Sample records for shock compression ssc

  1. (BARS) -- Bibliographic Retrieval System Sandia Shock Compression (SSC) database Shock Physics Index (SPHINX) database. Volume 1: UNIX version query guide customized application for INGRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, W.; von Laven, G.M.; Parker, T.

    1993-09-01

    The Bibliographic Retrieval System (BARS) is a data base management system specially designed to retrieve bibliographic references. Two databases are available, (i) the Sandia Shock Compression (SSC) database which contains over 5700 references to the literature related to stress waves in solids and their applications, and (ii) the Shock Physics Index (SPHINX) which includes over 8000 further references to stress waves in solids, material properties at intermediate and low rates, ballistic and hypervelocity impact, and explosive or shock fabrication methods. There is some overlap in the information in the two data bases.

  2. Shocks and storm sudden commencements

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Slavin, J. A.; Zwickl, R. D.; Bame, S. J.

    1986-01-01

    Recent gains in understanding the relationship between shocks and storm sudden commencements (SSCs) are reviewed with emphasis on spacecraft observations in general and ISEE-3 observations in particular. The topics discussed include the relation of SSC amplitude to increase in solar wind pressure, the inference of shock properties from SSC amplitudes, SSCs as representative of the transient response of the magnetosphere to a step function input, and magnetic storms accompanying shocks.

  3. Empirical estimation of the arrival time of ICME Shocks

    NASA Astrophysics Data System (ADS)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  4. On the Relationship Between Transit Velocity of Interplanetary Shocks and Solar Active Processes

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1996-01-01

    Recently, it was reported that preferential relationships exist between the transit velocity V(sub T) of earthward-directed interplanetary shocks and solar active processes, in particular, eruptive filaments outside active regions (the size of the erupting filament L(sub f)) and solar flares (the value of the X-ray characteristic J). Unfortunately, statistical testing of the proposed associations was not accomplished, nor was the 'geo-effectiveness' of the events adequately described. Reported here are the results of a re-examination of the 21 eruptive filaments (SSC-EF events) and 26 X-ray flares (SSC-F events) that have been associated with storm sudden commencements (SSCs) at Earth. Simple statistical testing refutes the claim that a preferential relationship exists between V(sub T) and L(sub F), while it supports the claim that one exists between V(sub T) and J. More importantly, the inferred relationship between V(sub T) and J is found to be more complicated than previously thought. In particular, it now appears that SSC-F events may be separable into two groups, based on the value of J: a low-J group (J less than 56), in which V(sub T) varies directly with J, and a high-J group (J greater than 56), in which V(sub T) varies inversely with J. As a whole, high-J events are associated with shocks of higher average transit velocity than those of low-J events, and SSC-F events with shocks of higher average transit velocity than those of SSC-EF events. Further, high-J events tend to be of greater X-ray class ( greater than M3), longer duration (greater then 80 min), and are more likely to be associated with type II/IV radio emission (9 of 12) than low-J events. They also tend to occur in magnetically complex (gamma/delta configuration) active regions (10 of 12) that are large in area extent (area greater than 445 millionths of a solar hemisphere) on the day of flaring (9 of 12). Of the 9 solar proton events that affected the Earth's environment that were found to be associated with SSC-F events, six were high-J events. Concerning 'geo-effectiveness', there appears to be no preferential relationship between the value of the J-parameter and the most negative value of the Dst geomagnetic index Dst(min) following the SSC, which is found to usually occur at 6-14 h after SSC onset (18 of 26) and which ranged in value from -1 to -249 (having a median value of about -75). Of the 26 SSC-F events, only 14 can be associated with a Dst(min) less than or equal to -75, and of these only 7 were high-J events. Of the 14 storm-related events (i.e. Dst(min) less than or equal to -75), three have previously been identified as being either 'magnetic clouds' or 'bidirectional flows', both manifestations of earthward-directed coronal mass ejections (CMEs). Superposed epoch analyses of selected solar wind parameters and Dst during the interval of storm-related SSC-F events demonstrate that geoeffective SSC-F events tend to be associated with solar wind flows that are faster, greater in magnetic field strength, and have a rotating field which has a strong southward component shortly after SSC onset, in comparison to SSC-F events that do not have Dst(min) less than or equal to 75. Therefore, it is inferred that geoeffective SSC-F events are probably fast earthward-directed CMEs. Although no single parameter is found that can serve as a predictor of high-skill level for determining the geoeffectiveness of an SSC-F event prior to its occurrence at Earth, one finds that knowledge of the flare's hemispheric location and appearance or lack of appearance of a two-ribbon structure is sufficient to correctly predict the geoeffectiveness of 20 out of 25 of the SSC-F events (80%). Surprisingly, the association or lack of association of metric type II/IV radio emission as a characteristic for determining the geoeffectiveness of the SSC-F events proved unfruitful, as did, to a lesser extent, the duration of the X-ray emission.

  5. A Data Mining Approach to Determine Sepsis Guideline Impact on Inpatient Mortality and Complications.

    PubMed

    Pruinelli, Lisiane; Yadav, Pranjul; Hangsleben, Andrew; Johnson, Jakob; Dey, Sanjoy; McCarty, Maribet; Kumar, Vipin; Delaney, Connie W; Steinbach, Michael; Westra, Bonnie L; Simon, György J

    2016-01-01

    Sepsis incidents have doubled from 2000 through 2008, and hospitalizations for these diagnoses have increased by 70%. The use of the Surviving Sepsis Campaign (SSC) guidelines can lead to earlier diagnosis and treatment; however, the effectiveness of the SSC guidelines in preventing complications for this population is unclear. The overall purpose of this study was to apply SSC guideline recommendations to EHR data for patients with severe sepsis or septic shock and determine guideline compliance as well as its impact on inpatient mortality and sepsis complications. Propensity Score Matching in conjuction with Bootstrap Simulation were used to match patients with and without exposure to the SSC recommendations. Findings showed that EHR data could be used to estimate compliance with SSC recommendations as well as the effect of compliance on outcomes. Compliance with guideline recommendations ranged from 9% to 100%. For individual recommendations with sufficient data, association with outcomes varied. Checking lactate influenced four outcomes; however, two were negative and two positive. Use of a ventilator for patients with respiratory distress had a positive association with three outcomes.

  6. A study on super-sulfated cement using Dinh Vu phosphogypsum

    NASA Astrophysics Data System (ADS)

    Lam, Nguyen Ngoc

    2018-04-01

    Super-sulfated cement (SSC) is a newly developed unburnt cementitious material. It is a kind of environmental-friendly cementitious material due to its energy-saving, carbon emission reducing, and waste-utilization. It mainly composes of phosphogysum (PG) and ground granulated blast furnace slag (GFS), with a small amount of cement. In Vietnam, the Diammonium Phosphate DAP – Dinh Vu fertilizer plant in Dinh Vu industrial zone in the northern port city of Hai Phong – has discharged millions of tons of solid waste containing gypsum after 9 years of operation. The waste has changed the color of the water, eroded metal and destroyed fauna and floral systems in the surrounding area. Notably, according to the environmental impact assessment, the gypsum landfill area is supposed to be 13 hectares and the storage time reaches up to five years. This paper presents the experimental results on SSC using a high amount of Dinh Vu phosphogypsum and GFS in comparison with those of ordinary Portland cement (PC). The results show that the setting time of SSC is much longer than that of Portland cement but the compressive strength of SSC can be obtained 45-50 MPa at the age of 28 days, similar to that of the control sample using 100% PC40, and 69MPa at the age of 90 days. This value even exceeds the compressive strength of the PC40 cement.

  7. Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution 27Al NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul

    2012-03-01

    The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution 27Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the 27Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.

  8. Optical Radiation from Shock-Compressed Materials. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Svendsen, Robert F., Jr.

    1987-01-01

    Recent observations of shock-induced radiation from oxides, silicates, and metals of geophysical interest constrain the shock-compressed temperature of these materials. The relationships between the temperature inferred from the observed radiation and the temperature of the shock-compressed film or foil and/or window were investigated. Changes of the temperature field in each target component away from that of their respective shock-compressed states occur because of: shock-impedance mismatch between target components; thermal mismatch between target components; surface roughness at target interfaces; and conduction within and between target components. In particular, conduction may affect the temperature of the film/foil window interface on the time scale of the experiments, and so control the intensity and history of the dominant thermal radiation sources in the target. This type of model was used to interpret the radiation emitted by a variety of shock-compressed materials and interfaces.

  9. Hugoniot and refractive indices of bromoform under shock compression

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.

    2018-01-01

    We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  10. Secondary sclerosing cholangitis in critically ill patients.

    PubMed

    Peña-Pérez, Carlos Alberto; Ponce-Medrano, Juan Alberto Díaz

    2018-01-01

    Primary sclerosing cholangitis (PSC) is a rare idiopathic condition with immunopathogenic mechanisms where there is chronic progressive destruction of the biliary tree. Secondary sclerosing cholangitis (SSC) is clinically comparable to PSC, but is caused by specific processes which directly damage the biliary tree; examples include recurrent pancreatitis, bile duct malignancy, congenital bile duct abnormalities. A new cause of SSC has been described during or following significant critical illness associated with severe respiratory insufficiency, vasopressor requirement, shock and sepsis. This condition rapidly progresses to cirrhosis, frequently requiring liver transplantation for definitive management. Copyright: © 2018 Permanyer.

  11. Shock temperature measurement of transparent materials under shock compression

    NASA Astrophysics Data System (ADS)

    Hu, Jinbiao

    1999-06-01

    Under shock compression, some materials have very small absorptance. So it's emissivity is very small too. For this kinds of materials, although they stand in high temperature state under shock compression, the temperature can not be detected easily by using optical radiation technique because of the low emissivity. In this paper, an optical radiation temperature measurement technique of measuring temperature of very low emissive material under shock compression was proposed. For making sure this technique, temperature of crystal NaCl at shock pressure 41 GPa was measured. The result agrees with the results of Kormer et al and Ahrens et al very well. This shows that this technique is reliable and can be used to measuring low emissive shock temperature.

  12. Minimizing pre- and post-defibrillation pauses increases the likelihood of return of spontaneous circulation (ROSC).

    PubMed

    Sell, Rebecca E; Sarno, Renee; Lawrence, Brenna; Castillo, Edward M; Fisher, Roger; Brainard, Criss; Dunford, James V; Davis, Daniel P

    2010-07-01

    The three-phase model of ventricular fibrillation (VF) arrest suggests a period of compressions to "prime" the heart prior to defibrillation attempts. In addition, post-shock compressions may increase the likelihood of return of spontaneous circulation (ROSC). The optimal intervals for shock delivery following cessation of compressions (pre-shock interval) and resumption of compressions following a shock (post-shock interval) remain unclear. To define optimal pre- and post-defibrillation compression pauses for out-of-hospital cardiac arrest (OOHCA). All patients suffering OOHCA from VF were identified over a 1-month period. Defibrillator data were abstracted and analyzed using the combination of ECG, impedance, and audio recording. Receiver-operator curve (ROC) analysis was used to define the optimal pre- and post-shock compression intervals. Multiple logistic regression analysis was used to quantify the relationship between these intervals and ROSC. Covariates included cumulative number of defibrillation attempts, intubation status, and administration of epinephrine in the immediate pre-shock compression cycle. Cluster adjustment was performed due to the possibility of multiple defibrillation attempts for each patient. A total of 36 patients with 96 defibrillation attempts were included. The ROC analysis identified an optimal pre-shock interval of <3s and an optimal post-shock interval of <6s. Increased likelihood of ROSC was observed with a pre-shock interval <3s (adjusted OR 6.7, 95% CI 2.0-22.3, p=0.002) and a post-shock interval of <6s (adjusted OR 10.7, 95% CI 2.8-41.4, p=0.001). Likelihood of ROSC was substantially increased with the optimization of both pre- and post-shock intervals (adjusted OR 13.1, 95% CI 3.4-49.9, p<0.001). Decreasing pre- and post-shock compression intervals increases the likelihood of ROSC in OOHCA from VF.

  13. Whole-exome Sequencing Identifies Rare Variants in ATP8B4 as a Risk Factor for Systemic Sclerosis

    PubMed Central

    Gao, Li; Emond, Mary J; Louie, Tin; Cheadle, Chris; Berger, Alan E.; Rafaels, Nicholas; Vergara, Candelaria; Kim, Yoonhee; Taub, Margaret A.; Ruczinski, Ingo; Mathai, Stephen C.; Rich, Stephen S; Nickerson, Deborah A; Hummers, Laura K.; Bamshad, Michael J; Hassoun, Paul M.; Mathias, Rasika A; Barnes, Kathleen C.

    2015-01-01

    Objective To determine the contribution of rare variants as genetic modifiers of the expressivity, penetrance, and severity of systemic sclerosis (SSc). Methods We performed whole-exome sequencing of 78 European American systemic sclerosis patients, including 35 patients without pulmonary arterial hypertension (SSc-PAH−) and 43 patients with PAH (SSc-PAH+). Association testing of case-control probability for rare variants was performed using the aSKAT-O method with small sample adjustment by comparing all SSc patients with a reference population of 3,179 controls from the ESP 5,500 exome dataset. Replication genotyping was performed in an independent sample of 3,263 patients (415 SSc and 2,848 controls). We conducted expression profiling of mRNA from 61 SSc patients (19 SSc-PAH− and 42 SSc-PAH+) and 41 corresponding controls. Results The ATP8B4 gene was associated with a significant increase in the risk of SSc (P = 3.18 × 10−7). Among the 64 ATP8B4 variants tested, a single missense variant, c.1308C>G (F436L, rs55687265), provided the most compelling evidence for association (P = 9.35 × 10−10; OR = 6.11), which was confirmed in the replication cohort (P = 0.012; OR = 1.86) and meta-analysis (P = 1.92 x 10−7; OR = 2.5). Genes involved in E3 ubiquitin-protein ligase complex (ASB10) and cyclic nucleotide gated channelopathies (CNGB3) as well as HLA-DRB5 and HSPB2 (aka heat shock protein 27) provided additional evidence for association (P < 10−5). Differential ATP8B4 expression was observed among the SSc patients compared to the controls (P = 0.0005). Conclusion ATP8B4 may represent a putative genetic risk factor for SSc and pulmonary vascular complications. PMID:26473621

  14. Development of Flat Roof Construction with Waterproofing from Modified Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Bogdanov, R. R.; Ibragimov, R. A.

    2017-11-01

    The given article considers the issues of increase of building flat roof durability by application of the modified self-compacting concrete (SSC). When SSC was modified, a complex modifier was developed and the optimization of the complex modifier composition was carried out using a three-factor experiment. The physico-mechanical properties of the obtained SSC are determined. The microstructure and phase composition of the modified cement stone were studied. On the basis of the studies carried out, namely, X-ray phase analysis and electron microscopy, it was concluded that the reduced content of calcium hydroxide in the samples with a complex modifier is due to the adsorption of calcium hydroxide on highly dispersed particles and the reaction of interaction with metakaolin also contributing to reduction in the content of calcium hydroxide in cement stone. The received data allow one to speak about SSC high operational characteristics. With the mark for the spreading of cone P5, the modified SSC has a class of compressive strength B50, high frost resistance (F600) and water resistance (W16).

  15. A randomized control hands-on defibrillation study-Barrier use evaluation.

    PubMed

    Wampler, David; Kharod, Chetan; Bolleter, Scotty; Burkett, Alison; Gabehart, Caitlin; Manifold, Craig

    2016-06-01

    Chest compressions and defibrillation are the only therapies proven to increase survival in cardiac arrest. Historically, rescuers must remove hands to shock, thereby interrupting chest compressions. This hands-off time results in a zero blood flow state. Pauses have been associated with poorer neurological recovery. This was a blinded randomized control cadaver study evaluating the detection of defibrillation during manual chest compressions. An active defibrillator was connected to the cadaver in the sternum-apex configuration. The sham defibrillator was not connected to the cadaver. Subjects performed chest compressions using 6 barrier types: barehand, single and double layer nitrile gloves, firefighter gloves, neoprene pad, and a manual chest compression/decompression device. Randomized defibrillations (10 per barrier type) were delivered at 30 joules (J) for bare hand and 360J for all other barriers. After each shock, the subject indicated degree of sensation on a VAS scale. Ten subjects participated. All subjects detected 30j shocks during barehand compressions, with only 1 undetected real shock. All barriers combined totaled 500 shocks delivered. Five (1%) active shocks were detected, 1(0.2%) single layer of Nitrile, 3(0.6%) with double layer nitrile, and 1(0.2%) with the neoprene barrier. One sham shock was reported with the single layer nitrile glove. No shocks were detected with fire gloves or compression decompression device. All shocks detected barely perceptible (0.25(±0.05)cm on 10cm VAS scale). Nitrile gloves and neoprene pad prevent (99%) responder's detection of defibrillation of a cadaver. Fire gloves and compression decompression device prevented detection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Shock-wave studies of anomalous compressibility of glassy carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Savinykh, A. S.

    2016-02-15

    The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm{sup 3} and 1.55(2) g/cm{sup 3}. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formedmore » in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.« less

  17. Subspace Compressive GLRT Detector for MIMO Radar in the Presence of Clutter.

    PubMed

    Bolisetti, Siva Karteek; Patwary, Mohammad; Ahmed, Khawza; Soliman, Abdel-Hamid; Abdel-Maguid, Mohamed

    2015-01-01

    The problem of optimising the target detection performance of MIMO radar in the presence of clutter is considered. The increased false alarm rate which is a consequence of the presence of clutter returns is known to seriously degrade the target detection performance of the radar target detector, especially under low SNR conditions. In this paper, a mathematical model is proposed to optimise the target detection performance of a MIMO radar detector in the presence of clutter. The number of samples that are required to be processed by a radar target detector regulates the amount of processing burden while achieving a given detection reliability. While Subspace Compressive GLRT (SSC-GLRT) detector is known to give optimised radar target detection performance with reduced computational complexity, it however suffers a significant deterioration in target detection performance in the presence of clutter. In this paper we provide evidence that the proposed mathematical model for SSC-GLRT detector outperforms the existing detectors in the presence of clutter. The performance analysis of the existing detectors and the proposed SSC-GLRT detector for MIMO radar in the presence of clutter are provided in this paper.

  18. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales.

    PubMed

    Loveridge-Smith, A; Allen, A; Belak, J; Boehly, T; Hauer, A; Holian, B; Kalantar, D; Kyrala, G; Lee, R W; Lomdahl, P; Meyers, M A; Paisley, D; Pollaine, S; Remington, B; Swift, D C; Weber, S; Wark, J S

    2001-03-12

    We have used x-ray diffraction with subnanosecond temporal resolution to measure the lattice parameters of orthogonal planes in shock compressed single crystals of silicon (Si) and copper (Cu). Despite uniaxial compression along the (400) direction of Si reducing the lattice spacing by nearly 11%, no observable changes occur in planes with normals orthogonal to the shock propagation direction. In contrast, shocked Cu shows prompt hydrostaticlike compression. These results are consistent with simple estimates of plastic strain rates based on dislocation velocity data.

  19. Transparency of the strong shock-compressed diamond for 532 nm laser light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyu; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhao, Yang

    2016-04-15

    An optical reflectivity and transmissivity model for the shock-compressed diamond is established and used to calculate the optical reflectivity and transmissivity of the diamond under different shock compressions. The simulated results indicate that the reflection occurs at the shock front and does not depend on the thickness of the compressed diamond, but the transmissivity decreases with the thickness. The simulated reflectivity is consistent with the experimental results in the literature, which validates the model. It is shown that the diamond keeps transparent when the shock pressure is lower than 2.00 Mbar, and becomes opaque but does not reflect the probemore » laser as the shock pressure increases from 2.00 Mbar to 4.60 Mbar and reflects the probe laser markedly when the shock pressure is higher than 4.60 Mbar.« less

  20. Precursors of the Forbush Decrease on 2006 December 14 Observed with the Global Muon Detector Network (GMDN)

    NASA Astrophysics Data System (ADS)

    Fushishita, A.; Kuwabara, T.; Kato, C.; Yasue, S.; Bieber, J. W.; Evenson, P.; Da Silva, M. R.; Dal Lago, A.; Schuch, N. J.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Sabbah, I.; Jassar, H. K. Al; Sharma, M. M.; Munakata, K.

    2010-06-01

    We analyze the precursor of a Forbush decrease (FD) observed with the Global Muon Detector Network on 2006 December 14. An intense geomagnetic storm is also recorded during this FD with the peak Kp index of 8+. By using the "two-dimensional map" of the cosmic ray intensity produced after removing the contribution from the diurnal anisotropy, we succeed in extracting clear signatures of the precursor. A striking feature of this event is that a weak loss-cone (LC) signature is first recorded more than a day prior to the storm sudden commencement (SSC) onset. This suggests that the LC precursor appeared only 7 hr after the coronal mass ejection eruption from the Sun, when the interplanetary (IP) shock driven by the interplanetary coronal mass ejection was located at 0.4 AU from the Sun. We find the precursor being successively observed with multiple detectors in the network according to the Earth's spin and confirmed that the precursor continuously exists in space. The long lead time (15.6 hr) of this precursor which is almost twice the typical value indicates that the interplanetary magnetic field (IMF) was more quiet in this event than a typical power spectrum assumed for the IMF turbulence. The amplitude (-6.45%) of the LC anisotropy at the SSC onset is more than twice the FD size, indicating that the maximum intensity depression behind the IP shock is much larger than the FD size recorded at the Earth in this event. We also find the excess intensity from the sunward IMF direction clearly observed during ~10 hr preceding the SSC onset. It is shown that this excess intensity is consistent with the measurement of the particles accelerated by the head-on collisions with the approaching shock. This is the first detailed observation of the precursor due to the shock reflected particles with muon detectors.

  1. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  2. Thermophysical properties of multi-shock compressed dense argon

    NASA Astrophysics Data System (ADS)

    Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-01

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ˜6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  3. Investigations of Compression Shocks and Boundary Layers in Gases Moving at High Speed

    NASA Technical Reports Server (NTRS)

    Ackeret, J.; Feldmann, F.; Rott, N.

    1947-01-01

    The mutual influences of compression shocks and friction boundary layers were investigated by means of high speed wind tunnels.Schlieren optics provided a clear picture of the flow phenomena and were used for determining the location of the compression shocks, measurement of shock angles, and also for Mach angles. Pressure measurement and humidity measurements were also taken into consideration.Results along with a mathematical model are described.

  4. Dissipative processes under the shock compression of glass

    NASA Astrophysics Data System (ADS)

    Savinykh, A. S.; Kanel, G. I.; Cherepanov, I. A.; Razorenov, S. V.

    2016-03-01

    New experimental data on the behavior of the K8 and TF1 glasses under shock-wave loading conditions are obtained. It is found that the propagation of shock waves is close to the self-similar one in the maximum compression stress range 4-12 GPa. Deviations from a general deformation diagram, which are related to viscous dissipation, take place when the final state of compression is approached. The parameter region in which failure waves form in glass is found not to be limited to the elastic compression stress range, as was thought earlier. The failure front velocity increases with the shock compression stress. Outside the region covered by a failure wave, the glasses demonstrate a high tensile dynamic strength (6-7 GPa) in the case of elastic compression, and this strength is still very high after transition through the elastic limit in a compression wave.

  5. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  6. The epidemiology of adults with severe sepsis and septic shock in Scottish emergency departments.

    PubMed

    Gray, Alasdair; Ward, Kirsty; Lees, Fiona; Dewar, Colin; Dickie, Sarah; McGuffie, Crawford

    2013-05-01

    The Surviving Sepsis Campaign (SSC) promotes a bundle approach to the care of septic patients to improve outcome. Some have questioned the capability of delivering the bundle in emergency departments (EDs). The authors report the epidemiology and 6 h bundle compliance of patients with severe sepsis/septic shock presenting to Scottish EDs. Analysis of the previously reported Scottish Trauma Audit Group sepsis database was performed including 20 mainland Scottish EDs. A total of 308,910 attendances were screened (between 2 March and 31 May 2009), and 5285 of 27,046 patients were identified after case note review and included on the database. This analysis includes patients who had severe sepsis/septic shock before leaving the ED. Epidemiological, severity of illness criteria, and ED management data were analysed. 626 patients (median age 73; M/F ratio 1:1; 637 presentations) met entrance criteria. The median number of cases per site was 16 (range 3-103). 561 (88.1%) patients arrived by ambulance. The most common source of infection was the respiratory tract (n=411, 64.5%) The most common physiological derangements were heart rate (n=523, 82.1%), respiratory rate (n=452, 71%) and white cell count (n=432, 67.8%). The median hospital stay was 9 days (IQR 4-17 days). 201 (31.6%) patients were admitted to critical care within 2 days, 130 (20.4%) directly from the ED. 180 patients (28.3%) died. There was poor compliance with all aspect of the SSC resuscitation bundle. Sepsis presentations are of variable frequency but have typical epidemiology and clinical outcomes. SSC bundle resuscitation uptake is poor in Scottish EDs.

  7. In situ X-Ray Diffraction of Shock-Compressed Fused Silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan J.; Duffy, Thomas S.

    2018-03-01

    Because of its widespread applications in materials science and geophysics, SiO2 has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ˜5 - 30 nm for compression over a few hundred nanosecond time scale.

  8. The impact of manual defibrillation technique on no-flow time during simulated cardiopulmonary resuscitation.

    PubMed

    Perkins, Gavin D; Davies, Robin P; Soar, Jasmeet; Thickett, David R

    2007-04-01

    Rapid defibrillation is the most effective strategy for establishing return of spontaneous circulation following cardiac arrest due to ventricular fibrillation. The aim of this study is to measure the delay due to of charging the defibrillator during chest compression in an attempt to reduce the duration of the pre-shock pause in between cessation of chest compressions and shock delivery as advocated by the American Heart Association (AHA) guidelines compared to charging the defibrillator immediately following rhythm analysis without resuming chest compressions as recommended by the European Resuscitation Council (ERC). This was a randomised controlled cross over trial comparing pre-shock pause times when defibrillation was performed on a manikin according to the AHA and ERC guidelines using paddles and hands free defibrillation systems. The pre-shock pause between cessation of chest compression and shock delivery was significantly different between techniques (Friedman test, P<0.0001). ERC paddles technique had the greatest pre-shock pause (7.4 s [6.7-11.2]) followed by ERC hands free (7.0 s [6.5-8.5]) and AHA paddles (1.6 s [1.1-2.3]). AHA hands free took the least amount of time (1.5 s [0.8-1.5]). Extrapolating these data to older defibrillators with longer charge times saw pre-shock pause intervals of 9 s (Codemaster XL) and 12 s (Lifepak 20) with the ERC approach. This study demonstrated clinically significant delays to defibrillation by analysing and charging the defibrillator without performing concurrent chest compressions. In a simulated scenario, charging the defibrillator whilst performing chest compressions was perceived as safe and significantly reduced the pre-shock pause between cessation of chest compression and shock delivery.

  9. Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET.

    PubMed

    Sikor, Martin; Mapa, Koyeli; von Voithenberg, Lena Voith; Mokranjac, Dejana; Lamb, Don C

    2013-05-29

    The numerous functions of the important class of molecular chaperones, heat shock proteins 70 (Hsp70), rely on cycles of intricate conformational changes driven by ATP-hydrolysis and regulated by cochaperones and substrates. Here, we used Förster resonance energy transfer to study the conformational dynamics of individual molecules of Ssc1, a mitochondrial Hsp70, in real time. The intrinsic dynamics of the substrate-binding domain of Ssc1 was observed to be uncoupled from the dynamic interactions between substrate- and nucleotide-binding domains. Analysis of the fluctuations in the interdomain separation revealed frequent transitions to a nucleotide-free state. The nucleotide-exchange factor Mge1 did not induce ADP release, as expected, but rather facilitated binding of ATP. These results indicate that the conformational cycle of Ssc1 is more elaborate than previously thought and provide insight into how the Hsp70s can perform a wide variety of functions.

  10. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa.

    PubMed

    Knudson, M D; Hanson, D L; Bailey, J E; Hall, C A; Asay, J R

    2003-01-24

    A novel approach was developed to probe density compression of liquid deuterium (L-D2) along the principal Hugoniot. Relative transit times of shock waves reverberating within the sample are shown to be sensitive to the compression due to the first shock. This technique has proven to be more sensitive than the conventional method of inferring density from the shock and mass velocity, at least in this high-pressure regime. Results in the range of 22-75 GPa indicate an approximately fourfold density compression, and provide data to differentiate between proposed theories for hydrogen and its isotopes.

  11. On the source of flare-ejecta responsible for geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1974-01-01

    It is shown that magnetic bottles as the sources of moving metric type 4 bursts are not responsible for the development of geomagnetic storms, despite the fact that shock waves producing type 2 bursts are the sources of the interplanetary shock waves, which produce SSC's on the geomagnetic field. These magnetic bottles, in general, tend to move in the solar envelope with the speed of several hundred Km/sec at most, which is much slower than that of the motion of type 2 radio sources.

  12. A Mass Tracking Formulation for Bubbles in Incompressible Flow

    DTIC Science & Technology

    2012-10-14

    incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions , and then subsequently making a number of...using the ideas from [19] to couple together incompressible flow with fully nonlinear compressible flow including shocks and rarefactions . The results...compressible flow including the effects of shocks and rarefactions , and then subsequently making a number of simplifying assumptions on the air flow

  13. Laser shock compression experiments on precompressed water in ``SG-II'' laser facility

    NASA Astrophysics Data System (ADS)

    Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu

    2017-06-01

    Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.

  14. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Jianchun; Wan, Minping; Chen, Song; Xie, Chenyue; Chen, Shiyi

    2018-04-01

    The statistics and scaling of compressible isotropic turbulence in the presence of large-scale shock waves are investigated by using numerical simulations at turbulent Mach number Mt ranging from 0.30 to 0.65. The spectra of the compressible velocity component, density, pressure, and temperature exhibit a k-2 scaling at different turbulent Mach numbers. The scaling exponents for structure functions of the compressible velocity component and thermodynamic variables are close to 1 at high orders n ≥3 . The probability density functions of increments of the compressible velocity component and thermodynamic variables exhibit a power-law region with the exponent -2 . Models for the conditional average of increments of the compressible velocity component and thermodynamic variables are developed based on the ideal shock relations and are verified by numerical simulations. The overall statistics of the compressible velocity component and thermodynamic variables are similar to one another at different turbulent Mach numbers. It is shown that the effect of shock waves on the compressible velocity spectrum and kinetic energy transfer is different from that of acoustic waves.

  15. Quasi One-Dimensional Unsteady Modeling of External Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Kratz, Jonathan

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of an axisymmetric external compression supersonic inlet is being developed. The model utilizes compressible flow computational fluid dynamics to model the internal inlet segment as well as the external inlet portion between the cowl lip and normal shock, and compressible flow relations with flow propagation delay to model the oblique shocks upstream of the normal shock. The external compression portion between the cowl-lip and the normal shock is also modeled with leaking fluxes crossing the sonic boundary, with a moving CFD domain at the normal shock boundary. This model has been verified in steady state against tunnel inlet test data and it s a first attempt towards developing a more comprehensive model for inlet dynamics.

  16. Compton scattering of self-absorbed synchrotron emission

    NASA Astrophysics Data System (ADS)

    Gao, He; Lei, Wei-Hua; Wu, Xue-Feng; Zhang, Bing

    2013-11-01

    Synchrotron self-Compton (SSC) scattering is an important emission mechanism in many astronomical sources, such as gamma-ray bursts (GRBs) and active galactic nuclei. We give a complete presentation of the analytical approximations for the Compton scattering of synchrotron emission with both weak and strong synchrotron self-absorption. All possible orders of the characteristic synchrotron spectral breaks (νa, νm and νc) are studied. In the weak self-absorption regime, i.e. νa < νc, the electron energy distribution is not modified by the self-absorption process. The shape of the SSC component broadly resembles that of synchrotron, but with the following features: The SSC flux increases linearly with frequency up to the SSC break frequency corresponding to the self-absorption frequency νa; and the presence of a logarithmic term in the high-frequency range of the SSC spectra makes it harder than the power-law approximation. In the strong absorption regime, i.e. νa > νc, heating of low-energy electrons due to synchrotron absorption leads to pile-up of electrons, and form a thermal component besides the broken power-law component. This leads to two-component (thermal + non-thermal) spectra for both the synchrotron and SSC spectral components. For νc < νa < νm, the spectrum is thermal (non-thermal) dominated if ν _a > √{ν _m ν _c} (ν _a < √{ν _m ν _c}). Similar to the weak-absorption regime, the SSC spectral component is broader than the simple broken power-law approximation. We derive the critical condition for strong absorption (electron pile-up), and discuss a case of GRB reverse shock emission in a wind medium, which invokes νa > max(νm, νc).

  17. Anti-fibrotic characteristics of Vγ9+ γδ T cells in systemic sclerosis.

    PubMed

    Markovits, Noa; Bendersky, Anna; Loebstein, Ronen; Brusel, Marina; Kessler, Efrat; Bank, Ilan

    2016-01-01

    γδ T cells of the Vγ9Vδ2 subtype secrete anti-fibrotic cytokines upon isopentenyl pyrophosphate (IPP) stimulation. In this study, we sought to compare IPP and Zoledronate, an up-regulator of IPP, effects on proliferation and cytokine secretion of Vγ9+ T cells from systemic sclerosis (SSc) patients and healthy controls (HCs). We also examined the effect of IPP-triggered peripheral blood mononuclear cells (PBMC) on fibroblast procolla- gen secretion. PBMC from SSc patients and HCs were stimulated by increasing concentrations of Zoledronate, with or without IPP, and Vγ9+ T cell percentages were calculated using FACScan analysis. Subsequently, PBMC were cultured with IPP or toxic shock syndrome toxin-1 (TSST-1), and contents of the anti-fibrotic cytokines tumour necrosis factor (TNF)-α and interferon (IFN)-γ were measured by ELISA kits. Finally, supernatants of IPP-triggered Vγ9+ T cells from SSc patients were added to fibroblast cultures, and relative intensities of procollagen α1 chains were determined by densinometry. Higher concentrations of Zoledronate were required for maximal proliferation of Vγ9+ T cells in 9 SSc patients compared to 9 HCs, irrespective of exogenous IPP. When compared to stimulation by TSST-1, a non-Vγ9+ selective reagent, secretion of the anti-fibrotic cytokines TNF-α and IFN-γ in response to IPP was relatively diminished in SSc but not in HCs. Reduction of procollagen secretion by fibroblasts cultured with supernatants of IPP-stimulated PBMC was observed only in some SSc patients. Activated Vγ9+ T cells could act as anti-fibrotic mediators in SSc, although decreased responsiveness to IPP may play a role in the pathological fibrosis of this disease.

  18. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  19. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; ...

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  20. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh

    2017-06-01

    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  1. The needs of patients with systemic sclerosis--what are the difficulties encountered?

    PubMed

    Godard, Dominique

    2011-03-01

    When the diagnosis of systemic sclerosis (SSc) is made and you are told "You have SSc", it is a strange feeling for the patient, because you don't yet know what it is exactly. It is a very intense shock to hear this, and it is also difficult to try to imagine what will follow. There is no cure for SSc; there are just treatments that are capable of reducing the symptoms. The main difficulties and pitfalls encountered by the patients occur: before the diagnosis; during treatment; at the hospital and with the physicians; if surgery is necessary; at home; with family and friends… How do you live with SSc? You need strong, active support to help you to live with this illness; without this, we cannot handle it. The way to communicate, to inform, to consider this disease is changing, because times are changing, patients are changing, and the opinions of the specialists are also changing. Of course it's a long way, but what we, the patients, hope for is to be better understood by you, the doctors. Please pay attention to what we say; we're the ones suffering from this disease. SSc is part of us; we are not merely medical cases! Please think about it. Together we can help you to fight, to find out more, to find a cure. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Molecular dynamics simulation of the plastic behavior anisotropy of shock-compressed monocrystal nickel

    NASA Astrophysics Data System (ADS)

    Chen, Ya-Zhou; Zhou, Liu-Cheng; He, Wei-Feng; Sun, Yu; Li, Ying-Hong; Jiao, Yang; Luo, Si-Hai

    2017-01-01

    Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.

  3. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Pak, A.; Divol, L.; Gregori, G.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Casey, D. T.; Dewald, E.; Döppner, T.; Edwards, M. J.; Frenje, J. A.; Glenn, S.; Grim, G. P.; Hicks, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Johnson, M. G.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Lindl, J.; Landen, O. L.; Le Pape, S.; Ma, T.; MacPhee, A.; MacGowan, B. J.; MacKinnon, A. J.; Masse, L.; Meezan, N. B.; Moody, J. D.; Olson, R. E.; Ralph, J. E.; Robey, H. F.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Tommasini, R.; Town, R. P. J.; Smalyuk, V.; Glenzer, S. H.; Moses, E. I.

    2013-05-01

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ˜20 μm and ˜ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ˜40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ˜100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ˜10 μm, as the shock propagates into the lower density (˜1 g/cc), hot (˜250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ˜300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of the luminosity from the shock-heated matter, is consistent with 1-D radiation hydrodynamic simulations. Analytic estimates indicate that the radiation energy flux from the shock-heated matter is of the same order as the in-flowing material energy flux, and suggests that this radiation energy flux modifies the shock front structure. Simulations support these estimates and show the formation of a radiative shock, with a precursor that raises the temperature ahead of the shock front, a sharp μm-scale thick spike in temperature at the shock front, followed by a post-shock cooling layer.

  4. Fast Electron Deposition in Laser Shock Compressed Plastic Targets

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Ellwi, S.; Batani, D.; Bernardinello, A.; Masella, V.; Koenig, M.; Benuzzi, A.; Krishnan, J.; Pisani, F.; Djaoui, A.; Norreys, P.; Neely, D.; Rose, S.; Key, M. H.; Fews, P.

    1998-08-01

    We present the first results of fast electron deposition in a laser shock compressed plasma. The interaction of a 3 ps, 15 J laser pulse with solid polyethylene targets is used to produce fast electrons on one side of foil targets and a 2 ns duration laser pulse is used to drive a shock wave into the target from the opposite side. Kα emission from chlorine fluor buried layers is used to measure the electron transport. The hot electron range in the shock compressed plastic is found to be approximately twice as large as the range in the solid density plastic.

  5. Shock waves in weakly compressed granular media.

    PubMed

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  6. Letter: Transient interaction between plasma jet and supersonic compression ramp flow

    NASA Astrophysics Data System (ADS)

    Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Zhang, Yu-Chao; Cheng, Lin

    2018-04-01

    The rapid flow evolution between a plasma jet and a 20° compression ramp flow is captured by a high-speed schlieren system at Mach 2.0. Several interesting flow phenomena are observed for the first time. The pulsed jet, which generates strong perturbations, forces the crossflow boundary layer to separate and forms a forward moving shock. A typical shock-on-shock interaction occurs when the precursor shock intersects with the original shock. The interaction is initially regular, and then it transforms into an irregular one with a Mach stem connecting the precursor shock and original ramp shock.

  7. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishihara, M.; Takashima, K.; Rich, J. W.

    2011-06-15

    Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generatedmore » by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.« less

  8. Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET

    PubMed Central

    Sikor, Martin; Mapa, Koyeli; von Voithenberg, Lena Voith; Mokranjac, Dejana; Lamb, Don C

    2013-01-01

    The numerous functions of the important class of molecular chaperones, heat shock proteins 70 (Hsp70), rely on cycles of intricate conformational changes driven by ATP-hydrolysis and regulated by cochaperones and substrates. Here, we used Förster resonance energy transfer to study the conformational dynamics of individual molecules of Ssc1, a mitochondrial Hsp70, in real time. The intrinsic dynamics of the substrate-binding domain of Ssc1 was observed to be uncoupled from the dynamic interactions between substrate- and nucleotide-binding domains. Analysis of the fluctuations in the interdomain separation revealed frequent transitions to a nucleotide-free state. The nucleotide-exchange factor Mge1 did not induce ADP release, as expected, but rather facilitated binding of ATP. These results indicate that the conformational cycle of Ssc1 is more elaborate than previously thought and provide insight into how the Hsp70s can perform a wide variety of functions. PMID:23624933

  9. Sandia 25-meter compressed helium/air gun

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.

    1982-04-01

    For nearly twenty years the Sandia 25-meter compressed gas gun has been an important tool for studying condensed materials subjected to transient shock compression. Major system modifications are now in progress to provide new control, instrumentation, and data acquisition capabilities. These features will ensure that the facility can continue as an effective means of investigating a variety of physical and chemical processes in shock-compressed solids.

  10. Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narkis, J.; Rahman, H. U.; Ney, P.

    2016-12-29

    1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compressionmore » heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.« less

  11. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Xiong, Ming; Zheng, Huinan; Wu, S. T.; Wang, Yuming; Wang, Shui

    2007-11-01

    Numerical studies of the interplanetary "multiple magnetic clouds (Multi-MC)" are performed by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. Both slow MC1 and fast MC2 are initially emerged along the heliospheric equator, one after another with different time intervals. The coupling of two MCs could be considered as the comprehensive interaction between two systems, each comprising of an MC body and its driven shock. The MC2-driven shock and MC2 body are successively involved into interaction with MC1 body. The momentum is transferred from MC2 to MC1. After the passage of MC2-driven shock front, magnetic field lines in MC1 medium previously compressed by MC2-driven shock are prevented from being restored by the MC2 body pushing. MC1 body undergoes the most violent compression from the ambient solar wind ahead, continuous penetration of MC2-driven shock through MC1 body, and persistent pushing of MC2 body at MC1 tail boundary. As the evolution proceeds, the MC1 body suffers from larger and larger compression, and its original vulnerable magnetic elasticity becomes stiffer and stiffer. So there exists a maximum compressibility of Multi-MC when the accumulated elasticity can balance the external compression. This cutoff limit of compressibility mainly decides the maximally available geoeffectiveness of Multi-MC because the geoeffectiveness enhancement of MCs interacting is ascribed to the compression. Particularly, the greatest geoeffectiveness is excited among all combinations of each MC helicity, if magnetic field lines in the interacting region of Multi-MC are all southward. Multi-MC completes its final evolutionary stage when the MC2-driven shock is merged with MC1-driven shock into a stronger compound shock. With respect to Multi-MC geoeffectiveness, the evolution stage is a dominant factor, whereas the collision intensity is a subordinate one. The magnetic elasticity, magnetic helicity of each MC, and compression between each other are the key physical factors for the formation, propagation, evolution, and resulting geoeffectiveness of interplanetary Multi-MC.

  12. Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments

    NASA Astrophysics Data System (ADS)

    Jeanloz, R.

    2015-12-01

    Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed samples may thus offer the closest approach to an isentrope, and therefore the most extreme compression at which matter can be studied at the "warm" temperatures of planetary interiors.

  13. The History of the APS Topical Group on Shock Compression of Condensed Matter

    NASA Astrophysics Data System (ADS)

    Forbes, Jerry W.

    2002-07-01

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wave/high pressure sessions at APS general meetings in even numbered years.

  14. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOEpatents

    Moore, David S.; Schmidt, Stephen C.

    1985-01-01

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  15. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    PubMed Central

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.

    2015-01-01

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD. PMID:26337754

  16. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO 2

    DOE PAGES

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; ...

    2015-09-04

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueationmore » of stishovite appears to be kinetically limited to 1.4 ± 0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.« less

  17. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOEpatents

    Moore, D.S.; Schmidt, S.C.

    1983-12-16

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  18. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    NASA Astrophysics Data System (ADS)

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.; Tagarielli, V. L.

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  19. Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression.

    PubMed

    Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella

    2008-05-14

    We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.

  20. Hugoniot equation of state and dynamic strength of boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, Dennis E.

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Losmore » Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.« less

  1. Dynamic compression and volatile release of carbonates

    NASA Technical Reports Server (NTRS)

    Tyburczy, J. A.; Ahrens, T. J.

    1984-01-01

    Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.

  2. Using phase contrast imaging to measure the properties of shock compressed aerogel

    NASA Astrophysics Data System (ADS)

    Hawreliak, James; Erskine, Dave; Schropp, Andres; Galtier, Eric C.; Heimann, Phil

    2017-01-01

    The Hugoniot states of low density materials, such as silica aerogel, are used in high energy density physics research because they can achieve a range of high temperature and pressure states through shock compression. The shock properties of 100mg/cc silica aerogel were studied at the Materials in Extreme Conditions end station using x-ray phase contrast imaging of spherically expanding shock waves. The shockwaves were generated by focusing a high power 532nm laser to a 50μm focal spot on a thin aluminum ablator. The shock speed was measured in separate experiments using line-VISAR measurements from the reflecting shock front. The relative timing between the x-ray probe and the optical laser pump was varied so x-ray PCI images were taken at pressures between 10GPa and 30GPa. Modeling the compression of the foam in the strong shock limit uses a Gruneisen parameter of 0.49 to fit the data rather than a value of 0.66 that would correspond to a plasma state.

  3. Shock Compression Induced Hot Spots in Energetic Material Detected by Thermal Imaging Microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Wei; Dlott, Dana

    2014-06-01

    The chemical reaction of powder energetic material is of great interest in energy and pyrotechnic applications since the high reaction temperature. Under the shock compression, the chemical reaction appears in the sub-microsecond to microsecond time scale, and releases a large amount of energy. Experimental and theoretical research progresses have been made in the past decade, in order to characterize the process under the shock compression. However, the knowledge of energy release and temperature change of this procedure is still limited, due to the difficulties of detecting technologies. We have constructed a thermal imaging microscopy apparatus, and studied the temperature change in energetic materials under the long-wavelength infrared (LWIR) and ultrasound exposure. Additionally, the real-time detection of the localized heating and energy concentration in composite material is capable with our thermal imaging microscopy apparatus. Recently, this apparatus is combined with our laser driven flyer plate system to provide a lab-scale source of shock compression to energetic material. A fast temperature increase of thermite particulars induced by the shock compression is directly observed by thermal imaging with 15-20 μm spatial resolution. Temperature change during the shock loading is evaluated to be at the order of 10^9K/s, through the direct measurement of mid-wavelength infrared (MWIR) emission intensity change. We observe preliminary results to confirm the hot spots appear with shock compression on energetic crystals, and will discuss the data and analysis in further detail. M.-W. Chen, S. You, K. S. Suslick, and D. D. Dlott, {Rev. Sci. Instr., 85, 023705 (2014) M.-W. Chen, S. You, K. S. Suslick, and D. D. Dlott, {Appl. Phys. Lett., 104, 061907 (2014)} K. E. Brown, W. L. Shaw, X. Zheng, and D. D. Dlott, {Rev. Sci. Instr., 83, 103901 (2012)}

  4. Isentropic compressive wave generator impact pillow and method of making same

    DOEpatents

    Barker, Lynn M.

    1985-01-01

    An isentropic compressive wave generator and method of making same. The w generator comprises a disk or flat "pillow" member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.

  5. Isentropic compressive wave generator and method of making same

    DOEpatents

    Barker, L.M.

    An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.

  6. Shock-Wave Pulse Compression and Stretching of Dodecane and Mineral Oils

    NASA Astrophysics Data System (ADS)

    Bannikova, I. A.; Zubareva, A. N.; Utkin, A. V.

    2018-04-01

    The behavior of dodecane, vacuum, and transformer oils under shock-wave pulse compression and stretching are studied experimentally. The wave profiles are registered using a VISAR laser interferometer. The shock adiabats, the dependence of the sound velocity on the pressure, and the maximum negative pressures developed in the studied liquids are determined. It is shown that the negative pressure value does not depend on the deformation rate in the case of oils and is a strong function of the compression pulse amplitude in the case of dodecane.

  7. Converging shocks in elastic-plastic solids.

    PubMed

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially commands the strong-shock behavior, the shear modulus and yield stress modify the compression ratio and velocity of the shock far from the axis or origin. A characterization of the elastic-plastic transition in converging shocks, which involves an elastic precursor and a plastic compression region, is finally exposed.

  8. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Zhitao; Banishev, Alexandr A.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Xiao, Pan; Christensen, James; Zhou, Min; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.

    2016-07-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  9. Multiple film plane diagnostic for shocked lattice measurements (invited)

    NASA Astrophysics Data System (ADS)

    Kalantar, Daniel H.; Bringa, E.; Caturla, M.; Colvin, J.; Lorenz, K. T.; Kumar, M.; Stölken, J.; Allen, A. M.; Rosolankova, K.; Wark, J. S.; Meyers, M. A.; Schneider, M.; Boehly, T. R.

    2003-03-01

    Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the Hugoniot elastic limit. In these experiments, static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. These data showed uniaxial compression of Si(100) along the shock direction and three-dimensional compression of Cu(100). In the case of the Si diffraction, there was a multiple wave structure observed, which may be due to a one-dimensional phase transition or a time variation in the shock pressure. A new film-based detector has been developed for these in situ dynamic diffraction experiments. This large-angle detector consists of three film cassettes that are positioned to record x rays diffracted from a shocked crystal anywhere within a full π steradian. It records x rays that are diffracted from multiple lattice planes both parallel and at oblique angles with respect to the shock direction. It is a time-integrating measurement, but time-resolved data may be recorded using a short duration laser pulse to create the diffraction source x rays. This new instrument has been fielded at the OMEGA and Janus lasers to study single-crystal materials shock compressed by direct laser irradiation. In these experiments, a multiple wave structure was observed on many different lattice planes in Si. These data provide information on the structure under compression.

  10. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhitao; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245; Banishev, Alexandr A.

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersedmore » in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.« less

  11. Bacterial survival following shock compression in the GigaPascal range

    NASA Astrophysics Data System (ADS)

    Hazael, Rachael; Fitzmaurice, Brianna C.; Foglia, Fabrizia; Appleby-Thomas, Gareth J.; McMillan, Paul F.

    2017-09-01

    The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a "wild type" (WT) strain and (b) a "pressure adapted" (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for bacterial cell walls on the order of seconds in the time-dependent strain rate.

  12. Ultrafast Kα x-ray Thomson scattering from shock compressed lithium hydride

    DOE PAGES

    Kritcher, A. L.; Neumayer, P.; Castor, J.; ...

    2009-04-13

    Spectrally and temporally resolved x-ray Thomson scattering using ultrafast Ti Kα x rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 ns heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transitionmore » to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of 3 times solid density. The quality of data achieved in these experiments demonstrates the capability for single shot dynamic characterization of dense shock compressed matter. Here, the conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility, Lawrence Livermore National Laboratory.« less

  13. Feasibility of modified surviving sepsis campaign guidelines in a resource-restricted setting based on a cohort study of severe S. aureus sepsis [corrected].

    PubMed

    Mahavanakul, Weera; Nickerson, Emma K; Srisomang, Pramot; Teparrukkul, Prapit; Lorvinitnun, Pichet; Wongyingsinn, Mingkwan; Chierakul, Wirongrong; Hongsuwan, Maliwan; West, T Eoin; Day, Nicholas P; Limmathurotsakul, Direk; Peacock, Sharon J

    2012-01-01

    The Surviving Sepsis Campaign (SSC) guidelines describe best practice for the management of severe sepsis and septic shock in developed countries, but most deaths from sepsis occur where healthcare is not sufficiently resourced to implement them. Our objective was to define the feasibility and basis for modified guidelines in a resource-restricted setting. We undertook a detailed assessment of sepsis management in a prospective cohort of patients with severe sepsis caused by a single pathogen in a 1,100-bed hospital in lower-middle income Thailand. We compared their management with the SSC guidelines to identify care bundles based on existing capabilities or additional activities that could be undertaken at zero or low cost. We identified 72 patients with severe sepsis or septic shock associated with S. aureus bacteraemia, 38 (53%) of who died within 28 days. One third of patients were treated in intensive care units (ICUs). Numerous interventions described by the SSC guidelines fell within existing capabilities, but their implementation was highly variable. Care available to patients on general wards covered the fundamental principles of sepsis management, including non-invasive patient monitoring, antimicrobial administration and intravenous fluid resuscitation. We described two additive care bundles, one for general wards and the second for ICUs, that if consistently performed would be predicted to improve outcome from severe sepsis. It is feasible to implement modified sepsis guidelines that are scaled to resource availability, and that could save lives prior to the publication of international guidelines for developing countries.

  14. Laser-driven shock compression of gold foam in the terapascal pressure range

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Duan, Xiaoxi; Jiang, Shaoen; Wang, Zhebin; Sun, Liang; Liu, Hao; Yang, Weiming; Zhang, Huan; Ye, Qing; Wang, Peng; Li, Yulong; Yi, Lin; Dong, Suo

    2018-06-01

    Shock compression experiments are carried out on gold foam with an initial density of 3.2 g/cm3 through indirectly laser-driven shock waves at the SG-III prototype laser facility. The impedance-matching technique is applied to determine the equation-of-state (EOS) data of the shocked gold foam. A passive shock breakout diagnostic system is employed to obtain the shock velocities in both the standard material and gold foam. The gold foams are compressed to a maximum density of 20 g/cm3 under a shock pressure of about 2 TPa. The effects of the unsteadiness of shock waves on the EOS measurement are quantitatively analyzed and corrected. The correction of unsteady waves, as well as the good planarity of the shock waves and the low preheating of the gold foam, contributes high-confidence EOS data for the gold foam. The corrected experimental data are compared with the Hugoniot states from the SESAME library. The comparison suggests that the database is suitable for describing the states of gold foam with an initial density of 3.2 g/cm3 under a pressure of about 2 TPa.

  15. Dynamic XRD, Shock and Static Compression of CaF2

    NASA Astrophysics Data System (ADS)

    Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav

    2017-06-01

    The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Interactive calculation procedures for mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli

    1983-01-01

    The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.

  17. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    PubMed Central

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.

    2017-01-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples. PMID:28405383

  18. Numerical predictions of shock propagation through unreactive and reactive liquids with experimental validation

    NASA Astrophysics Data System (ADS)

    Stekovic, Svjetlana; Nissen, Erin; Bhowmick, Mithun; Stewart, Donald S.; Dlott, Dana D.

    2017-06-01

    The objective of this work is to numerically analyze shock behavior as it propagates through compressed, unreactive and reactive liquid, such as liquid water and liquid nitromethane. Parameters, such as pressure and density, are analyzed using the Mie-Gruneisen EOS and each multi-material system is modeled using the ALE3D software. The motivation for this study is based on provided high-resolution, optical interferometer (PDV) and optical pyrometer measurements. In the experimental set-up, a liquid is placed between an Al 1100 plate and Pyrex BK-7 glass. A laser-driven Al 1100 flyer impacts the plate, causing the liquid to be highly compressed. The numerical model investigates the influence of the high pressure, shock-compressed behavior in each liquid, the energy transfer, and the wave impedance at the interface of each material in contact. The numerical results using ALE3D will be validated by experimental data. This work aims to provide further understanding of shock-compressed behavior and how the shock influences phase transition in each liquid.

  19. Development of a broadband reflectivity diagnostic for laser driven shock compression experiments

    DOE PAGES

    Ali, S. J.; Bolme, C. A.; Collins, G. W.; ...

    2015-04-16

    Here, a normal-incidence visible and near-infrared shock wave optical reflectivity diagnostic was constructed to investigate changes in the optical properties of materials under dynamic laser compression. Documenting wavelength- and time-dependent changes in the optical properties of laser-shock compressed samples has been difficult, primarily due to the small sample sizes and short time scales involved, but we succeeded in doing so by broadening a series of time delayed 800-nm pulses from an ultrafast Ti:sapphire laser to generate high-intensity broadband light at nanosecond time scales. This diagnostic was demonstrated over the wavelength range 450–1150 nm with up to 16 time displaced spectramore » during a single shock experiment. Simultaneous off-normal incidence velocity interferometry (velocity interferometer system for any reflector) characterized the sample under laser-compression and also provided an independent reflectivity measurement at 532 nm wavelength. The shock-driven semiconductor-to-metallic transition in germanium was documented by the way of reflectivity measurements with 0.5 ns time resolution and a wavelength resolution of 10 nm.« less

  20. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray.

    PubMed

    Schiffer, A; Gardner, M N; Lynn, R H; Tagarielli, V L

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli ( E. coli ) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  1. Shock compression experiments on Lithium Deuteride (LiD) single crystals

    DOE PAGES

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.

    2016-12-21

    Shock compression experiments in the few hundred GPa (multi-Mabr) regime were performed on Lithium Deuteride (LiD) single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ~200-600 GPa along the Principal Hugoniot – the locus of end states achievable through compression by large amplitude shock waves – as well as pressure and density of re - shock states up to ~900 GPa. Lastly, the experimental measurements are compared with recent density functional theorymore » calculations as well as a new tabular equation of state developed at Los Alamos National Labs.« less

  2. The Shock Compression Laboratory at Harvard: A New Facility for Planetary Impact Processes

    NASA Technical Reports Server (NTRS)

    Stewart, S. T.

    2004-01-01

    The Shock Compression Laboratory in the Department of Earth and Planetary Sciences at Harvard is a new facility for the study of impact and collisional phenomena. The following describes the experimental capabilities of the laboratory.

  3. First-principles calculation of the reflectance of shock-compressed xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, G. E.; Saitov, I. M., E-mail: saitovilnur@gmail.com; Stegailov, V. V.

    2015-05-15

    Within electron density functional theory (DFT), the reflectance of radiation from shock-compressed xenon plasma is calculated. The dependence of the reflectance on the frequency of the incident radiation and on the plasma density is considered. The Fresnel formula is used. The expression for the longitudinal dielectric tensor in the long-wavelength limit is used to calculate the imaginary part of the dielectric function (DF). The real part of the DF is determined by the Kramers-Kronig transformation. The results are compared with experimental data. An approach is proposed to estimate the plasma frequency in shock-compressed xenon.

  4. Equation of state for shock compression of distended solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis; Fenton, Gregg; Vogler, Tracy

    2014-05-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additive measures of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence reveals enhancement of shock-induced phase transformation on the Hugoniot with increasing levels of initial distension for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed feature of the shock compression are incorporated into the EOS model.

  5. Equation of State for Shock Compression of High Distension Solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis

    2013-06-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additivity of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence supports acceleration of shock-induced phase transformation on the Hugoniot with increasing levels of initial distention for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed facet of the shock compression are introduced into the EOS model.

  6. Complete equation of state for shocked liquid nitrogen: Analytical developments

    DOE PAGES

    Winey, J. M.; Gupta, Y. M.

    2016-08-02

    The thermodynamic response of liquid nitrogen has been studied extensively, in part, due to the long-standing interest in the high pressure and high temperature dissociation of shocked molecular nitrogen. Previous equation of state (EOS) developments regarding shocked liquid nitrogen have focused mainly on the use of intermolecular pair potentials in atomistic calculations. Here, we present EOS developments for liquid nitrogen, incorporating analytical models, for use in continuum calculations of the shock compression response. The analytical models, together with available Hugoniot data, were used to extrapolate a low pressure reference EOS for molecular nitrogen [Span, et al., J. Phys. Chem. Ref.more » Data 29, 1361 (2000)] to high pressures and high temperatures. Using the EOS presented here, the calculated pressures and temperatures for single shock, double shock, and multiple shock compression of liquid nitrogen provide a good match to the measured results over a broad range of P-T space. Our calculations provide the first comparison of EOS developments with recently-measured P-T states under multiple shock compression. The present EOS developments are general and are expected to be useful for other liquids that have low pressure reference EOS information available.« less

  7. Analysis of Shock Compression of Strong Single Crystals With Logarithmic Thermoelastic-Plastic Theory

    DTIC Science & Technology

    2014-05-01

    Royal Society of London Series A, 465, 307–334. Clayton, J. (2010a). Modeling nonlinear electromechanical behavior of shocked silicon carbide . Journal...and fourth-order longitudinal elastic constants by shock compression techniques–application to sapphire and fused quartz. Journal of the Acoustical...Vogler, T., & Clayton, J. (2008). Heterogeneous deformation and spall of an extruded tungsten alloy: Plate impact experiments and crystal plasticity

  8. Frequency shift measurement in shock-compressed materials

    DOEpatents

    Moore, David S.; Schmidt, Stephen C.

    1985-01-01

    A method for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the shock front advancing through the sample, thereby minimizing adverse effects of refraction.

  9. Dynamic Material Properties of Orthotropic Polymer and Molybdenum for Use in Next Generation Composite Armor Concept?

    DTIC Science & Technology

    2011-06-01

    1. Shock Compression Experimental Techniques ...............................22 a. Target...3 Figure 2. Composite plate (left) shown by Poh defeating Tantalum projectile while armor grade steel (right) failed...entire target buildup used for a shock compression experiment ..................................................................................23 Figure

  10. Structural changes in shock compressed silicon observed using time-resolved x-ray diffraction at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Turneaure, Stefan; Zdanowicz, E.; Sinclair, N.; Graber, T.; Gupta, Y. M.

    2015-06-01

    Structural changes in shock compressed silicon were observed directly using time-resolved x-ray diffraction (XRD) measurements at the Dynamic Compression Sector at the Advanced Photon Source. The silicon samples were impacted by polycarbonate impactors accelerated to velocities greater than 5 km/s using a two-stage light gas gun resulting in impact stresses of about 25 GPa. The 23.5 keV synchrotron x-ray beam passed through the polycarbonate impactor, the silicon sample, and an x-ray window (polycarbonate or LiF) at an angle of 30 degrees relative to the impact plane. Four XRD frames (~ 100 ps snapshots) were obtained with 153.4 ns between frames near the time of impact. The XRD measurements indicate that in the peak shocked state, the silicon samples completely transformed to a high-pressure phase. XRD results for both shocked polycrystalline silicon and single crystal silicon will be presented and compared. Work supported by DOE/NNSA.

  11. Compression Shocks in Two-Dimensional Gas Flows

    NASA Technical Reports Server (NTRS)

    Busemann, A.

    1949-01-01

    The following are arguments on the compression shocks in gas flow start with a simplified representation of the results of the study made by Th. Meyer as published in the Forschungsheft 62 of the VDI, supplemented by several amplifications for the application.In the treatment of compression shocks, the equation of energy, the equation of continuity, the momentum equation, the equation of state of the particular gas, as well as the condition Of the second law of thermodynamics that no decrease of entropy is possible in an isolated system, must be taken into consideration. The result is that, in those cases where the sudden change of state according to the second law of thermodynamics is possible, there always occurs a compression of the gas which is uniquely determined by the other conditions.

  12. Ultrafast shock compression of self-assembled monolayers: a molecular picture.

    PubMed

    Patterson, James E; Dlott, Dana D

    2005-03-24

    Simulations of self-assembled monolayers (SAMs) are performed to interpret experimental measurements of ultrafast approximately 1 GPa (volume compression deltaV approximately 0.1) planar shock compression dynamics probed by vibrational sum-frequency generation (SFG) spectroscopy (Lagutchev, A. S.; Patterson, J. E.; Huang, W.; Dlott, D. D. J. Phys. Chem. B 2005, 109, XXXX). The SAMs investigated are octadecanethiol (ODT) and pentadecanethiol (PDT) on Au(111) and Ag(111) substrates, and benzyl mercaptan (BMT) on Au(111). In the alkane SAMs, SFG is sensitive to the instantaneous orientation of the terminal methyl; in BMT it is sensitive to the phenyl orientation. Computed structures of alkane SAMs are in good agreement with experiment. In alkanes, the energies of gauche defects increase with increasing number and depth below the methyl plane, with the exception of ODT/Au where both single and double gauche defects at the two uppermost dihedrals have similar energies. Simulations of isothermal uniaxial compression of SAM lattices show that chain and methyl tilting is predominant in PDT/Au, ODT/Ag and PDT/Ag, whereas single and double gauche defect formation is predominant in ODT/Au. Time-resolved shock data showing transient SFG signal loss of ODT/Au and PDT/Au are fit by calculations of the terminal group orientations as a function of deltaV and their contributions to the SFG hyperpolarizability. The highly elastic response of PDT/Au results from shock-generated methyl and chain tilting. The viscoelastic response of ODT/Au results from shock generation of single and double gauche defects. Isothermal compression simulations help explain and fit the time dependence of shock spectra but generally underestimate the magnitude of SFG signal loss because they do not include effects of high-strain-rate dynamics and shock front and surface irregularities.

  13. Terminal shock position and restart control of a Mach 2.7, two-dimensional, twin duct mixed compression inlet

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Neiner, G. H.; Baumbick, R. J.

    1973-01-01

    Experimental results of terminal shock and restart control system tests of a two-dimensional, twin-duct mixed compression inlet are presented. High-response (110-Hz bandwidth) overboard bypass doors were used, both as the variable to control shock position and as the means of disturbing the inlet airflow. An inherent instability in inlet shock position resulted in noisy feedback signals and thus restricted the terminal shock position control performance that was achieved. Proportional-plus-integral type controllers using either throat exit static pressure or shock position sensor feedback gave adequate low-frequency control. The inlet restart control system kept the terminal shock control loop closed throughout the unstart-restart transient. The capability to restart the inlet was non limited by the inlet instability.

  14. Strain Gage Measurements of Aft Nacelle Shock Absorbers.

    DTIC Science & Technology

    ENGINE NACELLES, SHOCK ABSORBERS ), (* SHOCK ABSORBERS , STRESSES), SURFACE TO SURFACE MISSILES, LAUNCHING, STRAIN GAGES, COMPRESSIVE PROPERTIES, CALIBRATION, STRAIN(MECHANICS), FAILURE, GROUND SUPPORT EQUIPMENT.

  15. Proton spectra diagnostics for shock-compression studies

    NASA Astrophysics Data System (ADS)

    Welch, D. R.; Harris, D. B.; Bennish, A. H.; Miley, G. H.

    1984-12-01

    The energy spectra of fusion products escaping long-pulse-length laser-imploded deuterium-tritium filled glass microballoons have been measured with a time-of-flight spectrometer. The D(d,p)T reaction proton energy spectra showed two distinct peaks, indicating two burn phases in the target. The first burn phase is attributed to a spherically converging shock, while the second is attributed to subsequent compression heating. The analysis of these spectra provides the first conclusive proof of significant compression yields in these targets, where approximately half of the yield occurs during the compression burn phase.

  16. Metallization of aluminum hydride AlH3 at high multiple-shock pressures

    NASA Astrophysics Data System (ADS)

    Molodets, A. M.; Shakhray, D. V.; Khrapak, A. G.; Fortov, V. E.

    2009-05-01

    A study of electrophysical and thermodynamic properties of alane AlH3 under multishock compression has been carried out. The increase in specific electroconductivity of alane at shock compression up to pressure 100 GPa has been measured. High pressures and temperatures were obtained with an explosive device, which accelerates the stainless impactor up to 3 km/s. A strong shock wave is generated on impact with a holder containing alane. The impact shock is split into a shock wave reverberating in alane between two stiff metal anvils. This compression loads the alane sample by a multishock manner up to pressure 80-90 GPa, heats alane to the temperature of about 1500-2000 K, and lasts 1μs . The conductivity of shocked alane increases in the range up to 60-75 GPa and is about 30(Ωcm)-1 . In this region the semiconductor regime is true for shocked alane. The conductivity of alane achieves approximately 500(Ωcm)-1 at 80-90 GPa. In this region, conductivity is interpreted in frames of the conception of the “dielectric catastrophe,” taking into consideration significant differences between the electronic states of isolated molecule AlH3 and condensed alane.

  17. Finite Strain Analysis of Shock Compression of Brittle Solids Applied to Titanium Diboride

    DTIC Science & Technology

    2014-07-01

    dislocation motion [18,19] may take place at high pressures. Multiple investigations have discovered that tita - nium diboride demonstrates a rather unique...mean stress under shock compression. It has been suggested [5] that pore collapse may be an important source of inelasticity in tita - nium diboride

  18. Supernova dynamics in the laboratory: Radiative shocks produced by ultra-high pressure implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pak, Arthur

    2012-10-01

    Thermonuclear fuel experiments on the National Ignition Facility implode 2-mm diameter capsules with a cryogenic deuterium-tritium ice layer to 1000x liquid density and pressures exceeding 100 Gbar (10^11 atm). About 200 ps after peak compression, a spherical supernova-like radiative shock wave is observed that expands with shock velocities of uS = 300 km/s, temperatures of order 1 keV at densities of 1 g/cc resulting in a radiation strength parameter of Q ˜uS^5 = 10^4. Radiation-hydrodynamic simulations indicate that the shock launched at stagnation first goes down a strong density gradient while propagating outward from the highly compressed DT fuel (˜ 1000g/cc) to the ablation front (˜ 1 g/cc). Similar to what happens inside a star, the shock pressure drops as it accelerates and heats. The radiative shock emission is first observed when it breaks out of the dense compressed fuel shell into the low-density inflowing plasma at the ablation front mimicking the supernova situation where the shock breaks out through the star surface into surrounding in-falling matter [1,2]; the shock is subsequently approaching the supercritical state with a strong pre-cursor followed by rapid cooling. These observations are consistent with the rapid vanishing of the radiation ring 400 ps after peak compression due to strong radiation losses and spherical expansion. The evolution and brightness of the radiative shock provides insight into the performance of these implosions that have the goal to produce burning fusion plasmas in the laboratory. By modifying the capsule ablator composition and thickness, the stagnation pressure, density gradients, shock velocity and radiative properties could be tailored to study various regimes related to supernovae radiative remnants.[4pt] [1] W. David Arnett, Supernovae as phenomena of high-energy astrophysics, Ann NY Aca. Science 302, 90 (1977).[0pt] [2] L. Ensman and A. Burrows, Shock breakout in SN1987A, ApJ 393, 742.

  19. Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression

    NASA Astrophysics Data System (ADS)

    Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.

    2017-06-01

    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

  20. Numerical solutions of Navier-Stokes equations for compressible turbulent two/three dimensional flows in terminal shock region of an inlet/diffuser

    NASA Technical Reports Server (NTRS)

    Liu, N. S.; Shamroth, S. J.; Mcdonald, H.

    1983-01-01

    The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.

  1. An electromagnetic railgun accelerator: a generator of strong shock waves in channels

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.

    2014-11-01

    Processes that accompany the generation of strong shock waves during the acceleration of a free plasma piston (PP) in the electromagnetic railgun channel have been experimentally studied. The formation of shock waves in the railgun channel and the motion of a shock-wave-compressed layer proceed (in contrast to the case of a classical shock tube) in a rather strong electric field (up to 300 V/cm). The experiments were performed at the initial gas pressures in the channel ranging from 25 to 500 Torr. At 25 Torr, the shock-wave Mach numbers reached 32 in argon and 16 in helium. At high concentrations of charged particles behind the shock wave, the electric field causes the passage of a part of the discharge current through the volume of the shock-wave-compressed layer, which induces intense glow comparable with that of the PP glow.

  2. Shock compression of [001] single crystal silicon

    DOE PAGES

    Zhao, S.; Remington, B.; Hahn, E. N.; ...

    2016-03-14

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less

  3. Shock compression of [001] single crystal silicon

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.

    2016-05-01

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

  4. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    PubMed Central

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; Winey, J. M.; Gupta, Yogendra M.

    2017-01-01

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HD plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events. PMID:29098183

  5. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.« less

  6. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    DOE PAGES

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; ...

    2017-10-27

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.« less

  7. Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa

    DOE PAGES

    Briggs, R.; Gorman, M. G.; Coleman, A. L.; ...

    2017-01-09

    Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Furthermore, shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearancemore » of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.« less

  8. Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa.

    PubMed

    Briggs, R; Gorman, M G; Coleman, A L; McWilliams, R S; McBride, E E; McGonegle, D; Wark, J S; Peacock, L; Rothman, S; Macleod, S G; Bolme, C A; Gleason, A E; Collins, G W; Eggert, J H; Fratanduono, D E; Smith, R F; Galtier, E; Granados, E; Lee, H J; Nagler, B; Nam, I; Xing, Z; McMahon, M I

    2017-01-13

    Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.

  9. Control of shock-wave boundary-layer interactions by bleed in supersonic mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Fukuda, M. K.; Reshotko, E.; Hingst, W. R.

    1975-01-01

    An experimental investigation has been conducted to determine the effect of bleed region geometry and bleed rate on shock wave-boundary layer interactions in an axisymmetric, mixed-compression inlet at a Mach number of 2.5. The full realizable reduction in transformed form factor is obtained by bleeding off about half the incident boundary layer mass flow. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise. Slanted holes are more effective than normal holes. Two different bleed hole sizes were tested without detectable difference in performance.

  10. Nitro stretch probing of a single molecular layer to monitor shock compression with picosecond time resolution

    NASA Astrophysics Data System (ADS)

    Berg, Christopher; Lagutchev, Alexei; Fu, Yuanxi; Dlott, Dana

    2012-03-01

    Ultrafast shock compression vibrational spectroscopy experiments with molecular monolayers provide atomic-scale time and space resolution, which enables critical testing of reactive molecular simulations. Since the origination of this project, we have greatly improved the ability to detect shocked monolayers by nonlinear coherent vibrational spectroscopy with nonresonant suppression. In this study, we show new results on a nitroaromatic monolayer, where the nitro symmetric stretch is probed. A small frequency blue-shift under shock conditions compared to measurements with static high pressure shows the shock is ~1 GPa. The ability to flash-preheat the monolayer by several hundred K is demonstrated. In order to observe shock monolayer chemistry in real time, along with pre-heating, the shock pressure needs to be increased and methods to do so are described.

  11. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    DOE PAGES

    Pak, A.; Divol, L.; Gregori, G.; ...

    2013-05-20

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less

  12. High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, O. E.; Higgins, A. J.; Yoshinaka, A. C.; Zhang, F.

    2007-12-01

    The propagation of detonation in shock-compressed nitromethane was observed with a high-speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures as high as 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation were determined using two methods: manganin stress gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the reverberating shock-compressed explosive prior to detonation. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.

  13. User Guide for Compressible Flow Toolbox Version 2.1 for Use With MATLAB(Registered Trademark); Version 7

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.

  14. X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules

    DOE PAGES

    Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; ...

    2013-05-24

    Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules,more » with a maximum measured density of ρ > 6 g cm –3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.« less

  15. Invariant Functional Forms for K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter, Group Theoretic Methods, as defined by Lie were applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Group parameter ratios were linked to the physical quantities (i.e., KT, K'T, and K''T) specified for the various order Birch-Murnaghan approximations. This technique has now been generalized to provide a mathematical formalism applicable to a wide class of forms (i.e., K(r,P)) for the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Illustrative examples include the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. The results of this study will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. (2) (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Physical Interpretation of Mathematically Invariant K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  16. Implementation of Hydrodynamic Simulation Code in Shock Experiment Design for Alkali Metals

    NASA Astrophysics Data System (ADS)

    Coleman, A. L.; Briggs, R.; Gorman, M. G.; Ali, S.; Lazicki, A.; Swift, D. C.; Stubley, P. G.; McBride, E. E.; Collins, G.; Wark, J. S.; McMahon, M. I.

    2017-10-01

    Shock compression techniques enable the investigation of extreme P-T states. In order to probe off-Hugoniot regions of P-T space, target makeup and laser pulse parameters must be carefully designed. HYADES is a hydrodynamic simulation code which has been successfully utilised to simulate shock compression events and refine the experimental parameters required in order to explore new P-T states in alkali metals. Here we describe simulations and experiments on potassium, along with the techniques required to access off-Hugoniot states.

  17. Supersonic compressor

    DOEpatents

    Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA

    2008-02-26

    A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.

  18. The Compressibility Burble

    NASA Technical Reports Server (NTRS)

    Stack, John

    1935-01-01

    Simultaneous air-flow photographs and pressure-distribution measurements have been made of the NACA 4412 airfoil at high speeds in order to determine the physical nature of the compressibility burble. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations on the 5-inch-chord wing by means of a multiple-tube photographic manometer. Pressure-measurement results and typical Schlieren photographs are presented. The general nature of the phenomenon called the "compressibility burble" is shown by these experiments. The source of the increased drag is the compression shock that occurs, the excess drag being due to the conversion of a considerable amount of the air-stream kinetic energy into heat at the compression shock.

  19. High-energy synchrotron X-ray radiography of shock-compressed materials

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  20. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited).

    PubMed

    Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J

    2014-11-01

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

  1. The Impact Induced Demagnetization Mechanism in NdFeB Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Li, Yan-Feng; Zhu, Ming-Gang; Li, Wei; Zhou, Dong; Lu, Feng; Chen, Lang; Wu, Jun-Ying; Qi, Yan; Du, An

    2013-09-01

    Compression of unmagnetized Nd2Fe14B permanent magnets is executed by using shock waves with different pressures in a one-stage light gas gun system. The microstructure, crystal structure, and magnetic properties of the magnets are examined with scanning electronic microscopy, x-ray diffraction, hysteresis loop instruments, and a vibrating sample magnetometer, respectively. The NdFeB magnets display a demagnetization phenomenon after shock wave compression. The coercivity dropped from about 21.4 kOe to 3.2 kOe. The critical pressure of irreversible demagnetization of NdFeB magnets should be less than 4.92 GPa. The coercivity of the NdFeB magnets compressed by shock waves could be recovered after annealing at 900°C and 520°C for 2 h, sequentially. The chaotic orientation of Nd2Fe14B grains in the compressed magnets is the source of demagnetization.

  2. In situ observation of stishovite formation in shock-compressed fused silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan; Duffy, Thomas

    2017-06-01

    Silica, SiO2, has widespread applications ranging from optical components to refractory materials and is of geological importance as one of the major oxide components of the Earth's crust and mantle. The response of silica phases to dynamic loading has long been of interest for understanding the structural evolution of this fundamental oxide. Under shock compression both crystalline quartz and fused silica are characterized by the occurrence of a broad `mixed-phase region' (15-40 GPa) and a dense, high-pressure phase with much lower compressibility. Despite decades of study, the nature of this transformation and the identity of the high-pressure phase(s) remain poorly understood. In situ x-ray diffraction experiments on shock-compressed fused silica were conducted at the Dynamic Compression Sector of the Advanced Photon Source. The lattice-level structure was investigated through time-resolved x-ray diffraction measurements on samples reaching peak stress ranging from 12 to 47 GPa. Our results demonstrate that SiO2 adopts a dense amorphous structure in the `mixed-phase region' and abruptly transforms to stishovite above 34 GPa. These results provide clear evidence that high-pressure crystalline silicate phases can form from amorphous starting materials on the time-scale of laboratory shock experiments.

  3. Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.

    2018-03-01

    Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated phase transformation, which is a transition to a disordered phase (liquid or dense amorphous), regardless of whether or not the model accounts for core-softening. The onset pressures of the transformation predicted by different models show a wide scatter within 60-110 GPa; for potentials without core-softening, the onset pressure is much higher than 110 GPa. Our results show that the core-softening of the interaction in the oxygen subsystem of silica is the key mechanism for the structural transformation and thermodynamics in shock compressed silica. These results may provide an important contribution to a unified picture of anomalous response to shock compression observed in other network-forming oxides and single-component systems with core-softening of effective interactions.

  4. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  5. Diffraction of a shock wave by a compression corner; regular and single Mach reflection

    NASA Technical Reports Server (NTRS)

    Vijayashankar, V. S.; Kutler, P.; Anderson, D.

    1976-01-01

    The two dimensional, time dependent Euler equations which govern the flow field resulting from the injection of a planar shock with a compression corner are solved with initial conditions that result in either regular reflection or single Mach reflection of the incident planar shock. The Euler equations which are hyperbolic are transformed to include the self similarity of the problem. A normalization procedure is employed to align the reflected shock and the Mach stem as computational boundaries to implement the shock fitting procedure. A special floating fitting scheme is developed in conjunction with the method of characteristics to fit the slip surface. The reflected shock, the Mach stem, and the slip surface are all treated as harp discontinuities, thus, resulting in a more accurate description of the inviscid flow field. The resulting numerical solutions are compared with available experimental data and existing first-order, shock-capturing numerical solutions.

  6. The effect of compressor-administered defibrillation on peri-shock pauses in a simulated cardiac arrest scenario.

    PubMed

    Glick, Joshua; Lehman, Erik; Terndrup, Thomas

    2014-03-01

    Coordination of the tasks of performing chest compressions and defibrillation can lead to communication challenges that may prolong time spent off the chest. The purpose of this study was to determine whether defibrillation provided by the provider performing chest compressions led to a decrease in peri-shock pauses as compared to defibrillation administered by a second provider, in a simulated cardiac arrest scenario. This was a randomized, controlled study measuring pauses in chest compressions for defibrillation in a simulated cardiac arrest model. We approached hospital providers with current CPR certification for participation between July, 2011 and October, 2011. Volunteers were randomized to control (facilitator-administered defibrillation) or experimental (compressor-administered defibrillation) groups. All participants completed one minute of chest compressions on a mannequin in a shockable rhythm prior to administration of defibrillation. We measured and compared pauses for defibrillation in both groups. Out of 200 total participants, we analyzed data from 197 defibrillations. Compressor-initiated defibrillation resulted in a significantly lower pre-shock hands-off time (0.57 s; 95% CI: 0.47-0.67) compared to facilitator-initiated defibrillation (1.49 s; 95% CI: 1.35-1.64). Furthermore, compressor-initiated defibrillation resulted in a significantly lower peri-shock hands-off time (2.77 s; 95% CI: 2.58-2.95) compared to facilitator-initiated defibrillation (4.25 s; 95% CI: 4.08-4.43). Assigning the responsibility for shock delivery to the provider performing compressions encourages continuous compressions throughout the charging period and decreases total time spent off the chest. However, as this was a simulation-based study, clinical implementation is necessary to further evaluate these potential benefits.

  7. Shockwave compression of Ar gas at several initial densities

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana M.; Goodwin, Peter M.; Garcia, Daniel B.; Gustavsen, Richard L.; Lang, John M.; Aslam, Tariq D.; Sheffield, Stephen A.; Gibson, Lloyd L.; Morris, John S.

    2017-01-01

    Experimental data of the principal Hugoniot locus of variable density gas-phase noble and molecular gases are rare. The majority of shock Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of shock-driven ionization, and even dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target design for gas gun-driven plate impact experiments on noble gases at initial pressures between 200-1000 psi. Using optical velocimetry, we are able to directly determine both the shock and particle velocities of the gas on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. We describe the results of a series of plate impact experiments on Ar with starting densities between 0.02-0.05 g/cm3 at room temperature. Furthermore, by coupling optical fibers to the targets, we have measured the time-resolved optical emission from the shocked gas using a spectrometer coupled to an optical streak camera to spectrally-resolve the emission, and with a 5-color optical pyrometer for temperature determination.

  8. Mechanical Properties of Shock-Damaged Rocks

    NASA Technical Reports Server (NTRS)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  9. Safety and Efficacy of Defibrillator Charging During Ongoing Chest Compressions: A Multicenter Study

    PubMed Central

    Edelson, Dana P.; Robertson-Dick, Brian J.; Yuen, Trevor C.; Eilevstjønn, Joar; Walsh, Deborah; Bareis, Charles J.; Vanden Hoek, Terry L.; Abella, Benjamin S.

    2013-01-01

    BACKGROUND Pauses in chest compressions during cardiopulmonary resuscitation have been shown to correlate with poor outcomes. In an attempt to minimize these pauses, the American Heart Association recommends charging the defibrillator during chest compressions. While simulation work suggests decreased pause times using this technique, little is known about its use in clinical practice. METHODS We conducted a multicenter, retrospective study of defibrillator charging at three US academic teaching hospitals between April 2006 and April 2009. Data were abstracted from CPR-sensing defibrillator transcripts. Pre-shock pauses and total hands- off time preceding the defibrillation attempts were compared among techniques. RESULTS A total of 680 charge-cycles from 244 cardiac arrests were analyzed. The defibrillator was charged during ongoing chest compressions in 448 (65.9%) instances with wide variability across the three sites. Charging during compressions correlated with a decrease in median pre-shock pause [2.6 (IQR 1.9–3.8) vs 13.3 (IQR 8.6–19.5) s; p < 0.001] and total hands-off time in the 30 s preceding defibrillation [10.3 (IQR 6.4–13.8) vs 14.8 (IQR 11.0–19.6) s; p < 0.001]. The improvement in hands-off time was most pronounced when rescuers charged the defibrillator in anticipation of the pause, prior to any rhythm analysis. There was no difference in inappropriate shocks when charging during chest compressions (20.0 vs 20.1%; p=0.97) and there was only one instance noted of inadvertent shock administration during compressions, which went unnoticed by the compressor. CONCLUSIONS Charging during compressions is underutilized in clinical practice. The technique is associated with decreased hands-off time preceding defibrillation, with minimal risk to patients or rescuers. PMID:20807672

  10. Monte Carlo simulation of steady state shock structure including cosmic ray mediation and particle escape

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Jones, F. C.; Eichler, D.

    1983-01-01

    Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.

  11. Monte Carlo simulation of steady state shock structure including cosmic ray mediation and particle escape

    NASA Astrophysics Data System (ADS)

    Ellison, D. C.; Jones, F. C.; Eichler, D.

    1983-08-01

    Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.

  12. An Equation of State for Foamed Divinylbenzene (DVB) Based on Multi-Shock Response

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq; Schroen, Diana; Gustavsen, Richard; Bartram, Brian

    2013-06-01

    The methodology for making foamed Divinylbenzene (DVB) is described. For a variety of initial densities, foamed DVB is examined through multi-shock compression and release experiments. Results from multi-shock experiments on LANL's 2-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme, utilizing total-variation-diminishing interpolation and an approximate Riemann solver, will be presented as well as the methodology of calibration. It has been previously demonstrated that a single Mie-Gruneisen fitting form can replicate foam multi-shock compression response at a variety of initial densities; such a methodology will be presented for foamed DVB.

  13. An equation of state for polyurea aerogel based on multi-shock response

    NASA Astrophysics Data System (ADS)

    Aslam, T. D.; Gustavsen, R. L.; Bartram, B. D.

    2014-05-01

    The equation of state (EOS) of polyurea aerogel (PUA) is examined through both single shock Hugoniot data as well as more recent multi-shock compression experiments performed on the LANL 2-stage gas gun. A simple conservative Lagrangian numerical scheme, utilizing total variation diminishing (TVD) interpolation and an approximate Riemann solver, will be presented as well as the methodology of calibration. It will been demonstrated that a p-a model based on a Mie-Gruneisen fitting form for the solid material can reasonably replicate multi-shock compression response at a variety of initial densities; such a methodology will be presented for a commercially available polyurea aerogel.

  14. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.

    2017-10-01

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane.« less

  15. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  16. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  17. Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.

    1998-01-01

    A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.

  18. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  19. Shock wave treatment improves nerve regeneration in the rat.

    PubMed

    Mense, Siegfried; Hoheisel, Ulrich

    2013-05-01

    The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Jeffrey J.; Park, Samuel; Kohl, Ian Thomas

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insightsmore » regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.« less

  1. Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki

    2000-02-01

    The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training for operational personnel, the system was applied to the core shroud of an existing nuclear power plant.

  2. Simulations of Converging Shock Collisions for Shock Ignition

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  3. Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation [Pre-strain effect on the frequency response of shock mitigation through a silicone foam pad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanborn, Brett; Song, Bo; Smith, Scott

    Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less

  4. Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation [Pre-strain effect on the frequency response of shock mitigation through a silicone foam pad

    DOE PAGES

    Sanborn, Brett; Song, Bo; Smith, Scott

    2015-12-29

    Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less

  5. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    NASA Astrophysics Data System (ADS)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock initiation or first bond-breaking reactions in molecular explosives such as delta-HMX: a necessary study for the development of safer and more effective energetic materials.

  6. Shock wave compression of iron-silicate garnet.

    NASA Technical Reports Server (NTRS)

    Graham, E. K.; Ahrens, T. J.

    1973-01-01

    Shock wave compression data to over 650 kb are presented for single-crystal almandine garnet. The data indicate the initiation of a phase transformation near 200 kb. Total transition to the high-pressure polymorph occurs at approximately 300 kb. The elastic properties of the high-pressure phase are calculated from the metastable Hugoniot data by using the linear shock velocity-particle velocity relationships. The overall results obtained strongly suggest that upper mantle minerals are likely to occur in the ilmenite structure over a substantial part of the lower mantle.

  7. THE EFFECT OF LASER SHOCK PEENING ON THE LIFE AND FAILURE MODE OF A COLD PILGER DIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavender, Curt A.; Hong, Sung-tae; Smith, Mark T.

    2008-08-11

    The laser shock peening process was used to increase fatigue life of pilger dies made of A2 tool steel by imparting compressive residual stresses to fatigue prone areas of the dies. The result of X-Ray diffraction analysis indicated that deep, high- magnitude compressive residual stresses were generated by the laser shock peening process, and the peened dies exhibited a significant increase of in-service life. Fractography of the failed dies indicates that the fracture mechanism was altered by the peening process.

  8. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  9. Head-on collision of normal shock waves with rigid porous materials

    NASA Astrophysics Data System (ADS)

    Levy, A.; Ben-Dor, G.; Skews, B. W.; Sorek, S.

    1993-08-01

    The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm × 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections. Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.

  10. Directional amorphization of boron carbide subjected to laser shock compression.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A

    2016-10-25

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.

  11. Hugoniot temperatures and melting of tantalum under shock compression determined by optical pyrometry

    NASA Astrophysics Data System (ADS)

    Dai, Chengda; Hu, Jianbo; Tan, Hua

    2009-08-01

    LiF single crystal was used as transparent window (anvil) to tamp the shock-induced free surface expansion of Ta specimen, and the Ta/LiF interface temperature was measured under shock compression using optical pyrometry technique. The shock temperatures and/or melting temperatures of Ta up to ˜400 GPa were extracted from the observed interface temperatures based on the Tan-Ahrens' model for one-dimensional heat conduction across metal/window ideal interface in which initial melting and subsequent solidification were considered under shock loading. The obtained data within the experimental uncertainties are consistent with the results from high-pressure sound velocity measurements. The temperature of the partial melting on Ta Hugoniot is estimated to be ˜9700 K at 300 GPa, supported by available results from theoretical calculations.

  12. Quasi-isentropic compression using compressed water flow generated by underwater electrical explosion of a wire array

    NASA Astrophysics Data System (ADS)

    Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.

    2018-05-01

    A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.

  13. Electrical conductivity of aluminum hydride AlH3 at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Shakhray, Denis; Molodets, Alexander; Fortov, Vladimir; Khrapak, Aleksei

    2009-06-01

    A study of electrophysical and thermodynamic properties of alane AlH3 under multi shock compression has been carried out. The increase in specific electroconductivity of alane at shock compression up to pressure 100 GPa have been measured. High pressures and temperatures were obtained with explosive device, which accelerates the stainless impactor up to 3 km/sec. The impact shock is split into a shock wave reverberating in alane between two stiff metal anvils. The conductivity of shocked alane increases in the range up to 60-75 GPa and is about 30 1/Ohm*cm. In this region the semiconductor regime is true for shocked alane. The conductivity of alane achieves approximately 500 1/Ohm*cm at 80-90 GPa. In this region conductivity is interpreted in frames of the conception of the ``dielectric catastrophe'', taking into consideration significant difference between electronic states of isolated AlH3 molecule and condensed alane.

  14. An experimental investigation of compressible three-dimensional boundary layer flow in annular diffusers

    NASA Technical Reports Server (NTRS)

    Om, Deepak; Childs, Morris E.

    1987-01-01

    An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.

  15. Frequency shift measurement in shock-compressed materials

    DOEpatents

    Moore, D.S.; Schmidt, S.C.

    1984-02-21

    A method is disclosed for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the stock front advancing through the sample, thereby minimizing adverse effects of refraction.

  16. Enhanced densification under shock compression in porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.

    2014-10-01

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

  17. Shock compression and release of a-axis magnesium single crystals: Anisotropy and time dependent inelastic response

    DOE PAGES

    Renganathan, P.; Winey, J. M.; Gupta, Y. M.

    2017-01-19

    Here, to gain insight into inelastic deformation mechanisms for shocked hexagonal close-packed (hcp) metals, particularly the role of crystal anisotropy, magnesium (Mg) single crystals were subjected to shock compression and release along the a-axis to 3.0 and 4.8 GPa elastic impact stresses. Wave profiles measured at several thicknesses, using laser interferometry, show a sharply peaked elastic wave followed by the plastic wave. Additionally, a smooth and featureless release wave is observed following peak compression. When compared to wave profiles measured previously for c-axis Mg, the elastic wave amplitudes for a-axis Mg are lower for the same propagation distance, and less attenuation of elastic wave amplitude is observed for a given peak stress. The featureless release wave for a-axis Mg is in marked contrast to the structured features observed for c-axis unloading. Numerical simulations, using a time-dependent anisotropic modeling framework, showed that the wave profiles calculated using prismatic slip or (10more » $$\\bar{1}$$2) twinning, individually, do not match the measured compression profiles for a-axis Mg. However, a combination of slip and twinning provides a good overall match to the measured compression profiles. In contrast to compression,prismatic slip alone provides a reasonable match to the measured release wave profiles; (10$$\\bar{1}$$2) twinning due to its uni-directionality is not activated during release. The experimental results and wave profile simulations for a-axis Mg presented here are quite different from the previously published c-axis results, demonstrating the important role of crystal anisotropy on the time-dependent inelastic deformation of Mg single crystals under shock compression and release.« less

  18. Shock compression and release of a-axis magnesium single crystals: Anisotropy and time dependent inelastic response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renganathan, P.; Winey, J. M.; Gupta, Y. M.

    Here, to gain insight into inelastic deformation mechanisms for shocked hexagonal close-packed (hcp) metals, particularly the role of crystal anisotropy, magnesium (Mg) single crystals were subjected to shock compression and release along the a-axis to 3.0 and 4.8 GPa elastic impact stresses. Wave profiles measured at several thicknesses, using laser interferometry, show a sharply peaked elastic wave followed by the plastic wave. Additionally, a smooth and featureless release wave is observed following peak compression. When compared to wave profiles measured previously for c-axis Mg, the elastic wave amplitudes for a-axis Mg are lower for the same propagation distance, and less attenuation of elastic wave amplitude is observed for a given peak stress. The featureless release wave for a-axis Mg is in marked contrast to the structured features observed for c-axis unloading. Numerical simulations, using a time-dependent anisotropic modeling framework, showed that the wave profiles calculated using prismatic slip or (10more » $$\\bar{1}$$2) twinning, individually, do not match the measured compression profiles for a-axis Mg. However, a combination of slip and twinning provides a good overall match to the measured compression profiles. In contrast to compression,prismatic slip alone provides a reasonable match to the measured release wave profiles; (10$$\\bar{1}$$2) twinning due to its uni-directionality is not activated during release. The experimental results and wave profile simulations for a-axis Mg presented here are quite different from the previously published c-axis results, demonstrating the important role of crystal anisotropy on the time-dependent inelastic deformation of Mg single crystals under shock compression and release.« less

  19. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by amore » factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.« less

  20. Amorphization and nanocrystallization of silcon under shock compression

    DOE PAGES

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; ...

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energymore » changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.« less

  1. Experimental evidence for superionic water ice using shock compression

    NASA Astrophysics Data System (ADS)

    Millot, Marius; Hamel, Sebastien; Rygg, J. Ryan; Celliers, Peter M.; Collins, Gilbert W.; Coppari, Federica; Fratanduono, Dayne E.; Jeanloz, Raymond; Swift, Damian C.; Eggert, Jon H.

    2018-03-01

    In stark contrast to common ice, Ih, water ice at planetary interior conditions has been predicted to become superionic with fast-diffusing (that is, liquid-like) hydrogen ions moving within a solid lattice of oxygen. Likely to constitute a large fraction of icy giant planets, this extraordinary phase has not been observed in the laboratory. Here, we report laser-driven shock-compression experiments on water ice VII. Using time-resolved optical pyrometry and laser velocimetry measurements as well as supporting density functional theory-molecular dynamics (DFT-MD) simulations, we document the shock equation of state of H2O to unprecedented extreme conditions and unravel thermodynamic signatures showing that ice melts near 5,000 K at 190 GPa. Optical reflectivity and absorption measurements also demonstrate the low electronic conductivity of ice, which, combined with previous measurements of the total electrical conductivity under reverberating shock compression, provides experimental evidence for superionic conduction in water ice at planetary interior conditions, verifying a 30-year-old prediction.

  2. The DISPARITY-II study: delays to antibiotic administration in women with severe sepsis or septic shock.

    PubMed

    Madsen, Tracy E; Napoli, Anthony M

    2014-12-01

    Early antibiotics reduce mortality in patients with severe sepsis and septic shock. Recent work demonstrated that women experience greater delays to antibiotic administration, but it is unknown if this relationship remains after adjusting for factors such as source of infection. The objective was to investigate whether gender and/or source of infection are associated with delays to antibiotics in patients with severe sepsis or septic shock. This was a retrospective, observational study in an urban academic emergency department and national Surviving Sepsis Campaign (SSC) database study site. Consecutive patients age 18 years and older admitted to intensive care with severe sepsis or septic shock and entered into the SSC database from October 2005 to March 2012 were included. Two trained research assistants, blinded to the primary outcome, used a standardized abstraction form to obtain patient demographic and clinical data, including the Sequential Organ Failure Assessment (SOFA) scores and comorbidities. Time to first antibiotic and presumed source of infection were extracted from the SSC database. Univariate analyses were performed with Pearson chi-square tests and t-tests. Linear regression was performed with time to first antibiotic as the primary outcome. Covariates, chosen a priori by study authors, included age, race, ethnicity, source of infection, SOFA score, and lactate. A total of 771 patients were included. Women were 45.3% of the sample, the mean age was 66 years (95% confidence interval [CI] = 65.1 to 67.5 years), 19.4% were nonwhite, and 8% were Hispanic. Mean time to first antibiotic was 153 minutes (95% CI = 143 to 163 minutes) for men and 184 minutes (95% CI = 171 to 197 minutes) for women (p < 0.001). The urinary tract was source of infection for 35.2% of women (95% CI = 30.2% to 40.3%) versus 23.7% (95% CI = 19.6% to 27.8%) of men. Pneumonia was present in 46.9% of men (95% CI = 42.1% to 51.7%) versus 35.8% (95% CI = 30.8% to 40.8%) of women. The mean time to antibiotics in women was longer than in men (adjusted odds ratio [aOR] = 1.18, 95% CI = 1.07 to 1.30), even after adjusting for age, race, ethnicity, presumed source of infection, SOFA score, and lactate (p = 0.001). Those with pneumonia compared to other infections received antibiotics faster (aOR = 0.73, 95% CI = 0.66 to 0.81). There was no significant association between other sources of infection and time to antibiotics in either univariate or multivariate analysis. Women experience longer delays to initial antibiotics among patients with severe sepsis or septic shock, even after adjusting for infectious source. Pneumonia was associated with shorter times to antibiotic administration. Future research is necessary to investigate contributors to delayed antibiotic administration in women. © 2014 by the Society for Academic Emergency Medicine.

  3. Experimental Study of Shock Generated Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  4. Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compression

    NASA Astrophysics Data System (ADS)

    Xiao, Pan; Kang, Zhitao; Bansihev, Alexandr A.; Breidenich, Jennifer; Scripka, David A.; Christensen, James M.; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.; Zhou, Min

    2016-01-01

    Laser-driven shock compression experiments and corresponding finite element method simulations are carried out to investigate the blueshift in the optical emission spectra under continuous laser excitation of a dilute composite consisting of 0.15% CdTe quantum dots by weight embedded in polyvinyl alcohol polymer. This material is a potential candidate for use as internal stress sensors. The analyses focus on the time histories of the wavelength blue-shift for shock loading with pressures up to 7.3 GPa. The combined measurements and calculations allow a relation between the wavelength blueshift and pressure for the loading conditions to be extracted. It is found that the blueshift first increases with pressure to a maximum and subsequently decreases with pressure. This trend is different from the monotonic increase of blueshift with pressure observed under conditions of quasistatic hydrostatic compression. Additionally, the blueshift in the shock experiments is much smaller than that in hydrostatic experiments at the same pressure levels. The differences in responses are attributed to the different stress states achieved in the shock and hydrostatic experiments and the time dependence of the mechanical response of the polymer in the composite. The findings offer a potential guide for the design and development of materials for internal stress sensors for shock conditions.

  5. New experimental platform to study high density laser-compressed matter

    DOE PAGES

    Doppner, T.; LePape, S.; Ma, T.; ...

    2014-09-26

    We have developed a new experimental platform at the Linac Coherent Light Source (LCLS) which combines simultaneous angularly and spectrally resolved x-ray scatteringmeasurements. This technique offers a new insights on the structural and thermodynamic properties of warm dense matter. The < 50 fs temporal duration of the x-ray pulse provides near instantaneous snapshots of the dynamics of the compression. We present a proof of principle experiment for this platform to characterize a shock-compressed plastic foil. We observe the disappearance of the plastic semi-crystal structure and the formation of a compressed liquid ion-ion correlation peak. As a result, the plasma parametersmore » of shock-compressed plastic can be measured as well, but requires an averaging over a few tens of shots.« less

  6. Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation

    NASA Astrophysics Data System (ADS)

    Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.

    2017-09-01

    Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (<1.0 km /s ) the simulations show enhanced energy reflection relative to the continuum predictions. Furthermore, the simulations show an effect not captured by the continuum theory: the size of amorphous regions is important. The theory assumes a sharp (discontinuous) interface between two bulk phases and a sharp change in thermodynamic and hydrodynamic quantities at the shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can be applied to tune shock attenuation for particular applications.

  7. Adherence to surviving sepsis guidelines among pediatric intensivists

    PubMed Central

    Thabet, Farah C.; Zahraa, Jihad N.; Chehab, May S.

    2017-01-01

    Objectives: To assess the compliance with the 2006 American College of Critical Care-Pediatric Advanced Life Support (ACCM-PALS) guidelines for sepsis management, and the 2012 surviving sepsis campaign (SSC), for the management of pediatric patients with sepsis and to identify the main barriers to adherence to these guidelines. Methods: In November 2015, a prospective cohort study in which a web based electronic survey using a case scenario to explore the usual management of a child with severe sepsis was designed and sent to all consultant pediatric intensivists practicing in Kingdom of Saudi Arabia (KSA). Adherences to 2012 SSC guidelines and to 4 algorithmic time-specific goals outlined in the ACCM-PALS guidelines were measured. Results: Sixty-one (76%) of 80 consultant pediatric intensivists working in KSA responded to the survey. Of the 61 respondents, 94% reported administering antibiotics within one hour of the child presentation, 98% reported starting resuscitation by giving fluid boluses, 93% reported starting vasopressor if the patient remained hypotensive despite fluid resuscitation, and 86% reported they would start hydrocortisone in case of catecholamine refractory shock. In total, 80% of the intensivists reported full adherence to all of the 4 components in the ACCM-PALS bundle; 50% reported that the absence of a locally written protocol was the main barrier to adherence to the SSC guidelines. Conclusion: Pediatric intensivists reported good adherence to the 2006 ACCM-PALS guidelines and 2012 SSC guidelines with some variability in interpretation of the recommendations. The absence of a written protocol was the main reported barrier to adherence to these guidelines. PMID:28578440

  8. Adherence to surviving sepsis guidelines among pediatric intensivists. A national survey.

    PubMed

    Thabet, Farah C; Zahraa, Jihad N; Chehab, May S

    2017-06-01

    To assess the compliance with the 2006 American College of Critical Care-Pediatric Advanced Life Support (ACCM-PALS) guidelines for sepsis management, and the 2012 surviving sepsis campaign (SSC), for the management of pediatric patients with sepsis and to identify the main barriers to adherence to these guidelines. Methods: In November 2015, a prospective cohort study in which a web based electronic survey using a case scenario to explore the usual management of a child with severe sepsis was designed and sent to all consultant pediatric intensivists practicing in Kingdom of Saudi Arabia (KSA). Adherences to 2012 SSC guidelines and to 4 algorithmic time-specific goals outlined in the ACCM-PALS guidelines were measured. Results: Sixty-one (76%) of 80 consultant pediatric intensivists working in KSA responded to the survey. Of the 61 respondents, 94% reported administering antibiotics within one hour of the child presentation, 98% reported starting resuscitation by giving fluid boluses, 93% reported starting vasopressor if the patient remained hypotensive despite fluid resuscitation, and 86% reported they would start hydrocortisone in case of catecholamine refractory shock. In total, 80% of the intensivists reported full adherence to all of the 4 components in the ACCM-PALS bundle; 50% reported that the absence of a locally written protocol was the main barrier to adherence to the SSC guidelines. Conclusion: Pediatric intensivists reported good adherence to the 2006 ACCM-PALS guidelines and 2012 SSC guidelines with some variability in interpretation of the recommendations. The absence of a written protocol was the main reported barrier to adherence to these guidelines.

  9. Interactive computer graphics applications for compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  10. Directional amorphization of boron carbide subjected to laser shock compression

    PubMed Central

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-01-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C. PMID:27733513

  11. Structures and properties of materials recovered from high shock pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nellis, W.J.

    1994-03-01

    Shock compression produces high dynamic pressures, densities, temperatures, and their quench rates. Because of these extreme conditions, shock compression produces materials with novel crystal structures, microstructures, and physical properties. Using a 6.5-m-long two-stage gun, we perform experiments with specimens up to 10 mm in diameter and 0.001--1 mm thick. For example, oriented disks of melt-textured superconducting YBa{sub 2}Cu{sub 3}O{sub 7} were shocked to 7 GPa without macroscopic fracture. Lattice defects are deposited in the crystal, which improve magnetic hysteresis at {approximately}1 kOe. A computer code has been developed to simulate shock compaction of 100 powder particles. Computations will be comparedmore » with experiments with 15--20 {mu}m Cu powders. The method is applicable to other powders and dynamic conditions.« less

  12. Directional amorphization of boron carbide subjected to laser shock compression

    DOE PAGES

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; ...

    2016-10-12

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. When using high-power pulsed-laser-driven shock compression, an unprecedented high strain rates can be achieved; we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45~50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. We also propose that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversionmore » calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4C.« less

  13. Experiments on a Miniature Hypervelocity Shock Tube

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas; Johnson, Carl; Murphy, Michael; Lieber, Mark; MIMS Team

    2013-06-01

    A miniature explosively-driven shock tube, based on the Voitenko compressor design, has been designed to produce shock speeds in light gases in excess of 80 km/s. Voitenko compressors over 1 meter in diameter have been reported but here experiments on miniature shock tubes with ~1-mm bore diameters are described. In this design a 12-mm diameter explosive pellet drives a metal plate into a hemispherical gas compression chamber. Downstream from the piston a mica diaphragm separates the gas from an evacuated shock tube which is confined by a massive polymethylmethacrylate (PMMA) block. The diaphragm eventually ruptures under the applied pressure loading and the compressed gases escape into the evacuated shock tube at hyper velocities. The progress of gas shocks in the tube and bow shocks in the PMMA are monitored with an ultra-high-speed imaging system, the Shock Wave Image Framing Technique (SWIFT). The resulting time-resolved images yield two-dimensional visualizations of shock geometry and progression. By measuring both the gas and bow shocks, accurate and unequivocal measurements of shock position history are obtained. The experimental results were compared with those of hydrocode modeling to optimize the design. The first experiments were suboptimum in that the velocities were ~16 km/s. Progress with these experiments will be reported.

  14. Burnett-Cattaneo continuum theory for shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2011-02-01

    We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution. ©2011 American Physical Society

  15. Molecular systems under shock compression into the dense plasma regime: carbon dioxide and hydrocarbon polymers

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.

    2013-10-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

    PubMed

    Shankar-Hari, Manu; Phillips, Gary S; Levy, Mitchell L; Seymour, Christopher W; Liu, Vincent X; Deutschman, Clifford S; Angus, Derek C; Rubenfeld, Gordon D; Singer, Mervyn

    2016-02-23

    Septic shock currently refers to a state of acute circulatory failure associated with infection. Emerging biological insights and reported variation in epidemiology challenge the validity of this definition. To develop a new definition and clinical criteria for identifying septic shock in adults. The Society of Critical Care Medicine and the European Society of Intensive Care Medicine convened a task force (19 participants) to revise current sepsis/septic shock definitions. Three sets of studies were conducted: (1) a systematic review and meta-analysis of observational studies in adults published between January 1, 1992, and December 25, 2015, to determine clinical criteria currently reported to identify septic shock and inform the Delphi process; (2) a Delphi study among the task force comprising 3 surveys and discussions of results from the systematic review, surveys, and cohort studies to achieve consensus on a new septic shock definition and clinical criteria; and (3) cohort studies to test variables identified by the Delphi process using Surviving Sepsis Campaign (SSC) (2005-2010; n = 28,150), University of Pittsburgh Medical Center (UPMC) (2010-2012; n = 1,309,025), and Kaiser Permanente Northern California (KPNC) (2009-2013; n = 1,847,165) electronic health record (EHR) data sets. Evidence for and agreement on septic shock definitions and criteria. The systematic review identified 44 studies reporting septic shock outcomes (total of 166,479 patients) from a total of 92 sepsis epidemiology studies reporting different cutoffs and combinations for blood pressure (BP), fluid resuscitation, vasopressors, serum lactate level, and base deficit to identify septic shock. The septic shock-associated crude mortality was 46.5% (95% CI, 42.7%-50.3%), with significant between-study statistical heterogeneity (I2 = 99.5%; τ2 = 182.5; P < .001). The Delphi process identified hypotension, serum lactate level, and vasopressor therapy as variables to test using cohort studies. Based on these 3 variables alone or in combination, 6 patient groups were generated. Examination of the SSC database demonstrated that the patient group requiring vasopressors to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L (18 mg/dL) after fluid resuscitation had a significantly higher mortality (42.3% [95% CI, 41.2%-43.3%]) in risk-adjusted comparisons with the other 5 groups derived using either serum lactate level greater than 2 mmol/L alone or combinations of hypotension, vasopressors, and serum lactate level 2 mmol/L or lower. These findings were validated in the UPMC and KPNC data sets. Based on a consensus process using results from a systematic review, surveys, and cohort studies, septic shock is defined as a subset of sepsis in which underlying circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than sepsis alone. Adult patients with septic shock can be identified using the clinical criteria of hypotension requiring vasopressor therapy to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L after adequate fluid resuscitation.

  17. Factors affecting the thermal shock behavior of yttria stabilized hafnia based graphite and tungsten composites.

    NASA Technical Reports Server (NTRS)

    Lineback, L. D.; Manning, C. R.

    1971-01-01

    Hafnia-based composites containing either graphite or tungsten were investigated as rocket nozzle throat inserts in solid propellant rocket engines. The thermal shock resistance of these materials is considered in terms of macroscopic thermal conductivity, thermal expansion, modulus of elasticity, and compressive fracture stress. The effect of degree of hafnia stabilization, density, and graphite or tungsten content upon these parameters is discussed. The variation of the ratio of elastic modulus to compressive fracture stress with density and its effect upon thermal shock resistance of these materials are discussed in detail.

  18. The size effects upon shock plastic compression of nanocrystals

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Klyavin, O. V.

    2017-10-01

    For the first time a theoretical analysis of scale effects upon the shock plastic compression of nanocrystals is implemented in the context of a dislocation kinetic approach based on the equations and relationships of dislocation kinetics. The yield point of crystals τy is established as a quantitative function of their cross-section size D and the rate of shock deformation as τy ɛ2/3 D. This dependence is valid in the case of elastic stress relaxation on account of emission of dislocations from single-pole Frank-Read sources near the crystal surface.

  19. Professor Thomas J. Ahrens and Shock Wave Physics in Russia

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Kanel, Gennady I.

    2011-06-01

    Since his earlier works on the equations of state and dynamic mechanical properties of rocks and other materials Prof. T.J. Ahrens furnished large influence on development of the shock wave physics in Russia. He always demonstrates a choice of excellent problems and a level of productivity in the field of shock compression science which is unparalleled. In recognition of his great contribution into science and international scientific collaboration Prof. Ahrens has been elected in Russian Academy of Sciences as its foreign member. In the presentation, emphasis will be done on the Comet Shoemaker-Levy project in which we had fruitful informal collaboration, on the problem of wide-range equations of state, and on stress relaxation at shock compression of solids.

  20. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...

    2015-08-27

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  1. Physics of Shock Compression and Release: NEMD Simulations of Tantalum and Silicon

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Meyers, Marc; Zhao, Shiteng; Remington, Bruce; Bringa, Eduardo; Germann, Tim; Ravelo, Ramon; Hammerberg, James

    2015-06-01

    Shock compression and release allow us to evaluate physical deformation and damage mechanisms occurring in extreme environments. SPaSM and LAMMPS molecular dynamics codes were employed to simulate single and polycrystalline tantalum and silicon at strain rates above 108 s-1. Visualization and analysis was accomplished using OVITO, Crystal Analysis Tool, and a redesigned orientation imaging function implemented into SPaSM. A comparison between interatomic potentials for both Si and Ta (as pertaining to shock conditions) is conducted and the influence on phase transformation and plastic relaxation is discussed. Partial dislocations, shear induced disordering, and metastable phase changes are observed in compressed silicon. For tantalum, the role of grain boundary and twin intersections are evaluated for their role in ductile spallation. Finally, the temperature dependent response of both Ta and Si is investigated.

  2. Floating shock fitting via Lagrangian adaptive meshes

    NASA Technical Reports Server (NTRS)

    Vanrosendale, John

    1995-01-01

    In recent work we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered on Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM), is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence.

  3. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.

    PubMed

    Kritcher, A L; Neumayer, P; Brown, C R D; Davis, P; Döppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wünsch, K; Glenzer, S H

    2009-12-11

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  4. Experimental observation of the shift and width of the aluminium K absorption edge in laser shock-compressed plasmas

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Al-Kuzee, J.; Benuzzi, A.; Koenig, M.; Krishnan, J.; Grandjouan, N.; Batani, D.; Bossi, S.; Nicolella, S.

    1998-03-01

    Experimental measurements of the shift and width of the aluminium K-absorption edge in laser shock-compressed plasma is presented. The spectrometer used in these experiments allows an accurate wavelength calibration and fiduciary and hence provides precise measurements of both the shift and the width of the absorption edge. Results have been obtained for compressions up to approximately ×2 and temperatures up to about 1.5 eV. The values of shift and width are compared with a new model with which there is very good agreement.

  5. Statistical modeling of compressible turbulence - Shock-wave/turbulence interactions and buoyancy effects

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Akira

    1991-12-01

    A mass-weighted mean compressible turbulence model is presented with the aid of the results from a two-scale DIA. This model aims at dealing with two typical aspects in compressible flows: the interaction of a shock wave with turbulence in high-speed flows and strong buoyancy effects in thermally-driven flows as in stellar convection and conflagration. The former is taken into account through the effect of turbulent dilatation that is related to the density fluctuation and leads to the enhanced kinetic-energy dissipation. The latter is incorporated through the interaction between the gravitational and density-fluctuation effects.

  6. High precision Hugoniot measurements on statically pre-compressed fluid helium

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.

    2016-09-01

    The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.

  7. Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants

    NASA Technical Reports Server (NTRS)

    Ismail, Ismail M. K.; Hawkins, Tom W.

    2000-01-01

    Liquid rocket propellants can be sensitive to rapid compression. Such liquids may undergo decomposition and their handling may be accompanied with risk. Decomposition produces small gas bubbles in the liquid, which upon rapid compression may cause catastrophic explosions. The rapid compression can result from mechanical shocks applied on the tank containing the liquid or from rapid closure of the valves installed on the lines. It is desirable to determine the conditions that may promote explosive reactions. At Air Force Research Laboratory (AFRL), we constructed an apparatus and established a safe procedure for estimating the sensitivity of propellant materials towards mechanical shocks (Adiabatic Compression Tester). A sample is placed on a stainless steel U-tube, held isothermally at a temperature between 20 and 150 C then exposed to an abrupt mechanical shock of nitrogen gas at a pressure between 6.9 and 20.7 MPa (1000 to 3000 psi). The apparatus is computer interfaced and is driven with LABTECH NOTEBOOK-pro (registered) Software. In this presentation, the design of the apparatus is shown, the operating procedure is outlined, and the safety issues are addressed. The results obtained on different energetic materials are presented.

  8. Laser Shock Compression Studies of Phase Changes in Ce3 Al Metallic Glass

    NASA Astrophysics Data System (ADS)

    Bryant, Alex; Wehrenberg, Christopher; Alamgir, Faisal; Remington, Bruce; Thadhani, Naresh

    2017-06-01

    Laser shock-compression of Ce3 Al metallic glass (MG) was performed to probe pressure-induced phase transitions. Ce3 Al MG has been previously shown to crystallize into a single crystal FCC phase during static compression at 25 GPa. In the present work, experiments were performed using the 3J Nd:YAG pulse laser at Georgia Tech and the high energy laser at the OMEGA facility. Characterization of shock compressed samples recovered from the OMEGA laser experiments were performed using XRD and PDF measurements at the NSLS-2 synchrotron at Brookhaven National Lab. The results showed evidence of a permanent polyamorphous phase change at pressures > 10 GPa and crystallization at pressures > 75 GPa. Particle velocities were measured using VISAR in experiments performed at Georgia Tech and simulated using Hyades and Abaqus to create an empirical equation of state and correlate with results obtained from XRD and PDF characterization. The results attained to-date in terms of the evolution of the high pressure amorphous and crystalline phases and their correlations with the shock conditions will be presented. This work is supported in part by ARO Grant No. W9HNF-09-1-0403 and the National Science Foundation Graduate Research Fellowship Program awarded to Alex Bryant under Grant No. 0946809.

  9. Shock wave-induced phase transition in RDX single crystals.

    PubMed

    Patterson, James E; Dreger, Zbigniew A; Gupta, Yogendra M

    2007-09-20

    The real-time, molecular-level response of oriented single crystals of hexahydro-1,3,5-trinitro-s-triazine (RDX) to shock compression was examined using Raman spectroscopy. Single crystals of [111], [210], or [100] orientation were shocked under stepwise loading to peak stresses from 3.0 to 5.5 GPa. Two types of measurements were performed: (i) high-resolution Raman spectroscopy to probe the material at peak stress and (ii) time-resolved Raman spectroscopy to monitor the evolution of molecular changes as the shock wave reverberated through the material. The frequency shift of the CH stretching modes under shock loading appeared to be similar for all three crystal orientations below 3.5 GPa. Significant spectral changes were observed in crystals shocked above 4.5 GPa. These changes were similar to those observed in static pressure measurements, indicating the occurrence of the alpha-gamma phase transition in shocked RDX crystals. No apparent orientation dependence in the molecular response of RDX to shock compression up to 5.5 GPa was observed. The phase transition had an incubation time of approximately 100 ns when RDX was shocked to 5.5 GPa peak stress. The observation of the alpha-gamma phase transition under shock wave loading is briefly discussed in connection with the onset of chemical decomposition in shocked RDX.

  10. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins.

    PubMed

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-30

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  11. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins

    NASA Astrophysics Data System (ADS)

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-01

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  12. Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaou, G.; Livadiotis, G.

    2017-03-20

    We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying alongmore » the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.« less

  13. Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed Ta using time-resolved in situ Laue diffraction

    DOE PAGES

    Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; ...

    2015-09-29

    We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa.more » The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.« less

  14. Sound velocities in shocked liquid D2 to 28 GPa

    NASA Astrophysics Data System (ADS)

    Holmes, N. C.; Ross, M.; Nellis, W. J.

    1999-06-01

    Recent measurements of shock temperatures(N. C. Holmes, W. J. Nellis, and M. Ross, Phys. Rev.) B52, 15835 (1995). and laser-driven Hugoniot measurements(L. B. Da Silva, et al.), Phys. Rev. Lett. 78, 483 (1997). of shocked liquid deuterium strongly indicate that molecular dissociation is important above 20 GPa. Since the amount of expected dissociation is small on the Hugoniot at the 30 GPa limit of conventional impact experiments, other methods must be used to test our understanding of the physics of highly compressed deuterium in this regime. We have recently performed experiments to measure the sound velocity of deuterium which test the isentropic compressibility, c^2 = (partial P/partial ρ)_S. We used the shock overtake method to measure sound velocities at several shock pressures between 10--28 GPa. These data provide support for recently developed molecular dissociation models.

  15. Control of shock wave-boundary layer interactions by bleed in supersonic mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Fukuda, M. K.; Hingst, W. G.; Reshotko, E.

    1975-01-01

    An experimental investigation was conducted to determine the effect of bleed on a shock wave-boundary layer interaction in an axisymmetric mixed-compression supersonic inlet. The inlet was designed for a free-stream Mach number of 2.50 with 60-percent supersonic internal area contraction. The experiment was conducted in the NASA Lewis Research Center 10-Foot Supersonic Wind Tunnel. The effects of bleed amount and bleed geometry on the boundary layer after a shock wave-boundary layer interaction were studied. The effect of bleed on the transformed form factor is such that the full realizable reduction is obtained by bleeding of a mass flow equal to about one-half of the incident boundary layer mass flow. More bleeding does not yield further reduction. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise.

  16. Shock-absorbing caster wheel is simple and compact

    NASA Technical Reports Server (NTRS)

    Kindley, R. J.

    1968-01-01

    Compact shock-absorbing caster wheel mitigates or absorbs shock by a compressible tire which deforms into a cavity between its inner edge and the wheel hub. A tee-shaped annular ring embedded in the tire distributes loads more uniformly throughout both wheel and tire.

  17. Hugoniot equation of state of rock materials under shock compression

    PubMed Central

    Braithwaite, C. H.; Zhao, J.

    2017-01-01

    Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5–12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure–particle velocity (P–up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956506

  18. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Gu, Y. J.; Chen, Z. Y.; Chen, Q. F.

    2010-08-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ˜6km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  19. Shocks in fragile matter

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  20. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression.

    PubMed

    Zheng, J; Gu, Y J; Chen, Z Y; Chen, Q F

    2010-08-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ∼6 km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  1. Ultrahigh Pressure Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.

    2017-12-01

    Laser-based dynamic compression provides a new opportunity to study the lattice structure and other properties of geological materials to ultrahigh pressure conditions ranging from 100 - 1000 GPa (1 TPa) and beyond. Such studies have fundamental applications to understanding the Earth's core as well as the interior structure of super-Earths and giant planets. This talk will review recent dynamic compression experiments using high-powered lasers on materials including Fe-Si, MgO, and SiC. Experiments were conducted at the Omega laser (University of Rochester) and the Linac Coherent Light Source (LCLS, Stanford). At Omega, laser drives as large as 2 kJ are applied over 10 ns to samples that are 50 microns thick. At peak compression, the sample is probed with quasi-monochromatic X-rays from a laser-plasma source and diffraction is recorded on image plates. At LCLS, shock waves are driven into the sample using a 40-J laser with a 10-ns pulse. The sample is probed with X-rays form the LCLS free electron laser providing 1012 photons in a monochromatic pulse near 10 keV energy. Diffraction is recorded using pixel array detectors. By varying the delay between the laser and the x-ray beam, the sample can be probed at various times relative to the shock wave transiting the sample. By controlling the shape and duration of the incident laser pulse, either shock or ramp (shockless) loading can be produced. Ramp compression produces less heating than shock compression, allowing samples to be probed to ultrahigh pressures without melting. Results for iron alloys, oxides, and carbides provide new constraints on equations of state and phase transitions that are relevant to the interior structure of large, extrasolar terrestrial-type planets.

  2. Shock initiation of explosives: High temperature hot spots explained

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.; Suslick, Kenneth S.; Dlott, Dana D.

    2017-08-01

    We investigated the shock initiation of energetic materials with a tabletop apparatus that uses km s-1 laser-driven flyer plates to initiate tiny explosive charges and obtains complete temperature histories with a high dynamic range. By comparing various microstructured formulations, including a pentaerythritol tetranitrate (PETN) based plastic explosive (PBX) denoted XTX-8003, we determined that micron-scale pores were needed to create high hot spot temperatures. In charges where micropores (i.e., micron-sized pores) were present, a hot spot temperature of 6000 K was observed; when the micropores were pre-compressed to nm scale, however, the hot spot temperature dropped to ˜4000 K. By comparing XTX-8003 with an analog that replaced PETN by nonvolatile silica, we showed that the high temperatures require gas in the pores, that the high temperatures were created by adiabatic gas compression, and that the temperatures observed can be controlled by the choice of ambient gases. The hot spots persist in shock-compressed PBXs even in vacuum because the initially empty pores became filled with gas created in-situ by shock-induced chemical decomposition.

  3. Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Vogler, Tracy J.

    2015-06-01

    In most porous materials, void collapse during shock compression couples mechanical energy to thermal energy. Increased temperature drives up pressures and lowers densities in the final Hugoniot states as compared to full-density samples. Some materials, however, exhibit an anomalous enhanced densification in their Hugoniot states when porosity is introduced. We have recently shown that silicon is such a material, and demonstrated a molecular mechanism for the effect using molecular simulation. We will review results from large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniotstat simulations of shock compressed porous silicon, highlighting the mechanism by which porosity produces local shear which nucleate partial phase transition and localized melting at shock pressures below typical thresholds in these materials. Further, we will characterize the stress states and strength of the material as a function of porosity from 5 to 50 percent and with various porosity microstructures. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. On the formation of Friedlander waves in a compressed-gas-driven shock tube

    PubMed Central

    Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.

    2016-01-01

    Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888

  5. Computation of Thermally Perfect Properties of Oblique Shock Waves

    NASA Technical Reports Server (NTRS)

    Tatum, Kenneth E.

    1996-01-01

    A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).

  6. VizieR Online Data Catalog: Effects of preionization in radiative shocks (Sutherland+, 2017)

    NASA Astrophysics Data System (ADS)

    Sutherland, R. S.; Dopita, M. A.

    2017-06-01

    In this paper we treat the preionization problem in shocks over the velocity range 10

  7. Sound velocities in highly oriented pyrolytic graphite shocked to 18 GPa: Orientational order dependence and elastic instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Marcel; Winey, J. M.; Gupta, Y. M.

    Previous reports of rapid phase transformation above 18 GPa [Erskine and Nellis, Nature 349, 317 (1991)] and large elastic waves below 18 GPa [Lucas et al., J. Appl. Phys. 114, 093515 (2013)] for shock-compressed ZYB-grade highly-oriented pyrolytic graphite (HOPG), but not for less oriented ZYH-grade HOPG, indicated a link between the orientational order dependence of the HOPG response above and below the phase transformation stress. To gain insight into this link and into the mechanical response of HOPG shocked to peak stresses approaching the phase transformation onset, the compressibility of ZYB- and ZYH-grade HOPG in the shocked state was examinedmore » using front surface impact experiments. Particle velocity histories and sound velocities were measured for peak stresses reaching 18 GPa. Although the locus of the measured peak stress-particle velocity states is indistinguishable for the two grades of HOPG, the measured sound velocities in the peak state reveal significant differences between the two grades. Specifically, 1) The measured sound velocities are somewhat higher for ZYH-grade HOPG, compared to ZYB-grade HOPG. 2) The measured sound velocities for ZYH-grade HOPG increase smoothly with compression, whereas those for ZYB-2 grade HOPG exhibit a significant reduction in the compression dependence from 12 GPa to 17 GPa and an abrupt increase from 17 GPa to 18 GPa. 3) The longitudinal moduli, determined from the measured sound velocities, are smaller than the calculated bulk moduli for ZYB-grade HOPG shocked to peak stresses above 15 GPa, indicating the onset of an elastic instability. The present findings demonstrate that the softening of the longitudinal modulus (or elastic instability) presented here is linked to the large elastic waves and the rapid phase transformation reported previously – all observed only for shocked ZYB-grade HOPG. The elastic instability in shocked ZYB-grade HOPG is likely a precursor to the rapid phase transformation observed above 18 GPa for this HOPG grade.« less

  8. Sound velocities in highly oriented pyrolytic graphite shocked to 18 GPa: Orientational order dependence and elastic instability

    DOE PAGES

    Lucas, Marcel; Winey, J. M.; Gupta, Y. M.

    2015-12-28

    Previous reports of rapid phase transformation above 18 GPa [Erskine and Nellis, Nature 349, 317 (1991)] and large elastic waves below 18 GPa [Lucas et al., J. Appl. Phys. 114, 093515 (2013)] for shock-compressed ZYB-grade highly-oriented pyrolytic graphite (HOPG), but not for less oriented ZYH-grade HOPG, indicated a link between the orientational order dependence of the HOPG response above and below the phase transformation stress. To gain insight into this link and into the mechanical response of HOPG shocked to peak stresses approaching the phase transformation onset, the compressibility of ZYB- and ZYH-grade HOPG in the shocked state was examinedmore » using front surface impact experiments. Particle velocity histories and sound velocities were measured for peak stresses reaching 18 GPa. Although the locus of the measured peak stress-particle velocity states is indistinguishable for the two grades of HOPG, the measured sound velocities in the peak state reveal significant differences between the two grades. Specifically, 1) The measured sound velocities are somewhat higher for ZYH-grade HOPG, compared to ZYB-grade HOPG. 2) The measured sound velocities for ZYH-grade HOPG increase smoothly with compression, whereas those for ZYB-2 grade HOPG exhibit a significant reduction in the compression dependence from 12 GPa to 17 GPa and an abrupt increase from 17 GPa to 18 GPa. 3) The longitudinal moduli, determined from the measured sound velocities, are smaller than the calculated bulk moduli for ZYB-grade HOPG shocked to peak stresses above 15 GPa, indicating the onset of an elastic instability. The present findings demonstrate that the softening of the longitudinal modulus (or elastic instability) presented here is linked to the large elastic waves and the rapid phase transformation reported previously – all observed only for shocked ZYB-grade HOPG. The elastic instability in shocked ZYB-grade HOPG is likely a precursor to the rapid phase transformation observed above 18 GPa for this HOPG grade.« less

  9. Shock-induced transformations in crystalline RDX: a uniaxial constant-stress Hugoniostat molecular dynamics simulation study.

    PubMed

    Bedrov, Dmitry; Hooper, Justin B; Smith, Grant D; Sewell, Thomas D

    2009-07-21

    Molecular dynamics (MD) simulations of uniaxial shock compression along the [100] and [001] directions in the alpha polymorph of hexahydro-1,3,5-trinitro-1,3,5-triazine (alpha-RDX) have been conducted over a wide range of shock pressures using the uniaxial constant stress Hugoniostat method [Ravelo et al., Phys. Rev. B 70, 014103 (2004)]. We demonstrate that the Hugoniostat method is suitable for studying shock compression in atomic-scale models of energetic materials without the necessity to consider the extremely large simulation cells required for an explicit shock wave simulation. Specifically, direct comparison of results obtained using the Hugoniostat approach to those reported by Thompson and co-workers [Phys. Rev. B 78, 014107 (2008)] based on large-scale MD simulations of shocks using the shock front absorbing boundary condition (SFABC) approach indicates that Hugoniostat simulations of systems containing several thousand molecules reproduced the salient features observed in the SFABC simulations involving roughly a quarter-million molecules, namely, nucleation and growth of nanoscale shear bands for shocks propagating along the [100] direction and the polymorphic alpha-gamma phase transition for shocks directed along the [001] direction. The Hugoniostat simulations yielded predictions of the Hugoniot elastic limit for the [100] shock direction consistent with SFABC simulation results.

  10. Existence regimes for shocks in inhomogeneous magneto-plasmas having entropy

    NASA Astrophysics Data System (ADS)

    Iqbal, Javed; Yaqub Khan, M.

    2018-04-01

    The finding of connection of plasma density and temperature with entropy gives an incitement to study different plasma models with respect to entropy. Nonlinear dissipative one- and two-dimensional structures (shocks) are investigated in nonuniform magnetized plasma with respect to entropy. The dissipation comes in the medium through ion-neutral collisions. The linear dispersion relation is derived. The Korteweg-deVries-Burgers and Kadomtsev-Petviashvili-Burgers equations are derived for nonlinear drift waves in 1-D and 2-D by employing the drift approximation. It is found that vd/u ( vd is the diamagnetic drift velocity and u is the velocity of nonlinear structure) plays a significant role in the shock formation. It is also found that entropy has a significant effect on the strength of shocks. It is noticed that v d/u determines the rarefactive and compressive nature of the shocks. It is observed that upper and lower bounds exist for the shock velocity. It is also observed that the existing regimes for both one- and two-dimensional shocks for kappa distributed electrons are different from shocks with Cairns distributed electrons. Both rarefactive and compressive shocks are found for the 1-D drift waves with kappa distributed electrons. Interestingly, it is noticed that entropy enhances the strength of one- and two-dimensional shocks.

  11. Finite element computation of compressible flows with the SUPG formulation

    NASA Technical Reports Server (NTRS)

    Le Beau, G. J.; Tezduyar, T. E.

    1991-01-01

    Finite element computation of compressible Euler equations is presented in the context of the streamline-upwind/Petrov-Galerkin (SUPG) formulation. The SUPG formulation, which is based on adding stabilizing terms to the Galerkin formulation, is further supplemented with a shock capturing operator which addresses the difficulty in maintaining a satisfactory solution near discontinuities in the solution field. The shock capturing operator, which has been derived from work done in entropy variables for a similar operator, is shown to lead to an appropriate level of additional stabilization near shocks, without resulting in excessive numerical diffusion. An implicit treatment of the impermeable wall boundary condition is also presented. This treatment of the no-penetration condition offers increased stability for large Courant numbers, and accelerated convergence of the computations for both implicit and explicit applications. Several examples are presented to demonstrate the ability of this method to solve the equations governing compressible fluid flow.

  12. Electrical Conductivity of ɛ-Iron under Shock Compression up to 208G Pa

    NASA Astrophysics Data System (ADS)

    Bi, Yan; Tan, Hua; Jing, Fu-Qian

    2002-02-01

    The electrical conductivity of shock-compressed iron was measured up to 208 GPa by using an improved design in experiment assembly in which the iron sample was encapsulated in a single-crystal sapphire cell. High-pressure shock compressions were generated by the plate impact technique with the two-stage light-gas gun. The measured conductivity of iron varies from 1.45×104 Ω-1 cm-1 at 101 GPa and 2010 K to 7.65×103 Ω-1 cm-1 at 208 GPa and 5220 K. After examining these data together with those reported, we found that the Bloch-Grüneisen expression is still valid at high pressures and temperatures, even up to 208 GPa and 5220 K, at least for ɛ-iron, which is significant in the field of condensed matter physics and deep interior earth science.

  13. Enhanced densification under shock compression in porous silicon

    DOE PAGES

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less

  14. Staged Z-pinch for the production of high-flux neutrons and net energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessel, Frank J.; Rahman, Hafiz Ur; Rostoker, Norman

    A fusible target is embedded in a high Z liner, ohmically heated and then shock wave heated by implosion of an enveloping high Z liner. The target is adiabatically heated by compression, fusibly ignited and charged-particle heated as it is being ignited. A shock front forms as the liner implodes which shock front detaches from the more slowly moving liner, collides with the outer surface of the target, accelerates inward, rapidly heating the target, adiabatically compressing the target and liner and amplifying the current to converge the liner mass toward a central axis thereby compressing the target to a fusionmore » condition when it begins to ignite and produce charged particles. The charged particles are trapped in a large magnetic field surrounding the target. The energy of the charged particles is deposited into the target to further heat the target to produce an energy gain.« less

  15. Birefringence and incipient plastic deformation in elastically overdriven [100] CaF2 under shock compression

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.

    2018-04-01

    [100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.

  16. Performance data of the new free-piston shock tunnel T5 at GALCIT

    NASA Technical Reports Server (NTRS)

    Hornung, H.; Sturtevant, B.; Belanger, J.; Sanderson, S.; Brouillette, M.; Jenkins, M.

    1992-01-01

    A new free piston shock tunnel has been constructed at the Graduate Aeronautical Laboratories at Caltec. Compression tube length is 30 m and diameter 300 mm. Shock tube length is 12 m and diameter 90 mm. Piston mass is 150 kg and maximum diaphragm burst pressure is 130 MPa. Special features of this facility are that the pressure in the driver gas is monitored throughout the compression process until well after diaphragm rupture, and that the diaphragm burst pressure can be measured dynamically. An analysis of initial performance data including transient behavior of the flow over models is presented.

  17. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-12-01

    While progress towards hot-spot ignition has been made achieving an alpha-heating dominated state in high-foot implosion experiments [Hurricane et al., Nat. Phys. 12, 800 (2016)] on the National Ignition Facility, improvements are needed to increase the fuel compression for the enhancement of the neutron yield. A strategy is proposed to improve the fuel compression through the recompression of a shock/compression wave generated by the end of the main drive portion of a high-foot pulse shape. Two methods for the peak pulse recompression, namely, the decompression-and-recompression (DR) and simple recompression schemes, are investigated and compared. Radiation hydrodynamic simulations confirm that the peak pulse recompression can clearly improve fuel compression without significantly compromising the implosion stability. In particular, when the convergent DR shock is tuned to encounter the divergent shock from the capsule center at a suitable position, not only the neutron yield but also the stability of stagnating hot-spot can be noticeably improved, compared to the conventional high-foot implosions [Hurricane et al., Phys. Plasmas 21, 056314 (2014)].

  18. Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Yaakobi, B.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; Remington, B. A.; Allen, P. G.; Pollaine, S. M.; Lorenzana, H. E.; Lorenz, K. T.; Hawreliak, J. A.

    2008-06-01

    The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to ˜0.75Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.

  19. Shock wave and flame front induced detonation in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.

    2018-05-01

    The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

  20. Shock compression dynamics under a microscope.

    NASA Astrophysics Data System (ADS)

    Dlott, Dana

    2015-06-01

    We have developed a tabletop laser flyer launch system1 that solves many of the problems that plagued previous efforts. Using a novel mechanism where a spatially-uniform laser pulse creates a shock in a glass substrate just underneath a metal foil, we can launch tiny (0.7 mm diameter x 100 μm thick) flyers at speeds ranging from 0-5 km/s and the foils are flat, cold and intact. This tabletop launch system, where we often launch 100 flyers per day, provides a platform for a wide variety of time-resolved spectroscopies. The shocked material is viewed by a microscope objective that transmits near-infrared light from a photon Doppler velocimeter to monitor the flyer, and collects the light for spectroscopic and video images. Fluorescent probes, which have been highly developed for the biomedical sciences, have proven especially useful for these experiments. Using emission measurements, we have investigated the fundamental mechanisms of many shock wave effects including: viscoelastic compression of high molecular weight polymers, visualization of shocks in porous media such as sand, where we can observe the behavior of individual grains of sand, shock attenuation by passing the shock through reactive materials that undergo endothermic chemical reactions, and shock initiation of nanoenergetic materials.

  1. Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation.

    PubMed

    Nowakowski, A F; Ballil, A; Nicolleau, F C G A

    2015-08-01

    The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation.

  2. X-ray Scattering Measurement of the Heat Capacity Ratio in Shock Compressed Matter

    NASA Astrophysics Data System (ADS)

    Fortmann, C.; Lee, H. J.; Doeppner, Tilo; Kritcher, A. L.; Landen, O. L.; Falcone, R. W.; Glenzer, S. H.

    2011-10-01

    We developed accurate x-ray scattering techniques to measure properties of matter under extreme conditions of density and temperature in intense laser-solid interaction experiments. We report on novel applications of x-ray scattering to measure the heat-capacity ratio γ =cp /cv of a Be plasma which determines the equation of state of the system. Ultraintense laser radiation is focussed onto both sides of a Be foil, creating two counterpropagating planar shock waves that collide in the target center. A second set of lasers produces Zn He- α radiation of 8.9 keV energy that scatters from the shock-compressed matter. We observe temperatures of 10eV and 15eV and mass densities of 5g/cm3 and 11g/cm3 before and after the shock collision. Applying the Rankine-Hugoniot relations for counterpropagating shocks we then infer γ as a function of density using only the measured mass compression ratios. Our results agree with equation of state models and DFT simulations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We acknowledge support from the Alexander von Humboldt-Foundation.

  3. Statistical Analysis of Solar Events Associated with SSC over Year of Solar Maximum during Cycle 23: 1. Identification of Related Sun-Earth Events

    NASA Astrophysics Data System (ADS)

    Grison, B.; Bocchialini, K.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.

    2017-12-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of herafter detailed criteria (velocities, drag coefficient, radio waves, polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The categorization of the events at L1 is made on published catalogues. For each potential CME/L1 event association we compare the velocity observed at L1 with the one observed at the Sun and the estimated balistic velocity. Observations of radio emissions (Type II, Type IV detected from the ground and /or by WIND) associated to the CMEs make the solar source more probable. We also compare the polarity of the magnetic clouds with the hemisphere of the solar source. The drag coefficient (estimated with the drag-based model) is calculated for each potential association and it is compared to the expected range values. We identified a solar source for 26 SSC related events. 12 of these 26 associations match all criteria. We finally discuss the difficulty to perform such associations.

  4. Equation of state and shock compression of warm dense sodium—A first-principles study

    DOE PAGES

    Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...

    2017-02-21

    As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less

  5. Test Operations Procedure (TOP) 10-2-400 Open End Compressed Gas Driven Shock Tube

    DTIC Science & Technology

    gas-driven shock tube. Procedures are provided for instrumentation, test item positioning, estimation of key test parameters, operation of the shock...tube, data collection, and reporting. The procedures in this document are based on the use of helium gas and Mylar film diaphragms.

  6. The conformational dynamics of the mitochondrial Hsp70 chaperone.

    PubMed

    Mapa, Koyeli; Sikor, Martin; Kudryavtsev, Volodymyr; Waegemann, Karin; Kalinin, Stanislav; Seidel, Claus A M; Neupert, Walter; Lamb, Don C; Mokranjac, Dejana

    2010-04-09

    Heat shock proteins 70 (Hsp70) represent a ubiquitous and conserved family of molecular chaperones involved in a plethora of cellular processes. The dynamics of their ATP hydrolysis-driven and cochaperone-regulated conformational cycle are poorly understood. We used fluorescence spectroscopy to analyze, in real time and at single-molecule resolution, the effects of nucleotides and cochaperones on the conformation of Ssc1, a mitochondrial member of the family. We report that the conformation of its ADP state is unexpectedly heterogeneous, in contrast to a uniform ATP state. Substrates are actively involved in determining the conformation of Ssc1. The J protein Mdj1 does not interact transiently with the chaperone, as generally believed, but rather is released slowly upon ATP hydrolysis. Analysis of the major bacterial Hsp70 revealed important differences between highly homologous members of the family, possibly explaining tuning of Hsp70 chaperones to meet specific functions in different organisms and cellular compartments. 2010 Elsevier Inc. All rights reserved.

  7. Practical barriers to the implementation of early goal directed therapy in the UK: trainee skills and awareness.

    PubMed

    McNally, S J; MacKinnon, M; Hawkins, M

    2009-08-01

    The Surviving Sepsis Campaign (SSC) recommends Early Goal Directed Therapy (EGDT) in the treatment of septic shock, which requires key critical care skills and knowledge. This study evaluates the availability of these skills in Specialist Registrars in acute hospital specialities in the UK. A questionnaire was sent to Specialist Registrars in Anaesthetics, General Surgery and General Medicine throughout Scotland. One hundred and eighty five responses were obtained. One hundred percent of anaesthetists, 70% of surgeons and 51% of physicians were aware of EGDT Only 62 trainees (6% of surgeons, 79% of anaesthetists, 19% of physicians) had the full complement of skills and knowledge to implement EGDT. This study demonstrates that non-anaesthetic registrars in the UK lack both knowledge and skills required to provide EGDT. The main deficit was in awareness, demonstrating that knowledge of EGDT is not penetrating into specialities beyond anaesthesia. It is now time for the SSC to specifically target non-anaesthetic specialities.

  8. Physical Intrepretation of Mathematically Invariant K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At SCCM Shock 99, Lie Group Theory was applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Ratios of the group parameters were shown to be linked to the physical parameters specified in the second, third, and fourth order BM-EOS approximations. This effort has subsequently been extended to provide a general formalism for a wide class of mathematical forms (i.e., K(r,P)) of the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Specific examples included the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. (2) With these ratios defined, the next step is to predict the behavior of these K(r,P) type solids. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. This will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments, and additionally, allow the empirical coefficients for these EOS forms to be adjusted accordingly. (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Invariant Functional Forms For K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  9. Compressible Flow Toolbox

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.

  10. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock

    PubMed Central

    Shankar-Hari, Manu; Phillips, Gary S.; Levy, Mitchell L.; Seymour, Christopher W.; Liu, Vincent X.; Deutschman, Clifford S.; Angus, Derek C.; Rubenfeld, Gordon D.; Singer, Mervyn

    2016-01-01

    IMPORTANCE Septic shock currently refers to a state of acute circulatory failure associated with infection. Emerging biological insights and reported variation in epidemiology challenge the validity of this definition. OBJECTIVE To develop a new definition and clinical criteria for identifying septic shock in adults. DESIGN, SETTING, AND PARTICIPANTS The Society of Critical Care Medicine and the European Society of Intensive Care Medicine convened a task force (19 participants) to revise current sepsis/septic shock definitions. Three sets of studies were conducted: (1) a systematic review and meta-analysis of observational studies in adults published between January 1, 1992, and December 25, 2015, to determine clinical criteria currently reported to identify septic shock and inform the Delphi process; (2) a Delphi study among the task force comprising 3 surveys and discussions of results from the systematic review, surveys, and cohort studies to achieve consensus on a new septic shock definition and clinical criteria; and (3) cohort studies to test variables identified by the Delphi process using Surviving Sepsis Campaign (SSC) (2005–2010; n = 28 150), University of Pittsburgh Medical Center (UPMC) (2010–2012; n = 1 309 025), and Kaiser Permanente Northern California (KPNC) (2009–2013; n = 1 847 165) electronic health record (EHR) data sets. MAIN OUTCOMES AND MEASURES Evidence for and agreement on septic shock definitions and criteria. RESULTS The systematic review identified 44 studies reporting septic shock outcomes (total of 166 479 patients) from a total of 92 sepsis epidemiology studies reporting different cutoffs and combinations for blood pressure (BP), fluid resuscitation, vasopressors, serum lactate level, and base deficit to identify septic shock. The septic shock–associated crude mortality was 46.5% (95%CI, 42.7%–50.3%), with significant between-study statistical heterogeneity (I2 = 99.5%; τ2 = 182.5; P < .001). The Delphi process identified hypotension, serum lactate level, and vasopressor therapy as variables to test using cohort studies. Based on these 3 variables alone or in combination, 6 patient groups were generated. Examination of the SSC database demonstrated that the patient group requiring vasopressors to maintain mean BP 65 mmHg or greater and having a serum lactate level greater than 2 mmol/L (18 mg/dL) after fluid resuscitation had a significantly higher mortality (42.3%[95%CI, 41.2%–43.3%]) in risk-adjusted comparisons with the other 5 groups derived using either serum lactate level greater than 2 mmol/L alone or combinations of hypotension, vasopressors, and serum lactate level 2 mmol/L or lower. These findings were validated in the UPMC and KPNC data sets. CONCLUSIONS AND RELEVANCE Based on a consensus process using results from a systematic review, surveys, and cohort studies, septic shock is defined as a subset of sepsis in which underlying circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than sepsis alone. Adult patients with septic shock can be identified using the clinical criteria of hypotension requiring vasopressor therapy to maintain mean BP 65 mmHg or greater and having a serum lactate level greater than 2 mmol/L after adequate fluid resuscitation. PMID:26903336

  11. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening

    NASA Astrophysics Data System (ADS)

    Sun, Rujian; Li, Liuhe; Zhu, Ying; Zhang, Lixin; Guo, Wei; Peng, Peng; Li, Bo; Guo, Chao; Liu, Lei; Che, Zhigang; Li, Weidong; Sun, Jianfei; Qiao, Hongchao

    2017-09-01

    Laser shock peening (LSP), an innovative surface treatment technique, generates compressive residual stress on the surface of metallic components to improve their fatigue performance, wear resistance and corrosion resistance. To illustrate the dynamic response during LSP and residual stress fields after LSP, this study conducted FEM simulations of LSP in a Ti6Al4V alloy. Results showed that when power density was 7 GW cm-2, a plastic deformation occurred at 10 ns during LSP and increased until the shock pressure decayed below the dynamic yield strength of Ti6Al4V after 60 ns. A maximum tensile region appeared beneath the surface at around 240 ns, forming a compressive-tensile-compressive stress sandwich structure with a thickness of 98, 1020 and 606 μm for each layer. After the model became stabilized, the value of the surface residual compressive stress was 564 MPa at the laser spot center. Higher value of residual stress across the surface and thicker compressive residual stress layers were achieved by increasing laser power density, impact times and spot sizes during LSP. A ‘Residual stress hole’ occurred with a high laser power density of 9 GW cm-2 when laser pulse duration was 10 ns, or with a long laser pulse duration of 20 ns when laser power density was 7 GW cm-2 for Ti6Al4V. This phenomenon occurred because of the permanent reverse plastic deformation generated at laser spot center.

  12. Equation of state of Mo from shock compression experiments on preheated samples

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2017-03-01

    We present a reanalysis of reported Hugoniot data for Mo, including both experiments shocked from ambient temperature (T) and those preheated to 1673 K, using the most general methods of least-squares fitting to constrain the Grüneisen model. This updated Mie-Grüneisen equation of state (EOS) is used to construct a family of maximum likelihood Hugoniots of Mo from initial temperatures of 298 to 2350 K and a parameterization valid over this range. We adopted a single linear function at each initial temperature over the entire range of particle velocities considered. Total uncertainties of all the EOS parameters and correlation coefficients for these uncertainties are given. The improved predictive capabilities of our EOS for Mo are confirmed by (1) better agreement between calculated bulk sound speeds and published measurements along the principal Hugoniot, (2) good agreement between our Grüneisen data and three reported high-pressure γ ( V ) functions obtained from shock-compression of porous samples, and (3) very good agreement between our 1 bar Grüneisen values and γ ( T ) at ambient pressure recalculated from reported experimental data on the adiabatic bulk modulus K s ( T ) . Our analysis shows that an EOS constructed from shock compression data allows a much more accurate prediction of γ ( T ) values at 1 bar than those based on static compression measurements or first-principles calculations. Published calibrations of the Mie-Grüneisen EOS for Mo using static compression measurements only do not reproduce even low-pressure asymptotic values of γ ( T ) at 1 bar, where the most accurate experimental data are available.

  13. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGonegle, David, E-mail: d.mcgonegle1@physics.ox.ac.uk; Wark, Justin S.; Higginbotham, Andrew

    2015-08-14

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less

  14. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    DOE PAGES

    McGonegle, David; Milathianaki, Despina; Remington, Bruce A.; ...

    2015-08-11

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. In conclusion, the simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less

  15. Evolutions of elastic-plastic shock compression waves in different materials

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Savinykh, A. S.; Garkushin, G. V.

    2017-01-01

    In the paper, we discuss such unexpected features in the wave evolution in solids as a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface, effects of internal friction at shock compression of glasses and some other effects.

  16. Laser shock wave and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  17. High precision Hugoniot measurements on statically pre-compressed fluid helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.

    Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less

  18. High precision Hugoniot measurements on statically pre-compressed fluid helium

    DOE PAGES

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; ...

    2016-09-27

    Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less

  19. Rapid acceleration of outer radiation belt electrons associated with solar wind pressure pulse: Simulation study with Arase and Van Allen Probe observations

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Yoshizumi, M.; Saito, S.; Matsumoto, Y.; Kurita, S.; Teramoto, M.; Hori, T.; Matsuda, S.; Shoji, M.; Machida, S.; Amano, T.; Seki, K.; Higashio, N.; Mitani, T.; Takashima, T.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Ishisaka, K.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Shinohara, I.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.

    2017-12-01

    Relativistic electron fluxes of the outer radiation belt rapidly change in response to solar wind variations. One of the shortest acceleration processes of electrons in the outer radiation belt is wave-particle interactions between drifting electrons and fast-mode waves induced by compression of the dayside magnetopause caused by interplanetary shocks. In order to investigate this process by a solar wind pressure pulse, we perform a code-coupling simulation using the GEMSIS-RB test particle simulation (Saito et al., 2010) and the GEMSIS-GM global MHD magnetosphere simulation (Matsumoto et al., 2010). As a case study, an interplanetary pressure pulse with the enhancement of 5 nPa is used as the up-stream condition. In the magnetosphere, the fast mode waves with the azimuthal electric field ( negative 𝐸𝜙 : |𝐸&;#120601;| 10 mV/m, azimuthal mode number : m ≤ 2) propagates from the dayside to nightside, interacting with electrons. From the simulation results, we derived effective acceleration model and condition : The electrons whose drift velocities vd ≥ (π/2)Vfast are accelerated efficiently. On December 20, 2016, the Arase (ERG) satellite was launched , allowing more accurate multi-point simultaneous observation with other satellites. We will compare our simulation results with observations from Arase and Van Allen Probes, and investigate the acceleration condition of relativistic electrons associated with storm sudden commencement (SSC).

  20. Shock and Static Compression of Nitrobenzene

    NASA Astrophysics Data System (ADS)

    Kozu, Naoshi; Arai, Mitsuru; Tamura, Masamitsu; Fujihisa, Hiroshi; Aoki, Katsutoshi; Yoshida, Masatake

    2000-08-01

    The Hugoniot and static compression curve (isotherm) were investigated using explosive plane wave generators and diamond anvil cells, respectively. The obtained Hugoniot from the shock experiments is represented by two linear lines: Us=2.52+1.23 up (0.8

  1. The α-γ-ɛ triple point and phase boundaries of iron under shock compression

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng

    2017-07-01

    The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].

  2. Investigating the ability of solar coronal shocks to accelerate solar energetic particles

    NASA Astrophysics Data System (ADS)

    Kwon, R. Y.; Vourlidas, A.

    2017-12-01

    We estimate the density compression ratio of shocks associated with coronal mass ejections (CMEs) and investigate whether they can accelerate solar energetic particles (SEPs). Using remote-sensing, multi-viewpoint coronagraphic observations, we have developed a method to extract the sheath electron density profiles along the shock normal and estimate the density compression ratio. Our method uses the ellipsoid model to derive the 3D geometry of the sheaths, including the line-of-sight (LOS) depth. The sheath density profiles along the shock normal are modeled with double-Gaussian functions, and the modeled densities are integrated along the LOSs to be compared with the observed brightness in STEREO COR2-Ahead. The upstream densities are derived from either the pB-inversion of the brightness in a pre-event image or an empirical model. We analyze two fast halo CMEs observed on 2011 March 7 and 2014 February 25 that are associated with SEP events detected by multiple spacecraft located over a broad range of heliolongitudes. We find that the density compression peaks around the CME nose and decreases at larger position angles. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes) than past reports. This finding implies that CME shocks may be capable of accelerating energetic particles in the corona over extended spatial and temporal scales and may, therefore, be responsible for the wide longitudinal distribution of these particles in the inner heliosphere.

  3. On the origin of X-ray spectra in luminous blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, Marek; Janiak, Mateusz; Nalewajko, Krzysztof

    2013-11-26

    Gamma-ray luminosities of some quasar-associated blazars imply jet powers reaching values comparable to the accretion power even if assuming very strong Doppler boosting and very high efficiency of gamma-ray production. With much lower radiative efficiencies of protons than of electrons, and the recent reports of very strong coupling of electrons with shock-heated protons indicated by particle-in-cell simulations, the leptonic models seem to be strongly favored over the hadronic ones. However, the electron-proton coupling combined with the external-radiation-Compton (ERC) models of gamma-ray production in leptonic models predict extremely hard X-ray spectra, with energy indices α x ~ 0. This is inconsistentmore » with the observed 2-10 keV slopes of blazars, which cluster around α x ~ 0.6. This problem can be resolved by assuming that electrons can be efficiently cooled down radiatively to non-relativistic energies, or that blazar spectra are entirely dominated by the synchrotron self-Compton (SSC) component up to at least 10 keV. Here, we show that the required cooling can be sufficiently efficient only at distances r < 0.03 pc. SSC spectra, on the other hand, can be produced roughly co-spatially with the observed synchrotron and ERC components, which are most likely located roughly at a parsec scale. We show that the dominant SSC component can also be produced much further than the dominant synchrotron and ERC components, at distances of gsim 10 pc. Hence, depending on the spatial distribution of the energy dissipation along the jet, one may expect to see γ-ray/optical events with either correlated or uncorrelated X-rays. In all cases the number of e +e – pairs per proton is predicted to be very low. The direct verification of the proposed SSC scenario, and particularly the question of the co-spatiality of the SSC component with other spectral components, requires sensitive observations in the hard X-ray band. Lastly, this is now possible with the deployment of the NuSTAR satellite, providing the required sensitivity to monitor the details of the hard X-ray spectra of blazars in the range where the ERC component is predicted to start dominating over the SSC component.« less

  4. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    PubMed Central

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.

    2011-01-01

    Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI. PMID:21083431

  5. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI.

  6. The Principal Hugoniot of Forsterite to 950 GPa

    NASA Astrophysics Data System (ADS)

    Root, Seth; Townsend, Joshua P.; Davies, Erik; Lemke, Raymond W.; Bliss, David E.; Fratanduono, Dayne E.; Kraus, Richard G.; Millot, Marius; Spaulding, Dylan K.; Shulenburger, Luke; Stewart, Sarah T.; Jacobsen, Stein B.

    2018-05-01

    Forsterite (Mg2SiO4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate-impact steady shocks and laser-driven decaying shock compression experiments. Additionally, we performed density functional theory-based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg2SiO4 and an assemblage of solid MgO plus liquid magnesium silicate. The measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electrical conductor at low pressures and that the conductivity increases with pressure.

  7. Shock formation and the ideal shape of ramp compression waves

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kraus, Richard G.; Loomis, Eric N.; Hicks, Damien G.; McNaney, James M.; Johnson, Randall P.

    2008-12-01

    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long-duration ramps are desired.

  8. Digital-computer normal shock position and restart control of a Mach 2.5 axisymmetric mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Neiner, G. H.; Cole, G. L.; Arpasi, D. J.

    1972-01-01

    Digital computer control of a mixed-compression inlet is discussed. The inlet was terminated with a choked orifice at the compressor face station to dynamically simulate a turbojet engine. Inlet diffuser exit airflow disturbances were used. A digital version of a previously tested analog control system was used for both normal shock and restart control. Digital computer algorithms were derived using z-transform and finite difference methods. Using a sample rate of 1000 samples per second, the digital normal shock and restart controls essentially duplicated the inlet analog computer control results. At a sample rate of 100 samples per second, the control system performed adequately but was less stable.

  9. Introduction to Shock Waves and Shock Wave Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, William Wyatt

    2017-02-02

    M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and commonmore » techniques. However, the list will not be exhaustive by any means.« less

  10. An Approach Toward Synthesis of Bridgmanite in Dynamic Compression Experiments

    NASA Astrophysics Data System (ADS)

    Reppart, J. J.

    2015-12-01

    Bridgmanite occurs in heavily shocked meteorites and provides a useful constraint on pressure-temperature conditions during shock-metamorphism. Its occurrence also provides constraints on the shock release path. Shock-release and shock duration are important parameters in estimating the size of impactors that generate the observed shock metamorphic record. Thus, it is timely to examine if bridgmanite can be synthesized in dynamic compression experiments with the goal of establishing a correlation between shock duration and grainsize. Up to now only one high pressure polymorph of an Mg-silicate has been synthesized AND recovered in a shock experiment (wadsleyite). Therefore, it is not given that shock synthesis of bridgmanite is possible. This project started recently, so we present an outline of shock experiment designs and potentially results from the first experiments. FUNDING ACKNOWLEDGMENT UNLV HiPSEC: This research was sponsored (or sponsored in part) by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement #DE-NA0001982. HPCAT: "[Portions of this work were]/[This work was] performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357."

  11. Multidomain approach for calculating compressible flows

    NASA Technical Reports Server (NTRS)

    Cambier, L.; Chazzi, W.; Veuillot, J. P.; Viviand, H.

    1982-01-01

    A multidomain approach for calculating compressible flows by using unsteady or pseudo-unsteady methods is presented. This approach is based on a general technique of connecting together two domains in which hyperbolic systems (that may differ) are solved with the aid of compatibility relations associated with these systems. Some examples of this approach's application to calculating transonic flows in ideal fluids are shown, particularly the adjustment of shock waves. The approach is then applied to treating a shock/boundary layer interaction problem in a transonic channel.

  12. Iterative spectral methods and spectral solutions to compressible flows

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Zang, T. A.

    1982-01-01

    A spectral multigrid scheme is described which can solve pseudospectral discretizations of self-adjoint elliptic problems in O(N log N) operations. An iterative technique for efficiently implementing semi-implicit time-stepping for pseudospectral discretizations of Navier-Stokes equations is discussed. This approach can handle variable coefficient terms in an effective manner. Pseudospectral solutions of compressible flow problems are presented. These include one dimensional problems and two dimensional Euler solutions. Results are given both for shock-capturing approaches and for shock-fitting ones.

  13. TOWN HALL MEETING-SCCM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggert, J.; Ryan, S. J.; Ramesh, K. T.

    2009-12-28

    The following article contains the summary of the discussion held at the Shock Compression of Condensed Matter Town Hall Meeting. This was held on Tuesday afternoon of the meeting and attracted 100+ attendees. This meeting, chaired by John Eggert, was planned to introduce challenges in selected topics relevant to shock wave science. The three subjects and speakers were: space research introduced by Shannon Ryan, nanotechnology presented by Kaliat T. Ramesh, and compression tools delivered by Dave Funk. After each presentation there were a number of questions.

  14. Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  15. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.

    PubMed

    Kraus, D; Ravasio, A; Gauthier, M; Gericke, D O; Vorberger, J; Frydrych, S; Helfrich, J; Fletcher, L B; Schaumann, G; Nagler, B; Barbrel, B; Bachmann, B; Gamboa, E J; Göde, S; Granados, E; Gregori, G; Lee, H J; Neumayer, P; Schumaker, W; Döppner, T; Falcone, R W; Glenzer, S H; Roth, M

    2016-03-14

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.

  16. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

    DOE PAGES

    Kraus, D.; Ravasio, A.; Gauthier, M.; ...

    2016-03-14

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystallinemore » graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. In conclusion, our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.« less

  17. Investigation of Inlet Control Parameters for an External-internal-compression Inlet from Mach 2.1 to 3.0

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Bowditch, D. N.

    1958-01-01

    Investigation of the control parameters of an external-internal compression inlet indicates that the cowl-lip shock provides a signal to position the spike and to start the inlet over a Mach number range from 2.1 to 3.0. Use of a single fixed probe position to control the spike over the range of conditions resulted in a 3.7-count loss in total-pressure recovery at Mach 3.0 and 0 deg angle of attack. Three separate shock-sensing-probe positions were required to set the spike for peak recovery from Mach 2.1 to 3.0 and angles of attack from 0 deg to 6 deg. When the inlet was unstarted, an erroneous signal was obtained from the normal-shock control through most of the starting cycle that prevented the inlet from starting. Therefore, it was necessary to over-ride the normal-shock control signal and not allow the control to position the terminal shock until the spike was positioned.

  18. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    DOE PAGES

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; ...

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less

  19. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.

    PubMed

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  20. First-principles simulations of shock front propagation in liquid deuterium

    NASA Astrophysics Data System (ADS)

    Gygi, Francois; Galli, Giulia

    2001-03-01

    We present large-scale first-principles molecular dynamics simulations of the formation and propagation of a shock front in liquid deuterium. Molecular deuterium was subjected to supersonic impacts at velocities ranging from 10 to 30 km/s. We used Density Functional Theory in the local density approximation, and simulation cells containing 1320 deuterium atoms. The formation of a shock front was observed and its velocity was measured and compared with the results of laser-driven shock experiments [1]. The pressure and density in the compressed fluid were also computed directly from statistical averages in appropriate regions of the simulation cell, and compared with previous first-principles calculations performed at equilibrium [2]. Details of the electronic structure at the shock front, and their influence on the properties of the compressed fluid will be discussed. [1] J.W.Collins et al. Science 281, 1178 (1998). [2] G.Galli, R.Q.Hood, A.U.Hazi and F.Gygi, Phys.Rev. B61, 909 (2000).

  1. The Simultaneous Combination of Phase Contrast Imaging with In Situ X-ray diffraction from Shock Compressed Matter

    NASA Astrophysics Data System (ADS)

    McBride, Emma Elizabeth; Seiboth, Frank; Cooper, Leora; Frost, Mungo; Goede, Sebastian; Harmand, Marion; Levitan, Abe; McGonegle, David; Miyanishi, Kohei; Ozaki, Norimasa; Roedel, Melanie; Sun, Peihao; Wark, Justin; Hastings, Jerry; Glenzer, Siegfried; Fletcher, Luke

    2017-10-01

    Here, we present the simultaneous combination of phase contrast imaging (PCI) techniques with in situ X-ray diffraction to investigate multiple-wave features in laser-driven shock-compressed germanium. Experiments were conducted at the Matter at Extreme Conditions end station at the LCLS, and measurements were made perpendicular to the shock propagation direction. PCI allows one to take femtosecond snapshots of magnified real-space images of shock waves as they progress though matter. X-ray diffraction perpendicular to the shock propagation direction provides the opportunity to isolate and identify different waves and determine the crystal structure unambiguously. Here, we combine these two powerful techniques simultaneously, by using the same Be lens setup to focus the fundamental beam at 8.2 keV to a size of 1.5 mm on target for PCI and the 3rd harmonic at 24.6 keV to a spot size of 2 um on target for diffraction.

  2. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    NASA Astrophysics Data System (ADS)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  3. Shock induced reaction of Ni/Al nanopowder mixture.

    PubMed

    Meng, C M; Wei, J J; Chen, Q Y

    2012-11-01

    Nanopowder Ni/Al mixture (mixed in Al:Ni = 2:1 stoichiometry) was shock compressed by employing single and two-stage light gas gun. The particle size of Al and Ni are 100-200 nm and 50-70 nm respectively, morphologies of Al and Ni are sphere like either. Recovered product was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis. According to the XRD spectrum, the mixed powder undergo complete reaction under shock compression, reaction product consist of Ni2Al3, NiAl and corundum structure Al2O3 compound. Grain size of Ni-Al compound is less than 100 nm. With the shock pressure increasing, the ratio of Ni2Al3 decreased obviously. The corundum crystal size is 400-500 nm according to the SEM observation. The results of shock recovery experiments and analysis show that the threshold pressure for reaction of nano size powder Ni/Al mixture is much less than that of micro size powder.

  4. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

    PubMed Central

    Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L. B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E. J.; Göde, S.; Granados, E.; Gregori, G.; Lee, H. J.; Neumayer, P.; Schumaker, W.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Roth, M.

    2016-01-01

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites. PMID:26972122

  5. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    NASA Astrophysics Data System (ADS)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  6. Deflagration Wave Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steadymore » deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.« less

  7. Computational analysis of hypersonic flows past elliptic-cone waveriders

    NASA Technical Reports Server (NTRS)

    Yoon, Bok-Hyun; Rasmussen, Maurice L.

    1991-01-01

    A comprehensive study for the inviscid numerical calculation of the hypersonic flow past a class of elliptic-cone derived waveriders is presented. The theoretical background associated with hypersonic small-disturbance theory (HSDT) is reviewed. Several approximation formulas for the waverider compression surface are established. A CFD algorithm is used to calculate flow fields for the on-design case and a variety of off-design cases. The results are compared with HSDT, experiment, and other available CFD results. For the waverider shape used in previous investigations, the bow shock for the on-design condition stands off from the leading-edge tip of the waverider. It was found that this occurs because the tip was too thick according to the approximating shape formula that was used to describe the compression surface. When this was corrected, the bow shock became closer to attached as it should be. At Mach numbers greater than the design condition, a lambda-shock configuration develops near the tip of the compression surface. At negative angles of attack, other complicated shock patterns occur near the leading-edge tip. These heretofore unknown flow patterns show the power and utility of CFD for investigating novel hypersonic configurations such as waveriders.

  8. Modeling of High-Velocity Flows in ITAM Impulse Facilities

    DTIC Science & Technology

    2010-04-01

    up to 150 ms; Adiabatic compression wind tunnels up to 100 ms; Shock tubes... shock tubes. Basic and applied aerodynamic research has been performed in these wind tunnels in the range of Mach numbers М = 6 20 for many years...passage of a shock wave propagating over a cold rarefied gas filling the wind tunnel . When the gas heated in the shock wave (plug) passes around the

  9. Time-resolved light emission of a, c, and r-cut sapphires shock-compressed to 65 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zhou, X. M.

    2018-04-01

    To investigate light emission and dynamic deformation behaviors, sapphire (single crystal Al2O3) samples with three crystallographic orientations (a, c, and r-cut) were shock-compressed by the planar impact method, with final stress ranges from 47 to 65 GPa. Emission radiance and velocity versus time profiles were simultaneously measured with a fast pyrometer and a Doppler pin system in each experiment. Wave profile results show anisotropic elastic-plastic transitions, which confirm the literature observations. Under final shock stress of about 52 GPa, lower emission intensity is observed in the r-cut sample, in agreement with the previous report in the literature. When final shock stress increases to 57 GPa and 65 GPa, spectral radiance histories of the r-cut show two stages of distinct features. In the first stage, the emission intensity of r-cut is lower than those of the other two, which agrees with the previous report in the literature. In the second stage, spectral radiance of r-cut increases with time at much higher rate and it finally peaks over those of the a and c-cut. These observations (conversion of intensified emission in the r-cut) may indicate activation of a second slip system and formation of shear bands which are discussed with the resolved shear stress calculations for the slip systems in each of the three cuts under shock compression.

  10. Micro-Ramps for External Compression Low-Boom Inlets

    NASA Technical Reports Server (NTRS)

    Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.

    2010-01-01

    The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.

  11. Shock Compression of Liquid Noble Gases to Multi-Mbar Pressures

    NASA Astrophysics Data System (ADS)

    Root, Seth

    2011-10-01

    The high pressure - high temperature behavior of noble gases is of considerable interest because of their use in z-pinch liners for fusion studies and for understanding astrophysical and planetary evolution. However, our understanding of the equation of state (EOS) of the noble gases at extreme conditions is limited. A prime example of this is the liquid xenon Hugoniot. Previous EOS models rapidly diverged on the Hugoniot above 1 Mbar because of differences in the treatment of the electronic contribution to the free energy. Similar divergences are observed for krypton EOS. Combining shock compression experiments and density functional theory (DFT) simulations, we can determine the thermo-physical behavior of matter under extreme conditions. The experimental and DFT results have been instrumental to recent developments in planetary astrophysics and inertial confinement fusion. Shock compression experiments are performed using Sandia's Z-Accelerator to determine the Hugoniot of liquid xenon and krypton in the Mbar regime. Under strong pressure, krypton and xenon undergo an insulator to metal transition. In the metallic state, the shock front becomes reflective allowing for a direct measurement of the sample's shock velocity using laser interferometry. The Hugoniot state is determined using a Monte Carlo analysis method that accounts for systematic error in the standards and for correlations. DFT simulations at these extreme conditions show good agreement with the experimental data - demonstrating the attention to detail required for dealing with elements with relativistic core states and d-state electrons. The results from shock compression experiments and DFT simulations are presented for liquid xenon to 840 GPa and for liquid krypton to 800 GPa, decidedly increasing the range of known behavior of both gases. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Improvement of pump tubes for gas guns and shock tube drivers

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  13. Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam

    NASA Astrophysics Data System (ADS)

    Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.

    2017-03-01

    The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.

  14. Hydrocode and Molecular Dynamics modelling of uniaxial shock wave experiments on Silicon

    NASA Astrophysics Data System (ADS)

    Stubley, Paul; McGonegle, David; Patel, Shamim; Suggit, Matthew; Wark, Justin; Higginbotham, Andrew; Comley, Andrew; Foster, John; Rothman, Steve; Eggert, Jon; Kalantar, Dan; Smith, Ray

    2015-06-01

    Recent experiments have provided further evidence that the response of silicon to shock compression has anomalous properties, not described by the usual two-wave elastic-plastic response. A recent experimental campaign on the Orion laser in particular has indicated a complex multi-wave response. While Molecular Dynamics (MD) simulations can offer a detailed insight into the response of crystals to uniaxial compression, they are extremely computationally expensive. For this reason, we are adapting a simple quasi-2D hydrodynamics code to capture phase change under uniaxial compression, and the intervening mixed phase region, keeping track of the stresses and strains in each of the phases. This strain information is of such importance because a large number of shock experiments use diffraction as a key diagnostic, and these diffraction patterns depend solely on the elastic strains in the sample. We present here a comparison of the new hydrodynamics code with MD simulations, and show that the simulated diffraction taken from the code agrees qualitatively with measured diffraction from our recent Orion campaign.

  15. Compressible Flow in Front of an Axisymmetric Blunt Object: Analytic Approximation and Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Keshet, Uri; Naor, Yossi

    2016-10-01

    Compressible flows around blunt objects have diverse applications, but current analytic treatments are inaccurate and limited to narrow parameter regimes. We show that the gas-dynamic flow in front of an axisymmetric blunt body is accurately derived analytically using a low order expansion of the perpendicular gradients in terms of the parallel velocity. This reproduces both subsonic and supersonic flows measured and simulated for a sphere, including the transonic regime and the bow shock properties. Some astrophysical implications are outlined, in particular for planets in the solar wind and for clumps and bubbles in the intergalactic medium. The bow shock standoff distance normalized by the obstacle curvature is ∼ 2/(3g) in the strong shock limit, where g is the compression ratio. For a subsonic Mach number M approaching unity, the thickness δ of an initially weak, draped magnetic layer is a few times larger than in the incompressible limit, with amplification ∼ (1+1.3{M}2.6)/(3δ ).

  16. The density compression ratio of shock fronts associated with coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Kwon, Ryun-Young; Vourlidas, Angelos

    2018-02-01

    We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs) observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (˜2000 km s-1) observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes) than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.

  17. Computational and Experimental Analysis of Mach 5 Air Flow over a Cylinder with a Nanosecond Pulse Discharge

    DTIC Science & Technology

    2012-01-01

    wind tunnel t = 4:1 s after a discharge event. The compression wave pushes the bow - shock outward, as seen in the red region. Consistent with the two... wind tunnel , which was able to computationally replicate the bow - shock structure seen in the schlieren photography, predict the width of the tunnel’s...from the pulse source. As the shock wave travels upstream, it interacts with the standing bow - shock and momentarily increases the bow - shock

  18. Equation of state of molten fayalite (Fe2SiO4)

    NASA Astrophysics Data System (ADS)

    Waller, C.; Liu, Q.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2010-12-01

    We have conducted new equation of state measurements on liquid fayalite (Fe2SiO4) in a collaborative, multi-technique study. Using a shared bulk starting material, we have measured the liquid density, the bulk modulus (K), and its pressure derivative (K’) from 1 atm to 163 GPa using 1-atm double-bob Archimedean and ultrasonic, sink/float, and shock wave techniques to form a coherent, internally consistent equation of state. Previous shock studies of liquid fayalite were conducted up to pressures of 40 GPa1; we extended this data set with two additional pre-heated, molten (1573 K) fayalite shock compression experiments at 121 and 163 GPa. Linear fitting of this data in shock velocity (US)-particle velocity (up) space defines a Hugoniot with an unconstrained zero-pressure intercept that crosses within error at the bulk sound speed (Co) determined by ultrasonic techniques. Fixing the intercept at this ultrasonic value reduces the error on the linear fit and yields the relation: US =1.65(0.02)up+ 2.4377(0.006) km/s. This relationship indicates that the behavior of the liquid is relaxed during shock compression and demonstrates consistency across experimental methods. Likewise, results from new static compression sink/float experiments conducted in piston-cylinder and multi-anvil devices are in agreement with shock wave and ultrasonic data, consistent with an isothermal K=19.4 and K’=5.57 at 1500°C. In solid materials, the Grüneisen parameter (γ) generally decreases upon compression. However, preliminary calculations for γ of this liquid using additional initially solid shock data from Chen et al.(2002) indicate that γ increases upon compression. Using the functional form γ = γo(ρo/ρ)q at a density of 7.65 Mg/m3 yields a q value of -1.77 (γo = 0.41 is known from low-pressure data), which is similar to the reported q values of forsterite2, enstatite3, and anorthite-diopside liquids4. This result shows that iron-bearing mafic to ultramafic silicate liquids follow the same general behavior as iron-free liquids such that -2.0 ≤ q ≤ -1.5 for the compression range 1 ≥ ρo/ρ ≥ 0.50. We will be performing an additional shock wave experiment on initially solid (300 K) fayalite to confirm this result. We will be continuing collaborative equation of state measurements on additional iron-bearing silicate liquids, working to further clarify the properties of melts and their importance to understanding the dynamics of the early magma ocean and of melt migration within the mantle. In particular, understanding the properties of iron-rich silicates and their melts will constrain hypotheses of melting and of iron enrichment for explaining the occurrence and characteristics of ultra-low velocity zones near the CMB.

  19. A computer program for the calculation of the flow field including boundary layer effects for mixed-compression inlets at angle of attack

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    A computer program was developed which is capable of calculating the flow field in the supersonic portion of a mixed compression aircraft inlet operating at angle of attack. The supersonic core flow is computed using a second-order three dimensional method-of-characteristics algorithm. The bow shock and the internal shock train are treated discretely using a three dimensional shock fitting procedure. The boundary layer flows are computed using a second-order implicit finite difference method. The shock wave-boundary layer interaction is computed using an integral formulation. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data listings, are provided.

  20. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, R.F.

    1983-10-18

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  1. Effect of Shock Precompression on the Critical Diameter of Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.; Higgins, Andrew J.; Yoshinaka, Akio C.; Zhang, Fan

    2006-07-01

    The critical diameter of both ambient and shock-precompressed liquid nitromethane confined in PVC tubing are measured experimentally. The experiment was conducted for both amine sensitized and neat NM. In the precompression experiments, the explosive is compressed by a strong shock wave generated by a donor explosive and reflected from a high impedance anvil prior to being detonated by a secondary event. The pressures reached in the test sections prior to detonation propagation was approximately 7 and 8 GPa for amine sensitized and neat NM respectively. The results demonstrated a 30% - 65% decrease in the critical diameter for the shock-compressed explosives. This critical diameter decrease is observed despite a significant decrease in the predicted Von Neumann temperature of the detonation in the precompressed explosive. The results are discussed in the context of theoretical predictions based on thermal ignition theory and previous critical diameter measurements.

  2. Kinetic Alfvén waves and particle response associated with a shock-induced, global ULF perturbation of the terrestrial magnetosphere

    DOE PAGES

    Malaspina, David M.; Claudepierre, Seth G.; Takahashi, Kazue; ...

    2015-11-14

    On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. Furthermore, the Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event then suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portionsmore » of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere during the initial response of the magnetosphere to shock impacts.« less

  3. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, Robert F.

    1987-01-01

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  4. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, R.F.

    1987-03-10

    An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.

  5. Shock-activated reaction synthesis and high pressure response of titanium-based ternary carbide and nitride ceramics

    NASA Astrophysics Data System (ADS)

    Jordan, Jennifer Lynn

    The objectives of this study were to (a) investigate the effect of shock activation of precursor powders for solid-state reaction synthesis of Ti-based ternary ceramics and (b) to determine the high pressure phase stability and Hugoniot properties of Ti3SiC2. Dynamically densified compacts of Ti, SiC, and graphite precursor powders and Ti and AlN precursor powders were used to study the shock-activated formation of Ti 3SiC2 and Ti2AlN ternary compounds, respectively, which are considered to be novel ceramics having high stiffness but low hardness. Gas gun and explosive loading techniques were used to obtain a range of loading conditions resulting in densification and activation. Measurements of fraction reacted as a function of time and temperature and activation energies obtained from DTA experiments were used to determine the degree of activation caused by shock compression and its subsequent effect on the reaction mechanisms and kinetics. In both systems, shock activation led to an accelerated rate of reaction at temperatures less than 1600°C and, above that temperature, it promoted the formation of almost 100% of the ternary compound. A kinetics-based mathematical model based on mass and thermal transport was developed to predict the effect of shock activation and reaction synthesis conditions that ensure formation of the ternary compounds. Model predictions revealed a transition temperature above which the reaction is taken over by the "run-away" combustion-type mode. The high pressure phase stability of pre-alloyed Ti 3SiC2 compound was investigated by performing Hugoniot shock and particle velocity measurements using the facilities at the National Institute for Materials Science (Tsukuba, Japan). Experiments performed at pressures of 95--120 GPa showed that the compressibility of Ti3SiC 2 at these pressures deviates from the previously reported compressibility of the material under static high pressure loading. The deviation in compressibility behavior is indicative of the transformation of the Ti3 SiC2 ceramic to a high pressure, high density phase.

  6. Uncertainty Assessments of 2D and Axisymmetric Hypersonic Shock Wave - Turbulent Boundary Layer Interaction Simulations at Compression Corners

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Berry, Scott A.; VanNorman, John W.

    2011-01-01

    This paper is one of a series of five papers in a special session organized by the NASA Fundamental Aeronautics Program that addresses uncertainty assessments for CFD simulations in hypersonic flow. Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission relevant conditions at Mach 7 and Mach 14 are defined for a pre-compression ramp of a scramjet powered vehicle. Three compression angles are defined, the smallest to avoid separation losses and the largest to force a separated flow engaging more complicated flow physics. The Baldwin-Lomax and the Cebeci-Smith algebraic models, the one-equation Spalart-Allmaras model with the Catrix-Aupoix compressibility modification and two-equation models including Menter SST, Wilcox k-omega 98, and Wilcox k-omega 06 turbulence models are evaluated. Each model is fully defined herein to preclude any ambiguity regarding model implementation. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model form uncertainty. A set of coarse grained uncertainty metrics are defined to capture essential differences among turbulence models. Except for the inability of algebraic models to converge for some separated flows there is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock-turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new, grid-converged solutions presented here. This value is consistent with existing results in a literature review of hypersonic shock-turbulent-boundary-layer interactions by Roy and Blottner and with more recent computations of MacLean.

  7. Practicality of magnetic compression for plasma density control

    DOE PAGES

    Gueroult, Renaud; Fisch, Nathaniel J.

    2016-03-16

    Here, plasma densification through magnetic compression has been suggested for time-resolved control of the wave properties in plasma-based accelerators [P. F. Schmit and N. J. Fisch, Phys. Rev. Lett. 109, 255003 (2012)]. Using particle in cell simulations with real mass ratio, the practicality of large magnetic compression on timescales shorter than the ion gyro-period is investigated. For compression times shorter than the transit time of a compressional Alfven wave across the plasma slab, results show the formation of two counter-propagating shock waves, leading to a highly non-uniform plasma density profile. Furthermore, the plasma slab displays large hydromagnetic like oscillations aftermore » the driving field has reached steady state. Peak compression is obtained when the two shocks collide in the mid-plane. At this instant, very large plasma heating is observed, and the plasmaβ is estimated to be about 1. Although these results point out a densification mechanism quite different and more complex than initially envisioned, these features still might be advantageous in particle accelerators.« less

  8. LES of Temporally Evolving Mixing Layers by an Eighth-Order Filter Scheme

    NASA Technical Reports Server (NTRS)

    Hadjadj, A; Yee, H. C.; Sjogreen, B.

    2011-01-01

    An eighth-order filter method for a wide range of compressible flow speeds (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) are employed for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) and Reynolds numbers. The high order filter method is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The value of Mc considered is for the TML range from the quasi-incompressible regime to the highly compressible supersonic regime. The three main characteristics of compressible TML (the self similarity property, compressibility effects and the presence of large-scale structure with shocklets for high Mc) are considered for the LES study. The LES results using the same scheme parameters for all studied cases agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002).

  9. Epidemiology and Changes in Mortality of Sepsis After the Implementation of Surviving Sepsis Campaign Guidelines.

    PubMed

    Herrán-Monge, Rubén; Muriel-Bombín, Arturo; García-García, Marta M; Merino-García, Pedro A; Martínez-Barrios, Miguel; Andaluz, David; Ballesteros, Juan Carlos; Domínguez-Berrot, Ana María; Moradillo-Gonzalez, Susana; Macías, Santiago; Álvarez-Martínez, Braulio; Fernández-Calavia, M José; Tarancón, Concepción; Villar, Jesús; Blanco, Jesús

    2017-01-01

    To determine the epidemiology and outcome of severe sepsis and septic shock after 9 years of the implementation of the Surviving Sepsis Campaign (SSC) and to build a mortality prediction model. This is a prospective, multicenter, observational study performed during a 5-month period in 2011 in a network of 11 intensive care units (ICUs). We compared our findings with those obtained in the same ICUs in a study conducted in 2002. The current cohort included 262 episodes of severe sepsis and/or septic shock, and the 2002 cohort included 324. The prevalence was 14% (95% confidence interval: 12.5-15.7) with no differences to 2002. The population-based incidence was 31 cases/100 000 inhabitants/year. Patients in 2011 had a significantly lower Acute Physiology and Chronic Health Evaluation II (APACHE II; 21.9 ± 6.6 vs 25.5 ± 7.07), Logistic Organ Dysfunction Score (5.6 ± 3.2 vs 6.3 ± 3.6), and Sequential Organ Failure Assessment (SOFA) scores on day 1 (8 ± 3.5 vs 9.6 ± 3.7; P < .01). The main source of infection was intraabdominal (32.5%) although microbiologic isolation was possible in 56.7% of cases. The 2011 cohort had a marked reduction in 48-hour (7% vs 14.8%), ICU (27.2% vs 48.2%), and in-hospital (36.7% vs 54.3%) mortalities. Most relevant factors associated with death were APACHE II score, age, previous immunosuppression and liver insufficiency, alcoholism, nosocomial infection, and Delta SOFA score. Although the incidence of sepsis/septic shock remained unchanged during a 10-year period, the implementation of the SSC guidelines resulted in a marked decrease in the overall mortality. The lower severity of patients on ICU admission and the reduced early mortality suggest an improvement in early diagnosis, better initial management, and earlier antibiotic treatment.

  10. Compressible Heating in the Condense Phase due to Pore Collapse in HMX

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas

    Axisymmetric pore collapse in HMX is studied numerically by solving multi-phase reactive Euler equations. The generation of hot spots in the condense phase due to compressible heating is examined. The motivation is to improve the understanding of the role of embedded cavities in the initiation of reaction in explosives, and to investigate the effect of hot spots in the condense phase due to compressible heating alone, complementing previous study on hot spots due to the reaction in the gas phase and at the interface. It is found that the shock-cavity interaction results in pressures and thus temperatures that are substantially higher than the post-shock values in the condense phase. However, these hot spots in the condense phase due to compressible heating alone do not seem to be sufficiently hot to lead to ignition at shock pressures of 1-3 GPa. Thus, compressible heating in the condense phase may be excluded as a mechanism for initiation of explosives. It should be pointed out that the ignition threshold for the temperature, the so-called ``switch-on'' temperature, of hot spots depend on chemistry kinetics parameters. Switch-on temperature is lower for faster reaction rate. The current chemistry kinetics parameters are based on previous experimental work. This work was supported in part by the Defense Threat Reduction Agency and by the U.S. Department of Energy.

  11. Verification assessment of piston boundary conditions for Lagrangian simulation of compressible flow similarity solutions

    DOE PAGES

    Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.

    2015-12-10

    This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less

  12. Verification assessment of piston boundary conditions for Lagrangian simulation of compressible flow similarity solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.

    This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less

  13. Unusual plasticity and strength of metals at ultra-short load durations

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Ashitkov, S. I.; Fortov, V. E.

    2017-08-01

    This paper briefly reviews recent experimental results on the temperature-rate dependences of flow and fracture stresses in metals under high strain rate conditions for pulsed shock-wave loads with durations from tens of picoseconds up to microseconds. In the experiments, ultimate (‘ideal’) values of the shear and tensile strengths have been approached and anomalous growth of the yield stress with temperature at high strain rates has been confirmed for some metals. New evidence is obtained for the intense dislocation multiplication immediately originating in the elastic precursor of a compression shock wave. It is found that under these conditions inclusions and other strengthening factors may have a softening effect. Novel and unexpected features are observed in the evolution of elastoplastic compression shock waves.

  14. High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, Oren; Higgins, Andrew; Yoshinaka, Akio; Zhang, Fan

    2007-06-01

    The propagation of detonation in shock compressed nitromethane was observed with a high speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures on the order of 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation was determined using two methods: manganin strain gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the explosive post-reverberating shock wave and prior to being detonated. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.

  15. The Principal Hugoniot of Forsterite to 950 GPa

    DOE PAGES

    Root, Seth; Townsend, Joshua P.; Davies, Erik; ...

    2018-04-27

    Forsterite (Mg 2SiO 4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate–impact steady shocks and laser–driven decaying shock compression experiments. Additionally, we performed density functional theory–based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg 2SiO 4 and an assemblage of solid MgO plus liquid magnesium silicate. In conclusion, the measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electricalmore » conductor at low pressures and that the conductivity increases with pressure.« less

  16. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  17. The Principal Hugoniot of Forsterite to 950 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, Seth; Townsend, Joshua P.; Davies, Erik

    Forsterite (Mg 2SiO 4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate–impact steady shocks and laser–driven decaying shock compression experiments. Additionally, we performed density functional theory–based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg 2SiO 4 and an assemblage of solid MgO plus liquid magnesium silicate. In conclusion, the measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electricalmore » conductor at low pressures and that the conductivity increases with pressure.« less

  18. Shock response of nanoporous Cu--A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fengpeng

    2015-06-01

    Shock response of porous materials can be of crucial significance for shock physics and bears many practical applications in materials synthesis and engineering. Molecular dynamics simulations are carried out to investigate shock response of nanoporous metal materials, including elastic-plastic deformation, Hugoniot states, shock-induced melting, partial or complete void collapse, hotspot formation, nanojetting, and vaporization. A model nanoporous Cu with cylindrical voids and a high porosity under shocking is established to investigate such physical properties as velocity, temperature, density, stress and von Mises stress at different stages of compression and release. The elastic-plastic and overtaking shocks are observed at different shock strengths. A modified power-law P- α model is proposed to describe the Hugoniot states. The Grüneisen equation of state is validated. Shock-induced melting shows no clear signs of bulk premelting or superheating. Void collapse via plastic flow nucleated from voids, and the exact processes are shock strength dependent. With increasing shock strengths, void collapse transits from the ``geometrical'' mode (collapse of a void is dominated by crystallography and void geometry and can be different from that of one another) to ``hydrodynamic'' mode (collapse of a void is similar to one another). The collapse may be achieved predominantly by plastic flows along the {111} slip planes, by way of alternating compression and tension zones, by means of transverse flows, via forward and transverse flows, or through forward nano-jetting. The internal jetting induces pronounced shock front roughening, leading to internal hotspot formation and sizable high speed jets on atomically flat free surfaces. P. O. Box 919-401, Mianyang, 621900, Sichuan, PRC.

  19. Spectrum study on unsteadiness of shock wave-vortex ring interaction

    NASA Astrophysics Data System (ADS)

    Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun

    2018-05-01

    Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.

  20. Emission lifetimes of a fluorescent dye under shock compression

    DOE PAGES

    Liu, Wei-long; Bassett, Will P.; Christensen, James M.; ...

    2015-10-15

    The emission lifetimes of rhodamine 6G (R6G), were measured under shock compression to 9.1 GPa, with the dual intent of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially-dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly-methyl methacrylate (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and themore » emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0-9 GPa, with a slope of -0.22 ns·GPa -1. Furthermore, the linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, since lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.« less

  1. Combining Diffusive Shock Acceleration with Acceleration by Contracting and Reconnecting Small-scale Flux Ropes at Heliospheric Shocks

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O. V.

    2016-08-01

    Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder than predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (I) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (II) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.

  2. COMBINING DIFFUSIVE SHOCK ACCELERATION WITH ACCELERATION BY CONTRACTING AND RECONNECTING SMALL-SCALE FLUX ROPES AT HELIOSPHERIC SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Roux, J. A.; Zank, G. P.; Webb, G. M.

    2016-08-10

    Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder thanmore » predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (i) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (ii) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.« less

  3. X-ray scattering measurements of strong ion-ion correlations in shock-compressed aluminum.

    PubMed

    Ma, T; Döppner, T; Falcone, R W; Fletcher, L; Fortmann, C; Gericke, D O; Landen, O L; Lee, H J; Pak, A; Vorberger, J; Wünsch, K; Glenzer, S H

    2013-02-08

    The strong ion-ion correlation peak characteristic of warm dense matter (WDM) is observed for the first time using simultaneous angularly, temporally, and spectrally resolved x-ray scattering measurements in laser-driven shock-compressed aluminum. Laser-produced molybdenum x-ray line emission at an energy of 17.9 keV is employed to probe aluminum compressed to a density of ρ>8 g/cm(3). We observe a well pronounced peak in the static structure factor at a wave number of k=4.0 Å(-1). The measurements of the magnitude and position of this correlation peak are precise enough to test different theoretical models for the ion structure and show that only models taking the complex interaction in WDM into account agree with the data. This also demonstrates a new highly accurate diagnostic to directly measure the state of compression of warm dense matter.

  4. Gas turbine power plant with supersonic shock compression ramps

    DOEpatents

    Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA

    2008-10-14

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  5. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics

    NASA Astrophysics Data System (ADS)

    Wehrenberg, C. E.; McGonegle, D.; Bolme, C.; Higginbotham, A.; Lazicki, A.; Lee, H. J.; Nagler, B.; Park, H.-S.; Remington, B. A.; Rudd, R. E.; Sliwa, M.; Suggit, M.; Swift, D.; Tavella, F.; Zepeda-Ruiz, L.; Wark, J. S.

    2017-10-01

    Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. The techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.

  6. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehrenberg, C. E.; McGonegle, D.; Bolme, C.

    We report that pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation ismore » challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. Lastly, the techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.« less

  7. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics

    DOE PAGES

    Wehrenberg, C. E.; McGonegle, D.; Bolme, C.; ...

    2017-10-25

    We report that pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation ismore » challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. Lastly, the techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.« less

  8. Radiation- and pair-loaded shocks

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  9. Real-Time Examination of Atomistic Mechanisms during Shock-Induced Structural Transformation in Silicon

    DOE PAGES

    Turneaure, Stefan J.; Sinclair, N.; Gupta, Y. M.

    2016-07-20

    Experimental determination of atomistic mechanisms linking crystal structures during a compression driven solid-solid phase transformation is a long standing and challenging scientific objective. Also, when using new capabilities at the Dynamic Compression Sector at the Advanced Photon Source, the structure of shocked Si at 19 GPa was identified as simple hexagonal and the lattice orientations between ambient cubic diamond and simple hexagonal structures were related. Furthermore, this approach is general and provides a powerful new method for examining atomistic mechanisms during stress-induced structural changes.

  10. Modeling of turbulent separated flows for aerodynamic applications

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.

    1983-01-01

    Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.

  11. Thermal history of shock-compressed solids

    NASA Technical Reports Server (NTRS)

    Svendsen, B.; Ahrens, T. J.

    1985-01-01

    An isotropic, heterogeneous, viscous thermoplastic model of the uniaxially shock-compressed state in transparent solids is examined with a view to determining the conditions under which this radiation may be nominally thermal or nonthermal. Regions of locally high temperatures producing thermal radiation may develop only where the local viscosity is low and the Maxwell time is short; alternatively, regions of low elastic moduli and long Maxwell time could experience sustained elastic deformation, leading to microfracture and triboluminescence. Attention is given to the cases of MgO and SiO2.

  12. Optical elements formed by compressed gases: Analysis and potential applications

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1986-01-01

    Spherical, cylindrical, and conical shock waves are optically analogous to gas lenses. The geometrical optics of these shock configurations are analyzed as they pertain to flow visualization instruments, particularly the rainbow schlieren apparatus and single-pass interferometers. It is proposed that a lens or mirror formed by gas compressed between plastic sheets has potential as a fluid visualization test object; as the objective mirror in a very large space-based telescope, communication antenna, or energy collector; as the objective mirror in inexpensive commercial telescopes; and as a component in fluid visualization apparatuses.

  13. Ultrafast Shock Compression Hugoniot Data of beta-CL-20 and TATB Thin Films

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Armstrong, Michael; Grivickas, Paulius; Tappan, Alexander; Kohl, Ian; Rodriguez, Mark; Knepper, Robert; Crowhurst, Jonathan; Stavrou, Elissaios; Bastea, Sorin

    2017-06-01

    The shock induced initiation threshold of two energetic materials, CL-20 and TATB are remarkably different; CL-20 is a relatively shock sensitive energetic material and TATB is considered an insensitive high explosive (IHE). Here we report ultrafast laser-based shockwave hydrodynamic data on the 100 ps timescale with 10 ps time resolution to further develop density dependent unreacted shock Hugoniot equations of state (UEOS) and to elucidate ultrafast timescale shock initiation processes for these two vastly different HEs. Thin film samples were made by vacuum thermal evaporation of the explosive on a deposited aluminum ablator layer. The deposited explosives were characterized by scanning electron microscopy, surface profilometry, and x-ray diffraction. Our preliminary UEOS results (up range of 1.3 - 1.8 km/s) from shock compressed beta-CL-20 agree reasonably well with extrapolated pseudo-velocities computed from epsilon-CL-20 isothermal diamond-anvil cell EOS measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporati.

  14. Impact of surface energy on the shock properties of granular explosives.

    PubMed

    Bidault, X; Pineau, N

    2018-01-21

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  15. Numerical studies of cavitation erosion on an elastic-plastic material caused by shock-induced bubble collapse

    NASA Astrophysics Data System (ADS)

    Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.

    2017-09-01

    We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.

  16. Absolute Hugoniot measurements for CH foams in the 2–9 Mbar range

    DOE PAGES

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; ...

    2018-03-19

    Absolute Hugoniot measurements for empty plastic foams at ~10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ~400 μm thick and ~500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ~9 Mbar. The motion of the shock and ablation fronts was recorded usingmore » side-on monochromatic x-ray imaging radiography. Here, the steadiness of the observed shock and ablation fronts within ~1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ~9 Mbar and density compression ratio ~5. In the lower pressure range 2–5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.« less

  17. Absolute Hugoniot measurements for CH foams in the 2-9 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Schmitt, A. J.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Cochrane, K. R.

    2018-03-01

    Absolute Hugoniot measurements for empty plastic foams at ˜10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ˜400 μm thick and ˜500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ˜9 Mbar. The motion of the shock and ablation fronts was recorded using side-on monochromatic x-ray imaging radiography. The steadiness of the observed shock and ablation fronts within ˜1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ˜9 Mbar and density compression ratio ˜5. In the lower pressure range 2-5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.

  18. Impact of surface energy on the shock properties of granular explosives

    NASA Astrophysics Data System (ADS)

    Bidault, X.; Pineau, N.

    2018-01-01

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  19. Magnetohydrodynamic Jump Conditions for Oblique Relativistic Shocks with Gyrotropic Pressure

    NASA Technical Reports Server (NTRS)

    Double, Glen P.; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2003-01-01

    Shock jump conditions, i.e., the specification of the downstream parameters of the gas in terms of the upstream parameters, are obtained for steady-state, plane shocks with oblique magnetic fields and arbitrary flow speeds. This is done by combining the continuity of particle number flux and the electromagnetic boundary conditions at the shock with the magnetohydrodynamic conservation laws derived from the stress-energy tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be solved analytically. For mildly relativistic shocks, analytic solutions are obtained for isotropic pressure using an approximation for the adiabatic index that is valid in high sonic Mach number cases. Examples assuming isotropic pressure illustrate how the shock compression ratio depends on the shock speed and obliquity. In the more general case of gyrotropic pressure, the jump conditions cannot be solved analytically with- out additional assumptions, and the effects of gyrotropic pressure are investigated by parameterizing the distribution of pressure parallel and perpendicular to the magnetic field. Our numerical solutions reveal that relatively small departures from isotropy (e.g., approximately 20%) produce significant changes in the shock compression ratio, r , at all shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with gyrotropic pressure is obtained. In particular, either dynamically important fields or significant pressure anisotropies can incur marked departures from the canonical gas dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models of particle acceleration in gamma-ray bursts and other environments where relativistic shocks are inferred. The jump conditions presented apply directly to test-particle acceleration, and will facilitate future self-consistent numerical modeling of particle acceleration at oblique, relativistic shocks; such models include the modification of the fluid velocity profile due to the contribution of energetic particles to the momentum and energy fluxes.

  20. Shocks inside CMEs: A survey of properties from 1997 to 2006

    NASA Astrophysics Data System (ADS)

    Lugaz, N.; Farrugia, C. J.; Smith, C. W.; Paulson, K.

    2015-04-01

    We report on 49 fast-mode forward shocks propagating inside coronal mass ejections (CMEs) as measured by Wind and ACE at 1 AU from 1997 to 2006. Compared to typical CME-driven shocks, these shocks propagate in different upstream conditions, where the median upstream Alfvén speed is 85 km s-1, the proton β = 0.08 and the magnetic field strength is 8 nT. These shocks are fast with a median speed of 590 km s-1 but weak with a median Alfvénic Mach number of 1.9. They typically compress the magnetic field and density by a factor of 2-3. The most extreme upstream conditions found were a fast magnetosonic speed of 230 km s-1, a plasma β of 0.02, upstream solar wind speed of 740 km s-1 and density of 0.5 cm-3. Nineteen of these complex events were associated with an intense geomagnetic storm (peak Dst under -100 nT) within 12 h of the shock detection at Wind, and 15 were associated with a drop of the storm time Dst index of more than 50 nT between 3 and 9 h after shock detection. We also compare them to a sample of 45 shocks propagating in more typical upstream conditions. We show the average property of these shocks through a superposed epoch analysis, and we present some analytical considerations regarding the compression ratios of shocks in low β regimes. As most of these shocks are measured in the back half of a CME, we conclude that about half the shocks may not remain fast-mode shocks as they propagate through an entire CME due to the large upstream and magnetosonic speeds.

  1. An Equation of State for Polymethylpentene (TPX) including Multi-Shock Response

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq; Gustavsen, Richard; Sanchez, Nathaniel; Bartram, Brian

    2011-06-01

    The equation of state (EOS) of polymethylpentene (TPX) is examined through both single shock Hugoniot data as well as more recent multi-shock compression and release experiments. Results from the recent multi-shock experiments on LANL's 2-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme utilizing total-variation-diminishing interpolation and an approximate Riemann solver will be presented as well as the methodology of calibration. It is shown that a simple Mie-Gruneisen EOS based off a Keane fitting form for the isentrope can replicate both the single shock and multi-shock experiments.

  2. An equation of state for polymethylpentene (TPX) including multi-shock response

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq D.; Gustavsen, Rick; Sanchez, Nathaniel; Bartram, Brian D.

    2012-03-01

    The equation of state (EOS) of polymethylpentene (TPX) is examined through both single shock Hugoniot data as well as more recent multi-shock compression and release experiments. Results from the recent multi-shock experiments on LANL's two-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme utilizing total variation diminishing interpolation and an approximate Riemann solver will be presented as well as the methodology of calibration. It is shown that a simple Mie-Grüneisen EOS based on a Keane fitting form for the isentrope can replicate both the single shock and multi-shock experiments.

  3. Initiation of Detonation in Multiple Shock-Compressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Yoshinaka, A. C.; Zhang, F.; Petel, O. E.; Higgins, A. J.

    2006-07-01

    Initiation and resulting propagation of detonation via multiple shock reverberations between two high impedance plates has been investigated in amine-sensitized nitromethane. Experiments were designed so that the first reflected shock strength was below the critical value for initiation found previously. Luminosity combined with a distinct pressure hump indicated onset of reaction and successful initiation after double or triple shock reflection off the bottom plate. Final temperature estimates for double or triple shock reflection immediately before initiation lie between 700-720 K, consistent with those found previously for both incident and singly reflected shock initiation.

  4. Hugoniot and Properties of Diesel Fuel Used in ANFO

    NASA Astrophysics Data System (ADS)

    Robbins, David L.; Sheffield, Stephen A.; Dattelbaum, Dana M.; Stahl, David B.; Shock; Detonation Physics Team

    2011-06-01

    One of the more common ammonium nitrate (AN) based explosive is called ANFO, which is a mixture of AN prills and diesel fuel oil (FO) in a 94:6 ratio by weight. Since there is no available shock data on FO, a series of shock compression experiments have been completed on a two-stage light gas gun with a sealed liquid target cell. We have chosen a representative grade of fuel oil (diesel) for our experiments. Knowing that all FO is not the same, we decided to study this material, assuming it is representative. Density and sound speed data were measured, and used to predict the unreacted Hugoniot. The data were found to compare well with a universal liquid Hugoniot. In-situ magnetic gauges in the target cell were used to measure the particle velocity, shock velocity, and shock wave profiles. Impact velocities ranged from 1.5 to 3.2 km/s generating shocked pressures between 3 and 17 GPa, depending on the impactor material being used. The FO Hugoniot is being used in conjunction with ongoing ammonium nitrate (AN) shock compression measurements to further understand the unreacted Hugoniot of the ANFO mixture. Additionally, wave profiles and the Hugoniot are analyzed to determine if shock-induced reaction occurs, within the pressure range studied.

  5. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.

    We acknowledge the Omega staff at LLE for their assistance, Micro/Nano fabrication laboratory staff at Princeton University and the Target Engineering Team at LLNL for fabrication and metrology of the targets used in these experiments. The research was supported by DOE under DE-FG52-09NA29037.

  6. Shock compression of strongly correlated oxides: A liquid-regime equation of state for cerium(IV) oxide

    NASA Astrophysics Data System (ADS)

    Weck, Philippe F.; Cochrane, Kyle R.; Root, Seth; Lane, J. Matthew D.; Shulenburger, Luke; Carpenter, John H.; Sjostrom, Travis; Mattsson, Thomas R.; Vogler, Tracy J.

    2018-03-01

    The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ =2.5 to 20 g /cm3 . The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.

  7. Shock Compression of the New 47Zr45Ti5Al3V Alloys up to 200 GPa

    NASA Astrophysics Data System (ADS)

    Zhang, Pin-Liang; Gong, Zi-Zheng; Ji, Guang-Fu; Wang, Qing-Song; Song, Zhen-Fei; Cao, Yan; Wang, Xiang

    2013-06-01

    Shock compression experiments on a new kind of 47Zr45Ti5Al3V alloys at pressures between 28 and 200 GPa are performed using a two-stage light gas gun. The Hugoniot data are obtained by combining the impedance-match method and the electrical probe technique. The relationship between the shock wave velocity Us and particle velocity up can be described linearly by Us = 4.324(±0.035) + 1.177(±0.012)up. No obvious evidence of phase transition is found in the shock compression pressure range. The calculated Us - up relationship obtained from the additive principle is different from the experimental data, indicating that the α → β phase transition occurs below 28 GPa. The Grüneisen parameter γ obtained from the experimental data can be expressed by γ = 1.277(ρ0/ρ). The zero-pressure bulk modulus B0s = 97.96 GPa and its pressure derivative B'0s = 3.68. The P—V—T equation of state for 47Zr45Ti5Al3V is given using the Vinet equation of state to describe the cold curve and the Debye model for the thermal contributions.

  8. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  9. Measuring the properties of shock released Quartz and Parylene-N

    NASA Astrophysics Data System (ADS)

    Hawreliak, James; Karasik, Max; Oh, Jaechul; Aglitskiy, Yefim

    2016-10-01

    The high pressure and temperature properties of Quartz and hydrocarbons are important to high energy density (HED) research and inertial confinement fusion (ICF) science. The bulk of HED material research studies the single shock Hugoniot. Here, we present experimental results from the NIKE laser where quartz and parylene-N are shock compressed to high pressure and temperature and the release state is measured through x-ray imaging. The shock state is characterized by shock front velocity measurements using VISAR and the release state is characterized by using side-on streaked x-ray radiography.

  10. The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2018-05-01

    Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.

  11. Density Shock Waves in Confined Microswimmers

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2016-01-01

    Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels.

  12. Multiphase Modeling of Secondary Atomization in a Shock Environment

    NASA Astrophysics Data System (ADS)

    St. Clair, Jeffrey; McGrath, Thomas; Balachandar, Sivaramakrishnan

    2017-06-01

    Understanding and developing accurate modeling strategies for shock-particulate interaction remains a challenging and important topic, with application to energetic materials development, volcanic eruptions, and safety/risk assessment. This work presents computational modeling of compressible multiphase flows with shock-induced droplet atomization. Droplet size has a strong influence on the interphase momentum and heat transfer. A test case is presented that is sensitive to this, requiring the dynamic modeling of the secondary atomization process occurring when the shock impacts the droplets. An Eulerian-Eulerian computational model that treats all phases as compressible, is hyperbolic and satisfies the 2nd Law of Thermodynamics is applied. Four different breakup models are applied to the test case in which a planar shock wave encounters a cloud of water droplets. The numerical results are compared with both experimental and previously-generated modeling results. The effect of the drag relation used is also investigated. The computed results indicate the necessity of using a droplet breakup model for this application, and the relative accuracy of results obtained with the different droplet breakup and drag models is discussed.

  13. Molecular dynamics simulation of shock induced ejection on fused silica surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Rui; Xiang, Meizhen; Jiang, Shengli

    2014-05-21

    Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less

  14. In Situ Observation of High-Pressure Phase Transitions in SiO2 Under Shock Loading Using Time Resolved X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, S. J.; Turneaure, S.; Duffy, T. S.

    2016-12-01

    Quartz is one of the most abundant minerals in Earth's crust and serves as an archetype for silicate minerals generally. The shock metamorphism of silica is important for understanding and interpreting meteorite impact events. Shock compression of quartz is characterized by a phase transition occurring over a broad mixed-phase region ( 10-40 GPa). Despite decades of study, the nature of this transformation and the structure of the high-pressure phase remain poorly understood. In situ x-ray diffraction data on shock-compressed SiO2 was collected at the Dynamic Compression Sector at the Advanced Photon Source. The behavior both single crystal alpha-quartz and fused silica was investigated under dynamic loading through a series real-time synchrotron x-ray diffraction measurements during peak stresses up to 65 GPa. A two-stage light gas gun was used to accelerate LiF flyer plates that impacted the SiO2 samples resulting in a propagating step-like increase in pressure and temperature behind the shock front. Four consecutive x-ray frames, separated by 153 ns, were collected during the transient loading and unloading. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that both amorphous silica as well as crystalline alpha-quartz transform to stishovite above 36 GPa. These measurements reveal important information about the role of kinetics as well texture development and potential defect structures in the transformed material.

  15. Structure of Multi-component Basaltic Glasses under Static and Dynamic Compression: Implications for Mantle Melting and Impact Processes on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Lee, S.; Mosenfelder, J. L.; Tschauner, O. D.; Asimow, P. D.; Park, S.; Kim, H.

    2012-12-01

    The structures of basaltic melts under both static and dynamic compression are essential to understand the changes in the corresponding melt properties and to provide atomistic insights into impact-induced events in Earth's crust and planetary surfaces. Despite the importance, structural changes in basaltic glasses due both to dynamic and static compression have not been well understood. The advances in multi-nuclear NMR and multi-edge inelastic x-ray scattering allow us to obtain details of the pressure-induced changes in the degree of melt polymerization and cation coordination number in multi-component melts under static and dynamic compression (e.g. Lee, Proc. Nat. Aca. Sci. 2011, 108, 6847; Sol. St. NMR. 2010, 38, 45; Lee et al. Geophys. Res. Letts. 39 5306; Proc. Nat. Aca. Sci. 2008, 105, 7925). Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution Al-27 solid-state NMR spectroscopy and report details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression with peak pressure up to 20 GPa. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the Al-27 NMR spectra. This result provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces. We also report the first high pressure multi-nuclear NMR spectrum for basaltic glass up to 5 GPa. While [4]Al species is dominant at 1atm, the significant fraction of [5,6]Al in the glass is apparent, leading to changes in oxygen connectivity in the multi-component. The prevalence of highly coordinated Al and high energy oxygen cluster in the basaltic melts at 5 GPa implies that thermodynamic properties (e.g. element portioning coefficient between melts and crystal) of primary mantle melts formed at mid-ocean ridge (~150 km in depth) should be largely different from what can be predicted for silicate melts at 1 atm. The structural transitions in model basaltic glass at high pressure provide atomistic origins of anomalous mantle composition based on MORB at 1atm that is different from the prediction from chondritic meteorite (e.g. missing Si content in the primitive mantle).

  16. First-principles equation of state and shock compression predictions of warm dense hydrocarbons

    DOE PAGES

    Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...

    2017-07-10

    We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07–22.4gcm –3 and 6.7 × 10 3 – 1.29 × 10 8K. The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K-shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativisticmore » effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K- and L-shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L-shell eigenstates in carbon, while they remain distinct for higher-Z elements. Lastly, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.« less

  17. First-principles equation of state and shock compression predictions of warm dense hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Driver, Kevin P.; Soubiran, François; Militzer, Burkhard

    2017-07-01

    We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07 -22.4 g cm-3 and 6.7 ×103-1.29 ×108K . The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K -shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativistic effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K - and L -shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L -shell eigenstates in carbon, while they remain distinct for higher-Z elements. Finally, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.

  18. Evolution of scalar and velocity dynamics in planar shock-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Boukharfane, R.; Bouali, Z.; Mura, A.

    2018-01-01

    Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a passive (i.e., chemically inert) scalar in the presence of a shock wave is thus investigated using high-resolution numerical simulations. The starting point of the analysis relies on the transport equations of the variance of the mixture fraction, i.e., a fuel inlet tracer that quantifies the mixing between fuel and oxidizer. The influence of the shock wave is investigated for three distinct values of the shock Mach number M, and the obtained results are compared to reference solutions featuring no shock wave. The computed solutions show that the shock wave significantly modifies the scalar field topology. The larger the value of M, the stronger is the amplification of the alignment of the scalar gradient with the most compressive principal direction of the strain-rate tensor, which signifies the enhancement of scalar mixing with the shock Mach number.

  19. Electrostatic shocks and solitons in pair-ion plasmas in a two-dimensional geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Mahmood, S.; Imtiaz, N.

    2009-12-15

    Nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion plasmas in the presence of weak transverse perturbations. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions in plasmas. The Kadomtsev-Petviashvili-Burger equation is derived using the small amplitude expansion method. The Kadomtsev-Petviashvili equation for pair-ion plasmas is also presented by ignoring the dissipative effects. Both compressive and rarefactive shocks and solitary waves are found to exist in pair-ion plasmas. The dependence of compression and rarefaction on the temperature ratios between the ion species is numerically shown. The present study maymore » have relevance to the understanding of the formation of electrostatic shocks and solitons in laboratory produced pair-ion plasmas.« less

  20. Terminal-shock and restart control of a Mach 2.5, axisymmetric, mixed compression inlet with 40 percent internal contraction. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1974-01-01

    Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.

  1. Laser Driven Compression Equations of State and Hugoniot Pressure Measurements in Thick Solid Metallic Targets at ˜0.17-13 TW/cm2

    NASA Astrophysics Data System (ADS)

    Remo, John L.

    2010-10-01

    An electro-optic laser probe was developed to obtain parameters for high energy density equations of state (EoS), Hugoniot pressures (PH), and strain rates for high energy density laser irradiation intensity, I, experiments at ˜170 GW/cm2 (λ = 1064 nm) to ˜13 TW/cm2 (λ = 527 nm) on Al, Cu, Ti, Fe, Ni metal targets in a vacuum. At I ˜7 TW/cm2 front surface plasma pressures and temperatures reached 100's GPa and over two million K. Rear surface PH ranged from 7-120 GPa at average shock wave transit velocities 4.2-8.5 km/s, depending on target thickness and I. A surface plasma compression ˜100's GPa generated an impulsive radial expanding shock wave causing compression, rarefactions, and surface elastic and plastic deformations depending on I. A laser/fiber optic system measured rear surface shock wave emergence and particle velocity with ˜3 GHz resolution by monitoring light deflection from diamond polished rear surfaces of malleable metallic targets, analogous to an atomic force microscope. Target thickness, ˜0.5-2.9 mm, prevented front surface laser irradiation penetration, due to low radiation skin depth, from altering rear surface reflectivity (refractive index). At ˜10 TW electromagnetic plasma pulse noise generated from the target chamber overwhelmed detector signals. Pulse frequency analysis using Moebius loop antennae probed transient noise characteristics. Average shock (compression) and particle (rear surface displacement) velocity measurements determined rear surface PH and GPa) EoS that are compared with gas guns.

  2. Evolution of the Orszag--Tang vortex system in a compressible medium. II. Supersonic flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picone, J.M.; Dahlburg, R.B.

    The numerical investigation of Orszag--Tang vortex system in compressible magnetofluids continues, this time using initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers M=1.0 and 1.5 and {beta}=10/3 with Lundquist numbers {ital S}=50, 100, or 200. Depending on the particular set of parameters, the numerical grid contains 256{sup 2} or 512{sup 2} collocation points. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X point and produce strong local current sheets that dissipatemore » appreciable magnetic energy. Reconnection at the central X point, which dominates the incompressible and subsonic systems, peaks later and has a smaller impact as {ital M} increases from 0.6 to 1.5. Reconnection becomes significant only after shocks reach the central region, compressing the weak current sheet there. Similarly, the correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wave-number spectra of autocorrelations in mass density, velocity, and magnetic field. The normalized spectral amplitude of the cross helicity is almost zero over the middle and upper portions of the wave-number domain, unlike the incompressible and subsonic flows. The thermal and magnetic pressures are anticorrelated over a wide wave-number range during the earlier portion of the calculations, consistent with the presence of quasistationary structures bounded by shocks.« less

  3. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    PubMed

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless electrical activity. Investigation using a variety of animal models of pulseless electrical activity produced by different shock-inducing mechanisms is required to provide an evidence base for resuscitation guidelines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Stability of an arch type shock absorber made of a rubber-like material

    NASA Astrophysics Data System (ADS)

    Kabrits, Sergey A.; Kolpak, Eugeny P.

    2018-05-01

    The paper considers the stability problem of an arch shock absorber made of a rubber-like material. As a model, the nonlinear theory of thin shells from elastomers K.F. Chernykh is used. The case of symmetrical and asymmetrical deformation of an arch shock absorber under symmetrical compression is investigated. The possibility of asymmetric bifurcation is evaluated depending on the boundary conditions.

  5. Formation of a disordered solid via a shock-induced transition in a dense particle suspension

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.; Frost, David L.; Higgins, Andrew J.; Ouellet, Simon

    2012-02-01

    Shock wave propagation in multiphase media is typically dominated by the relative compressibility of the two components of the mixture. The difference in the compressibility of the components results in a shock-induced variation in the effective volume fraction of the suspension tending toward the random-close-packing limit for the system, and a disordered solid can take form within the suspension. The present study uses a Hugoniot-based model to demonstrate this variation in the volume fraction of the solid phase as well as a simple hard-sphere model to investigate the formation of disordered structures within uniaxially compressed model suspensions. Both models are discussed in terms of available experimental plate impact data in dense suspensions. Through coordination number statistics of the mesoscopic hard-sphere model, comparisons are made with the trends of the experimental pressure-volume fraction relationship to illustrate the role of these disordered structures in the bulk properties of the suspensions. A criterion for the dynamic stiffening of suspensions under high-rate dynamic loading is suggested as an analog to quasi-static jamming based on the results of the simulations.

  6. Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma.

    PubMed

    Tsuyuki, Kenichiro; Miura, Satoru; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro

    2006-01-01

    An experiment to investigate the potential of a laser-induced plasma method for determining concrete compressive strength was conducted by focusing a Nd:YAG laser on concrete samples with different degrees of compressive strength. This technique was developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was found that the speed of the shock front depends on the hardness of the sample. It was also found that a positive relationship exists between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Ca(II) 396.8 nm and Ca(I) 422.6 nm emission lines detected from the laser-induced plasma can be used to examine the hardness of the material. In fact, it was observed that the ratio changes with respect to the change in the concrete compressive strength. The findings also show that the ratio increases with time after the cement is mixed with water.

  7. Characterization of Impact Initiation of Aluminum-Based Intermetallic-Forming Reactive Materials

    DTIC Science & Technology

    2011-12-01

    compressed intermetallic-forming aluminum-based reactive materials upon impact initiation, consisting of equi-volumetric tantalum-aluminum, tungsten-aluminum...18 2.3.4 Dynamic Energy Release Characterization using Pig Test . . . . . . 21 2.3.5 Shock Compression of Reactive Powder Mixtures...is to evaluate the reaction initiation characteristics of quasi-statically compressed intermetallic-forming aluminum-based reactive materials upon

  8. Steady state and dynamical structure of a cosmic-ray-modified termination shock

    NASA Technical Reports Server (NTRS)

    Donohue, D. J.; Zank, G. P.

    1993-01-01

    A hydrodynamic model is developed for the structure of a cosmic-ray-modified termination shock. The model is based on the two-fluid equations of diffuse shock acceleration (Drury and Volk, 1981). Both the steady state structure of the shock and its interaction with outer heliospheric disturbances are considered. Under the assumption that the solar wind is decelerated by diffusing interstellar cosmic rates, it is shown that the natural state of the termination shock is a gradual deceleration and compression, followed by a discontinuous jump to a downstream state which is dominated by the pressure contribution of the cosmic rays. A representative model is calculated for the steady state which incorporates both interstellar cosmic ray mediation and diffusively accelerated anomalous ions through a proposed thermal leakage mechanism. The interaction of large-scale disturbances with the equilibrium termination shock model is shown to result in some unusual downstream structure, including transmitted shocks and cosmic-ray-modified contact discontinuities. The structure observed may be connected to the 2-kHz outer heliospheric radio emission (Cairns et al., 1992a, b). The time-dependent simulations also demonstrate that interaction with solar wind compressible turbulence (e.g., traveling interplanetary shocks, etc.) could induce the termination shock to continually fluctuate between cosmic-ray-dominated and gas-dynamic states. This fluctuation may represent a partial explanation of the galactic cosmic ray modulation effect and illustrates that the Pioneer and Voyager satellites will encounter an evolving shock whose structure and dynamic properties are strongly influence by the mediation of interstellar and anomalous cosmic rays.

  9. A new method to study he effective shear modulus of shocked material

    NASA Astrophysics Data System (ADS)

    Xiaojuan, Ma; Fusheng, Liu

    2013-06-01

    Shear modulus is a crucial material parameter for description of mechanical behavior. However, at strong shock compression, it is generally deduced from the longitudinal and bulk sound velocity evaluated by unloading wave profile measurement. Here, a new method called the disturbed amplitude damping method of shock wave is presented, that can directly measure the shear modulus of material. This method relies on the correlation between the shear modulus of shock compressed state and amplitude damping and oscillation of an initial sinusoidal disturbance on shock front in concerned substance. Two important steps are required to determine the shear modulus of material. The first is to measure the damping and oscillation feature of disturbance by the flyer impacted method. The second is to find the quantitative relationship between the disturbed amplitude damping and shear modulus by the finite difference method which is applied to obtain the numerical solutions for disturbance amplitude damping behavior of sinusoidal shock front in flyer impacted flow field. When aluminum shocked to 80 GPa is taken as an example, the shape of perturbed shock front and its disturbed amplitude development with propagation distance, are approximately mapped out. The figure shows an oscillatory damping characteristic. At the early stage the perturbation amplitude on the shock front experiences a decaying process until to zero point, then it rises to a maximum but in reverse phase, and then it decays again. Comparing these data with those simulated using the SCG constitutive model, the effective shear modulus for aluminum shocked to 80 GPa is determined to be about 90 GPa, which is higher than the result given by Yu.

  10. Steady state and dynamical structure of a cosmic-ray-modified termination shock

    NASA Astrophysics Data System (ADS)

    Donohue, D. J.; Zank, G. P.

    1993-11-01

    A hydrodynamic model is developed for the structure of a cosmic-ray-modified termination shock. The model is based on the two-fluid equations of diffuse shock acceleration (Drury and Volk, 1981). Both the steady state structure of the shock and its interaction with outer heliospheric disturbances are considered. Under the assumption that the solar wind is decelerated by diffusing interstellar cosmic rates, it is shown that the natural state of the termination shock is a gradual deceleration and compression, followed by a discontinuous jump to a downstream state which is dominated by the pressure contribution of the cosmic rays. A representative model is calculated for the steady state which incorporates both interstellar cosmic ray mediation and diffusively accelerated anomalous ions through a proposed thermal leakage mechanism. The interaction of large-scale disturbances with the equilibrium termination shock model is shown to result in some unusual downstream structure, including transmitted shocks and cosmic-ray-modified contact discontinuities. The structure observed may be connected to the 2-kHz outer heliospheric radio emission (Cairns et al., 1992a, b). The time-dependent simulations also demonstrate that interaction with solar wind compressible turbulence (e.g., traveling interplanetary shocks, etc.) could induce the termination shock to continually fluctuate between cosmic-ray-dominated and gas-dynamic states. This fluctuation may represent a partial explanation of the galactic cosmic ray modulation effect and illustrates that the Pioneer and Voyager satellites will encounter an evolving shock whose structure and dynamic properties are strongly influence by the mediation of interstellar and anomalous cosmic rays.

  11. A Study of Supersonic Compression-Corner Interactions using Hybrid LES/RANS Models

    DTIC Science & Technology

    2014-01-20

    Mach 2.5 shock / boundary layer interaction in a wind tunnel (experiments conducted at Cambridge University [15]) as a means of assessing methods... wind tunnel . The shock impinges upon the bottom surface of the wind tunnel , creating a region of shock -separated flow. The structure of the SBLI... waves into a shock wave (Figure 19, X = 0.1016 and X = 0.1278 stations) are also not well-predicted. The hot-wire measurements may not be as

  12. Shocks near Jamming

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  13. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 2; Unsteady Analyses and Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel

    2008-01-01

    Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady simulations have been carried out to study the engine shutdown process in the facility and understand the physics behind the interactions between the steam ejectors, the test cell and the supersonic diffuser. As a first approximation, to understand the dominant unsteady mechanisms in the engine test cell and the supersonic diffuser, the turning duct in the facility was removed. As the engine loses power a rarefaction wave travels downstream that disrupts the shock cell structure in the supersonic diffuser. Flow from the test cell is seen to expand into the supersonic diffuser section and re-pressurizes the area around the nozzle along with a upstream traveling compression wave that emanates from near the first stage ejectors. Flow from the first stage ejector expands to the center of the duct and a new shock train is formed between the first and second stage ejectors. Both stage ejectors keep the facility pressurized and prevent any large amplitude pressure fluctuations from affecting the engine nozzle. The resultant pressure loads the nozzle experiences in the shutdown process are small.

  14. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun

    2008-07-01

    Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.

  15. Existence regimes for the formation of nonlinear dissipative structures in inhomogeneous magnetoplasmas with non-Maxwellian electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; National Centre for Physics, Shahdara Valley Road, Islamabad; Zahoor, Sara

    2016-09-15

    Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existencemore » regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.« less

  16. Existence regimes for the formation of nonlinear dissipative structures in inhomogeneous magnetoplasmas with non-Maxwellian electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali

    2016-09-01

    Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.

  17. Shock wave-free interface interaction

    NASA Astrophysics Data System (ADS)

    Frolov, Roman; Minev, Peter; Krechetnikov, Rouslan

    2016-11-01

    The problem of shock wave-free interface interaction has been widely studied in the context of compressible two-fluid flows using analytical, experimental, and numerical techniques. While various physical effects and possible interaction patterns for various geometries have been identified in the literature, the effects of viscosity and surface tension are usually neglected in such models. In our study, we apply a novel numerical algorithm for simulation of viscous compressible two-fluid flows with surface tension to investigate the influence of these effects on the shock-interface interaction. The method combines together the ideas from Finite Volume adaptation of invariant domains preserving algorithm for systems of hyperbolic conservation laws by Guermond and Popov and ADI parallel solver for viscous incompressible NSEs by Guermond and Minev. This combination has been further extended to a two-fluid flow case, including surface tension effects. Here we report on a quantitative study of how surface tension and viscosity affect the structure of the shock wave-free interface interaction region.

  18. Progress in hypersonic turbulence modeling

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1991-01-01

    A compressibility modification is developed for k-omega (Wilcox, 1988) and k-epsilon (Jones and Launder, 1972) models, that is similar to those of Sarkar et al. (1989) and Zeman (1990). Results of the perturbation solution for the compressible wall layer demonstrate why the Sarkar and Zeman terms yield inaccurate skin friction for the flat-plate boundary layer. A new compressibility term is developed which permits accurate predictions of the compressible mixing layer, flat-plate boundary layer, and shock separated flows.

  19. Experimental and Theoretical Investigations of Cavitation in Water

    NASA Technical Reports Server (NTRS)

    Ackeret, J.

    1945-01-01

    The cavitation in nozzles on airfoils of various shape and on a sphere are experimentally investigated. The limits of cavitation and the extension of the zone of the bubbles in different stages of cavitation are photographically established. The pressure in the bubble area is constant and very low, jumping to high values at the end of the area. The analogy with the gas compression shock is adduced and discussed. The collapse of the bubbles under compression shock produces very high pressures internally, which must be contributory factors to corrosion. The pressure required for purely mechanical corrosion is also discussed.

  20. Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model

    NASA Astrophysics Data System (ADS)

    Ong, L.; Melosh, H. J.

    2012-12-01

    Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient from the peak shock pressure to the zero pressure boundary. The nonlinear shock interactions occur where the pressure contours curve to accommodate the free surface. The material within this spall zone is ejected at speeds up to 1.8 km s-1 for an imposed pulse of 1 km s-1. Where the ejection velocities are highest, the maximum pressure attained in each cell is effectively zero. We compare our simulation results with a model for nonlinear shock interactions proposed by Kamegai (1986). This model recognizes that the material behind the shock is compressed and has a higher soundspeed than the mate-rial in front of the shock. As the rarefaction wave moves behind the shock, its increased velocity through the com-pressed material combines with the residual particle velocity behind the shock to "catch up" with the shock. This occurs in the near surface where the sum of the compressed sound speed and the residual particle velocity is greater than or equal to the shock velocity. Initial results for the spherical shocks qualitatively match the volume described by this model, but differ significantly in the quantitative slope of the curve defining the region of interaction. We continue to test the Kamegai model with high-resolution numerical simulations of shock interactions to determine its potential application to planetary spallation.

  1. Shock melting and vaporization of metals.

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.

    1972-01-01

    The effect of initial porosity on shock induction of melting and vaporization is investigated for Ba, Sr, Li, Fe, Al, U, and Th. For the less compressible of these metals, it is found that for a given strong shock-generation system (explosive in contact, or flyer-plate impact) an optimum initial specific volume exists such that the total entropy production, and hence the amount of metal liquid or vapor, is a maximum. Initial volumes from 1.4 to 2.0 times crystal volumes, depending on the metal sample and shock-inducing system, will result in optimum post-shock entropies.

  2. Renormalized Two-Fluid Hydrodynamics of Cosmic-Ray--modified Shocks

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Voelk, H. J.

    1996-12-01

    A simple two-fluid model of diffusive shock acceleration, introduced by Axford, Leer, & Skadron and Drury & Völk, is revisited. This theory became a chief instrument in the studies of shock modification due to particle acceleration. Unfortunately its most intriguing steady state prediction about a significant enhancement of the shock compression and a corresponding increase of the cosmic-ray production violates assumptions which are critical for the derivation of this theory. In particular, for strong shocks the spectral flattening makes a cutoff-independent definition of pressure and energy density impossible and therefore causes an additional closure problem. Confining ourselves for simplicity to the case of plane shocks, assuming reacceleration of a preexisting cosmic-ray population, we argue that also under these circumstances the kinetic solution has a rather simple form. It can be characterized by only a few parameters, in the simplest case by the slope and the magnitude of the momentum distribution at the upper momentum cutoff. We relate these parameters to standard hydrodynamic quantities like the overall shock compression ratio and the downstream cosmic-ray pressure. The two-fluid theory produced in this way has the traditional form but renormalized closure parameters. By solving the renormalized Rankine-Hugoniot equations, we show that for the efficient stationary solution, most significant for cosmic-ray acceleration, the renormalization is needed in the whole parameter range of astrophysical interest.

  3. Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields

    NASA Astrophysics Data System (ADS)

    Agui, Juan H.; Briassulis, George; Andreopoulos, Yiannis

    2005-02-01

    The unsteady interaction of a moving shock wave with nearly homogeneous and isotropic decaying compressible turbulence has been studied experimentally in a large-scale shock tube facility. Rectangular grids of various mesh sizes were used to generate turbulence with Reynolds numbers based on Taylor's microscale ranging from 260 to 1300. The interaction has been investigated by measuring the three-dimensional velocity and vorticity vectors, the full velocity gradient and rate-of-strain tensors with instrumentation of high temporal and spatial resolution. This allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause. Fluctuations of all velocity gradients in the longitudinal direction are amplified significantly downstream of the interaction. Fluctuations of the velocity gradients in the lateral directions show no change or a minor reduction through the interaction. Root mean square values of the lateral vorticity components indicate a 25% amplification on average, which appears to be very weakly dependent on the shock strength. The transmission of the longitudinal vorticity fluctuations through the shock appears to be less affected by the interaction than the fluctuations of the lateral components. Non-dissipative vortex tubes and irrotational dissipative motions are more intense in the region downstream of the shock. There is also a significant increase in the number of events with intense rotational and dissipative motions. Integral length scales and Taylor's microscales were reduced after the interaction with the shock in all investigated flow cases. The integral length scales in the lateral direction increase at low Mach numbers and decrease during strong interactions. It appears that in the weakest of the present interactions, turbulent eddies are compressed drastically in the longitudinal direction while their extent in the normal direction remains relatively the same. As the shock strength increases the lateral integral length scales increase while the longitudinal ones decrease. At the strongest interaction of the present flow cases turbulent eddies are compressed in both directions. However, even at the highest Mach number the issue is more complicated since amplification of the lateral scales has been observed in flows with fine grids. Thus the outcome of the interaction strongly depends on the initial conditions.

  4. Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: a prospective cohort study.

    PubMed

    Levy, Mitchell M; Artigas, Antonio; Phillips, Gary S; Rhodes, Andrew; Beale, Richard; Osborn, Tiffany; Vincent, Jean-Louis; Townsend, Sean; Lemeshow, Stanley; Dellinger, R Phillip

    2012-12-01

    Mortality from severe sepsis and septic shock differs across continents, countries, and regions. We aimed to use data from the Surviving Sepsis Campaign (SSC) to compare models of care and outcomes for patients with severe sepsis and septic shock in the USA and Europe. The SSC was introduced into more than 200 sites in Europe and the USA. All patients identified with severe sepsis and septic shock in emergency departments or hospital wards and admitted to intensive care units (ICUs), and those with sepsis in ICUs were entered into the SSC database. Patients entered into the database from its launch in January, 2005, through January, 2010, in units with at least 20 patients and 3 months of enrolment of patients were included in this analysis. Patients included in the cohort were limited to those entered in the first 4 years at every site. We used random-effects logistic regression to estimate the hospital mortality odds ratio (OR) for Europe relative to the USA. We used random-effects linear regression to find the relation between lengths of stay in hospital and ICU and geographic region. 25 375 patients were included in the cohort. The USA included 107 sites with 18 766 (74%) patients, and Europe included 79 hospital sites with 6609 (26%) patients. In the USA, 12 218 (65·1%) were admitted to the ICU from the emergency department whereas in Europe, 3405 (51·5%) were admitted from the wards. The median stay on the hospital wards before ICU admission was longer in Europe than in the USA (1·0 vs 0·1 days, difference 0·9, 95% CI 0·8-0·9). Raw hospital mortality was higher in Europe than in the USA (41·1%vs 28·3%, difference 12·8, 95% CI 11·5-14·7). The median length of stay in ICU (7·8 vs 4·2 days, 3·6, 3·3-3·7) and hospital (22·8 vs 10·5 days, 12·3, 11·9-12·8) was longer in Europe than in the USA. Adjusted mortality in Europe was not significantly higher than that in the USA (32·3%vs 31·3%, 1·0, -1·7 to 3·7, p=0·468). Complete compliance with all applicable elements of the sepsis resuscitation bundle was higher in the USA than in Europe (21·6%vs 18·4%, 3·2, 2·2-4·4). The significant difference in unadjusted mortality and the fact that this difference disappears with severity adjustment raise important questions about the effect of the approach to critical care in Europe compared with that in the USA. The effect of ICU bed availability on outcomes in patients with severe sepsis and septic shock requires further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Simulating cosmic ray physics on a moving mesh

    NASA Astrophysics Data System (ADS)

    Pfrommer, C.; Pakmor, R.; Schaal, K.; Simpson, C. M.; Springel, V.

    2017-03-01

    We discuss new methods to integrate the cosmic ray (CR) evolution equations coupled to magnetohydrodynamics on an unstructured moving mesh, as realized in the massively parallel AREPO code for cosmological simulations. We account for diffusive shock acceleration of CRs at resolved shocks and at supernova remnants in the interstellar medium (ISM) and follow the advective CR transport within the magnetized plasma, as well as anisotropic diffusive transport of CRs along the local magnetic field. CR losses are included in terms of Coulomb and hadronic interactions with the thermal plasma. We demonstrate the accuracy of our formalism for CR acceleration at shocks through simulations of plane-parallel shock tubes that are compared to newly derived exact solutions of the Riemann shock-tube problem with CR acceleration. We find that the increased compressibility of the post-shock plasma due to the produced CRs decreases the shock speed. However, CR acceleration at spherically expanding blast waves does not significantly break the self-similarity of the Sedov-Taylor solution; the resulting modifications can be approximated by a suitably adjusted, but constant adiabatic index. In first applications of the new CR formalism to simulations of isolated galaxies and cosmic structure formation, we find that CRs add an important pressure component to the ISM that increases the vertical scaleheight of disc galaxies and thus reduces the star formation rate. Strong external structure formation shocks inject CRs into the gas, but the relative pressure of this component decreases towards halo centres as adiabatic compression favours the thermal over the CR pressure.

  6. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  7. Plasma spectroscopy of uranium and tungsten, part 1

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.

    1973-01-01

    Results of research on uranium and tungsten spectra are summarized. Measurements of visible line spectra and opacities were carried out on shock tube plasmas which, prior to shock compression, were mixtures of rare gases and UF6 or WF6. Opacities were compared to theoretical predictions. Feasibility of light source methods other than the shock tube was explored for future applications in the spectroscopy of heavy metals and ions.

  8. A critical shock mach number for particle acceleration in the absence of pre-existing cosmic rays: M=√5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vink, Jacco; Yamazaki, Ryo, E-mail: j.vink@uva.nl

    2014-01-10

    It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach number exceeds a critical value M>√5. The reason is that for M≤√5 the work done to compress the flow in a particle precursor requires more enthalpy flux than the system can sustain. This lower limit applies to situations without significant magnetic field pressure. In case that the magnetic field pressure dominates the pressure in the unshocked medium, i.e., for low plasma beta, the resistivity of the magnetic field makes it even more difficult to fulfill the energetic requirements for the formation of shockmore » with an accelerated particle precursor and associated compression of the upstream plasma. We illustrate the effects of magnetic fields for the extreme situation of a purely perpendicular magnetic field configuration with plasma beta β = 0, which gives a minimum Mach number of M = 5/2. The situation becomes more complex, if we incorporate the effects of pre-existing cosmic rays, indicating that the additional degree of freedom allows for less strict Mach number limits on acceleration. We discuss the implications of this result for low Mach number shock acceleration as found in solar system shocks, and shocks in clusters of galaxies.« less

  9. Ethane-xenon mixtures under shock conditions

    DOE PAGES

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; ...

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less

  10. Prestressing Shock Resistant Mechanical Components and Mechanisms Made from Hard, Superelastic Materials

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor)

    2014-01-01

    A method and an apparatus confer full superelastic properties to the active surface of a mechanical component constructed of a superelastic material prior to service. A compressive load is applied to the active surface of the mechanical component followed by removing the compressive load from the active surface whereby substantially all load strain is recoverable after applying and removing of subsequent compressive loads.

  11. Electrical resistivity of fluid methane multiply shock compressed to 147 GPa

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Gao; Liu, Fu-Sheng; Liu, Qi-Jun; Wang, Wen-Peng

    2018-01-01

    Shock wave experiments were carried out to measure the electrical resistivity of fluid methane. The pressure range of 89-147 GPa and the temperature range from 1800 to 2600 K were achieved with a two-stage light-gas gun. We obtained a minimum electrical resistivity value of 4.5 × 10-2 Ω cm at pressure and temperature of 147 GPa and 2600 K, which is two orders of magnitude higher than that of hydrogen under similar conditions. The data are interpreted in terms of a continuous transition from insulator to semiconductor state. One possibility reason is chemical decomposition of methane in the shock compression process. Along density and temperature increase with Hugoniot pressure, dissociation of fluid methane increases continuously to form a H2-rich fluid.

  12. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF.

    PubMed

    Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J

    2012-10-01

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.

  13. The History of the APS Shock Compression of Condensed Matter Topical Group

    NASA Astrophysics Data System (ADS)

    Forbes, Jerry W.

    2001-06-01

    To provide broader scientific recognition and to advance the science of shock-compressed condensed matter, a group of APS members worked within the Society to make this technical field an active part of APS. Individual papers were given at APS meetings starting in the 1950’s and then later whole sessions were organized starting at the 1967 Pasadena meeting. Topical conferences began in 1979 in Pullman, WA where George Duvall and Dennis Hayes were co-chairs. Most all early topical conferences were sanctioned by the APS while those held after 1985 were official APS meetings. In 1984, after consulting with a number of people in the shock wave field, Robert Graham circulated a petition to form an APS topical group. He obtained signatures from a balanced cross-section of the community. William Havens, the executive secretary of APS, informed Robert Graham by letter on November 28, 1984 that the APS Council had officially accepted the formation of this topical group at its October 28, 1984 meeting. The first election occurred July 23, 1985 where Robert Graham was elected chairman, William Nellis vice-chairman, and Jerry Forbes secretary/treasurer. The topical group remains viable today by holding a topical conference in odd numbered years and shock wave sessions at APS general meetings in even numbered years A major benefit of being an official unit of APS is the allotment of APS fellows every year. The APS shock compression award established in 1987, has also provided broad recognition of many major scientific accomplishments in this field.

  14. Low Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sandham, N. D.; Djomehri, M. J.

    1998-01-01

    An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Oisson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.

  15. Low Dissipative High Order Shock-Capturing Methods using Characteristic-Based Filters

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sandham, N. D.; Djomehri, M. J.

    1998-01-01

    An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Olsson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.

  16. Flash Lamp Integrating Sphere Technique for Measuring the Dynamic Reflectance of Shocked Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Gerald; La Lone, Brandon; Veeser, Lynn

    2013-07-08

    Accurate reflectance (R) measurements of metals undergoing shock wave compression can benefit high pressure research in several ways. For example, pressure dependent reflectance measurements can be used to deduce electronic band structure, and discrete changes with pressure or temperature may indicate the occurrence of a phase boundary. Additionally, knowledge of the wavelength dependent emissivity (1 -R, for opaque samples) of the metal surface is essential for accurate pyrometric temperature measurement because the radiance is a function of both the temperature and emissivity. We have developed a method for measuring dynamic reflectance in the visible and near IR spectral regions withmore » nanosecond response time and less than 1.5% uncertainty. The method utilizes an integrating sphere fitted with a xenon flash-lamp illumination source. Because of the integrating sphere, the measurements are insensitive to changes in surface curvature or tilt. The in-situ high brightness of the flash-lamp exceeds the sample’s thermal radiance and also enables the use of solid state detectors for recording the reflectance signals with minimal noise. Using the method, we have examined the dynamic reflectance of gallium and tin subjected to shock compression from high explosives. The results suggest significant reflectance changes across phase boundaries for both metals. We have also used the method to determine the spectral emissivity of shock compressed tin at the interface between tin and a LiF window. The results were used to perform emissivity corrections to previous pyrometry data and obtain shock temperatures of the tin/LiF interface with uncertainties of less than 2%.« less

  17. Two-Dimensional Imaging Velocimetry of Heterogeneous Flow and Brittle Failure in Diamond

    NASA Astrophysics Data System (ADS)

    Ali, S. J.; Smith, R.; Erskine, D.; Eggert, J.; Celliers, P. M.; Collins, G. W.; Jeanloz, R.

    2014-12-01

    Understanding the nature and dynamics of heterogeneous flow in diamond subjected to shock compression is important for many fields of research, from inertial confinement fusion to the study of carbon rich planets. Waves propagating through a shocked material can be significantly altered by the various deformation mechanisms present in shocked materials, including anisotropic sound speeds, phase transformations, plastic/inelastic flow and brittle failure. Quantifying the spatial and temporal effects of these deformation mechanisms has been limited by a lack of diagnostics capable of obtaining simultaneous micron resolution spatial measurements and nanosecond resolution time measurements. We have utilized the 2D Janus High Resolution Velocimeter at LLNL to study the time and space dependence of fracture in shock-compressed diamond above the Hugoniot elastic limit. Previous work on the OMEGA laser facility (Rochester) has shown that the free-surface reflectivity of μm-grained diamond samples drops linearly with increasing sample pressure, whereas under the same conditions the reflectivity of nm-grained samples remains unaffected. These disparate observations can be understood by way of better documenting fracture in high-strain compression of diamond. To this end, we have imaged the development and evolution of elastic-wave propagation, plastic-wave propagation and fracture networks in the three primary orientations of single-crystal diamond, as well as in microcrystalline and nanocrystalline diamond, and find that the deformation behavior depends sensitively on the orientation and crystallinity of the diamonds.

  18. Resistance of fly ash-Portland cement blends to thermal shock

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydrationmore » of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators« less

  19. Ultrafast dynamics of self-assembled monolayers under shock compression: effects of molecular and substrate structure.

    PubMed

    Lagutchev, Alexei S; Patterson, James E; Huang, Wentao; Dlott, Dana D

    2005-03-24

    Laser-driven approximately 1 GPa shock waves are used to dynamically compress self-assembled monolayers (SAMs) consisting of octadecanethiol (ODT) on Au and Ag, and pentanedecanethiol (PDT) and benzyl mercaptan (BMT) on Au. The SAM response to <4 ps shock loading and approximately 25 ps shock unloading is monitored by vibrational sum-frequency generation spectroscopy (SFG), which is sensitive to the instantaneous tilt angle of the SAM terminal group relative to the surface normal. Arrival of the shock front causes SFG signal loss in all SAMs with a material time constant <3.5 ps. Thermal desorption and shock recovery experiments show that SAMs remain adsorbed on the substrate, so signal loss is attributed to shock tilting of the methyl or phenyl groups to angles near 90 degrees. When the shock unloads, PDT/Au returns elastically to its native structure whereas ODT/Au does not. ODT evidences a complicated viscoelastic response that arises from at least two conformers, one that remains kinetically trapped in a large-tilt-angle conformation for times >250 ps and one that relaxes in approximately 30 ps to a nearly upright conformation. Although the shock responses of PDT/Au, ODT/Ag, and BMT/Au are primarily elastic, a small portion of the molecules, 10-20%, evidence viscoelastic response, either becoming kinetically trapped in large-tilt states or by relaxing in approximately 30 ps back to the native structure. The implications of the observed large-amplitude monolayer dynamics for lubrication under extreme conditions of high strain rates are discussed briefly.

  20. Factors Affecting the Geo-effectiveness of Shocks and Sheaths at 1 AU

    PubMed Central

    Lugaz, N.; Farrugia, C. J.; Winslow, R. M.; Al-Haddad, N.; Kilpua, E. K. J.; Riley, P.

    2018-01-01

    We identify all fast-mode forward shocks, whose sheath regions resulted in a moderate (56 cases) or intense (38 cases) geomagnetic storm during 18.5 years from January 1997 to June 2015. We study their main properties, interplanetary causes and geo-effects. We find that half (49/94) such shocks are associated with interacting coronal mass ejections (CMEs), as they are either shocks propagating into a preceding CME (35 cases) or a shock propagating into the sheath region of a preceding shock (14 cases). About half (22/45) of the shocks driven by isolated transients and which have geo-effective sheaths compress pre-existing southward Bz. Most of the remaining sheaths appear to have planar structures with southward magnetic fields, including some with planar structures consistent with field line draping ahead of the magnetic ejecta. A typical (median) geo-effective shock-sheath structure drives a geomagnetic storm with peak Dst of −88 nT, pushes the subsolar magnetopause location to 6.3 RE, i.e. below geosynchronous orbit and is associated with substorms with a peak AL-index of −1350 nT. There are some important differences between sheaths associated with CME-CME interaction (stronger storms) and those associated with isolated CMEs (stronger compression of the magnetosphere). We detail six case studies of different types of geo-effective shock-sheaths, as well as two events for which there was no geomagnetic storm but other magnetospheric effects. Finally, we discuss our results in terms of space weather forecasting, and potential effects on Earth’s radiation belts. PMID:29629250

  1. Luminescence from edge fracture in shocked lithium fluoride crystals

    DOE PAGES

    Turley, W. D.; Stevens, G. D.; Capelle, G. A.; ...

    2013-04-03

    Light emitted from a [100] lithium fluoride crystal was characterized under shock wave compression to 28 GPa followed by complete stress release at the edges. We examined the light using time-gated optical spectrometry and imaging, time-resolved optical emission measurements, and hydrodynamic modeling. The shock arrival at the circumference of the crystal was delayed relative to the center so that the two regions could be studied at different times. The majority of the light emission originated when the shock waves released at the circumference of the crystal. Unlike previously reported results for shocked lithium fluoride, we found that the light spectrummore » is not strictly broad band, but has spectral lines associated with atomic lithium in addition to a broad band background. Also, the emission spectrum depends strongly on the gas surrounding the sample. Based on our observations, the line emission appears to be related to fracture of the lithium fluoride crystal from the shock wave releasing at the edges. Moreover, experimenters frequently utilize lithium fluoride crystals as transparent windows for observing shock compressed samples. Because of the experimental geometries used, the shock wave in such cases often reaches the circumference of the window at nearly the same moment as when it reaches the center of the sample-window interface. Light generated at the circumference could contaminate the measurement at the interface when this light scatters into the observed region. Finally, this background light may be reduced or avoided using experimental geometries which delay the arrival of the shock wave at the edges of the crystal.« less

  2. Factors Affecting the Geo-effectiveness of Shocks and Sheaths at 1 AU.

    PubMed

    Lugaz, N; Farrugia, C J; Winslow, R M; Al-Haddad, N; Kilpua, E K J; Riley, P

    2016-11-01

    We identify all fast-mode forward shocks, whose sheath regions resulted in a moderate (56 cases) or intense (38 cases) geomagnetic storm during 18.5 years from January 1997 to June 2015. We study their main properties, interplanetary causes and geo-effects. We find that half (49/94) such shocks are associated with interacting coronal mass ejections (CMEs), as they are either shocks propagating into a preceding CME (35 cases) or a shock propagating into the sheath region of a preceding shock (14 cases). About half (22/45) of the shocks driven by isolated transients and which have geo-effective sheaths compress pre-existing southward B z . Most of the remaining sheaths appear to have planar structures with southward magnetic fields, including some with planar structures consistent with field line draping ahead of the magnetic ejecta. A typical (median) geo-effective shock-sheath structure drives a geomagnetic storm with peak Dst of -88 nT, pushes the subsolar magnetopause location to 6.3 R E , i.e. below geosynchronous orbit and is associated with substorms with a peak AL-index of -1350 nT. There are some important differences between sheaths associated with CME-CME interaction (stronger storms) and those associated with isolated CMEs (stronger compression of the magnetosphere). We detail six case studies of different types of geo-effective shock-sheaths, as well as two events for which there was no geomagnetic storm but other magnetospheric effects. Finally, we discuss our results in terms of space weather forecasting, and potential effects on Earth's radiation belts.

  3. Experimental and Theoretical Investigations on d and f Electron Systems under High Pressure

    NASA Astrophysics Data System (ADS)

    Gupta, Satish C.; Joshi, K. D.; Banerjee, S.

    2008-07-01

    The pressure-induced electron transfer from sp to d band in transition elements, and spd to f band in the light actinides significantly influences the stability of crystal structures in these metals. Although α → ω → β phase transition with increasing pressure in group IV transition elements is well documented, the β → ω transition under pressure has not been reported until recently. Our experimental study on the β-stabilized Zr-20Nb alloy reveals that it transforms to ω phase on shock compression, whereas this transition is not seen in a hydrostatic pressure condition. The platelike morphology of ω formed under shock compression is in contrast to the fine particle morphology seen in this system under thermal treatment, which clearly indicates that the mechanism of the β → ω transformation under shock treatment involves a large shear component. In this article, we have analyzed why the ω → β transition pressures in Ti, Zr, and Hf do not follow the trend implied by the principle of corresponding states. Our analysis shows that the ω → β transition depends on how the increased d population caused by the sp → d transfer of electron is distributed among various d substates. In Th, we have analyzed the role of 5f electrons in determining the mechanical stability of fcc and bct structures under hydrostatic compressions. Our analysis shows that the fcc to bct transition in this metal, which has been reported by high-pressure experiments, occurs because of softening of the tetragonal shear modulus C' = ( C 11 - C 12)/2 under compression. From the total energy calculated as a function of specific volume, we have determined the 0 K isotherm, which is then used to deduce the shock Hugoniot. The theoretical Hugoniot compares well with the experimental data.

  4. Solid-state experiments at high pressure and strain rates

    NASA Astrophysics Data System (ADS)

    Kalantar, D. H.

    1999-11-01

    We are developing experiments on intense laser facilities to study shock compressed metal foils in the solid state. At high pressure, Rayleigh-Taylor induced perturbation growth can be reduced by the strength of the material. [1] We use this to characterize the strength of the metal foils accelerated at high pressure in the solid state. In our experiments, Al and Cu foils are compressed and accelerated with staged shocks using a temporally shaped x-ray drive that is generated in a Nova laser hohlraum target. [2] The peak pressures exceed 1 Mbar (100 GPa), and strain rates are very high, 10^7-10^9 s-1. The instability growth is observed by x-ray radiography. To probe the state of the material under compression and to demonstrate that it remains solid, we are using the dynamic Bragg diffraction technique. [3] This technique has been demonstrated on the Nova laser [4] using Si crystals shocked to 200-500 kbar. Additionally, we have observed diffraction from Cu crystals that are shocked to 100-200 kbar by direct laser irradiation on the Trident and OMEGA lasers. Compressions of up to a 10in the crystal lattice spacing have been observed. We will present the results of our work to develop these high pressure solid-state hydrodynamics experiments. 1. J. F. Barnes et al, J. Appl. Phys. 45, 727 (1974); A. I. Lebedev et al , Proc. 4th IWPCTM, 29 March-1 April, 1993, p. 81. 2. D. H. Kalantar et al., to appear in Int. J. of Impact Eng. (1999). 3. R. R. Whitlock and J. S. Wark, Phys. Rev. B 52, 8 (1995). 4. D. H. Kalantar et al, Rev. Sci. Instrum. 70, 629 (1999).

  5. Digital ulcers and cutaneous subsets of systemic sclerosis: Clinical, immunological, nailfold capillaroscopy, and survival differences in the Spanish RESCLE Registry.

    PubMed

    Tolosa-Vilella, Carles; Morera-Morales, Maria Lluisa; Simeón-Aznar, Carmen Pilar; Marí-Alfonso, Begoña; Colunga-Arguelles, Dolores; Callejas Rubio, José Luis; Rubio-Rivas, Manuel; Freire-Dapena, Maika; Guillén-Del Castillo, Alfredo; Iniesta-Arandia, Nerea; Castillo-Palma, Maria Jesús; Egurbide-Arberas, Marivi; Trapiellla-Martínez, Luis; Vargas-Hitos, José A; Todolí-Parra, José Antonio; Rodriguez-Carballeira, Mónica; Marin-Ballvé, Adela; Pla-Salas, Xavier; Rios-Blanco, Juan José; Fonollosa-Pla, Vicent

    2016-10-01

    Digital ulcers (DU) are the most common vascular complication of systemic sclerosis (SSc). We compared the characteristics between patients with prior or current DU with those never affected and evaluated whether a history of DU may be a predictor of vascular, organ involvement, and/or death in patients with SSc. Data from SSc patients with or without prior or current DU were collected by 19 referral centers in an ongoing registry of Spanish SSc patients, named Registro de ESCLErodermia (RESCLE). Demographics, organ involvement, autoimmunity features, nailfold capillary pattern, survival time, and causes of death were analyzed to identify DU related characteristics and survival of the entire series and according to the following cutaneous subsets-diffuse cutaneous SSc (dcSSc), limited cutaneous SSc (lcSSc), and SSc sine scleroderma (ssSSc). Out of 1326, 552 patients enrolled in the RESCLE registry had prior or current DU, 88% were women, the mean age was 50 ± 16 years, and the mean disease duration from first SSc symptom was 7.6 ± 9.6 years. Many significant differences were observed in the univariate analysis between patients with and without prior/current DU. Multivariate analysis identified that history of prior/current DU in patients with SSc was independently associated to younger age at SSc diagnosis, diffuse cutaneous SSc, peripheral vascular manifestations such Raynaud's phenomenon, telangiectasia, and acro-osteolysis but no other vascular features such as pulmonary arterial hypertension or scleroderma renal crisis. DU was also associated to calcinosis cutis, interstitial lung disease, as well as worse survival. Multivariate analysis performed in the cutaneous subsets showed that prior/current DU were independently associated: (1) in dcSSc, to younger age at SSc diagnosis, presence of telangiectasia and calcinosis and rarely a non-SSc pattern on nailfold capillaroscopy; (2) in lcSSc, to younger age at SSc diagnosis, presence of Raynaud's phenomenon as well as calcinosis cutis, interstitial lung disease, and higher incidence of death from all causes; and (3) in ssSSc, to younger age at first SSc symptom and greater incidence of death from all causes. Digital ulcers develop in patients with SSc younger at diagnosis, mainly in patients with dcSSc and lcSSc, and they are associated to other peripheral vascular manifestations such as Raynaud's phenomenon, telangiectasia, and acro-osteolysis but also to calcinosis, and interstitial lung disease. History of DU in SSc leads to worse survival, also noticeable for lcSSc and ssSSc subsets but not for dcSSc patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III

    NASA Astrophysics Data System (ADS)

    Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; Danilewsky, Andreas; Langenhorst, Falko; Ehm, Lars; Trullenque, Ghislain; Kenkmann, Thomas

    2017-07-01

    Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions of α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s-1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.

  7. Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald

    2017-06-01

    Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Phase transitions and melting on the Hugoniot of Mg2SiO4 forsterite: new diffraction and temperature results

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Akin, M. C.; Homel, M.; Crum, R. S.; Pagan, D.; Lind, J.; Bernier, J.; Mosenfelder, J. L.; Dillman, A. M.; Lavina, B.; Lee, S.; Fat'yanov, O. V.; Newman, M. G.

    2017-06-01

    The phase transitions of forsterite under shock were studied by x-ray diffraction and pyrometry. Samples of 2 mm thick, near-full density (>98% TMD) polycrystalline forsterite were characterized by EBSD and computed tomography and shock compressed to 50 and 75 GPa by two-stage gas gun at the Dynamic Compression Sector, Advanced Photon Source, with diffraction imaged during compression and release. Changes in diffraction confirm a phase transition by 75 GPa. In parallel, single-crystal forsterite shock temperatures were taken from 120 to 210 GPa with improved absolute calibration procedures on the Caltech 6-channel pyrometer and two-stage gun and used to examine the interpretation of superheating and P-T slope of the liquid Hugoniot. This work performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, supported in part by LLNL's LDRD program under Grants 15-ERD-012 and 16-ERD-010. The Dynamic Compression Sector (35) is supported by DOE / National Nuclear Security Administration under Award Number DE-NA0002442. This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Caltech lab supported by NSF EAR-1426526.

  9. High-Pressure Quasi-Isentropic Loading and Unloading of Interferometer Windows on the Veloce Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul

    2007-06-01

    The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.

  10. Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13

    NASA Astrophysics Data System (ADS)

    Cattell, C.; Breneman, A.; Colpitts, C.; Dombeck, J.; Thaller, S.; Tian, S.; Wygant, J.; Fennell, J.; Hudson, M. K.; Ergun, Robert; Russell, C. T.; Torbert, Roy; Lindqvist, Per-Arne; Burch, J.

    2017-09-01

    Observations from Magnetospheric MultiScale ( 8 Re) and Van Allen Probes ( 5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated E × B flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by Magnetospheric MultiScale (MMS), with a speed that is comparable to the E × B flow. The magnetopause speed and the E × B speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF waves also were seen. These observations demonstrate that even very weak shocks can have significant impact on the radiation belts.

  11. Equations of state of detonation products: ammonia and methane

    NASA Astrophysics Data System (ADS)

    Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian

    2015-06-01

    Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.

  12. Shock compression response of forsterite above 250 GPa

    PubMed Central

    Sekine, Toshimori; Ozaki, Norimasa; Miyanishi, Kohei; Asaumi, Yuto; Kimura, Tomoaki; Albertazzi, Bruno; Sato, Yuya; Sakawa, Youichi; Sano, Takayoshi; Sugita, Seiji; Matsui, Takafumi; Kodama, Ryosuke

    2016-01-01

    Forsterite (Mg2SiO4) is one of the major planetary materials, and its behavior under extreme conditions is important to understand the interior structure of large planets, such as super-Earths, and large-scale planetary impact events. Previous shock compression measurements of forsterite indicate that it may melt below 200 GPa, but these measurements did not go beyond 200 GPa. We report the shock response of forsterite above ~250 GPa, obtained using the laser shock wave technique. We simultaneously measured the Hugoniot and temperature of shocked forsterite and interpreted the results to suggest the following: (i) incongruent crystallization of MgO at 271 to 285 GPa, (ii) phase transition of MgO at 285 to 344 GPa, and (iii) remelting above ~470 to 500 GPa. These exothermic and endothermic reactions are seen to occur under extreme conditions of pressure and temperature. They indicate complex structural and chemical changes in the system MgO-SiO2 at extreme pressures and temperatures and will affect the way we understand the interior processes of large rocky planets as well as material transformation by impacts in the formation of planetary systems. PMID:27493993

  13. On the residual yield stress of shocked metals

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Savinykh, Andrey; Garkushin, Gennady; Kanel, Gennady; Razorenov, Sergey

    2013-06-01

    The measurement of the free-surface velocity is commonly employed in planar shock-compression experiments. It is known that the peak free-surface velocity of a shocked elastic-plastic material should be slightly less than twice the particle velocity behind shock front; this difference being proportional to the yield stress. Precise measurement of the free-surface velocity can be a rich source of information on the effects of time and strain on material hardening or softening. With this objective, we performed comparative measurements of the free-surface velocity of shock loaded aluminium AD1 and magnesium alloy Ma2 samples of various thicknesses in the range 0.2 mm to 5 mm. We observed the expected hysteresis in the elastic-plastic compression-unloading cycle for both AD1 and Ma2; where qualitatively the peak free-surface velocity increased with increasing specimen thickness. However, the relative change in magnitude of hysteresis as function of specimen thickness observed for the Ma2 alloy was smaller than expected given the large observed change in precursor magnitude. We propose that softening due to multiplication of dislocations is relatively large in Ma2 and results in a smaller hysteresis in the elastic-plastic cycle.

  14. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Highly Efficient Lattice Boltzmann Model for Compressible Fluids: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Ai-Guo; Zhang, Guang-Cai; Gan, Yan-Biao; Cheng, Tao; Li, Ying-Jun

    2009-10-01

    We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsutahara, Phys. Rev. E 69 (2004) 035701(R)] and reasonable dispersion and dissipation terms. The dispersion term effectively reduces the oscillation at the discontinuity and enhances numerical precision. The dissipation term makes the new model more easily meet with the von Neumann stability condition. This model works for both high-speed and low-speed flows with arbitrary specific-heat-ratio. With the new model simulation results for the well-known benchmark problems get a high accuracy compared with the analytic or experimental ones. The used benchmark tests include (i) Shock tubes such as the Sod, Lax, Sjogreen, Colella explosion wave, and collision of two strong shocks, (ii) Regular and Mach shock reflections, and (iii) Shock wave reaction on cylindrical bubble problems. With a more realistic equation of state or free-energy functional, the new model has the potential tostudy the complex procedure of shock wave reaction on porous materials.

  15. A platform for detecting material melting from shock compression using the NIF x-ray diffraction diagnostic TARDIS

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher; Kraus, Richard; Braun, Dave; Rygg, Ryan; Coppari, Federica; Lazicki, Amy; McNaney, James; Eggert, Jon

    2016-10-01

    A series of experiments were performed on NIF to develop a platform to detect material melting during shock compression using x-ray diffraction. The unique pulse shaping on NIF can be utilized to directly-drive a steady shock into an ablator and material sample while simultaneously creating an x-ray source to probe the material state. Sharp diffraction lines are observed when the material is in the solid state, while broad diffuse lines are seen when in the liquid state, providing an unambiguous signal for shock driven melting. Several shots were performed in which a shock of 50-80 GPa was driven into a Pb sample while a Ge foil was used as an x-ray source probe. Laser conditions were varied to create a suitable x-ray source that provides a short, bright burst of He-alpha emission from the Ge while maintaining a low background level on the image plates contained in the TARDIS diagnostic. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  16. On Multi-Dimensional Unstructured Mesh Adaption

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1999-01-01

    Anisotropic unstructured mesh adaption is developed for a truly multi-dimensional upwind fluctuation splitting scheme, as applied to scalar advection-diffusion. The adaption is performed locally using edge swapping, point insertion/deletion, and nodal displacements. Comparisons are made versus the current state of the art for aggressive anisotropic unstructured adaption, which is based on a posteriori error estimates. Demonstration of both schemes to model problems, with features representative of compressible gas dynamics, show the present method to be superior to the a posteriori adaption for linear advection. The performance of the two methods is more similar when applied to nonlinear advection, with a difference in the treatment of shocks. The a posteriori adaption can excessively cluster points to a shock, while the present multi-dimensional scheme tends to merely align with a shock, using fewer nodes. As a consequence of this alignment tendency, an implementation of eigenvalue limiting for the suppression of expansion shocks is developed for the multi-dimensional distribution scheme. The differences in the treatment of shocks by the adaption schemes, along with the inherently low levels of artificial dissipation in the fluctuation splitting solver, suggest the present method is a strong candidate for applications to compressible gas dynamics.

  17. Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Herbold, Eric B.

    New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed powder samples in simulated drop-weight tests. The calculations indicate that the dynamic formation of mesoscale force chains increase the strength of the sample. This is also apparent in three-dimensional finite element calculations of drop-weight test simulations using LS-Dyna despite a higher granular bulk coordination number, and an increased mobility of individual grains.

  18. MULTI-SPACECRAFT ANALYSIS OF ENERGETIC HEAVY ION AND INTERPLANETARY SHOCK PROPERTIES IN ENERGETIC STORM PARTICLE EVENTS NEAR 1 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.

    2016-11-10

    We examine the longitude distribution of and relationship between interplanetary (IP) shock properties and ∼0.1–20 MeV nucleon{sup -1} O and Fe ions during seven multi-spacecraft energetic storm particle (ESP) events at 1 au. These ESP events were observed at two spacecraft and were primarily associated with low Mach number, quasi-perpendicular shocks. Key observations include the following: (i) the Alfvén Mach number increased from east to west of the coronal mass ejection source longitude, while the shock speed, compression ratios, and obliquity showed no clear dependence; (ii) the O and Fe time intensity profiles and peak intensities varied significantly between longitudinallymore » separated spacecraft observing the same event, the peak intensities being larger near the nose and smaller along the flank of the IP shock; (iii) the O and Fe peak intensities had weak to no correlations with the shock parameters; (iv) the Fe/O time profiles showed intra-event variations upstream of the shock that disappeared downstream of the shock, where values plateaued to those comparable to the mean Fe/O of solar cycle 23; (v) the O and Fe spectral index ranged from ∼1.0 to 3.4, the Fe spectra being softer in most events; and (vi) the observed spectral index was softer than the value predicted from the shock compression ratio in most events. We conclude that while the variations in IP shock properties may account for some variations in O and Fe properties within these multi-spacecraft events, detailed examination of the upstream seed population and IP turbulence, along with modeling, are required to fully characterize these observations.« less

  19. Bow Shock in Merging Cluster A520: The Edge of the Radio Halo and the Electron–Proton Equilibration Timescale

    NASA Astrophysics Data System (ADS)

    Wang, Qian H. S.; Giacintucci, Simona; Markevitch, Maxim

    2018-04-01

    We studied the prominent bow shock in the merging galaxy cluster A520 using a deep Chandra X-ray observation and archival VLA radio data. This shock is a useful diagnostic tool, owing to its clear geometry and relatively high Mach number. At the “nose” of the shock, we measure a Mach number of M={2.4}-0.2+0.4. The shock becomes oblique away from the merger axis, with the Mach number falling to ≃1.6 around 30° from the nose. The electron temperature immediately behind the shock nose is consistent with that from the Rankine–Hugoniot adiabat, and is higher (at a 95% confidence) than expected for adiabatic compression of electrons followed by Coulomb electron–proton equilibration, indicating the presence of equilibration mechanisms faster than Coulomb collisions. This is similar to an earlier finding for the Bullet cluster. We also combined four archival VLA data sets to obtain a better image of the cluster’s giant radio halo at 1.4 GHz. An abrupt edge of the radio halo traces the shock front, and no emission is detected in the pre-shock region. If the radio edge were due only to adiabatic compression of relativistic electrons in pre-shock plasma, we would expect a pre-shock radio emission detectable in this radio data set; however, an interferometric artifact dominates the uncertainty, so we cannot rule this model out. Other interesting features of the radio halo include a peak at the remnant of the cool core, suggesting that the core used to have a radio minihalo, and a peak marking a possible region of high turbulence.

  20. Dynamic shear strength of S2 glass fiber reinforced polymer composites under shock compression

    NASA Astrophysics Data System (ADS)

    Yuan, Fuping; Tsai, Liren; Prakash, Vikas; Dandekar, Dattatraya P.; Rajendran, A. M.

    2008-05-01

    In the present paper, a series of plate impact shock-reshock and shock-release experiments were conducted to study the critical shear strength of a S2 glass fiber reinforced polymer (GRP) composite under shock compression levels ranging from 0.8 to 1.8 GPa. The GRP was fabricated at ARL, Aberdeen, using S2 glass woven roving in a Cycom 4102 polyester resin matrix. The experiments were conducted by using an 82.5 mm bore single-stage gas gun at Case Western Reserve University. In order to conduct shock-reshock and shock-release experiments a dual flyer plate assembly was utilized. The shock-reshock experiments were conducted by using a projectile faced with GRP and backed with a relatively high shock impedance Al 6061-T6 plate; while for the shock-release experiments the GRP was backed by a relatively lower impedance polymethyl methacrylate backup flyer plate. A multibeam velocity interferometer was used to measure the particle velocity profile at the rear surface of the target plate. By using self-consistent technique procedure described by Asay and Chabbildas [Shock Waves and High-Strain-Rate Phenomena, in Metals, edited by M. M. Myers and L. E. Murr (Plenum, New York, 1981), pp. 417-431], the critical shear strength of the GRP (2τc) was determined for impact stresses in the range of 0.8 to 1.8 GPa. The results show that the critical shear strength of the GRP is increased from 0.108 GPa to 0.682 GPa when the impact stress is increased from 0.8 to 1.8 GPa. The increase in critical shear strength may be attributed to rate-dependence and/or pressure dependent yield behavior of the GRP.

  1. Fabrication of a prototype dipole for the SSC Low Energy Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, C.M.

    1993-12-01

    The Low Energy Booster of the Superconducting Super Collider (SSC) will be a synchrotron containing 96 dipoles operating between 0.13 T and 1.35 T at 10 Hz. Each dipole`s 1.865 m-long core is made from {approximately}2900 steel laminations (lams), each 52 {times} 66 cm and 0.635 mm thick. A need to minimize power supply costs and stringent field specifications led to a straight core with very tight mechanical tolerances of the order of 0.05 mm. To satisfy these tolerances, we decided to stack the core in a vertical position; i.e., with the laminations laid horizontally. We designed and built anmore » unusual vertical stacking fixture that pivots into a horizontal position after all the laminations have been stacked and compressed and four support angles welded onto the laminations. The stacking fixture, our experience using it, and conclusions as to the merits of stacking such a long core vertically will be described. The methods of insulating and potting the pancake coils and their installation into the unsplittable core is also described.« less

  2. Shear Viscosity of Aluminium under Shock Compression

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Sheng; Yang, Mei-Xia; Liu, Qi-Wen; Chen, Jun-Xiang; Jing, Fu-Qian

    2005-03-01

    Based on the Newtonian viscous fluid model and the analytic perturbation theory of Miller and Ahrens for the oscillatory damping of a sinusoidal shock front, a flyer-impact technique is developed to investigate the effective viscosity of shocked aluminium. The shear viscosity coefficient is determined to be about 5000 poises at 42 GPa with strain rate of 1.27×106 s-1, which is a reasonable estimation compared with the results of other measurement methods.

  3. Handling Input and Output for COAMPS

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Patrick; Tran, Nam; Li, Yongzuo; Anantharaj, Valentine

    2007-01-01

    Two suites of software have been developed to handle the input and output of the Coupled Ocean Atmosphere Prediction System (COAMPS), which is a regional atmospheric model developed by the Navy for simulating and predicting weather. Typically, the initial and boundary conditions for COAMPS are provided by a flat-file representation of the Navy s global model. Additional algorithms are needed for running the COAMPS software using global models. One of the present suites satisfies this need for running COAMPS using the Global Forecast System (GFS) model of the National Oceanic and Atmospheric Administration. The first step in running COAMPS downloading of GFS data from an Internet file-transfer-protocol (FTP) server computer of the National Centers for Environmental Prediction (NCEP) is performed by one of the programs (SSC-00273) in this suite. The GFS data, which are in gridded binary (GRIB) format, are then changed to a COAMPS-compatible format by another program in the suite (SSC-00278). Once a forecast is complete, still another program in the suite (SSC-00274) sends the output data to a different server computer. The second suite of software (SSC- 00275) addresses the need to ingest up-to-date land-use-and-land-cover (LULC) data into COAMPS for use in specifying typical climatological values of such surface parameters as albedo, aerodynamic roughness, and ground wetness. This suite includes (1) a program to process LULC data derived from observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Terra and Aqua satellites, (2) programs to derive new climatological parameters for the 17-land-use-category MODIS data; and (3) a modified version of a FORTRAN subroutine to be used by COAMPS. The MODIS data files are processed to reformat them into a compressed American Standard Code for Information Interchange (ASCII) format used by COAMPS for efficient processing.

  4. Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    Grid convergence of several high order methods for the computation of rapidly developing complex unsteady viscous compressible flows with a wide range of physical scales is studied. The recently developed adaptive numerical dissipation control high order methods referred to as the ACM and wavelet filter schemes are compared with a fifth-order weighted ENO (WENO) scheme. The two 2-D compressible full Navier-Stokes models considered do not possess known analytical and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL scheme with limiters are used as reference solutions. The first model is a 2-D viscous analogue of a shock tube problem which involves complex shock/shear/boundary-layer interactions. The second model is a supersonic reactive flow concerning fuel breakup. The fuel mixing involves circular hydrogen bubbles in air interacting with a planar moving shock wave. Both models contain fine scale structures and are stiff in the sense that even though the unsteadiness of the flows are rapidly developing, extreme grid refinement and time step restrictions are needed to resolve all the flow scales as well as the chemical reaction scales.

  5. Reactive decomposition of low density PMDI foam subject to shock compression

    NASA Astrophysics Data System (ADS)

    Alexander, Scott; Reinhart, William; Brundage, Aaron; Peterson, David

    Low density polymethylene diisocyanate (PMDI) foam with a density of 5.4 pounds per cubic foot (0.087 g/cc) was tested to determine the equation of state properties under shock compression over the pressure range of 0.58 - 3.4 GPa. This pressure range encompasses a region approximately 1.0-1.2 GPa within which the foam undergoes reactive decomposition resulting in significant volume expansion of approximately three times the volume prior to reaction. This volume expansion has a significant effect on the high pressure equation of state. Previous work on similar foam was conducted only up to the region where volume expansion occurs and extrapolation of that data to higher pressure results in a significant error. It is now clear that new models are required to account for the reactive decomposition of this class of foam. The results of plate impact tests will be presented and discussed including details of the unique challenges associated with shock compression of low density foams. Sandia National Labs is a multi-program lab managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. Investigation of unsteadiness in Shock-particle cloud interaction: Fully resolved two-dimensional simulation and one-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.

    2015-11-01

    Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.

  7. [The diagnostic significance of nailfold video-capillaroscopy in systemic sclerosis].

    PubMed

    Li, Lin-Guang; Zhang, Jiang-Lin; Liu, Xiu-Hua; Huang, Feng

    2012-05-01

    To observe nailfold capillary changes in a cohort of connective tissue disease (CTD) with Raynaud's phenomenon (RP) and to explore the diagnostic value of nailfold video-capillaroscopy (NVC) in systemic sclerosis (SSc). Sixty CTD patients with RP divided into SSc group (n = 36) and non-SSc group (n = 24) were referred to an experienced operator for NVC. The patients had decreased capillary loops in SSc group with the capillary diameter more enlarged in SSc group than non-SSc group. The number of patients in SSc group with giant capillaries was 14, while 3 in non-SSc group. There were 23 patients with haemorrhages in SSc group and 9 in non-SSc group. The number of patients with severe effusion was 15 in SSc group, while 2 in non-SSc group. By using the ROC curves, indexes with AUC at least 0.7 of the input capillary diameter, the output capillary diameter, the middle capillary diameter, blood color and effusion for the diagnostic cutoff points were 18.5 µm, 24.5 µm, 19.5µm, deep red and severe effusion. With at least 2 out of the top 3 indexes, the diagnostic sensitivity and specificity of SSc were higher. CTD Patients with RP of SSc have less capillary loops, more enlarged capillaries, more giant capillaries, more severe effusion and more haemorrhages than non-SSc patients. The characteristics of nailfold capillary changes in SSc patients with RP can be helpful for the diagnosis and the differential diagnosis of SSc.

  8. The Hugoniot and chemistry of ablator plastic below 100 GPa

    DOE PAGES

    Akin, M. C.; Fratanduono, D. E.; Chau, R.

    2016-01-25

    The equation of state of glow discharge polymer (GDP) was measured to high precision using the two-stage light gas gun at Lawrence Livermore National Laboratory at pressures up to 70 GPa. Both absolute measurements and impedance matching techniques were used to determine the principal and secondary Hugoniots. GDP likely reacts at about 30 GPa, demonstrated by specific emission at 450 nm coupled with changes to the Hugoniot and reshock points. As a result of these reactions, the shock pressure in GDP evolves in time, leading to a possible decrease in pressure as compression increases, or negative compressibility, and causing complexmore » pressure profiles within the plastic. Velocity wave profile variation was observed as a function of position on each shot, suggesting some internal variation of GDP may be present, which would be consistent with previous observations. The complex temporal and possibly structural evolution of GDP under shock compression suggests that calculations of compression and pressure based upon bulk or mean measurements may lead to artificially low pressures and high compressions. Evidence for this includes a large shift in calculating reshock pressures based on the reflected Hugoniot. In conclusion, these changes also suggest other degradation mechanisms for inertial confinement fusion implosions.« less

  9. Dynamics of the outgoing turbulent boundary layer in a Mach 5 unswept compression ramp interaction

    NASA Technical Reports Server (NTRS)

    Gramann, Richard A.; Dolling, David S.

    1990-01-01

    Wall pressure fluctuations have been measured under the unsteady separation shock and on the ramp face in an unswept Mach 5 compression ramp interaction. The freestream Reynolds number was 51.0 x 10 to the 6th/m, and the incoming turbulent boundary layer developed on the tunnel floor under approximately adiabatic wall temperature conditions. Standard data-acquisition methods, as well as real-time and posttest conditional sampling techniques were used. The results show that the mean and rms pressure levels are strong functions of separation shock position. At all stations on the ramp, from the corner to where the pressure reaches the theoretical inviscid value, the pressure signals have two dominant components: a low frequency component characteristic of the global unsteadiness, which correlates with the separation shock motion, and a higher frequency component associated with turbulence. The former is the major contributor to the overall signal variance.

  10. Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa

    PubMed Central

    Denoeud, Adrien; Ozaki, Norimasa; Benuzzi-Mounaix, Alessandra; Uranishi, Hiroyuki; Kondo, Yoshihiko; Kodama, Ryosuke; Brambrink, Erik; Ravasio, Alessandra; Bocoum, Maimouna; Boudenne, Jean-Michel; Harmand, Marion; Guyot, François; Mazevet, Stephane; Riley, David; Makita, Mikako; Sano, Takayoshi; Sakawa, Youichi; Inubushi, Yuichi; Gregori, Gianluca; Koenig, Michel; Morard, Guillaume

    2016-01-01

    Investigation of the iron phase diagram under high pressure and temperature is crucial for the determination of the composition of the cores of rocky planets and for better understanding the generation of planetary magnetic fields. Here we present X-ray diffraction results from laser-driven shock-compressed single-crystal and polycrystalline iron, indicating the presence of solid hexagonal close-packed iron up to pressure of at least 170 GPa along the principal Hugoniot, corresponding to a temperature of 4,150 K. This is confirmed by the agreement between the pressure obtained from the measurement of the iron volume in the sample and the inferred shock strength from velocimetry deductions. Results presented in this study are of the first importance regarding pure Fe phase diagram probed under dynamic compression and can be applied to study conditions that are relevant to Earth and super-Earth cores. PMID:27357672

  11. Determination of Sun Angles for Observations of Shock Waves on a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Haering, Edward A., Jr.; Noffz, Gregory K.; Aguilar, Juan I.

    1998-01-01

    Wing compression shock shadowgraphs were observed on two flights during banked turns of an L-1011 aircraft at a Mach number of 0.85 and an altitude of 35,000 ft (10,700 m). Photos and video recording of the shadowgraphs were taken during the flights to document the shadowgraphs. Bright sunlight on the aircraft was required. The time of day, aircraft position, speed and attitudes were recorded to determine the sun azimuth and elevation relative to the wing quarter chord-line when the shadowgraphs were visible. Sun elevation and azimuth angles were documented for which the wing compression shock shadowgraphs were visible. The shadowgraph was observed for high to low elevation angles relative to the wing, but for best results high sun angles relative to the wing are desired. The procedures and equations to determine the sun azimuth and elevation angle with respect to the quarter chord-line is included in the Appendix.

  12. Shock compression behavior of a mixture of cubic and hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Hu, Xiaojun; Yang, Gang; Zhao, Bin; Li, Peiyun; Yang, Jun; Leng, Chunwei; Liu, Hanyu; Huang, Haijun; Fei, Yingwei

    2018-05-01

    We report Hugoniot measurements on a mixture of cubic boron nitride (cBN) and hexagonal boron nitride (hBN, ˜10% in weight) to investigate the shock compression behavior of BN at Hugoniot stresses up to 110 GPa. We observed a discontinuity at ˜77 GPa along the Hugoniot and interpreted it as the manifestation of the shock-induced phase transition of hBN to cBN. The experimental stress at 77-110 GPa shows significant deviation from the hydrodynamic Hugoniot of cBN calculated using the Mie-Grüneisen model coupled with the reported 300 K-isotherms of cBN. Our investigation reveals that material strength in cBN increases with the experimental stress at least up to 110 GPa. The material strength might be preserved at higher stress if we consider the previously reported high stress data.

  13. Spinal Cord Ischemia Secondary to Hypovolemic Shock

    PubMed Central

    Kapoor, Siddhant; Koh, Roy KM; Yang, Eugene WR; Hee, Hwan-Tak

    2014-01-01

    A 44-year-old male presented with symptoms of spinal cord compression secondary to metastatic prostate cancer. An urgent decompression at the cervical-thoracic region was performed, and there were no complications intraoperatively. Three hours postoperatively, the patient developed acute bilateral lower-limb paralysis (motor grade 0). Clinically, he was in class 3 hypovolemic shock. An urgent magnetic resonance imaging (MRI) was performed, showing no epidural hematoma. He was managed aggressively with medical therapy to improve his spinal cord perfusion. The patient improved significantly, and after one week, he was able to regain most of his motor functions. Although not commonly reported, spinal cord ischemia post-surgery should be recognized early, especially in the presence of hypovolemic shock. MRI should be performed to exclude other potential causes of compression. Spinal cord ischemia needs to be managed aggressively with medical treatment to improve spinal cord perfusion. The prognosis depends on the severity of deficits, and is usually favorable. PMID:25558328

  14. Dispersive MHD Shock Properties and Interactions with Alfven Solitons

    NASA Astrophysics Data System (ADS)

    Hamilton, R.; Toll, K.; Ellis, C.

    2017-12-01

    The weakly nonlinear, weakly dispersive limit of Hall MHD with resistivity for 1D waves travelling nearly parallel to the ambient magnetic field reduces to the derivative nonlinear Schrödinger-Burgers (DNLSB) equation. This model equation describes the coupling between the Alfvenic and magnetosonic modes for a low b plasma. Without dissipation this model equation reduces to the DNLS which can be solved as an initial value problem using the Inverse Scattering Transformation through which the nonlinear component of the magnetic field profile can be represented as a combination of one-parameter bright and dark solitons as well as two-parameter solitons. The one-parameter solitons are constrained to travel at speeds ranging between the Alfvenic and magnetosonic characteristic speeds of the ambient field. We have found that these one-parameter solitons are effectively bound to a 1-2 Fast Shock and will pass back and forth across the shock until they are damped away with no apparent effect on the Fast Shock. A similar mechanism is expected for a sufficiently compressive Intermediate Shock as it arises simply from two effects: damping of a one-parameter soliton causes it to speed up and, if it does not damp away, it will eventually overtake the shock; passing forwards through a compressive shock the decrease of the field strength leads to a slowing of the soliton. We also discuss an extension of results [C. F. Kennel, R. D. Blandford, C. C. Wu, Phys. Fluids B 2(2), 1990] related to the time dependence of Intermediate Shocks in the presence of dispersion.

  15. SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.

    2007-01-01

    This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.

  16. Medial compressible forefoot sole elements reduce ankle inversion in lateral SSC jumps.

    PubMed

    Fleischmann, Jana; Mornieux, Guillaume; Gehring, Dominic; Gollhofer, Albert

    2013-06-01

    Sideward movements are associated with high incidences of lateral ankle sprains. Special shoe constructions might be able to reduce these injuries during lateral movements. The purpose of this study was to investigate whether medial compressible forefoot sole elements can reduce ankle inversion in a reactive lateral movement, and to evaluate those elements' influence on neuromuscular and mechanical adjustments in lower extremities. Foot placement and frontal plane ankle joint kinematics and kinetics were analyzed by 3-dimensional motion analysis. Electromyographic data of triceps surae, peroneus longus, and tibialis anterior were collected. This modified shoe reduced ankle inversion in comparison with a shoe with a standard sole construction. No differences in ankle inversion moments were found. With the modified shoe, foot placement occurred more internally rotated, and muscle activity of the lateral shank muscles was reduced. Hence, lateral ankle joint stability during reactive sideward movements can be improved by these compressible elements, and therefore lower lateral shank muscle activity is required. As those elements limit inversion, the strategy to control inversion angles via a high external foot rotation does not need to be used.

  17. Transport of particulate matter from a shocked interface

    NASA Astrophysics Data System (ADS)

    Buttler, W. T.; Hammerberg, J. E.; Oro, D.; Morris, C.; Mariam, F.; Rousculp, C.

    2011-03-01

    We have performed a series of shock experiments to measure the evolution and transport of micron and sub-micron Tungsten particles from a 40 micron thick layer deposited on an Aluminum substrate. Densities and velocity distributions were measured using proton radiography at the Los Alamos Neutron Science Center for vacuum conditions and with contained Argon and Xenon gas atmospheres at initial pressures of 9.5 bar and room temperature. A common shock drive resulted in free surface velocities of 1.25 km/s. An analysis of the time dependence of Lithium Niobate piezo-electric pin pressure profiles is given in terms of solutions to the particulate drag equations and the evolution equation for the particulate distribution function. The spatial and temporal fore-shortening in the shocked gas can be accounted for using reasonable values for the compressed gas shear viscosities and the vacuum distributions. The detailed form of the pin pressure data for Xenon indicates particulate breakup in the hot compressed gas. This work supported by the U.S. Department of Energy under contract DE-AC52-06NA25396.

  18. Transport of Particulate Matter from a Shocked Interface

    NASA Astrophysics Data System (ADS)

    Buttler, W. T.; Hammerberg, J. E.; Oro, D.; Mariam, F.; Rousculp, C.

    2011-06-01

    We have performed a series of shock experiments to measure the evolution and transport of micron and sub-micron Tungsten particles from a 40 μm thick layer deposited on an Aluminum substrate. Densities and velocity distributions were measured using proton radiography at the Los Alamos Neutron Science Center for vacuum conditions and with contained Argon and Xenon gas atmospheres at initial pressures of 9.5 bar and room temperature. A common shock drive resulted in free surface velocities of 1.25 km/s. An analysis of the time dependence of Lithium Niobate piezo-electric pin pressure profiles is given in terms of solutions to the particulate drag equations and the evolution equation for the particulate distribution function. The spatial and temporal fore-shortening in the shocked gas can be accounted for using reasonable values for the compressed gas shear viscosities and the vacuum distributions. The detailed form of the pin pressure data for Xenon indicates particulate breakup in the hot compressed gas. This work supported by the U.S. Department of Energy under contract DE-AC52-06NA25396.

  19. Measuring twinning and slip in shock-compressed Ta from in-situ x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher; McGonegle, David; Sliwa, Marcin; Suggit, Matt; Wark, Justin; Lee, Hae Ja; Nagler, Bob; Tavella, Franz; Remington, Bruce; Rudd, Rob; Lazicki, Amy; Park, Hye-Sook; Swift, Damian; Zepeda-Ruiz, Louis; Higginbotham, Andrew; Bolme, Cindy

    2017-06-01

    A fundamental understanding of high-pressure and high-strain-rate deformation rests on grasping the underlying microstructural processes, such as twinning and dislocation generation and transport (slip), yet simulations and ex-post-facto recovery experiments provide conflicting answers to these basic issues. Here, we report direct, in-situ observation of twinning and slip in shock compressed Ta using in-situ x-ray diffraction. A series of shock experiments were performed on the Matter in Extreme Conditions end station at LCLS. Direct laser ablation was used to drive a shock, ranging in pressure from 10-300 GPa, into a Ta sample with an initial (110) fiber texture. The subsequent changes in texture were observed in-situ by examining the azimuthal distribution of the diffraction intensity and found to match twinning and lattice rotation. Measurements of the twin fraction and lattice rotation were used to calculate the equivalent plastic strain from twinning and slip. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  20. A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: Towards minimalism

    NASA Astrophysics Data System (ADS)

    Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi

    2018-06-01

    Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.

  1. In-situ x-ray diffraction of a shock-induced phase transition in fluorite, CaF2

    NASA Astrophysics Data System (ADS)

    Glam, Benny; June Tracy, Sally; Turneaure, Stefan; Duffy, Thomas

    2017-06-01

    The difluorides are an important class of ionic compounds that show extensive polymorphism under both static and dynamic loading. In this study, the shock-induced phase transitions in CaF2 were investigated by in situ x-ray diffraction measurements in plate impact experiments carried out with the two-stage gas gun at the Dynamic Compression Sector of Argonne National Laboratory. Single-crystal samples in (100) and (111) orientations were shock loaded to pressures between 32 GPa to 70 GPa. The particle velocities at the interface between the sample and a LiF window were measured by VISAR and PDV. Synchrotron x-ray diffraction data were recorded at 153.4 ns intervals using a four-frame detector. The measured diffraction patterns show a high degree of sample texturing at all pressures. We observe evidence for a transition to a high-pressure phase followed by reverse transformation at late times during release. This study provides the first direct constraints on the high-pressure lattice structure of fluorite under shock compression.

  2. Release Path Temperatures of Shock-Compressed Tin from Dynamic Reflectance and Radiance Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Lone, B. M.; Stevens, G. D.; Turley, W. D.

    2013-08-01

    Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R0 are < 2%, and uncertainties in absolute reflectance are < 5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stressmore » and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of < 2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot.« less

  3. Shock wave response of a zirconium-based bulk metallic glass and its composite

    NASA Astrophysics Data System (ADS)

    Zhuang, Shiming; Lu, Jun; Ravichandran, Guruswami

    2002-06-01

    A zirconium-based bulk metallic glass, Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1), and its composite, Zr56.3Ti13.8Cu6.9Ni5.6Nb5.0Be12.5 (beta-Vit), were subjected to planar impact loading. A surprisingly low amplitude elastic precursor and bulk wave, corresponding to the elastic response of the "frozen structure" of the intact metallic glasses, were observed to precede the rate-dependent large deformation shock wave. A concave downward curvature after the initial increase of the Us-Up shock Hugoniots suggests that a phase-change-like transition occurred during shock compression. Further, compression damage occurred due to the shear localization. The spalling in Vit 1 was induced by shear localization, while in beta-Vit, it was due to debonding of the beta-phase boundary from the matrix. The spall strengths at strain rate of 2 x106 s-1 were determined to be 2.35 and 2.11 GPa for Vit 1 and beta-Vit, respectively.

  4. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, W.; Ostriker, E. C.

    2010-01-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation of spiral arms in disk galaxies. They can also provide a large amount of kinetic energy for the interstellar gas by tapping the rotational energy. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability in vertically stratified galactic disks. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve under interstellar cooling and heating. Due to cooling and heating, the disk rapidly turns to a dense slab near the midplane surrounded by rarefied gas at high-altitude regions. The imposed stellar spiral potential develops a vertically curved shock that exhibits strong flapping motions along the direction perpendicular to the arm. The flows across the spiral shock are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases at the postshock expansion zone. The shock flapping motions stirs the disk, supplying the gas with random kinetic energy. For a model resembling the galactic disk near the solar neighborhood, the density-weighted vertical velocity dispersions are 2 km/s for the rarefied gas and 1 km/s for the dense gas. The shock compression in this model reduces an amount of the rarefied gas from 29% to 19% by mass. Despite the flapping motions, the time-averaged profiles of surface density are similar to those of the one-dimensional counterparts, and the vertical density distribution is overall consistent with effective hydrostatic equilibrium. When self-gravity is included, the shock compression forms large gravitationally bound condensations with virial ratio of about 2 and typical masses of 0.5 to one million solar masses, comparable to the Jeans mass.

  5. DFT modeling of chemistry on the Z machine

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas

    2013-06-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression for a wide-range of elements and compounds: from hydrogen to xenon via water. Materials where chemistry plays a role are of particular interest for many applications. For example the deep interiors of Neptune, Uranus, and hundreds of similar exoplanets are composed of molecular ices of carbon, hydrogen, oxygen, and nitrogen at pressures of several hundred GPa and temperatures of many thousand Kelvin. High-quality thermophysical experimental data and high-fidelity simulations including chemical reaction are necessary to constrain planetary models over a large range of conditions. As examples of where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa, shock compression of the hydrocarbon polymers polyethylene (PE) and poly(4-methyl-1-pentene) (PMP), and finally simulations of shock compression of glow discharge polymer (GDP) including the effects of doping with germanium. Experimental results from Sandia's Z machine have time and again validated the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds like CO2 and polymers like PE, PMP, and GDP. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. The impact of post-resuscitation feedback for paramedics on the quality of cardiopulmonary resuscitation.

    PubMed

    Bleijenberg, Eduard; Koster, Rudolph W; de Vries, Hendrik; Beesems, Stefanie G

    2017-01-01

    The Guidelines place emphasis on high-quality cardiopulmonary resuscitation (CPR). This study aims to measure the impact of post-resuscitation feedback on the quality of CPR as performed by ambulance personnel. Two ambulances are dispatched for suspected cardiac arrest. The crew (driver and paramedic) of the first arriving ambulance is responsible for the quality of CPR. The crew of the second ambulance establishes an intravenous access and supports the first crew. All resuscitation attempts led by the ambulance crew of the study region were reviewed by two research paramedics and structured feedback was given based on defibrillator recording with impedance signal. A 12-months period before introduction of post-resuscitation feedback was compared with a 19-months period after introduction of feedback, excluding a six months run-in interval. Quality parameters were chest compression fraction (CCF), chest compression rate, longest peri-shock pause and longest non-shock pause. In the pre-feedback period 55 cases were analyzed and 69 cases in the feedback period. Median CCF improved significantly in the feedback period (79% vs 86%, p<0.001). The mean chest compression rate was within the recommended range of 100-120/min in 87% of the cases in the pre-feedback period and in 90% of the cases in the feedback period (p=0.65). The duration of longest non-shock pause decreased significantly (40s vs 19s, p<0.001), the duration of the longest peri-shock pause did not change significantly (16s vs 13s, p=0.27). Post-resuscitation feedback improves the quality of resuscitation, significantly increasing CCF and decreasing the duration of longest non-shock pauses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Optical and transport properties of dense liquid silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Tingting; Millot, Marius; Kraus, Richard G.

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequencymore » dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.« less

  8. An Interactive, Design and Educational Tool for Supersonic External-Compression Inlets

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive design tool called VU-INLET was developed for the inviscid flow in rectangular, supersonic, external-compression inlets. VU-INLET solves for the flow conditions from free stream, through the supersonic compression ramps, across the terminal normal shock region and the subsonic diffuser to the engine face. It calculates the shock locations, the capture streamtube, and the additive drag of the inlet. The inlet geometry can be modified using a graphical user interface and the new flow conditions recalculated interactively. Free stream conditions and engine airflow can also be interactively varied and off-design performance evaluated. Flow results from VU-INLET can be saved to a file for a permanent record, and a series of help screens make the simulator easy to learn and use. This paper will detail the underlying assumptions of the models and the numerical methods used in the simulator.

  9. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratiomore » of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.« less

  10. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  11. Numerical simulation of the compressible Orszag-Tang vortex 2. Supersonic flow

    NASA Technical Reports Server (NTRS)

    Picone, J. M.; Dahlburg, Russell B.

    1990-01-01

    The numerical investigation of the Orszag-Tang vortex system in compressible magnetofluids will consider initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers 1.0 and 1.5 and beta 10/3 with Lundquist numbers 50, 100, or 200. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X-point and produce strong local current sheets which dissipate appreciable magnetic energy. Reconnection at the central X-point, which dominates the incompressible and subsonic systems, peaks later and has a smaller impact as M increases from 0.6 to 1.5. Similarly, correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wavenumber spectra of autocorrelations in mass density, velocity, and magnetic field.

  12. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE PAGES

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; ...

    2015-08-01

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  13. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm³

    DOE PAGES

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; ...

    2012-02-27

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findingsmore » advocate that this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets and should improve our understanding of these types of planets.« less

  14. One-Dimensional Shock Wave Formation by an Accelerating Piston. Ph.D. Thesis - Ohio State Univ.

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1970-01-01

    The formation of a shock wave by a solid accelerating piston was studied. A theoretical solution using the method of characteristics for a perfect gas showed that a complex wave system exists, and that the compressed gas can have large gradients in temperature, density and entropy. Experiments were performed with a piston tube where piston speed, shock speed and pressure were measured. The comparison of theory and experiment was good.

  15. Numerical Simulation of Detonation in Condensed Phase Explosives

    DTIC Science & Technology

    1998-08-01

    34Numerical modelling of shocks in solids with elastic-plastic conditions", Shock Waves, 3: 55-66. 22. Jones, D.A., Oran, E.S. and Guirguis , R. (1990). "A...China Lake, CA 93555-6001, preprint. 55. P.J. Miller , P.J. and G.T. Sutherland, G.T. (1996) Reaction Rate Modelling of PBXN- 110, Shock Compression...report describes the development of a two-dimensional multi-material Eulerian hydrocode to model the effects of detonating condensed phase explosives on

  16. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Hargreaves, John

    2007-01-01

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  17. Molecular dynamics studies of thermal dissipation during shock induced spalling

    NASA Astrophysics Data System (ADS)

    Xiang, Meizhen; Hu, Haibo; Chen, Jun; Liao, Yi

    2013-09-01

    Under shock loadings, the temperature of materials may vary dramatically during deformation and fracture processes. Thus, thermal effect is important for constructing dynamical failure models. Existing works on thermal dissipation effects are mostly from meso- to macro-scale levels based on phenomenological assumptions. The main purpose of the present work is to provide several atomistic scale perspectives about thermal dissipation during spall fracture by nonequilibrium molecular dynamics simulations on single-crystalline and nanocrystalline Pb. The simulations show that temperature arising starts from the vicinity of voids during spalling. The thermal dissipation rate in void nucleation stage is much higher than that in the later growth and coalescence stages. Both classical spallation and micro-spallation are taken into account. Classical spallation is corresponding to spallation phenomenon where materials keep in solid state during shock compression and release stages, while micro-spallation is corresponding to spallation phenomenon where melting occurs during shock compression and release stages. In classical spallation, whether residuary dislocations are produced in pre-spall stages has significant influences on thermal dissipation rate during void growth and coalescence. The thermal dissipation rates decrease as shock intensity increases. When the shock intensity exceeds the threshold of micro-spallation, the thermal dissipation rate in void nucleation stage drops precipitously. It is found that grain boundaries mainly influence the thermal dissipation rate in void nucleation stage in classical spallation. In micro-spallation, the grain boundary effects are insignificant.

  18. Grain size dependence of dynamic mechanical behavior of AZ31B magnesium alloy sheet under compressive shock loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgari, H., E-mail: hamed.asgari@usask.ca; Odeshi, A.G.; Szpunar, J.A.

    2015-08-15

    The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found tomore » decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.« less

  19. Whistler Waves Associated with Weak Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.

    2012-01-01

    We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 < Beta < 10). We have compared the waves properties upstream and downstream of the shocks. In the upstream region the waves are mainly circularly polarized, and in most of the cases (approx. 75%) they propagate almost parallel to the ambient magnetic field (<30 deg.). In contrast, the propagation angle with respect to the shock normal varies in a broad range of values (20 deg. to 90 deg.), suggesting that they are not phase standing. We find that the whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to the upstream case. It is possible that downstream fluctuations are generated by ion relaxation as suggested in previous hybrid simulation shocks.

  20. Floating shock fitting via Lagrangian adaptive meshes

    NASA Technical Reports Server (NTRS)

    Vanrosendale, John

    1994-01-01

    In recent works we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM) is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence. Shock-capturing algorithms like this, which warp the mesh to yield shock-fitted accuracy, are new and relatively untried. However, their potential is clear. In the context of sonic booms, accurate calculation of near-field sonic boom signatures is critical to the design of the High Speed Civil Transport (HSCT). SLAM should allow computation of accurate N-wave pressure signatures on comparatively coarse meshes, significantly enhancing our ability to design low-boom configurations for high-speed aircraft.

  1. High dynamic range spectroscopic studies of shocked nitromethane

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Nissen, Erin J.; Dlott, Dana D.

    In this talk we describe a tabletop apparatus that can reproducibly drive shocks through tiny cells containing liquid arranged in an array for high-throughput shock compression studies. This talk will focus on nitromethane, a liquid reactive to shocks and capable of detonation. In our studies, a laser-driven flyer plate was used to shock nitromethane, and a spectrometer with high dynamic range was employed to measure emission spectra from nanosecond to millisecond time scales. Typically, 50 single-shock experiments were performed per day with precisely controllable shock speeds below, above, or equal to the detonation shock speed. The emission spectra provide temperature histories using the graybody approximation. The ability to conveniently shock nitromethane on a benchtop will be used with isotopically substituted and amine-sensitized nitromethane and in future will be combined with other spectroscopies such as infrared absorption. Multidisciplinary University Research Initiative (MURI), Office of Naval Research.

  2. Studies in shocked nitromethane through High dynamic range spectroscopy

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Nissen, Erin; Matveev, Sergey; Dlott, Dana

    2017-06-01

    In this talk we describe a tabletop apparatus that can reproducibly drive shocks through tiny cells containing liquid arranged in an array for high-throughput shock compression studies. This talk will focus on nitromethane, a liquid reactive to shocks and capable of detonation. In our studies, a laser-driven ?yer plate was used to shock nitromethane, and a spectrometer with high dynamic range was employed to measure emission spectra from nanosecond to millisecond time scales. Typically, 50 single-shock experiments were performed per day with precisely controllable shock speeds below, above, or equal to the detonation shock speed. The emission spectra provide temperature histories using the grey body approximation. The ability to conveniently shock nitromethane on a benchtop was used with isotopically substituted and amine-sensitized nitromethane and in future will be combined with other spectroscopies such as infrared absorption. Multidisciplinary University Research Initiative (MURI), Office of Naval Research.

  3. Shock waves data for minerals

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Johnson, Mary L.

    1994-01-01

    Shock compression of the materials of planetary interiors yields data which upon comparison with density-pressure and density-sound velocity profiles constrain internal composition and temperature. Other important applications of shock wave data and related properties are found in the impact mechanics of terrestrial planets and solid satellites. Shock wave equation of state, shock-induced dynamic yielding and phase transitions, and shock temperature are discussed. In regions where a substantial phase change in the material does not occur, the relationship between the particle velocity, U(sub p), and the shock velocity, U(sub s), is given by U(sub s) = C(sub 0) + S U(sub p), where C(sub 0) is the shock velocity at infinitesimally small particle velocity, or the ambient pressure bulk sound velocity. Numerical values for the shock wave equation of state for minerals and related materials of the solar system are provided.

  4. All-cause Healthcare Costs and Mortality in Patients with Systemic Sclerosis with Lung Involvement.

    PubMed

    Fischer, Aryeh; Kong, Amanda M; Swigris, Jeffrey J; Cole, Ashley L; Raimundo, Karina

    2018-02-01

    Patients with systemic sclerosis (SSc) often develop interstitial lung disease (ILD) and/or pulmonary arterial hypertension (PAH). The effect of ILD and PAH on healthcare costs among patients with SSc is not well described. The objective of this analysis was to describe healthcare costs in patients with newly diagnosed SSc and SSc patients newly diagnosed with ILD and/or PAH in the United States. This retrospective cohort analysis was conducted in the Truven Health MarketScan Commercial and Medicare Supplemental healthcare claims databases from 2003 to 2014. Based on International Classification of Diseases-9-Clinical Modification diagnosis codes on medical claims, patients were classified into 3 groups: incident SSc, SSc with incident ILD (SSc-ILD), and SSc with incident PAH (SSc-PAH). Patients were required to have continuous enrollment for 5 years to measure all-cause healthcare costs. Costs (adjusted to US$) were reported overall and by service type and year following diagnosis. Because of the overlap between groups, statistical comparisons were not conducted. There were 1957 patients with incident SSc, 219 with incident SSc-ILD, and 108 patients with incident SSc-PAH. Average (mean ± SD) all-cause healthcare costs over followup were higher for patients with incident SSc-ILD ($191,107 ± $322,193) or patients with incident SSc-PAH ($254,425 ± $240,497), compared to patients with incident SSc ($101,839 ± $167,155). Average annual costs over the 5-year period ranged from $18,513 to $23,268 for patients with incident SSc, from $31,285 to $55,446 for patients with incident SSc-ILD, and from $44,454 to $63,320 for patients with incident SSc-PAH. Costs tended to be the highest in the fifth year of followup. Among patients with SSc, ILD and PAH can result in substantial increases in healthcare costs.

  5. Anisotropic Constitutive Relationships in Energetic Materials: Nitromethane and Rdx

    NASA Astrophysics Data System (ADS)

    Oleynik, I. I.; Conroy, M.; White, C. T.

    2007-12-01

    The anisotropic constitutive relationships in solid nitromethane (NM) and α-RDX were studied using first-principles density functional theory (DFT). In addition to hydrostatic compressions, we performed uniaxial compressions in the [100], [010], [001], [110], [101], [011], and [111] directions up to the compression ratio V/V0 = 0.70. Equilibrium properties, including lattice parameters and elastic constants, as well as hydrostatic EOS, are in good agreement with available experimental data. The shear stresses of uniaxially compressed NM and α-RDX were used to predict the relative shock sensitivity between different crystallographic directions.

  6. Compressible flow at high pressure with linear equation of state

    NASA Astrophysics Data System (ADS)

    Sirignano, William A.

    2018-05-01

    Compressible flow varies from ideal-gas behavior at high pressures where molecular interactions become important. Density is described through a cubic equation of state while enthalpy and sound speed are functions of both temperature and pressure, based on two parameters, A and B, related to intermolecular attraction and repulsion, respectively. Assuming small variations from ideal-gas behavior, a closed-form solution is obtained that is valid over a wide range of conditions. An expansion in these molecular-interaction parameters simplifies relations for flow variables, elucidating the role of molecular repulsion and attraction in variations from ideal-gas behavior. Real-gas modifications in density, enthalpy, and sound speed for a given pressure and temperature lead to variations in many basic compressible flow configurations. Sometimes, the variations can be substantial in quantitative or qualitative terms. The new approach is applied to choked-nozzle flow, isentropic flow, nonlinear-wave propagation, and flow across a shock wave, all for the real gas. Modifications are obtained for allowable mass-flow through a choked nozzle, nozzle thrust, sonic wave speed, Riemann invariants, Prandtl's shock relation, and the Rankine-Hugoniot relations. Forced acoustic oscillations can show substantial augmentation of pressure amplitudes when real-gas effects are taken into account. Shocks at higher temperatures and pressures can have larger pressure jumps with real-gas effects. Weak shocks decay to zero strength at sonic speed. The proposed framework can rely on any cubic equation of state and be applied to multicomponent flows or to more-complex flow configurations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois

    As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less

  8. Shock-jump conditions in a general medium: weak-solution approach

    NASA Astrophysics Data System (ADS)

    Forbes, L. K.; Krzysik, O. A.

    2017-05-01

    General conservation laws are considered, and the concept of a weak solution is extended to the case of an equation involving three space variables and time. Four-dimensional vector calculus is used to develop general jump conditions at a shock wave in the material. To illustrate the use of this result, jump conditions at a shock in unsteady three-dimensional compressible gas flow are presented. It is then proved rigorously that these reduce to the commonly assumed conditions in coordinates normal and tangential to the shock face. A similar calculation is also outlined for an unsteady three-dimensional shock in magnetohydrodynamics, and in a chemically reactive fluid. The technique is available for determining shock-jump conditions in quite general continuous media.

  9. Global MHD Test Particle Simulations of 10 MeV Radiation Belt Electrons During Sudden Storm Commencement

    DTIC Science & Technology

    2007-09-22

    9 0 , a n d I t o 2 m n h t o b d i c r a l al h e o w q u o i l p t hthe SC lectic ieldpule ispreominntl in he 1 to 2 months to be discemable at the...correlation with sharp increase in the H -component, ground B dx(A, magnetometer perturbation which is the signature of an SSC event. The March 1991...Parametric study of shock- Press, W. H ., B . P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1992),induced transport and energization of relativistic

  10. Quasi 1D Modeling of Mixed Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.

  11. Ethane-xenon mixtures under shock conditions

    NASA Astrophysics Data System (ADS)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  12. Nanometer-scale characterization of laser-driven plasmas, compression, shocks and phase transitions, by coherent small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kluge, Thomas

    2015-11-01

    Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.

  13. Experimental studies on flow visualization and velocity field of compression ramp with different incoming boundary layers

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu

    2014-11-01

    Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.

  14. High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter

    Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less

  15. High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III

    DOE PAGES

    Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; ...

    2017-03-27

    Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less

  16. Existence and Stability of Viscoelastic Shock Profiles

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Lewicka, Marta; Zumbrun, Kevin

    2011-05-01

    We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic-parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and nonclassical type shock profiles.

  17. Sensitivity of shock boundary-layer interactions to weak geometric perturbations

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Eaton, John K.

    2016-11-01

    Shock-boundary layer interactions can be sensitive to small changes in the inlet flow and boundary conditions. Robust computational models must capture this sensitivity, and validation of such models requires a suitable experimental database with well-defined inlet and boundary conditions. To that end, the purpose of this experiment is to systematically document the effects of small geometric perturbations on a SBLI flow to investigate the flow physics and establish an experimental dataset tailored for CFD validation. The facility used is a Mach 2.1, continuous operation wind tunnel. The SBLI is generated using a compression wedge; the region of interest is the resulting reflected shock SBLI. The geometric perturbations, which are small spanwise rectangular prisms, are introduced ahead of the compression ramp on the opposite wall. PIV is used to study the SBLI for 40 different perturbation geometries. Results show that the dominant effect of the perturbations is a global shift of the SBLI itself. In addition, the bumps introduce weaker shocks of varying strength and angles, depending on the bump height and location. Various scalar validation metrics, including a measure of shock unsteadiness, and their uncertainties are also computed to better facilitate CFD validation. Ji Hoon Kim is supported by an OTR Stanford Graduate Fellowship.

  18. A high-resolution Godunov method for compressible multi-material flow on overlapping grids

    NASA Astrophysics Data System (ADS)

    Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D.

    2007-04-01

    A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform-pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on the Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of a planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.

  19. Precision shock tuning on the national ignition facility.

    PubMed

    Robey, H F; Celliers, P M; Kline, J L; Mackinnon, A J; Boehly, T R; Landen, O L; Eggert, J H; Hicks, D; Le Pape, S; Farley, D R; Bowers, M W; Krauter, K G; Munro, D H; Jones, O S; Milovich, J L; Clark, D; Spears, B K; Town, R P J; Haan, S W; Dixit, S; Schneider, M B; Dewald, E L; Widmann, K; Moody, J D; Döppner, T D; Radousky, H B; Nikroo, A; Kroll, J J; Hamza, A V; Horner, J B; Bhandarkar, S D; Dzenitis, E; Alger, E; Giraldez, E; Castro, C; Moreno, K; Haynam, C; LaFortune, K N; Widmayer, C; Shaw, M; Jancaitis, K; Parham, T; Holunga, D M; Walters, C F; Haid, B; Malsbury, T; Trummer, D; Coffee, K R; Burr, B; Berzins, L V; Choate, C; Brereton, S J; Azevedo, S; Chandrasekaran, H; Glenzer, S; Caggiano, J A; Knauer, J P; Frenje, J A; Casey, D T; Johnson, M Gatu; Séguin, F H; Young, B K; Edwards, M J; Van Wonterghem, B M; Kilkenny, J; MacGowan, B J; Atherton, J; Lindl, J D; Meyerhofer, D D; Moses, E

    2012-05-25

    Ignition implosions on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision to keep the fuel entropy and adiabat low and ρR high. The first series of precision tuning experiments on the National Ignition Facility, which use optical diagnostics to directly measure the strength and timing of all four shocks inside a hohlraum-driven, cryogenic liquid-deuterium-filled capsule interior have now been performed. The results of these experiments are presented demonstrating a significant decrease in adiabat over previously untuned implosions. The impact of the improved shock timing is confirmed in related deuterium-tritium layered capsule implosions, which show the highest fuel compression (ρR~1.0 g/cm(2)) measured to date, exceeding the previous record [V. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] by more than a factor of 3. The experiments also clearly reveal an issue with the 4th shock velocity, which is observed to be 20% slower than predictions from numerical simulation.

  20. Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.

    2016-10-01

    We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.

  1. Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy.

    PubMed

    Zhong, P; Chuong, C J; Preminger, G M

    1993-07-01

    To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.

  2. MacCormack's technique-based pressure reconstruction approach for PIV data in compressible flows with shocks

    NASA Astrophysics Data System (ADS)

    Liu, Shun; Xu, Jinglei; Yu, Kaikai

    2017-06-01

    This paper proposes an improved approach for extraction of pressure fields from velocity data, such as obtained by particle image velocimetry (PIV), especially for steady compressible flows with strong shocks. The principle of this approach is derived from Navier-Stokes equations, assuming adiabatic condition and neglecting viscosity of flow field boundaries measured by PIV. The computing method is based on MacCormack's technique in computational fluid dynamics. Thus, this approach is called the MacCormack method. Moreover, the MacCormack method is compared with several approaches proposed in previous literature, including the isentropic method, the spatial integration and the Poisson method. The effects of velocity error level and PIV spatial resolution on these approaches are also quantified by using artificial velocity data containing shock waves. The results demonstrate that the MacCormack method has higher reconstruction accuracy than other approaches, and its advantages become more remarkable with shock strengthening. Furthermore, the performance of the MacCormack method is also validated by using synthetic PIV images with an oblique shock wave, confirming the feasibility and advantage of this approach in real PIV experiments. This work is highly significant for the studies on aerospace engineering, especially the outer flow fields of supersonic aircraft and the internal flow fields of ramjets.

  3. Clinical and laboratory features of systemic sclerosis complicated with localized scleroderma.

    PubMed

    Toki, Sayaka; Motegi, Sei-ichiro; Yamada, Kazuya; Uchiyama, Akihiko; Kanai, Sahori; Yamanaka, Masayoshi; Ishikawa, Osamu

    2015-03-01

    Localized scleroderma (LSc) primarily affects skin, whereas systemic sclerosis (SSc) affects skin and various internal organs. LSc and SSc are considered to be basically different diseases, and there is no transition between them. However, LSc and SSc have several common characteristics, including endothelial cell dysfunction, immune activation, and excess fibrosis of the skin, and there exist several SSc cases complicated with LSc during the course of SSc. Clinical and laboratory characteristics of SSc patients with LSc remain unclear. We investigated the clinical and laboratory features of 8 SSc patients with LSc among 220 SSc patients (3.6%). The types of LSc included plaque (5/8), guttate (2/8), and linear type (1/8). All cases were diagnosed as having SSc within 5 years before or after the appearance of LSc. In three cases of SSc with LSc (37.5%), LSc skin lesions preceded clinical symptoms of SSc. Young age, negative antinuclear antibody, and positive anti-RNA polymerase III antibody were significantly prevalent in SSc patients with LSc. The positivity of anticentromere antibody tended to be prevalent in SSc patients without LSc. No significant difference in the frequency of complications, such as interstitial lung disease, reflux esophagitis, and pulmonary artery hypertension, was observed. The awareness of these characteristic of SSc with LSc are essential to establish an early diagnosis and treatment. © 2015 Japanese Dermatological Association.

  4. Reactive atomistic simulations of shock-induced initiation processes in mixtures of ammonium nitrate and fuel oil

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan P.; Shan, Tzu-Ray

    2014-05-01

    Ammonium nitrate mixed with fuel oil (ANFO) is a commonly used blasting agent. In this paper we investigated the shock properties of pure ammonium nitrate (AN) and two different mixtures of ammonium nitrate and n-dodecane by characterizing their Hugoniot states. We simulated shock compression of pure AN and ANFO mixtures using the Multi-scale Shock Technique, and observed differences in chemical reaction. We also performed a large-scale explicit sub-threshold shock of AN crystal with a 10 nm void filled with 4.4 wt% of n-dodecane. We observed the formation of hotspots and enhanced reactivity at the interface region between AN and n-dodecane molecules.

  5. Analysis of the dynamic response of a supersonic inlet to flow-field perturbations upstream of the normal shock

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Willoh, R. G.

    1975-01-01

    A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.

  6. AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.

    2007-12-01

    We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.

  7. Picosecond time scale dynamics of short pulse laser-driven shocks in tin

    NASA Astrophysics Data System (ADS)

    Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Colvin, J.; Ditmire, T.

    2009-05-01

    The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases.

  8. Shock wave interaction with laser-generated single bubbles.

    PubMed

    Sankin, G N; Simmons, W N; Zhu, S L; Zhong, P

    2005-07-15

    The interaction of a lithotripter shock wave (LSW) with laser-generated single vapor bubbles in water is investigated using high-speed photography and pressure measurement via a fiber-optic probe hydrophone. The interaction leads to nonspherical collapse of the bubble with secondary shock wave emission and microjet formation along the LSW propagation direction. The maximum pressure amplification is produced during the collapse phase of the bubble oscillation when the compressive pulse duration of the LSW matches with the forced collapse time of the bubble.

  9. First-order shock acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Ramaty, R.

    1985-01-01

    The first order Fermi shock acceleration model is compared with specific observations where electron, proton, and alpha particle spectra are available. In all events, it is found that a single shock with a compression ratio as inferred from the low energy proton spectra can reasonably produce the full proton, electron, and alpha particle spectra. The model predicts that the acceleration time to a given energy will be approximately equal for electrons and protons and, for reasonable solar parameters, can be less than 1 sec to 100 MeV.

  10. Synchrotron hard X-ray imaging of shock-compressed metal powders

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This poster will present the application of a new, high-energy (50 to 250 keV) synchrotron X-ray radiography technique to the study of shock-compressed granular materials. Following plate-impact loading, transmission radiography was used to quantitatively observe the compaction and release processes in a range of high-Z metal powders (e.g. Fe, Ni, Cu). By comparing the predictions of 3D numerical models initialized from X-ray tomograms-captured prior to loading-with experimental results, this research represents a new approach to refining mesoscopic compaction models. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  11. Calculation of external-internal flow fields for mixed-compression inlets

    NASA Technical Reports Server (NTRS)

    Chyu, W. J.; Kawamura, T.; Bencze, D. P.

    1986-01-01

    Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.

  12. Calculation of external-internal flow fields for mixed-compression inlets

    NASA Technical Reports Server (NTRS)

    Chyu, W. J.; Kawamura, T.; Bencze, D. P.

    1987-01-01

    Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.

  13. From Localized Scleroderma to Systemic Sclerosis: Coexistence or Possible Evolution.

    PubMed

    Dilia, Giuggioli; Michele, Colaci; Emanuele, Cocchiara; Amelia, Spinella; Federica, Lumetti; Clodoveo, Ferri

    2018-01-01

    Systemic sclerosis (SSc) and localized scleroderma (LoS) are two different diseases that may share some features. We evaluated the relationship between SSc and LoS in our case series of SSc patients. We analysed the clinical records of 330 SSc patients, in order to find the eventual occurrence of both the two diseases. Eight (2.4%) female patients presented both the two diagnoses in their clinical histories. Six developed LoS prior to SSc; in 4/6 cases, the presence of autoantibodies was observed before SSc diagnosis. Overall, the median time interval between LoS and SSc diagnosis was 18 (range 0-156) months. LoS and SSc are two distinct clinical entities that may coexist. Moreover, as anecdotally reported in pediatric populations, we suggested the possible development of SSc in adult patients with LoS, particularly in presence of Raynaud's phenomenon or antinuclear antibodies before the SSc onset.

  14. Measurement of the Shock Velocity and Symmetry History in Decaying Shock Pulses

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; Milovich, Jose; Jones, Oggie; Robey, Harry; Smalyuk, Vladimir; Casey, Daniel; Celliers, Peter; Clark, Dan; Giraldez, Emilio; Haan, Steve; Hamza, Alex; Berzak-Hopkins, Laura; Jancaitis, Ken; Kroll, Jeremy; Lafortune, Kai; MacGowan, Brian; Macphee, Andrew; Moody, John; Nikroo, Abbas; Peterson, Luc; Raman, Kumar; Weber, Chris; Widmayer, Clay

    2014-10-01

    Decaying first shock pulses are predicted in simulations to provide more stable implosions and still achieve a low adiabat in the fuel, enabling a higher fuel compression similar to ``low foot'' laser pulses. The first step in testing these predictions was to measure the shock velocity for both a three shock and a four shock adiabat-shaped pulse in a keyhole experimental platform. We present measurements of the shock velocity history, including the decaying shock velocity inside the ablator, and compare it with simulations, as well as with previous low and high foot pulses. Using the measured pulse shape, the predicted adiabat from simulations is presented and compared with the calculated adiabat from low and high foot laser pulse shapes. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  15. The Physics of Molecular Shocks in Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Molecular shocks are produced by the impact of the supersonic infall of gas and dust onto protostars and by the interaction of the supersonic outflow from the protostar with the circumstellar material. Infalling gas creates an accretion shock around the circumstellar disk which emits a unique infrared spectrum and which processes the interstellar dust as it enters the disk. The winds and jets from protostars also impact the disk, the infalling material, and the ambient molecular cloud core creating shocks whose spectrum and morphology diagnose the mass loss processes of the protostar and the orientation and structure of the star forming system. We discuss the physics of these shocks, the model spectra derived from theoretical models, and comparisons with observations of H2O masers, H2 emission, as well as other shocks tracers. We show the strong effect of magnetic fields on molecular shock structure, and elucidate the chemical changes induced by the shock heating and compression.

  16. Nonlinear waves and shocks in relativistic two-fluid hydrodynamics

    NASA Astrophysics Data System (ADS)

    Haim, L.; Gedalin, M.; Spitkovsky, A.; Krasnoselskikh, V.; Balikhin, M.

    2012-06-01

    Relativistic shocks are present in a number of objects where violent processes are accompanied by relativistic outflows of plasma. The magnetization parameter σ = B2/4πnmc2 of the ambient medium varies in wide range. Shocks with low σ are expected to substantially enhance the magnetic fields in the shock front. In non-relativistic shocks the magnetic compression is limited by nonlinear effects related to the deceleration of flow. Two-fluid analysis of perpendicular relativistic shocks shows that the nonlinearities are suppressed for σ<<1 and the magnetic field reaches nearly equipartition values when the magnetic energy density is of the order of the ion energy density, Beq2 ~ 4πnmic2γ. A large cross-shock potential eφ/mic2γ0 ~ B2/Beq2 develops across the electron-ion shock front. This potential is responsible for electron energization.

  17. Compaction by impact of unconsolidated lunar fines

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.

    1975-01-01

    New Hugoniot and release adiabat data for 1.8 g/cu cm lunar fines in the approximately 2 to 70 kbar range demonstrate that upon shock compression intrinsic crystal density (approximately 3.1 g/cu cm) is achieved under shock stress of 15 to 20 kbar. Release adiabat determinations indicate that measurable irreversible compaction occurs upon achieving shock pressures above approximately 4 kbar. For shocks in the approximately 7 to 15 kbar range, the inferred post-shock specific volumes observed decrease nearly linearly with increasing peak shock pressures. Upon shocking to approximately 15 kbar the post-shock density is approximately that of the intrinsic minerals. If the present data are taken to be representative of the response to impact of unconsolidated regolith material on the moon, it is inferred that the formation of appreciable quantities of soil breccia can be associated with the impact of meteoroids or ejecta at speeds as low as approximately 1 km/sec.

  18. A shock absorber model for structure-borne noise analyses

    NASA Astrophysics Data System (ADS)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  19. Note: A table-top blast driven shock tube

    NASA Astrophysics Data System (ADS)

    Courtney, Michael W.; Courtney, Amy C.

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  20. Normal- and oblique-shock flow parameters in equilibrium air including attached-shock solutions for surfaces at angles of attack, sweep, and dihedral

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Souders, S. W.

    1975-01-01

    Normal- and oblique-shock flow parameters for air in thermochemical equilibrium are tabulated as a function of shock angle for altitudes ranging from 15.24 km to 91.44 km in increments of 7.62 km at selected hypersonic speeds. Post-shock parameters tabulated include flow-deflection angle, velocity, Mach number, compressibility factor, isentropic exponent, viscosity, Reynolds number, entropy difference, and static pressure, temperature, density, and enthalpy ratios across the shock. A procedure is presented for obtaining oblique-shock flow properties in equilibrium air on surfaces at various angles of attack, sweep, and dihedral by use of the two-dimensional tabulations. Plots of the flow parameters against flow-deflection angle are presented at altitudes of 30.48, 60.96, and 91.44 km for various stream velocities.

  1. Note: A table-top blast driven shock tube.

    PubMed

    Courtney, Michael W; Courtney, Amy C

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  2. Converging shock wave focusing and interaction with a target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitishinskiy, M.; Efimov, S.; Antonov, O.

    2016-04-15

    Converging shock waves in liquids can be used efficiently in the research of the extreme state of matter and in various applications. In this paper, the recent results related to the interaction of a shock wave with plasma preliminarily formed in the vicinity of the shock wave convergence are presented. The shock wave is produced by the underwater electrical explosion of a spherical wire array. The plasma is generated prior to the shock wave's arrival by a low-pressure gas discharge inside a quartz capillary placed at the equatorial plane of the array. Analysis of the Stark broadening of H{sub α}more » and H{sub β} spectral lines and line-to-continuum ratio, combined with the ratio of the relative intensities of carbon C III/C II and silicon Si III/Si II lines, were used to determine the plasma density and temperature evolution. It was found that during the first ∼200 ns with respect to the beginning of the plasma compression by the shock wave and when the spectral lines are resolved, the plasma density increases from 2 × 10{sup 17 }cm{sup −3} to 5 × 10{sup 17 }cm{sup −3}, while the temperature remains at the same value of 3–4 eV. Further, following the model of an adiabatically imploding capillary, the plasma density increases >10{sup 19 }cm{sup −3}, leading to the continuum spectra obtained experimentally, and the plasma temperature >30 eV at radii of compression of ≤20 μm. The data obtained indicate that the shock wave generated by the underwater electrical explosion of a spherical wire array retains its uniformity during the main part of its convergence.« less

  3. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.

    PubMed

    Zhou, Tingting; Song, Huajie; Liu, Yi; Huang, Fenglei

    2014-07-21

    To gain an atomistic-level understanding of the thermal and chemical responses of condensed energetic materials under thermal shock, we developed a thermal shock reactive dynamics (TS-RD) computational protocol using molecular dynamics simulation coupled with ReaxFF force field. β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) was selected as a a target explosive due to its wide usage in the military and industry. The results show that a thermal shock initiated by a large temperature gradient between the "hot" region and the "cold" region results in thermal expansion of the particles and induces a thermal-mechanical wave propagating back and forth in the system with an averaged velocity of 3.32 km s(-1). Heat propagating along the direction of thermal shock leads to a temperature increment of the system and thus chemical reaction initiation. Applying a continuum reactive heat conduction model combined with the temperature distribution obtained from the RD simulation, a heat conduction coefficient is derived as 0.80 W m(-1) K(-1). The chemical reaction mechanisms during thermal shock were analyzed, showing that the reaction is triggered by N-NO2 bond breaking followed by HONO elimination and ring fission. The propagation rates of the reaction front and reaction center are obtained to be 0.069 and 0.038 km s(-1), based on the time and spatial distribution of NO2. The pressure effect on the thermal shock was also investigated by employing uniaxial compression before the thermal shock. We find that compression significantly accelerates thermal-mechanical wave propagation and heat conduction, resulting in higher temperature and more excited molecules and thus earlier initiation and faster propagation of chemical reactions.

  4. FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK USING THE THREE DIMENSIONAL METHOD OF CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING

    NASA Technical Reports Server (NTRS)

    Bishop, A. R.

    1994-01-01

    This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters used, solution planes, and a description of the shock waves. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series machine with a central memory requirement of 110K (octal) of 60 bit words when it is overlayed. This flow analysis program was developed in 1978.

  5. Performance of the new ACR/EULAR classification criteria for systemic sclerosis in clinical practice.

    PubMed

    Jordan, Suzana; Maurer, Britta; Toniolo, Martin; Michel, Beat; Distler, Oliver

    2015-08-01

    The preliminary classification criteria for SSc lack sensitivity for mild/early SSc patients, therefore, the new ACR/EULAR classification criteria for SSc were developed. The objective of this study was to evaluate the performance of the new classification criteria for SSc in clinical practice in a cohort of mild/early patients. Consecutive patients with a clinical diagnosis of SSc, based on expert opinion, were prospectively recruited and assessed according to the EULAR Scleroderma Trials and Research group (EUSTAR) and very early diagnosis of SSc (VEDOSS) recommendations. In some patients, missing values were retrieved retrospectively from the patient's records. Patients were grouped into established SSc (fulfilling the old ACR criteria) and mild/early SSc (not fulfilling the old ACR criteria). The new ACR/EULAR criteria were applied to all patients. Of the 304 patients available for the final analysis, 162/304 (53.3%) had established SSc and 142/304 (46.7%) had mild/early SSc. All 162 established SSc patients fulfilled the new ACR/EULAR classification criteria. The remaining 142 patients had mild/early SSc. Eighty of these 142 patients (56.3%) fulfilled the new ACR/EULAR classification criteria. Patients with mild/early SSc not fulfilling the new classification criteria were most often suffering from RP, had SSc-characteristic autoantibodies and had an SSc pattern on nailfold capillaroscopy. Taken together, the sensitivity of the new ACR/EULAR classification criteria for the overall cohort was 242/304 (79.6%) compared with 162/304 (53.3%) for the ACR criteria. In this cohort with a focus on mild/early SSc, the new ACR/EULAR classification criteria showed higher sensitivity and classified more patients as definite SSc patients than the ACR criteria. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Field-scale application of spent sulfidic caustic as a source of alternative electron donor for autotrophic denitrification.

    PubMed

    Lee, Jae-Ho; Park, Jeung-Jin; Choi, Gi-Choong; Byun, Im-Gyu; Park, Tae-Joo; Lee, Tae-Ho

    2013-01-01

    Biological reuse of spent sulfidic caustic (SSC) originating from oil refineries is a promising method for the petrochemical industry because of low handling cost. SSC typically contains high concentrations of sulfur, with the most dominant sulfur compounds being sulfide (S(2-)). SSC is also characterized by a high pH and elevated alkalinity up to 5-15% by weight. Because of these characteristics, SSC can be used for denitrification of NO3(-)-N in the biological nitrogen removal process as both the electron donor and buffering agent in sulfur-utilizing autotrophic denitrification. In this study, two kinds of SSC (SSC I, SSC II) produced from two petrochemical companies were used for autotrophic denitrification in a field-scale wastewater treatment plant (WWTP). The effluent total nitrogen (TN) concentration in this process was about 10.5 mg/L without any external carbon sources and the nitrification efficiency was low, about 93.0%, because of alkalinity deficiency in the influent. The injection of SSC I, but not SSC II, promoted nitrification efficiency, which was attributed to the difference in the NaOH/S ratio between SSC I and II. SSC was injected based on sulfide concentration of SSC required to denitrify NO3(-)-N in the WWTP. SSC I had higher NaOH/S than SSC II and thus could supply more alkalinity for nitrification than SSC II. On the other hand, additional TN removal of about 9.0% was achieved with the injection of both SSCs. However, denitrification efficiency was not proportionally increased with increasing SSC injection because of NO3(-)-N deficiency in the anoxic tank due to the limited capacity of the recycling pump. For the same reason, sulfate concentration, which is the end product of sulfur-utilizing autotrophic denitrificaiton in the effluent, was also not increased with increasing SSC injection.

  7. Statistical analysis of solar events associated with SSC over year of solar maximum during cycle 23: 2. Characterisation on the Sun-Earth path - Geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Cornilleau-Wehrlin, N.; Bocchialini, K.; Menvielle, M.; Fontaine, D.; Grison, B.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.; Chambodut, A.

    2017-12-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, magnetic field polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach ; for instance all the 12 well identified Magnetic Clouds of 2002 give rise to SSCs.

  8. Experimental investigation of starting characteristics and wave propagation from a shallow open cavity and its acoustic emission at supersonic speed

    NASA Astrophysics Data System (ADS)

    Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo

    2018-01-01

    Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.

  9. Shock Response of Lightweight Adobe Masonry

    NASA Astrophysics Data System (ADS)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-06-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  10. Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading

    NASA Astrophysics Data System (ADS)

    Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis

    2015-09-01

    The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.

  11. Cardiorespiratory interactions and blood flow generation during cardiac arrest and other states of low blood flow.

    PubMed

    Sigurdsson, Gardar; Yannopoulos, Demetris; McKnite, Scott H; Lurie, Keith G

    2003-06-01

    Recent advances in cardiopulmonary resuscitation have shed light on the importance of cardiorespiratory interactions during shock and cardiac arrest. This review focuses on recently published studies that evaluate factors that determine preload during chest compression, methods that can augment preload, and the detrimental effects of hyperventilation and interrupting chest compressions. Refilling of the ventricles, so-called ventricular preload, is diminished during cardiovascular collapse and resuscitation from cardiac arrest. In light of the potential detrimental effects and challenges of large-volume fluid resuscitations, other methods have increasing importance. During cardiac arrest, active decompression of the chest and impedance of inspiratory airflow during the recoil of the chest work by increasing negative intrathoracic pressure and, hence, increase refilling of the ventricles and increase cardiac preload, with improvement in survival. Conversely, increased frequency of ventilation has detrimental effects on coronary perfusion pressure and survival rates in cardiac arrest and severe shock. Prolonged interruption of chest compressions for delivering single-rescuer ventilation or analyzing rhythm before shock delivery is associated with decreased survival rate. Cardiorespiratory interactions are of profound importance in states of cardiovascular collapse in which increased negative intrathoracic pressure during decompression of the chest has a favorable effect and increased intrathoracic pressure with ventilation has a detrimental effect on survival rate.

  12. Shock Response of Lightweight Adobe Masonry

    NASA Astrophysics Data System (ADS)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-04-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  13. Shock Compression Response of Calcium Fluoride (CaF2)

    NASA Astrophysics Data System (ADS)

    Root, Seth

    2017-06-01

    The fluorite crystal structure is a textbook lattice that is observed for many systems, such as CaF2, Mg2 Si, and CeO2. Specifically, CaF2 is a useful material for studying the fluorite system because it is readily available as a single crystal. Under static compression, CaF2 is known to have at least three solid phases: fluorite, cotunnite, and a Ni2 In phase. Along the Hugoniot CaF2 undergoes a fluorite to cotunnite phase transition, however, at higher shock pressures it is unknown whether CaF2 undergoes another solid phase transition or melts directly from the cotunnite phase. In this work, we conducted planar shock compression experiments on CaF2 using Sandia's Z-machine and a two-stage light gun up to 900 GPa. In addition, we use density functional theory (DFT) based quantum molecular dynamics (QMD) simulations to provide insight into the CaF2 state along the Hugoniot. In collaboration with: Michael Desjarlais, Ray Lemke, Patricia Kalita, Scott Alexander, Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850.

  14. Shock wave propagation in a magnetic flux tube

    NASA Astrophysics Data System (ADS)

    Ferriz-Mas, A.; Moreno-Insertis, F.

    1992-12-01

    The propagation of a shock wave in a magnetic flux tube is studied within the framework of the Brinkley-Kirkwood theory adapted to a radiating gas. Simplified thermodynamic paths along which the compressed plasma returns to its initial state are considered. It is assumed that the undisturbed medium is uniform and that the flux tube is optically thin. The shock waves investigated, which are described with the aid of the thin flux-tube approximation, are essentially slow magnetohydrodynamic shocks modified by the constraint of lateral pressure balance between the flux tube and the surrounding field-free fluid; the confining external pressure must be balanced by the internal gas plus magnetic pressures. Exact analytical solutions giving the evolution of the shock wave are obtained for the case of weak shocks.

  15. Lightweight armor system

    DOEpatents

    Chu, Henry S; Langhorst, Benjamin R; Bakas, Michael P; Thinnes, Gary L

    2013-02-26

    The disclosure provides a shock absorbing layer comprised of one or more shock absorbing cells, where a shock absorbing cell is comprised of a cell interior volume containing a plurality of hydrogel particles and a free volume, and where the cell interior volume is surrounded by a containing layer. The containing layer has a permeability such that the hydrogel particles when swollen remain at least partially within the cell interior volume when subjected to a design shock pressure wave, allowing for force relaxation through hydrogel compression response. Additionally, the permeability allows for the flow of exuded free water, further dissipating wave energy. In an embodiment, a plurality of shock absorbing cells is combined with a penetration resistant material to mitigate the transmitted shock wave generated by an elastic precursor wave in the penetration resistant material.

  16. Molecular-dynamic simulations of the thermophysical properties of hexanitrohexaazaisowurtzitane single crystal at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.

    2017-11-01

    Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.

  17. On the finite length-scale of compressible shock-waves formed in free-surface flows of dry granular materials down a slope

    NASA Astrophysics Data System (ADS)

    Faug, Thierry

    2017-04-01

    The Rankine-Hugoniot jump conditions traditionally describe the theoretical relationship between the equilibrium state on both sides of a shock-wave. They are based on the crucial assumption that the length-scale needed to adjust the equilibrium state upstream of the shock to downstream of it is too small to be of significance to the problem. They are often used with success to describe the shock-waves in a number of applications found in both fluid and solid mechanics. However, the relations based on jump conditions at singular surfaces may fail to capture some features of the shock-waves formed in complex materials, such as granular matter. This study addresses the particular problem of compressible shock-waves formed in flows of dry granular materials down a slope. This problem is for instance relevant to full-scale geophysical granular flows in interaction with natural obstacles or man-made structures, such as topographical obstacles or mitigation dams respectively. Steady-state jumps formed in granular flows and travelling shock-waves produced at the impact of a granular avalanche-flow with a rigid wall are considered. For both situations, new analytical relations which do not consider that the granular shock-wave shrinks into a singular surface are derived, by using balance equations in their depth-averaged forms for mass and momentum. However, these relations need additional inputs that are closure relations for the size and the shape of the shock-wave, and a relevant constitutive friction law. Small-scale laboratory tests and numerical simulations based on the discrete element method are shortly presented and used to infer crucial information needed for the closure relations. This allows testing some predictive aspects of the simple analytical approach proposed for both steady-state and travelling shock-waves formed in free-surface flows of dry granular materials down a slope.

  18. Esophageal Motor Abnormalities in Patients With Scleroderma: Heterogeneity, Risk Factors, and Effects on Quality of Life.

    PubMed

    Crowell, Michael D; Umar, Sarah B; Griffing, W Leroy; DiBaise, John K; Lacy, Brian E; Vela, Marcelo F

    2017-02-01

    Systemic scleroderma (SSc) is associated with esophageal aperistalsis and hypotensive esophagogastric junction pressure, although there could be a gradation in esophageal motor dysfunction. We characterized esophageal motor function by high-resolution esophageal manometry (HRM) and assessed associations between SSc severity, health-related quality of life (HRQOL), and HRM findings in patients. We performed a prospective study of 200 patients with SSc and 102 patients without SSc (controls) who underwent HRM at Mayo Clinic Arizona from May 2006 through January 2015. We used data on integrated relaxation pressure, distal contractile integral, and distal latency to classify esophageal motility disorders according to the Chicago Classification v 3.0. A subset of subjects (n = 122) completed SSc-specific gastrointestinal symptom and HRQOL questionnaires. HRM findings, symptoms, and HRQOL data were compared among diffuse SSc, limited SSc, and control subjects. Categorical variables were compared by using the χ 2 or Fisher exact test; continuous variables were compared by using Mann-Whitney or Kruskal-Wallis test. Multivariable logistic regression was used to assess the association between severity of esophageal dysmotility and baseline clinical factors. Among patients with SSc, 83 had diffuse SSc (42%), and 117 had limited SSc (58%). Absent contractility was more frequent in patients with SSc than in controls (56% vs 13%; P < .001). HRM findings varied among the patients; absent contractility (56%) was the most frequent diagnosis, followed by normal motility (26%) and ineffective esophageal motility (10%). Classic scleroderma esophagus (esophagogastric junction pressure with absent contractility) was only observed in 33% of patients (34% with diffuse SSc vs 32% limited SSc) (P = .880). Severe esophageal dysmotility was associated with disease duration, interstitial lung disease, and higher gastrointestinal symptom scores (P < .001). HRQOL was decreased in patients with SSc and severe esophageal dysmotility. Although severe dysmotility is more common in patients with SSc than in controls, we observed the so-called scleroderma esophagus in only one-third of patients with SSc. Esophageal motor function appears to be heterogeneous in SSc. Esophageal dysmotility reduces HRQOL in patients with SSc. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Clinical pattern of systemic sclerosis in Central Ukraine. Association between clinical manifestations of systemic sclerosis and hypertension.

    PubMed

    Semenov, Viktor; Kuryata, Olexandr; Lysunets, Tatiana

    2018-01-01

    Systemic sclerosis (SSc) is a rare disease of connective tissue, manifestations of which may vary in different geographical areas. We aimed to describe the clinical portrait of patients with SSc in Dnipropetrovsk region and to investigate how initial clinical and laboratory characteristics are connected with the presence of hypertension in SSc onset. Patients were enrolled to this study from the registry of SSc patients, established in the Rheumatology Department, Mechnikov Dnipropetrovsk Regional Clinic, Dnipro. This registry contains histories of new cases of SSc from 1993 to 2014. Patients are followed-up and receive treatment according to EULAR and local standards. Diagnosis of SSc was based on ACR and EULAR Criteria for systemic Sclerosis. Two patients developed scleroderma renal crisis during follow-up. This report is a cross-sectional study. We analysed only data of the first visit to a rheumatologist. In total 148 patients (median age [IQR] - 47 [40; 52] years) fulfilled the inclusion criteria. Male/female ratio was 1 : 20.1. The most frequent clinical signs were Raynaud's phenomenon and arthritis. The prevalence of skin lesion in dcSSc patients was twice as high as in lcSSc patients. Pulmonary fibrosis occurred significantly more commonly in dcSSc patients. Hypertension occurred in 26-33% in both groups. Patients with hypertension at the SSc onset were seven years older than normotensive patients. More hypertensive patients were classified as lcSSc. Mean GFR was dramatically lower in hypertensive patients. The most common clinical form in our study was diffuse cutaneous subset of SSc. Hypertension in patients with SSc may be associated with local cutaneous subset of SSc and renal impairment. The strongest predictors of clinical form of SSc are signs of fibrosis (skin lesion and pulmonary fibrosis) and inflammation (arthritis and elevated CRP).

  20. Stennis Space Center Environmental Geographic Information System

    NASA Technical Reports Server (NTRS)

    Lovely, Janette; Cohan, Tyrus

    2000-01-01

    As NASA's lead center for rocket propulsion testing, the John C. Stennis Space Center (SSC) monitors and assesses the off-site impacts of such testing through its Environmental Office (SSC-EO) using acoustical models and ancillary data. The SSC-EO has developed a geographical database, called the SSC Environmental Geographic Information System (SSC-EGIS), that covers an eight-county area bordering the NASA facility. Through the SSC-EGIS, the Enivronmental Office inventories, assesses, and manages the nearly 139,000 acres that comprise Stennis Space Center and its surrounding acoustical buffer zone. The SSC-EGIS contains in-house data as well as a wide range of data obtained from outside sources, including private agencies and local, county, state, and U.S. government agencies. The database comprises cadastral/geodetic, hydrology, infrastructure, geo-political, physical geography, and socio-economic vector and raster layers. The imagery contained in the database is varied, including low-resolution imagery, such as Landsat TM and SPOT; high-resolution imagery, such as IKONOS and AVIRIS; and aerial photographs. The SSC-EGIS has been an integral part of several major projects and the model upon which similar EGIS's will be developed for other NASA facilities. The Corps of Engineers utilized the SSC-EGIS in a plan to establish wetland mitigation sites within the SSC buffer zone. Mississippi State University employed the SSC-EGIS in a preliminary study to evaluate public access points within the buffer zone. The SSC-EO has also expressly used the SSC-EGIS to assess noise pollution modeling, land management/wetland mitigation assessment, environmental hazards mapping, and protected areas mapping for archaeological sites and for threatened and endangered species habitats. The SSC-EO has several active and planned projects that will also make use of the SSC-EGIS during this and the coming fiscal year.

Top