Sample records for ship hull structures

  1. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Contiguous hull structure: Welding procedure. 154.180 Section 154.180 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests for...

  2. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Contiguous hull structure: Welding procedure. 154.180 Section 154.180 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests for...

  3. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Contiguous hull structure: Welding procedure. 154.180 Section 154.180 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests for...

  4. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Contiguous hull structure: Welding procedure. 154.180 Section 154.180 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests for...

  5. 46 CFR 108.133 - Hull superstructure, structural bulkheads, decks, and deckhouses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull superstructure, structural bulkheads, decks, and deckhouses. 108.133 Section 108.133 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A... Protection § 108.133 Hull superstructure, structural bulkheads, decks, and deckhouses. Each hull...

  6. 46 CFR 108.133 - Hull superstructure, structural bulkheads, decks, and deckhouses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Hull superstructure, structural bulkheads, decks, and deckhouses. 108.133 Section 108.133 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A... Protection § 108.133 Hull superstructure, structural bulkheads, decks, and deckhouses. Each hull...

  7. 46 CFR 108.133 - Hull superstructure, structural bulkheads, decks, and deckhouses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Hull superstructure, structural bulkheads, decks, and deckhouses. 108.133 Section 108.133 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A... Protection § 108.133 Hull superstructure, structural bulkheads, decks, and deckhouses. Each hull...

  8. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...

  9. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...

  10. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...

  11. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...

  12. 46 CFR 154.174 - Transverse contiguous hull structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull...) The transverse contiguous hull structure of a vessel having cargo containment systems with secondary...

  13. Diatom community structure on in-service cruise ship hulls.

    PubMed

    Hunsucker, Kelli Zargiel; Koka, Abhishek; Lund, Geir; Swain, Geoffrey

    2014-10-01

    Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.

  14. 46 CFR 45.107 - Strength of hull.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Strength of hull. 45.107 Section 45.107 Shipping COAST... Assignment § 45.107 Strength of hull. The general structural strength of the hull must be sufficient for the... Commandant as possessing adequate strength. ...

  15. 46 CFR 176.802 - Hull.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull. 176.802 Section 176.802 Shipping COAST GUARD... CERTIFICATION Material Inspections § 176.802 Hull. (a) At each initial and subsequent inspection for... ready for inspections of the hull structure and its appurtenances, including the following: (1...

  16. 46 CFR 154.176 - Longitudinal contiguous hull structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Longitudinal contiguous hull structure. 154.176 Section... Equipment Hull Structure § 154.176 Longitudinal contiguous hull structure. (a) The longitudinal contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the...

  17. 46 CFR 154.176 - Longitudinal contiguous hull structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Longitudinal contiguous hull structure. 154.176 Section... Equipment Hull Structure § 154.176 Longitudinal contiguous hull structure. (a) The longitudinal contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the...

  18. 46 CFR 154.176 - Longitudinal contiguous hull structure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Longitudinal contiguous hull structure. 154.176 Section... Equipment Hull Structure § 154.176 Longitudinal contiguous hull structure. (a) The longitudinal contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the...

  19. 46 CFR 154.176 - Longitudinal contiguous hull structure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Longitudinal contiguous hull structure. 154.176 Section... Equipment Hull Structure § 154.176 Longitudinal contiguous hull structure. (a) The longitudinal contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the...

  20. 46 CFR 154.176 - Longitudinal contiguous hull structure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Longitudinal contiguous hull structure. 154.176 Section... Equipment Hull Structure § 154.176 Longitudinal contiguous hull structure. (a) The longitudinal contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the...

  1. 46 CFR 154.178 - Contiguous hull structure: Heating system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Heating system. 154.178... Equipment Hull Structure § 154.178 Contiguous hull structure: Heating system. The heating system for transverse and longitudinal contiguous hull structure must: (a) Be shown by a heat load calculation to have...

  2. 46 CFR 154.174 - Transverse contiguous hull structure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the standards of...

  3. 46 CFR 154.174 - Transverse contiguous hull structure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the standards of...

  4. 46 CFR 154.174 - Transverse contiguous hull structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the standards of...

  5. 46 CFR 154.174 - Transverse contiguous hull structure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the standards of...

  6. 46 CFR 169.239 - Hull.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull. 169.239 Section 169.239 Shipping COAST GUARD... Certification Inspections § 169.239 Hull. At each inspection for certification and periodic inspection, the vessel must be afloat and ready for the following tests and inspections of the hull structure and its...

  7. 46 CFR 45.107 - Strength of hull.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Strength of hull. 45.107 Section 45.107 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.107 Strength of hull. The general structural strength of the hull must be sufficient for the...

  8. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Welding procedure. 154.180... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests for contiguous hull structure designed for a temperature colder than −18 °C (0 °F) must meet § 54.05-15 and...

  9. Reliability of Hull Girder Ultimate Strength of Steel Ships

    NASA Astrophysics Data System (ADS)

    Da-wei, Gao; Gui-jie, Shi

    2018-03-01

    Hull girder ultimate strength is an evaluation index reflecting the true safety margin or structural redundancy about container ships. Especially, after the hull girder fracture accident of the MOL COMFORT, the 8,000TEU class large container ship, on June 17 2013, larger container ship safety has been paid on much more attention. In this paper, different methods of calculating hull girder ultimate strength are firstly discussed and compared with. The bending ultimate strength can be analyzed by nonlinear finite element method (NFEM) and increment-iterative method, and also the shear ultimate strength can be analyzed by NFEM and simple equations. Then, the probability distribution of hull girder wave loads and still water loads of container ship are summarized. At last, the reliability of hull girder ultimate strength under bending moment and shear forces for three container ships is analyzed by using a first order method. The conclusions can be applied to give guidance for ship design and safety evaluation.

  10. Integrated Life-Cycle Framework for Maintenance, Monitoring and Reliability of Naval Ship Structures

    DTIC Science & Technology

    2012-08-15

    number of times, a fast and accurate method for analyzing the ship hull is required. In order to obtain this required computational speed and accuracy...Naval Engineers Fleet Maintenance & Modernization Symposium (FMMS 2011) [8] and the Eleventh International Conference on Fast Sea Transportation ( FAST ...probabilistic strength of the ship hull. First, a novel deterministic method for the fast and accurate calculation of the strength of the ship hull is

  11. 46 CFR 154.182 - Contiguous hull structure: Production weld test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Production weld test. 154.182... Equipment Hull Structure § 154.182 Contiguous hull structure: Production weld test. If a portion of the contiguous hull structure is designed for a temperature colder than −34 °C (−30 °F) and is not part of the...

  12. 46 CFR 154.182 - Contiguous hull structure: Production weld test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Contiguous hull structure: Production weld test. 154.182... Equipment Hull Structure § 154.182 Contiguous hull structure: Production weld test. If a portion of the contiguous hull structure is designed for a temperature colder than −34 °C (−30 °F) and is not part of the...

  13. 46 CFR 154.182 - Contiguous hull structure: Production weld test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Contiguous hull structure: Production weld test. 154.182... Equipment Hull Structure § 154.182 Contiguous hull structure: Production weld test. If a portion of the contiguous hull structure is designed for a temperature colder than −34 °C (−30 °F) and is not part of the...

  14. 46 CFR 154.182 - Contiguous hull structure: Production weld test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Contiguous hull structure: Production weld test. 154.182... Equipment Hull Structure § 154.182 Contiguous hull structure: Production weld test. If a portion of the contiguous hull structure is designed for a temperature colder than −34 °C (−30 °F) and is not part of the...

  15. 46 CFR 154.182 - Contiguous hull structure: Production weld test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Contiguous hull structure: Production weld test. 154.182... Equipment Hull Structure § 154.182 Contiguous hull structure: Production weld test. If a portion of the contiguous hull structure is designed for a temperature colder than −34 °C (−30 °F) and is not part of the...

  16. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this...

  17. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for the...

  18. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for the...

  19. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for the...

  20. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for the...

  1. 46 CFR 71.50-3 - Drydock examination, internal structural examination, underwater survey, and alternate hull exam...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., underwater survey, and alternate hull exam intervals. 71.50-3 Section 71.50-3 Shipping COAST GUARD...-3 Drydock examination, internal structural examination, underwater survey, and alternate hull exam... wooden hulls must undergo two drydock and two internal structural examinations within any five year...

  2. Filament Winding of a Ship Hull. A Study of the Design of a 30 Ft. Filament Wound Model of a 150 Ft. GRP (Glass Reinforced Plastic) Ship.

    DTIC Science & Technology

    1983-10-01

    by block number) Naval Ship Structures; Composites . Glass Reinforced Plastics, Filament Winding, Minesweepers. 20. ABSTRACT (Continue on reverse side...associated with this method of manufacturing a ship hull out of Glass Reinforced Plastic (GRP). Winding machine and man- drel concepts were reviewed... machine and mandrel concepts were reviewed, as well as the structural requirements and possible materials. A design of a 1/5th scale (30 ft) model

  3. Review of ship slamming loads and responses

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Guedes Soares, C.

    2017-12-01

    The paper presents an overview of studies of slamming on ship structures. This work focuses on the hull slamming, which is one of the most important types of slamming problems to be considered in the ship design process and the assessment of the ship safety. There are three main research aspects related to the hull slamming phenomenon, a) where and how often a slamming event occurs, b) slamming load prediction and c) structural response due to slamming loads. The approaches used in each aspect are reviewed and commented, together with the presentation of some typical results. The methodology, which combines the seakeeping analysis and slamming load prediction, is discussed for the global analysis of the hull slamming of a ship in waves. Some physical phenomena during the slamming event are discussed also. Recommendations for the future research and developments are made.

  4. Numerical Simulation of Galvanic Corrosion Caused by Shaft Grounding Systems in Steel Ship Hulls

    DTIC Science & Technology

    2005-01-01

    ship hull on paint holidays because of the substantial difference of the electric potentials between the steel ship hull and the nickel-aluminum...steel ship hull on paint holidays because of the substantial difference of the electric potentials between the steel ship hull and the nickel...substantial difference of the electric potentials between the steel ship hull and the nickel-aluminum bronze propellers. There are concerns on the

  5. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull...

  6. 46 CFR 91.40-1 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Definitions relating to hull examinations. 91.40-1... VESSELS INSPECTION AND CERTIFICATION Drydocking § 91.40-1 Definitions relating to hull examinations. As...-hull fittings. (b) Internal structural examination means an examination of the vessel while afloat or...

  7. Optimization Design of Minimum Total Resistance Hull Form Based on CFD Method

    NASA Astrophysics Data System (ADS)

    Zhang, Bao-ji; Zhang, Sheng-long; Zhang, Hui

    2018-06-01

    In order to reduce the resistance and improve the hydrodynamic performance of a ship, two hull form design methods are proposed based on the potential flow theory and viscous flow theory. The flow fields are meshed using body-fitted mesh and structured grids. The parameters of the hull modification function are the design variables. A three-dimensional modeling method is used to alter the geometry. The Non-Linear Programming (NLP) method is utilized to optimize a David Taylor Model Basin (DTMB) model 5415 ship under the constraints, including the displacement constraint. The optimization results show an effective reduction of the resistance. The two hull form design methods developed in this study can provide technical support and theoretical basis for designing green ships.

  8. Ultimate Longitudinal Strength of Composite Ship Hulls

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Huang, Lingkai; Zhu, Libao; Tang, Yuhang; Wang, Anwen

    2017-01-01

    A simple analytical model to estimate the longitudinal strength of ship hulls in composite materials under buckling, material failure and ultimate collapse is presented in this paper. Ship hulls are regarded as assemblies of stiffened panels which idealized as group of plate-stiffener combinations. Ultimate strain of the plate-stiffener combination is predicted under buckling or material failure with composite beam-column theory. The effects of initial imperfection of ship hull and eccentricity of load are included. Corresponding longitudinal strengths of ship hull are derived in a straightforward method. A longitudinally framed ship hull made of symmetrically stacked unidirectional plies under sagging is analyzed. The results indicate that present analytical results have a good agreement with FEM method. The initial deflection of ship hull and eccentricity of load can dramatically reduce the bending capacity of ship hull. The proposed formulations provide a simple but useful tool for the longitudinal strength estimation in practical design.

  9. Code development for ships -- A demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyub, B.; Mansour, A.E.; White, G.

    1996-12-31

    A demonstration summary of a reliability-based structural design code for ships is presented for two ship types, a cruiser and a tanker. For both ship types, code requirements cover four failure modes: hull girder bulking, unstiffened plate yielding and buckling, stiffened plate buckling, and fatigue of critical detail. Both serviceability and ultimate limit states are considered. Because of limitation on the length, only hull girder modes are presented in this paper. Code requirements for other modes will be presented in future publication. A specific provision of the code will be a safety check expression. The design variables are to bemore » taken at their nominal values, typically values in the safe side of the respective distributions. Other safety check expressions for hull girder failure that include load combination factors, as well as consequence of failure factors, are considered. This paper provides a summary of safety check expressions for the hull girder modes.« less

  10. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Outer hull steel plating. 154.170 Section 154.170... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the...

  11. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2014-10-01 2014-10-01 false Outer hull steel plating. 154.170 Section 154.170...

  12. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2012-10-01 2012-10-01 false Outer hull steel plating. 154.170 Section 154.170...

  13. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2013-10-01 2013-10-01 false Outer hull steel plating. 154.170 Section 154.170...

  14. Research and development of a digital design system for hull structures

    NASA Astrophysics Data System (ADS)

    Zhan, Yi-Ting; Ji, Zhuo-Shang; Liu, Yin-Dong

    2007-06-01

    Methods used for digital ship design were studied and formed the basis of a proposed frame model suitable for ship construction modeling. Based on 3-D modeling software, a digital design system for hull structures was developed. Basic software systems for modeling, modifying, and assembly simulation were developed. The system has good compatibility, and models created by it can be saved in different 3-D file formats, and 2D engineering drawings can be output directly. The model can be modified dynamically, overcoming the necessity of repeated modifications during hull structural design. Through operations such as model construction, intervention inspection, and collision detection, problems can be identified and modified during the hull structural design stage. Technologies for centralized control of the system, database management, and 3-D digital design are integrated into this digital model in the preliminary design stage of shipbuilding.

  15. The Assessment of the Ultimate Hull Girder Strength of RO-RO Ship after Damages

    NASA Astrophysics Data System (ADS)

    Zubair Muis Alie, Muhammad; Sitepu, Ganding; Izaak Latumahin, Samuel

    2018-03-01

    Many accidents of Ro-Ro ships happen in Indonesia such as collision and grounding. When the collision or grounding takes place on the Ro-Ro ship, the ultimate strength of hull structure after damage becomes decrease. Car and passenger decks are critical location since collision and/or grounding occur. In the present study, the assessment of the ultimate hull girder strength is conducted. The cross section of Ro-Ro ship is taken to be analyzed. The collision and grounding damages are assumed to be palced on the side and bottom area, respectively. The damages are created by removing the element from the side shell and bottom part. Finally, the result obtained is compared with one another.

  16. 46 CFR 177.310 - Satisfactory service as a design basis.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Satisfactory service as a design basis. 177.310 Section 177.310 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.310 Satisfactory service as a design basis. When scantlings for the hull,...

  17. 46 CFR 177.310 - Satisfactory service as a design basis.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Satisfactory service as a design basis. 177.310 Section 177.310 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.310 Satisfactory service as a design basis. When scantlings for the hull,...

  18. 46 CFR 177.310 - Satisfactory service as a design basis.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Satisfactory service as a design basis. 177.310 Section 177.310 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.310 Satisfactory service as a design basis. When scantlings for the hull,...

  19. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... 46 Shipping 5 2013-10-01 2013-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... “Rules for Building and Classing Steel Vessels”, 1981. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended...

  20. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... 46 Shipping 5 2014-10-01 2014-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... “Rules for Building and Classing Steel Vessels”, 1981. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended...

  1. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... 46 Shipping 5 2011-10-01 2011-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... “Rules for Building and Classing Steel Vessels”, 1981. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended...

  2. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... 46 Shipping 5 2012-10-01 2012-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... “Rules for Building and Classing Steel Vessels”, 1981. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended...

  3. Multi-tiered sensing and data processing for monitoring ship structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Charles; Salvino, Liming; Lynch, Jerome

    2009-01-01

    A comprehensive structural health monitoring (SHM) system is a critical mechanism to ensure hull integrity and evaluate structural performance over the life of a ship, especially for lightweight high-speed ships. One of the most important functions of a SHM system is to provide real-time performance guidance and reduce the risk of structural damage during operations at sea. This is done by continuous feedback from onboard sensors providing measurements of seaway loads and structural responses. Applications of SHM should also include diagnostic capabilities such as identifying the presence of damage, assessing the location and extent of damage when it does occurmore » in order to plan for future inspection and maintenance. The development of such SHM systems is extremely challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with the missions of high performance ships, the lack of data from known damage conditions, the limited sensing that was not designed specifically for SHM, the management of the vast amounts of data, and the need for continued, real-time data processing. This paper will discuss some of these challenges and several outstanding issues that need to be addressed in the context of applying various SHM approaches to sea trials data measured on an aluminum high-speed catamaran, the HSV-2 Swift. A multi-tiered approach for sensing and data processing will be discussed as potential SHM architecture for future shipboard application. This approach will involve application of low cost and dense sensor arrays such as wireless communications in selected areas of the ship hull in addition to conventional sensors measuring global structural response of the ship. A recent wireless hull monitoring demo on FSF-I SeaFighter will be discussed as an example to show how this proposed architecture is a viable approach for long-term and real-time hull monitoring.« less

  4. Design loads and uncertainties for the transverse strength of ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittaluga, A.

    1995-12-31

    Rational design of ship structures is becoming a reality, and a reliability based approach for the longitudinal strength assessment of ship hulls is close to implementation. Transverse strength of ships is a step behind, mainly due to the complexity of the collapse modes associated with transverse strength. Nevertheless, some investigations are being made and the importance of an acceptable stochastic model for the environmental demand on the transverse structures is widely recognized. In the paper, the problem of the determination of the sea loads on a transverse section of a ship is discussed. The problem of extrapolating the calculated results,more » which are relevant to the submerged portion of the hull, to areas which are only occasionally wet in extreme conditions is also addressed.« less

  5. Ultimate strength performance of tankers associated with industry corrosion addition practices

    NASA Astrophysics Data System (ADS)

    Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming; Li, Chen Guang; Paik, Jeom Kee

    2014-09-01

    In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSRH) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures

  6. Investigation of impact phenomena on the marine structures: Part II - Internal energy of the steel structure applied by selected materials in the ship-ship collision incidents

    NASA Astrophysics Data System (ADS)

    Prabowo, A. R.; Baek, S. J.; Lee, S. G.; Bae, D. M.; Sohn, J. M.

    2018-01-01

    Phenomena of impact loads on the marine structures has attracted attention to be predicted regarding its influences to structural damage. This part demands sustainable analysis and observation as tendency may vary from one to others since impact involves various scenario models and the structure itself experiences continuous development. Investigation of the damage extent can be conducted by observation on the energy behaviour during two entities involve in a contact. This study aimed to perform numerical investigation to predict structural damage by assessing absorbed strain energy represented by the internal energy during a series of ship collisions. The collision target in ship-ship interactions were determined on the single and double hulls part of a passenger ship. Tendency of the internal energy by the steel structures was summarized, and verification was presented by several crashworthiness criteria. It was found that steel structures applied by the material grades A and B produced different tendencies compared to the material grades D and E. Effect of the structural arrangement to structural responses in terms of strain and stress indicated that the single hull presented contour expansion mainly on the longitudinal directions.

  7. Hydrodynamic Hull Damping (Phase 1)

    DTIC Science & Technology

    1987-06-01

    Administration Mr. Alexander Malakhoff Mr. Thomas W. Allen Director, Structural Integrity Engineering Officer (N7) Subgroup ( SEA 55Y) MR" Sealift Command...Shipping U. S. Coast Guard CONTRACTING OFFICER TECHNICAL REPRESENTATIVES Mr. William J. Siekierka Mr. Greg D. Woods SEA 55Y3 SEA 55Y3 Naval Sea Systems...Command Naval Sea Systems Command SHIP STRUCTURE SUBCOMMITTEE The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters

  8. 46 CFR 190.01-10 - Structural standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Structural standards. 190.01-10 Section 190.01-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS CONSTRUCTION AND ARRANGEMENT Hull Structure § 190.01-10 Structural standards. (a) In general, compliance with...

  9. Wave cancellation small waterplane multihull ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, C.C.; Wilson, M.B.

    1994-12-31

    A new patented wave cancellation multihull ship concept (Hsu, 1993) is presented. Such ships consist of various arrangements of tapered hull elements. The tapered hull design provides a small waterplane area for enhanced seakeeping while producing smaller surface disturbances. In addition, proper arrangement of hull elements provides favorable wave interference effects. The saving in effective horsepower with a realistic wave cancellation tri-hull arrangement, was found to be about 30 percent compared to small waterplane area twin-hull ships. Power reductions of this magnitude translate to considerably fuel consumptions and improved range. Applications to several ship types, such as for fast ferries,more » cruise and container ships, appear promising, wherever good seakeeping, large deck space and high speed in the design.« less

  10. 46 CFR 45.129 - Hull fittings: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hull fittings: General. 45.129 Section 45.129 Shipping... Assignment § 45.129 Hull fittings: General. Hull fittings must be securely mounted in the hull so as to avoid increases in hull stresses and must be protected from local damage caused by movement of equipment or cargo. ...

  11. 46 CFR 32.75-5 - Hull requirements; general-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Hull requirements; general-TB/ALL. 32.75-5 Section 32.75-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior to November 10...

  12. 46 CFR 32.75-5 - Hull requirements; general-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Hull requirements; general-TB/ALL. 32.75-5 Section 32.75-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior to November 10...

  13. A case study on displacement analysis of Vasa warship

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Johansson, Filippa; Karlsson, Lenita; Horemuz, Milan

    2018-04-01

    Monitoring deformation of man-made structures is very important to prevent them from a risk of collapse and save lives. Such a process is also used for monitoring change in historical objects, which are deforming continuously with time. An example of this is the Vasa warship, which was under water for about 300 years. The ship was raised from the bottom of the sea and is kept in the Vasa museum in Stockholm. A geodetic network with points on the museum building and the ship's body has been established and measured for 12 years for monitoring the ship's deformation. The coordinate time series of each point on the ship and their uncertainties have been estimated epoch-wisely. In this paper, our goal is to statistically analyse the ship's hull movements. By fitting a quadratic polynomial to the coordinate time series of each point of the hull, its acceleration and velocity are estimated. In addition, their significance is tested by comparing them with their respective estimated errors after the fitting. Our numerical investigations show that the backside of the ship, having highest elevation and slope, has moved vertically faster than the other places by a velocity and an acceleration of about 2 mm/year and 0.1 mm/year2, respectively and this part of the ship is the weakest with a higher risk of collapse. The central parts of the ship are more stable as the ship hull is almost vertical and closer to the floor. Generally, the hull is moving towards its port and downwards

  14. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2012-10-01 2012-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  15. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2013-10-01 2013-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  16. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  17. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2014-10-01 2014-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  18. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2011-10-01 2011-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  19. Global strength assessment in oblique waves of a large gas carrier ship, based on a non-linear iterative method

    NASA Astrophysics Data System (ADS)

    Domnisoru, L.; Modiga, A.; Gasparotti, C.

    2016-08-01

    At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.

  20. 46 CFR 92.07-10 - Construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Construction. 92.07-10 Section 92.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 92.07-10 Construction. (a) The hull, superstructure, structural...

  1. Tanker Structural Analysis for Minor Collisions

    DTIC Science & Technology

    1975-12-01

    transverse deflections of the stiffened hull may be assumed to vary linearly from the elevation of the forefoot of the striking bow down to zero at the bilge...Transverse de- flections of the stiffened hull may be assumed to vary linearly from the elevation of the forefoot of the striking bow down to zero... Striking Ship CL L-CL - uer panel 0! Forefoot of Bow of Striking Ship C L,’/Y (Ier rane1) 3d Limit of Shearing Plastic Energy TRANSVERSE SECTION AT WEB

  2. 46 CFR 154.516 - Piping: Hull protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Hull protection. 154.516 Section 154.516 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... and Process Piping Systems § 154.516 Piping: Hull protection. A vessel's hull must be protected from...

  3. 46 CFR 308.107 - War risk hull insurance policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false War risk hull insurance policy. 308.107 Section 308.107 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.107 War risk hull insurance policy. Standard Form MA-240...

  4. 46 CFR 131.210 - Hulls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hulls. 131.210 Section 131.210 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings on Vessels § 131.210 Hulls. The hull of each vessel must be marked as required by parts 67 and 69 of this chapter. ...

  5. 46 CFR 91.25-25 - Hull equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull equipment. 91.25-25 Section 91.25-25 Shipping COAST... CERTIFICATION Inspection for Certification § 91.25-25 Hull equipment. (a) At each inspection for certification and periodic inspection, the inspectors shall conduct the following tests and inspections of hull...

  6. 46 CFR 115.802 - Hull.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull. 115.802 Section 115.802 Shipping COAST GUARD....802 Hull. (a) At each initial and subsequent inspection for certification of a vessel, the owner or managing operator shall be prepared to conduct tests and have the vessel ready for inspections of the hull...

  7. 46 CFR 189.25-25 - Hull equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull equipment. 189.25-25 Section 189.25-25 Shipping... CERTIFICATION Inspection for Certification § 189.25-25 Hull equipment. (a) At each inspection for certification and periodic inspection the inspector shall conduct the following tests and inspections of hull...

  8. 46 CFR 308.107 - War risk hull insurance policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false War risk hull insurance policy. 308.107 Section 308.107 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.107 War risk hull insurance policy. Standard Form MA-240...

  9. 46 CFR 308.107 - War risk hull insurance policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false War risk hull insurance policy. 308.107 Section 308.107 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.107 War risk hull insurance policy. Standard Form MA-240...

  10. 46 CFR 308.107 - War risk hull insurance policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false War risk hull insurance policy. 308.107 Section 308.107 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.107 War risk hull insurance policy. Standard Form MA-240...

  11. 46 CFR 308.107 - War risk hull insurance policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false War risk hull insurance policy. 308.107 Section 308.107 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.107 War risk hull insurance policy. Standard Form MA-240...

  12. 46 CFR 154.421 - Allowable stress.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Allowable stress. 154.421 Section 154.421 Shipping COAST... § 154.421 Allowable stress. The allowable stress for the integral tank structure must meet the American Bureau of Shipping's allowable stress for the vessel's hull published in “Rules for Building and Classing...

  13. 46 CFR 154.421 - Allowable stress.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Allowable stress. 154.421 Section 154.421 Shipping COAST... § 154.421 Allowable stress. The allowable stress for the integral tank structure must meet the American Bureau of Shipping's allowable stress for the vessel's hull published in “Rules for Building and Classing...

  14. 46 CFR 154.421 - Allowable stress.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Allowable stress. 154.421 Section 154.421 Shipping COAST... § 154.421 Allowable stress. The allowable stress for the integral tank structure must meet the American Bureau of Shipping's allowable stress for the vessel's hull published in “Rules for Building and Classing...

  15. 46 CFR 154.421 - Allowable stress.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Allowable stress. 154.421 Section 154.421 Shipping COAST... § 154.421 Allowable stress. The allowable stress for the integral tank structure must meet the American Bureau of Shipping's allowable stress for the vessel's hull published in “Rules for Building and Classing...

  16. 46 CFR 154.421 - Allowable stress.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Allowable stress. 154.421 Section 154.421 Shipping COAST... § 154.421 Allowable stress. The allowable stress for the integral tank structure must meet the American Bureau of Shipping's allowable stress for the vessel's hull published in “Rules for Building and Classing...

  17. 46 CFR 167.15-27 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Definitions relating to hull examinations. 167.15-27... PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-27 Definitions relating to hull examinations. As used... slipway for an examination of all accessible parts of the vessel's underwater body and all through-hull...

  18. 46 CFR 167.15-25 - Inspection standards for hulls, boilers and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection standards for hulls, boilers and machinery... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-25 Inspection standards for hulls, boilers and... Classing Steel Vessels” regarding the construction of hulls, boilers and machinery in effect on the date of...

  19. 46 CFR 111.05-11 - Hull return.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull return. 111.05-11 Section 111.05-11 Shipping COAST... REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-11 Hull return. (a) A vessel's hull must not carry current as a conductor except for the following systems: (1) Impressed current...

  20. 46 CFR 71.25-25 - Hull equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Hull equipment. 71.25-25 Section 71.25-25 Shipping COAST... Inspection § 71.25-25 Hull equipment. (a) At each annual inspection, the inspector shall conduct the following tests and inspections of hull equipment: (1) All subdivision bulkheads shall be examined to...

  1. 46 CFR 45.135 - Hull openings at or below freeboard deck.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hull openings at or below freeboard deck. 45.135 Section 45.135 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.135 Hull openings at or below freeboard deck. Closures for hull...

  2. 46 CFR 176.655 - Hull examination reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Hull examination reports. 176.655 Section 176.655 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.655 Hull examination reports. (a) If you use only divers for the underwater...

  3. Investigation of impact phenomena on the marine structures: Part I - On the behaviour of thin-walled double bottom tanker during rock-structure interaction

    NASA Astrophysics Data System (ADS)

    Prabowo, A. R.; Cho, H. J.; Byeon, J. H.; Bae, D. M.; Sohn, J. M.

    2018-01-01

    Predicted loads, such as crew, cargo, and structure have been applied as main inputs during ship design and analysis. However, unexpected events on the sea has high possibility to deliver remarkable losses for ship, industry, and environment. Previous oil spill incident by the Exxon Valdez in Alaska is the perfect example which an environmental damage and industry loss are initiated by an impact phenomenon on the ship, i.e. grounding. Even though hull arrangement has adopted double hull system, grounding may threaten ship safety in various scenarios. This situation pushes society to demand sustainable investigation for impact phenomena on water transportation mode to update understanding in the phenomenon and ensure structural safety during ship operation. This work aimed to study structural behaviour of chemical tanker as a marine structure under impact, namely ship grounding. Bottom raking case was considered to be calculated by virtual experiment. The study was performed using nonlinear finite element (FE) method and an idealised geometry of seabed rock would be deployed to be hard obstruction. Observation on the selected crashworthiness criteria, i.e. internal energy and crushing force indicated that as advanced penetration occurred on the ship structure, the absorbed strain energy continued to increase, while major fluctuation appeared during the initial contact between obstruction and ship happened. Damage extent of several structural members during the crushing process was shown, which concluded that the bottom plating had the largest severity in forms of tearing mode among of all members on the bottom structure.

  4. 46 CFR 177.340 - Alternate design considerations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Alternate design considerations. 177.340 Section 177.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.340 Alternate design considerations. When the structure of vessel is of novel design,...

  5. 46 CFR 177.340 - Alternate design considerations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Alternate design considerations. 177.340 Section 177.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.340 Alternate design considerations. When the structure of vessel is of novel design,...

  6. 46 CFR 177.340 - Alternate design considerations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Alternate design considerations. 177.340 Section 177.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.340 Alternate design considerations. When the structure of vessel is of novel design,...

  7. 46 CFR 177.310 - Satisfactory service as a design basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Satisfactory service as a design basis. 177.310 Section... (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.310 Satisfactory service as a design basis. When scantlings for the hull, deckhouse, and frames of the vessel differ from those...

  8. Hydrodynamic Response of a Composite Structure in an Arctic Environment

    DTIC Science & Technology

    2015-06-01

    the navy’s first ship constructed entirely of composite materials. The 24-meter long ship is built from carbon fiber reinforced epoxy. The ship is...allowed for repeatable experimentation. Strain gauges were attached to critical locations of the composite plate towed through the tank . Both plate...SUBJECT TERMS Tow Tank , Fluid Structure Interaction, FSI, Composite Material, E-Glass, ANSYS, Hull Shape, CFX, Arctic. 15. NUMBER OF PAGES 131

  9. 46 CFR 169.239 - Hull.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Hull. 169.239 Section 169.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.239 Hull. At each inspection for certification and periodic inspection, the...

  10. 46 CFR 172.085 - Hull type.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull type. 172.085 Section 172.085 Shipping COAST GUARD... of This Chapter § 172.085 Hull type. If a cargo listed in Table 151.05 of part 151 of this chapter is to be carried, the tank barge must be at least the hull type specified in Table 151.05 of this...

  11. Panel cutting method: new approach to generate panels on a hull in Rankine source potential approximation

    NASA Astrophysics Data System (ADS)

    Choi, Hee-Jong; Chun, Ho-Hwan; Park, Il-Ryong; Kim, Jin

    2011-12-01

    In the present study, a new hull panel generation algorithm, namely panel cutting method, was developed to predict flow phenomena around a ship using the Rankine source potential based panel method, where the iterative method was used to satisfy the nonlinear free surface condition and the trim and sinkage of the ship was taken into account. Numerical computations were performed to investigate the validity of the proposed hull panel generation algorithm for Series 60 (CB=0.60) hull and KRISO container ship (KCS), a container ship designed by Maritime and Ocean Engineering Research Institute (MOERI). The computational results were validated by comparing with the existing experimental data.

  12. 3D Viscous Free-Surface Flow around a Combatant Ship Hull

    NASA Astrophysics Data System (ADS)

    Pacuraru, Florin; Lungu, Adrian; Maria, Viorel

    2009-09-01

    The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise and their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship hull is presented in the paper. For practical reasons, the technique couples a body forces method and a RANS-based finite volume solver to account for the interactions between the hull and the appendages mounted on it: propellers, rudders, shaft lines, bossings and brackets. The chimera approach has been found the most versatile way for grid generation of hull and appendages.

  13. 46 CFR 190.01-15 - Special consideration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Special consideration. 190.01-15 Section 190.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS CONSTRUCTION AND ARRANGEMENT Hull Structure § 190.01-15 Special consideration. (a) Special consideration will...

  14. 46 CFR 174.225 - Hull penetrations and shell connections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Hull penetrations and shell connections. 174.225 Section 174.225 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... § 174.225 Hull penetrations and shell connections. Each overboard discharge and shell connection except...

  15. 46 CFR 174.225 - Hull penetrations and shell connections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull penetrations and shell connections. 174.225 Section 174.225 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... § 174.225 Hull penetrations and shell connections. Each overboard discharge and shell connection except...

  16. 46 CFR 167.15-27 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... slipway for an examination of all accessible parts of the vessel's underwater body and all through-hull... Section 167.15-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-27 Definitions relating to hull examinations. As used...

  17. 46 CFR 167.15-27 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... slipway for an examination of all accessible parts of the vessel's underwater body and all through-hull... Section 167.15-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-27 Definitions relating to hull examinations. As used...

  18. 46 CFR 185.602 - Hull markings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull markings. 185.602 Section 185.602 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Markings Required § 185.602 Hull markings. (a) Each vessel must be marked as required by part 67...

  19. 46 CFR 122.602 - Hull markings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull markings. 122.602 Section 122.602 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150....602 Hull markings. (a) Each vessel must be marked as required by part 67, subpart I, of this chapter...

  20. 46 CFR 45.143 - Hull openings above freeboard deck.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hull openings above freeboard deck. 45.143 Section 45.143 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.143 Hull openings above freeboard deck. Closures for openings above...

  1. Future Fleet Project. What Can We Afford

    DTIC Science & Technology

    2016-12-21

    like ships based on an LCS hull with improved armor and armament. These twenty ships would be preceded by eight transitional LCS THE JOHNS HOPKINS...large aviation-ship hull for Navy sea-control/power-projection air wings and for Marine Corps vertical-raid/assault-air wings, reconfigurable...or antisubmarine warfare (ASW) within a common hull type that can self-defend in peacetime but aggregate to fight offensively in wartime • Tactical

  2. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation (other than machinery spaces). 169.315 Section 169.315 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Hull Structure § 169.315 Ventilation (other than machinery...

  3. 46 CFR 190.01-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Application. 190.01-1 Section 190.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS CONSTRUCTION AND ARRANGEMENT Hull Structure § 190.01-1 Application. (a) The provisions of this subpart, with the exception of...

  4. 46 CFR 97.40-5 - Hull markings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull markings. 97.40-5 Section 97.40-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings on Vessels § 97.40-5 Hull markings. Vessels shall be marked as required by parts 67 and 69 of this...

  5. 46 CFR 196.40-5 - Hull markings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull markings. 196.40-5 Section 196.40-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Markings on Vessels § 196.40-5 Hull markings. Vessels shall be marked as required by parts 67 and 69 of this chapter...

  6. 46 CFR 128.230 - Penetrations of hulls and watertight bulkheads-materials and pressure design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Penetrations of hulls and watertight bulkheads-materials and pressure design. 128.230 Section 128.230 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... § 128.230 Penetrations of hulls and watertight bulkheads—materials and pressure design. (a) Each piping...

  7. 46 CFR 78.50-5 - Hull markings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Hull markings. 78.50-5 Section 78.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings on Vessels § 78.50-5 Hull markings. Vessels shall be marked as required by parts 67 and 69 of this chapter. [CGD 72...

  8. 46 CFR 115.655 - Hull examination reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Hull examination reports. 115.655 Section 115.655 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 115.655...

  9. 46 CFR 42.09-30 - Additional survey requirements for steel-hull vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Additional survey requirements for steel-hull vessels. 42.09-30 Section 42.09-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD...-30 Additional survey requirements for steel-hull vessels. (a) In addition to the requirements in § 42...

  10. 46 CFR 42.09-30 - Additional survey requirements for steel-hull vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Additional survey requirements for steel-hull vessels. 42.09-30 Section 42.09-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD...-30 Additional survey requirements for steel-hull vessels. (a) In addition to the requirements in § 42...

  11. 46 CFR 42.09-30 - Additional survey requirements for steel-hull vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Additional survey requirements for steel-hull vessels. 42.09-30 Section 42.09-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD...-30 Additional survey requirements for steel-hull vessels. (a) In addition to the requirements in § 42...

  12. 46 CFR 116.340 - Alternate design considerations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Alternate design considerations. 116.340 Section 116.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS CONSTRUCTION AND ARRANGEMENT Hull Structure § 116.340 Alternate...

  13. 46 CFR 116.340 - Alternate design considerations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Alternate design considerations. 116.340 Section 116.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS CONSTRUCTION AND ARRANGEMENT Hull Structure § 116.340 Alternate...

  14. 46 CFR 177.330 - Sailing vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Sailing vessels. 177.330 Section 177.330 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.330 Sailing vessels. The design, materials, and construction of masts, posts, yards, booms, bowsprits, and standing rigging on a sailing vessel must be suitable...

  15. 46 CFR 177.330 - Sailing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Sailing vessels. 177.330 Section 177.330 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.330 Sailing vessels. The design, materials, and construction of masts, posts, yards, booms, bowsprits, and standing rigging on a sailing vessel must be suitable...

  16. 46 CFR 116.330 - Sailing vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Sailing vessels. 116.330 Section 116.330 Shipping COAST... Structure § 116.330 Sailing vessels. The design, materials, and construction of masts, posts, yards, booms, bowsprits, and standing rigging on a sailing vessel must be suitable for the intended service. The hull...

  17. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of...

  18. 46 CFR 116.330 - Sailing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Sailing vessels. 116.330 Section 116.330 Shipping COAST... Structure § 116.330 Sailing vessels. The design, materials, and construction of masts, posts, yards, booms, bowsprits, and standing rigging on a sailing vessel must be suitable for the intended service. The hull...

  19. Effect of stern hull shape on turning circle of ships

    NASA Astrophysics Data System (ADS)

    Jaswar, Maimun, A.; Wahid, M. A.; Priyanto, A.; Zamani, Pauzi, Saman

    2012-06-01

    Many factors such as: stern hull shape, length, draught, trim, propulsion system and external forces affecting the drift angle influence rate of turn and size of turning circle of ships. This paper discusses turning circle characteristics of U and V stern hull shape of Very Large Crude Oil Carrier (VLCC) ships. The ships have same principal dimension such as length, beam, and draught. The turning circle characteristics of the VLCC ships are simulated at 35 degree of rudder angle. In the analysis, firstly, turning circle performance of U-type VLCC ship is simulated. In the simulation, initial ship speed is determined using given power and rpm. Hydrodynamic derivatives coefficients are determined by including effect of fullness of aft run. Using the obtained, speed and hydrodynamic coefficients, force and moment acting on hull, force and moment induced by propeller, force and moment induced by rudder are determined. Finally, ship trajectory, ratio of speed, yaw angle and drift angle are determined. Results of simulation results of the VLCC ship are compared with the experimental one as validation. Using the same method, V-type VLCC is simulated and the simulation results are compared with U-type VLCC ship. Results shows the turning circle of U-type is larger than V-type due to effect stern hul results of simulation are.

  20. 46 CFR 42.09-35 - Additional survey requirements for wood-hull vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Additional survey requirements for wood-hull vessels. 42.09-35 Section 42.09-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES... Additional survey requirements for wood-hull vessels. (a) In addition to the requirements in § 42.09-25, the...

  1. 46 CFR 42.09-35 - Additional survey requirements for wood-hull vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Additional survey requirements for wood-hull vessels. 42.09-35 Section 42.09-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES... Additional survey requirements for wood-hull vessels. (a) In addition to the requirements in § 42.09-25, the...

  2. 46 CFR 42.09-35 - Additional survey requirements for wood-hull vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Additional survey requirements for wood-hull vessels. 42.09-35 Section 42.09-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES... Additional survey requirements for wood-hull vessels. (a) In addition to the requirements in § 42.09-25, the...

  3. 46 CFR 42.09-35 - Additional survey requirements for wood-hull vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Additional survey requirements for wood-hull vessels. 42.09-35 Section 42.09-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES... Additional survey requirements for wood-hull vessels. (a) In addition to the requirements in § 42.09-25, the...

  4. 46 CFR 128.230 - Penetrations of hulls and watertight bulkheads-materials and pressure design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Penetrations of hulls and watertight bulkheads-materials and pressure design. 128.230 Section 128.230 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Materials and Pressure Design § 128.230 Penetrations of hulls and...

  5. 46 CFR 128.230 - Penetrations of hulls and watertight bulkheads-materials and pressure design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Penetrations of hulls and watertight bulkheads-materials and pressure design. 128.230 Section 128.230 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Materials and Pressure Design § 128.230 Penetrations of hulls and...

  6. 46 CFR 42.09-35 - Additional survey requirements for wood-hull vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Additional survey requirements for wood-hull vessels. 42.09-35 Section 42.09-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES... Additional survey requirements for wood-hull vessels. (a) In addition to the requirements in § 42.09-25, the...

  7. 46 CFR 115.645 - Alternative Hull Examination (AHE) Procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Alternative Hull Examination (AHE) Procedure. 115.645... AND CERTIFICATION Hull and Tailshaft Examinations § 115.645 Alternative Hull Examination (AHE... underwater hull plating and a detailed examination of all hull welds, propellers, tailshafts, rudders, and...

  8. 46 CFR 190.01-5 - Vessels subject to load line.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Vessels subject to load line. 190.01-5 Section 190.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS CONSTRUCTION AND ARRANGEMENT Hull Structure § 190.01-5 Vessels subject to load line. (a) For vessels assigned a...

  9. THE EFFECT OF FORWARD SPEED ON DAMPING FOR A VARIETY OF SHIP TYPES AS CALCULATED BY THIN SHIP THEORY,

    DTIC Science & Technology

    Since the damping coefficients play a predominant role in the motion response of ships in pitch and heave at resonant frequencies in a seaway, use...was made of two computer programs recently developed at M. I. T. to calculate, by thin ship theory, the effect of ship speed on the damping coefficients...in pitch and heave for four diverse types of ship hulls--cargo ship, tanker, destroyer, and trawler. Results indicate that, for all four hull types

  10. On the structure of viscous flow about the afterbody of hull

    NASA Astrophysics Data System (ADS)

    Yoshida, Osamu; Zhu, Ming; Miyata, Hideaki

    1993-09-01

    A finite-volume method is applied to a flow about full ship models in the curvilinear coordinate system. Simulations are carried out for SR196 frame-line series. The simulated results show the difference of the wake and the longitudinal vorticity between the different hull forms. The comparisons between simulated and measured results show qualitative agreements in the wake distributions near the propeller disk circumference.

  11. Inspecting the inside of underwater hull

    NASA Astrophysics Data System (ADS)

    Valkovic, Vladivoj; Sudac, Davorin

    2009-05-01

    In order to demonstrate the possibility of identifying the material within ship's underwater hull, sunken ships and other objects on the sea floor tests with the 14 MeV sealed tube neutron generator incorporated inside a small submarine submerged in the test basin filled with sea water have been performed. Results obtained for inspection of diesel fuel and explosive presence behind single and double hull constructions are presented.

  12. 46 CFR 32.70-5 - Hull requirements; general-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hull requirements; general-TB/ALL. 32.70-5 Section 32.70..., AND HULL REQUIREMENTS Hull Requirements for Steel Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.70-5 Hull requirements; general—TB/ALL. The scantlings, material, and workmanship, the...

  13. 46 CFR 32.75-5 - Hull requirements; general-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hull requirements; general-TB/ALL. 32.75-5 Section 32.75..., AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.75-5 Hull requirements; general—TB/ALL. The scantlings, material, and workmanship, and the...

  14. Structural analysis of a ship on global aspect using ANSYS

    NASA Astrophysics Data System (ADS)

    Rahman, M. Muzibur; Kamol, Rajia Sultana; Islam, Reyana

    2017-12-01

    Ship is a complex geometry which undergoes a combination of loadings such as hydrostatic, hydrodynamic, wind, wave etc. at sea and thus adequate strength in a ship has always been one of the most challenging tasks for the ship designers. International Maritime Organization (IMO) and classification societies are providing the standards to ensure the adequacy of strength for the ship against all demands throughout its service life. Thus, structural analysis is needed to assess the overall strength of hull, and the means in this regard are based on finite element method which may be applied either local or global aspect of the ship. This paper is an attempt to carry out the structural analysis of a ship in global aspect using ANSYS software to locate the most stress concentration and deformed area, which will have ultimate effect on fatigue fracture.

  15. 46 CFR 116.300 - Structural design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply... the vessel. (a) Steel hull vessels: (1) Rules and Regulations for the Classification of Yachts and Small Craft, Lloyd's Register of Shipping (Lloyd's); or (2) Rules for Building and Classing Steel...

  16. 46 CFR 116.300 - Structural design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply... the vessel. (a) Steel hull vessels: (1) Rules and Regulations for the Classification of Yachts and Small Craft, Lloyd's Register of Shipping (Lloyd's); or (2) Rules for Building and Classing Steel...

  17. 46 CFR 116.300 - Structural design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply... the vessel. (a) Steel hull vessels: (1) Rules and Regulations for the Classification of Yachts and Small Craft, Lloyd's Register of Shipping (Lloyd's); or (2) Rules for Building and Classing Steel...

  18. 46 CFR 116.300 - Structural design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply... the vessel. (a) Steel hull vessels: (1) Rules and Regulations for the Classification of Yachts and Small Craft, Lloyd's Register of Shipping (Lloyd's); or (2) Rules for Building and Classing Steel...

  19. 46 CFR 116.300 - Structural design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply... the vessel. (a) Steel hull vessels: (1) Rules and Regulations for the Classification of Yachts and Small Craft, Lloyd's Register of Shipping (Lloyd's); or (2) Rules for Building and Classing Steel...

  20. Evaluating Effectiveness of a Frigate in an Anti-Air Warfare (AAW) Environment

    DTIC Science & Technology

    2016-06-01

    missions to accomplish. Both studies are used in ship design to determine the ship’s required combat capabilities before finalizing the hull design. This...accomplish. Both studies are used in ship design to determine the ship’s required combat capabilities before finalizing the hull design. This...capabilities should be determined before the ship’s hull design is complete to make operational effectiveness independent from physical design considerations

  1. Study on photovoltaic power system on ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katagi, Takeshi; Fujii, Yoshimi; Nishikawa, Eiichi

    1995-11-01

    This paper presents the application of photovoltaic power systems to ships. Two types of leisure or fishing boats powered by photovoltaics are designed. The boats described are single hull and catamaran type with twin hulls. The design of a new electric power system using a photovoltaic power system in a harbor ship having 20 tons is also proposed. The results of this study show that the photovoltaic power system can apply to small ships.

  2. EFFECTS OF COMPOSITION ON THE MECHANICAL PROPERTIES OF NI-CR-MO-CO FILLER METALS.

    DTIC Science & Technology

    STEEL, WELDING RODS), CHEMICAL ANALYSIS, CARBON ALLOYS , COBALT ALLOYS , CHROMIUM ALLOYS , MOLYBDENUM ALLOYS , NICKEL ALLOYS , MARAGING STEELS...ALUMINUM COMPOUNDS, TITANIUM , NONMETALS, SHIP HULLS, SHIP PLATES, SUBMARINE HULLS, WELDING , WELDS , MECHANICAL PROPERTIES, STATISTICAL ANALYSIS, MICROSTRUCTURE.

  3. 46 CFR 115.630 - The Alternative Hull Examination (AHE) Program application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false The Alternative Hull Examination (AHE) Program... PASSENGERS INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 115.630 The Alternative Hull... hull examination date to the Officer in Charge, Marine Inspection (OCMI) who will oversee the survey...

  4. 46 CFR 176.655 - Hull examination reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull examination reports. 176.655 Section 176.655... TONS) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.655 Hull examination reports. (a) If you use only divers for the underwater survey portion of the Alternative Hull Examination (AHE...

  5. 46 CFR 115.655 - Hull examination reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull examination reports. 115.655 Section 115.655... CERTIFICATION Hull and Tailshaft Examinations § 115.655 Hull examination reports. (a) If you use only divers for the underwater survey portion of the Alternative Hull Examination (AHE), you must provide the Officer...

  6. Transported biofilms and their influence on subsequent macrofouling colonization.

    PubMed

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  7. Research on theoretical optimization and experimental verification of minimum resistance hull form based on Rankine source method

    NASA Astrophysics Data System (ADS)

    Zhang, Bao-Ji; Zhang, Zhu-Xin

    2015-09-01

    To obtain low resistance and high efficiency energy-saving ship, minimum total resistance hull form design method is studied based on potential flow theory of wave-making resistance and considering the effects of tail viscous separation. With the sum of wave resistance and viscous resistance as objective functions and the parameters of B-Spline function as design variables, mathematical models are built using Nonlinear Programming Method (NLP) ensuring the basic limit of displacement and considering rear viscous separation. We develop ship lines optimization procedures with intellectual property rights. Series60 is used as parent ship in optimization design to obtain improved ship (Series60-1) theoretically. Then drag tests for the improved ship (Series60-1) is made to get the actual minimum total resistance hull form.

  8. 46 CFR 151.10-1 - Barge hull classifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Barge hull classifications. 151.10-1 Section 151.10-1... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Barge Hull Construction Requirements § 151.10-1 Barge hull classifications. (a) Each barge constructed or converted in conformance with this subpart shall be assigned a hull...

  9. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate of...

  10. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of classification...

  11. 46 CFR 176.620 - Description of the Alternative Hull Examination (AHE) Program for certain passenger vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Description of the Alternative Hull Examination (AHE... Hull and Tailshaft Examinations § 176.620 Description of the Alternative Hull Examination (AHE) Program for certain passenger vessels. The Alternative Hull Examination (AHE) Program provides you with an...

  12. 46 CFR 45.153 - Through-hull piping: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Through-hull piping: General. 45.153 Section 45.153... Conditions of Assignment § 45.153 Through-hull piping: General. (a) All through-hull pipes required by this subpart must be made of steel or material equivalent to the hull in strength and fatigue resistance. (b...

  13. 46 CFR 308.100 - Insured amount.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Insured amount. 308.100 Section 308.100 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.100 Insured amount. An applicant for war risk hull insurance shall...

  14. 46 CFR 308.100 - Insured amount.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Insured amount. 308.100 Section 308.100 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.100 Insured amount. An applicant for war risk hull insurance shall...

  15. 46 CFR 308.100 - Insured amount.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Insured amount. 308.100 Section 308.100 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.100 Insured amount. An applicant for war risk hull insurance shall...

  16. 46 CFR 308.100 - Insured amount.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Insured amount. 308.100 Section 308.100 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.100 Insured amount. An applicant for war risk hull insurance shall...

  17. 46 CFR 308.100 - Insured amount.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Insured amount. 308.100 Section 308.100 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.100 Insured amount. An applicant for war risk hull insurance shall...

  18. Free-surface flow around an appended hull

    NASA Astrophysics Data System (ADS)

    Lungu, A.; Pacuraru, F.

    2010-08-01

    The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise as well as their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship is presented in the paper, which describes the solution of a RANS solver coupled with a body force method as an attempt in investigating the flow features around the ship hull equipped with rotating propellers and rudders. A special focus is made on the propeller non-symmetrical inflow field, aimed at obtaining the necessary data for the propulsive performances evaluation as well as for the propeller final design. The reported work allows not only the performance evaluation for the overall performances of a hull, but also leads to the development, implementation and validation of new concepts in modeling the turbulent vortical flows, with direct connection to the ship propulsion problem.

  19. Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating.

    PubMed

    Hunsucker, Kelli Z; Vora, Gary J; Hunsucker, J Travis; Gardner, Harrison; Leary, Dagmar H; Kim, Seongwon; Lin, Baochuan; Swain, Geoffrey

    2018-02-01

    Grooming is a proactive method to keep a ship's hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.

  20. 46 CFR 176.625 - Eligibility requirements for the Alternative Hull Examination (AHE) Program for certain passenger...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Eligibility requirements for the Alternative Hull... CERTIFICATION Hull and Tailshaft Examinations § 176.625 Eligibility requirements for the Alternative Hull... if— (1) It is constructed of steel or aluminum; (2) It has an effective hull protection system; (3...

  1. 46 CFR 32.63-5 - Barge hull classifications-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Barge hull classifications-B/ALL. 32.63-5 Section 32.63..., AND HULL REQUIREMENTS Hull and Cargo Tank Requirements for Tank Barges Constructed or Converted On or After July 1, 1964, and Carrying Certain Dangerous Bulk Cargoes § 32.63-5 Barge hull classifications—B...

  2. 46 CFR 189.40-1 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Definitions relating to hull examinations. 189.40-1 Section 189.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... fuel oil tanks. (c) Underwater survey means the examination, while the vessel is afloat, of all...

  3. 46 CFR 189.40-1 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Definitions relating to hull examinations. 189.40-1 Section 189.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... fuel oil tanks. (c) Underwater survey means the examination, while the vessel is afloat, of all...

  4. 46 CFR 189.40-1 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Definitions relating to hull examinations. 189.40-1 Section 189.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... fuel oil tanks. (c) Underwater survey means the examination, while the vessel is afloat, of all...

  5. 46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Alternative Hull Examination (AHE) Program options... MORE THAN 49 PASSENGERS INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 115.650 Alternative Hull Examination (AHE) Program options: Divers or underwater ROV. To complete your underwater...

  6. 46 CFR 176.630 - The Alternative Hull Examination (AHE) Program application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false The Alternative Hull Examination (AHE) Program... PASSENGER VESSELS (UNDER 100 GROSS TONS) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.630 The Alternative Hull Examination (AHE) Program application. If your vessel meets the eligibility...

  7. 46 CFR 176.660 - Continued participation in the Alternative Hull Examination (AHE) Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Continued participation in the Alternative Hull... (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.660 Continued participation in the Alternative Hull Examination (AHE) Program. (a) To...

  8. 46 CFR 176.650 - Alternative Hull Examination Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Alternative Hull Examination Program options: Divers or...) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.650 Alternative Hull Examination Program options: Divers or underwater ROV. To complete the...

  9. 46 CFR 252.33 - Hull and machinery insurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Hull and machinery insurance. 252.33 Section 252.33... Subsidy Rates § 252.33 Hull and machinery insurance. (a) Subsidy items. The fair and reasonable net premium costs (including stamp taxes) of hull and machinery, increased value, excess general average...

  10. 46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Alternative Hull Examination (AHE) procedure. 71.50-25... INSPECTION AND CERTIFICATION Drydocking § 71.50-25 Alternative Hull Examination (AHE) procedure. (a) To complete the underwater survey you must— (1) Perform a general examination of the underwater hull plating...

  11. 46 CFR 115.660 - Continued participation in the Alternative Hull Examination (AHE) Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Continued participation in the Alternative Hull... MORE THAN 49 PASSENGERS INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 115.660 Continued participation in the Alternative Hull Examination (AHE) Program. (a) To continue to participate in...

  12. 46 CFR 177.340 - Alternate design considerations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Alternate design considerations. 177.340 Section 177.340... TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.340 Alternate design considerations. When the structure of vessel is of novel design, unusual form, or special materials, which cannot be reviewed or...

  13. Survival of ship biofouling assemblages during and after voyages to the Canadian Arctic.

    PubMed

    Chan, Farrah T; MacIsaac, Hugh J; Bailey, Sarah A

    2016-01-01

    Human-mediated vectors often inadvertently translocate species assemblages to new environments. Examining the dynamics of entrained species assemblages during transport can provide insights into the introduction risk associated with these vectors. Ship biofouling is a major transport vector of nonindigenous species in coastal ecosystems globally, yet its magnitude in the Arctic is poorly understood. To determine whether biofouling organisms on ships can survive passages in Arctic waters, we examined how biofouling assemblage structure changed before, during, and after eight round-trip military voyages from temperate to Arctic ports in Canada. Species richness first decreased (~70% loss) and then recovered (~27% loss compared to the original assemblages), as ships travelled to and from the Arctic, respectively, whereas total abundance typically declined over time (~55% total loss). Biofouling community structure differed significantly before and during Arctic transits as well as between those sampled during and after voyages. Assemblage structure varied across different parts of the hull; however, temporal changes were independent of hull location, suggesting that niche areas did not provide protection for biofouling organisms against adverse conditions in the Arctic. Biofouling algae appear to be more tolerant of transport conditions during Arctic voyages than are mobile, sessile, and sedentary invertebrates. Our results suggest that biofouling assemblages on ships generally have poor survivorship during Arctic voyages. Nonetheless, some potential for transporting nonindigenous species to the Arctic via ship biofouling remains, as at least six taxa new to the Canadian Arctic, including a nonindigenous cirripede, appeared to have survived transits from temperate to Arctic ports.

  14. The implementation of the integrated design process in the hole-plan system

    NASA Astrophysics Data System (ADS)

    Ruy, Won-Sun; Ko, Dae-Eun; Yang, Young-Soon

    2012-12-01

    All current shipyards are using the customized CAD/CAM programs in order to improve the design quality and increase the design efficiency. Even though the data structures for ship design and construction are almost completed, the implementation related to the ship design processes are still in progress so that it has been the main causes of the bottleneck and delay during the middle of design process. In this study, we thought that the hole-plan system would be a good example which is remained to be improved. The people of outfitting division who don't have direct authority to edit the structural panels, should request the hull design division to install the holes for the outfitting equipment. For acceptance, they should calculate the hole position, determine the hole type, and find the intersected contour of panel. After consideration of the hull people, the requested holes are manually installed on the hull structure. As the above, many processes are needed such as communication and discussion between the divisions, drawings for hole-plan, and the consideration for the structural or production compatibility. However this iterative process takes a lot of working time and requires mental pressure to the related people and cross-division conflict. This paper will handle the hole-plan system in detail to automate the series of process and minimize the human efforts and time-consumption.

  15. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  16. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  17. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  18. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  19. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...

  20. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...

  1. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...

  2. 46 CFR 182.435 - Integral fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...

  3. 46 CFR 32.70-1 - Application-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-TB/ALL. 32.70-1 Section 32.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All steel hull tank vessels, the construction or conversion of which was started prior to...

  4. 46 CFR 32.70-1 - Application-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Application-TB/ALL. 32.70-1 Section 32.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All steel hull tank vessels, the construction or conversion of which was started prior to...

  5. 46 CFR 32.75-1 - Application-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Application-TB/ALL. 32.75-1 Section 32.75-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All wood hull tank vessels, the construction or conversion of which was started prior to...

  6. 46 CFR 32.75-1 - Application-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-TB/ALL. 32.75-1 Section 32.75-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All wood hull tank vessels, the construction or conversion of which was started prior to...

  7. 46 CFR 32.70-1 - Application-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application-TB/ALL. 32.70-1 Section 32.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All steel hull tank vessels, the construction or conversion of which was started prior to...

  8. 46 CFR 32.70-1 - Application-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Application-TB/ALL. 32.70-1 Section 32.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All steel hull tank vessels, the construction or conversion of which was started prior to...

  9. 46 CFR 32.70-1 - Application-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Application-TB/ALL. 32.70-1 Section 32.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All steel hull tank vessels, the construction or conversion of which was started prior to...

  10. 46 CFR 151.10-1 - Barge hull classifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Barge hull classifications. 151.10-1 Section 151.10-1... classifications. (a) Each barge constructed or converted in conformance with this subpart shall be assigned a hull... the hull type classification for the service for which they were originally approved. Changes in...

  11. 46 CFR 71.50-19 - The Alternative Hull Examination (AHE) Program application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false The Alternative Hull Examination (AHE) Program...) PASSENGER VESSELS INSPECTION AND CERTIFICATION Drydocking § 71.50-19 The Alternative Hull Examination (AHE... apply to the AHE Program. You must submit an application at least 90 days before the requested hull...

  12. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... VESSELS INSPECTION AND CERTIFICATION Inspection of Vessels § 71.15-1 Standards in inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards...

  13. 46 CFR 71.50-15 - Description of the Alternative Hull Examination (AHE) Program for certain passenger vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Description of the Alternative Hull Examination (AHE... Description of the Alternative Hull Examination (AHE) Program for certain passenger vessels. The Alternative Hull Examination (AHE) Program provides you with an alternative to a drydock examination by allowing...

  14. 46 CFR 282.23 - Hull and machinery insurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Hull and machinery insurance. 282.23 Section 282.23... COMMERCE OF THE UNITED STATES Calculation of Subsidy Rates § 282.23 Hull and machinery insurance. (a) Subsidy items. The fair and reasonable net premium costs (including stamp taxes) of hull and machinery...

  15. 46 CFR 115.625 - Eligibility requirements for the Alternative Hull Examination (AHE) Program for certain passenger...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Eligibility requirements for the Alternative Hull... OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 115.625 Eligibility requirements for the Alternative Hull Examination (AHE) Program for certain...

  16. 46 CFR 71.50-27 - Alternative Hull Examination (AHE) program options: Divers or underwater remotely operated...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Alternative Hull Examination (AHE) program options...-27 Alternative Hull Examination (AHE) program options: Divers or underwater remotely operated vehicle... operations; (2) Provide permanent hull markings, a temporary grid system of wires or cables spaced not more...

  17. 46 CFR 71.50-29 - Hull examination reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Hull examination reports. 71.50-29 Section 71.50-29... CERTIFICATION Drydocking § 71.50-29 Hull examination reports. (a) If you use only divers for the underwater survey portion of the Alternative Hull Examination (AHE), you must provide the Officer in Charge, Marine...

  18. 46 CFR 71.50-17 - Eligibility requirements for the Alternative Hull Examination (AHE) Program for certain passenger...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Eligibility requirements for the Alternative Hull...-17 Eligibility requirements for the Alternative Hull Examination (AHE) Program for certain passenger... aluminum; (2) It has an effective hull protection system; (3) It has operated exclusively in fresh water...

  19. 46 CFR 115.620 - Description of the Alternative Hull Examination (AHE) Program for certain passenger vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Description of the Alternative Hull Examination (AHE... ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 115.620 Description of the Alternative Hull Examination (AHE) Program for certain passenger vessels. The Alternative...

  20. 46 CFR 71.50-31 - Continued participation in the Alternative Hull Examination (AHE) program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Continued participation in the Alternative Hull... the Alternative Hull Examination (AHE) program. (a) To continue to participate in the AHE Program, vessel operators must conduct an annual hull condition assessment. At a minimum, vessel operators must...

  1. 46 CFR 169.231 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Definitions relating to hull examinations. 169.231... hull examinations. As used in the part— (a) Drydock examination means hauling out a vessel or placing a... and all through-hull fittings, sea chests, sea valves, sea strainers, and valves for the emergency...

  2. Ballast water treatment systems: design, regulations, and selection under the choice varying priorities.

    PubMed

    Satir, Tanzer

    2014-09-01

    This paper investigates the role of ballast water treatment systems (BWTSs) and proposes a selection procedure for conventional merchant ships based on the financial, legal, and operational circumstances. Through the metallurgical revolution of the nineteenth century, commercial ships are converted to steel hull from wooden structures. By this innovative shift, use of ballast water became an essential part of ships for improving propulsion and stability while reducing stress on hull (instead of rocks). However, the content of ballast water is emerged since it relocates marine species from an ecological composition (usually cargo discharging port) to another one (loading port). Uncontrolled relocation of marine species may cause severe damage to existing ecological basis on ballast discharging area. BWTSs are developed for ships to eliminate marine species (i.e., aquatic invasive species) content by using a filtering device. It ensures an eco-friendly ballasting and de-ballasting process. The selection of proper BWTS is another debate since the BWTSs are designed with cost-quality and cost (eco)-performance variations. The proposed approach denoted that both tonnage and the age of ship are indicative factors on selection. The cost of installation varies based on installation space and active vs. project vessel cases.

  3. Underwater Nondestructive Testing of Ship Hull Welds

    DTIC Science & Technology

    1979-09-01

    Norske Veritas. 5. Alan Taylor , Underwater Testing, Marine rechnology (Germany) Dec 1971, pp. 251-2. 6. Ship Underwater Maintenance, Evaluation and Repair...11. Peters, V. "NDT for Offshore Drilling Platform Structure," Welding end Metal Fabricatior, Jul 1973, V. 41-7. 12. Taylor , A., "Underwater...N. Cordea, Chairman, Senior Staff MetalZlugiet, ARMCO INC., Middletown, OH Mr. W. C. Brayton , Aset. to Gener•l Manager, Bethlehem Steel Corp

  4. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo tanks-TB/ALL. 32.75-10 Section 32.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron...

  5. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo tanks-TB/ALL. 32.75-10 Section 32.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron...

  6. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo tanks-TB/ALL. 32.75-10 Section 32.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron...

  7. 46 CFR 42.09-30 - Additional survey requirements for steel-hull vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Additional survey requirements for steel-hull vessels...-30 Additional survey requirements for steel-hull vessels. (a) In addition to the requirements in § 42...) When the vessel is in drydock, the hull plating, etc., shall be examined. (c) The holds, 'tween decks...

  8. 50 CFR 218.74 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Surface ships or aircraft conducting high-frequency or non-hull-mounted mid-frequency active sonar...) When marine mammals are visually detected, the Navy shall ensure that high-frequency and non-hull... using low-frequency or hull-mounted mid-frequency active sonar sources associated with anti-submarine...

  9. 46 CFR 31.10-20 - Definitions relating to hull examinations-T/B ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Definitions relating to hull examinations-T/B ALL. 31.10... CERTIFICATION Inspections § 31.10-20 Definitions relating to hull examinations—T/B ALL. As used in this part— (a... examination of all accessible parts of the vessel's underwater body and all through-hull fittings. (b...

  10. 46 CFR 176.675 - Extension of examination intervals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Extension of examination intervals. 176.675 Section 176... 100 GROSS TONS) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.675 Extension of examination intervals. The intervals between drydock examinations and internal structural examinations...

  11. 46 CFR 189.40-5 - Notice and plans required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION... examination, or underwater survey or whenever repairs are made to the vessel's hull. (c) Each barge that holds... barge undergoes a drydock examination, internal structural examination, or underwater survey or whenever...

  12. 46 CFR 189.40-5 - Notice and plans required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION... examination, or underwater survey or whenever repairs are made to the vessel's hull. (c) Each barge that holds... barge undergoes a drydock examination, internal structural examination, or underwater survey or whenever...

  13. 46 CFR 189.40-5 - Notice and plans required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION... examination, or underwater survey or whenever repairs are made to the vessel's hull. (c) Each barge that holds... barge undergoes a drydock examination, internal structural examination, or underwater survey or whenever...

  14. 46 CFR 189.40-5 - Notice and plans required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION... examination, or underwater survey or whenever repairs are made to the vessel's hull. (c) Each barge that holds... barge undergoes a drydock examination, internal structural examination, or underwater survey or whenever...

  15. 46 CFR 189.40-5 - Notice and plans required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION... examination, or underwater survey or whenever repairs are made to the vessel's hull. (c) Each barge that holds... barge undergoes a drydock examination, internal structural examination, or underwater survey or whenever...

  16. A Sensor System for Detection of Hull Surface Defects

    PubMed Central

    Navarro, Pedro; Iborra, Andrés; Fernández, Carlos; Sánchez, Pedro; Suardíaz, Juan

    2010-01-01

    This paper presents a sensor system for detecting defects in ship hull surfaces. The sensor was developed to enable a robotic system to perform grit blasting operations on ship hulls. To achieve this, the proposed sensor system captures images with the help of a camera and processes them in real time using a new defect detection method based on thresholding techniques. What makes this method different is its efficiency in the automatic detection of defects from images recorded in variable lighting conditions. The sensor system was tested under real conditions at a Spanish shipyard, with excellent results. PMID:22163590

  17. Structural health monitoring for ship structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Charles; Park, Gyuhae; Angel, Marian

    2009-01-01

    Currently the Office of Naval Research is supporting the development of structural health monitoring (SHM) technology for U.S. Navy ship structures. This application is particularly challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with these ships missions, lack of data from known damage conditions, limited sensing that was not designed specifically for SHM, and the management of the vast amounts of data that can be collected during a mission. This paper will first define a statistical pattern recognition paradigm for SHM by describing the four steps of (1)more » Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical Classification of Features as they apply to ship structures. Note that inherent in the last three steps of this process are additional tasks of data cleansing, compression, normalization and fusion. The presentation will discuss ship structure SHM challenges in the context of applying various SHM approaches to sea trials data measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude, the paper will discuss several outstanding issues that need to be addressed before SHM can make the transition from a research topic to actual field applications on ship structures and suggest approaches for addressing these issues.« less

  18. The Use of Simulators in Rules of the Road Training

    DTIC Science & Technology

    2013-12-01

    ships and total losses (collision, contact, fire/explosion, foundering, wrecked /stranded, hull/machinery, missing and other) (from Sampson et al...number of ships and total losses (collision, contact, fire/explosion, foundering, wrecked /stranded, hull/machinery, missing and other) (from Sampson...another vessel at night, it would be a vessel ___ _ o (a) aground (b) constrained by her draft o (c) dredging o (d) moored over a wreck Post

  19. 75 FR 22727 - Defense Federal Acquisition Regulation Supplement; Government-Assigned Serial Number Marking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... numbers, such as tail numbers/hull numbers and equipment registration, in human-readable format on major...., aircraft tail numbers or ship hull numbers in military operations, the number of small entities impacted by... contractors apply Government-assigned serial numbers, such as tail numbers/hull numbers and equipment...

  20. 46 CFR 42.09-30 - Additional survey requirements for steel-hull vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Additional survey requirements for steel-hull vessels...-30 Additional survey requirements for steel-hull vessels. (a) In addition to the requirements in § 42..., peaks, bilges, machinery spaces, and bunkers shall be examined to determine the condition of the framing...

  1. Effect of ship hull form on the resistance penalty from biofouling.

    PubMed

    Oliveira, Dinis; Larsson, Ann I; Granhag, Lena

    2018-03-01

    Hull biofouling is a well-known problem for the shipping industry, leading to increased resistance and fuel consumption. Considering that the effects of hull form on resistance are known to be higher for a less slender hull, it is hypothesised in this paper that the effect of biofouling roughness on resistance is also dependent on the hull form. To test this hypothesis, previously reported full-scale numerical results on a containership are re-analysed. Form effects on roughness penalties, corresponding to K ΔCT  = 0.058 ± 0.025, are observed at a low speed (19 knots, Re s  = 2.29 × 10 9 ), which are however cancelled out by traditionally neglected roughness effects on wave-making resistance at a higher speed (24 knots, Re s  = 2.89 × 10 9 ). It is concluded that hull form effects on biofouling penalties can be significant at low speeds, though not generalisable for higher speeds, namely when wave-making resistance corresponds to ≥ 29% of total resistance.

  2. Energy saving by using asymmetric aftbodies for merchant ships-design methodology, numerical simulation and validation

    NASA Astrophysics Data System (ADS)

    Dang, Jie; Chen, Hao

    2016-12-01

    The methodology and procedures are discussed on designing merchant ships to achieve fully-integrated and optimized hull-propulsion systems by using asymmetric aftbodies. Computational fluid dynamics (CFD) has been used to evaluate the powering performance through massive calculations with automatic deformation algorisms for the hull forms and the propeller blades. Comparative model tests of the designs to the optimized symmetric hull forms have been carried out to verify the efficiency gain. More than 6% improvement on the propulsive efficiency of an oil tanker has been measured during the model tests. Dedicated sea-trials show good agreement with the predicted performance from the test results.

  3. Robotic Stripping

    NASA Technical Reports Server (NTRS)

    2000-01-01

    UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.

  4. 46 CFR 190.01-90 - Vessels contracted for prior to March 1, 1968.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 190.01-90 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS CONSTRUCTION AND ARRANGEMENT Hull Structure § 190.01-90 Vessels contracted for prior to March 1... and alterations may be made to the same standards as the original construction. (b) Conversions, major...

  5. Lamb wave detection of limpet mines on ship hulls.

    PubMed

    Bingham, Jill; Hinders, Mark; Friedman, Adam

    2009-12-01

    This paper describes the use of ultrasonic guided waves for identifying the mass loading due to underwater limpet mines on ship hulls. The Dynamic Wavelet Fingerprint Technique (DFWT) is used to render the guided wave mode information in two-dimensional binary images because the waveform features of interest are too subtle to identify in time domain. The use of wavelets allows both time and scale features from the original signals to be retained, and image processing can be used to automatically extract features that correspond to the arrival times of the guided wave modes. For further understanding of how the guided wave modes propagate through the real structures, a parallel processing, 3D elastic wave simulation is developed using the finite integration technique (EFIT). This full field, technique models situations that are too complex for analytical solutions, such as built up 3D structures. The simulations have produced informative visualizations of the guided wave modes in the structures as well as mimicking directly the output from sensors placed in the simulation space for direct comparison to experiments. Results from both drydock and in-water experiments with dummy mines are also shown.

  6. 77 FR 61401 - Notice of Availability of Government-Owned Inventions; Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... FOR UNMANNED UNDERSEA VEHICLES//Patent No. 7,721,666: HULL-MOUNTED LINE RETRIEVAL AND RELEASE SYSTEM... EXTERNALLY MOUNTED SLEWING CRANE FOR SHIPPING CONTAINERS// Patent No. 7,730,843: HULL-MOUNTED LINE RETRIEVAL...

  7. Comparative Analysis of Potential Auxiliary Icebreaking Devices/Systems for Great Lakes. Volume I.

    DTIC Science & Technology

    1981-06-01

    Archimedes Screw Vehicle Mechanical Impact Device Water Hull Lubrication Systems Low Friction Hull Coatings Stem Knives Bow Ramp A harbor tug with...direct mounting on ships but rather on bow attachments or specialized material handling concepts. Archimedes Screw Vehicle (Figure A-il) The Archimedes ...or pull ships through ice and water. The Archimedes screw works better in a soft pliable terrain than in water or on a hard material such as sheet

  8. Measurement of flows around modern commercial ship models

    NASA Astrophysics Data System (ADS)

    Kim, W. J.; Van, S. H.; Kim, D. H.

    To document the details of flow characteristics around modern commercial ships, global force, wave pattern, and local mean velocity components were measured in the towing tank. Three modern commercial hull models of a container ship (KRISO container ship = KCS) and of two very large crude-oil carriers (VLCCs) with the same forebody and slightly different afterbody (KVLCC and KVLCC2) having bow and stern bulbs were selected for the test. Uncertainty analysis was performed for the measured data using the procedure recommended by the ITTC. Obtained experimental data will provide a good opportunity to explore integrated flow phenomena around practical hull forms of today. Those can be also used as the validation data for the computational fluid dynamics (CFD) code of both inviscid and viscous flow calculations.

  9. A Fully Nonlinear, Dynamically Consistent Numerical Model for Solid-Body Ship Motion. I. Ship Motion with Fixed Heading

    NASA Technical Reports Server (NTRS)

    Lin, Ray-Quing; Kuang, Weijia

    2011-01-01

    In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.

  10. OPERATION HARDTACK. Project 3.3. Shock Loading in Ships from Underwater Bursts and Response of Shipboard Equipment

    DTIC Science & Technology

    1985-09-01

    ke l aBit porn of ceeturlifie (atofer md) Sleeelig Gar Room 1iI ¶1 Fitt’ Natfore eck 7 3IMao hlie 01 A VVi Bolkifuad otiffteel2i 1~ Zn ft ov SIS frst...stiffener flange 33 Too of hull Centerline "R SS A Hull stiffener flange 33 Top of hull Centerline 9 R VM Hull stiffener flange 33 45 dog port from top 45 deg

  11. Air blast injuries killed the crew of the submarine H.L. Hunley.

    PubMed

    Lance, Rachel M; Stalcup, Lucas; Wojtylak, Brad; Bass, Cameron R

    2017-01-01

    The submarine H.L. Hunley was the first submarine to sink an enemy ship during combat; however, the cause of its sinking has been a mystery for over 150 years. The Hunley set off a 61.2 kg (135 lb) black powder torpedo at a distance less than 5 m (16 ft) off its bow. Scaled experiments were performed that measured black powder and shock tube explosions underwater and propagation of blasts through a model ship hull. This propagation data was used in combination with archival experimental data to evaluate the risk to the crew from their own torpedo. The blast produced likely caused flexion of the ship hull to transmit the blast wave; the secondary wave transmitted inside the crew compartment was of sufficient magnitude that the calculated chances of survival were less than 16% for each crew member. The submarine drifted to its resting place after the crew died of air blast trauma within the hull.

  12. Air blast injuries killed the crew of the submarine H.L. Hunley

    PubMed Central

    Stalcup, Lucas; Wojtylak, Brad; Bass, Cameron R.

    2017-01-01

    The submarine H.L. Hunley was the first submarine to sink an enemy ship during combat; however, the cause of its sinking has been a mystery for over 150 years. The Hunley set off a 61.2 kg (135 lb) black powder torpedo at a distance less than 5 m (16 ft) off its bow. Scaled experiments were performed that measured black powder and shock tube explosions underwater and propagation of blasts through a model ship hull. This propagation data was used in combination with archival experimental data to evaluate the risk to the crew from their own torpedo. The blast produced likely caused flexion of the ship hull to transmit the blast wave; the secondary wave transmitted inside the crew compartment was of sufficient magnitude that the calculated chances of survival were less than 16% for each crew member. The submarine drifted to its resting place after the crew died of air blast trauma within the hull. PMID:28832592

  13. Non-cavitating propeller noise modeling and inversion

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Lee, Keunhwa; Seong, Woojae

    2014-12-01

    Marine propeller is the dominant exciter of the hull surface above it causing high level of noise and vibration in the ship structure. Recent successful developments have led to non-cavitating propeller designs and thus present focus is the non-cavitating characteristics of propeller such as hydrodynamic noise and its induced hull excitation. In this paper, analytic source model of propeller non-cavitating noise, described by longitudinal quadrupoles and dipoles, is suggested based on the propeller hydrodynamics. To find the source unknown parameters, the multi-parameter inversion technique is adopted using the pressure data obtained from the model scale experiment and pressure field replicas calculated by boundary element method. The inversion results show that the proposed source model is appropriate in modeling non-cavitating propeller noise. The result of this study can be utilized in the prediction of propeller non-cavitating noise and hull excitation at various stages in design and analysis.

  14. Prediction of induced vibrations for a passenger - car ferry

    NASA Astrophysics Data System (ADS)

    Crudu, L.; Neculet, O.; Marcu, O.

    2016-08-01

    In order to evaluate the ship hull global vibrations, propeller excitation must be properly considered being mandatory to know enough accurate the magnitude of the induced hull pressure impulses. During the preliminary design stages, the pressures induced on the aft part of the ship by the operating propeller can be evaluated based on the guidelines given by the international standards or by the provisions of the Classification Societies. These approximate formulas are taking into account the wake field which, unfortunately, can be only estimated unless experimental towing tank tests are carried out. Another possibility is the numerical evaluation with different Computational Fluid Dynamics (CFD) codes. However, CFD methods are not always easy to be used requiring an accurate description of the hull forms in the aft part of the ship. The present research underlines these aspects during the preliminary prediction of propeller induced vibrations for a double-ended passenger-car ferry propelled by two azimuth fixed pitch thrusters placed at both ends of the ship. The evaluation of the global forced vibration is performed considering the 3D global Finite Element (FE) model, with NX Nastran for Windows. Based on the presented results, the paper provides reliable information to be used during the preliminary design stages.

  15. 46 CFR 167.20-15 - Scupper, sanitary and similar discharges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 167.20-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Hull Requirements, Construction and Arrangement of Nautical School Ships § 167.20-15 Scupper, sanitary and similar discharges. (a) All scupper, sanitary, and other similar...

  16. 46 CFR 167.20-15 - Scupper, sanitary and similar discharges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 167.20-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Hull Requirements, Construction and Arrangement of Nautical School Ships § 167.20-15 Scupper, sanitary and similar discharges. (a) All scupper, sanitary, and other similar...

  17. 46 CFR 167.20-15 - Scupper, sanitary and similar discharges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 167.20-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Hull Requirements, Construction and Arrangement of Nautical School Ships § 167.20-15 Scupper, sanitary and similar discharges. (a) All scupper, sanitary, and other similar...

  18. 46 CFR 167.20-15 - Scupper, sanitary and similar discharges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 167.20-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Hull Requirements, Construction and Arrangement of Nautical School Ships § 167.20-15 Scupper, sanitary and similar discharges. (a) All scupper, sanitary, and other similar...

  19. 46 CFR 167.20-15 - Scupper, sanitary and similar discharges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 167.20-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Hull Requirements, Construction and Arrangement of Nautical School Ships § 167.20-15 Scupper, sanitary and similar discharges. (a) All scupper, sanitary, and other similar...

  20. 4. DETAIL VIEW, LOOKING SOUTH, ACROSS HULL NEAR BOW END, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW, LOOKING SOUTH, ACROSS HULL NEAR BOW END, TOP OF FORWARD STARBOARD CARGO HATCH IN FOREGROUND, OPENING FOR PORT HATCH BEYOND Edward Larrabee, photographer, November 1984 - Shooters Island, Ships Graveyard, Vessel No. 54, Newark Bay, Staten Island (subdivision), Richmond County, NY

  1. 75 FR 22696 - Certifications and Exemptions Under the International Regulations for Preventing Collisions at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ...(a)(i), pertaining to the height placement of the masthead light above the hull; Annex I, paragraph 2...) visibility; rule 21(b) visibility; ship's sides stern in above hull in light to forward light rule 21(c) in...

  2. View of "iron horse" a machine capable of simulating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of "iron horse" - a machine capable of simulating the shape of a hull at any given area in a 1/10 scale. Specific points are identified from 1/10 scale drawings of the ship's body plan. Plastic splines are configured to the body plat at several stations. Points are positioned to specific locations from the body plan over the splines with sufficient gap to insert a piece of electrically conductive paper. The paper is inserted between the points and the splines and forms a section of hull plating at 1/10 scale. An electric current is applied to each point and burns a mark on the paper. The paper is then removed, flattened and now represents a section of hull plating. Using precise photography, the section is projected (as a glass slide) on to a piece of hull plating which may be up to 300 feet long and 8 feet wide. Marks are traced on the plate, which serve as a guide to the cutters who trim the plate to final dimensions. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structural Assembly Shop, League Island, Philadelphia, Philadelphia County, PA

  3. ManTech Affordability for Defense Weapon Systems

    DTIC Science & Technology

    2009-11-01

    the Virginia Class Submarine Development of Friction Stir Welding for Navy Expeditionary Fighting Vehicle (EFV) Hull Components Procurement...Tile 2007 – Translational Friction Stir Welding 2006 – Engine Rotor Life Extension 2006 – Uncooled Focal Plane Array Producibility 2005 – Large...DDG 1000 with Hybrid Laser Arc Welding The Problem: T-Beam stiffeners, used extensively for decks, bulkheads, and other ship structures, are being

  4. Ship Trim Optimization: Assessment of Influence of Trim on Resistance of MOERI Container Ship

    PubMed Central

    Duan, Wenyang

    2014-01-01

    Environmental issues and rising fuel prices necessitate better energy efficiency in all sectors. Shipping industry is a stakeholder in environmental issues. Shipping industry is responsible for approximately 3% of global CO2 emissions, 14-15% of global NOX emissions, and 16% of global SOX emissions. Ship trim optimization has gained enormous momentum in recent years being an effective operational measure for better energy efficiency to reduce emissions. Ship trim optimization analysis has traditionally been done through tow-tank testing for a specific hullform. Computational techniques are increasingly popular in ship hydrodynamics applications. The purpose of this study is to present MOERI container ship (KCS) hull trim optimization by employing computational methods. KCS hull total resistances and trim and sinkage computed values, in even keel condition, are compared with experimental values and found in reasonable agreement. The agreement validates that mesh, boundary conditions, and solution techniques are correct. The same mesh, boundary conditions, and solution techniques are used to obtain resistance values in different trim conditions at Fn = 0.2274. Based on attained results, optimum trim is suggested. This research serves as foundation for employing computational techniques for ship trim optimization. PMID:24578649

  5. 46 CFR 169.231 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and all through-hull fittings, sea chests, sea valves, sea strainers, and valves for the emergency... Section 169.231 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.231 Definitions relating to...

  6. 46 CFR 169.231 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and all through-hull fittings, sea chests, sea valves, sea strainers, and valves for the emergency... Section 169.231 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.231 Definitions relating to...

  7. 46 CFR 169.231 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and all through-hull fittings, sea chests, sea valves, sea strainers, and valves for the emergency... Section 169.231 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.231 Definitions relating to...

  8. 46 CFR 169.231 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and all through-hull fittings, sea chests, sea valves, sea strainers, and valves for the emergency... Section 169.231 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.231 Definitions relating to...

  9. 46 CFR 176.635 - Preliminary examination requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Preliminary examination requirements. 176.635 Section... (UNDER 100 GROSS TONS) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.635 Preliminary examination requirements. (a) If you exclusively use divers to examine the underwater hull plating, you must...

  10. 77 FR 13970 - Certifications and Exemptions Under the International Regulations for Preventing Collisions at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... placement of the forward anchor light above the hull; Annex I, paragraph 3(b), pertaining to the location of...; visibility; ship's sides stern in hull in forward light in rule 21(a) rule 21(b) rule 21(c) in meters meters...

  11. 46 CFR 308.103 - Insured amounts under interim binder.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 308.103 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.103 Insured amounts under interim binder. (a... chapter. (b) Insurance risks. Insurance risks covered by the terms of the standard form of war risk hull...

  12. 46 CFR 308.103 - Insured amounts under interim binder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 308.103 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.103 Insured amounts under interim binder. (a... chapter. (b) Insurance risks. Insurance risks covered by the terms of the standard form of war risk hull...

  13. 46 CFR 308.103 - Insured amounts under interim binder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 308.103 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.103 Insured amounts under interim binder. (a... chapter. (b) Insurance risks. Insurance risks covered by the terms of the standard form of war risk hull...

  14. 46 CFR 308.103 - Insured amounts under interim binder.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 308.103 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.103 Insured amounts under interim binder. (a... chapter. (b) Insurance risks. Insurance risks covered by the terms of the standard form of war risk hull...

  15. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  16. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  17. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  18. 46 CFR 308.106 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false [Reserved] 308.106 Section 308.106 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.106 [Reserved] ...

  19. 46 CFR 308.106 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false [Reserved] 308.106 Section 308.106 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.106 [Reserved] ...

  20. 46 CFR 308.106 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false [Reserved] 308.106 Section 308.106 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.106 [Reserved] ...

  1. 46 CFR 308.106 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false [Reserved] 308.106 Section 308.106 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.106 [Reserved] ...

  2. 46 CFR 308.101 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false [Reserved] 308.101 Section 308.101 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.101 [Reserved] ...

  3. 46 CFR 308.101 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false [Reserved] 308.101 Section 308.101 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.101 [Reserved] ...

  4. 46 CFR 308.101 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false [Reserved] 308.101 Section 308.101 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.101 [Reserved] ...

  5. 46 CFR 308.106 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false [Reserved] 308.106 Section 308.106 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.106 [Reserved] ...

  6. 46 CFR 308.101 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false [Reserved] 308.101 Section 308.101 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.101 [Reserved] ...

  7. 46 CFR 308.101 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false [Reserved] 308.101 Section 308.101 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.101 [Reserved] ...

  8. A new bioassay for the inspection and identification of TBT-containing antifouling paint.

    PubMed

    Gueuné, Hervé; Thouand, Gérald; Durand, Marie-José

    2009-11-01

    Since the 1960s tributyl (TBT)-based antifouling paints are widely applied to protect ship's hulls from biofouling. Due to its high toxicity to aquatic ecosystem most of the countries (28 nations in 2008) signed the AFS convention to control the use of harmful antifouling systems on ships. Nevertheless there is currently no simple method to control the presence of organotin in paint. In this study, we propose a bioassay based on the use of a recombinant bioluminescent bacteria to detect directly in paint the presence of TBT. We also propose a simple device as an inspection system to control the absence of organotin in the ship's hull paint. The presence of organotin could be revealed in less than three hours.

  9. 46 CFR 308.103 - Insured amounts under interim binder.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 308.103 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.103 Insured amounts under interim binder. (a... the terms of the standard form of war risk hull insurance policy (§ 308.107), except damage to or...

  10. 46 CFR 308.102 - Issuance of interim binder; terms and conditions; fees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... 308.102 Section 308.102 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.102 Issuance of interim binder... the terms, conditions, and warranties contained in the application for war risk hull and disbursements...

  11. 46 CFR 308.102 - Issuance of interim binder; terms and conditions; fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... 308.102 Section 308.102 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.102 Issuance of interim binder... the terms, conditions, and warranties contained in the application for war risk hull and disbursements...

  12. 46 CFR 308.102 - Issuance of interim binder; terms and conditions; fees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... 308.102 Section 308.102 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.102 Issuance of interim binder... the terms, conditions, and warranties contained in the application for war risk hull and disbursements...

  13. 46 CFR 308.102 - Issuance of interim binder; terms and conditions; fees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... 308.102 Section 308.102 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.102 Issuance of interim binder... the terms, conditions, and warranties contained in the application for war risk hull and disbursements...

  14. 46 CFR 308.102 - Issuance of interim binder; terms and conditions; fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... 308.102 Section 308.102 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.102 Issuance of interim binder... the terms, conditions, and warranties contained in the application for war risk hull and disbursements...

  15. 46 CFR 249.9 - American market participation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false American market participation. 249.9 Section 249.9... OPERATORS APPROVAL OF UNDERWRITERS FOR MARINE HULL INSURANCE § 249.9 American market participation. (a... to the American marine insurance market the opportunity to compete for the placement of marine hull...

  16. Reducing Manpower for a Technologically Advanced Ship

    DTIC Science & Technology

    2010-01-27

    Watchstations by 84% (119 to 34) “ Autonomic ” Fire Suppression System AFSS is designed to automatically: (1) Isolate damage to firemain piping... System (IPS) Advanced VLS Autonomic Fire Suppression Hull Form Scale Models Total Ship Computing Environment (TSCE) Integrated Undersea...Warfare (IUSW) System ( AFSS ) 8 Total Ship Organization Ship C3I Engage Support Technical Director TSCEI Sense Integrated Product Teams TSSE Director

  17. 7. GENERAL VIEW OF PLANER AND SHIPPING COMPLEX FROM EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. GENERAL VIEW OF PLANER AND SHIPPING COMPLEX FROM EAST END OF MAIN MILL BUILDING. NOTE TIMBER ROLL CASE AND BEAM HOIST IN FOREGROUND. - Hull-Oakes Lumber Company, 23837 Dawson Road, Monroe, Benton County, OR

  18. Assessment regarding the use of the computer aided analytical models in the calculus of the general strength of a ship hull

    NASA Astrophysics Data System (ADS)

    Hreniuc, V.; Hreniuc, A.; Pescaru, A.

    2017-08-01

    Solving a general strength problem of a ship hull may be done using analytical approaches which are useful to deduce the buoyancy forces distribution, the weighting forces distribution along the hull and the geometrical characteristics of the sections. These data are used to draw the free body diagrams and to compute the stresses. The general strength problems require a large amount of calculi, therefore it is interesting how a computer may be used to solve such problems. Using computer programming an engineer may conceive software instruments based on analytical approaches. However, before developing the computer code the research topic must be thoroughly analysed, in this way being reached a meta-level of understanding of the problem. The following stage is to conceive an appropriate development strategy of the original software instruments useful for the rapid development of computer aided analytical models. The geometrical characteristics of the sections may be computed using a bool algebra that operates with ‘simple’ geometrical shapes. By ‘simple’ we mean that for the according shapes we have direct calculus relations. In the set of ‘simple’ shapes we also have geometrical entities bounded by curves approximated as spline functions or as polygons. To conclude, computer programming offers the necessary support to solve general strength ship hull problems using analytical methods.

  19. CFD investigation of pentamaran ship model with chine hull form on the resistance characteristics

    NASA Astrophysics Data System (ADS)

    Yanuar; Sulistyawati, W.

    2018-03-01

    This paper presents an investigation of pentamaran hull form with chine hull form to the effects of outriggers position, asymmetry, and deadrise angles on the resistance characteristics. The investigation to the resistance characteristics by modelling pentamaran hull form using chine with symmetrical main hull and asymmetric outboard on the variation deadrise angles: 25°, 30°, 35° and Froude number 0,1 to 0,7. On calm water resistance characteristics of six pentamaran models with chine-hull form examined by variation of deadrise angles by using CFD. Comparation with Wigley hull form, the maximum resistance drag reduction of the chine hull form was reduced by 15.81% on deadrise 25°, 13.8% on deadrise 30°, and 20.38% on deadrise 35°. While the smallest value of total resistance coefficient was generated from chine 35° at R/L:1/14 and R/L:1/7. Optimum hull form for minimum resistance has been obtained, so it is interesting to continue with angle of entrance and stem angle of hull for further research.

  20. Maritime industry : as U.S. single-hull oil vessels are eliminated, few double-hull vessels may replace them

    DOT National Transportation Integrated Search

    2000-04-01

    Ships and barges are a major link in the country's oil transportation network, both for transporting crude oil to U.S. refineries and for transporting refined oil products to market. The Oil Pollution Act of 1990 made extensive changes designed to ma...

  1. Optical Variability and Bottom Classification in Turbid Waters: HyMOM Predictions of the Light Field in Ports and Beneath Ship Hulls

    DTIC Science & Technology

    2006-09-30

    dealing with the bleaching of corals and foraminifera and the photosynthesis of benthic plants. OBJECTIVES The initial objective of this work...of the structural light field around coral heads and other vertical structures should be included in future studies of bleaching of coral and... coral bleaching –Perceptibility problem begun for AUV @2m and @8m above 10m bottom –Higher resolution and higher-speed calculations (e.g. more

  2. Dual-Mode Adhesive Pad

    NASA Technical Reports Server (NTRS)

    Hartz, Leslie

    1994-01-01

    Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.

  3. A comparison of methods for evaluating structure during ship collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammerman, D.J.; Daidola, J.C.

    1996-10-01

    A comparison is provided of the results of various methods for evaluating structure during a ship-to-ship collision. The baseline vessel utilized in the analyses is a 67.4 meter in length displacement hull struck by an identical vessel traveling at speeds ranging from 10 to 30 knots. The structural response of the struck vessel and motion of both the struck and striking vessels are assessed by finite element analysis. These same results are then compared to predictions utilizing the {open_quotes}Tanker Structural Analysis for Minor Collisions{close_quotes} (TSAMC) Method, the Minorsky Method, the Haywood Collision Process, and comparison to full-scale tests. Consideration ismore » given to the nature of structural deformation, absorbed energy, penetration, rigid body motion, and virtual mass affecting the hydrodynamic response. Insights are provided with regard to the calibration of the finite element model which was achievable through utilizing the more empirical analyses and the extent to which the finite element analysis is able to simulate the entire collision event. 7 refs., 8 figs., 4 tabs.« less

  4. An Arsenal Ship Design

    DTIC Science & Technology

    1996-12-01

    151 B. PROPULSION PLANT SELECTION....................................................................... 152 ix C. PROPULSION PLANT LAYOUT...155 D. ELECTRICAL PLANT SELECTION...designed into the hull and power plant and once finalized is only a function of how many miles the ship is to be driven. Decision trade- offs are to

  5. Review of Hull Structural Monitoring Systems for Navy Ships

    DTIC Science & Technology

    2013-05-01

    generally based on the same basic form of S-N curve, different correction methods are used by the various classification societies. ii. Methods for...Likewise there are a number of different methods employed for temperature compensation and these vary depending on the type of gauge, although typically...Analysis, Inc.[30] Figure 8. Examples of different methods of temperature compensation of fibre-optic strain sensors. It is noted in NATO

  6. Hull, Mechanical, and Electrical Equipment Standardization in the U.S. Navy Surface Force: A Case of Competing Objectives and Stakeholder Trade-Off Decisions

    DTIC Science & Technology

    2007-12-14

    successful Standardization Program for Hull, Mechanical, and Electrical (HM&E) equipment and components of ships in the surface force costs the United......standardization will significantly increases the likelihood of achieving transformation successes . Properly identifying and understanding the root cause of a

  7. RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

    NASA Astrophysics Data System (ADS)

    Paik, Kwang-Jun; Park, Hyung-Gil; Seo, Jongsoo

    2013-12-01

    Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

  8. Welding torch trajectory generation for hull joining using autonomous welding mobile robot

    NASA Astrophysics Data System (ADS)

    Hascoet, J. Y.; Hamilton, K.; Carabin, G.; Rauch, M.; Alonso, M.; Ares, E.

    2012-04-01

    Shipbuilding processes involve highly dangerous manual welding operations. Welding of ship hulls presents a hazardous environment for workers. This paper describes a new robotic system, developed by the SHIPWELD consortium, that moves autonomously on the hull and automatically executes the required welding processes. Specific focus is placed on the trajectory control of such a system and forms the basis for the discussion in this paper. It includes a description of the robotic hardware design as well as some methodology used to establish the torch trajectory control.

  9. The interaction of extreme waves with hull elements

    NASA Astrophysics Data System (ADS)

    Galiev, Shamil; Flay, Richard

    2010-05-01

    The problem of the impact of a rogue wave onto a deformable marine structure is formulated in a few publications (see, for example, a short review in http://researchspace.auckland.ac.nz/handle/2292/4474). In this paper the results from numerical and experimental investigations of the effect of cavitation on the deformation of a hull element, loaded by a wall of water, generated by an extreme ocean surface wave are considered. The hull element is modelled as a circular metal plate with the edge of the plate rigidly clamped. The plate surface is much smaller than the surface of the wave front, so that at the initial moment of the interaction, the pressure is constant on the plate surface. At the next instant, because of the plate deformation, axisymmetric loading of the plate occurs. The influences of membrane forces and plastic deformations are ignored, and therefore, the equation of plate motion has the following classical form Eh3(wrrrr+2r -1wrrrr- r-2wrr+r-3wr) = - 121- ν2)[ρhwtt+ δ(r,t)(p+ ρ0a0wt)]. Here w is the plate displacement, subscripts t and rindicate derivatives with respect to time and the radial coordinate, PIC is the plate material density, his the plate thickness, Eis Young's modulus, PIC is Poisson's ratio and p is the pressure of the incident surface wave measured on the wall, PIC is the water density, PIC is the speed of sound in water, and PIC is the normal velocity of the plate. The term PIC takes into account the effect of the deformability of the plate. Obviously, the hull of a vessel is not rigid like a solid wall, but starts to deform and to move. This motion produces a reflected pressure wave, which travels from the hull into the water wave with a magnitude equal to PIC . The normal velocity is positive so the reflected pressure PIC is negative (tensile wave). If the fluid pressure drops below some critical value pk, the wet plate surface separates from the water, and cavitation may be generated. The function δ(r,t) takes into account the effect of the hull cavitation. The function PIC or 0, and is determined during the numerical calculations. Case PIC is valid for the case with no cavitation, and the case δ(r,t) = 0 corresponds to the case with hull cavitation. The results from these calculations allow us to draw the following conclusions. 1) The pressures generated depend greatly on the irregularity of waves. In particular, the shock pressures are affected by this irregularity, making the prediction of their magnitude almost impossible. 2) In the majority of cases, the elastic deformation of thin hull elements by a short duration water wave pressure pulse is accompanied by hull cavitation. The effect of cavitation may be important, provided that the time of loading by the water wall pressure is less than the period of the fundamental frequency of the hull element oscillations. 3) The cavitation zones can enclose practically the whole wet surface and thus completely change the water loading onto the hull element, compared to the pressures that would be developed in the absence of cavitation. 4) The hull element deformation generates surface pressure and cavitation waves. 5) Cavitation interaction of extreme water waves with structures, and hull response, are complex topics, which are not well understood and are expected to be important in the design of advanced ships in the future. 6) The existence of rogue waves makes it important to re-examine some of the ideas developed earlier which are fundamental to merchant ship design.

  10. 46 CFR 32.60-45 - Segregation of spaces containing the emergency source of electric power-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electric power-TB/ALL. 32.60-45 Section 32.60-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed... power—TB/ALL. (a) The provisions of this section shall apply to all vessels contracted for on or after...

  11. 46 CFR 32.60-45 - Segregation of spaces containing the emergency source of electric power-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electric power-TB/ALL. 32.60-45 Section 32.60-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed... power—TB/ALL. (a) The provisions of this section shall apply to all vessels contracted for on or after...

  12. 46 CFR 32.60-45 - Segregation of spaces containing the emergency source of electric power-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electric power-TB/ALL. 32.60-45 Section 32.60-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed... power—TB/ALL. (a) The provisions of this section shall apply to all vessels contracted for on or after...

  13. PIXE Analysis of Metal Hull Bolts From HMB DeBraak

    NASA Astrophysics Data System (ADS)

    Correll, Francis D.; Cole, Lord K.; Slater, Charles J.; Vanhoy, Jeffrey R.; Fithian, Charles H.

    2009-03-01

    HMB DeBraak was a 16-gun British brig-sloop that sank in a squall on May 25, 1798 off Cape Henlopen, Delaware. Silt covered the wooden hull shortly after it sank, preserving it until DeBraak was raised in 1986. The items recovered from the ship include metal bolts that held the hull together. We used PIXE to measure the compositions of 45 of the bolts and found that they are nearly pure copper (98.3% on average), with most also containing small amounts of iron (0.87%), nickel (0.039%), arsenic (0.43%), silver (0.089%), lead (0.18%), and bismuth (0.12%). A few contain a little indium, tin, or antimony, but none contain zinc above the quantization level. The compositions are similar to those reported for 18th-century English copper, but different from several copper alloys also used to make hull bolts. We conclude that, when DeBraak was last fitted out in 1795-1797, the Royal Navy was still using bolts similar to William Forbes's mechanically hardened pure copper bolts. Forbes's process represents the successful innovation and application of new technology in Royal Navy ships during the wars of the late 18th century.

  14. 46 CFR 308.105 - Reporting casualties and filing claims.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Reporting casualties and filing claims. 308.105 Section 308.105 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.105 Reporting casualties and filing claims. All...

  15. 46 CFR 308.105 - Reporting casualties and filing claims.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Reporting casualties and filing claims. 308.105 Section 308.105 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.105 Reporting casualties and filing claims. All...

  16. 46 CFR 308.104 - Additional war risk insurance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Additional war risk insurance. 308.104 Section 308.104 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.104 Additional war risk insurance. Owners or charterers may...

  17. 46 CFR 308.104 - Additional war risk insurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Additional war risk insurance. 308.104 Section 308.104 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.104 Additional war risk insurance. Owners or charterers may...

  18. 46 CFR 309.1 - Procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Procedure. 309.1 Section 309.1 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS VALUES FOR WAR RISK INSURANCE § 309.1 Procedure... vessels upon which interim binders for war risk hull insurance have been issued. Such values shall be...

  19. 46 CFR 308.105 - Reporting casualties and filing claims.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Reporting casualties and filing claims. 308.105 Section 308.105 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.105 Reporting casualties and filing claims. All...

  20. 46 CFR 308.105 - Reporting casualties and filing claims.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Reporting casualties and filing claims. 308.105 Section 308.105 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.105 Reporting casualties and filing claims. All...

  1. 46 CFR 308.105 - Reporting casualties and filing claims.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Reporting casualties and filing claims. 308.105 Section 308.105 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.105 Reporting casualties and filing claims. All...

  2. 46 CFR 309.1 - Procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Procedure. 309.1 Section 309.1 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS VALUES FOR WAR RISK INSURANCE § 309.1 Procedure... vessels upon which interim binders for war risk hull insurance have been issued. Such values shall be...

  3. 46 CFR 309.1 - Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Procedure. 309.1 Section 309.1 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS VALUES FOR WAR RISK INSURANCE § 309.1 Procedure... vessels upon which interim binders for war risk hull insurance have been issued. Such values shall be...

  4. 46 CFR 309.1 - Procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Procedure. 309.1 Section 309.1 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS VALUES FOR WAR RISK INSURANCE § 309.1 Procedure... vessels upon which interim binders for war risk hull insurance have been issued. Such values shall be...

  5. 46 CFR 308.104 - Additional war risk insurance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Additional war risk insurance. 308.104 Section 308.104 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.104 Additional war risk insurance. Owners or charterers may...

  6. 46 CFR 309.1 - Procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Procedure. 309.1 Section 309.1 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS VALUES FOR WAR RISK INSURANCE § 309.1 Procedure... vessels upon which interim binders for war risk hull insurance have been issued. Such values shall be...

  7. 46 CFR 308.104 - Additional war risk insurance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Additional war risk insurance. 308.104 Section 308.104 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.104 Additional war risk insurance. Owners or charterers may...

  8. 46 CFR 308.104 - Additional war risk insurance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Additional war risk insurance. 308.104 Section 308.104 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.104 Additional war risk insurance. Owners or charterers may...

  9. Flow measurement around a model ship with propeller and rudder

    NASA Astrophysics Data System (ADS)

    van, S. H.; Kim, W. J.; Yoon, H. S.; Lee, Y. Y.; Park, I. R.

    2006-04-01

    For the design of hull forms with better resistance and propulsive performance, it is essential to understand flow characteristics, such as wave and wake development, around a ship. Experimental data detailing the local flow characteristics are invaluable for the validation of the physical and numerical modeling of computational fluid dynamics (CFD) codes, which are recently gaining attention as efficient tools for hull form evaluation. This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138,000 m3 LNG carrier model with propeller and rudder. The effects of propeller and rudder on the wake and wave profiles in the stern region are clearly identified. The results contained in this paper can provide an opportunity to explore integrated flow phenomena around a model ship in the self-propelled condition, and can be added to the International Towing Tank Conference benchmark data for CFD validation as the previous KCS and KVLCC cases.

  10. Studies on nano-additive for the substitution of hazardous chemical substances in antifouling coatings for the protection of ship hulls.

    PubMed

    Zhao, Xiaodong; Fan, Weijie; Duan, Jizhou; Hou, Baorong

    2014-07-01

    Adhesion and growth of biofouling organisms have severe influence on the reliability, service life and environmental adaptability of marine ships. Based on the bactericidal capacity of cuprous oxide and photochemical effect of nano-additive, environment-friendly and efficient marine antifouling paints were prepared in this study. The evaluation of the antifouling paints was carried out by the laboratory method using bacteria and phytoplanktonic microorganisms as target organisms, as well as measurements with panels in shallow submergence in natural seawater. Results showed good agreement of all the tests, indicating the remarkable antifouling performance of the paints. To our knowledge, this was one of the first systematic studies on effects of nano-additive for the substitution of hazardous chemical substances in antifouling coatings for the protection of ship hulls by measurements on bacterial inhibition, algal adhesion and growth of large organisms.

  11. Research on design method of the full form ship with minimum thrust deduction factor

    NASA Astrophysics Data System (ADS)

    Zhang, Bao-ji; Miao, Ai-qin; Zhang, Zhu-xin

    2015-04-01

    In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique (SUMT) interior point method of Nonlinear Programming (NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.

  12. 46 CFR 249.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Policy. 249.2 Section 249.2 Shipping MARITIME... UNDERWRITERS FOR MARINE HULL INSURANCE § 249.2 Policy. (a) It is the policy of the Maritime Administration... impediments to competitive maritime operations. (b) It is also the policy of MARAD to require owners of...

  13. 46 CFR 249.2 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Policy. 249.2 Section 249.2 Shipping MARITIME... UNDERWRITERS FOR MARINE HULL INSURANCE § 249.2 Policy. (a) It is the policy of the Maritime Administration... impediments to competitive maritime operations. (b) It is also the policy of MARAD to require owners of...

  14. 46 CFR 116.1020 - Strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Strength. 116.1020 Section 116.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH... Visibility § 116.1020 Strength. Each window, port hole, and its means of attachment to the hull or deck house...

  15. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  16. Large-area thermographic inspection of GRP composite marine vessel hulls

    NASA Astrophysics Data System (ADS)

    Jones, Thomas S.; Berger, Harold; Weaver, Elizabeth

    1993-04-01

    Every year there is an increase in the number of Glass Reinforced Plastic (GRP) composite vessels the Coast Guard inspects. A fast, nondestructive evaluation (NDE) technique is needed to facilitate these inspections. The technique must be suitable for use in field environments. Through a Small Business Innovation Research (SBIR) contract with the Coast Guard R&D Center, Industrial Quality, Inc. has performed a feasibility study evaluating the use of infrared thermography for such applications. The study demonstrated the ability of infrared thermography to detect hidden flaws through a variety of laminates and sandwich panel core materials. Empirical results matched well with analytical results of the sensitivity of the technique to various sizes of discontinuities at different depths. Following the successful SBIR program results, the Coast Guard R&D Center asked IQI to do a survey of the Steam Yacht Medea. The Medea had been repaired by a unique system of laying foam core and fiberglass over the ship's original steel-clad hull. The hybrid steel/foam core/GRP hull provided an additional structural configuration for the infrared thermography inspection equipment to handle.

  17. Energy behavior on side structure in event of ship collision subjected to external parameters.

    PubMed

    Prabowo, Aditya Rio; Bae, Dong Myung; Sohn, Jung Min; Cao, Bo

    2016-11-01

    The safety of ships in regards to collisions and groundings, as well as the navigational and structural aspects of ships, has been improved and developed up to this day by technical, administrative and nautical parties. The damage resulting from collisions could be reduced through several techniques such as designing appropriate hull structures, ensuring tightness of cargo tanks as well as observation and review on structural behaviors, whilst accounting for all involved parameters. The position during a collision can be influenced by the collisions' location and angle as these parts are included in the external dynamics of ship collisions. In this paper, the results of several collision analyses using the finite element method were used and reviewed regarding the effect of location and angle on energy characteristic. Firstly, the capabilities of the structure and its ability to resist destruction in a collision process were presented and comparisons were made to other collision cases. Three types of collisions were identified based on the relative location of contact points to each other. From the results, it was found that the estimation of internal energy by the damaged ships differed in range from 12%-24%. In the second stage, the results showed that a collision between 30 to 60 degrees produced higher level energy than a collision in the perpendicular position. Furthermore, it was concluded that striking and struck objects in collision contributed to energy and damage shape.

  18. Fouling and ships' hulls: how changing circumstances and spawning events may result in the spread of exotic species.

    PubMed

    Minchin, Dan; Gollasch, Stephan

    2003-04-01

    Organisms fouling ships' hulls are continually in transit worldwide. Although effective antifouling paints incorporating organotins have considerably reduced fouling biomass these paints have a limited period of effectiveness, which may be less than the ships' inter-docking period, depending on sea temperature and abrasion. Vessels immersed over several years can allow fouling communities to develop and spread beyond their native distribution. This process of establishment is not fully understood. This review proposes that short rapid turn-around of vessels with mature attached biota can result in synchronized spawnings and production of sufficient zygotes to form a founder population. Spawning may be induced by changes in temperature or salinity on entry into a port, according to season. The diversity of taxa in transit on ships' hulls includes commercial molluscs, which have the potential to transmit their diseases or pests to port regions. Several factors may act in the further enhancement of exotic species establishment including changes of in-port berthing regions to more marine conditions. Ships today are generally larger, and faster, and have a high frequency of port visits thereby increasing the number of spawning opportunities, perhaps with a larger inoculum size. With trade expansion, new trading routes, political events and changes in climate, new pathways for invasion will emerge. Greater controls on industrial discharges, improved treatments of urban wastes and better management of waste runoff into rivers as well as a phasing out of organotin antifoulants will mean a reduced toxicity in port regions. This may enable a smaller inoculum to colonize by creating opportunities for establishment not present in the previous 25 years. Some invaders will have unwanted consequences for the environment, economies and human health.

  19. Ship Wakes Generated in a Diffuse Internal Layer

    DTIC Science & Technology

    2015-01-01

    can enhance wake detectability by increasing the surface flows. One example is the reflection of natural waves from a ship hull. A wave carries...be observed using satellite borne optical sensors and high resolution radar. Their existence implies the presence of significant internal layers. The...The principal factors associated with the ship appear to be its principal dimensions (length, beam and draft), its block coefficient and its speed

  20. Calculations of current-induced forces on moored tankers, using the theory of manoeuvring ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirza, S.

    1996-12-31

    The knowledge of current induced loads on moored tankers is important in the design of mooring lines. Normally, these current loads are determined from controlled laboratory experiments and field tests or from the Oil Companies International Marine Forum (OCIMF) data (1977). Chakrabarti (1995) mentions that the validity of some of this data is doubtful, and he conducted some tank tests. To save time involved in preparation of elaborate tank tests, it will be useful to have some analytical tools to calculate the current induced loads. In this paper, an attempt has been made to calculate the lateral forces in currentmore » only conditions, using the theory of manoeuvring ships. The manoeuvring model was developed by Wellicome (1981). The sway forces on the hull are modelled by conformal transformation of the hull into a circle plane and applying the flow field. The forces on the bilge keel are modelled by vortex panel method. The results for the simulation are compared with the test results of Chakrabarti (1995). There is good correlation between the experimental and theoretical results for the case of hull with bilge keels. This is true for the streaming flow velocity up to an angle of 45 to the longitudinal direction of the hull. For the case of bare hull, the computational model grossly underpredicts the sway forces. This may be due to the dominance of viscous forces than the potential ones.« less

  1. 46 CFR 32.56-60 - Ventilation ducts-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Ventilation ducts-T/ALL. 32.56-60 Section 32.56-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-60 Ventilation ducts—T/ALL. (a) Each duct for ventilation of Category A machinery spaces that...

  2. 46 CFR 32.56-50 - Combustible veneers-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Combustible veneers-T/ALL. 32.56-50 Section 32.56-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-50 Combustible veneers—T/ALL. (a) Except as provided in paragraph (b) of this section combustible...

  3. 46 CFR 32.56-10 - Navigation positions-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Navigation positions-T/ALL. 32.56-10 Section 32.56-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-10 Navigation positions—T/ALL. (a) No navigation position may be above the cargo area unless it is...

  4. 46 CFR 32.56-60 - Ventilation ducts-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Ventilation ducts-T/ALL. 32.56-60 Section 32.56-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-60 Ventilation ducts—T/ALL. (a) Each duct for ventilation of Category A machinery spaces that...

  5. 46 CFR 32.20-20 - Liquid level gaging-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Liquid level gaging-T/ALL. 32.20-20 Section 32.20-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-20 Liquid level gaging—T/ALL. On tankships, the construction or...

  6. 46 CFR 32.56-35 - Doors-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Doors-T/ALL. 32.56-35 Section 32.56-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS... Doors—T/ALL. (a) Casing doors in category A machinery spaces and all elevator doors must be self-closing...

  7. 46 CFR 32.15-5 - Whistles-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Whistles-T/ALL. 32.15-5 Section 32.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-5 Whistles—T/ALL. (a) [Reserved] (b) On tankships contracted for on and after...

  8. 46 CFR 32.40-15 - Construction-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Construction-T/ALL. 32.40-15 Section 32.40-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-15 Construction—T/ALL. All crew spaces are to be...

  9. 46 CFR 32.40-30 - Messrooms-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Messrooms-T/ALL. 32.40-30 Section 32.40-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-30 Messrooms—T/ALL. (a) Messrooms must be located as...

  10. 46 CFR 32.40-5 - Intent-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Intent-T/ALL. 32.40-5 Section 32.40-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-5 Intent—T/ALL. The accommodations provided for officers and crew on...

  11. 46 CFR 32.15-10 - Sounding machines-T/OCL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Sounding machines-T/OCL. 32.15-10 Section 32.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-10 Sounding machines—T/OCL. All mechanically propelled vessels in...

  12. 46 CFR 32.20-20 - Liquid level gaging-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Liquid level gaging-T/ALL. 32.20-20 Section 32.20-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-20 Liquid level gaging—T/ALL. On tankships, the construction or...

  13. 46 CFR 32.15-10 - Sounding machines-T/OCL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Sounding machines-T/OCL. 32.15-10 Section 32.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-10 Sounding machines—T/OCL. All mechanically propelled vessels in...

  14. 46 CFR 32.56-1 - Application-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-T/ALL. 32.56-1 Section 32.56-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-1 Application—T/ALL. (a)This subpart applies to all tankships that have a keel laying date on or...

  15. 46 CFR 32.40-15 - Construction-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Construction-T/ALL. 32.40-15 Section 32.40-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-15 Construction—T/ALL. All crew spaces are to be...

  16. 46 CFR 32.40-30 - Messrooms-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Messrooms-T/ALL. 32.40-30 Section 32.40-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-30 Messrooms—T/ALL. (a) Messrooms must be located as...

  17. 46 CFR 32.56-5 - General-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false General-T/ALL. 32.56-5 Section 32.56-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS... General—T/ALL. (a) Except as provided in paragraphs (c) and (d) of this section, each category A machinery...

  18. 46 CFR 32.56-1 - Application-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application-T/ALL. 32.56-1 Section 32.56-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-1 Application—T/ALL. (a)This subpart applies to all tankships that have a keel laying date on or...

  19. 46 CFR 32.40-45 - Lighting-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Lighting-T/ALL. 32.40-45 Section 32.40-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-45 Lighting—T/ALL. Each berth must have a light. ...

  20. 46 CFR 32.56-45 - Draft stops-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Draft stops-T/ALL. 32.56-45 Section 32.56-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-45 Draft stops—T/ALL. (a) Where ceilings or linings are fitted in accommodation, service, or...

  1. 46 CFR 32.56-5 - General-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false General-T/ALL. 32.56-5 Section 32.56-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS... General—T/ALL. (a) Except as provided in paragraphs (c) and (d) of this section, each category A machinery...

  2. 46 CFR 32.56-35 - Doors-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Doors-T/ALL. 32.56-35 Section 32.56-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS... Doors—T/ALL. (a) Casing doors in category A machinery spaces and all elevator doors must be self-closing...

  3. 46 CFR 32.15-5 - Whistles-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Whistles-T/ALL. 32.15-5 Section 32.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-5 Whistles—T/ALL. (a) [Reserved] (b) On tankships contracted for on and after...

  4. 46 CFR 32.40-5 - Intent-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Intent-T/ALL. 32.40-5 Section 32.40-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-5 Intent—T/ALL. The accommodations provided for officers and crew on...

  5. 46 CFR 32.56-45 - Draft stops-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Draft stops-T/ALL. 32.56-45 Section 32.56-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-45 Draft stops—T/ALL. (a) Where ceilings or linings are fitted in accommodation, service, or...

  6. 46 CFR 32.56-10 - Navigation positions-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Navigation positions-T/ALL. 32.56-10 Section 32.56-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-10 Navigation positions—T/ALL. (a) No navigation position may be above the cargo area unless it is...

  7. 46 CFR 32.40-45 - Lighting-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Lighting-T/ALL. 32.40-45 Section 32.40-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-45 Lighting—T/ALL. Each berth must have a light. ...

  8. 46 CFR 32.56-50 - Combustible veneers-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Combustible veneers-T/ALL. 32.56-50 Section 32.56-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-50 Combustible veneers—T/ALL. (a) Except as provided in paragraph (b) of this section combustible...

  9. 46 CFR 176.640 - Pre-survey meeting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pre-survey meeting. 176.640 Section 176.640 Shipping...) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.640 Pre-survey meeting. (a) In advance of each AHE, you must conduct a pre-survey meeting to discuss the details of the AHE procedure with the...

  10. 46 CFR 176.640 - Pre-survey meeting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pre-survey meeting. 176.640 Section 176.640 Shipping...) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.640 Pre-survey meeting. (a) In advance of each AHE, you must conduct a pre-survey meeting to discuss the details of the AHE procedure with the...

  11. 46 CFR 176.640 - Pre-survey meeting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pre-survey meeting. 176.640 Section 176.640 Shipping...) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.640 Pre-survey meeting. (a) In advance of each AHE, you must conduct a pre-survey meeting to discuss the details of the AHE procedure with the...

  12. 46 CFR 176.640 - Pre-survey meeting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pre-survey meeting. 176.640 Section 176.640 Shipping...) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.640 Pre-survey meeting. (a) In advance of each AHE, you must conduct a pre-survey meeting to discuss the details of the AHE procedure with the...

  13. 46 CFR 176.640 - Pre-survey meeting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pre-survey meeting. 176.640 Section 176.640 Shipping...) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.640 Pre-survey meeting. (a) In advance of each AHE, you must conduct a pre-survey meeting to discuss the details of the AHE procedure with the...

  14. 46 CFR 31.10-1 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Recognized classification society-TB/ALL. 31.10-1... CERTIFICATION Inspections § 31.10-1 Recognized classification society—TB/ALL. (a) In the inspection of hulls... Shipping, or other recognized classification society for classed vessels, may be accepted by the Coast...

  15. 46 CFR 151.03-35 - Limiting draft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...

  16. 46 CFR 151.03-35 - Limiting draft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...

  17. 46 CFR 151.03-35 - Limiting draft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...

  18. 46 CFR 151.03-35 - Limiting draft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...

  19. 46 CFR 151.03-35 - Limiting draft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...

  20. 46 CFR 32.63-8 - Alternative arrangements-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Alternative arrangements-B/ALL. 32.63-8 Section 32.63-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., and Carrying Certain Dangerous Bulk Cargoes § 32.63-8 Alternative arrangements—B/ALL. (a) Alternative...

  1. 46 CFR 32.56-55 - Control spaces-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Control spaces-T/ALL. 32.56-55 Section 32.56-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-55 Control spaces—T/ALL. Bulkheads and decks that separate control spaces from adjacent spaces...

  2. 46 CFR 32.56-55 - Control spaces-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Control spaces-T/ALL. 32.56-55 Section 32.56-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-55 Control spaces—T/ALL. Bulkheads and decks that separate control spaces from adjacent spaces...

  3. 46 CFR 32.56-55 - Control spaces-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Control spaces-T/ALL. 32.56-55 Section 32.56-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-55 Control spaces—T/ALL. Bulkheads and decks that separate control spaces from adjacent spaces...

  4. 46 CFR 32.56-55 - Control spaces-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Control spaces-T/ALL. 32.56-55 Section 32.56-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-55 Control spaces—T/ALL. Bulkheads and decks that separate control spaces from adjacent spaces...

  5. 46 CFR 32.56-55 - Control spaces-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Control spaces-T/ALL. 32.56-55 Section 32.56-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-55 Control spaces—T/ALL. Bulkheads and decks that separate control spaces from adjacent spaces...

  6. Evaluation of Object Detection Algorithms for Ship Detection in the Visible Spectrum

    DTIC Science & Technology

    2013-12-01

    Kodak KAI-2093 was assumed throughout the model to be the image equitation sensor. The sensor was assumed to have taken all of the evaluation imagery...www.ShipPhotos.co.uk. [Online]. Available: http://www.shipphotos.co.uk/hull/ [42] Kodak (2007. March 19). Kodak KAI-2093 image sensor. [Online]. Available

  7. 46 CFR 249.8 - Limitation on risk.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Limitation on risk. 249.8 Section 249.8 Shipping... OPERATORS APPROVAL OF UNDERWRITERS FOR MARINE HULL INSURANCE § 249.8 Limitation on risk. (a) Underwriters may take a line on any single risk in excess of five percent of its Policyholders' Surplus only with...

  8. 46 CFR 31.10-1 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Recognized classification society-TB/ALL. 31.10-1... CERTIFICATION Inspections § 31.10-1 Recognized classification society—TB/ALL. (a) In the inspection of hulls... Shipping, or other recognized classification society for classed vessels, may be accepted by the Coast...

  9. 46 CFR 32.65-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...

  10. 46 CFR 32.40-1 - Application-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application-TB/ALL. 32.40-1 Section 32.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-1 Application—TB/ALL. (a) The provisions of this...

  11. 46 CFR 32.65-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...

  12. 46 CFR 32.65-1 - Application-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Application-TB/ALL. 32.65-1 Section 32.65-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-1 Application—TB/ALL. The requirements in this subpart apply to all tank vessels, the...

  13. 46 CFR 32.60-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...

  14. 46 CFR 32.70-10 - Cofferdams-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cofferdams-TB/ALL. 32.70-10 Section 32.70-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cofferdams—TB/ALL. Tank vessels carrying Grade A, B, or C liquids shall be required to conform to the...

  15. 46 CFR 32.57-1 - Application-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application-TB/ALL. 32.57-1 Section 32.57-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. (a) The provisions of this subpart shall apply to all tank vessels contracted for on or...

  16. 46 CFR 31.10-1 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Recognized classification society-TB/ALL. 31.10-1 Section 31.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-1 Recognized classification society—TB/ALL. (a) In the inspection of hulls...

  17. 46 CFR 32.70-15 - Pumprooms-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Pumprooms-TB/ALL. 32.70-15 Section 32.70-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Pumprooms—TB/ALL. Tank vessels handling Grade A, B, C or D liquid cargo shall meet the requirements for tank...

  18. 46 CFR 32.60-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...

  19. 46 CFR 32.65-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...

  20. 46 CFR 32.60-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...

  1. 46 CFR 32.65-1 - Application-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application-TB/ALL. 32.65-1 Section 32.65-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-1 Application—TB/ALL. The requirements in this subpart apply to all tank vessels, the...

  2. 46 CFR 32.65-1 - Application-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Application-TB/ALL. 32.65-1 Section 32.65-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-1 Application—TB/ALL. The requirements in this subpart apply to all tank vessels, the...

  3. 46 CFR 32.70-15 - Pumprooms-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Pumprooms-TB/ALL. 32.70-15 Section 32.70-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Pumprooms—TB/ALL. Tank vessels handling Grade A, B, C or D liquid cargo shall meet the requirements for tank...

  4. 46 CFR 32.20-10 - Flame arresters-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Flame arresters-TB/ALL. 32.20-10 Section 32.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-10 Flame arresters—TB/ALL. Flame arresters must be of a type and...

  5. 46 CFR 31.10-1 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Recognized classification society-TB/ALL. 31.10-1 Section 31.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-1 Recognized classification society—TB/ALL. (a) In the inspection of hulls...

  6. 46 CFR 31.10-1 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Recognized classification society-TB/ALL. 31.10-1 Section 31.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-1 Recognized classification society—TB/ALL. (a) In the inspection of hulls...

  7. 46 CFR 32.60-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...

  8. 46 CFR 32.20-10 - Flame arresters-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Flame arresters-TB/ALL. 32.20-10 Section 32.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-10 Flame arresters—TB/ALL. Flame arresters must be of a type and...

  9. 46 CFR 32.65-1 - Application-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Application-TB/ALL. 32.65-1 Section 32.65-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-1 Application—TB/ALL. The requirements in this subpart apply to all tank vessels, the...

  10. 46 CFR 32.65-1 - Application-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-TB/ALL. 32.65-1 Section 32.65-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-1 Application—TB/ALL. The requirements in this subpart apply to all tank vessels, the...

  11. 46 CFR 32.70-15 - Pumprooms-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Pumprooms-TB/ALL. 32.70-15 Section 32.70-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Pumprooms—TB/ALL. Tank vessels handling Grade A, B, C or D liquid cargo shall meet the requirements for tank...

  12. 46 CFR 32.57-1 - Application-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Application-TB/ALL. 32.57-1 Section 32.57-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. (a) The provisions of this subpart shall apply to all tank vessels contracted for on or...

  13. 46 CFR 32.20-10 - Flame arresters-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flame arresters-TB/ALL. 32.20-10 Section 32.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-10 Flame arresters—TB/ALL. Flame arresters must be of a type and...

  14. 46 CFR 32.20-10 - Flame arresters-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flame arresters-TB/ALL. 32.20-10 Section 32.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-10 Flame arresters—TB/ALL. Flame arresters must be of a type and...

  15. 46 CFR 32.65-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...

  16. 46 CFR 32.20-10 - Flame arresters-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flame arresters-TB/ALL. 32.20-10 Section 32.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-10 Flame arresters—TB/ALL. Flame arresters must be of a type and...

  17. 46 CFR 32.70-10 - Cofferdams-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Cofferdams-TB/ALL. 32.70-10 Section 32.70-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cofferdams—TB/ALL. Tank vessels carrying Grade A, B, or C liquids shall be required to conform to the...

  18. 46 CFR 32.70-10 - Cofferdams-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Cofferdams-TB/ALL. 32.70-10 Section 32.70-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cofferdams—TB/ALL. Tank vessels carrying Grade A, B, or C liquids shall be required to conform to the...

  19. 46 CFR 32.70-15 - Pumprooms-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Pumprooms-TB/ALL. 32.70-15 Section 32.70-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Pumprooms—TB/ALL. Tank vessels handling Grade A, B, C or D liquid cargo shall meet the requirements for tank...

  20. 46 CFR 32.57-1 - Application-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Application-TB/ALL. 32.57-1 Section 32.57-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. (a) The provisions of this subpart shall apply to all tank vessels contracted for on or...

  1. 46 CFR 32.40-1 - Application-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Application-TB/ALL. 32.40-1 Section 32.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-1 Application—TB/ALL. (a) The provisions of this...

  2. 46 CFR 32.70-10 - Cofferdams-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cofferdams-TB/ALL. 32.70-10 Section 32.70-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cofferdams—TB/ALL. Tank vessels carrying Grade A, B, or C liquids shall be required to conform to the...

  3. 46 CFR 32.70-15 - Pumprooms-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Pumprooms-TB/ALL. 32.70-15 Section 32.70-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Pumprooms—TB/ALL. Tank vessels handling Grade A, B, C or D liquid cargo shall meet the requirements for tank...

  4. 46 CFR 32.70-10 - Cofferdams-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Cofferdams-TB/ALL. 32.70-10 Section 32.70-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cofferdams—TB/ALL. Tank vessels carrying Grade A, B, or C liquids shall be required to conform to the...

  5. 46 CFR 32.60-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...

  6. 46 CFR 32.65-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...

  7. 46 CFR 32.40-1 - Application-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-TB/ALL. 32.40-1 Section 32.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-1 Application—TB/ALL. (a) The provisions of this...

  8. 46 CFR 32.40-1 - Application-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Application-TB/ALL. 32.40-1 Section 32.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-1 Application—TB/ALL. (a) The provisions of this...

  9. 46 CFR 32.57-1 - Application-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-TB/ALL. 32.57-1 Section 32.57-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. (a) The provisions of this subpart shall apply to all tank vessels contracted for on or...

  10. 46 CFR 32.57-1 - Application-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Application-TB/ALL. 32.57-1 Section 32.57-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. (a) The provisions of this subpart shall apply to all tank vessels contracted for on or...

  11. 46 CFR 32.40-1 - Application-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Application-TB/ALL. 32.40-1 Section 32.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-1 Application—TB/ALL. (a) The provisions of this...

  12. Evaluation of Multi-Vessel Ship Motion Prediction Codes

    DTIC Science & Technology

    2008-09-01

    each other, and accounting for the hydrodynamic effects between the hulls. The major differences in the capabilities of the codes were in the non...Figure 28. Effects of irregular frequency smoothing has on the resultant pitch transfer function for three meter separation, 135 degree heading, and...and accounting for the hydrodynamic effects between the hulls. The major differences in the capabilities of the codes were in the non-hydrodynamic

  13. PIXE Analysis of Metal Hull Bolts From HMB DeBraak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, Francis D.; Cole, Lord K.; Slater, Charles J.

    2009-03-10

    HMB DeBraak was a 16-gun British brig-sloop that sank in a squall on May 25, 1798 off Cape Henlopen, Delaware. Silt covered the wooden hull shortly after it sank, preserving it until DeBraak was raised in 1986. The items recovered from the ship include metal bolts that held the hull together. We used PIXE to measure the compositions of 45 of the bolts and found that they are nearly pure copper (98.3% on average), with most also containing small amounts of iron (0.87%), nickel (0.039%), arsenic (0.43%), silver (0.089%), lead (0.18%), and bismuth (0.12%). A few contain a little indium,more » tin, or antimony, but none contain zinc above the quantization level. The compositions are similar to those reported for 18th-century English copper, but different from several copper alloys also used to make hull bolts. We conclude that, when DeBraak was last fitted out in 1795-1797, the Royal Navy was still using bolts similar to William Forbes's mechanically hardened pure copper bolts. Forbes's process represents the successful innovation and application of new technology in Royal Navy ships during the wars of the late 18th century.« less

  14. Static analysis of the hull plate using the finite element method

    NASA Astrophysics Data System (ADS)

    Ion, A.

    2015-11-01

    This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.

  15. United States Transportation Command 2001 Annual Command Report: Transforming Global Mobility ... and Distribution

    DTIC Science & Technology

    2001-01-01

    Annual Command Report 13 High Speed Sealift Ship increased performance efficiencies in hull designs and innovative power plants. Promising and proven...long self-propelled, floating dock, the BLUE MARLIN was designed to haul offshore oil rigs and large, heavy cargo not unlike a ship . Whereas the COLE...the disabled ship had been returned to Mississippi for repairs. Concern about terrorism, already high , became a more concerted part of USTRANSCOM

  16. Plug Repairs of Marine Glass Fiber / Vinyl Ester Laminates Subjected to Uniaxial Tension

    DTIC Science & Technology

    2009-06-01

    Material characteristics of glass fiber / vinyl ester composites used in naval surface ships 1.1.1.2 Construction of surface ship hulls with FRP...Piping - Ventilation ducts - Deck gratings 1.1.1.1 Material characteristics of glass fiber / vinyl ester composites used in naval surface ships The...that polysester-based composites do [15, 24]. Typical processing methods for vinyl ester composites are hand lay-up, Resin Transfer Molding (RTM

  17. Sensitivity Analysis of the Seakeeping Behavior of Trimaran Ships

    DTIC Science & Technology

    2003-12-01

    Architects and Marine Engineers; 1967. 827 p. [18] Lloyd ARJM. Seakeeping: Ship Behavior in Rough Weather. West Yorkshire ; Ellis Horwood Ltd ; 1989...INCAT Australia Pty Ltd . This design features side hulls with a very low freeboard at their bows and a definite, above-water center bow. Additional...composite ship, uses an Air Cushion Catamaran (ACC) design, which is an advanced variant of SES technology. Most recently, a co -operative design team that

  18. Probabilistic Structural Analysis of Ship Hull Longitudinal Strength.

    DTIC Science & Technology

    1980-12-01

    EXRPLATION CTA DATAI .0251, ESSO 1:.qT H U %IB R FA .1: *fREVISED POS-%.ATRNT .010 oaIGINL ,.ESSO MALAYSIA .0o5.j LOG OF NUMBER OF CYCLES, LOG N FIG. 1...108 0.000961 i f Nញ a -’ 0. 0625" 5/8 0.01172 flange , x + Wf O0.156 +w breadth 8 -L,_ 0.0625 F6 0.156 + wf For Wf = 6" ,= 0. 0625 z o0 o. ,- .0. 0

  19. Indications of marine bioinvasion from network theory. An analysis of the global cargo ship network

    NASA Astrophysics Data System (ADS)

    Kölzsch, A.; Blasius, B.

    2011-12-01

    The transport of huge amounts of small aquatic organisms in the ballast tanks and at the hull of large cargo ships leads to ever increasing rates of marine bioinvasion. In this study, we apply a network theoretic approach to examine the introduction of invasive species into new ports by global shipping. This is the first stage of the invasion process where it is still possible to intervene with regulating measures. We compile a selection of widely used and newly developed network properties and apply these to analyse the structure and spread characteristics of the directed and weighted global cargo ship network (GCSN). Our results reveal that the GCSN is highly efficient, shows small world characteristics and is positive assortative, indicating that quick spread of invasive organisms between ports is likely. The GCSN shows strong community structure and contains two large communities, the Atlantic and Pacific trading groups. Ports that appear as connector hubs and are of high centralities are the Suez and Panama Canal, Singapore and Shanghai. Furthermore, from robustness analyses and the network's percolation behaviour, we evaluate differences of onboard and in-port ballast water treatment, set them into context with previous studies and advise bioinvasion management strategies.

  20. Preliminary Investigations of Biofouling of Ships’ Hulls: Non-Indigenous Species Investigations in the Columbia River

    DTIC Science & Technology

    2006-04-01

    Oregon P Primary S Secondary SD Standard Deviation SE Standard Error TBT Tributyltin U.S. United States WA Washington WHOI Woods Hole...reasons hull biofouling was considered less important as a vector of organisms than ballast water (Carlton, 1985). In the early 1970s, tributyltin ... TBT ) became the dominant antifouling paint applied to 9 vessels because it was hugely successful in preventing biofouling accumulation

  1. 46 CFR 32.40-50 - Heating and cooling-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Heating and cooling-T/ALL. 32.40-50 Section 32.40-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-50 Heating and cooling—T/ALL. (a) All manned spaces...

  2. 46 CFR 32.53-30 - Positive pressure-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Positive pressure-T/ALL. 32.53-30 Section 32.53-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Inert Gas System § 32.53-30 Positive pressure—T/ALL. Each inert gas system must be designed to...

  3. 46 CFR 32.53-5 - Operation-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Operation-T/ALL. 32.53-5 Section 32.53-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Inert Gas System § 32.53-5 Operation-T/ALL. Unless the cargo tanks are gas free, the master of each...

  4. 46 CFR 32.56-15 - Deck spills-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Deck spills-T/ALL. 32.56-15 Section 32.56-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-15 Deck spills—T/ALL. A coaming or other barrier at least .3 meters (1 foot) higher than adjacent...

  5. 46 CFR 32.02-1 - Means of escape-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Means of escape-T/ALL. 32.02-1 Section 32.02-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Safety Requirements § 32.02-1 Means of escape—T/ALL. On all tankships where the plans and...

  6. 46 CFR 32.53-10 - General-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false General-T/ALL. 32.53-10 Section 32.53-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Inert Gas System § 32.53-10 General—T/ALL. (a) Each tankship to which this subpart applies must have an...

  7. 46 CFR 32.53-30 - Positive pressure-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Positive pressure-T/ALL. 32.53-30 Section 32.53-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Inert Gas System § 32.53-30 Positive pressure—T/ALL. Each inert gas system must be designed to...

  8. 46 CFR 32.02-1 - Means of escape-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Means of escape-T/ALL. 32.02-1 Section 32.02-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Safety Requirements § 32.02-1 Means of escape—T/ALL. On all tankships where the plans and...

  9. 46 CFR 32.53-5 - Operation-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Operation-T/ALL. 32.53-5 Section 32.53-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Inert Gas System § 32.53-5 Operation-T/ALL. Unless the cargo tanks are gas free, the master of each...

  10. 46 CFR 32.56-15 - Deck spills-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Deck spills-T/ALL. 32.56-15 Section 32.56-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL....56-15 Deck spills—T/ALL. A coaming or other barrier at least .3 meters (1 foot) higher than adjacent...

  11. 46 CFR 32.53-10 - General-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false General-T/ALL. 32.53-10 Section 32.53-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Inert Gas System § 32.53-10 General—T/ALL. (a) Each tankship to which this subpart applies must have an...

  12. 46 CFR 32.05-10 - Name of tankship-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Name of tankship-T/ALL. 32.05-10 Section 32.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Markings § 32.05-10 Name of tankship—T/ALL. Every tankship shall have the name marked upon each...

  13. 46 CFR 32.05-10 - Name of tankship-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Name of tankship-T/ALL. 32.05-10 Section 32.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Markings § 32.05-10 Name of tankship—T/ALL. Every tankship shall have the name marked upon each...

  14. 46 CFR 32.35-1 - Boilers and machinery-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Boilers and machinery-TB/ALL. 32.35-1 Section 32.35-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-1 Boilers and machinery—TB/ALL. Boilers, main and auxiliary...

  15. CASTLE Series, 1954.

    DTIC Science & Technology

    1982-04-01

    Hull Number Off EM Civ Off EM Civ Comments 7.3.7.0 Landing Ship Dock Belle Grove (LSD-2) 20 318 0 19 321 0 Boat Pool mother ship; also trans- Element...42.67) (85.34) UPPER LIMIT CLOUD TOP HEIGHT 120 240 (6.58) LOWER LIMIT (73.15) CLOUD TOP HEIGHT 10A00 ft (33.53 kmc ) E E~100 200

  16. 46 CFR 32.35-10 - Steering apparatus on tank vessels-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Steering apparatus on tank vessels-TB/ALL. 32.35-10 Section 32.35-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-10 Steering apparatus on tank vessels...

  17. 46 CFR 32.35-10 - Steering apparatus on tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Steering apparatus on tank vessels-TB/ALL. 32.35-10 Section 32.35-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-10 Steering apparatus on tank vessels...

  18. 46 CFR 32.50-30 - Cargo hose-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo hose-TB/ALL. 32.50-30 Section 32.50-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-30 Cargo hose—TB/ALL. Cargo hose carried on...

  19. 46 CFR 32.50-30 - Cargo hose-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Cargo hose-TB/ALL. 32.50-30 Section 32.50-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-30 Cargo hose—TB/ALL. Cargo hose carried on...

  20. 46 CFR 32.50-30 - Cargo hose-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo hose-TB/ALL. 32.50-30 Section 32.50-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-30 Cargo hose—TB/ALL. Cargo hose carried on...

  1. 46 CFR 32.50-3 - Cargo discharge-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo discharge-TB/ALL. 32.50-3 Section 32.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-3 Cargo discharge—TB/ALL. (a) Pumps or other...

  2. 46 CFR 32.50-3 - Cargo discharge-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Cargo discharge-TB/ALL. 32.50-3 Section 32.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-3 Cargo discharge—TB/ALL. (a) Pumps or other...

  3. 46 CFR 32.50-3 - Cargo discharge-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo discharge-TB/ALL. 32.50-3 Section 32.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-3 Cargo discharge—TB/ALL. (a) Pumps or other...

  4. 46 CFR 32.50-30 - Cargo hose-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo hose-TB/ALL. 32.50-30 Section 32.50-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-30 Cargo hose—TB/ALL. Cargo hose carried on...

  5. 46 CFR 32.50-3 - Cargo discharge-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo discharge-TB/ALL. 32.50-3 Section 32.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-3 Cargo discharge—TB/ALL. (a) Pumps or other...

  6. 46 CFR 32.50-3 - Cargo discharge-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Cargo discharge-TB/ALL. 32.50-3 Section 32.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-3 Cargo discharge—TB/ALL. (a) Pumps or other...

  7. 46 CFR 32.50-30 - Cargo hose-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Cargo hose-TB/ALL. 32.50-30 Section 32.50-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo Handling § 32.50-30 Cargo hose—TB/ALL. Cargo hose carried on...

  8. The asian decapod Hemigrapsus penicillatus (de Haan, 1835) (Grapsidae, Decapoda) introduced in European waters: status quo and future perspective

    NASA Astrophysics Data System (ADS)

    Gollasch, S.

    1998-09-01

    The Asian decapod Hemigrapsus penicillatus (de Haan, 1835) was first recorded in European waters in 1994. The first specimens were collected in the estuary of Charente Maritime on the west coast of France close to La Rochelle. The current range in Europe covers Spanish shallow water habitats of the Bay of Biscay to areas north of La Rochelle (France). Densities of up to 20 specimens per square metre occur. This species has a high temperature and salinity tolerace and will expand its distribution in European waters. It is not clear whether this crab was introduced by shipping in ballast water or as a fouling organism. Based on a study of ship hull fouling in German dry docks this account provides evidence that hull fouling is a likely vector for the introduction of this crab. In August 1993, six juvenile specimens of H. penicillatus were removed from the hull of a car-carrier. After its journey from Japan into European waters this vessel docked in the port of Bremerhaven (Germany) for a routine inspection and coating with antifouling paint.

  9. How propeller suction is the dominant factor for ship accidents at shallow water conditions

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan

    2017-04-01

    The laminar flow comes to the fore with the disappearance of the several other directions in the internal displacements in the water current. Due to the dominant speed direction during the straightforward motion of the ship, the underwater hull is associated with the continuous flow of laminar currents. The open marine environment acts as a compressible liquid medium because of the presence of many variables about water volume overflow boundaries where the ship is associated. Layers of water rising over the sea surface due to ship's body and the propeller's water push provides loss of liquid lifting force for the ship. These situations change the well-known sea-floor morphology and reliable depth limits, and lead to probable accidents. If the ship block coefficient for the front side is 0.7 or higher, the "squat" will be more on the bow, because the associated factor "displacement volume" causes to the low-pressure environment due to large and rapid turbulence. Thus, the bow sinks further, which faced with liquid's weaker lift force. The vessels Gerardus Mercator, Queen Elizabeth and Costa Concordia had accidents because of unified reasons of squat, fast water mass displacement by hull push and propeller suction interaction. In the case of water mass displacement from the bow side away, that accident occurred in 2005 by the vessel Gerardus Mercator with excessive longitudinal trim angularity in the shallow water. The vessel Costa Concordia (2012), voluminous water displaced from the rear left side was an important factor because of the sharp manoeuvre of that the captain made before the accident. Observations before the accident indicate that full-speed sharp turn provided listed position for the ship from left (port side) in the direction of travel before colliding and then strike a rock on the sloping side of the seabed. The reason why the ship drifted to the left depends mainly the water discharge occurred at the left side of the hull during left-hand rudder control. Additionally the second water drainage from the shallow ridge area by the propeller's left-directed suction created a shallower environment. Similar situation for example collision of two ships during their side by side forward motions; their positions will be approached and listed to each other more same as downslope movement because of the shared area's water level collapse occur more by two propeller's suction.

  10. Naval electrochemical corrosion reducer

    DOEpatents

    Clark, Howard L.

    1991-10-01

    A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

  11. Level-Set Simulation of Viscous Free Surface Flow Around a Commercial Hull Form

    DTIC Science & Technology

    2005-04-15

    Abstract The viscous free surface flow around a 3600 TEU KRISO Container Ship is computed using the finite volume based multi-block RANS code, WAVIS...developed at KRISO . The free surface is captured with the Level-set method and the realizable k-ε model is employed for turbulence closure. The...computations are done for a 3600 TEU container ship of Korea Research Institute of Ships & Ocean Engineering, KORDI (hereafter, KRISO ) selected as

  12. Lead sheathing of ship hulls in the Roman period: Archaeometallurgical characterisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahanov, Yaacov, E-mail: yak@research.haifa.ac.il; Ashkenazi, Dana

    An archaeometallurgical analysis of samples of lead sheathing from five ships of the Roman period was carried out in order to determine their composition and microstructure, and to obtain a better understanding of their manufacturing processes. The examinations included optical microscopy of metallographic cross-sections, microhardness tests, scanning electron microscopy, including energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The results show that the samples were all composed of lead covered with an oxide layer. The sheet thicknesses, microhardness values and microhardness distribution, as well as the grain size distribution, led to the conclusion that all of the sheets were produced bymore » the same technology, using hammering, and were probably used for the same purpose. The presence of antimony was observed in the sample from the Roman ship from Caesarea, which may hint at an Italian (Sardinian) origin of the material, and perhaps of the ship. - Research Highlights: {yields} During the Roman period ship hulls were sheathed with lead. {yields} Five samples have been analysed for their characteristics and manufacturing process. {yields} The process was cold-working (strain-hardening) using hammering. {yields} The lead was open-casted on a flat stone, and later hammered at room temperature. {yields} Antimony in the Caesarea shipwreck may indicate an Italian origin of construction.« less

  13. Measurements of Propeller-Induced Unsteady Surface Force and Pressures

    DTIC Science & Technology

    1986-12-01

    investigations using foreshortened hull models in the determination of cavitating propeller-induced pressure pulses include van Manen , 46 Huse,47 van Oossanen...Nov 1974). 46. van Manen , J.D., "The Effect of Cavitation on the Interaction Between Propeller and Ship’s Hull, "International Shipbuilding Progress...and van der Kooij,48 and van der Kooij and Jonk. 49 Examples of more recent publications that have either made use of results from dummy model tests or

  14. 76 FR 58399 - Certifications and Exemptions Under the International Regulations for Preventing Collisions at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... special function as a naval ship. The intended effect of this rule is to warn mariners in waters where 72... provisions of 72 COLREGS without interfering with its special function as a naval ship: Annex I paragraph 2(a)(i), pertaining to the location of the height of the forward masthead light above the hull; Annex I...

  15. Bibliography on Cold Regions Science and Technology. Volume 43. Part 2

    DTIC Science & Technology

    1989-12-01

    Norem, H., ci a ). ’(1987, p.363-379. engl Influence of ship hull forms on propulsion performance in 1985-1988. Kujals, P.. (1989. p.1 118-1 129... performance of& a ship in ipi Radiative energy budget in the cloudy and hazy Arctic as.Msrkhisskiy interfluve (1988, p.3.1 1, rusl 43Z51 red rfies...2820 els and a ship model between two ice model baims (1988. M.V. Arctic manocuvriog performance is ice. Final report Oxygen isotopic cemposition and

  16. In Situ Determination of Butyltin Release Rates from Antifouling Coatings on Navy Test Ships

    DTIC Science & Technology

    1985-07-01

    formulations of antifouling paints containing tributyltin oxide. RESULTS 2Measured leach rates ranged from a high of 3.2 pg TBT /cm /days The SPC- 254... tributyltin in leachate determined by the hydride-AAS technique. DBT Total Sn Paint System/Ship or Panel MBT (percent) TBT (pg/L) ABC-2/MEYERKORD (Aug 84) NH...DDFR 43 4JNMwQWSfPM EXECUTIVE SUMMARY OBJECTIVE Determine in situ leach rates of tributyltin on the hulls of three Navy test ships coated with different

  17. Static vs dynamic settlement and adhesion of diatoms to ship hull coatings.

    PubMed

    Zargiel, Kelli A; Swain, Geoffrey W

    2014-01-01

    Many experiments utilize static immersion tests to evaluate the performance of ship hull coatings. These provide valuable data; however, they do not accurately represent the conditions both the hull and fouling organisms encounter while a ship is underway. This study investigated the effect of static and dynamic immersion on the adhesion and settlement of diatoms to one antifouling coating (BRA 640), four fouling-release coatings (Intersleek(®) 700, Intersleek(®) 900, Hempasil X3, and Dow Corning 3140) and one standard surface (Intergard(®) 240 Epoxy). Differences in community composition were observed between the static and dynamic treatments. Achnanthes longipes was present on all coatings under static immersion, but was not present under dynamic immersion. This was also found for diatoms in the genera Bacillaria and Gyrosigma. Melosira moniformis was the only diatom present under dynamic conditions, but not static conditions. Several common fouling diatom genera were present on panels regardless of treatment: Amphora, Cocconeis, Entomoneis Cylindrotheca, Licmophora, Navicula, Nitzschia, Plagiotropis, and Synedra. Biofilm adhesion, diatom abundance and diatom diversity were found to be significantly different between static and dynamic treatments; however, the difference was dependent on coating and sampling date. Several coatings (Epoxy, DC 3140 and IS 700) had significantly higher biofilm adhesion on dynamically treated panels on at least one of the four sampling dates, while all coatings had significantly higher diatom abundance on at least one sampling date. Diversity was significantly greater on static panels than dynamic panels for Epoxy, IS 700 and HX3 at least once during the sampling period. The results demonstrate how hydrodynamic stress will significantly influence the microfouling community. Dynamic immersion testing is required to fully understand how antifouling surfaces will respond to biofilm formation when subjected to the stresses experienced by a ship underway.

  18. Propeller sheet cavitation noise source modeling and inversion

    NASA Astrophysics Data System (ADS)

    Lee, Keunhwa; Lee, Jaehyuk; Kim, Dongho; Kim, Kyungseop; Seong, Woojae

    2014-02-01

    Propeller sheet cavitation is the main contributor to high level of noise and vibration in the after body of a ship. Full measurement of the cavitation-induced hull pressure over the entire surface of the affected area is desired but not practical. Therefore, using a few measurements on the outer hull above the propeller in a cavitation tunnel, empirical or semi-empirical techniques based on physical model have been used to predict the hull-induced pressure (or hull-induced force). In this paper, with the analytic source model for sheet cavitation, a multi-parameter inversion scheme to find the positions of noise sources and their strengths is suggested. The inversion is posed as a nonlinear optimization problem, which is solved by the optimization algorithm based on the adaptive simplex simulated annealing algorithm. Then, the resulting hull pressure can be modeled with boundary element method from the inverted cavitation noise sources. The suggested approach is applied to the hull pressure data measured in a cavitation tunnel of the Samsung Heavy Industry. Two monopole sources are adequate to model the propeller sheet cavitation noise. The inverted source information is reasonable with the cavitation dynamics of the propeller and the modeled hull pressure shows good agreement with cavitation tunnel experimental data.

  19. Tools Lighten Designs, Maintain Structural Integrity

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Collier Research Corporation of Hampton, Virginia, licensed software developed at Langley Research Center to reduce design weight through the use of composite materials. The first license of NASA-developed software, it has now been used in everything from designing next-generation cargo containers, to airframes, rocket engines, ship hulls, and train bodies. The company now has sales of the NASA-derived software topping $4 million a year and has recently received several Small Business Innovation Research (SBIR) contracts to apply its software to nearly all aspects of the new Orion crew capsule design.

  20. BG-CLEAN™ 401

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent is for oil spill cleanups on soil piers, seawalls, pilings, ship's hulls, and rocky beaches. Effectiveness increases when applied with heated water. Can be used on all hydrocarbons except asphalt.

  1. Presidential Green Chemistry Challenge: 1996 Designing Greener Chemicals Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1996 award winner, Rohm and Haas, developed Sea-Nine, a marine antifoulant to control plants and animals on ship hulls. Sea-Nine replaces persistent, toxic organotin antifoulants.

  2. 46 CFR 32.20-1 - Equipment installations on vessels during World War II-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Equipment installations on vessels during World War II-TB/ALL. 32.20-1 Section 32.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-1 Equipment installations on vessels during World War II—TB/ALL....

  3. Presence of the tunicate Asterocarpa humilis on ship hulls and aquaculture facilities in the coast of the Biobío Region, south central Chile.

    PubMed

    Pinochet, Javier; Leclerc, Jean-Charles; Brante, Antonio; Daguin-Thiébaut, Claire; Díaz, Christian; Tellier, Florence; Viard, Frédérique

    2017-01-01

    Non-native ascidians are important members of the fouling community associated with artificial substrata and man-made structures. Being efficient fouling species, they are easily spread by human-mediated transports (e.g., with aquaculture trade and maritime transports). This is exemplified by the ascidian Asterocarpa humilis which displays a wide distribution in the Southern Hemisphere and has been recently reported in the Northern Hemisphere (NW Europe). In continental Chile, its first report dates back from 2000 for the locality of Antofagasta (23°S). Although there was no evidence about the vectors of introduction and spread, nor the source, some authors suggested maritime transport by ship hulls and aquaculture devices as putative introduction pathways and vectors. In the present study, we report for the first time the presence of A. humilis on the hull of an international ship in a commercial port in Concepción bay (36°S), south central Chile. We also found one individual associated to a seashell farm, 70 km far from Concepción bay. Further individuals were subsequently identified within Concepción bay: one juvenile settled upon international harbor pilings and a dozen individuals along aquaculture seashell longlines. For the first specimens sampled, species identification was ascertained using both morphological criteria and molecular barcoding, using the mitochondrial gene cytochrome c oxidase subunit I (COI) and a nuclear gene (ribosomal RNA 18S). The nuclear 18S gene and the mitochondrial gene COI clearly assigned the specimens to A. humilis, confirming our morphological identification. Two haplotypes were obtained with COI corresponding to haplotypes previously obtained with European and Northern Chilean specimens. The present study thus reports for the first time the presence of A. humilis in the Araucanian ecoregion, documenting the apparent expansion of this non-native tunicate in Chile over 2,000 km, spanning over three ecoregions. In addition we reveal the potential implication of the international maritime transport as a vector of spread of this species along the Eastern Pacific coast, and the putative role of aquaculture facilities in promoting local establishments of non-native tunicates.

  4. Numerical evaluation of longitudinal motions of Wigley hulls advancing in waves by using Bessho form translating-pulsating source Green'S function

    NASA Astrophysics Data System (ADS)

    Xiao, Wenbin; Dong, Wencai

    2016-06-01

    In the framework of 3D potential flow theory, Bessho form translating-pulsating source Green's function in frequency domain is chosen as the integral kernel in this study and hybrid source-and-dipole distribution model of the boundary element method is applied to directly solve the velocity potential for advancing ship in regular waves. Numerical characteristics of the Green function show that the contribution of local-flow components to velocity potential is concentrated at the nearby source point area and the wave component dominates the magnitude of velocity potential in the far field. Two kinds of mathematical models, with or without local-flow components taken into account, are adopted to numerically calculate the longitudinal motions of Wigley hulls, which demonstrates the applicability of translating-pulsating source Green's function method for various ship forms. In addition, the mesh analysis of discrete surface is carried out from the perspective of ship-form characteristics. The study shows that the longitudinal motion results by the simplified model are somewhat greater than the experimental data in the resonant zone, and the model can be used as an effective tool to predict ship seakeeping properties. However, translating-pulsating source Green function method is only appropriate for the qualitative analysis of motion response in waves if the ship geometrical shape fails to satisfy the slender-body assumption.

  5. Sensors systems for the automation of operations in the ship repair industry.

    PubMed

    Navarro, Pedro Javier; Muro, Juan Suardíaz; Alcover, Pedro María; Fernández-Isla, Carlos

    2013-09-13

    Hull cleaning before repainting is a key operation in the maintenance of ships. For years, a method to improve such operation has been sought by means of the robotization of techniques such as grit blasting and ultra high pressure water jetting. Despite this, it continues to be standard practice in shipyards that this process is carried out manually because the developed robotized systems are too expensive to be widely accepted by shipyards. We have chosen to apply a more conservative and realistic approach to this problem, which has resulted in the development of several solutions that have been designed with different automation and operation range degrees. These solutions are fitted with most of the elements already available in many shipyards, so the installation of additional machinery in the workplace would not be necessary. This paper describes the evolutionary development of sensor systems for the automation of the preparation process of ship hull surfaces before the painting process is performed. Such evolution has given rise to the development of new technologies for coating removal.

  6. Sensors Systems for the Automation of Operations in the Ship Repair Industry

    PubMed Central

    Navarro, Pedro Javier; Muro, Juan Suardíaz; Alcover, Pedro María; Fernández-Isla, Carlos

    2013-01-01

    Hull cleaning before repainting is a key operation in the maintenance of ships. For years, a method to improve such operation has been sought by means of the robotization of techniques such as grit blasting and ultra high pressure water jetting. Despite this, it continues to be standard practice in shipyards that this process is carried out manually because the developed robotized systems are too expensive to be widely accepted by shipyards. We have chosen to apply a more conservative and realistic approach to this problem, which has resulted in the development of several solutions that have been designed with different automation and operation range degrees. These solutions are fitted with most of the elements already available in many shipyards, so the installation of additional machinery in the workplace would not be necessary. This paper describes the evolutionary development of sensor systems for the automation of the preparation process of ship hull surfaces before the painting process is performed. Such evolution has given rise to the development of new technologies for coating removal. PMID:24064601

  7. Automatic welding systems for large ship hulls

    NASA Astrophysics Data System (ADS)

    Arregi, B.; Granados, S.; Hascoet, JY.; Hamilton, K.; Alonso, M.; Ares, E.

    2012-04-01

    Welding processes represents about 40% of the total production time in shipbuilding. Although most of the indoor welding work is automated, outdoor operations still require the involvement of numerous operators. To automate hull welding operations is a priority in large shipyards. The objective of the present work is to develop a comprehensive welding system capable of working with several welding layers in an automated way. There are several difficulties for the seam tracking automation of the welding process. The proposed solution is the development of a welding machine capable of moving autonomously along the welding seam, controlling both the position of the torch and the welding parameters to adjust the thickness of the weld bead to the actual gap between the hull plates.

  8. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.

    PubMed

    Mayser, Matthias J; Barthlott, Wilhelm

    2014-12-01

    Superhydrophobic, hierarchically structured, technical surfaces (Lotus-effect) are of high scientific and economic interest because of their remarkable properties. Recently, the immense potential of air-retaining superhydrophobic surfaces, for example, for low-friction transport of fluids and drag-reducing coatings of ships has begun to be explored. A major problem of superhydrophobic surfaces mimicking the Lotus-effect is the limited persistence of the air retained, especially under rough conditions of flow. However, there are a variety of floating or diving plant and animal species that possess air-retaining surfaces optimized for durable water-repellency (Salvinia-effect). Especially floating ferns of the genus Salvinia have evolved superhydrophobic surfaces capable of maintaining layers of air for months. Apart from maintaining stability under water, the layer of air has to withstand the stresses of water pressure (up to 2.5 bars). Both of these aspects have an application to create permanent air layers on ships' hulls. We investigated the effect of pressure on air layers in a pressure cell and exposed the air layer to pressures of up to 6 bars. We investigated the suppression of the air layer at increasing pressures as well as its restoration during decreases in pressure. Three of the four examined Salvinia species are capable of maintaining air layers at pressures relevant to the conditions applying to ships' hulls. High volumes of air per surface area are advantageous for retaining at least a partial Cassie-Baxter-state under pressure, which also helps in restoring the air layer after depressurization. Closed-loop structures such as the baskets at the top of the "egg-beater hairs" (see main text) also help return the air layer to its original level at the tip of the hairs by trapping air bubbles. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Hydrodynamic Interactions during Launch and Recovery of a Small Boat from a Ship in a Seaway

    DTIC Science & Technology

    2014-11-28

    during launch and recovery. The RHIB is based on a Zodiac H935, with properties given in Table 1 when loaded with 12 person- nel. Figure 1 shows the hull...and recovery of a small craft from a larger ship, wave-induced motions of the larger ship will influence dy- namic loads on the crane. The motions of... the small craft will be a major determinant of the safety of onboard personnel. This paper exam- ines wave-induced motions during launch and recovery

  10. Cost Estimating Relationships for U.S. Navy Ships

    DTIC Science & Technology

    1983-09-01

    ORGANIZATION NAME AND ADDRESS Institute for Defense Analyses iBOl North Beauregard Street Alexandria, Virginia 22311 10. PROGRAM ELEMENT, PROJECT ...linear CER also is displayed. In addi- tion. Table S-1 displays the total observed cost, the total estimated cost, and the percent difference...report provided by program year a total end cost for each ship by hull number including outfitting and post delivery costs. This end cost does not

  11. A new improved artificial bee colony algorithm for ship hull form optimization

    NASA Astrophysics Data System (ADS)

    Huang, Fuxin; Wang, Lijue; Yang, Chi

    2016-04-01

    The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.

  12. Validation of Numerical Predictions of the Impact Forces and Hydrodynamics of a Deep-V Planing Hull

    DTIC Science & Technology

    2012-12-01

    technique. NFA uses an implicit subgrid- scale model that is built into the treatment of the convective terms in the momentum equations [14]. A...delivered to SAIC under the Navy DASS (Dynamic Assessment of Surface Ship) 8 NSWCCD-50-TR-2012/040 project in 1998. SLAM2D has two solution methods: (1...is in knots-ft-1/2]. Model Scale Pressure [psi] -0.04 0.0 004 0.08 0.12 0.16 Figure 25. Pressures on hull for CA=0.608, L/b=4 and

  13. The National Shipbuilding Research Program, 1990 Ship Production Symposium

    DTIC Science & Technology

    1990-08-01

    deck, sides and bottom Shear stresses which may be important for certain classes of vessels, are not accounted for in this study. The net sectional...and the superstructure. The highly pre-outfitted blocks then can be transferred to the dry dock by a gantry crane . After integrating the blocks into...manager. 2A-2-3 Examples of cost centres are: Plate Production Unit Pre-outfitting Hull Construction Ship Outfitting (Weapons Compartments) Berth Cranes

  14. Hospital Ship Replacement

    DTIC Science & Technology

    2011-08-01

    serious contender. Although it is a proven hull design for stability, integrating the ability to quickly transfer patients aboard is challenging . The...Waste management afloat is a constant challenge for the Navy. It is even more so when designing a hospital ship. In addition to the typical waste...0.97 Optbrs: Corrmon rail fuellrijacllon,crude oil. Rated power generating sets 61:ili:ln()q;to~ 50Htl760rpm &.gne type -1801.\\ Vlc )l ~W.’/cyl SI;O k

  15. Littoral Combat Ship: Additional Testing and Improved Weight Management Needed Prior to Further Investments

    DTIC Science & Technology

    2014-07-01

    monohull design with a steel hull and aluminum superstructure, while the Austal USA Independence variant (LCS 2 and other even- Background Seaframe...including Singapore; Malaysia ; Brunei; and Indonesia. The ship also conducted some real-world operations as directed by the 7th Fleet, such as...requirements for service life allowances already fall short of the growth margins called for under Navy and industry recommended practice.21 Table 8: Navy

  16. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hull barge with internal framing 1 Double hull barge with external framing 2 Single hull barge with..., ends, and bottoms) when the structural framing is on the internal tank surface. 2 Applicable to double hull tank barges (double sides, ends, and bottoms) when the structural framing is on the external tank...

  17. Sea Basing Platforms for the 21st Century - An Evaluation of Maritime Prepositioning Force (Future) [MPF(F)] and the Mobile Offshore Base (MOB) to Perform Sea Basing

    DTIC Science & Technology

    2004-01-01

    Large, Medium Speed , Roll-On/Roll-Off (LMSR) ships . The BLA sea base ships share a common hull, a common propulsion plant, and internal design from...would have the propulsion capable of maintaining a speed of 25 knots. Cargo fuel is stored in either the centerline tanks or in the deep tanks in the...for the Marine Expeditionary Force (Forward) [MEF(FWD)]. The ships required a seaport to offload cargo , an airfield to be the aerial port of

  18. Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings

    PubMed Central

    Van Mooy, Benjamin A. S.; Hmelo, Laura R.; Fredricks, Helen F.; Ossolinski, Justin E.; Pedler, Byron E.; Bogorff, Daniel J.; Smith, Peter J.S.

    2014-01-01

    The accumulation of microbial biofilms on ships' hulls negatively affects ships' performance and efficiency while also moderating the establishment of even more detrimental hard-fouling communities. However, there is little quantitative information on how the accumulation rate of microbial biofilms is impacted by the balance of the rates of cell settlement, in situ production (ie growth), dispersal to surrounding waters and mortality induced by grazers. These rates were quantified on test panels coated with copper-based antifouling or polymer-based fouling-release coatings by using phospholipids as molecular proxies for microbial biomass. The results confirmed the accepted modes of efficacy of these two types of coatings. In a more extensive set of experiments with only the fouling-release coatings, it was found that seasonally averaged cellular production rates were 1.5 ± 0.5 times greater than settlement and the dispersal rates were 2.7 ± 0.8 greater than grazing. The results of this study quantitatively describe the dynamic balance of processes leading to microbial biofilm accumulation on coatings designed for ships' hulls. PMID:24417212

  19. Calm water resistance prediction of a bulk carrier using Reynolds averaged Navier-Stokes based solver

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. Mashiur; Islam, Hafizul; Islam, Md. Tariqul; Khondoker, Md. Reaz Hasan

    2017-12-01

    Maneuverability and resistance prediction with suitable accuracy is essential for optimum ship design and propulsion power prediction. This paper aims at providing some of the maneuverability characteristics of a Japanese bulk carrier model, JBC in calm water using a computational fluid dynamics solver named SHIP Motion and OpenFOAM. The solvers are based on the Reynolds average Navier-Stokes method (RaNS) and solves structured grid using the Finite Volume Method (FVM). This paper comprises the numerical results of calm water test for the JBC model with available experimental results. The calm water test results include the total drag co-efficient, average sinkage, and trim data. Visualization data for pressure distribution on the hull surface and free water surface have also been included. The paper concludes that the presented solvers predict the resistance and maneuverability characteristics of the bulk carrier with reasonable accuracy utilizing minimum computational resources.

  20. Controlling the Cost of C4I Upgrades on Naval Ships

    DTIC Science & Technology

    2009-01-01

    Dynamics Electric Boat and Northrop Grumman Newport News. To analyze cost drivers, variability within costs, and the accuracy of the Navy’s cost...design also features a zonal electricity grid that allows power to be directed throughout the ship where and when it is needed. C4I-Upgrade Issues...class for hull, mechanical, and electrical equip- ment and systems. However, because C4I technologies can change one or two times during the three

Top