connect

    P. Degtyarenko; G. Stapleton

    1996-10-01

    Numerous recipes for designing lateral slab neutron shielding for electron accelerators are available and each generally produces rather similar results for shield thicknesses of about 2 m of concrete and for electron beams with energy in the 1 to 10 GeV region. For thinner or much thicker shielding the results tend to diverge and the standard recipes require modification. Likewise for geometries other than lateral to the beam direction further corrections are required so that calculated results are less reliable and hence additional and costly conservatism is needed. With the adoption of Monte Carlo (MC) methods of transporting particles a much more powerful way of calculating radiation dose rates outside shielding becomes available. This method is not constrained by geometry, although deep penetration problems need special statistical treatment, and is an excellent approach to solving any radiation transport problem providing the method has been properly checked against measurements and is free from the well known errors common to such computer methods. This present paper utilizes the results of MC calculations based on a nuclear fragmentation model named DINREG using the MC transport code GEANT and models them with the normal two parameter shielding expressions. Because the parameters can change with electron beam energy, angle to the electron beam direction and target material, the parameters are expressed as functions of some of these variables to provide a universal equations for shielding electron beams which can used rather simply for deep penetration problems in simple geometry without the time consuming computations needed in the original MC programs. A particular problem with using simple parameterizations based on the uncollided flux is that approximations based on spherical geometry might not apply to the more common cylindrical cases used for accelerator shielding. This source of error has been discussed at length by Stevenson and others. To study

  20. Shielding effectiveness of multiple-shield cables with arbitrary terminations via transmission line analysis

    DOE PAGES

    Campione, Salvatore; Basilio, Lorena I.; Warne, Larry Kevin; ...

    2016-06-25

    Our paper reports on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. But thismore » is not always the case, and a cable with multiple shields may perform similar to or worse than a cable with a single shield. Furthermore, we want to shed more light on these situations, which represent the main focus of this paper.« less

  1. Shielding effectiveness of multiple-shield cables with arbitrary terminations via transmission line analysis

    SciTech Connect

    Campione, Salvatore; Basilio, Lorena I.; Warne, Larry Kevin; Hudson, Howard Gerald; Langston, William L.

    2016-06-25

    Our paper reports on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. But this is not always the case, and a cable with multiple shields may perform similar to or worse than a cable with a single shield. Furthermore, we want to shed more light on these situations, which represent the main focus of this paper.

  2. Relativistic effects on the nuclear magnetic shielding in the MF (M=Cu, Ag, Au) series

    SciTech Connect

    David, Jorge; Restrepo, Albeiro

    2007-11-15

    Relativistic effects on the nuclear magnetic shielding {sigma}(M) of the series of diatomics MF (M=Cu, Ag, Au) are calculated and analyzed using the Dirac-Hartree-Fock (DHF) method in the random phase approximation (RPA). Significant differences due to relativistic effects on the shielding constant {sigma}(M) are found in this series of atoms. The high electronegativity of the fluorine atom works in conjunction with the spin-orbit coupling to increase the calculated value for {sigma}(Au). An unusually large diamagnetic contribution to the shielding constant is observed. Nonrelativistic nuclear magnetic shielding [{sigma}{sup NR}(M)] shows very good linear correlation with the nuclear charge (Z) of the metal, while the relativistic shielding [{sigma}{sup rel}(M)] varies as Z{sup 2.26}.

  3. Flux calculation of short turbulent events - comparison of three methods

    NASA Astrophysics Data System (ADS)

    Schaller, Carsten; Göckede, Mathias; Foken, Thomas

    2017-03-01

    The eddy covariance method is commonly used to calculate vertical turbulent exchange fluxes between ecosystems and the atmosphere. Besides other assumptions, it requires steady-state flow conditions. If this requirement is not fulfilled over the averaging interval of, for example, 30 min, the fluxes might be miscalculated. Here two further calculation methods, conditional sampling and wavelet analysis, which do not need the steady-state assumption, were implemented and compared to eddy covariance. All fluxes were calculated for 30 min averaging periods, while the wavelet method - using both the Mexican hat and the Morlet wavelet - additionally allowed us to obtain a 1 min averaged flux. The results of all three methods were compared against each other for times with best steady-state conditions and well-developed turbulence. An excellent agreement of the wavelet results to the eddy covariance reference was found, where the deviations to eddy covariance were of the order of < 2 % for Morlet as well as < 7 % for Mexican hat and thus within the typical error range of eddy covariance measurements. The conditional sampling flux also showed a very good agreement to the eddy covariance reference, but the occurrence of outliers and the necessary condition of a zero mean vertical wind velocity reduced its general reliability. Using the Mexican hat wavelet flux in a case study, it was possible to locate a nightly short time turbulent event exactly in time, while the Morlet wavelet gave a trustworthy flux over a longer period, e.g. 30 min, under consideration of this short-time event. At a glance, the Mexican hat wavelet flux offers the possibility of a detailed analysis of non-stationary times, where the classical eddy covariance method fails. Additionally, the Morlet wavelet should be used to provide a trustworthy flux in those 30 min periods where the eddy covariance method provides low-quality data due to instationarities.

  4. New Materials for EMI Shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  5. Comparison of optimization methods for electronic-structure calculations

    NASA Astrophysics Data System (ADS)

    Garner, J.; Das, S. G.; Min, B. I.; Woodward, C.; Benedek, R.

    1989-06-01

    The performance of several local-optimization methods for calculating electronic structure is compared. The fictitious first-order equation of motion proposed by Williams and Soler is integrated numerically by three procedures: simple finite-difference integration, approximate analytical integration (the Williams-Soler algorithm), and the Born perturbation series. These techniques are applied to a model problem for which exact solutions are known, the Mathieu equation. The Williams-Soler algorithm and the second Born approximation converge equally rapidly, but the former involves considerably less computational effort and gives a more accurate converged solution. Application of the method of conjugate gradients to the Mathieu equation is discussed.

  6. Comparison of dose calculation methods for brachytherapy of intraocular tumors

    SciTech Connect

    Rivard, Mark J.; Chiu-Tsao, Sou-Tung; Finger, Paul T.; Meigooni, Ali S.; Melhus, Christopher S.; Mourtada, Firas; Napolitano, Mary E.; Rogers, D. W. O.; Thomson, Rowan M.; Nath, Ravinder

    2011-01-15

    Purpose: To investigate dosimetric differences among several clinical treatment planning systems (TPS) and Monte Carlo (MC) codes for brachytherapy of intraocular tumors using {sup 125}I or {sup 103}Pd plaques, and to evaluate the impact on the prescription dose of the adoption of MC codes and certain versions of a TPS (Plaque Simulator with optional modules). Methods: Three clinical brachytherapy TPS capable of intraocular brachytherapy treatment planning and two MC codes were compared. The TPS investigated were Pinnacle v8.0dp1, BrachyVision v8.1, and Plaque Simulator v5.3.9, all of which use the AAPM TG-43 formalism in water. The Plaque Simulator software can also handle some correction factors from MC simulations. The MC codes used are MCNP5 v1.40 and BrachyDose/EGSnrc. Using these TPS and MC codes, three types of calculations were performed: homogeneous medium with point sources (for the TPS only, using the 1D TG-43 dose calculation formalism); homogeneous medium with line sources (TPS with 2D TG-43 dose calculation formalism and MC codes); and plaque heterogeneity-corrected line sources (Plaque Simulator with modified 2D TG-43 dose calculation formalism and MC codes). Comparisons were made of doses calculated at points-of-interest on the plaque central-axis and at off-axis points of clinical interest within a standardized model of the right eye. Results: For the homogeneous water medium case, agreement was within {approx}2% for the point- and line-source models when comparing between TPS and between TPS and MC codes, respectively. For the heterogeneous medium case, dose differences (as calculated using the MC codes and Plaque Simulator) differ by up to 37% on the central-axis in comparison to the homogeneous water calculations. A prescription dose of 85 Gy at 5 mm depth based on calculations in a homogeneous medium delivers 76 Gy and 67 Gy for specific {sup 125}I and {sup 103}Pd sources, respectively, when accounting for COMS-plaque heterogeneities. For off

  7. SOLAR OPACITY CALCULATIONS USING THE SUPER-TRANSITION-ARRAY METHOD

    SciTech Connect

    Krief, M.; Feigel, A.; Gazit, D.

    2016-04-10

    A new opacity model has been developed based on the Super-Transition-Array (STA) method for the calculation of monochromatic opacities of plasmas in local thermodynamic equilibrium. The atomic code, named STAR (STA-Revised), is described and used to calculate spectral opacities for a solar model implementing the recent AGSS09 composition. Calculations are carried out throughout the solar radiative zone. The relative contributions of different chemical elements and atomic processes to the total Rosseland mean opacity are analyzed in detail. Monochromatic opacities and charge-state distributions are compared with the widely used Opacity Project (OP) code, for several elements near the radiation–convection interface. STAR Rosseland opacities for the solar mixture show a very good agreement with OP and the OPAL opacity code throughout the radiation zone. Finally, an explicit STA calculation was performed of the full AGSS09 photospheric mixture, including all heavy metals. It was shown that, due to their extremely low abundance, and despite being very good photon absorbers, the heavy elements do not affect the Rosseland opacity.

  8. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    DOE PAGES

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...

    2016-05-03

    Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less

  9. Effective method for calculating modes of multilayer waveguide

    NASA Astrophysics Data System (ADS)

    Ivanov, I. K.; Dimitrov, P. D.

    2017-01-01

    A fast and efficient numerical method for finding the modes of a multilayered waveguide is proposed. Using the complex vector of the Riemann-Silberstein has resulted in a reduction of the order of the differential equations describing the passage of light through the different layers, as well as a double reduction of the searched variables. The approximation of the differential equations is made by the method of Galyorkin by a suitable choice of the base functions. The calculation of the effective indices and their corresponding wave configurations is realized by the inverse-shifting power method with Rayleigh’s quantity. The method was successfully applied waveguide systems, generating values close in the effective indices.

  10. A comparison of internal energy calculation methods for diatomic molecules

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Shakib, Farzin; Vinokur, Marcel

    1990-01-01

    Various methods of calculating the internal energy of diatomic molecules are studied. An accurate and efficient method for computing the eigenvalues of the vibrational Schroedinger equation for an arbitrary potential is developed. The method is based on a finite-element discretization using the cubic Lobatto element. A combination of spectrum slicing and the Laguerre algorithm is used to solve for the eigenvalues. A simple method to compute the quasi-bound states is presented. For N2 molecules, all vibrational-rotational states of eleven available electronic potentials are computed, and summed to obtain the exact internal energy function with temperature. The total computation required 314 seconds of CPU-time on NASA's Cray 2 computer. Various approximate models are discussed and compared with the exact numerical simulation. It is shown that the splitting of the macroscopic internal energy into separate electronic, rotational, and vibrational energies is not justified at high temperatures.

  11. A Novel TRM Calculation Method by Probabilistic Concept

    NASA Astrophysics Data System (ADS)

    Audomvongseree, Kulyos; Yokoyama, Akihiko; Verma, Suresh Chand; Nakachi, Yoshiki

    In a new competitive environment, it becomes possible for the third party to access a transmission facility. From this structure, to efficiently manage the utilization of the transmission network, a new definition about Available Transfer Capability (ATC) has been proposed. According to the North American ElectricReliability Council (NERC)’s definition, ATC depends on several parameters, i. e. Total Transfer Capability (TTC), Transmission Reliability Margin (TRM), and Capacity Benefit Margin (CBM). This paper is focused on the calculation of TRM which is one of the security margin reserved for any uncertainty of system conditions. The TRM calculation by probabilistic method is proposed in this paper. Based on the modeling of load forecast error and error in transmission line limitation, various cases of transmission transfer capability and its related probabilistic nature can be calculated. By consideration of the proposed concept of risk analysis, the appropriate required amount of TRM can be obtained. The objective of this research is to provide realistic information on the actual ability of the network which may be an alternative choice for system operators to make an appropriate decision in the competitive market. The advantages of the proposed method are illustrated by application to the IEEJ-WEST10 model system.

  12. Auxiliary Density Matrix Methods for Hartree-Fock Exchange Calculations.

    PubMed

    Guidon, Manuel; Hutter, Jürg; VandeVondele, Joost

    2010-08-10

    The calculation of Hartree-Fock exchange (HFX) is computationally demanding for large systems described with high-quality basis sets. In this work, we show that excellent performance and good accuracy can nevertheless be obtained if an auxiliary density matrix is employed for the HFX calculation. Several schemes to derive an auxiliary density matrix from a high-quality density matrix are discussed. Key to the accuracy of the auxiliary density matrix methods (ADMM) is the use of a correction based on standard generalized gradient approximations for HFX. ADMM integrates seamlessly in existing HFX codes and, in particular, can be employed in linear scaling implementations. Demonstrating the performance of the method, the effect of HFX on the structure of liquid water is investigated in detail using Born-Oppenheimer molecular dynamics simulations (300 ps) of a system of 64 molecules. Representative for large systems are calculations on a solvated protein (Rubredoxin), for which ADMM outperforms the corresponding standard HFX implementation by approximately a factor 20.

  13. An inverse method for flue gas shielded metal surface temperature measurement based on infrared radiation

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Xu, C. L.; Wang, S. M.

    2016-07-01

    The infrared temperature measurement technique has been applied in various fields, such as thermal efficiency analysis, environmental monitoring, industrial facility inspections, and remote temperature sensing. In the problem of infrared measurement of the metal surface temperature of superheater surfaces, the outer wall of the metal pipe is covered by radiative participating flue gas. This means that the traditional infrared measurement technique will lead to intolerable measurement errors due to the absorption and scattering of the flue gas. In this paper, an infrared measurement method for a metal surface in flue gas is investigated theoretically and experimentally. The spectral emissivity of the metal surface, and the spectral absorption and scattering coefficients of the radiative participating flue gas are retrieved simultaneously using an inverse method called quantum particle swarm optimization. Meanwhile, the detected radiation energy simulated using a forward simulation method (named the source multi-flux method) is set as the input of the retrieval. Then, the temperature of the metal surface detected by an infrared CCD camera is modified using the source multi-flux method in combination with these retrieved physical properties. Finally, an infrared measurement system for metal surface temperature is built to assess the proposed method. Experimental results show that the modified temperature is closer to the true value than that of the direct measured temperature.

  14. The new performance calculation method of fouled axial flow compressor.

    PubMed

    Yang, Huadong; Xu, Hong

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  15. The New Performance Calculation Method of Fouled Axial Flow Compressor

    PubMed Central

    Xu, Hong

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail. PMID:25197717

  16. Contact resistance calculations based on a variational method

    NASA Astrophysics Data System (ADS)

    Leong, M. S.; Choo, S. C.; Tan, L. S.; Goh, T. L.

    1988-07-01

    Noble's variational method is used to solve the contact resistance problem that arises when a circular disc source electrode is in contact with a semiconductor slab through an infinitesimally thin layer of resistive material. The method assumes that the source current density distribution J( r) has the form K 1(1 - r 2) -μ + K 2(1 - r 2) {1}/{2} + K 3(1 - r 2) {3}/{2}, where the parameters K1, K2, K3 and μ are determined by variational principles. Calculations of the source current density and the total slab resistance, performed for a wide range of contact resistivities, show that the results are practically indistinguishable from those derived from an exact mixed boundary value method proposed earlier by us. Whilst this method of using an optimised μ is very accurate, it is computationally slow. By fixing μ at a constant value of {1}/{4}, we find that we can drastically reduce the computation time for each calculation of the total slab resistance to 1.5 s on an Apple II microcomputer, and still achieve an overall accuracy of 1%. Tables of the abscissas and weights required for implementation of the numerical scheme are provided in the paper.

  17. Computational method for general multicenter electronic structure calculations.

    PubMed

    Batcho, P F

    2000-06-01

    Here a three-dimensional fully numerical (i.e., chemical basis-set free) method [P. F. Batcho, Phys. Rev. A 57, 6 (1998)], is formulated and applied to the calculation of the electronic structure of general multicenter Hamiltonian systems. The numerical method is presented and applied to the solution of Schrödinger-type operators, where a given number of nuclei point singularities is present in the potential field. The numerical method combines the rapid "exponential" convergence rates of modern spectral methods with the multiresolution flexibility of finite element methods, and can be viewed as an extension of the spectral element method. The approximation of cusps in the wave function and the formulation of multicenter nuclei singularities are efficiently dealt with by the combination of a coordinate transformation and a piecewise variational spectral approximation. The complete system can be efficiently inverted by established iterative methods for elliptical partial differential equations; an application of the method is presented for atomic, diatomic, and triatomic systems, and comparisons are made to the literature when possible. In particular, local density approximations are studied within the context of Kohn-Sham density functional theory, and are presented for selected subsets of atomic and diatomic molecules as well as the ozone molecule.

  18. Micromagnetics of side shielded perpendicular magnetic recording heads

    NASA Astrophysics Data System (ADS)

    Takano, Kenichi; Liu, Yue; Liu, Kowang; Bai, Daniel Z.; Min, Tai; Wu, Yan; Dovek, Moris

    Micromagnetic models of side shielded perpendicular magnetic recording heads show detailed magnetization configuration of the trailing and side shield during the dynamic writing process. The calculation result indicates possible origins of three kinds. The leakage field at the side shield edge, the side shield saturation, and trailing and side shield domain switching. The side shield edge and the saturation induced fields are based on the geometric boundary and they are limited to just around the side shield edge. However the shield switching field can spread to far track position from the side shield to the trailing shield, and it originates from magnetic boundary of the domains and wall formed during the dynamic writing process. As a result, it produces bump field at far track positions in some trailing and side shields.

  19. Large Scale Electronic Structure Calculations using Quantum Chemistry Methods

    NASA Astrophysics Data System (ADS)

    Scuseria, Gustavo E.

    1998-03-01

    This talk will address our recent efforts in developing fast, linear scaling electronic structure methods for large scale applications. Of special importance is our fast multipole method( M. C. Strain, G. E. Scuseria, and M. J. Frisch, Science 271), 51 (1996). (FMM) for achieving linear scaling for the quantum Coulomb problem (GvFMM), the traditional bottleneck in quantum chemistry calculations based on Gaussian orbitals. Fast quadratures(R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, Chem. Phys. Lett. 257), 213 (1996). combined with methods that avoid the Hamiltonian diagonalization( J. M. Millam and G. E. Scuseria, J. Chem. Phys. 106), 5569 (1997) have resulted in density functional theory (DFT) programs that can be applied to systems containing many hundreds of atoms and ---depending on computational resources or level of theory-- to many thousands of atoms.( A. D. Daniels, J. M. Millam and G. E. Scuseria, J. Chem. Phys. 107), 425 (1997). Three solutions for the diagonalization bottleneck will be analyzed and compared: a conjugate gradient density matrix search (CGDMS), a Hamiltonian polynomial expansion of the density matrix, and a pseudo-diagonalization method. Besides DFT, our near-field exchange method( J. C. Burant, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 105), 8969 (1996). for linear scaling Hartree-Fock calculations will be discussed. Based on these improved capabilities, we have also developed programs to obtain vibrational frequencies (via analytic energy second derivatives) and excitation energies (through time-dependent DFT) of large molecules like porphyn or C_70. Our GvFMM has been extended to periodic systems( K. N. Kudin and G. E. Scuseria, Chem. Phys. Lett., in press.) and progress towards a Gaussian-based DFT and HF program for polymers and solids will be reported. Last, we will discuss our progress on a Laplace-transformed \\cal O(N^2) second-order pertubation theory (MP2) method.

  20. SSC environmental radiation shielding

    SciTech Connect

    Jackson, J.D.

    1987-07-01

    The environmental radiation shielding requirements of the SSC have been evaluated using currently available computational tools that incorporate the well known processes of energy loss and degradation of high energy particles into Monte Carlo computer codes. These tools permit determination of isodose contours in the matter surrounding a source point and therefore the specification of minimum thicknesses or extents of shielding in order to assure annual dose equivalents less than some specified design amount. For the general public the annual dose equivalent specified in the design is 10 millirem, small compared to the dose from naturally occurring radiation. The types of radiation fall into two classes for the purposes of shielding determinations-hadrons and muons. The sources of radiation at the SSC of concern for the surrounding environment are the interaction regions, the specially designed beam dumps into which the beams are dumped from time to time, and beam clean-up regions where stops remove the beam halo in order to reduce experimental backgrounds. A final, unlikely source of radiation considered is the accidental loss of the full beam at some point around the ring. Conservative choices of a luminosity of 10{sup 34} cm{sup {minus}2}s{sup {minus}1} and a beam current three times design have been made in calculating the required shielding and boundaries of the facility. In addition to determination of minimum distances for the annual dose equivalents, the question of possible radioactivity produced in nearby wells or in municipal water supplies is addressed. The designed shielding distances and beam dumps are such that the induced radioactivity in ground water is safely smaller than the levels permitted by EPA and international agencies.

  1. Tank Car Head Shield Fatigue Evaluation.

    DTIC Science & Technology

    1982-11-01

    shields and to record measurements which reflect the dynamic response of the head shield (and its attachments) and then to devise a method for...areas were instrumented for measuring strains. Other positions were also instrumented to obtain a breader understanding of the response of the shield ...center sill of four feet six inches, measured in a straight line between extreme edges; (ii) A minimum width at the top of shield of nine feet

  2. Analysis and Evaluation of Suppressive Shields

    DTIC Science & Technology

    1977-06-01

    resistance of the shield to fragment penetration, and 7. attenuation of thermal effects by the shield . Other aspects of the design include problems of entry...propellant, 2. methods to predict the thermal environment outside of a suppressive shield , 3. comparisons between measured and predicted pressures... SHIELDS by P. A. Co- x P. S. Westine CD J. J. Kulesz L.LJ E. D. Espurza c-.- January 1978 SOUTHWEST RESEARCH INSTITUTE Post Office Drawer 28510, 6220

  3. Shielding and activity estimator for template-based nuclide identification methods

    SciTech Connect

    Nelson, Karl Einar

    2013-04-09

    According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.

  4. Efficient hybrid-symbolic methods for quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Zhang, Wenxing

    2015-06-01

    We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.

  5. Supersampling method for efficient grid-based electronic structure calculations.

    PubMed

    Ryu, Seongok; Choi, Sunghwan; Hong, Kwangwoo; Kim, Woo Youn

    2016-03-07

    The egg-box effect, the spurious variation of energy and force due to the discretization of continuous space, is an inherent vexing problem in grid-based electronic structure calculations. Its effective suppression allowing for large grid spacing is thus crucial for accurate and efficient computations. We here report that the supersampling method drastically alleviates it by eliminating the rapidly varying part of a target function along both radial and angular directions. In particular, the use of the sinc filtering function performs best because as an ideal low pass filter it clearly cuts out the high frequency region beyond allowed by a given grid spacing.

  6. An approximate method for calculating aircraft downwash on parachute trajectories

    SciTech Connect

    Strickland, J.H.

    1989-01-01

    An approximate method for calculating velocities induced by aircraft on parachute trajectories is presented herein. A simple system of quadrilateral vortex panels is used to model the aircraft wing and its wake. The purpose of this work is to provide a simple analytical tool which can be used to approximate the effect of aircraft-induced velocities on parachute performance. Performance issues such as turnover and wake recontact may be strongly influenced by velocities induced by the wake of the delivering aircraft, especially if the aircraft is maneuvering at the time of parachute deployment. 7 refs., 9 figs.

  7. Empirically corrected HEAT method for calculating atomization energies

    SciTech Connect

    Brand, Holmann V

    2008-01-01

    We describe how to increase the accuracy ofthe most recent variants ofthe HEAT method for calculating atomization energies of molecules by means ofextremely simple empirical corrections that depend on stoichiometry and the number ofunpaired electrons in the molecule. Our corrections reduce the deviation from experiment for all the HEAT variants. In particular, our corrections reduce the average absolute deviation and the root-mean-square deviation ofthe 456-QP variant to 0.18 and 0.23 kJoule/mol (i.e., 0.04 and 0.05 kcallmol), respectively.

  8. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Sai; Shen, Yong; Xu, Li-Hui; Wang, Li-Ming; Lu, Li-sha; Zhang, Ya-ting

    2016-11-01

    The flower-like CuS hierarchical structures were synthesized by solvothermal method. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared(FTIR) spectroscopy, UV-vis optical absorption spectroscopy and thermogravimetric analysis (TGA). The results demonstrated that the as-prepared flower-like CuS with the diameter of 1-5 um was pure hexagonal phase CuS and had well-defined flower-like structures. (1) The as-prepared CuS was proved to possess high photocatalytic performance with band gap of 1.45 eV. The degradation rate of Methylene blue (MB) was up to, 98.26%, 100% after 30 min under UV and visible irradiation. (2)The UPF of cotton fabric treated with CuS reached up to 174 compared with the original untreated fabric with the UPF 20.62. (3) The electromagnetic interference shielding effectiveness (EMI SE) of CuS coating was up to 27-31 dB when the content of CuS increased to 28.6%wt in the frequency of 300 KHz-3 GHz. Furthermore, the influence of reaction conditions on the morphology of the as-prepared CuS was investigated systematically and the possible formation mechanism of the CuS hierarchical structure was also proposed.

  9. Welding shield for coupling heaters

    DOEpatents

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  10. Newton like: Minimal residual methods applied to transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Wong, Y. S.

    1984-01-01

    A computational technique for the solution of the full potential equation is presented. The method consists of outer and inner iterations. The outer iterate is based on a Newton like algorithm, and a preconditioned Minimal Residual method is used to seek an approximate solution of the system of linear equations arising at each inner iterate. The present iterative scheme is formulated so that the uncertainties and difficulties associated with many iterative techniques, namely the requirements of acceleration parameters and the treatment of additional boundary conditions for the intermediate variables, are eliminated. Numerical experiments based on the new method for transonic potential flows around the NACA 0012 airfoil at different Mach numbers and different angles of attack are presented, and these results are compared with those obtained by the Approximate Factorization technique. Extention to three dimensional flow calculations and application in finite element methods for fluid dynamics problems by the present method are also discussed. The Inexact Newton like method produces a smoother reduction in the residual norm, and the number of supersonic points and circulations are rapidly established as the number of iterations is increased.

  11. Lunar Surface Reactor Shielding Study

    SciTech Connect

    Kang, Shawn; McAlpine, William; Lipinski, Ronald

    2006-01-20

    A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.

  12. Source terms and attenuation lengths for estimating shielding requirements or dose analyses of proton therapy accelerators.

    PubMed

    Sheu, Rong-Jiun; Lai, Bo-Lun; Lin, Uei-Tyng; Jiang, Shiang-Huei

    2013-08-01

    Proton therapy accelerators in the energy range of 100-300 MeV could potentially produce intense secondary radiation, which must be carefully evaluated and shielded for the purpose of radiation safety in a densely populated hospital. Monte Carlo simulations are generally the most accurate method for accelerator shielding design. However, simplified approaches such as the commonly used point-source line-of-sight model are usually preferable on many practical occasions, especially for scoping shielding design or quick sensitivity studies. This work provides a set of reliable shielding data with reasonable coverage of common target and shielding materials for 100-300 MeV proton accelerators. The shielding data, including source terms and attenuation lengths, were derived from a consistent curve fitting process of a number of depth-dose distributions within the shield, which were systematically calculated by using MCNPX for various beam-target shield configurations. The general characteristics and qualities of this data set are presented. Possible applications in cases of single- and double-layer shielding are considered and demonstrated.

  13. MCNPX vs. DORT for SNS shielding design studies.

    PubMed

    Popova, Irina I

    2005-01-01

    Radiation transport occurs through the 18 m long access way adjacent to the Spallation Neutron Source accelerator tunnel and the 2.2 m thick massive shielding door which closes the access way. A variety of typical materials for accelerator shielding, such as concrete and steel, were used for construction of the door to study radiation penetration. A comparison was carried out using both Monte Carlo (code MCNPX) and discrete ordinates (code DORT) methods. The beam losses during the accelerator operation are the sources for the radiation calculations. Analyses show that the results from the two methods are in good agreement.

  14. Radiation shielding for neutron guides

    NASA Astrophysics Data System (ADS)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  15. Measurements for the JASPER Program radial shield attenuation experiment

    SciTech Connect

    Mukenthaler, F.J.

    1987-05-01

    The Radial Shield Attenuation Experiment was conducted at the Oak Ridge National Laboratory Tower Shielding Facility during FY 1986 to: provide data for calculating the shielding effectiveness of combinations of stainless steel, graphite, and boron carbide shield designs; verify the accuracy of related radiation transport methods and nuclear data; and substantiate the effectiveness of shield designs currently proposed by advanced Liquid Metal Reactor (LMR) designers in Japan and the United States. The Tower Shielding Reactor source was modified to represent neutron spectra at a specified location near the core and in the sodium pool of a typical liquid-metal-cooled reactor. The experimental configurations resulted from successive additions of the various layers of material as specified in the program plan. Integral neutron fluxes were measured behind each of the configurations at specified locations, and neutron spectra were obtained for selected mockups. The experimental data are presented in both tabular and graphical form. This experiment is the first in a series of six experiments to be performed as part of a cooperative effort between the United States Department of Energy and the Japan Power Reactor and Nuclear Fuel Development Corporation. The research program is intended to provide support for the development of advanced sodium-cooled reactors.

  16. New method for calculation of nuclear cluster structure of nuclei

    SciTech Connect

    Ibishi, A.I.

    2005-05-06

    In the calculations of the many-nucleon bound states, using the realistic nucleon-nucleon potential, and a three- and four-nucleon potential, the Exact Many-Body Nuclear Cluster Model (EMBNCM) was found to give accurate results, that converege much more rapidly, than those obtained by the Faddeev equation calculations. With the use of realistic nucleon-nucleon potentials, and many-nucleon potentials, containing strong tensor, Majorana, and repulsive core components, the many-body cluster structure of 16O, 27Al, 44Ti, and 48Ti is discussed. In 27Al(p,x)Na reactions we assume that two different nuclear cluster structures of 27Al, gives us two different isotopes of Na: 22Na and 24Na. But the most important result is the existence of two different permutations symmetries of 27Al. Using new method for calculation of nuclear cluster structure of 27Al, we have found two different nuclear cluster structures of 27Al: 24Na+3He and 25Na+d. The internal nuclear cluster wave functions of different nuclear cluster models (nuclear cluster isomers) of the same isotope are not equivalent, if we take into account Many-Body Nuclear Forces, such as 3BF and 4BF. The core clusters of 16O, 27Al, 44Ti, and 48Ti nuclei have a trigonal-pyramide Td, D2d, and C3v symmetry, while exterior clusters in 16O and 27Al[(24Na +3 He)model] nuclei have a trigonal symmetry C2v, and D3h. We have developed a new system of Jacobi coordinates for our EMBNCM model with the symmetry above. The new computer code for determination of direct nuclear cluster reactions has been written in Mathematica 5 programming language. We have found a high level of dependence of the nuclear cluster wave functions from the center of mass and cluster effects.

  17. New method for calculation of nuclear cluster structure of nuclei

    NASA Astrophysics Data System (ADS)

    Ibishi, A. I.

    2005-05-01

    In the calculations of the many-nucleon bound states, using the realistic nucleon-nucleon potential, and a three- and four-nucleon potential, the Exact Many-Body Nuclear Cluster Model (EMBNCM) was found to give accurate results, that converege much more rapidly, than those obtained by the Faddeev equation calculations. With the use of realistic nucleon-nucleon potentials, and many-nucleon potentials, containing strong tensor, Majorana, and repulsive core components, the many-body cluster structure of 16O, 27Al, 44Ti, and 48Ti is discussed. In 27Al(p,x)Na reactions we assume that two different nuclear cluster structures of 27Al, gives us two different isotopes of Na: 22Na and 24Na. But the most important result is the existence of two different permutations symmetries of 27Al. Using new method for calculation of nuclear cluster structure of 27Al, we have found two different nuclear cluster structures of 27Al: 24Na+3He and 25Na+d. The internal nuclear cluster wave functions of different nuclear cluster models (nuclear cluster isomers) of the same isotope are not equivalent, if we take into account Many-Body Nuclear Forces, such as 3BF and 4BF. The core clusters of 16O, 27Al, 44Ti, and 48Ti nuclei have a trigonal-pyramide Td, D2d, and C3v symmetry, while exterior clusters in 16O and 27Al[(24Na +3 He)model] nuclei have a trigonal symmetry C2v, and D3h. We have developed a new system of Jacobi coordinates for our EMBNCM model with the symmetry above. The new computer code for determination of direct nuclear cluster reactions has been written in Mathematica 5 programming language. We have found a high level of dependence of the nuclear cluster wave functions from the center of mass and cluster effects.

  18. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  19. Improving stochastic estimates with inference methods: Calculating matrix diagonals

    NASA Astrophysics Data System (ADS)

    Selig, Marco; Oppermann, Niels; Enßlin, Torsten A.

    2012-02-01

    Estimating the diagonal entries of a matrix, that is not directly accessible but only available as a linear operator in the form of a computer routine, is a common necessity in many computational applications, especially in image reconstruction and statistical inference. Here, methods of statistical inference are used to improve the accuracy or the computational costs of matrix probing methods to estimate matrix diagonals. In particular, the generalized Wiener filter methodology, as developed within information field theory, is shown to significantly improve estimates based on only a few sampling probes, in cases in which some form of continuity of the solution can be assumed. The strength, length scale, and precise functional form of the exploited autocorrelation function of the matrix diagonal is determined from the probes themselves. The developed algorithm is successfully applied to mock and real world problems. These performance tests show that, in situations where a matrix diagonal has to be calculated from only a small number of computationally expensive probes, a speedup by a factor of 2 to 10 is possible with the proposed method.

  20. New method for calculating a mathematical expression for streamflow recession

    USGS Publications Warehouse

    Rutledge, Albert T.

    1991-01-01

    An empirical method has been devised to calculate the master recession curve, which is a mathematical expression for streamflow recession during times of negligible direct runoff. The method is based on the assumption that the storage-delay factor, which is the time per log cycle of streamflow recession, varies linearly with the logarithm of streamflow. The resulting master recession curve can be nonlinear. The method can be executed by a computer program that reads a data file of daily mean streamflow, then allows the user to select several near-linear segments of streamflow recession. The storage-delay factor for each segment is one of the coefficients of the equation that results from linear least-squares regression. Using results for each recession segment, a mathematical expression of the storage-delay factor as a function of the log of streamflow is determined by linear least-squares regression. The master recession curve, which is a second-order polynomial expression for time as a function of log of streamflow, is then derived using the coefficients of this function.

  1. Intercalated graphite fiber composites as EMI shields in aerospace structures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.

  2. Free energy calculations: an efficient adaptive biasing potential method.

    PubMed

    Dickson, Bradley M; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel; Fleurat-Lessard, Paul

    2010-05-06

    We develop an efficient sampling and free energy calculation technique within the adaptive biasing potential (ABP) framework. By mollifying the density of states we obtain an approximate free energy and an adaptive bias potential that is computed directly from the population along the coordinates of the free energy. Because of the mollifier, the bias potential is "nonlocal", and its gradient admits a simple analytic expression. A single observation of the reaction coordinate can thus be used to update the approximate free energy at every point within a neighborhood of the observation. This greatly reduces the equilibration time of the adaptive bias potential. This approximation introduces two parameters: strength of mollification and the zero of energy of the bias potential. While we observe that the approximate free energy is a very good estimate of the actual free energy for a large range of mollification strength, we demonstrate that the errors associated with the mollification may be removed via deconvolution. The zero of energy of the bias potential, which is easy to choose, influences the speed of convergence but not the limiting accuracy. This method is simple to apply to free energy or mean force computation in multiple dimensions and does not involve second derivatives of the reaction coordinates, matrix manipulations nor on-the-fly adaptation of parameters. For the alanine dipeptide test case, the new method is found to gain as much as a factor of 10 in efficiency as compared to two basic implementations of the adaptive biasing force methods, and it is shown to be as efficient as well-tempered metadynamics with the postprocess deconvolution giving a clear advantage to the mollified density of states method.

  3. Are accurate computations of the 13C' shielding feasible at the DFT level of theory?

    PubMed

    Vila, Jorge A; Arnautova, Yelena A; Martin, Osvaldo A; Scheraga, Harold A

    2014-02-05

    The goal of this study is twofold. First, to investigate the relative influence of the main structural factors affecting the computation of the (13)C' shielding, namely, the conformation of the residue itself and the next nearest-neighbor effects. Second, to determine whether calculation of the (13)C' shielding at the density functional level of theory (DFT), with an accuracy similar to that of the (13)C(α) shielding, is feasible with the existing computational resources. The DFT calculations, carried out for a large number of possible conformations of the tripeptide Ac-GXY-NMe, with different combinations of X and Y residues, enable us to conclude that the accurate computation of the (13)C' shielding for a given residue X depends on the: (i) (ϕ,ψ) backbone torsional angles of X; (ii) side-chain conformation of X; (iii) (ϕ,ψ) torsional angles of Y; and (iv) identity of residue Y. Consequently, DFT-based quantum mechanical calculations of the (13)C' shielding, with all these factors taken into account, are two orders of magnitude more CPU demanding than the computation, with similar accuracy, of the (13)C(α) shielding. Despite not considering the effect of the possible hydrogen bond interaction of the carbonyl oxygen, this work contributes to our general understanding of the main structural factors affecting the accurate computation of the (13)C' shielding in proteins and may spur significant progress in effort to develop new validation methods for protein structures.

  4. Vibrational spectra, NBO analysis, first order hyperpolarizabilities, thermodynamic functions and NMR chemical shielding anisotropy (CSA) parameters of 5-nitro-2-furoic acid by ab initio HF and DFT calculations.

    PubMed

    Balachandran, V; Rajeswari, S; Lalitha, S

    2013-09-01

    In this work, FT-IR and FT-Raman spectra are recorded on the solid phase of 5-nitro-2-furoic acid (abbreviated as NFA) in the regions 4000-400 cm(-1) and 3500-100 cm(-1) respectively. The geometrical parameters, vibrational assignments, HOMO-LUMO energies and NBO calculations are obtained for the monomer and dimer of NFA from HF and DFT (B3LYP) with 6-311++G (d, p) basis set calculations. Second order perturbation energies and electron density (ED) transfer from filled lone pairs of Lewis base to unfilled Lewis acid sites of NFA are discussed on the basis of NBO analysis. Intermolecular hydrogen bonds exist through COOH groups; give the evidence for the formation of dimer entities in the title molecule. The theoretically calculated harmonic frequencies are scaled by common scale factor. The observed and the calculated frequencies are found to be in good agreement. The thermodynamic functions were obtained for the range of temperature 100-1000 K. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The chemical parameters were calculated from the HOMO and LUMO values. The NMR chemical shielding anisotropy (CSA) parameters were also computed for the title molecule.

  5. NMR chemical shielding and spin-spin coupling constants of liquid NH3: a systematic investigation using the sequential QM/MM method.

    PubMed

    Gester, Rodrigo M; Georg, Herbert C; Canuto, Sylvio; Caputo, M Cristina; Provasi, Patricio F

    2009-12-31

    The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the (1)J(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, sigma((15)N) calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

  6. NMR Chemical Shielding and Spin-Spin Coupling Constants of Liquid NH3: A Systematic Investigation using the Sequential QM/MM Method

    NASA Astrophysics Data System (ADS)

    Gester, Rodrigo M.; Georg, Herbert C.; Canuto, Sylvio; Caputo, M. Cristina; Provasi, Patricio F.

    2009-09-01

    The NMR spin coupling parameters, 1J(N,H) and 2J(H,H), and the chemical shielding, σ(15N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the 1J(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the 2J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for 1J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, σ(15N) calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Δσ(15N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

  7. Magnetic shielding

    DOEpatents

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  8. Magnetic shielding

    DOEpatents

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  9. Magnetic shielding

    DOEpatents

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  10. Evaluation Of Methods To Measure Hydrogen Generation Rate In A Shielded Cell Environment And A Method Recommendation

    SciTech Connect

    Stone, M. E.

    2012-11-07

    The purpose of this document is to describe the current state of the art for determination of hydrogen generation rates of radioactive slurries and solutions to provide a basis for design, fabrication, testing, and implementation of a measurement method for Hydrogen Generation Rate (HGR) during qualification of waste feeds for the Hanford Waste Treatment and Immobilization Plant (WTP). The HGR measurement will be performed on samples of the Low Activity Waste (LAW) and High Level Waste (HLW) staged waste feeds for the WTP as well as on samples from selected unit operations testing during the qualification program. SRNL has performed a review of techniques utilized to measure HGR of high level radioactive waste slurries, evaluated the Hanford 222-S Laboratory method for measurement of hydrogen, and reviewed the hydrogen generation rate models for Hanford waste.Based on the literature review, method evaluation, and SRNL experience with measuring hydrogen generation rate, SRNL recommends that a continuous flow system with online gas analysis be used as the HGR measurement method during waste qualification.

  11. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2011-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). By increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate concept MLI blankets for MMOD shields. In conjunction, these MLI blankets and the subsequent MMOD shields were also evaluated for their radiation shielding effectiveness towards protecting crew. These concepts were evaluated against the ISS MLI blankets and the ISS MMOD shield, which acted as the baseline. These radiation shielding assessments were performed using the high charge and energy transport software (HZETRN). This software is based on a one-dimensional formula of the Boltzmann transport equation with a straight-ahead approximation. Each configuration was evaluated against the following environments to provide a diverse view of radiation shielding effectiveness in most space environments within the heliosphere: August 1972 solar particle event, October 1989 solar particle event, 1982 galactic cosmic ray environment (during solar maximum), 1987 galactic cosmic ray environment (during solar minimum), and a low earth orbit environment in 1970 that corresponded to an altitude of 400 km and inclination of 51.6 . Both the absorbed dose and the dose equivalent were analyzed, but the focus of the discussion was on the dose equivalent since the data is most concerned with radiation shielding of the crew. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for

  12. Space reactor shielding fabrication

    NASA Technical Reports Server (NTRS)

    Welch, F. H.

    1972-01-01

    The fabrication of space reactor neutron shielding by a melting and casting process utilizing lithium hydride is described. The first neutron shield fabricated is a large pancake shape 86 inches in diameter, containing about 1700 pounds of lithium hydride. This shield, fabricated by the unique melting and casting process, is the largest lithium hydride shield ever built.

  13. A computerized implementation of a non-linear equation to predict barrier shielding requirements.

    PubMed

    Chamberlain, A C; Strydom, W J

    1997-04-01

    A non-linear equation to predict barrier shielding thickness from the work function of x- and gamma-ray generators is presented. This equation is incorporated into a model that takes into account primary, scatter, and leakage radiation components to determine the amount of shielding necessary. The case of multiple wall materials is also considered. The equation accurately models the radiation attenuation curves given in NCRP 49 for concrete and lead, thus eliminating the necessity to use graphical or tabular methods to calculate shielding thickness, which can be inaccurate.

  14. The ORNL-SNAP shielding program

    NASA Technical Reports Server (NTRS)

    Mynatt, F. R.; Clifford, C. E.; Muckenthaler, F. J.; Gritzner, M. L.

    1972-01-01

    The effort in the ORNL-SNAP shielding program is directed toward the development and verification of computer codes using numerical solutions to the transport equation for the design of optimized radiation shields for SNAP power systems. A brief discussion is given for the major areas of the SNAP shielding program, which are cross-section development, transport code development, and integral experiments. Detailed results are presented for the integral experiments utilizing the TSF-SNAP reactor. Calculated results are compared with experiments for neutron and gamma-ray spectra from the bare reactor and as transmitted through slab shields.

  15. EMI Shields made from intercalated graphite composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Terry, Jennifer

    1995-01-01

    Electromagnetic interference (EMI) shielding typically makes up about twenty percent of the mass of a spacecraft power system. Graphite fiber/polymer composites have significantly lower densities and higher strengths than aluminum, the present material of choice for EMI shields, but they lack the electrical conductivity that enables acceptable shielding effectiveness. Bromine intercalated pitch-based graphite/epoxy composites have conductivities fifty times higher than conventional structural graphite fibers. Calculations are presented which indicate that EMI shields made from such composites can have sufficient shielding at less than 20% of the mass of conventional aluminum shields. EMI shields provide many functions other than EMI shielding including physical protection, thermal management, and shielding from ionizing radiation. Intercalated graphite composites perform well in these areas also. Mechanically, they have much higher specific strength and modulus than aluminum. They also have shorter half thicknesses for x-rays and gamma radiation than aluminum. Thermally, they distribute infra-red radiation by absorbing and re-radiating it rather than concentrating it by reflection as aluminum does. The prospects for intercalated graphite fiber/polymer composites for EMI shielding are encouraging.

  16. First-principles calculation of 17O and 25Mg NMR shieldings in MgO at finite temperature: rovibrational effect in solids.

    PubMed

    Rossano, Stéphanie; Mauri, Francesco; Pickard, Chris J; Farnan, Ian

    2005-04-21

    The temperature dependence of (17)O and (25)Mg NMR chemical shifts in solid MgO have been calculated using a first-principles approach. Density functional theory, pseudopotentials, a plane-wave basis set, and periodic boundary conditions were used both to describe the motion of the nuclei and to compute the NMR chemical shifts. The chemical shifts were obtained using the gauge-including projector augmented wave method. In a crystalline solid, the temperature dependence is due to both (i) the variation of the averaged equilibrium structure and (ii) the fluctuation of the atoms around this structure. In MgO, the equilibrium structure at each temperature is uniquely defined by the cubic lattice parameters, which we take from experiment. We evaluate the effect of the fluctuations within a quasiharmonic approximation. In particular, the dynamical matrix, defining the harmonic Hamiltonian, has been computed for each equilibrium volume. This harmonic Hamiltonian was used to generate nuclear configurations that obey quantum statistical mechanics. The chemical shifts were averaged over these nuclear configurations. The results reproduce the previously published experimental NMR data measured on MgO between room temperature and 1000 degrees C. It is shown that the chemical shift behavior with temperature cannot be explained by thermal expansion alone. Vibrational corrections due to the fluctuations of atoms around their equilibrium position are crucial to reproduce the experimental results.

  17. Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics/molecular mechanics models

    NASA Astrophysics Data System (ADS)

    Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth

    2007-01-01

    We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the O17 and H1 isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4ppm for the O17 shielding and 1ppm for the H1 shielding.

  18. Analysis of embedded shock waves calculated by relaxation methods.

    NASA Technical Reports Server (NTRS)

    Murman, E. M.

    1973-01-01

    The requirements for uniqueness of the calculated jump conditions across embedded shock waves are investigated for type-dependent difference systems used in transonic flow studies. A mathematical analysis shows that sufficient conditions are (1) the equations should be differenced in conservative form and (2) a special difference operator should be used when switching from a hyperbolic to an elliptic operator. The latter results in a consistency condition on the integral equations, rather than the differential, at these points. Calculated jump conditions for several embedded and detached shock waves are analyzed in the physical and hodograph planes. Comparisons are made with previous results, a time-dependent calculation, and data.

  19. Exploratory Environmental Tests of Several Heat Shields

    NASA Technical Reports Server (NTRS)

    Goodman, George P.; Betts, John, Jr.

    1961-01-01

    Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.

  20. NMR shielding and spin-rotation constants in XCO (X = Ni, Pd, Pt) molecules

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.; Jaszuński, Michał; Malkin, Elena; Komorovský, Stanislav; Ruud, Kenneth

    2015-07-01

    Ab initio nonrelativistic and four-component relativistic DFT (density functional theory) methods are combined to study the spin-rotation and absolute nuclear magnetic resonance (NMR) shielding constants of group 10 transition metal monocarbonyls. Good agreement is obtained between the calculated and available experimental data for the spin-rotation constants and shielding spans for PdCO and PtCO. These data allow us to determine accurate absolute chemical shielding constants for all the nuclei, as well as for the unknown spin-rotation constants. We compare the four-component shielding constants with those obtained from the spin-orbit zeroth-order regular approximation, together with an assessment of the performance of different basis sets. For the first time, relativistically optimised basis sets for the heavy atoms used in the four-component calculations are shown to give converged results for both magnetic properties studied. We dedicate this article to the memory of Professor Nicholas C. Handy.

  1. Neutron streaming along ducts and labyrinths at the JET biological shielding: Effect of concrete composition

    NASA Astrophysics Data System (ADS)

    Vasilopoulou, T.; Stamatelatos, I. E.; Batistoni, P.; Conroy, S.; Obryk, B.; Popovichev, S.; Syme, D. B.

    2015-11-01

    Experiments and Monte Carlo simulations were performed at the Joint European Torus (JET) in order to validate the computational tools and methods applied for neutron streaming calculations through penetrations in the JET Hall biological shielding. In the present work the sensitivity of the simulations on the hydrogen and boron content in concrete shielding was investigated. MCNP code was used to simulate neutron streaming along the JET Hall personnel entrance labyrinth for deuterium-deuterium and deuterium-tritium plasma sources for different concrete wall compositions. Neutron fluence and ambient dose equivalent along the labyrinth were calculated. Simulation results for the "as built" JET concrete composition were compared against measurements performed using thermoluminescence detectors. This study contributes to the optimization of the radiation shielding of JET and, furthermore, provides information from JET experience that may assist in optimizing and validating the radiation shielding design methodology used in its successor fusion devices ITER and DEMO.

  2. Radiation Shielding Properties of Some Marbles in Turkey

    SciTech Connect

    Guenoglu, K.; Akkurt, I.

    2011-12-26

    Especially after development of technology, radiation started to be used in a large fields such as medicine, industry and energy. Using radiation in those fields bring hazardous effect of radiation into humancell. Thus radiation protection becomes important in physics. Although there are three ways for radiation protection, shielding of the radiation is the most commonly used method. Natural Stones such as marble is used as construction material especially in critical building and thus its radiation shielding capability should be determined.In this study, gamma ray shielding properties of some different types of marble mined in Turkey, have been measured using a NaI(Tl) scintillator detector. The measured results were also compared with the theoretical calculations XCOM.

  3. Anisotropy in the flexural response of the Indian Shield

    NASA Astrophysics Data System (ADS)

    Nair, Rajesh R.; Singh, Yudhvir; Trivedi, Deshraj; Kandpal, Suresh Ch.

    2012-04-01

    We seek to determine the strain field which has accumulated in the Indian Shield due to the continental drift of Gondwanaland. We have used a method which involves the calculation of the 2D isostatic coherence response function between Bouguer gravity and topography as a function of azimuth by way of multispectrogram analysis. The average coherence is maximum consistently in the Indian Shield in a direction, which is at an angle of 45° to the major trend of suture zones within the shield, a result which is in good agreement with the strain inferred from absolute plate motion (APM) in a hot spot reference frame. This directionality of mechanical plate weakness suggests that all paleostress fields were erased due to the movement of the Indian plate during the Himalayan orogeny.

  4. Dose-to-water conversion for the backscatter-shielded EPID: A frame-based method to correct for EPID energy response to MLC transmitted radiation

    SciTech Connect

    Zwan, Benjamin J. O’Connor, Daryl J.; King, Brian W.; Greer, Peter B.

    2014-08-15

    Purpose: To develop a frame-by-frame correction for the energy response of amorphous silicon electronic portal imaging devices (a-Si EPIDs) to radiation that has transmitted through the multileaf collimator (MLC) and to integrate this correction into the backscatter shielded EPID (BSS-EPID) dose-to-water conversion model. Methods: Individual EPID frames were acquired using a Varian frame grabber and iTools acquisition software then processed using in-house software developed inMATLAB. For each EPID image frame, the region below the MLC leaves was identified and all pixels in this region were multiplied by a factor of 1.3 to correct for the under-response of the imager to MLC transmitted radiation. The corrected frames were then summed to form a corrected integrated EPID image. This correction was implemented as an initial step in the BSS-EPID dose-to-water conversion model which was then used to compute dose planes in a water phantom for 35 IMRT fields. The calculated dose planes, with and without the proposed MLC transmission correction, were compared to measurements in solid water using a two-dimensional diode array. Results: It was observed that the integration of the MLC transmission correction into the BSS-EPID dose model improved agreement between modeled and measured dose planes. In particular, the MLC correction produced higher pass rates for almost all Head and Neck fields tested, yielding an average pass rate of 99.8% for 2%/2 mm criteria. A two-sample independentt-test and fisher F-test were used to show that the MLC transmission correction resulted in a statistically significant reduction in the mean and the standard deviation of the gamma values, respectively, to give a more accurate and consistent dose-to-water conversion. Conclusions: The frame-by-frame MLC transmission response correction was shown to improve the accuracy and reduce the variability of the BSS-EPID dose-to-water conversion model. The correction may be applied as a preprocessing step

  5. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  6. Shielding of manned space vehicles against protons and alpha particles

    NASA Technical Reports Server (NTRS)

    Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.

    1972-01-01

    The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.

  7. Resonance Self-Shielding Methodologies in SCALE 6

    SciTech Connect

    Williams, Mark L

    2011-01-01

    SCALE 6 includes several problem-independent multigroup (MG) libraries that were processed from the evaluated nuclear data file ENDF/B using a generic flux spectrum. The library data must be self-shielded and corrected for problem-specific spectral effects for use in MG neutron transport calculations. SCALE 6 computes problem-dependent MG cross sections through a combination of the conventional Bondarenko shielding-factor method and a deterministic continuous-energy (CE) calculation of the fine-structure spectra in the resolved resonance and thermal energy ranges. The CE calculation can be performed using an infinite medium approximation, a simplified two-region method for lattices, or a one-dimensional discrete ordinates transport calculation with pointwise (PW) cross-section data. This paper describes the SCALE-resonance self-shielding methodologies, including the deterministic calculation of the CE flux spectra using PW nuclear data and the method for using CE spectra to produce problem-specific MG cross sections for various configurations (including doubly heterogeneous lattices). It also presents results of verification and validation studies.

  8. Improving the calculation of magnetic coupling constants in MRPT methods.

    PubMed

    Spivak, Mariano; Angeli, Celestino; Calzado, Carmen J; de Graaf, Coen

    2014-09-05

    The magnetic coupling in transition metal compounds with more than one unpaired electron per magnetic center has been studied with multiconfigurational perturbation theory. The usual shortcomings of these methodologies (severe underestimation of the magnetic coupling) have been overcome by describing the Slater determinants with a set of molecular orbitals that maximally resemble the natural orbitals of a high-level multiconfigurational reference configuration interaction calculation. These orbitals have significant delocalization tails onto the bridging ligands and largely increase the coupling strengths in the perturbative calculation.

  9. Beta Bremsstrahlung dose in concrete shielding

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Chandrika, B. M.; Rudraswamy, B.; Sankarshan, B. M.

    2012-05-01

    In a nuclear reactor, beta nuclides are released during nuclear reactions. These betas interact with shielding concrete and produces external Bremsstrahlung (EB) radiation. To estimate Bremsstrahlung dose and shield efficiency in concrete, it is essential to know Bremsstrahlung distribution or spectra. The present work formulated a new method to evaluate the EB spectrum and hence Bremsstrahlung dose of beta nuclides (32P, 89Sr, 90Sr-90Y, 90Y, 91Y, 208Tl, 210Bi, 234Pa and 40K) in concrete. The Bremsstrahlung yield of these beta nuclides in concrete is also estimated. The Bremsstrahlung yield in concrete due to 90Sr-90Y is higher than those of other given nuclides. This estimated spectrum is accurate because it is based on more accurate modified atomic number (Zmod) and Seltzer's data, where an electron-electron interaction is also included. Presented data in concrete provide a quick and convenient reference for radiation protection. The present methodology can be used to calculate the Bremsstrahlung dose in nuclear shielding materials. It can be quickly employed to give a first pass dose estimate prior to a more detailed experimental study.

  10. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  11. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  12. Approximate Method of Calculating Heating Rates at General Three-Dimensional Stagnation Points During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II

    1982-01-01

    An approximate method for calculating heating rates at general three dimensional stagnation points is presented. The application of the method for making stagnation point heating calculations during atmospheric entry is described. Comparisons with results from boundary layer calculations indicate that the method should provide an accurate method for engineering type design and analysis applications.

  13. A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks - Part I: Stationary conditions

    NASA Astrophysics Data System (ADS)

    Reiss, H.

    2004-04-01

    This paper describes numerical simulations, using thermal networks, of shield temperatures and radiative and conductive heat losses of a super-insulated cryogenic storage tank operating at 77 K. Interactions between radiation and conductive heat transfer modes in the shields are investigated, by calculation of local shield temperatures. As a new method, fluid networks are introduced for calculation of stationary residual gas pressure distribution in the evacuated multilayer super-insulation. Output from the fluid network is coupled to the iterative thermal network calculations. Parameter tests concern thickness and emissivity of shields, degree of perforation, residual gas sources like desorption from radiation shields, spacers and container walls, and permeation from the inner container to the evacuated insulation space. Variations of either a conductive (thickness of Al-film on Mylar) or a radiative parameter (thermal emissivity) exert crosswise influences on the radiative or conductive heat losses of the tank, respectively.

  14. CDF forward shielding for Run II

    SciTech Connect

    Krivosheev, O.E.; Mokhov, N.V.

    1998-03-16

    Detailed calculations of the accelerator related background in the CDF forward muon spectrometer have been performed with the MARS13 code and a newly developed C++ code for particle tracking in accelerator lattices. Calculated space distributions of background hits are in a good agreement with data taken in Run I. Several shielding configurations in the CDF hall and Tevatron tunnel have been studied. The optimal one provides a 30-fold shielding efficiency compatible with CDF Run II requirements.

  15. Preconditioned minimal residual methods for Chebyshev spectral calculations

    NASA Technical Reports Server (NTRS)

    Canuto, C.; Quarteroni, A.

    1985-01-01

    The problem of preconditioning the pseudospectral Chebyshev approximation of an elliptic operator is considered. The numerical sensitiveness to variations of the coefficients of the operator are investigated for two classes of preconditioning matrices: one arising from finite differences, the other from finite elements. The preconditioned system is solved by a conjugate gradient type method, and by a Dufort-Frankel method with dynamical parameters. The methods are compared on some test problems with the Richardson method and with the minimal residual Richardson method.

  16. Revised method for calculating cloud densities in equilibrium models

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Atreya, S. K.; Kuhn, W. R.

    2013-12-01

    Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are simple but still useful for several reasons. They calculate the wet adiabatic lapse rate, they determine saturation-limited mixing ratios of condensing species, and they calculate the stabilizing effect of latent heat release and molecular weight stratification. Equilibrium cloud condensation models (ECCMs) also calculate a type of condensate density---a condensate "unit density"---that only equates to cloud density under specific circumstances, because microphysics and dynamics are not considered in ECCMs. Unit densities are calculated for every model altitude by requiring that condensed material remains at the level where it condenses. Many ECCMs in use trace their heritage to Weidenschilling and Lewis (1973; Icarus 20, 465--476; hereafter WL73), which contains an error that affects only the calculation of condensate unit density. The error led to densities too high by a factor of the atmospheric scale height divided by unit length, which is about 3x10^6 at Jupiter's ammonia cloud level. We will describe the condensate unit density calculation error in WL73, and provide a new algorithm based on the local change in vapor mixing ratio, rather than the difference between integrated column masses as in WL73. The new algorithm satisfies conservation of mass. Using a simple scaling law to parameterize dynamics in terms of updraft speed and duration, condensate unit densities from ECCMs can be converted to cloud densities. We validate the technique for the terrestrial case, by comparing model predictions with representative densities of cirrus and cumulus clouds. For cirrus and cumulus updraft parameters, respectively, we find cloud densities of 0.01--0.2 g m-3 and 0.8--7 g m-3, in excellent agreement with observations and models of terrestrial clouds of these types. Implications for models of planetary and exoplanetary atmospheres will be discussed. [This material is based upon

  17. Design of Fracture Fixation Plate for Necessary and Sufficient Bone Stress Shielding

    NASA Astrophysics Data System (ADS)

    Ramakrishna, Kotlanka; Sridhar, Idapalapati; Sivashanker, Sathiamoorthy; Khong, Kok Sun; Ghista, Dhanjoo N.

    The objective of treating the fractured bone is to achieve painless functioning of the bone and undisturbed healing at the fracture. Internal fixation by stiff bone-plate is one of the standard methods to achieve these objectives. Recently, there is considerable interest in the usage of compliant plates to enhance bone healing with reduced stress shielding. Herein, first an analytical solution is developed to determine screw forces in the bone-plate assembly that conforms the plate and the bone under bending load. Based on the analytical calculations, an optimal fixator plate selection criterion for necessary and sufficient stress shielding is proposed. Second, effectiveness of employing a non-homogeneous stiffness graded (SG) plate rather than a homogeneous stainless steel (SS) plate for stress shielding is investigated using a finite element method. It is found that stress shielding on bone by SG plate is less compared to SS plate.

  18. Experiences with leak rate calculations methods for LBB application

    SciTech Connect

    Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G.

    1997-04-01

    In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations.

  19. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method

    NASA Astrophysics Data System (ADS)

    Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed

    2017-02-01

    Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.

  20. Testicular shielding in penile brachytherapy

    PubMed Central

    Bindal, Arpita; Tambe, Chandrashekhar M.; Ghadi, Yogesh; Murthy, Vedang; Shrivastava, Shyam Kishore

    2015-01-01

    Purpose Penile cancer, although rare, is one of the common genitourinary cancers in India affecting mostly aged uncircumcised males. For patients presenting with small superficial lesions < 3 cm restricted to glans, surgery, radical external radiation or brachytherapy may be offered, the latter being preferred as it allows organ and function preservation. In patients receiving brachytherapy, testicular morbidity is not commonly addressed. With an aim to minimize and document the doses to testis after adequate shielding during radical interstitial brachytherapy for penile cancers, we undertook this study in 2 patients undergoing brachytherapy and forms the basis of this report. Material and methods Two patients with early stage penile cancer limited to the glans were treated with radical high-dose-rate (HDR) brachytherapy using interstitial implant. A total of 7-8 tubes were implanted in two planes, parallel to the penile shaft. A total dose of 44-48 Gy (55-60 Gy EQD2 doses with α/β = 10) was delivered in 11-12 fractions of 4 Gy each delivered twice daily. Lead sheets adding to 11 mm (4-5 half value layer) were interposed between the penile shaft and scrotum. The testicular dose was measured using thermoluminescent dosimeters. For each patient, dosimetry was done for 3 fractions and mean calculated. Results The cumulative testicular dose to left and right testis was 31.68 cGy and 42.79 cGy for patient A, and 21.96 cGy and 23.28 cGy for patient B. For the same patients, the mean cumulative dose measured at the posterior aspect of penile shaft was 722.15 cGy and 807.72 cGy, amounting to 16.4% and 16.8% of the prescribed dose. Hence, the application of lead shield 11 mm thick reduced testicular dose from 722-808 cGy to 21.96-42.57 cGy, an “absolute reduction” of 95.99 ± 1.5%. Conclusions With the use of a simple lead shield as described, we were able to effectively reduce testicular dose from “spermicidal” range to “oligospermic” range with possible

  1. Watching a disappearing shield

    SciTech Connect

    Stolarski, R.S.

    1988-10-01

    The remote-sensing techniques used to monitor atmospheric ozone levels are reviewed, and recent results are discussed. The importance of the ozone layer as a shield for UV radiation is stressed, and the impact of human activities generating ozone-destroying compounds is considered. Ground-based, airborne, balloon-borne, and satellite remote-sensing methods are shown to complement each other to provide both global coverage and detailed structural information. Data obtained with the Nimbus-7 TOMS and solar-backscatter UV instruments are presented in graphs and briefly characterized.

  2. Spacecraft ceramic protective shield

    NASA Technical Reports Server (NTRS)

    Larriva, Rene F. (Inventor); Nelson, Anne (M.); Czechanski, James G. (Inventor); Poff, Ray E. (Inventor)

    1995-01-01

    A low areal density protective shield apparatus, and method for making same, for protecting spacecraft structures from impact with hypervelocity objects, including a bumper member comprising a bumper ceramic layer, a bumper shock attenuator layer, and a bumper confining layer. The bumper ceramic layer can be SiC or B.sub.4 C; the bumper shock attenuator layer can be zirconia felt; and the bumper confining layer can be aluminum. A base armor member can be spaced from the bumper member and a ceramic fiber-based curtain can be positioned between the bumper and base armor members.

  3. Shielding Design of the Spallation Neutron Source (SNS)

    SciTech Connect

    Johnson, J.O.

    1998-09-17

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements, calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented.

  4. Fuel Assembly Calculations Using the Method of Discrete Ordinates

    SciTech Connect

    Pautz, Andreas; Langenbuch, Siegfried

    2005-02-15

    The discrete ordinates code DORT is employed to treat pin cell and fuel assembly configurations in two spatial dimensions. Despite DORT's restriction to regular (i.e., Cartesian) coordinates, we demonstrate its ability to calculate accurate pin power distributions and eigenvalues of typical reactor fuel lattices. Several numerical experiments have been performed to investigate the effects of spatial, angular, and energy discretization and to quantify their impact on the results. DORT is also used to homogenize and collapse cross-section sets within the framework of the coupled transport/burnup code system KENOREST.

  5. The universal plane method for calculating the dimensions of heliostats

    NASA Astrophysics Data System (ADS)

    Perres, L. B.; Baum, I. V.

    It is pointed out that heliostat dimensions are crucial in ensuring that sunlight is properly reflected during the day in solar furnaces and solar power stations. In determining these dimensions, allowance must be made for changes in the sun's position during the day, changes which depend on the latitude of the installation. To construct unique algorithms for calculating the dimensions, a procedure involving general concepts must be formulated and this formulation introduces a universal frame of reference. An example of this which has attracted considerable interest involves a flat round receiver that is parallel either to the horizontal plane or to the universal plane considered here.

  6. Dietary analysis with programmable calculator: a simplified method.

    PubMed

    Dorea, J G; Horner, M R; Johnson, N E

    1981-02-01

    The use and applications of programmable calculator in dietary analysis are presented. Results which approximate those of large computers can be obtained with considerably less time, money, and data manipulation. Program flexibility allows operators to determine the number of foods and nutrients to be analyzed. Input, data checking, and results of total nutrient consumption are achieved within minutes. The dietary analysis described in this article is well suited for small hospitals and clinics, for teaching purposes and dietary surveys and for use by non-nutritionists who have a one-time or regular need to incorporate dietary information into their work.

  7. NEUTRONIC REACTOR SHIELD

    DOEpatents

    Fermi, E.; Zinn, W.H.

    1957-09-24

    The reactor radiation shield material is comprised of alternate layers of iron-containing material and compressed cellulosic material, such as masonite. The shielding material may be prefabricated in the form of blocks, which can be stacked together in ary desired fashion to form an effective shield.

  8. Calculating PI Using Historical Methods and Your Personal Computer.

    ERIC Educational Resources Information Center

    Mandell, Alan

    1989-01-01

    Provides a software program for determining PI to the 15th place after the decimal. Explores the history of determining the value of PI from Archimedes to present computer methods. Investigates Wallis's, Liebniz's, and Buffon's methods. Written for Tandy GW-BASIC (IBM compatible) with 384K. Suggestions for Apple II's are given. (MVL)

  9. The Inverse-Square Law and the Exponential Attenuation Law Used to the Shielding Calculation in Radiotherapy on a High School Level

    NASA Astrophysics Data System (ADS)

    de Paiva, Eduardo

    2016-04-01

    Every year millions of people contract cancer in the world, and according to prediction of the World Health Organization by the year 2030 there will be about 27 million new cases. Because of these figures and the resulting social and economic implications of this disease, radiotherapy, which is one form of treatment that uses ionizing radiation, has a great importance. In the classroom the teacher can introduce the subject of the use of ionizing radiation in medicine and the basic physical principles to calculate the thickness of the walls of the rooms that house ionizing radiation sources.

  10. OPTIMAL BETA-RAY SHIELDING THICKNESSES FOR DIFFERENT THERAPEUTIC RADIONUCLIDES AND SHIELDING MATERIALS.

    PubMed

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2016-04-06

    To better understand the distribution of deposited energy of beta and gamma rays according to changes in shielding materials and thicknesses when radionuclides are used for therapeutic nuclear medicine, a simulation was conducted. The results showed that due to the physical characteristics of each therapeutic radionuclide, the thicknesses of shielding materials at which beta-ray shielding takes place varied. Additional analysis of the shielding of gamma ray was conducted for radionuclides that emit both beta and gamma rays simultaneously with results showing shielding effects proportional to the atomic number and density of the shielding materials. Also, analysis of bremsstrahlung emission after beta-ray interactions in the simulation revealed that the occurrence of bremsstrahlung was relatively lower than theoretically calculated and varied depending on different radionuclides.

  11. Gamma heating in reflector heat shield of gas core reactor

    NASA Technical Reports Server (NTRS)

    Lofthouse, J. H.; Kunze, J. F.; Young, T. E.; Young, R. C.

    1972-01-01

    Heating rate measurements made in a mock-up of a BeO heat shield for a gas core nuclear rocket engine yields results nominally a factor of two greater than calculated by two different methods. The disparity is thought to be caused by errors in neutron capture cross sections and gamma spectra from the low cross-section elements, D, O, and Be.

  12. A comparison of methods for calculating O(1S) lifetimes

    NASA Astrophysics Data System (ADS)

    Burns, G. B.; Reid, J. S.

    It is shown theoretically and with simulated data that O(1S) lifetimes determined by the cross-spectral method (Paulson and Shepherd, 1965) are significant overestimates. A comparison is made of the cross-spectral and impulse function analysis (Burns and Reid, 1984) methods using photometric data collected at Macquarie Island (54.5 deg S, 159.0 deg E geographic). The results support the view that the O(1S) state is excited predominantly by an indirect process.

  13. Neutron shielding material based on colemanite and epoxy resin.

    PubMed

    Okuno, Koichi

    2005-01-01

    In recent years, there has been a need for compact shielding design such as self-shielding of a PET cyclotron or upgradation of radiation machinery in existing facilities. In these cases, high performance shielding materials are needed. Concrete or polyethylene have been used for a neutron shield. However, for compact shielding, they fall short in terms of performance or durability. Therefore, a new type of neutron shielding material based on epoxy resin and colemanite has been developed. Slab attenuation experiments up to 40 cm for the new shielding material were carried out using a 252Cf neutron source. Measurement was carried out using a REM-counter, and compared with calculation. The results show that the shielding performance is better than concrete and polyethylene mixed with 10 wt% boron oxide. From the result, we confirmed that the performance of the new material is suitable for practical use.

  14. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  15. High-lift calculations using Navier-Stokes methods

    NASA Astrophysics Data System (ADS)

    Larsson, Torbjoern

    Wing sections on an aircraft are designed for optimal cruise performance, whereas during the take-off and landing phase totally different lift-to-drag characteristics are needed. High lift and low drag is essential while taking off, on the other hand high lift and high drag is favorable when landing. The design and shaping of the high-lift system can have a major influence on the overall economy and safety of the aircraft. In a historical perspective experimental investigations have been the only way to gain any deeper knowledge of the performance of a given wing-flap configuration. Today, computational methods for high-lift systems based on the viscid-inviscid interaction approach with integral methods for boundary layers and wakes are quite common. Although fast solutions can be obtained with these methods it is highly desirable to have a numerical method that captures the flow physics in a more detailed and adequate way. The present wotk demonstrates that Navier-Stokes methods can be used with good results for simulating high-lift flow fields, but also points to the area where further research is needed.

  16. The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding: phosphorylated azoles.

    PubMed

    Chernyshev, Kirill A; Larina, Ludmila I; Chirkina, Elena A; Krivdin, Leonid B

    2012-02-01

    The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding have been investigated in the series of tetracoordinated, pentacoordinated and hexacoordinated N-vinylpyrazoles and intermolecular complexes of N-vinylimidazole and 1-allyl-3,5-dimethylpyrazole with phosphorous pentachloride both experimentally and theoretically. It was shown that either intramolecular or intermolecular coordination involving phosphorous results in a dramatic (31)P nuclear shielding amounting to approximately 150 ppm on changing the phosphorous coordination number by one. A major importance of solvent effects on (31)P nuclear shielding of intramolecular and intermolecular complexes involving N → P coordination bond has been demonstrated. It was found that the zeroth-order regular approximation-gauge-including atomic orbital-B1PW91/DZP method was sufficiently accurate for the calculation of (31)P NMR chemical shifts, provided relativistic corrections are taken into account, the latter being of crucial importance in the description of (31)P nuclear shielding.

  17. Potential theoretic methods for far field sound radiation calculations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Stenger, Edward J.; Scott, J. R.

    1995-01-01

    In the area of computational acoustics, procedures which accurately predict the far-field sound radiation are much sought after. A systematic development of such procedures are found in a sequence of papers by Atassi. The method presented here is an alternate approach to predicting far field sound based on simple layer potential theoretic methods. The main advantages of this method are: it requires only a simple free space Green's function, it can accommodate arbitrary shapes of Kirchoff surfaces, and is readily extendable to three-dimensional problems. Moreover, the procedure presented here, though tested for unsteady lifting airfoil problems, can easily be adapted to other areas of interest, such as jet noise radiation problems. Results are presented for lifting airfoil problems and comparisons are made with the results reported by Atassi. Direct comparisons are also made for the flat plate case.

  18. Comparison of optimization methods for electronic-structure calculations

    SciTech Connect

    Garner, J.; Das, S. G.; Min, B. I.; Woodward, C.; Benedek, R.

    1989-06-15

    The performance of several local-optimization methods for calculatingelectronic structure is compared. The fictitious first-order equation of motionproposed by Williams and Soler is integrated numerically by three procedures:simple finite-difference integration, approximate analytical integration (theWilliams-Soler algorithm), and the Born perturbation series. These techniquesare applied to a model problem for which exact solutions are known, the Mathieuequation. The Williams-Soler algorithm and the second Born approximationconverge equally rapidly, but the former involves considerably lesscomputational effort and gives a more accurate converged solution. Applicationof the method of conjugate gradients to the Mathieu equation is discussed.

  19. Volumetric calculations in an oil field: The basis method

    USGS Publications Warehouse

    Olea, R.A.; Pawlowsky, V.; Davis, J.C.

    1993-01-01

    The basis method for estimating oil reserves in place is compared to a traditional procedure that uses ordinary kriging. In the basis method, auxiliary variables that sum to the net thickness of pay are estimated by cokriging. In theory, the procedure should be more powerful because it makes full use of the cross-correlation between variables and forces the original variables to honor interval constraints. However, at least in our case study, the practical advantages of cokriging for estimating oil in place are marginal. ?? 1993.

  20. DABCO mono-betaine hydrate studied by X-ray diffraction, DFT calculations and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Barczyński, P.; Dega-Szafran, Z.; Katrusiak, A.; Perdoch, W.; Szafran, M.

    2009-09-01

    A new DABCO mono-betaine (1-carboxymethyl-1,4-diazabicyclo[2.2.2]octane inner salt) has been synthesized. It crystallizes as monohydrate in orthorhombic space group Pmn2 1. The DABCO mono-betaine and water molecules are located on a mirror plane. The water molecules link DABCO mono-betaine into linear chains through the H-O-H⋯OOC and H-O-H⋯N hydrogen bonds of 2.709(2) and 2.875(2) Å. The structure of the title compound optimized at B3LYP/6-31G(d,p) level of theory is consistent with X-ray diffraction. The absorption bands in the FTIR spectrum have been assigned. The calculated magnetic isotropic shielding tensors confirm the assignments of the 13C NMR resonance signals.

  1. Numerical methods and calculations for droplet flow, heating and ignition

    NASA Technical Reports Server (NTRS)

    Dwyer, H. A.; Sanders, B. R.; Dandy, D.

    1982-01-01

    A numerical method was devised and employed to solve a variety of problems related to liquid droplet combustion. The basic transport equations of mass, momentum and energy were formulated in terms of generalized nonorthogonal coordinates, which allows for adaptive griding and arbitrary particle shape. Example problems are solved for internal droplet heating, droplet ignition and high Reynolds number flow over a droplet.

  2. Subtleties in Energy Calculations in the Image Method

    ERIC Educational Resources Information Center

    Taddei, M. M.; Mendes, T. N. C.; Farina, C.

    2009-01-01

    In this pedagogical work, we point out a subtle mistake that can be made by undergraduate or graduate students in the computation of the electrostatic energy of a system containing charges and perfect conductors if they naively use the image method. Specifically, we show that naive expressions for the electrostatic energy for these systems…

  3. Shielding for beta-gamma radiation.

    PubMed

    Fletcher, J J

    1993-06-01

    The build-up factor, B, for lead was expressed as a polynominal cubic function of the relaxation length, mu x, and incorporated in a "general beta-gamma shielding equation." A computer program was written to determine shielding thickness for polyenergetic beta-gamma sources without resorting to the conventional "add-one-HVL" method.

  4. Static Structural Analysis for a Neutron Shielding Block in ITER

    NASA Astrophysics Data System (ADS)

    Hao, Junchuan; Song, Yuntao; Wang, Xiaoyu; Ioki, K.; Du, Shuangsong; Ji, Xiang; Feng, Changle; Xu, Yang

    2013-02-01

    The ITER neutron shielding blocks are located between the outer shell and the inner shell of the vacuum vessel to provide neutron shielding. Considering the combined loads acting on the shielding blocks during ITER plasma operation, the structure of the shielding blocks must be evaluated. Using the finite element method with ANSYS analysis software, static structural analysis is performed, including elastic analysis and limit analysis for one typical shielding block. The evaluated results based on RCC-MR code show that the structure of this shielding block can meet the design requirement.

  5. Computational methods. [Calculation of dynamic loading to offshore platforms

    SciTech Connect

    Maeda, H. . Inst. of Industrial Science)

    1993-02-01

    With regard to the computational methods for hydrodynamic forces, first identification of marine hydrodynamics in offshore technology is discussed. Then general computational methods, the state of the arts and uncertainty on flow problems in offshore technology in which developed, developing and undeveloped problems are categorized and future works follow. Marine hydrodynamics consists of water surface and underwater fluid dynamics. Marine hydrodynamics covers, not only hydro, but also aerodynamics such as wind load or current-wave-wind interaction, hydrodynamics such as cavitation, underwater noise, multi-phase flow such as two-phase flow in pipes or air bubble in water or surface and internal waves, and magneto-hydrodynamics such as propulsion due to super conductivity. Among them, two key words are focused on as the identification of marine hydrodynamics in offshore technology; they are free surface and vortex shedding.

  6. A procedure to calculate the self-shielding and detection efficiency for a gamma-emitting disk and sodium iodide crystal

    NASA Astrophysics Data System (ADS)

    Arcipiani, Biagio; Pedretti, Edmondo

    1980-07-01

    This paper reports on a procedure to correct for the detector efficiency and radiation self-absorption the number of counts tallied when the activity of a gamma-emitting thick foil is measured by means of a sodium iodide crystal. A model is set up whereby, after ideally dividing the disk into a large number of slices, it is shown how to separate for each slice the role of radiation detection from that of the absorption in the material between the slice and the crystal. While the former is accounted for by using an available Monte Carlo code, the latter is reduced to the calculation of suitable geometrical factors. Formulas for these factors are derived and were coded for an electronic computer. The Fortran IV program is available. Numerical results of the geometrical factors are shown for a 14 mm radius and 2.07 mm thick indium foil irradiated in a plasma focus machine, and these are compared with those obtained by a crude approximation reported elsewhere.

  7. Facility target insert shielding assessment

    SciTech Connect

    Mocko, Michal

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  8. Efficient Method for Calculating Hydraulic Conductivity from Pneumatic Slug Tests

    NASA Astrophysics Data System (ADS)

    Peng, X.; Cheung, B.; Knappett, P. S.; Zhan, H.

    2014-12-01

    Pneumatic slug tests are widely used in characterizing the hydraulic conductivity of aquifers. In comparison to a manual slug test wherein the water level is measured using a water level tape, pneumatic slug tests are especially useful when the water level recovery is very fast (<10 sec) in a high hydraulic conductivity (K) aquifer (>10-4 m/s) and when the recovery is very slow (<10-7 m/s). The submerged pressure transducer monitors pressure changes at intervals of fractions of a second and for longer recoveries no personnel are required to make repeated measurements. A pneumatic slug test begins with pressurizing the well at the well head using an air pump followed by several minutes waiting for the pressure in the well to equalize with the pressure outside the well screen. In semi-confined settings this equalization may take >5 minutes. In lower K media it's not always feasible to wait until the well fully recovers before making the next replicate measurement. Therefore, it would greatly reduce the time needed to make replicate measurements if these waiting times could be reduced. Here we present a method using non-linear least squares regression on a portion of the recovery curve to simultaneously fit 3 parameters used to determine K from a slug tests using the Hvorslev method. The advantage of this approach is that waiting for the well to reach static head between replicate measurements is not required. This is because the regression fits static head (H) from the shape of only part the recovery curve. We compare the resulting K values from this new method to values obtained from manually measured static heads for triplicate measurements on 50 wells. The well's settings ranged from unconfined to semi-confined and K ranged from 10-3 to 10-5 m/s. The new method gave identical results. We performed the same comparison on a subset 16 wells using data collected in half the time, where only part of the recovery curves were measured before starting the next replicate

  9. Criteria for establishing shielding of multi-detector computed tomography (MDCT) rooms.

    PubMed

    Verdun, F R; Aroua, A; Baechler, S; Schmidt, S; Trueb, P R; Bochud, F O

    2010-01-01

    The aim of this work is to compare two methods used for determining the proper shielding of computed tomography (CT) rooms while considering recent technological advances in CT scanners. The approaches of the German Institute for Standardisation and the US National Council on Radiation Protection and Measurements were compared and a series of radiation measurements were performed in several CT rooms at the Lausanne University Hospital. The following three-step procedure is proposed for assuring sufficient shielding of rooms hosting new CT units with spiral mode acquisition and various X-ray beam collimation widths: (1) calculate the ambient equivalent dose for a representative average weekly dose length product at the position where shielding is required; (2) from the maximum permissible weekly dose at the location of interest, calculate the transmission factor F that must be taken to ensure proper shielding and (3) convert the transmission factor into a thickness of lead shielding. A similar approach could be adopted to use when designing shielding for fluoroscopy rooms, where the basic quantity would be the dose area product instead of the load of current (milliampere-minute).

  10. [Dichotomizing method applied to calculating equilibrium constant of dimerization system].

    PubMed

    Cheng, Guo-zhong; Ye, Zhi-xiang

    2002-06-01

    The arbitrary trivariate algebraic equations are formed based on the combination principle. The univariata algebraic equation of equilibrium constant kappa for dimerization system is obtained through a series of algebraic transformation, and it depends on the properties of monotonic functions whether the equation is solvable or not. If the equation is solvable, equilibrium constant of dimerization system is obtained by dichotomy and its final equilibrium constant of dimerization system is determined according to the principle of error of fitting. The equilibrium constants of trisulfophthalocyanine and biosulfophthalocyanine obtained with this method are 47,973.4 and 30,271.8 respectively. The results are much better than those reported previously.

  11. An improved filtered spherical harmonic method for transport calculations

    SciTech Connect

    Ahrens, C.; Merton, S.

    2013-07-01

    Motivated by the work of R. G. McClarren, C. D. Hauck, and R. B. Lowrie on a filtered spherical harmonic method, we present a new filter for such numerical approximations to the multi-dimensional transport equation. In several test problems, we demonstrate that the new filter produces results with significantly less Gibbs phenomena than the filter used by McClarren, Hauck and Lowrie. This reduction in Gibbs phenomena translates into propagation speeds that more closely match the correct propagation speed and solutions that have fewer regions where the scalar flux is negative. (authors)

  12. Methods of calculating engineering parameters for gas separations

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1980-01-01

    A group additivity method has been generated which makes it possible to estimate, from the structural formulas alone, the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. From these two parameters and appropriate thermodynamic relationships it is then possible to predict the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids. The data are then used to evaluate organic and some inorganic liquids for use in gas separation stages or as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  13. Calculation method of prestack FAGVO and its applications

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Qing; Wang, Yan-Chun; Zhang, Gui-Bing; Ma, Sheng-Li; Cheng, Li-Fang; Yu, Wen-Wu

    2016-12-01

    Frequency attenuation occurs when seismic waves propagate through the porous reservoirs containing hydrocarbons. Current researches on the seismic frequency attenuation mainly focus on the post-stack domain instead of the prestack domain. Here we propose the frequency attenuation gradient vs. offset (FAGVO) based on the amplitude variation with offset and frequency attenuation integral equations. We derive the FAGVO equation that equals to zero in a full-elastic medium and is negative in a viscoelastic medium. FAGVO is affected by the viscosity of the medium, the coefficients of reflection, the frequency variation, and high-frequency attenuation. FAGVO uses the differences of partially stacked data to decrease the interference caused by subsurface strata affecting the frequency attenuation, highlights the frequency attenuation gradient anomalies in hydrocarbon-bearing reservoir pores, and finally realizes the hydrocarbon fluid identification. The method was verified using a two-dimensional wave equation forward model and was found to be cost effective. Furthermore, the method does not require well information, which can be applied in the stage of seismic exploration, especially, in the exploration of a none-well project.

  14. MicroShield/ISOCS gamma modeling comparison.

    SciTech Connect

    Sansone, Kenneth R

    2013-08-01

    Quantitative radiological analysis attempts to determine the quantity of activity or concentration of specific radionuclide(s) in a sample. Based upon the certified standards that are used to calibrate gamma spectral detectors, geometric similarities between sample shape and the calibration standards determine if the analysis results developed are qualitative or quantitative. A sample analyzed that does not mimic a calibrated sample geometry must be reported as a non-standard geometry and thus the results are considered qualitative and not quantitative. MicroShieldR or ISOCSR calibration software can be used to model non-standard geometric sample shapes in an effort to obtain a quantitative analytical result. MicroShieldR and Canberras ISOCSR software contain several geometry templates that can provide accurate quantitative modeling for a variety of sample configurations. Included in the software are computational algorithms that are used to develop and calculate energy efficiency values for the modeled sample geometry which can then be used with conventional analysis methodology to calculate the result. The response of the analytical method and the sensitivity of the mechanical and electronic equipment to the radionuclide of interest must be calibrated, or standardized, using a calibrated radiological source that contains a known and certified amount of activity.

  15. Calculation methods for rotor wake formation in forward flight

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1993-01-01

    The primary focus of this research centered on improving the vorticity-capturing properties of Eulerian flow solvers in convection-dominated flows. The work was motivated by the fact that excessive numerical diffusion observed in current Euler solvers on grids of feasible size is a major obstacle to accurately computing the flow about helicopter rotors, especially in the forward flight case. The work was originally supported by NASA Grant NAG2-421 for two years. The research then continued for four more years under an ONR contract. The research goal of reduction of numerical diffusion in Euler solvers remained the same, although the target application was now the prediction of internal vortical secondary flows. This was part of a larger ONR-sponsored research program at MIT aimed at reducing the noise of turbopumps. The research work culminated in the PhD thesis titled 'A Coupled Eulerian/Lagrangian Method for the Solution of Three-Dimensional Vortical Flows'.

  16. Hypervelocity impact shield

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G. (Inventor); Crews, Jeanne Lee (Inventor)

    1991-01-01

    A hypervelocity impact shield and method for protecting a wall structure, such as a spacecraft wall, from impact with particles of debris having densities of about 2.7 g/cu cm and impact velocities up to 16 km/s are disclosed. The shield comprises a stack of ultra thin sheets of impactor disrupting material supported and arranged by support means in spaced relationship to one another and mounted to cover the wall in a position for intercepting the particles. The sheets are of a number and spacing such that the impacting particle and the resulting particulates of the impacting particle and sheet material are successively impact-shocked to a thermal state of total melt and/or vaporization to a degree as precludes perforation of the wall. The ratio of individual sheet thickness to the theoretical diameter of particles of debris which may be of spherical form is in the range of 0.03 to 0.05. The spacing between adjacent sheets is such that the debris cloud plume of liquid and vapor resulting from an impacting particle penetrating a sheet does not puncture the next adjacent sheet prior to the arrival thereat of fragment particulates of sheet material and the debris particle produced by a previous impact.

  17. Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes

    SciTech Connect

    Alam, Todd M.; Henry, Marc

    1999-08-05

    Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.

  18. A combined representation method for use in band structure calculations. 1: Method

    NASA Technical Reports Server (NTRS)

    Friedli, C.; Ashcroft, N. W.

    1975-01-01

    A representation was described whose basis levels combine the important physical aspects of a finite set of plane waves with those of a set of Bloch tight-binding levels. The chosen combination has a particularly simple dependence on the wave vector within the Brillouin Zone, and its use in reducing the standard one-electron band structure problem to the usual secular equation has the advantage that the lattice sums involved in the calculation of the matrix elements are actually independent of the wave vector. For systems with complicated crystal structures, for which the Korringa-Kohn-Rostoker (KKR), Augmented-Plane Wave (APW) and Orthogonalized-Plane Wave (OPW) methods are difficult to apply, the present method leads to results with satisfactory accuracy and convergence.

  19. A shielding theory for upward lightning

    SciTech Connect

    Shindo, Takatoshi; Aihara, Yoshinori )

    1993-01-01

    A new shielding theory is proposed based on the assumption that the occurrence of lightning strokes on the Japan Sea coast in winter is due to the inception of upward leaders from tall structures. Ratios of the numbers of lightning strokes to high structures observed there in winter show reasonable agreement with values calculated by this theory. Shielding characteristics of a high structure in various conditions are predicted.

  20. A high-precision calculation method for interface normal and curvature on an unstructured grid

    NASA Astrophysics Data System (ADS)

    Ito, Kei; Kunugi, Tomoaki; Ohno, Shuji; Kamide, Hideki; Ohshima, Hiroyuki

    2014-09-01

    In the volume-of-fluid algorithm, the calculations of the interface normal and curvature are crucially important for accurately simulating interfacial flows. However, few methods have been proposed for the high-precision interface calculation on an unstructured grid. In this paper, the authors develop a height function method that works appropriately on an unstructured grid. In the process, the definition of the height function is discussed, and the high-precision calculation method of the interface normal is developed to meet the necessary condition for a second-order method. This new method has highly reduced computational cost compared with a conventional high-precision method because the interface normal calculation is completed by solving relatively simple algebraic equations. The curvature calculation method is also discussed and the approximated quadric curve of an interface is employed to calculate the curvature. Following a basic verification, the developed height function method is shown to successfully provide superior calculation accuracy and highly reduced computational cost compared with conventional calculation methods in terms of the interface normal and curvature. In addition, the height function method succeeds in calculating accurately the slotted-disk revolution problem and the oscillating drop on unstructured grids. Therefore, the developed height function method is confirmed to be an efficient technique for the high-precision numerical simulation of interfacial flows on an unstructured grid.

  1. Cable shield connecting device

    DOEpatents

    Silva, Frank A.

    1979-01-01

    A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.

  2. Radiation shielding for 250 MeV protons

    SciTech Connect

    Awschalom, M.

    1987-04-01

    This paper is targetted at personnel who have the responsibility of designing the radiation shielding against neutron fluences created when protons interact with matter. Shielding of walls and roofs are discussed, as well as neutron dose leakage through labyrinths. Experimental data on neutron flux attenuation are considered, as well as some calculations using the intranuclear cascade calculations and parameterizations.

  3. An efficient method for electron-atom scattering using ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang

    2017-02-01

    We present an efficient method based on ab-initio calculations to investigate electron-atom scatterings. Those calculations profit from methods implemented in standard quantum chemistry programs. The new approach is applied to electron-helium scattering. The results are compared with experimental and other theoretical references to demonstrate the efficiency of our method.

  4. Solution of Cubic Equations by Iteration Methods on a Pocket Calculator

    ERIC Educational Resources Information Center

    Bamdad, Farzad

    2004-01-01

    A method to provide students a vision of how they can write iteration programs on an inexpensive programmable pocket calculator, without requiring a PC or a graphing calculator is developed. Two iteration methods are used, successive-approximations and bisection methods.

  5. Calculation method for a quadrature phase-shifting interferometer and its applications.

    PubMed

    Nakadate, Suezou; Sawada, Shinya; Kiire, Tomohiro; Shibuya, Masato; Yatagai, Toyohiko

    2013-01-01

    A calculation method for a quadrature phase-shifting interferometer is presented, and its applications to specular and speckle interferometers and digital holography are described. Two sets of quadrature phase-shifted interferograms are acquired, and the calculation method proposed gives the phase distribution of the interferograms. The principle of the calculation method with error analysis and experimental results for specular and speckle interferometers and digital holography are also given.

  6. The Copper Sulfide Coating on Polyacrylonitrile with Chelating Agents by an Electroless Deposition Method and its EMI Shielding Effectiveness

    SciTech Connect

    Roan, M.-L.; Chen, Y.-H.; Huang, C.-Y.

    2008-08-28

    In this study, a variety of concentrations of chelating agents were added to obtain the anchoring effect and chelating effect in the electroless plating bath. The mechanism of the Cu{sub x(x=1,2)}S growth and the electromagnetic interference shielding effectiveness (EMI SE) of the composite were studied. It was found that the vinyl acetate residued in PAN substrate would be purged due to the swelling effect by chelating agents solution. And then, the anchoring effect occurred due to the hydrogen bonding between the pits of PAN substrate and the chelating agent. Consequently, the copper sulfide layer deposited by the electroless plating reaction with EDTA and TEA. The swelling degree (S{sub d}) was proposed and evaluated from the FT-IR spectra. The relationship between swelling degree of the PAN films and EDTA (C) is expressed as: S{sub d} = 0.13+0.90xe and (-15.15C). And TEA series is expressed as: S{sub d} = 0.07+1.00xe and (-15.15C). On the other hand, the FESEM micrograph showed that the average thickness of copper sulfide increased from 76 nm to 383 nm when the concentration of EDTA increased from 0.00M to 0.20M. Consequently, the EMI SE of the composites increased from 10{approx}12 dB to 25{approx}27 dB. The GIA-XRD analyze indicated that the deposited layer consisted of CuS and Cu{sub 2}S.

  7. RADIATION SHIELDING DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-09-23

    ABS>A radiation shield that is suitable for the protection of personnel from both gamma rays and nentrons is described. The shield is comprised of a hollow wall and an aggregate consisting of iron and water in approximately equal amounts by volume substantially filling the wall. A means is provided to circulate the water through the wall to cool the shield when in use.

  8. CONTINUOUS-ENERGY MONTE CARLO METHODS FOR CALCULATING GENERALIZED RESPONSE SENSITIVITIES USING TSUNAMI-3D

    SciTech Connect

    Perfetti, Christopher M; Rearden, Bradley T

    2014-01-01

    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  9. A basic study of the effect of the shielding method with polyglycolic acid fabric and fibrin glue after endoscopic submucosal dissection.

    PubMed

    Hiroyuki, Tsujimoto; Kohki, Yamanaka; Hiroe, Miyamoto; Tsunehito, Horii; Rie, Abe; Shota, Tanaka; Hiroko, Torii; Yuki, Ozamoto; Takagi, Toshitaka; Kengo, Takimoto; Takashi, Torii; Hideyuki, Konishi; Hideki, Takamori; Akeo, Hagiwara

    2016-12-01

    Background and study aims: Recently, the shielding method with polyglycolic acid (PGA) fabric and fibrin glue (P-F method) has been reported to prevent serious complications after endoscopic submucosal dissection (ESD). However, the effectiveness and mechanism to prevent complications by this method remain unclear and the corresponding basic research has not been fully conducted. Methods and results: We examined the effectiveness and mechanism of the P-F method, using a surgical ESD model of canine stomach and in vitro experiments. In the model experiment treated by P-F method or no treatment (control), ulcer perforation or penetration occurred only in the control group, but not in the P-F group. Microscopically, the P-F group showed less damages of the ulcer lesion than that of the control group, showing thicker granulation tissues including PGA fibers on the third day and excellent mucosal regeneration on the fourteenth day. In vitro culture experiments showed that fibroblasts proliferated at a significantly higher rate on PGA than on fibrin or a complex thereof. However, under hydrochloric acid treatment, fibroblasts were protected by fibrin, followed by the complex of both, and PGA. Conclusion: The P-F method exhibited a protective effect against gastric juice by fibrin glue to reduce tissue damages and a scaffold function of PGA fabric to induce better granulation formation at the earlier phase, resulting in excellent long-term tissue repair, on ulcer lesion following ESD, although the results were based on basic experiments.

  10. A basic study of the effect of the shielding method with polyglycolic acid fabric and fibrin glue after endoscopic submucosal dissection

    PubMed Central

    Hiroyuki, Tsujimoto; Kohki, Yamanaka; Hiroe, Miyamoto; Tsunehito, Horii; Rie, Abe; Shota, Tanaka; Hiroko, Torii; Yuki, Ozamoto; Takagi, Toshitaka; Kengo, Takimoto; Takashi, Torii; Hideyuki, Konishi; Hideki, Takamori; Akeo, Hagiwara

    2016-01-01

    Background and study aims: Recently, the shielding method with polyglycolic acid (PGA) fabric and fibrin glue (P-F method) has been reported to prevent serious complications after endoscopic submucosal dissection (ESD). However, the effectiveness and mechanism to prevent complications by this method remain unclear and the corresponding basic research has not been fully conducted. Methods and results: We examined the effectiveness and mechanism of the P-F method, using a surgical ESD model of canine stomach and in vitro experiments. In the model experiment treated by P-F method or no treatment (control), ulcer perforation or penetration occurred only in the control group, but not in the P-F group. Microscopically, the P-F group showed less damages of the ulcer lesion than that of the control group, showing thicker granulation tissues including PGA fibers on the third day and excellent mucosal regeneration on the fourteenth day. In vitro culture experiments showed that fibroblasts proliferated at a significantly higher rate on PGA than on fibrin or a complex thereof. However, under hydrochloric acid treatment, fibroblasts were protected by fibrin, followed by the complex of both, and PGA. Conclusion: The P-F method exhibited a protective effect against gastric juice by fibrin glue to reduce tissue damages and a scaffold function of PGA fabric to induce better granulation formation at the earlier phase, resulting in excellent long-term tissue repair, on ulcer lesion following ESD, although the results were based on basic experiments. PMID:27995192

  11. Predictions for Radiation Shielding Materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    2002-01-01

    Radiation from galactic cosmic rays (GCR) and solar particle events (SPE) is a serious hazard to humans and electronic instruments during space travel, particularly on prolonged missions outside the Earth s magnetic fields. Galactic cosmic radiation (GCR) is composed of approx. 98% nucleons and approx. 2% electrons and positrons. Although cosmic ray heavy ions are 1-2% of the fluence, these energetic heavy nuclei (HZE) contribute 50% of the long-term dose. These unusually high specific ionizations pose a significant health hazard acting as carcinogens and also causing microelectronics damage inside spacecraft and high-flying aircraft. These HZE ions are of concern for radiation protection and radiation shielding technology, because gross rearrangements and mutations and deletions in DNA are expected. Calculations have shown that HZE particles have a strong preference for interaction with light nuclei. The best shield for this radiation would be liquid hydrogen, which is totally impractical. For this reason, hydrogen-containing polymers make the most effective practical shields. Shielding is required during missions in Earth orbit and possibly for frequent flying at high altitude because of the broad GCR spectrum and during a passage into deep space and LunarMars habitation because of the protracted exposure encountered on a long space mission. An additional hazard comes from solar particle events (SPEs) which are mostly energetic protons that can produce heavy ion secondaries as well as neutrons in materials. These events occur at unpredictable times and can deliver a potentially lethal dose within several hours to an unshielded human. Radiation protection for humans requires safety in short-term missions and maintaining career exposure limits within acceptable levels on future long-term exploration missions. The selection of shield materials can alter the protection of humans by an order of magnitude. If improperly selected, shielding materials can actually

  12. Radiation Shielding for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  13. Development of Continuous-Energy Eigenvalue Sensitivity Coefficient Calculation Methods in the Shift Monte Carlo Code

    SciTech Connect

    Perfetti, Christopher M; Martin, William R; Rearden, Bradley T; Williams, Mark L

    2012-01-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the SHIFT Monte Carlo code within the Scale code package. The methods were used for several simple test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods.

  14. INTOR radiation shielding for personnel access

    SciTech Connect

    Gohar, Y.; Abdou, M.

    1981-01-01

    The INTOR reactor shield system consists of the blanket, bulk shield, penetration shield, component shield, and biological shield. The bulk shield consists of two parts: (a) the inboard shield; and (b) the outboard shield. The distinction between the different components of the shield system is essential to satisfy the different design constraints and achieve various objectives.

  15. A survey of industry practices regarding shielding of substations against direct lightning strokes

    SciTech Connect

    Mousa, A.M. ); Wehling, R.J. )

    1993-01-01

    A survey of industry practices regarding shielding of substations against direct lightning strokes is presented and analyzed. The survey is based on responses from 114 companies including consultants and utilities both from within and from outside North America. The survey identifies the shielding design methods in use, the factors affecting the selection of a shielding method, the shielding design criteria and the governing factors, the performance of the different shielding methods and miscellaneous related aspects. The survey revealed a large number (35) of shielding failure incidents; 34 of which occurred in systems designed using either the fixed shielding angle method or Wagner's 1942 method.

  16. Shielding of Sensitive Electronic Devices in Magnetic Nanoparticle Hyperthermia Using Arrays of Coils

    NASA Astrophysics Data System (ADS)

    Spirou, S. V.; Tsialios, P.; Loudos, G.

    2015-09-01

    In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.

  17. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    PubMed

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-01

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giving the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheterization labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  18. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    PubMed

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-08

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  19. Dielectric flashover with triple point shielding in a coaxial geometry.

    PubMed

    Benwell, A; Kovaleski, S D; Gahl, J

    2007-11-01

    Increasing performance of vacuum insulator barriers is a common goal in pulsed power. Insulating performance is continually being improved while new methods are developed. Triple point shielding techniques have been shown to increase flashover voltage, but the role of cathode versus anode shielding is still not fully understood. Open circuit flashover characteristics were obtained for a coaxial geometry to view the effects of triple point shielding for this geometry. The tests included applying various combinations of triple point shields on zero and +45 degrees insulators. Shielding was tested at the cathode triple point outside of the dielectric and at the anode triple point inside the dielectric. The role of anode versus cathode triple point shielding was examined. Flashover voltage was observed to increase when either a cathode or anode triple point shield was applied; however, adding a shield to both regions lowered the flashover threshold. Both triple point regions were found to be important and dependent on each other for some coaxial geometries.

  20. Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers.

    PubMed

    Greck, Peter; Birner, Stefan; Huber, Bernhard; Vogl, Peter

    2015-03-09

    We present a novel and very efficient method for calculating quantum transport in quantum cascade lasers (QCLs). It follows the nonequilibrium Green's function (NEGF) framework but sidesteps the calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. This method generalizes the phenomenological Büttiker probe model by taking into account individual scattering mechanisms. It is orders of magnitude more efficient than a fully self-consistent NEGF calculation for realistic devices. We apply this method to a new THz QCL design which works up to 250 K - according to our calculations.

  1. An Effective Method to Accurately Calculate the Phase Space Factors for β - β - Decay

    DOE PAGES

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  2. Fast calculation with point-based method to make CGHs of the polygon model

    NASA Astrophysics Data System (ADS)

    Ogihara, Yuki; Ichikawa, Tsubasa; Sakamoto, Yuji

    2014-02-01

    Holography is one of the three-dimensional technology. Light waves from an object are recorded and reconstructed by using a hologram. Computer generated holograms (CGHs), which are made by simulating light propagation using a computer, are able to represent virtual object. However, an enormous amount of computation time is required to make CGHs. There are two primary methods of calculating CGHs: the polygon-based method and the point-based method. In the polygon-based method with Fourier transforms, CGHs are calculated using a fast Fourier transform (FFT). The calculation of complex objects composed of multiple polygons requires as many FFTs, so unfortunately the calculation time become enormous. In contrast, in the point-based method, it is easy to express complex objects, an enormous calculation time is still required. Graphics processing units (GPUs) have been used to speed up the calculations of point-based method. Because a GPU is specialized for parallel computation and CGH calculation can be calculated independently for each pixel. However, expressing a planar object by the point-based method requires a signi cant increase in the density of points and consequently in the number of point light sources. In this paper, we propose a fast calculation algorithm to express planar objects by the point-based method with a GPU. The proposed method accelerate calculation by obtaining the distance between a pixel and the point light source from the adjacent point light source by a difference method. Under certain speci ed conditions, the difference between adjacent object points becomes constant, so the distance is obtained by only an additions. Experimental results showed that the proposed method is more effective than the polygon-based method with FFT when the number of polygons composing an objects are high.

  3. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  4. Quantum mechanical method of fragment's angular and energy distribution calculation for binary and ternary fission

    SciTech Connect

    Kadmensky, S. G. Titova, L. V.; Pen'kov, N. V.

    2006-08-15

    In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.

  5. Critical Values for Lawshe's Content Validity Ratio: Revisiting the Original Methods of Calculation

    ERIC Educational Resources Information Center

    Ayre, Colin; Scally, Andrew John

    2014-01-01

    The content validity ratio originally proposed by Lawshe is widely used to quantify content validity and yet methods used to calculate the original critical values were never reported. Methods for original calculation of critical values are suggested along with tables of exact binomial probabilities.

  6. NEUTRONIC REACTOR SHIELDING

    DOEpatents

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  7. Environment-based pin-power reconstruction method for homogeneous core calculations

    SciTech Connect

    Leroyer, H.; Brosselard, C.; Girardi, E.

    2012-07-01

    Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOX assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)

  8. Distributed calculation method for large-pixel-number holograms by decomposition of object and hologram planes.

    PubMed

    Jackin, Boaz Jessie; Miyata, Hiroaki; Ohkawa, Takeshi; Ootsu, Kanemitsu; Yokota, Takashi; Hayasaki, Yoshio; Yatagai, Toyohiko; Baba, Takanobu

    2014-12-15

    A method has been proposed to reduce the communication overhead in computer-generated hologram (CGH) calculations on parallel and distributed computing devices. The method uses the shifting property of Fourier transform to decompose calculations, thereby avoiding data dependency and communication. This enables the full potential of parallel and distributed computing devices. The proposed method is verified by simulation and optical experiments and can achieve a 20 times speed improvement compared to conventional methods, while using large data sizes.

  9. Excited calculations of large scale multiwalled nanotubes using real-space pseudopotential methods

    NASA Astrophysics Data System (ADS)

    Lena, Charles; Chelikowsky, James; Deslippe, Jack; Saad, Yousef; Yang, Chao; Louie, Steven G.

    2015-03-01

    One method for calculating excited states is the GW method. The GW method has many computational requirements. One of the bottlenecks is the calculation of numerous empty states. Within density functional theory, we use a real-space pseudopotential method (PARSEC) to calculate these empty states for multiwalled nanotubes. We illustrate the use of these empty states for calculating excited states using the GW method (BerkeleyGW). We demonstrate why using real-space density functional theory is advantageous for calculating empty states. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley)

  10. Efficient calculation method for realistic deep 3D scene hologram using orthographic projection

    NASA Astrophysics Data System (ADS)

    Igarashi, Shunsuke; Nakamura, Tomoya; Matsushima, Kyoji; Yamaguchi, Masahiro

    2016-03-01

    We propose a fast calculation method to synthesize a computer-generated hologram (CGH) of realistic deep three-dimensional (3D) scene. In our previous study, we have proposed a calculation method of CGH for reproducing such scene called ray-sampling-plane (RSP) method, in which light-ray information of a scene is converted to wavefront, and the wavefront is numerically propagated based on diffraction theory. In this paper, we introduce orthographic projection to the RSP method for accelerating calculation time. By numerical experiments, we verified the accelerated calculation with the ratio of 28-times compared to the conventional RSP method. The calculated CGH was fabricated by the printing system using laser lithography and demonstrated deep 3D image reconstruction in 52mm×52mm with realistic appearance effect such as gloss and translucent effect.

  11. TFCX shielding optimization

    SciTech Connect

    Yang, S.; Gohar, Y.

    1985-01-01

    Design analyses and tradeoff studies for the bulk shield of the Tokamak Fusion Core Experiment (TFCX) were performed. Several shielding options were considered to lower the capital cost of the shielding system. Optimization analyses were carried out to reduce the nuclear responses in the TF coils and the dose equivalent in the reactor hall one day after shutdown. Two TFCX designs with different toroidal field (TF) coil configurations were considered during this work. The materials for the shield were selected based upon tradeoff studies and the results from the previous design studies. The main shielding materials are water, concrete, and steel balls (Fe1422 or Nitronic 33). Small amounts of boron carbide and lead are employed to reduce activation, nuclear heating in the TF coils, and dose equivalent after shutdown.

  12. A Definite Integration Method of Calculating Inclination Function and its Derivative

    NASA Astrophysics Data System (ADS)

    Wu, L. D.; Wang, H. B.

    2012-01-01

    The paper gives a definite integration method of calculating inclination function and its derivative. The expression is simple, but its accuracy is very well. It is about 10-15 and 10-13 for inclination function and its derivative, respectively. This level is comparable to the accuracy of Gooding's method. Through a lot of numerical simulations, it is proved that the method has good stability and wide-scope application of inclination. It takes very little time to calculate low-order function (less than 50), so the method can be directly used in calculating terrestrial and sun-moon gravitational perturbation.

  13. A method for the evaluation of dose-effect data utilizing a programmable calculator.

    PubMed

    Carmines, E L; Carchman, R A; Borzelleca, J F

    1980-08-01

    A program for the calculation of the median effective dose (ED50) and the slope of the dose-effect line was developed for a programmable calculator. The method employed approximated the solution described by Bliss. Experimental data were evaluated and compared to both hand calculated results and results of other computer methods. This method produced results which differed from other computer methods by less than 1 percent. This program provided information necessary for the test for parallelism and estimate of relative potency of two dose-effect lines.

  14. Analysis and improvement of cyclotron thallium target room shield.

    PubMed

    Hajiloo, N; Raisali, G; Aslani, G

    2008-01-01

    Because of high neutron and gamma-ray intensities generated during bombardment of a thallium-203 target, a thallium target-room shield and different ways of improving it have been investigated. Leakage of neutron and gamma ray dose rates at various points behind the shield are calculated by simulating the transport of neutrons and photons using the Monte Carlo N Particle transport computer code. By considering target-room geometry, its associated shield and neutron and gamma ray source strengths and spectra, three designs for enhancing shield performance have been analysed: a shielding door at the maze entrance, covering maze walls with layers of some effective materials and adding a shadow-shield in the target room in front of the radiation source. Dose calculations were carried out separately for different materials and dimensions for all the shielding scenarios considered. The shadow-shield has been demonstrated to be one suitable for neutron and gamma dose equivalent reduction. A 7.5-cm thick polyethylene shadow-shield reduces both dose equivalent rate at maze entrance door and leakage from the shield by a factor of 3.

  15. The Three-Point Sinuosity Method for Calculating the Fractal Dimension of Machined Surface Profile

    NASA Astrophysics Data System (ADS)

    Zhou, Yuankai; Li, Yan; Zhu, Hua; Zuo, Xue; Yang, Jianhua

    2015-04-01

    The three-point sinuosity (TPS) method is proposed to calculate the fractal dimension of surface profile accurately. In this method, a new measure, TPS is defined to present the structural complexity of fractal curves, and has been proved to follow the power law. Thus, the fractal dimension can be calculated through the slope of the fitted line in the log-log plot. The Weierstrass-Mandelbrot (W-M) fractal curves, as well as the real surface profiles obtained by grinding, sand blasting and turning, are used to validate the effectiveness of the proposed method. The calculation values are compared to those obtained from root-mean-square (RMS) method, box-counting (BC) method and variation method. The results show that the TPS method has the widest scaling region, the least fit error and the highest accuracy among the methods examined, which demonstrates that the fractal characteristics of the fractal curves can be well revealed by the proposed method.

  16. MPACT Subgroup Self-Shielding Efficiency Improvements

    SciTech Connect

    Stimpson, Shane; Liu, Yuxuan; Collins, Benjamin S.; Clarno, Kevin T.

    2016-08-31

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The next improvement that is covered is what is currently being termed as “Lumped Parameter MOC”. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.

  17. Heat Shield in Pieces

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image from NASA's Mars Exploration Rover Opportunity shows the remains of the rover's heat shield, broken into two key pieces, the main piece on the left side and a broken-off flank piece near the middle of the image. The heat shield impact site is identified by the circle of red dust on the right side of the picture. In this view, Opportunity is approximately 20 meters (66 feet) away from the heat shield, which protected it while hurtling through the martian atmosphere.

    In the far left of the image, a meteorite called 'Heat Shield Rock,' sits nearby, The Sun is reflecting off the silver-colored underside of the internal thermal blankets of the heat shield.

    The rover spent 36 sols investigating how the severe heating during entry through the atmosphere affected the heat shield. The most obvious is the fact that the heat shield inverted upon impact.

    This is an approximately true-color rendering of the scene acquired around 1:22 p.m. local solar time on Opportunity sol 324 (Dec. 21, 2004) in an image mosaic using panoramic filters at wavelengths of 750, 530, and 430 nanometers.

  18. Shielding against galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Nealy, J. E.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kim, M.; Kiefer, R.

    1996-01-01

    Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately conntected with the shield transport porperties and is a strong function of shield composition. The systematic behavior of the shield properites in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to convectional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H1OT1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.

  19. Assessment of New Calculation Method for Toxicological Sums-of-Fractions for Hanford Tank Farm Wastes

    SciTech Connect

    Mahoney, Lenna A.

    2006-10-18

    The toxicological source terms used for potential accident assessment in the Hanford Tank Farms DSA are based on toxicological sums-of-fractions (SOFs) that were calculated based on the Best Basis Inventory (BBI) from May 2002, using a method that depended on thermodynamic equilibrium calculations of the compositions of liquid and solid phases. The present report describes a simplified SOF-calculation method that is to be used in future toxicological updates and assessments and compares its results (for the 2002 BBI) to those of the old method.

  20. Summary of methods for calculating dynamic lateral stability and response and for estimating aerodynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Mckinney, Marion O

    1952-01-01

    A summary of methods for making dynamic lateral stability and response calculations and for estimating the aerodynamic stability derivatives required for use in these calculations is presented. The processes of performing calculations of the time histories of lateral motions, of the period and damping of these motions, and of the lateral stability boundaries are presented as a series of simple straightforward steps. Existing methods for estimating the stability derivatives are summarized and, in some cases, simple new empirical formulas are presented. Detailed estimation methods are presented for low-subsonic-speed conditions but only a brief discussion and a list of references are given for transonic and supersonic speed conditions.

  1. The method of calculating forced oscillations in nonlinear discrete-time systems under periodic external actions

    NASA Astrophysics Data System (ADS)

    Bryuhanov, Yu. A.

    2010-08-01

    We consider a method for calculating forced oscillations in nonlinear discrete-time systems under periodic external actions. The method is based on representing the stationary oscillations in the form of an invariant set of nonlinear discrete point mappings and allows one to calculate the nonlinear-system response in the steady-state regime. The examples of using this method for calculating forced oscillations in the first- and second-order nonlinear recursive systems under the harmonic-signal action on such systems are presented.

  2. Quantum mechanical calculation of nanomaterial-ligand interaction energies by molecular fractionation with conjugated caps method

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei

    2017-03-01

    Molecular fractionation with conjugate caps (MFCC) method is introduced for the efficient estimation of quantum mechanical (QM) interaction energies between nanomaterial (carbon nanotube, fullerene, and graphene surface) and ligand (charged and neutral). In the calculations, nanomaterials are partitioned into small fragments and conjugated caps that are properly capped, and the interaction energies can be obtained through the summation of QM calculations of the fragments from which the contribution of the conjugated caps is removed. All the calculations were performed by density functional theory (DFT) and dispersion contributions for the attractive interactions were investigated by dispersion corrected DFT method. The predicted interaction energies by MFCC at each computational level are found to give excellent agreement with full system (FS) calculations with the mean energy deviation just a fractional kcal/mol. The accurate determination of nanomaterial-ligand interaction energies by MFCC suggests that it is an effective method for performing QM calculations on nanomaterial-ligand systems.

  3. Quantum mechanical calculation of nanomaterial-ligand interaction energies by molecular fractionation with conjugated caps method

    PubMed Central

    Zhang, Dawei

    2017-01-01

    Molecular fractionation with conjugate caps (MFCC) method is introduced for the efficient estimation of quantum mechanical (QM) interaction energies between nanomaterial (carbon nanotube, fullerene, and graphene surface) and ligand (charged and neutral). In the calculations, nanomaterials are partitioned into small fragments and conjugated caps that are properly capped, and the interaction energies can be obtained through the summation of QM calculations of the fragments from which the contribution of the conjugated caps is removed. All the calculations were performed by density functional theory (DFT) and dispersion contributions for the attractive interactions were investigated by dispersion corrected DFT method. The predicted interaction energies by MFCC at each computational level are found to give excellent agreement with full system (FS) calculations with the mean energy deviation just a fractional kcal/mol. The accurate determination of nanomaterial-ligand interaction energies by MFCC suggests that it is an effective method for performing QM calculations on nanomaterial-ligand systems. PMID:28300179

  4. A method for numerical calculation of propeller hydrodynamics in unsteady inflow

    NASA Astrophysics Data System (ADS)

    Huang, Sheng; Wang, Pei-Sheng; Hu, Jian

    2007-06-01

    The hydrodynamic performance of a propeller in unsteady inflow was calculated using the surface panel method. The surfaces of blades and hub were discreted by a number of hyperboloidal quadrilateral panels with constant source and doublet distribution. Each panel’s comer coordinates were calculated by spline interpolation between the main parameter and the blade geometry of the propeller. The integral equation was derived using the Green Formula. The influence coefficient of the matrix was calculated by the Morino analytic formula. The tangential velocity distribution was calculated with the Yanagizawa method, and the pressure coefficient was calculated using the Bonuli equation. The pressure Kutta condition was satisfied at the trailing edge of the propeller blade using the Newton-Raphson iterative procedure, so as to make the pressure coefficients of the suction and pressure faces of the blade equal at the trailing edge. Calculated results for the propeller in steady inflow were taken as initialization values for the unsteady inflow calculation process. Calculations were carried out from the moment the propeller achieved steady rotation. At each time interval, a linear algebraic equation combined with Kutta condition was established on a key blade and solved numerically. Comparison between calculated results and experimental results indicates that this method is correct and effective.

  5. Integral experiments for fusion-reactor shield design. Summary of progress

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1983-01-01

    Neutron and gamma-ray energy spectra from the reactions of approx. 14-MeV neutrons in blanket and shield materials and from the streaming of these neutrons through a cylindrical duct (L/D approx. 2) have been measured and calculated. These data are being obtained in a series of integral experiments to verify the radiation transport methods and nuclear data that are being used in nuclear design calculations for fusion reactors. The experimental procedures and analytical methods used to obtain the calculated data are reviewed. Comparisons between measured and calculated data for the experiments that have been performed to date are summarized.

  6. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Electronics Compartment (IEC) Conformal Shields Composite Bond Structure Qualification Test Method

    NASA Technical Reports Server (NTRS)

    Yew, Calinda; Stephens, Matt

    2015-01-01

    The JWST IEC conformal shields are mounted onto a composite frame structure that must undergo qualification testing to satisfy mission assurance requirements. The composite frame segments are bonded together at the joints using epoxy, EA 9394. The development of a test method to verify the integrity of the bonded structure at its operating environment introduces challenges in terms of requirements definition and the attainment of success criteria. Even though protoflight thermal requirements were not achieved, the first attempt in exposing the structure to cryogenic operating conditions in a thermal vacuum environment resulted in approximately 1 bonded joints failure during mechanical pull tests performed at 1.25 times the flight loads. Failure analysis concluded that the failure mode was due to adhesive cracks that formed and propagated along stress concentrated fillets as a result of poor bond squeeze-out control during fabrication. Bond repairs were made and the structures successfully re-tested with an improved LN2 immersion test method to achieve protoflight thermal requirements.

  7. Extraterrestrial Regolith Derived Atmospheric Entry Heat Shields

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2016-01-01

    High-mass planetary surface access is one of NASAs technical challenges involving entry, descent and landing (EDL). During the entry and descent phase, frictional interaction with the planetary atmosphere causes a heat build-up to occur on the spacecraft, which will rapidly destroy it if a heat shield is not used. However, the heat shield incurs a mass penalty because it must be launched from Earth with the spacecraft, thus consuming a lot of precious propellant. This NASA Innovative Advanced Concept (NIAC) project investigated an approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. In this paper, we will describe three types of in situ fabrication methods for heat shields and the testing performed to determine feasibility of this approach.

  8. 7 CFR 51.308 - Methods of sampling and calculation of percentages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Methods of Sampling and Calculation... where the minimum diameter of the smallest apple does not vary more than 1/2 inch from the minimum diameter of the largest apple, percentages shall be calculated on the basis of count. (b) In all...

  9. 7 CFR 51.308 - Methods of sampling and calculation of percentages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Methods of Sampling and Calculation... where the minimum diameter of the smallest apple does not vary more than 1/2 inch from the minimum diameter of the largest apple, percentages shall be calculated on the basis of count. (b) In all...

  10. 7 CFR 51.308 - Methods of sampling and calculation of percentages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Methods of Sampling and Calculation... where the minimum diameter of the smallest apple does not vary more than 1/2 inch from the minimum diameter of the largest apple, percentages shall be calculated on the basis of count. (b) In all...

  11. 40 CFR 63.11980 - What are the test methods and calculation procedures for process wastewater?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calculation procedures for process wastewater? 63.11980 Section 63.11980 Protection of Environment... § 63.11980 What are the test methods and calculation procedures for process wastewater? (a) Performance... performance tests during worst-case operating conditions for the PVCPU when the process wastewater...

  12. 40 CFR 63.11980 - What are the test methods and calculation procedures for process wastewater?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calculation procedures for process wastewater? 63.11980 Section 63.11980 Protection of Environment... § 63.11980 What are the test methods and calculation procedures for process wastewater? (a) Performance... performance tests during worst-case operating conditions for the PVCPU when the process wastewater...

  13. 40 CFR 63.11980 - What are the test methods and calculation procedures for process wastewater?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calculation procedures for process wastewater? 63.11980 Section 63.11980 Protection of Environment... § 63.11980 What are the test methods and calculation procedures for process wastewater? (a) Performance... performance tests during worst-case operating conditions for the PVCPU when the process wastewater...

  14. A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants

    ERIC Educational Resources Information Center

    Cooper, Paul D.

    2010-01-01

    A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…

  15. Optimization of Couch Modeling in the Change of Dose Calculation Methods and Their Versions.

    PubMed

    Kuwahara, Junichi; Nakata, Manabu; Fujimoto, Takahiro; Nakamura, Mitsuhiro; Sasaki, Makoto; Tsuruta, Yusuke; Yano, Shinsuke; Higashimura, Kyoji; Hiraoka, Masahiro

    2017-01-01

    In external radiotherapy, the X-ray beam passes through the treatment couch, leading to the dose reduction by the attenuation of the couch. As a method to compensate for the reduction, radiation treatment planning systems (RTPS) support virtual couch function, namely "couch modeling method". In the couch modeling method, the computed tomography (CT) numbers assigned to each structure should be optimized by comparing calculations to measurements for accurate dose calculation. Thus, re-optimization of CT numbers will be required when the dose calculation algorithm or their version changes. The purpose of this study is to evaluate the calculation accuracy of the couch modeling method in different calculation algorithms and their versions. The optimal CT numbers were determined by minimizing the difference between measured transmission factors and calculated ones. When CT numbers optimized by Anisotropic Analytical Algorithm (AAA) Ver. 8.6 were used, the maximum and the mean difference of transmission factor were 5.8% and 1.5%, respectively, for Acuros XB (AXB) Ver. 11.0. However, when CT numbers optimized by AXB Ver. 11.0 were used, they were 2.6% and 0.6%, respectively. The CT numbers for couch structures should be optimized when changing dose calculation algorithms and their versions. From the comparison of the measured transmission to calculation, it was found that the CT numbers had high accuracy.

  16. Dynamic modeling of the behavior of permalloy for magnetic shielding

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Reisner, M.; Fierlinger, P.; Schnabel, A.; Stuiber, S.; Li, L.

    2016-05-01

    The minimization of the remanent magnetization of ferromagnetic materials is a prerequisite for a reproducible low magnetic field inside shields. To realistically describe this so-called magnetic equilibration procedure, this paper proposes two approaches for the calculation of time- and space-dependent fields in the presence of ferromagnetic materials like permalloy. The first method is based on the Jiles-Atherton model and also takes into account frequency dependent effects. The second method is the newly developed empirical phase shift model, tailored specially for the simulation of the equilibration procedure. Both approaches are compared to experimental tests and show good quantitative agreement.

  17. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1978-01-01

    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  18. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method.

    PubMed

    Jin, Xinsheng; Zhang, John Z H; He, Xiao

    2017-03-30

    In this study, the electrostatically embedded generalized molecular fractionation with conjugate caps (concaps) method (EE-GMFCC) was employed for efficient linear-scaling quantum mechanical (QM) calculation of total energies of RNAs. In the EE-GMFCC approach, the total energy of RNA is calculated by taking a proper combination of the QM energy of each nucleotide-centric fragment with large caps or small caps (termed EE-GMFCC-LC and EE-GMFCC-SC, respectively) deducted by the energies of concaps. The two-body QM interaction energy between non-neighboring ribonucleotides which are spatially in close contact are also taken into account for the energy calculation. Numerical studies were carried out to calculate the total energies of a number of RNAs using the EE-GMFCC-LC and EE-GMFCC-SC methods at levels of the Hartree-Fock (HF) method, density functional theory (DFT), and second-order many-body perturbation theory (MP2), respectively. The results show that the efficiency of the EE-GMFCC-SC method is about 3 times faster than the EE-GMFCC-LC method with minimal accuracy sacrifice. The EE-GMFCC-SC method is also applied for relative energy calculations of 20 different conformers of two RNA systems using HF and DFT, respectively. Both single-point and relative energy calculations demonstrate that the EE-GMFCC method has deviations from the full system results of only a few kcal/mol.

  19. Beta skin dose determination using TLDs, Monte-Carlo calculations, and extrapolation chamber.

    PubMed

    Ben-Shachar, B; Levine, S H; Hoffman, J M

    1989-12-01

    The beta doses produced by 90Sr-Y and 204 Tl beta sources were determined using three methods: Monte-Carlo calculations, measurements with TLDs, and measurements with an extrapolation chamber. Excellent agreement was obtained by all three methods, except a TLD nonlinear response to beta s was observed, which gives doses approximately 20% high for the 90Sr-Y source and 5% low for the 204Tl source. Also, analyses performed with low-energy beta s using these methods can determine errors in shield thickness covering TLD elements. Direct measurement of skin dose is not possible by the TLDs because the minimum shield thickness for the elements is 13 mg cm-2. A thinner shield for the elements must be used or the data must be extrapolated. Presently, thinner shields for TLD elements are not available, and the thick shields can lead to significant errors in skin dose when exposed to low-energy beta s.

  20. What Is Radiation Shielding?

    NASA Video Gallery

    Kerry Lee, NASA Orion radiation system manager, explains how radiation shielding is used to block harmful particles coming into the spacecraft without producing secondary particles that can cause e...

  1. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  2. Test of the method for calculation of derating of workshop transformers on engineering plants

    NASA Astrophysics Data System (ADS)

    Shklyarskiy, A. Y.; Bardanov, A. I.

    2017-02-01

    Today’s innovations in engineering production are aimed at the improvement of equipment efficiency in order to reduce losses and to save environment. It is conventional that the adjustable-speed drive improves electrical and mechanical transients of workshop units, but power electronics’ devices are current harmonics sources. Presence of high harmonic currents in the workshop’s network is a substantial reason for transformer derating. The article discloses the method approbation, the method for calculating additional losses in an idle transformer for non-sine feeding voltage. The approbation was carried out via comparing the calculated data with the experimental data. The article describes the studies method, its strong and weak sides, and it also presents the actual calculation of coefficients for a math model, when calculating losses in a transformer, based on existing experimental data. The conclusion comprises the observation regarding possibility to use the method described to solve practical tasks.

  3. Crash-Resistant Shield

    NASA Technical Reports Server (NTRS)

    Bixler, Charles H.

    1990-01-01

    Impact-resistant shield designed to consist of aluminum honeycomb structure sandwiched between inner and outer aluminum skins. Intended to protect radioisotope thermoelectric generator of spacecraft from impact with ground or water after free fall from upper atmosphere. Designed to absorb impact energy by buckling, while inner and outer skins designed to protect against shrapnel, overpressure, and impact loads. Concept of shield applicable to crashproof compartments for ground vehicles and aircraft.

  4. Calculation reduction method for color digital holography and computer-generated hologram using color space conversion

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Nagahama, Yuki; Kakue, Takashi; Takada, Naoki; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Ito, Tomoyoshi

    2014-02-01

    A calculation reduction method for color digital holography (DH) and computer-generated holograms (CGHs) using color space conversion is reported. Color DH and color CGHs are generally calculated on RGB space. We calculate color DH and CGHs in other color spaces for accelerating the calculation (e.g., YCbCr color space). In YCbCr color space, a RGB image or RGB hologram is converted to the luminance component (Y), blue-difference chroma (Cb), and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color DH and CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space. The proposed method, which is possible to accelerate the calculations up to a factor of 3 in theory, accelerates the calculation over two times faster than the ones in RGB color space.

  5. An efficient method for calculating RMS von Mises stress in a random vibration environment

    SciTech Connect

    Segalman, D.J.; Fulcher, C.W.G.; Reese, G.M.; Field, R.V. Jr.

    1998-02-01

    An efficient method is presented for calculation of RMS von Mises stresses from stress component transfer functions and the Fourier representation of random input forces. An efficient implementation of the method calculates the RMS stresses directly from the linear stress and displacement modes. The key relation presented is one suggested in past literature, but does not appear to have been previously exploited in this manner.

  6. A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES

    EPA Science Inventory

    A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromag-netic properties of the model are symmetric with respect...

  7. A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES

    EPA Science Inventory

    A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromagnetic properties of the model are symmetric with respect ...

  8. A biharmonic relaxation method for calculating thermal stress in cooled irregular cylinders

    NASA Technical Reports Server (NTRS)

    Holms, Arthur G

    1952-01-01

    A numerical method was developed for calculating thermal stresses in irregular cylinders cooled by one or more internal passages. The use of relaxation methods and elementary methods of finite differences was found to give approximations to the correct values when compared with previously known solutions for concentric circular cylinders possessing symmetrical and asymmetrical temperature distributions.

  9. The Calculation of Potential Energy Curves of Diatomic Molecules: The RKR Method.

    ERIC Educational Resources Information Center

    Castano, F.; And Others

    1983-01-01

    The RKR method for determining accurate potential energy curves is described. Advantages of using the method (compared to Morse procedure) and a TRS-80 computer program which calculates the classical turning points by an RKR method are also described. The computer program is available from the author upon request. (Author/JN)

  10. The calculations of small molecular conformation energy differences by density functional method

    NASA Astrophysics Data System (ADS)

    Topol, I. A.; Burt, S. K.

    1993-03-01

    The differences in the conformational energies for the gauche (G) and trans(T) conformers of 1,2-difluoroethane and for myo-and scyllo-conformer of inositol have been calculated by local density functional method (LDF approximation) with geometry optimization using different sets of calculation parameters. It is shown that in the contrast to Hartree—Fock methods, density functional calculations reproduce the correct sign and value of the gauche effect for 1,2-difluoroethane and energy difference for both conformers of inositol. The results of normal vibrational analysis for1,2-difluoroethane showed that harmonic frequencies calculated in LDF approximation agree with experimental data with the accuracy typical for scaled large basis set Hartree—Fock calculations.

  11. A Combined Metadynamics and Umbrella Sampling Method for the Calculation of Ion Permeation Free Energy Profiles

    PubMed Central

    Zhang, Yong; Voth, Gregory A.

    2011-01-01

    Free energy calculations are one of the most useful methods for the study of ion transport mechanisms through confined spaces such as protein ion channels. Their reliability depends on a correctly defined reaction coordinate (RC). A straight line is usually not a proper RC for such complicated processes so in this work a combined metadynamics/umbrella sampling (MTD/US) method is proposed. In the combined method, the ion transport pathway is first identified by the MTD method and then the free energy profile or potential of mean force (PMF) along the path is calculated using umbrella sampling. This combined method avoids the discontinuity problem often associated with normal umbrella sampling calculations that assume a straight line RC and it provides a more physically accurate PMF for such processes. The method is demonstrated for the proton transport process through the protein channel of aquaporin-1. PMID:25100923

  12. Problems and methods of calculating the Legendre functions of arbitrary degree and order

    NASA Astrophysics Data System (ADS)

    Novikova, Elena; Dmitrenko, Alexander

    2016-12-01

    The known standard recursion methods of computing the full normalized associated Legendre functions do not give the necessary precision due to application of IEEE754-2008 standard, that creates a problems of underflow and overflow. The analysis of the problems of the calculation of the Legendre functions shows that the problem underflow is not dangerous by itself. The main problem that generates the gross errors in its calculations is the problem named the effect of "absolute zero". Once appeared in a forward column recursion, "absolute zero" converts to zero all values which are multiplied by it, regardless of whether a zero result of multiplication is real or not. Three methods of calculating of the Legendre functions, that removed the effect of "absolute zero" from the calculations are discussed here. These methods are also of interest because they almost have no limit for the maximum degree of Legendre functions. It is shown that the numerical accuracy of these three methods is the same. But, the CPU calculation time of the Legendre functions with Fukushima method is minimal. Therefore, the Fukushima method is the best. Its main advantage is computational speed which is an important factor in calculation of such large amount of the Legendre functions as 2 401 336 for EGM2008.

  13. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.

    PubMed

    Huang, Jianhua

    2012-07-01

    There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.

  14. Calculation of large ion densities under HVdc transmission lines by the finite difference method

    SciTech Connect

    Suda, Tomotaka; Sunaga, Yoshitaka

    1995-10-01

    A calculation method for large ion densities (charged aerosols) under HVdc transmission lines was developed considering both the charging mechanism of aerosols by small ions and the drifting process by wind. Large ion densities calculated by this method agreed well with the ones measured under the Shiobara HVdc test line on the lateral profiles at ground level up to about 70m downwind from the line. Measured values decreased more quickly than calculated ones farther downwind from the line. Considering the effect of point discharge from ground cover (earth corona) improved the agreement in the farther downwind region.

  15. Method for the calculation of spacecraft umbra and penumbra shadow terminator points

    NASA Technical Reports Server (NTRS)

    Ortizlongo, Carlos R.; Rickman, Steven L.

    1995-01-01

    A method for calculating orbital shadow terminator points is presented. The current method employs the use of an iterative process which is used for an accurate determination of shadow points. This calculation methodology is required since orbital perturbation effects can introduce large errors when a spacecraft orbits a planet in a high altitude and/or highly elliptical orbit. To compensate for the required iteration methodology, all reference frame change definitions and calculations are performed with quaternions. Quaternion algebra significantly reduces the computational time required for the accurate determination of shadow terminator points.

  16. Structural system reliability calculation using a probabilistic fault tree analysis method

    NASA Technical Reports Server (NTRS)

    Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.

    1992-01-01

    The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.

  17. Calculation Method of Lateral Strengths and Ductility Factors of Constructions with Shear Walls of Different Ductility

    SciTech Connect

    Yamaguchi, Nobuyoshi; Nakao, Masato; Murakami, Masahide; Miyazawa, Kenji

    2008-07-08

    For seismic design, ductility-related force modification factors are named R factor in Uniform Building Code of U.S, q factor in Euro Code 8 and Ds (inverse of R) factor in Japanese Building Code. These ductility-related force modification factors for each type of shear elements are appeared in those codes. Some constructions use various types of shear walls that have different ductility, especially for their retrofit or re-strengthening. In these cases, engineers puzzle the decision of force modification factors of the constructions. Solving this problem, new method to calculate lateral strengths of stories for simple shear wall systems is proposed and named 'Stiffness--Potential Energy Addition Method' in this paper. This method uses two design lateral strengths for each type of shear walls in damage limit state and safety limit state. Two lateral strengths of stories in both limit states are calculated from these two design lateral strengths for each type of shear walls in both limit states. Calculated strengths have the same quality as values obtained by strength addition method using many steps of load-deformation data of shear walls. The new method to calculate ductility factors is also proposed in this paper. This method is based on the new method to calculate lateral strengths of stories. This method can solve the problem to obtain ductility factors of stories with shear walls of different ductility.

  18. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.

  19. Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield

    NASA Astrophysics Data System (ADS)

    Lei, Mingzhun; Song, Yuntao; Wang, Songke; Wang, Xianwei

    2013-08-01

    The ITER equatorial thermal shield is located inside the cryostat and outside the vacuum vessel, and its purpose is to provide a thermal shield from hot components to the superconducting magnets. Electromagnetic analysis of the equatorial thermal shield was performed using the ANSYS code, because electromagnetic load was one of the main loads. The 40° sector finite element model was established including the vacuum vessel, equatorial thermal shield, and superconducting magnets. The main purpose of this analysis was to investigate the eddy current and electromagnetic force in the equatorial thermal shield during plasma disruption. Stress analysis was implemented under the electromagnetic load. The results show that the equatorial thermal shield can accommodate the calculated electromagnetic loads.

  20. Water-extended polyester neutron shield for a 252Cf neutron source.

    PubMed

    Vega-Carrillo, H R; Manzanares-Acuña, E; Hernández-Dávila, V M; Gallego, E; Lorente, A; Donaire, I

    2007-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, (252)Cf and shielding were modelled and the neutron spectra as well as the H(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by (252)Cf and due to capture gamma rays in the shielding were included.

  1. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  2. A New Method for the Calculation of Diffusion Coefficients with Monte Carlo

    NASA Astrophysics Data System (ADS)

    Dorval, Eric

    2014-06-01

    This paper presents a new Monte Carlo-based method for the calculation of diffusion coefficients. One distinctive feature of this method is that it does not resort to the computation of transport cross sections directly, although their functional form is retained. Instead, a special type of tally derived from a deterministic estimate of Fick's Law is used for tallying the total cross section, which is then combined with a set of other standard Monte Carlo tallies. Some properties of this method are presented by means of numerical examples for a multi-group 1-D implementation. Calculated diffusion coefficients are in general good agreement with values obtained by other methods.

  3. Research on feasibility of computational fluid dynamics (CFD) method for traffic signs board calculation

    NASA Astrophysics Data System (ADS)

    Chao, S.; Jiao, C. W.; Liu, S.

    2016-08-01

    At this stage of the development of China's highway, the quantity and size of traffic signs are growing with the guiding information increasing. In this paper, a calculation method is provided for special sign board with reducing wind load measures to save construction materials and cost. The empirical model widely used in China is introduced for normal sign structure design. After that, this paper shows a computational fluid dynamics method, which can calculate both normal and special sign structures. These two methods are compared and analyzed with examples to ensure the applicability and feasibility of CFD method.

  4. The effect of different calculation methods of flywheel parameters on the Wingate Anaerobic Test.

    PubMed

    Coleman, S G; Hale, T

    1998-08-01

    Researchers compared different methods of calculating kinetic parameters of friction-braked cycle ergometers, and the subsequent effects on calculating power outputs in the Wingate Anaerobic Test (WAnT). Three methods of determining flywheel moment of inertia and frictional torque were investigated, requiring "run-down" tests and segmental geometry. Parameters were used to calculate corrected power outputs from 10 males in a 30-s WAnT against a load related to body mass (0.075 kg.kg-1). Wingate Indices of maximum (5 s) power, work, and fatigue index were also compared. Significant differences were found between uncorrected and corrected power outputs and between correction methods (p < .05). The same finding was evident for all Wingate Indices (p < .05). Results suggest that WAnT must be corrected to give true power outputs and that choosing an appropriate correction calculation is important. Determining flywheel moment of inertia and frictional torque using unloaded run-down tests is recommended.

  5. Comparison of stress and total energy methods for calculation of elastic properties of semiconductors.

    PubMed

    Caro, M A; Schulz, S; O'Reilly, E P

    2013-01-16

    We explore the calculation of the elastic properties of zinc-blende and wurtzite semiconductors using two different approaches: one based on stress and the other on total energy as a function of strain. The calculations are carried out within the framework of density functional theory in the local density approximation, with the plane wave-based package VASP. We use AlN as a test system, with some results also shown for selected other materials (C, Si, GaAs and GaN). Differences are found in convergence rate between the two methods, especially in low symmetry cases, where there is a much slower convergence for total energy calculations with respect to the number of plane waves and k points used. The stress method is observed to be more robust than the total energy method with respect to the residual error in the elastic constants calculated for different strain branches in the systems studied.

  6. The Unified-FFT Method for Fast Solution of Integral Equations as Applied to Shielded-Domain Electromagnetic

    NASA Astrophysics Data System (ADS)

    Rautio, Brian

    Electromagnetic (EM) solvers are widely used within computer-aided design (CAD) to improve and ensure success of circuit designs. Unfortunately, due to the complexity of Maxwell's equations, they are often computationally expensive. While considerable progress has been made in the realm of speed-enhanced EM solvers, these fast solvers generally achieve their results through methods that introduce additional error components by way of geometric approximations, sparse-matrix approximations, multilevel decomposition of interactions, and more. This work introduces the new method, Unified-FFT (UFFT). A derivative of method of moments, UFFT scales as O(N log N), and achieves fast analysis by the unique combination of FFT-enhanced matrix fill operations (MFO) with FFT-enhanced matrix solve operations (MSO). In this work, two versions of UFFT are developed, UFFT-Precorrected (UFFT-P) and UFFT-Grid Totalizing (UFFT-GT). UFFT-P uses precorrected FFT for MSO and allows the use of basis functions that do not conform to a regular grid. UFFT-GT uses conjugate gradient FFT for MSO and features the capability of reducing the error of the solution down to machine precision. The main contribution of UFFT-P is a fast solver, which utilizes FFT for both MFO and MSO. It is demonstrated in this work to not only provide simulation results for large problems considerably faster than state of the art commercial tools, but also to be capable of simulating geometries which are too complex for conventional simulation. In UFFT-P these benefits come at the expense of a minor penalty to accuracy. UFFT-GT contains further contributions as it demonstrates that such a fast solver can be accurate to numerical precision as compared to a full, direct analysis. It is shown to provide even more algorithmic efficiency and faster performance than UFFT-P. UFFT-GT makes an additional contribution in that it is developed not only for planar geometries, but also for the case of multilayered dielectrics and

  7. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    PubMed

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.

  8. A method for calculating Bayesian uncertainties on internal doses resulting from complex occupational exposures.

    PubMed

    Puncher, M; Birchall, A; Bull, R K

    2012-08-01

    Estimating uncertainties on doses from bioassay data is of interest in epidemiology studies that estimate cancer risk from occupational exposures to radionuclides. Bayesian methods provide a logical framework to calculate these uncertainties. However, occupational exposures often consist of many intakes, and this can make the Bayesian calculation computationally intractable. This paper describes a novel strategy for increasing the computational speed of the calculation by simplifying the intake pattern to a single composite intake, termed as complex intake regime (CIR). In order to assess whether this approximation is accurate and fast enough for practical purposes, the method is implemented by the Weighted Likelihood Monte Carlo Sampling (WeLMoS) method and evaluated by comparing its performance with a Markov Chain Monte Carlo (MCMC) method. The MCMC method gives the full solution (all intakes are independent), but is very computationally intensive to apply routinely. Posterior distributions of model parameter values, intakes and doses are calculated for a representative sample of plutonium workers from the United Kingdom Atomic Energy cohort using the WeLMoS method with the CIR and the MCMC method. The distributions are in good agreement: posterior means and Q(0.025) and Q(0.975) quantiles are typically within 20 %. Furthermore, the WeLMoS method using the CIR converges quickly: a typical case history takes around 10-20 min on a fast workstation, whereas the MCMC method took around 12-72 hr. The advantages and disadvantages of the method are discussed.

  9. Methods for calculating dietary energy density in a nationally representative sample.

    PubMed

    Vernarelli, Jacqueline A; Mitchell, Diane C; Rolls, Barbara J; Hartman, Terryl J

    2013-01-01

    There has been a growing interest in examining dietary energy density (ED, kcal/g) as it relates to various health outcomes. Consuming a diet low in ED has been recommended in the 2010 Dietary Guidelines, as well as by other agencies, as a dietary approach for disease prevention. Translating this recommendation into practice; however, is difficult. Currently there is no standardized method for calculating dietary ED; as dietary ED can be calculated with foods alone, or with a combination of foods and beverages. Certain items may be defined as either a food or a beverage (e.g., meal replacement shakes) and require special attention. National survey data are an excellent resource for evaluating factors that are important to dietary ED calculation. The National Health and Nutrition Examination Survey (NHANES) nutrient and food database does not include an ED variable, thus researchers must independently calculate ED. The objective of this study was to provide information that will inform the selection of a standardized ED calculation method by comparing and contrasting methods for ED calculation. The present study evaluates all consumed items and defines foods and beverages based on both USDA food codes and how the item was consumed. Results are presented as mean EDs for the different calculation methods stratified by population demographics (e.g. age, sex). Using United State Department of Agriculture (USDA) food codes in the 2005-2008 NHANES, a standardized method for calculating dietary ED can be derived. This method can then be adapted by other researchers for consistency across studies.

  10. Calculation Method for Exciton Wavefunctions with Electron--Hole Exchange Interaction: Application to Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ajiki, Hiroshi

    2013-05-01

    A new method for calculating exciton wavefunctions in the presence of a long-range electron--hole (e--h) exchange interaction (EXI) is presented. The e--h EXI arises, for example, for cross-polarized excitons in a single-walled carbon nanotube (SWNT). Cross-polarized excitons have previously been calculated as an eigenvalue problem of a Bethe--Salpeter equation (BSE) within the Tamm--Dancoff-type approximation (TDA). The resulting wavefunctions provide quite different absorption spectra in comparison with those calculated in the self-consistent-field method [S. Uryu and T. Ando, J. Phys.: Conf. Ser. 302 (2011) 012004]. Although the self-consistent-field method is more reliable, exciton wavefunctions cannot be obtained from this method. A general method is derived here to obtain exciton wavefunctions that take the e--h EXI into account within the TDA, and the method is applied to the cross-polarized excitons of a SWNT. The absorption spectra calculated from the resulting exciton wavefunctions agree well with the spectra calculated from the self-consistent-field method within a rotating-wave approximation.

  11. A fast and flexible library-based thick-mask near-field calculation method

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Gao, Jie; Chen, Xuanbo; Dong, Lisong; Li, Yanqiu

    2015-03-01

    Aerial image calculation is the basis of the current lithography simulation. As the critical dimension (CD) of the integrated circuits continuously shrinks, the thick mask near-field calculation has increasing influence on the accuracy and efficiency of the entire aerial image calculation process. This paper develops a flexible librarybased approach to significantly improve the efficiency of the thick mask near-field calculation compared to the rigorous modeling method, while leading to much higher accuracy than the Kirchhoff approximation method. Specifically, a set of typical features on the fullchip are selected to serve as the training data, whose near-fields are pre-calculated and saved in the library. Given an arbitrary test mask, we first decompose it into convex corners, concave corners and edges, afterwards match each patch to the training layouts based on nonparametric kernel regression. Subsequently, we use the matched near-fields in the library to replace the mask patches, and rapidly synthesize the near-field for the entire test mask. Finally, a data-fitting method is proposed to improve the accuracy of the synthesized near-field based on least square estimate (LSE). We use a pair of two-dimensional mask patterns to test our method. Simulations show that the proposed method can significantly speed up the current FDTD method, and effectively improve the accuracy of the Kirchhoff approximation method.

  12. Comment on 'Discrepancies in the resonance-fluorescence spectrum calculated with two methods'

    SciTech Connect

    Ficek, Zbigniew

    2009-05-15

    There are two alternative methods used in the literature to calculate the incoherent part of the spectrum of light scattered by an atomic system. In the first, one calculates the spectrum of the total light scattered by the system and obtains the incoherent part by subtracting the coherent part. In the second method, one introduces the fluctuation operators and obtains the incoherent part of the spectrum by taking the Fourier transform of the two-time correlation function of the fluctuation operators. These two methods have been recognized for years as completely equivalent for evaluating the incoherent part of the spectrum. In a recent paper, Xu et al. [Phys. Rev. A 78, 013407 (2008)] showed that there are discrepancies between the incoherent parts of the stationary spectrum of a three-level {lambda}-type system calculated with these two methods. The predicted discrepancies can be severe that over a wide range of the Rabi frequencies and atomic decay rates, the spectrum calculated with the variance method can have negative values. In this Comment, we show that there are no discrepancies between these two methods. We show the equivalence of these two methods that leads to the same incoherent spectra which are positive for all frequencies independent of values of the parameters involved. We also identify the source of the discrepancy, that is, in an incorrect treatment of the incoherent part of the spectrum calculated with the two-time correlation function of the fluctuation operators.

  13. Calculation Method for Flight Limit Load of V-band Clamp Separation Shock

    NASA Astrophysics Data System (ADS)

    Iwasa, Takashi; Shi, Qinzhong

    A simplified calculation method for estimating a flight limit load of the V-band clamp separation shock was established. With this method, the flight limit load is estimated through addition of an appropriate envelope margin to the results acquired with the simplified analysis method proposed in our previous paper. The envelope margin used in the method was calculated based on the reviews on the differences observed between the results of a pyroshock test and the analysis. Using the derived envelope margin, a calculating formula of the flight limit load, which envelopes the actual pyroshock responses with a certain probability, was developed. Based on the formula, flight limit loads for several actual satellites were estimated and compared to the test results. The comparative results showed that the estimated flight limit loads appropriately envelope the test results, which confirmed the effectiveness of the proposed method.

  14. On the method of least squares. II. [for calculation of covariance matrices and optimization algorithms

    NASA Technical Reports Server (NTRS)

    Jefferys, W. H.

    1981-01-01

    A least squares method proposed previously for solving a general class of problems is expanded in two ways. First, covariance matrices related to the solution are calculated and their interpretation is given. Second, improved methods of solving the normal equations related to those of Marquardt (1963) and Fletcher and Powell (1963) are developed for this approach. These methods may converge in cases where Newton's method diverges or converges slowly.

  15. Calculation method for line loss in 10kV distribution grid planning

    NASA Astrophysics Data System (ADS)

    Xiao, Ming-hui; Lin, Ling-xue; Liu, Si-yuan

    2017-01-01

    Distribution grid line loss index is an important indicator of running and managing a distribution grid. A general feature in distribution network is its difficulty in gathering data about structure and operation. Based on its feature, this paper proposed a method for calculating line loss in 10kV distribution grid from the perspective of planning. According to the characteristics of power consumption on different location of the feeder, line loss can be divided into three parts, including the main line loss, the loss of branch line and the loss of distribution transformer. The proposed method achieved quick calculation and component analysis. Distributed coefficient was calculated by analyzing different distributed situation of load on feeder and the equivalent loss power on main line was calculated. Branch line and distribution transformer were equivalent to a resistance located at the head of the line to match the real power consumption. With the data acquirement, accuracy can be improved. Finally, the example of different power supply zone was calculated based on the method. The comparison between the calculated results and technical guidelines of southern power grid indicated the components of the line loss and put forward solutions for loss reduction. The method proposed overcame disadvantage of strong dependence on complete and precise data, which fits for planning work.

  16. Nuclear Magnetic Shieldings of Stacked Aromatic and Antiaromatic Molecules.

    PubMed

    Sundholm, Dage; Rauhalahti, Markus; Özcan, Nergiz; Mera-Adasme, Raúl; Kussmann, Jörg; Luenser, Arne; Ochsenfeld, Christian

    2017-04-04

    Nuclear magnetic shieldings have been calculated at the density functional theory (DFT) level for stacks of benzene, hexadehydro[12]annulene, dodecadehydro[18]annulene, and hexabenzocoronene. The magnetic shieldings due to the ring currents in the adjacent molecules have been estimated by calculating nucleus independent molecular shieldings for the monomer in the atomic positions of neighbor molecules. The calculations show that the independent shielding model works reasonably well for the (1)H NMR shieldings of benzene and hexadehydro[12]annulene, whereas for the larger molecules and for the (13)C NMR shieldings the interaction between the molecules leads to shielding effects that are at least of the same size as the ring current contributions from the adjacent molecules. A better agreement is obtained when the nearest neighbors are also considered at full quantum mechanical (QM) level. The calculations suggest that the nearest solvent molecules must be included in the quantum mechanical system, at least when estimating solvent shifts at the molecular mechanics (MM) level. Current density calculations show that the stacking does not significantly affect the ring current strengths of the individual molecules, whereas the shape of the ring current for a single molecule differs from that of the stacked molecules.

  17. Comparison of three thrust calculation methods using in-flight thrust data

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.

    1981-01-01

    The gross thrust of an experimental airplane was determined by each method using the same flight maneuvers and generally the same data parameters. Coefficients determined from thrust stand calibrations for each of the three methods were then extrapolated to cruise flight conditions. The values of total aircraft gross thrust calculated by the three methods for cruise flight conditions agreed within + or - 3 percent. The disagreement in the values of thrust calculated by the different techniques manifested itself as a bias in the data. There was little scatter (0.5 percent) for the thrust levels examined in flight.

  18. A Definite Integration Method for Calculating Inclination Function and Its Derivative

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Da; Wang, Hong-Bo

    2012-07-01

    This paper gives a definite integration method for calculating the inclination function and its derivative, which has a very simple expression, and the accuracies as high as 10-15 for the inclination function, and 10-13 for its derivative, comparable with the accuracy of Gooding's method. By through a lot of numerical simulations, it is proved that this method has a good stability and an wide applicable range of inclinations, hence it can be used to calculate the inclination function to the maximum order of Lmax ≤ 50.

  19. Methods for calculating X-ray diffuse scattering from a crystalline medium with spheroidal quantum dots

    NASA Astrophysics Data System (ADS)

    Punegov, V. I.; Sivkov, D. V.

    2015-03-01

    Two independent approaches to calculate the angular distribution of X-ray diffusion scattering from a crystalline medium with spheroidal quantum dots (QDs) have been proposed. The first method is based on the analytical solution involving the multipole expansion of elastic strain fields beyond QDs. The second approach is based on calculations of atomic displacements near QDs by the Green's function method. An analysis of the diffuse scattering intensity distribution in the reciprocal space within these two approaches shows that both methods yield similar results for the chosen models of QD spatial distribution.

  20. Approximate method for calculating heating rates on three-dimensional vehicles

    NASA Astrophysics Data System (ADS)

    Hamilton, H. Harris; Greene, Francis A.; Dejarnette, F. R.

    1994-05-01

    An approximate method for calculating heating rates on three-dimensional vehicles at angle of attack is presented. The method is based on the axisymmetric analog for three-dimensional boundary layers and uses a generalized body-fitted coordinate system. Edge conditions for the boundary-layer solution are obtained from an inviscid flowfield solution, and because of the coordinate system used, the method is applicable to any blunt body geometry for which an inviscid flowfield solution can be obtained. The method is validated by comparing with experimental heating data and with thin-layer Navier-Stokes calculations on the shuttle orbiter at both wind-tunnel and flight conditions and with thin-layer Navier-Stokes calculations on the HL-20 at wind-tunnel conditions.

  1. Approximate method for calculating heating rates on three-dimensional vehicles

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris; Greene, Francis A.; Dejarnette, F. R.

    1994-01-01

    An approximate method for calculating heating rates on three-dimensional vehicles at angle of attack is presented. The method is based on the axisymmetric analog for three-dimensional boundary layers and uses a generalized body-fitted coordinate system. Edge conditions for the boundary-layer solution are obtained from an inviscid flowfield solution, and because of the coordinate system used, the method is applicable to any blunt body geometry for which an inviscid flowfield solution can be obtained. The method is validated by comparing with experimental heating data and with thin-layer Navier-Stokes calculations on the shuttle orbiter at both wind-tunnel and flight conditions and with thin-layer Navier-Stokes calculations on the HL-20 at wind-tunnel conditions.

  2. Comparison of mineral resources calculation methods for different genetic types of gravel and sand deposits

    NASA Astrophysics Data System (ADS)

    Patashova, T.

    2009-04-01

    Calculation of mineral resources and their proper assessment is relevant, since the stock of resources determines the economic independence of the state. I would like present the work wherein discusses gravel and sand deposits of different genetic type (kames, eskers, marginal glaciofluvial ridges, sandurs, glaciofluvial deltas and redrifted glaciofluvial aeolian formations). Their geological structure and formation conditions have been assessed; quality characteristics of mineral resources have been analysed; calculation of resources has been performed by applying most popular resources calculating methods used in Lithuania up to now, such as those of geological blocks, profiles and isolines, as well as the up-to-date GRID method created on the basis of triangle method in GIS environment. Comparison of resources assessed by different methods has revealed their advantages and disadvantages, their availability subject to deposits‘genetic types.

  3. A finite element method for shear stresses calculation in composite blade models

    NASA Astrophysics Data System (ADS)

    Paluch, B.

    1991-09-01

    A finite-element method is developed for accurately calculating shear stresses in helicopter blade models, induced by torsion and shearing forces. The method can also be used to compute the equivalent torsional stiffness of the section, their transverse shear coefficient, and the position of their center of torsion. A grid generator method which is a part of the calculation program is also described and used to discretize the sections quickly and to condition the grid data reliably. The finite-element method was validated on a few sections composed of isotropic materials and was then applied to a blade model sections made of composite materials. Good agreement was obtained between the calculated and experimental data.

  4. 7 CFR 51.308 - Methods of sampling and calculation of percentages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grades of Apples Methods of Sampling and Calculation of Percentages § 51.308 Methods of sampling and... weigh ten pounds or less, or in any container where the minimum diameter of the smallest apple does not vary more than 1/2 inch from the minimum diameter of the largest apple, percentages shall be...

  5. 7 CFR 51.308 - Methods of sampling and calculation of percentages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grades of Apples Methods of Sampling and Calculation of Percentages § 51.308 Methods of sampling and... weigh ten pounds or less, or in any container where the minimum diameter of the smallest apple does not vary more than 1/2 inch from the minimum diameter of the largest apple, percentages shall be...

  6. The Theory of Propellers II : Method for Calculating the Axial Interference Velocity

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1944-01-01

    A technical method is given for calculating the axial interference velocity of a propeller. The method involves the use of certain weight functions p, q, and f. Numerical values for the weight functions are given for two-blade, three-blade, and six-blade propellers.

  7. A Method for Calculating Fermi Energy and Carrier Concentrations in Semiconducts

    ERIC Educational Resources Information Center

    Gaylord, T. K.; Linxwiler, J. N., Jr.

    1976-01-01

    An efficient numerical method for calculating the Fermi energy, the free electron and free hole concentrations, and the ionized impurity conductors in a semiconductor material is described. The method allows freedom with respect to type of material, temperature, and amount and type of donor and acceptor impurities. (Author/CP)

  8. A simple method of calculating lower-bound limit loads for axisymmetric thin shells

    SciTech Connect

    Boyle, J.T.; Hamilton, R.; Shi, J.; Mackenzie, D.

    1997-05-01

    In this paper, a simple method for calculating lower-bound limit loads for shells is presented, based on Ilyushin`s and Ivanov`s generalized yield criterion, respectively, and using the elastic compensation procedure. Several examples, including torispherical and conical ends, radial nozzles, and a skirted vessel, are examined using this method. The results are compared with previously published results.

  9. Calculation of accurate channel spacing of an AWG optical demultiplexer applying proportional method

    NASA Astrophysics Data System (ADS)

    Seyringer, D.; Hodzic, E.

    2015-06-01

    We present the proportional method to correct the channel spacing between the transmitted output channels of an AWG. The developed proportional method was applied to 64-channel, 50 GHz AWG and the achieved results confirm very good correlation between designed channel spacing (50 GHz) and the channel spacing calculated from simulated AWG transmission characteristics.

  10. Dose calculation and in-phantom measurement in BNCT using response matrix method.

    PubMed

    Rahmani, Faezeh; Shahriari, Majid

    2011-12-01

    In-phantom measurement of physical dose distribution is very important for Boron Neutron Capture Therapy (BNCT) planning validation. If any changes take place in therapeutic neutron beam due to the beam shaping assembly (BSA) change, the dose will be changed so another group of simulations should be carried out for dose calculation. To avoid this time consuming procedure and speed up the dose calculation to help patients not wait for a long time, response matrix method was used. This procedure was performed for neutron beam of the optimized BSA as a reference beam. These calculations were carried out using the MCNPX, Monte Carlo code. The calculated beam parameters were measured for a SNYDER head phantom placed 10 cm away from beam the exit of the BSA. The head phantom can be assumed as a linear system and neutron beam and dose distribution can be assumed as an input and a response of this system (head phantom), respectively. Neutron spectrum energy was digitized into 27 groups. Dose response of each group was calculated. Summation of these dose responses is equal to a total dose of the whole neutron/gamma spectrum. Response matrix is the double dimension matrix (energy/dose) in which each parameter represents a depth-dose resulted from specific energy. If the spectrum is changed, response of each energy group may be differed. By considering response matrix and energy vector, dose response can be calculated. This method was tested for some BSA, and calculations show statistical errors less than 10%.

  11. A method to calculate tunneling leakage currents in silicon inversion layers

    NASA Astrophysics Data System (ADS)

    Lujan, Guilherme S.; Sorée, Bart; Magnus, Wim; De Meyer, Kristin

    2006-08-01

    This paper proposes a quantum mechanical model for the calculation of tunneling leakage currents in a metal-oxide-semiconductor structure. The model incorporates both variational calculus and the transfer matrix method to compute the subband energies and the lifetimes of the inversion layer states. The use of variational calculus simplifies the subband energy calculation due to the analytical form of the wave functions, which offers an attractive perspective towards the calculation of the electron mobility in the channel. The model can be extended to high-k dielectrics with several layers. Good agreement between experimental data and simulation results is obtained for metal gate capacitors.

  12. Multiplatform application for calculating a combined standard uncertainty using a Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Niewinski, Marek; Gurnecki, Pawel

    2016-12-01

    The paper presents a new computer program for calculating a combined standard uncertainty. It implements the algorithm described in JCGM 101:20081 which is concerned with the use of a Monte Carlo method as an implementation of the propagation of distributions for uncertainty evaluation. The accuracy of the calculation has been obtained by using the high quality random number generators. The paper describes the main principles of the program and compares the obtained result with example problems presented in JCGM Supplement 1.

  13. A numerical method for biphasic curve fitting with a programmable calculator.

    PubMed

    Ristanović, D; Ristanović, D; Malesević, J; Milutinović, B

    1982-01-01

    Elimination kinetics of bromsulphalein (BSP) after a single injection into the circulation of rats were examined by means of a four-compartment model. BSP plasma concentrations were measured colorimetrically. A program written for the Texas Instruments TI-59 programmable calculator is presented, which will calculate the fractional blood clearance of BSP using an iteration procedure. A simple method of fitting biphasic decay curves to experimental data is also proposed.

  14. [Effective dose transmission of diagnostic X-rays through concrete and lead shields].

    PubMed

    Kato, Hideki

    2003-08-01

    When computing the amount of leakage from a diagnostic X-ray room, the transmission data of X-ray beams through the shielding material, which are used in the computation, must agree with the conditions of use of the X-ray equipment. Even if the tube potential is the same, the energy spectrum of generated X-rays depends on conditions such as high voltage rectification and total filtration, and transmission through the shielding material, too, is subject to change. In this paper, we propose a new method of calculation, which uses transmission data of mono-energetic photon beams computed by means of a Monte Carlo simulation, for obtaining effective dose transmission data through the shielding material of an X-ray beam with spectral distribution. We also present effective dose transmission data of primary X-ray beams and 90 degrees scattered X-ray beams through concrete and lead shields as determined by this method. This method, which can calculate the transmission data of X-ray beams with any spectral distribution, is useful in evaluating the leakage dose of diagnostic X-ray facilities.

  15. Study on the response of thermoluminescent dosemeters to synchrotron radiation: experimental method and Monte Carlo calculations.

    PubMed

    Bakshi, A K; Chatterjee, S; Palani Selvam, T; Dhabekar, B S

    2010-07-01

    In the present study, the energy dependence of response of some popular thermoluminescent dosemeters (TLDs) have been investigated such as LiF:Mg,Ti, LiF:Mg,Cu,P and CaSO(4):Dy to synchrotron radiation in the energy range of 10-34 keV. The study utilised experimental, Monte Carlo and analytical methods. The Monte Carlo calculations were based on the EGSnrc and FLUKA codes. The calculated energy response of all the TLDs using the EGSnrc and FLUKA codes shows excellent agreement with each other. The analytically calculated response shows good agreement with the Monte Carlo calculated response in the low-energy region. In the case of CaSO(4):Dy, the Monte Carlo-calculated energy response is smaller by a factor of 3 at all energies in comparison with the experimental response when polytetrafluoroethylene (PTFE) (75 % by wt) is included in the Monte Carlo calculations. When PTFE is ignored in the Monte Carlo calculations, the difference between the calculated and experimental response decreases (both responses are comparable >25 keV). For the LiF-based TLDs, the Monte Carlo-based response shows reasonable agreement with the experimental response.

  16. Extension and evaluation of the multilevel summation method for fast long-range electrostatics calculations.

    PubMed

    Moore, Stan G; Crozier, Paul S

    2014-06-21

    Several extensions and improvements have been made to the multilevel summation method (MSM) of computing long-range electrostatic interactions. These include pressure calculation, an improved error estimator, faster direct part calculation, extension to non-orthogonal (triclinic) systems, and parallelization using the domain decomposition method. MSM also allows fully non-periodic long-range electrostatics calculations which are not possible using traditional Ewald-based methods. In spite of these significant improvements to the MSM algorithm, the particle-particle particle-mesh (PPPM) method was still found to be faster for the periodic systems we tested on a single processor. However, the fast Fourier transforms (FFTs) that PPPM relies on represent a major scaling bottleneck for the method when running on many cores (because the many-to-many communication pattern of the FFT becomes expensive) and MSM scales better than PPPM when using a large core count for two test problems on Sandia's Redsky machine. This FFT bottleneck can be reduced by running PPPM on only a subset of the total processors. MSM is most competitive for relatively low accuracy calculations. On Sandia's Chama machine, however, PPPM is found to scale better than MSM for all core counts that we tested. These results suggest that PPPM is usually more efficient than MSM for typical problems running on current high performance computers. However, further improvements to MSM algorithm could increase its competitiveness for calculation of long-range electrostatic interactions.

  17. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors

    PubMed Central

    Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka

    2016-01-01

    In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people. PMID:28036015

  18. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  19. A new method of calculating electrical conductivity with applications to natural waters

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.

    2012-01-01

    A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004–0.7 mol kg-1), temperature (0–95 °C), pH (1–10), and conductivity (30–70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4- substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.

  20. A new method of calculating electrical conductivity with applications to natural waters

    NASA Astrophysics Data System (ADS)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.

    2012-01-01

    A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004-0.7 mol kg-1), temperature (0-95 °C), pH (1-10), and conductivity (30-70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4-substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.