Sample records for shock instability development

  1. Flow morphologies after oblique shock acceelration of a cylindrical density interface

    NASA Astrophysics Data System (ADS)

    Wayne, Patrick; Simons, Dylan; Olmstead, Dell; Truman, C. Randall; Vorobieff, Peter; Kumar, Sanjay

    2015-11-01

    We present an experimental study of instabilities developing after an oblique shock interaction with a heavy gas column. The heavy gas in our experiments is sulfur hexafluoride infused with 11% acetone by mass. A misalignment of the pressure and density gradients results in three-dimensional vorticity deposition on the gaseous interface, dtriggering the onset of Richtmyer-Meshkov instability (RMI). Shortly thereafter, other instabilities develop along the interface, including a shear-driven instability that presents itself on the leading (with respect to the shock) and trailing edges of the column. This leads to the development of rows of co-rotating ``cat's eye'' vortices, characteristic of Kelvin-Helmholtz instability (KHI). Characteristics of the KHI, such as growth rate and wavelength, depend on several factors including the Mach number of the shock, the shock tube angle of inclination α (equal to the angle between the axis of the column and the plane of the shock), and the Atwood number. This work is supported by the US National Nuclear Security Agency (NNSA) via grant DE-NA0002913.

  2. Shock tube Multiphase Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  3. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  4. Magnetohydrodynamic Simulations of the Wiggle Instability in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Tanaka, Minoru; Wada, Keiichi; Machida, Mami; Matsumoto, Ryoji; Miyaji, Shigeki

    2005-09-01

    We studied the stability of galactic spiral shocks through two dimensional global magnetohydrodynamic simulations. Recently, Wada & Koda (2003) showed, using global hydrodynamic simulations, that galactic gas flows behind a spiral shock becomes unstable against a perturbation parallel to the shock front and form spur-like density structures. They attributed the origin of this wiggle instability to the Kelvin-Helmholtz (K-H) instability triggered by the acceleration of the gas behind the shock. We carried out global simulations including galactic magnetic fields. The initial magnetic field is assumed to be either uniform or purely toroidal. We found that although the magnetic field reduces the growth rate of the K-H instability, wiggle instability develops even in galaxies with μG magnetic fields. We also present the results of local simulations to demonstrate the dependence of the growth rate of the instability with the wavelength. The interval of spurs is determined by the most unstable wavelength of the wiggle instability.

  5. Ablative Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Laser-Accelerated Colliding Foils

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Weaver, J.; Obenschain, S. P.; Oh, J.; Schmitt, A. J.; Velikovich, A. L.; Zalesak, S. T.; Gardner, J. H.; Harding, E. C.

    2008-11-01

    In our experiments done on the Nike KrF laser, we study instability growth at shock-decelerated interfaces in planar colliding-foil experiments. We use streaked monochromatic (1.86 keV) x-ray face-on imaging diagnostics to measure the areal mass modulation growth caused by the instability. Higher x-ray energies up to 5.25 keV are used to follow the shock propagation as well as the 1D dynamics of the collision. While a laser-driven foil is accelerated towards the stationary low-density foam layer, an ablative RT instability develops. Having reached a high velocity, the foil hits the foam layer. The impact generates strong shocks in the plastic and in the foam. The reflected shock wave re-shocks the ablation front, its acceleration stops, and so does the observed RT growth. This is followed by areal mass oscillations due to the ablative RM instability and feedout mechanisms, of which the latter dominates.

  6. Small-Amplitude Richtmyer-Meshkov Instability at a Re-Shocked Material Interface

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Zalesak, S. T.; Metzler, N.; Aglitskiy, Y.

    2008-11-01

    We report an exact small-amplitude theory of the Richtmyer-Meshkov (RM) instability developing at a re-shocked material interface and favorably compare it to our simulations. The re-shock is seen to restart the classical RM instability growth from a larger initial amplitude, at a higher rate, and change its direction from heavy-to-light to light-to heavy and vice versa. Similarly, if a Rayleigh-Taylor (RT) unstable interface is strongly re-shocked from either the heavy or light fluid side, the fast RM growth is triggered. If a RT-unstable ablation front is re-shocked, it exhibits the ablative RM-instability, that is, low-frequency decaying oscillations [V. N. Goncharov, PRL 82, 2091 (1998); Y. Aglitskiy et al., PRL 87, 265001 (2001)]. This is predicted for colliding foil experiments on the Nike laser, where a RT-unstable ablation front is re-shocked by the strong shock wave produced in the collision of the laser-driven plastic foil with a stationary foam layer. The re-shock stops the acceleration and switches the perturbation evolution from the ablative RT to the ablative RM regime.

  7. Evaluation of Euler fluxes by a high-order CFD scheme: shock instability

    NASA Astrophysics Data System (ADS)

    Tu, Guohua; Zhao, Xiaohui; Mao, Meiliang; Chen, Jianqiang; Deng, Xiaogang; Liu, Huayong

    2014-05-01

    The construction of Euler fluxes is an important step in shock-capturing/upwind schemes. It is well known that unsuitable fluxes are responsible for many shock anomalies, such as the carbuncle phenomenon. Three kinds of flux vector splittings (FVSs) as well as three kinds of flux difference splittings (FDSs) are evaluated for the shock instability by a fifth-order weighted compact nonlinear scheme. The three FVSs are Steger-Warming splitting, van Leer splitting and kinetic flux vector splitting (KFVS). The three FDSs are Roe's splitting, advection upstream splitting method (AUSM) type splitting and Harten-Lax-van Leer (HLL) type splitting. Numerical results indicate that FVSs and high dissipative FDSs undergo a relative lower risk on the shock instability than that of low dissipative FDSs. However, none of the fluxes evaluated in the present study can entirely avoid the shock instability. Generally, the shock instability may be caused by any of the following factors: low dissipation, high Mach number, unsuitable grid distribution, large grid aspect ratio, and the relative shock-internal flow state (or position) between upstream and downstream shock waves. It comes out that the most important factor is the relative shock-internal state. If the shock-internal state is closer to the downstream state, the computation is at higher susceptibility to the shock instability. Wall-normal grid distribution has a greater influence on the shock instability than wall-azimuthal grid distribution because wall-normal grids directly impact on the shock-internal position. High shock intensity poses a high risk on the shock instability, but its influence is not as much as the shock-internal state. Large grid aspect ratio is also a source of the shock instability. Some results of a second-order scheme and a first-order scheme are also given. The comparison between the high-order scheme and the two low-order schemes indicates that high-order schemes are at a higher risk of the shock instability. Adding an entropy fix is very helpful in suppressing the shock instability for the two low-order schemes. When the high-order scheme is used, the entropy fix still works well for Roe's flux, but its effect on the Steger-Warming flux is trivial and not much clear.

  8. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scalesmore » that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.« less

  9. Experimental study of z-pinch driven radiative shocks in low density gases

    NASA Astrophysics Data System (ADS)

    Skidmore, Jonathan; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Bland, S. N.; Burdiak, G.; Chittenden, J. P.; de Grouchy, P.; Hall, G. N.; Pickworth, L.; Suttle, L.; Bennett, M.; Ciardi, A.

    2012-10-01

    Results of experiments performed on MAGPIE pulsed power facility (1.4MA, 250ns) will be presented. Shocks with velocities of 50-70km/s are driven in Ar, Xe and He gases at density ˜10-5g/cc using radial foil z-pinch configuration [1]. Measurements of the structure of the shocks obtained with laser probing will be presented and observations of the development of instabilities will be discussed. It was found that the structure of the shocks and the development of instabilities strongly depend on the rate of radiative cooling, increasing for gases with higher atomic numbers.[4pt] [1] F. Suzuki-Vidal et al., PoP 19, 022708 (2012)

  10. Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob

    2016-11-01

    Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.

  11. Electrostatic and magnetic instabilities in the transition layer of a collisionless weakly relativistic pair shock

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Bret, A.

    2018-01-01

    Energetic electromagnetic emissions by astrophysical jets like those that are launched during the collapse of a massive star and trigger gamma-ray bursts are partially attributed to relativistic internal shocks. The shocks are mediated in the collisionless plasma of such jets by the filamentation instability of counterstreaming particle beams. The filamentation instability grows fastest only if the beams move at a relativistic relative speed. We model here with a particle-in-cell simulation, the collision of two cold pair clouds at the speed c/2 (c: speed of light). We demonstrate that the two-stream instability outgrows the filamentation instability for this speed and is thus responsible for the shock formation. The incomplete thermalization of the upstream plasma by its quasi-electrostatic waves allows other instabilities to grow. A shock transition layer forms, in which a filamentation instability modulates the plasma far upstream of the shock. The inflowing upstream plasma is progressively heated by a two-stream instability closer to the shock and compressed to the expected downstream density by the Weibel instability. The strong magnetic field due to the latter is confined to a layer 10 electron skin depths wide.

  12. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.

    PubMed

    Sirmas, N; Radulescu, M I

    2015-02-01

    Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston-driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic, with a constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density nonuniformities forming in the relaxation region. The wavelength of these fingers is found to be comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtained analytically and numerically. Analysis of these curves indicates that the instability is not of the Bethe-Zeldovich-Thompson or D'yakov-Kontorovich type. Analysis of the shock relaxation rates and rates for clustering in a convected fluid element with the same thermodynamic history ruled out the clustering instability of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the onset of instability occurs during repressurization of the gas following the initial relaxation of the medium behind the lead shock. This repressurization gives rise to internal pressure waves in the presence of strong density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating Richtmyer-Meshkov type, relying on the action of the inner pressure wave development during the transient relaxation.

  13. shock driven instability of a multi-phase particle-gas system

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob; Black, Wolfgang; Dahal, Jeevan; Morgan, Brandon

    2015-11-01

    A computational study of a shock driven instability of a multiphse particle-gas system is presented. This instability can evolve in a similar fashion to the Richtmyer-Meshkov (RM) instability, but has addition parameters to be considered. Particle relaxation times, and density differences of the gas and particle-gas system can be adjusted to produce results which are different from the classical RM instability. We will show simulation results from the Ares code, developed at Lawrence Livermore National Laboratory, which uses a particle-in-cell approach to study the effects of the particle-gas system parameters. Mixing parameters will be presented to highlight the suppression of circulation and gas mixing by the particle phase.

  14. On numerical instabilities of Godunov-type schemes for strong shocks

    NASA Astrophysics Data System (ADS)

    Xie, Wenjia; Li, Wei; Li, Hua; Tian, Zhengyu; Pan, Sha

    2017-12-01

    It is well known that low diffusion Riemann solvers with minimal smearing on contact and shear waves are vulnerable to shock instability problems, including the carbuncle phenomenon. In the present study, we concentrate on exploring where the instability grows out and how the dissipation inherent in Riemann solvers affects the unstable behaviors. With the help of numerical experiments and a linearized analysis method, it has been found that the shock instability is strongly related to the unstable modes of intermediate states inside the shock structure. The consistency of mass flux across the normal shock is needed for a Riemann solver to capture strong shocks stably. The famous carbuncle phenomenon is interpreted as the consequence of the inconsistency of mass flux across the normal shock for a low diffusion Riemann solver. Based on the results of numerical experiments and the linearized analysis, a robust Godunov-type scheme with a simple cure for the shock instability is suggested. With only the dissipation corresponding to shear waves introduced in the vicinity of strong shocks, the instability problem is circumvented. Numerical results of several carefully chosen strong shock wave problems are investigated to demonstrate the robustness of the proposed scheme.

  15. Development of solar wind shock models with tensor plasma pressure for data analysis

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.

    1975-01-01

    The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged.

  16. Surface instabilities in shock loaded granular media

    NASA Astrophysics Data System (ADS)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.

  17. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    NASA Astrophysics Data System (ADS)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  18. Taylor instability in the shock layer on a Jovian atmosphere entry probe.

    NASA Technical Reports Server (NTRS)

    Compton, D. L.

    1972-01-01

    Investigation of the Taylor instability relative to the dynamical instability whose presence in the shock layer on a spacecraft entering the Jovian atmosphere is to be expected because of the difference in velocity across the shear layer. Presented calculations show that the Taylor instability at the interface between shock-heated freestream gas and ablation products is inconsequential in comparison to the shear layer instability.

  19. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Metzler, N.; Oh, J.

    2012-10-01

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. We observed a transition between two qualitatively distinct types of perturbation evolution: jet formation at low shock pressure and areal mass oscillations at high shock pressure, which correspond respectively to high and low values of effective adiabatic index. The experiments were done on the KrF Nike laser facility with laser wavelength 248 nm and a 4 ns pulse. We varied the number of beams overlapped on the plastic target to change the ablative pressure driving the shock wave through the target: 36 beams produce pressure of ˜8 Mbar, whereas a single beam irradiation reduces the pressure to ˜0.7 Mbar. With the help of side-on monochromatic x-ray imaging, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed at sub-megabar shock pressure. As the shock pressure exceeds 1 Mbar, instead of jet formation an oscillatory rippled expansion wave is observed, followed by the ``feedout'' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  20. The microphysics of collisionless shock waves.

    PubMed

    Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  1. The microphysics of collisionless shock waves

    NASA Astrophysics Data System (ADS)

    Marcowith, A.; Bret, A.; Bykov, A.; Dieckman, M. E.; O'C Drury, L.; Lembège, B.; Lemoine, M.; Morlino, G.; Murphy, G.; Pelletier, G.; Plotnikov, I.; Reville, B.; Riquelme, M.; Sironi, L.; Stockem Novo, A.

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  2. Simulations of Rayleigh Taylor Instabilities in the presence of a Strong Radiative shock

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Shvarts, Dov; Drake, R. P.

    2016-10-01

    Recent Supernova Rayleigh Taylor experiments on the National Ignition Facility (NIF) are relevant to the evolution of core-collapse supernovae in which red supergiant stars explode. Here we report simulations of these experiments using the CRASH code. The CRASH code, developed at the University of Michigan to design and analyze high-energy-density experiments, is an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction. We explore two cases, one in which the shock is strongly radiative, and another with negligible radiation. The experiments in all cases produced structures at embedded interfaces by the Rayleigh Taylor instability. The weaker shocked environment is cooler and the instability grows classically. The strongly radiative shock produces a warm environment near the instability, ablates the interface, and alters the growth. We compare the simulated results with the experimental data and attempt to explain the differences. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  3. Can the magnetic field in the Orion arm inhibit the growth of instabilities in the bow shock of Betelgeuse?

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Decin, L.; Meliani, Z.

    2014-01-01

    Context. Many evolved stars travel through space at supersonic velocities, which leads to the formation of bow shocks ahead of the star where the stellar wind collides with the interstellar medium (ISM). Herschel observations of the bow shock of α-Orionis show that the shock is almost free of instabilities, despite being, at least in theory, subject to both Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Aims: A possible explanation for the lack of instabilities lies in the presence of an interstellar magnetic field. We wish to investigate whether the magnetic field of the ISM in the Orion arm can inhibit the growth of instabilities in the bow shock of α-Orionis. Methods: We used the code MPI-AMRVAC to make magneto-hydrodynamic simulations of a circumstellar bow shock, using the wind parameters derived for α-Orionis and interstellar magnetic field strengths of B = 1.4, 3.0, and 5.0 μG, which fall within the boundaries of the observed magnetic field strength in the Orion arm of the Milky Way. Results: Our results show that even a relatively weak magnetic field in the ISM can suppress the growth of Rayleigh-Taylor and Kelvin-Helmholtz instabilities, which occur along the contact discontinuity between the shocked wind and the shocked ISM. Conclusions: The presence of even a weak magnetic field in the ISM effectively inhibits the growth of instabilities in the bow shock. This may explain the absence of such instabilities in the Herschel observations of α-Orionis. Appendix A and associated movies are available in electronic form at http://www.aanda.org

  4. Simulations of the Richtmyer-Meshkov Instability in a two-shock vertical shock tube

    NASA Astrophysics Data System (ADS)

    Ferguson, Kevin; Olson, Britton; Jacobs, Jeffrey

    2017-11-01

    Simulations of the Richtmyer-Meshkov Instability (RMI) in a new two-shock vertical shock tube configuration are presented. The simulations are performed using the ARES code at Lawrence-Livermore National Laboratory (LLNL). Two M=1.2 shock waves travel in opposing directions and impact an initially stationary interface formed by sulfur hexaflouride (SF6) and air. The delay between the two shocks is controlled to achieve a prescribed temporal separation in shock wave arrival time. Initial interface perturbations and diffusion profiles are generated in keeping with previously gathered experimental data. The effect of varying the inter-shock delay and initial perturbation structure on instability growth and mixing parameters is examined. Information on the design, construction, and testing of a new two-shock vertical shock tube are also presented.

  5. Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry

    NASA Astrophysics Data System (ADS)

    Toque, Nathalie

    1996-12-01

    This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.

  6. Detection of significant variation in acoustic output of an electromagnetic lithotriptor.

    PubMed

    Pishchalnikov, Yuri A; McAteer, James A; Vonderhaar, R Jason; Pishchalnikova, Irina V; Williams, James C; Evan, Andrew P

    2006-11-01

    We describe the observation of significant instability in the output of an electromagnetic lithotriptor. This instability had a form that was not detected by routine assessment, but rather was observed only by collecting many consecutive shock waves in nonstop regimen. A Dornier DoLi-50 lithotriptor used exclusively for basic research was tested and approved by the regional technician. This assessment included hydrophone measures at select power levels with the collection of about 25 shock waves per setting. Subsequent laboratory characterization used a fiberoptic hydrophone and storage oscilloscope for data acquisition. Waveforms were collected nonstop for hundreds of pulses. Output was typically stable for greater than 1,000 shock waves but substantial fluctuations in acoustic pressures were also observed. For example, output at power level 3 (mean peak positive acoustic pressure +/- SD normally 44 +/- 2 MPa) increased dramatically to greater than 50 MPa or decreased significantly to approximately 30 MPa for hundreds of shock waves. The cause of instability was eventually traced to a faulty lithotriptor power supply. Instability in lithotriptor acoustic output can occur and it may not be detected by routine assessment. Collecting waveforms in a nonstop regimen dramatically increases sampling size, improving the detection of instability. Had the instability that we observed occurred during patient treatment, the energy delivered may well have exceeded the planned dose. Since the potential for adverse effects in lithotripsy increases as the dose is increased, it would be valuable to develop ways to better monitor the acoustic output of lithotriptors.

  7. Parallel collisionless shocks forming in simulations of the LAPD experiment

    NASA Astrophysics Data System (ADS)

    Weidl, Martin S.; Jenko, Frank; Niemann, Chris; Winske, Dan

    2016-10-01

    Research on parallel collisionless shocks, most prominently occurring in the Earth's bow shock region, has so far been limited to satellite measurements and simulations. However, the formation of collisionless shocks depends on a wide range of parameters and scales, which can be accessed more easily in a laboratory experiment. Using a kJ-class laser, an ongoing experimental campaign at the Large Plasma Device (LAPD) at UCLA is expected to produce the first laboratory measurements of the formation of a parallel collisionless shock. We present hybrid kinetic/MHD simulations that show how beam instabilities in the background plasma can be driven by ablating carbon ions from a target, causing non-linear density oscillations which develop into a propagating shock front. The free-streaming carbon ions can excite both the resonant right-hand instability and the non-resonant firehose mode. We analyze their respective roles and discuss optimizing their growth rates to speed up the process of shock formation.

  8. The Wardle Instability in Interstellar Shocks. 2; Gas Temperture and Line Emission

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Stone, James M.

    1997-01-01

    We have modeled the gas temperature structure in unstable C-type shocks and obtained predictions for the resultant CO and H2 rotational line emissions, using numerical simulations of the Wardle instability. Our model for the thermal balance of the gas includes ion-neutral frictional heating; compressional heating; radiative cooling due to rotational and ro-vibrational transitions of the molecules CO, H2O, and H2; and gas-grain collisional cooling. We obtained results for the gas temperature distribution in-and H2 and CO line emission from-shocks of neutral Alfvenic Mach number 10 and velocity 20 or 40 km/ s in which the Wardle instability has saturated. Both two- and three-dimensional simulations were carried out for shocks in which the preshock magnetic field is perpendicular to the shock propagation direction, and a two-dimensional simulation was carried out for the case in which the magnetic field is obliquely oriented with respect to the shock propagation direction. Although the Wardle instability profoundly affects the density structure behind C-type shocks, most of the shock-excited molecular line emission is generated upstream of the region where the strongest effects of the instability are felt. Thus the Wardle instability has a relatively small effect on the overall gas temperature distribution in-and the emission-line spectrum from-C-type shocks, at least for the cases that we have considered. In none of the cases that we have considered thus far did any of the predicted emission-line luminosities change by more than a factor of 2.5, and in most cases the effects of instability were significantly smaller than that. Slightly larger changes in the line luminosities seem likely for three-dimensional simulations of oblique shocks, although such simulations have yet to be carried out and lie beyond the scope of this study. Given the typical uncertainties that are always present when model predictions are compared with real astronomical data, we conclude that Wardle instability does not imprint any clear observational signature on the shock-excited CO and H2 line strengths. This result justifies the use of one-dimensional steady shock models in the interpretation of observations of shock-excited line emission in regions of star formation. Our three-dimensional simulations of perpendicular shocks revealed the presence of warm filamentary structures that are aligned along the magnetic field, a result that is of possible relevance to models of water maser emission from C-type shocks.

  9. Internal Shocks in the Magnetic Reconnection Jet in Solar Flares: Multiple Fast Shocks Created by the Secondary Tearing Instability

    NASA Astrophysics Data System (ADS)

    Tanuma, S.; Shibata, K.

    2005-07-01

    Space solar missions such as Yohkoh and RHESSI observe the hard X- and gamma-ray emission from energetic electrons in impulsive solar flares. Their energization mechanism, however, is unknown. In this Letter, we suggest that the internal shocks are created in the reconnection jet and that they are possible sites of particle acceleration. We examine how magnetic reconnection creates the multiple shocks by performing two-dimensional resistive magnetohydrodynamic simulations. In this Letter, we use a very small grid to resolve the diffusion region. As a result, we find that the current sheet becomes thin due to the tearing instability, and it collapses to a Sweet-Parker sheet. The thin sheet becomes unstable to the secondary tearing instability. Fast reconnection starts by the onset of anomalous resistivity immediately after the secondary tearing instability. During the bursty, time-dependent magnetic reconnection, the secondary tearing instability continues in the diffusion region where the anomalous resistivity is enhanced. As a result, many weak shocks are created in the reconnection jet. This situation produces turbulent reconnection. We suggest that multiple fast shocks are created in the jet and that the energetic electrons can be accelerated by these shocks.

  10. Modeling and Laboratory Investigations of Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Grun, Jacob; Laming, J. Martin; Manka, Charles; Moore, Christopher; Jones, Ted; Tam, Daniel

    2001-10-01

    Supernova remnants are often inhomogeneous, with knots or clumps of material expanding in ambient plasma. This structure may be initiated by hydrodynamic instabilities occurring during the explosion, but it may plausibly be amplified by instabilities of the expanding shocks such as, for example, corrugation instabilities described by D’yakov in 1954, Vishniac in 1983, and observed in the laboratory by Grun et al. in 1991. Shock instability can occur when radiation lowers the effective adiabatic index of the gas. In view of the difficulty of modeling radiation in non-equilibrium plasmas, and the dependence of shock instabilities on such radiation, we are performing a laboratory experiment to study radiative shocks. The shocks are generated in a miniature, laser-driven shock tube. The gas density inside the tube at any instant in time is measured using time and space-resolved interferometry, and the emission spectrum of the gas is measured with time-resolved spectroscopy. We simulate the experiment with a 1D code that models time dependent post-shock ionization and non-equilibrium radiative cooling. S. P. D’yakov, Zhurnal Eksperimentalnoi Teoreticheskoi Fiziki 27, 288 (1954); see also section 90 in L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann 1987); E.T. Vishniac, Astrophys. J. 236, 880 (1983); J. Grun, et al., Phys. Rev. Lett., 66, 2738 (1991)

  11. Simultaneous measurements of concentration and velocity in the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Reese, Dan; Ames, Alex; Noble, Chris; Oakley, Jason; Rothamer, David; Bonazza, Riccardo

    2017-11-01

    The Richtmyer-Meshkov instability (RMI) is studied experimentally in the Wisconsin Shock Tube Laboratory (WiSTL) using a broadband, shear layer initial condition at the interface between a helium-acetone mixture and argon. This interface (Atwood number A=0.7) is accelerated by either a M=1.6 or M=2.2 planar shock wave, and the development of the RMI is investigated through simultaneous planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) measurements at the initial condition and four post-shock times. Three Reynolds stresses, the planar turbulent kinetic energy, the Taylor microscale are calculated from the concentration and velocity fields. The external Reynolds number is estimated from the Taylor scale and the velocity statistics. The results suggest that the flow transitions to fully developed turbulence by the third post-shock time for the high Mach number case, while it may not at the lower Mach number. The authors would like to acknowledge the support of the Department of Energy.

  12. Experiments and simulations of Richtmyer-Meshkov Instability with measured,volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Sewell, Everest; Ferguson, Kevin; Jacobs, Jeffrey; Greenough, Jeff; Krivets, Vitaliy

    2016-11-01

    We describe experiments of single-shock Richtmyer-Meskhov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbations play a major role in the evolution of RMI, and previous experimental efforts only capture a single plane of the initial condition. The method presented uses a rastered laser sheet to capture additional images throughout the depth of the initial condition immediately before the shock arrival time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation. Analysis of the initial perturbations is performed, and then used as initial conditions in simulations using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Experiments are presented and comparisons are made with simulation results.

  13. Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John B.; Avgoustopoulos, Constantine G.; Black, Wolfgang J.; Allen, Roy C.; McFarland, Jacob A.

    2018-06-01

    Shock-driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching applications in engineering and science such as high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase field is impulsively accelerated by a shock wave and evolves as a result of gradients in particle-gas momentum transfer. A new shock tube facility has been constructed to study the SDMI. Experiments were conducted to investigate liquid particle and multiphase effects in the SDMI. A multiphase cylindrical interface was created with water droplet laden air in our horizontal shock tube facility. The interface was accelerated by a Mach 1.66 shock wave, and its reflection from the end wall. The interface development was captured using laser illumination and a high-resolution CCD camera. Laser interferometry was used to determine the droplet size distribution. A particle filtration technique was used to determine mass loading within an interface and verify particle size distribution. The effects of particle number density, particle size, and a secondary acceleration (reshock) of the interface were noted. Particle number density effects were found comparable to Atwood number effects in the Richtmyer-Meshkov instability for small (˜ 1.7 {μ }m) droplets. Evaporation was observed to alter droplet sizes and number density, markedly after reshock. For large diameter droplets (˜ 10.7 {μ }m), diminished development was observed with larger droplets lagging far behind the interface. These lagging droplets were also observed to breakup after reshock into structured clusters of smaller droplets. Mixing width values were reported to quantify mixing effects seen in images.

  14. Potential for the Vishniac instability in ionizing shock waves propagating into cold gases

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Pasley, J.

    2018-05-01

    The Vishniac instability was posited as an instability that could affect supernova remnants in their late stage of evolution when subject to strong radiative cooling, which can drive the effective ratio of specific heats below 1.3. The potential importance of this instability to these astrophysical objects has motivated a number of laser-driven laboratory studies. However, the Vishniac instability is essentially a dynamical instability that should operate independently of whatever physical processes happen to reduce the ratio of specific heats. In this paper, we examine the possibility that ionization and molecular dissociation processes can achieve this, and we show that this is possible for a certain range of shock wave Mach numbers for ionizing/dissociating shock waves propagating into cold atomic and molecular gases.

  15. Onset of turbulence in accelerated high-Reynolds-number flow

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Robey, Harry F.; Buckingham, Alfred C.

    2003-05-01

    A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types of acceleration driven instability experiments: (1) classical, relatively low speed, constant acceleration RTI experiments; (2) shock tube, shockwave driven RMI flow mixing experiments; (3) laser target vaporization RTI and RMI mixing experiments driven at very high energy density. These last named experiments are of special interest as they provide scaleable flow conditions simulating those of astrophysical magnitude such as shock-driven hydrodynamic mixing in supernova evolution research.

  16. On the 'flip-flop' instability of Bondi-Hoyle accretion flows

    NASA Technical Reports Server (NTRS)

    Livio, Mario; Soker, Noam; Matsuda, Takuya; Anzer, Ulrich

    1991-01-01

    A simple physical interpretation is advanced by means of an analysis of the shock cone in the accretion flows past a compact object and with an examination of the accretion-line stability analyses. The stability of the conical shock is examined against small angular deflections with attention given to several simplifying assumptions. A line instability is identified in the Bondi-Hoyle accretion flows that leads to the formation of a large opening-angle shock. When the opening angle becomes large the instability becomes irregular oscillation. The analytical methodology is compared to previous numerical configurations that demonstrate different shock morphologies. The Bondi-Hoyle accretion onto a compact object is concluded to generate a range of nonlinear instabilities in both homogeneous and inhomogeneous cases with a quasiperiodic oscillation in the linear regime.

  17. Spatio-temporal evolution of the non-resonant instability in shock precursors of young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kobzar, Oleh; Niemiec, Jacek; Pohl, Martin; Bohdan, Artem

    2017-08-01

    A non-resonant cosmic ray (CR) current-driven instability may operate in the shock precursors of young supernova remnants and be responsible for magnetic-field amplification, plasma heating and turbulence. Earlier simulations demonstrated magnetic-field amplification, and in kinetic studies a reduction of the relative drift between CRs and thermal plasma was observed as backreaction. However, all published simulations used periodic boundary conditions, which do not account for mass conservation in decelerating flows and only allow the temporal development to be studied. Here we report results of fully kinetic particle-in-cell simulations with open boundaries that permit inflow of plasma on one side of the simulation box and outflow at the other end, hence allowing an investigation of both the temporal and the spatial development of the instability. Magnetic-field amplification proceeds as in studies with periodic boundaries and, observed here for the first time, the reduction of relative drifts causes the formation of a shock-like compression structure at which a fraction of the plasma ions are reflected. Turbulent electric field generated by the non-resonant instability inelastically scatters CRs, modifying and anisotropizing their energy distribution. Spatial CR scattering is compatible with Bohm diffusion. Electromagnetic turbulence leads to significant non-adiabatic heating of the background plasma maintaining bulk equipartition between ions and electrons. The highest temperatures are reached at sites of large-amplitude electrostatic fields. Ion spectra show supra-thermal tails resulting from stochastic scattering in the turbulent electric field. Together, these modifications in the plasma flow will affect the properties of the shock and particle acceleration there.

  18. Theory of the corrugation instability of a piston-driven shock wave.

    PubMed

    Bates, J W

    2015-01-01

    We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.

  19. Flow and acoustic properties of low Reynolds number supersonic underexpanded jets

    NASA Technical Reports Server (NTRS)

    Hu, T. F.; Mclaughlin, D. K.

    1981-01-01

    Flow and acoustic measurements are made of cold model jets exhausting from a choked nozzle at pressure conditions corresponding to those of Mach 1.4 and 2.1 jets to investigate noise production properties of underexpanded supersonic jets. Mean flow measurements are made using pitot and static pressure probes, with flow fluctuation measurements made with a hot-wire probe and acoustic measurements made with a transversing microphone. Two convergent nozzles with exit diameters of 7.0 and 7.9 mm are used with an exciter consisting of a 0.8 mm tungsten electrode positioned 2 mm from the exit. Shock structure is observed as having a significant effect on the development of the flow field, while large-scale instabilities have higher growth rates in the shock containing underexpanded jets. The role of the asymmetric n = + or - 1 sinusoidal instability is clarified, and results suggest that the broadband shock associated noise of conventional high Reynolds number jets is not related to large-scale jet instability.

  20. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.

    2017-10-01

    We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.

  1. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.

    2017-11-01

    We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.

  2. Experiments and simulations of single shock Richtmeyer-Meshkov Instability with measured, volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Sewell, Everest; Ferguson, Kevin; Greenough, Jeffrey; Jacobs, Jeffrey

    2014-11-01

    We describe new experiments of single shock Richtmeyer-Meshkov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbation plays a major role in the evolution of RMI, and previous experimental efforts only capture a narrow slice of the initial condition. The method presented uses a rastered laser sheet to capture additional images in the depth of the initial condition shortly before the experimental start time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation, which is simulated using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Comparison is made between the time evolution of the interface width and the mixedness ratio measured from the experiments against the predictions from the numerical simulations.

  3. Designing high speed diagnostics

    NASA Astrophysics Data System (ADS)

    Veliz Carrillo, Gerardo; Martinez, Adam; Mula, Swathi; Prestridge, Kathy; Extreme Fluids Team Team

    2017-11-01

    Timing and firing for shock-driven flows is complex because of jitter in the shock tube mechanical drivers. Consequently, experiments require dynamic triggering of diagnostics from pressure transducers. We explain the design process and criteria for setting up re-shock experiments at the Los Alamos Vertical Shock Tube facility, and the requirements for particle image velocimetry and planar laser induced fluorescence measurements necessary for calculating Richtmeyer-Meshkov variable density turbulent statistics. Dynamic triggering of diagnostics allows for further investigation of the development of the Richtemeyer-Meshkov instability at both initial shock and re-shock. Thanks to the Los Alamos National Laboratory for funding our project.

  4. Computational study of the shock driven instability of a multiphase particle-gas system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less

  5. Computational study of the shock driven instability of a multiphase particle-gas system

    DOE PAGES

    None, None

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less

  6. Computational study of the shock driven instability of a multiphase particle-gas system

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob A.; Black, Wolfgang J.; Dahal, Jeevan; Morgan, Brandon E.

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability similar in some ways to the Richtmyer-Meshkov instability but with a larger parameter space. As this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a time leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1 μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. Depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.

  7. COULD COSMIC RAYS AFFECT INSTABILITIES IN THE TRANSITION LAYER OF NONRELATIVISTIC COLLISIONLESS SHOCKS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroman, Thomas; Pohl, Martin; Niemiec, Jacek

    2012-02-10

    There is an observational correlation between astrophysical shocks and nonthermal particle distributions extending to high energies. As a first step toward investigating the possible feedback of these particles on the shock at the microscopic level, we perform particle-in-cell (PIC) simulations of a simplified environment consisting of uniform, interpenetrating plasmas, both with and without an additional population of cosmic rays. We vary the relative density of the counterstreaming plasmas, the strength of a homogeneous parallel magnetic field, and the energy density in cosmic rays. We compare the early development of the unstable spectrum for selected configurations without cosmic rays to themore » growth rates predicted from linear theory, for assurance that the system is well represented by the PIC technique. Within the parameter space explored, we do not detect an unambiguous signature of any cosmic-ray-induced effects on the microscopic instabilities that govern the formation of a shock. We demonstrate that an overly coarse distribution of energetic particles can artificially alter the statistical noise that produces the perturbative seeds of instabilities, and that such effects can be mitigated by increasing the density of computational particles.« less

  8. Further Experimental Investigations of the Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Miller, P. L.; Peyser, T. A.; Stry, P. E.; Logory, L. M.; Farley, D. R.

    1996-11-01

    We report on further experimental investigations of the Richtmyer-Meshkov instability from an initially nonlinear perturbation, conducted on the Nova laser. The experiments use a Nova hohlraum as a driver source for a strong shock in a miniature shock tube attached to the hohlraum. The shock tube contains brominated plastic and low-density carbon foam as the two working fluids, with a micro-machined sawtooth interface between them serving as the perturbation. The shock, upon crossing the interface, instigates the Richtmyer-Meshkov instability from the perturbation. The resulting growth of the mixing layer is diagnosed radiographically. We have previously reported upon a results from a single wavelength and amplitude of perturbation (T. A. Peyser et al., Phys. Rev. Lett.) 75, 2332 (1996).. A study of the effect of variations in amplitude and wavelength on the nonlinear growth of the instability will be discussed.

  9. Collisionless shock experiments with lasers and observation of Weibel instabilities

    DOE PAGES

    Park, H. -S.; Huntington, C. M.; Fiuza, F.; ...

    2015-05-13

    Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without preexisting magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagneticmore » in nature with an inferred magnetization level as high as ~1% These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.« less

  10. Collisionless shock experiments with lasers and observation of Weibel instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.-S., E-mail: park1@llnl.gov; Huntington, C. M.; Fiuza, F.

    2015-05-15

    Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without pre-existing magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagneticmore » in nature with an inferred magnetization level as high as ∼1% [C. M. Huntington et al., “Observation of magnetic field generation via the weibel instability in interpenetrating plasma flows,” Nat. Phys. 11, 173–176 (2015)]. These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.« less

  11. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    NASA Astrophysics Data System (ADS)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  12. Shock Driven Multiphase Instabilities in Scramjet Applications

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob

    2016-11-01

    Shock driven multiphase instabilities (SDMI) arise in many applications from dust production in supernovae to ejecta distribution in explosions. At the limit of small, fast reacting particles the instability evolves similar to the Richtmyer-Meshkov (RM) instability. However, as additional particle effects such as lag, phase change, and collisions become significant the required parameter space becomes much larger and the instability deviates significantly from the RM instability. In scramjet engines the SDMI arises during a cold start where liquid fuel droplets are injected and processed by shock and expansion waves. In this case the particle evaporation and mixing is important to starting and sustaining combustion, but the particles are large and slow to react, creating significant multiphase effects. This talk will examine multiphase mixing in scramjet relevant conditions in 3D multiphase hydrodynamic simulations using the FLASH code from the University of Chicago FLASH center.

  13. Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Liu, Mingzhe; Liu, Ying D.; Yang, Zhongwei; Wilson, L. B., III; Hu, Huidong

    2018-05-01

    We investigate the kinetic properties of a typical fast-mode shock inside an interplanetary coronal mass ejection (ICME) observed on 1998 August 6 at 1 au, including particle distributions and wave analysis with the in situ measurements from Wind. Key results are obtained concerning the shock and the shock–ICME interaction at kinetic scales: (1) gyrating ions, which may provide energy dissipation at the shock in addition to wave-particle interactions, are observed around the shock ramp; (2) despite the enhanced proton temperature anisotropy of the shocked plasma, the low plasma β inside the ICME constrains the shocked plasma under the thresholds of the ion cyclotron and mirror-mode instabilities; (3) whistler heat flux instabilities, which can pitch-angle scatter halo electrons through a cyclotron resonance, are observed around the shock, and can explain the disappearance of bi-directional electrons (BDEs) inside the ICME together with normal betatron acceleration; (4) whistler waves near the shock are likely associated with the whistler heat flux instabilities excited at the shock ramp, which is consistent with the result that the waves may originate from the shock ramp; (5) the whistlers share a similar characteristic with the shocklet whistlers observed by Wilson et al., providing possible evidence that the shock is decaying because of the strong magnetic field inside the ICME.

  14. Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Treumann, R. A.

    2011-08-01

    In this concise review of the recent developments in relativistic shock theory in the Universe we restrict ourselves to shocks that do not exhibit quantum effects. On the other hand, emphasis is given to the formation of shocks under both non-magnetised and magnetised conditions. We only briefly discuss particle acceleration in relativistic shocks where much of the results are still preliminary. Analytical theory is rather limited in predicting the real shock structure. Kinetic instability theory is briefed including its predictions and limitations. A recent self-similar relativistic shock theory is described which predicts the average long-term shock behaviour to be magnetised and to cause reasonable power-law distributions for energetic particles. The main focus in this review is on numerical experiments on highly relativistic shocks in (i) pair and (ii) electron-nucleon plasmas and their limitations. These simulations do not validate all predictions of analytic and self-similar theory and so far they do not solve the injection problem and the self-modification by self-generated cosmic rays. The main results of the numerical experiments discussed in this review are: (i) a confirmation of shock evolution in non-magnetised relativistic plasma in 3D due to either the lepton-Weibel instability (in pair plasmas) or to the ion-Weibel instability; (ii) the sensitive dependence of shock formation on upstream magnetisation which causes suppression of Weibel modes for large upstream magnetisation ratios σ>10-3; (iii) the sensitive dependence of particle dynamics on the upstream magnetic inclination angle θ Bn , where particles of θ Bn >34° cannot escape upstream, leading to the distinction between `subluminal' and `superluminal' shocks; (iv) particles in ultra-relativistic shocks can hardly overturn the shock and escape to upstream; they may oscillate around the shock ramp for a long time, so to speak `surfing it' and thereby becoming accelerated by a kind of SDA; (v) these particles form a power-law tail on the downstream distribution; their limitations are pointed out; (vi) recently developed methods permit the calculation of the radiation spectra emitted by the downstream high-energy particles; (vii) the Weibel-generated downstream magnetic fields form large-amplitude vortices which could be advected by the downstream flow to large distances from the shock and possibly contribute to an extended strong field region; (viii) if cosmic rays are included, Bell-like modes can generate upstream magnetic turbulence at short and, by diffusive re-coupling, also long wavelengths in nearly parallel magnetic field shocks; (ix) advection of such large-amplitude waves should cause periodic reformation of the quasi-parallel shock and eject large-amplitude magnetic field vortices downstream where they contribute to turbulence and to maintaining an extended region of large magnetic fields.

  15. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  16. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  17. Effect of electron thermal anisotropy on the kinetic cross-field streaming instability

    NASA Technical Reports Server (NTRS)

    Tsai, S. T.; Tanaka, M.; Gaffey, J. D., Jr.; Wu, C. S.; Da Jornada, E. H.; Ziebell, L. F.

    1984-01-01

    The investigation of the kinetic cross-field streaming instability, motivated by the research of collisionless shock waves and previously studied by Wu et al. (1983), is discussed more fully. Since in the ramp region of a quasi-perpendicular shock electrons can be preferentially heated in the direction transverse to the ambient magnetic field, it is both desirable and necessary to include the effect of the thermal anisotropy on the instability associated with a shock. It is found that Te-perpendicular greater than Te-parallel can significantly enhance the peak growth rate of the cross-field streaming instability when the electron beta is sufficiently high. Furthermore, the present analysis also improves the analytical and numerical solutions previously obtained.

  18. Numerical and Analytical Investigation of the Energy and Momentum Exchange Between the Shocked Solar Wind and Topside Ionosphere for Non-Magnetic Planets and Moons

    NASA Astrophysics Data System (ADS)

    Dobe, Z.; Shapiro, V. D.; Quest, K.; Szego, K.; Huba, J.

    1998-11-01

    Previously[1], we proposed a model of the planetary ions pick-up by the shocked solar wind flow developing in the mantle-turbulent boundary region surrounding the ionospheres of non-magnetic planets-Mars and Venus. In the present paper we are modifying this model taking into account the flow of the planetary elections immediately pick-up by E x B forces of the shocked solar wind. It is shown that flow of the cold planetary electrons drives a strong hydrodynamical instability of the electrostatic whistlers efficiently coupling planetary ions with the flow of the solar wind. The linear stage of the instability is investigated both analytically and numerically, and results are found to be in a good agreement. Nonlunear stage of the instability is investigated with the modified numerical hybrid code[2], and demonstrates both effects of acceleration and heating of the planetary ions by the solar wind. Field aligned electron acceleration is also investigated in a test particle approximation using wave power spectrum obtained in a self-consistent numerical simulation.

  19. Richtmyer-Meshkov instability in shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Massa, Luca; Pallav Jha Collaboration

    2011-11-01

    Shock-flame interactions occur in supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer- Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a non-zero pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth for high wave numbers. A non-hydrodynamic flame representation leads to the definition of an additional scaling Peclet number, the effects of which are investigated. It is found that an increased flame-contact separation destabilizes the contact discontinuity by augmenting the tangential shear.

  20. Emergence of power-law scalings in shock-driven mixing transition

    NASA Astrophysics Data System (ADS)

    Vorobieff, Peter; Wayne, Patrick; Olmstead, Dell; Simons, Dylan; Truman, C. Randall; Kumar, Sanjay

    2016-11-01

    We present an experimental study of transition to turbulence due to shock-driven instability evolving on an initially cylindrical, diffuse density interface between air and a mixture of sulfur hexafluoride (SF6) and acetone. The plane of the shock is at an initial angle θ with the axis of the heavy-gas cylinder. We present the cases of planar normal (θ = 0) and oblique (θ =20°) shock interaction with the initial conditions. Flow is visualized in two perpendicular planes with planar laser-induced fluorescence (PLIF) triggered in acetone with a pulsed ultraviolet laser. Statistics of the flow are characterized in terms of the second-order structure function of the PLIF intensity. As instabilities in the flow evolve, the structure functions begin to develop power-law scalings, at late times manifesting over a range of scales spanning more than two orders of magnitude. We discuss the effects of the initial conditions on the emergence of these scalings, comparing the fully three-dimensional case (oblique shock interaction) with the quasi-two-dimensional case (planar normal shock interaction). We also discuss the flow anisotropy apparent in statistical differences in data from the two visualization planes. This work is funded by NNSA Grant DE-NA0002913.

  1. Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.

    2003-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  2. Particle acceleration and magnetic field generation in SNR shocks

    NASA Astrophysics Data System (ADS)

    Suslov, M.; Diamond, P. H.; Malkov, M. A.

    2006-04-01

    We discuss the diffusive acceleration mechanism in SNR shocks in terms of its potential to accelerate CRs to 10^18 eV, as observations imply. One possibility, currently discussed in the literature, is to resonantly generate a turbulent magnetic field via accelerated particles in excess of the background field. We analyze some problems of this scenario and suggest a different mechanism, which is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves. The essential idea is an A->A+S decay instability process, where one of the interacting scatterers (i.e. the sound, or S-waves) are driven by the Drury instability process. This rapidly generates longer wavelength Alfven waves, which in turn resonate with high energy CRs thus binding them to the shock and enabling their further acceleration.

  3. Generation of mesoscale magnetic fields and the dynamics of Cosmic Ray acceleration

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Malkov, M. A.

    The problem of the cosmic ray origin is discussed in connection with their acceleration in supernova remnant shocks. The diffusive shock acceleration mechanism is reviewed and its potential to accelerate particles to the maximum energy of (presumably) galactic cosmic rays (1018eV ) is considered. It is argued that to reach such energies, a strong magnetic field at scales larger than the particle gyroradius must be created as a result of the acceleration process, itself. One specific mechanism suggested here is based on the generation of Alfven wave at the gyroradius scale with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven waves. The generation mechanism is modulational instability of CR generated Alfven wave packets induced, in turn, by scattering off acoustic fluctuations in the shock precursor which are generated by Drury instability.

  4. The origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1986-01-01

    Data related to the development of cosmic rays are discussed. The relationship between cosmic ray production and the steady-state Boltzmann equation is analyzed. The importance of the power-law spectrum, the scattering rate, the theory of shock acceleration, anisotropic instabilities, and cosmic ray diffusion in the formation of cosmic rays is described. It is noted that spacecraft observations at the earth's bow shock are useful for studying cosmic rays and that the data support the collisionless shock-wave theory of cosmic ray origin.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock aremore » due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.« less

  6. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratiomore » of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.« less

  7. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  8. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE PAGES

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; ...

    2015-08-01

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  9. Computational investigation of reshock strength in hydrodynamic instability growth at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bender, Jason; Raman, Kumar; Huntington, Channing; Nagel, Sabrina; Morgan, Brandon; Prisbrey, Shon; MacLaren, Stephan

    2017-10-01

    Experiments at the National Ignition Facility (NIF) are studying Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities in multiply-shocked plasmas. Targets feature two different-density fluids with a multimode initial perturbation at the interface, which is struck by two X-ray-driven shock waves. Here we discuss computational hydrodynamics simulations investigating the effect of second-shock (``reshock'') strength on instability growth, and how these simulations are informing target design for the ongoing experimental campaign. A Reynolds-Averaged Navier Stokes (RANS) model was used to predict motion of the spike and bubble fronts and the mixing-layer width. In addition to reshock strength, the reshock ablator thickness and the total length of the target were varied; all three parameters were found to be important for target design, particularly for ameliorating undesirable reflected shocks. The RANS data are compared to theoretical models that predict multimode instability growth proportional to the shock-induced change in interface velocity, and to currently-available data from the NIF experiments. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. LLNL-ABS-734611.

  10. Fast saturation of the two-plasmon-decay instability for shock-ignition conditions

    NASA Astrophysics Data System (ADS)

    Weber, S.; Riconda, C.; Klimo, O.; Héron, A.; Tikhonchuk, V. T.

    2012-01-01

    Two-plasmon-decay (TPD) instability is investigated for conditions relevant for the shock-ignition (SI) scheme of inertial confinement fusion. Two-dimensional particle-in-cell simulations show that in a hot, large-scale plasma, TPD develops in concomitance with stimulated Raman scattering (SRS). It is active only during the first picosecond of interaction, and then it is rapidly saturated due to plasma cavitation. TPD-excited plasma waves extend to small wavelengths, above the standard Landau cutoff. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below 100 keV, which should not be a danger for the fuel core preheat in the SI scenario.

  11. Are pulsars spun up or down by SASI spiral modes?

    NASA Astrophysics Data System (ADS)

    Kazeroni, Rémi; Guilet, Jérôme; Foglizzo, Thierry

    2017-10-01

    Pulsars may either be spun up or down by hydrodynamic instabilities during the supernova explosion of massive stars. Besides rapidly rotating cases related to bipolar explosions, stellar rotation may affect the explosion of massive stars in the more common situations where the centrifugal force is minor. Using 2D simulations of a simplified set-up in cylindrical geometry, we examine the impact of rotation on the standing accretion shock instability (SASI) and the corotation instability, also known as low-T/|W|. The influence of rotation on the saturation amplitude of these instabilities depends on the specific angular momentum in the accretion flow and the ratio of the shock to the neutron star radii. The spiral mode of SASI becomes more vigorous with faster rotation only if this ratio is large enough. A corotation instability develops at large rotation rates and impacts the dynamics more dramatically, leading to a strong one-armed spiral wave. Non-axisymmetric instabilities are able to redistribute angular momentum radially and affect the pulsar spin at birth. A systematic study of the relationship between the core rotation period of the progenitor and the initial pulsar spin is performed. Stellar rotation rates for which pulsars are spun up or down by SASI are estimated. Rapidly spinning progenitors are modestly spun down by spiral modes, less than ˜30 per cent, when a corotation instability develops. Given the observational constraints on pulsar spin periods at birth, this suggests that rapid rotation might not play a significant hydrodynamic role in most core-collapse supernovae.

  12. Shock interaction with a two-gas interface in a novel dual-driver shock tube

    NASA Astrophysics Data System (ADS)

    Labenski, John R.

    Fluid instabilities exist at the interface between two fluids having different densities if the flow velocity and density gradient are anti-parallel or if a shock wave crosses the boundary. The former case is called the Rayleigh-Taylor (R-T) instability and the latter, the Richtmyer-Meshkov (R-M) instability. Small initial perturbations on the interface destabilize and grow into larger amplitude structures leading to turbulent mixing. Instabilities of this type are seen in inertial confinement fusion (ICF) experiments, laser produced plasmas, supernova explosions, and detonations. A novel dual-driver shock tube was used to investigate the growth rate of the R-M instability. One driver is used to create an argon-refrigerant interface, and the other at the opposite end of the driven section generates a shock to force the interface with compressible flows behind the shock. The refrigerant gas in the first driver is seeded with sub-micron oil droplets for visualization of the interface. The interface travels down the driven section past the test section for a fixed amount of time. A stronger shock of Mach 1.1 to 1.3 drives the interface back past the test section where flow diagnostics are positioned. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thickness and that the interaction with a shock further broadens the interface. The growth rate was found to exhibit a dependence on the shock strength.

  13. Terminal shock position and restart control of a Mach 2.7, two-dimensional, twin duct mixed compression inlet

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Neiner, G. H.; Baumbick, R. J.

    1973-01-01

    Experimental results of terminal shock and restart control system tests of a two-dimensional, twin-duct mixed compression inlet are presented. High-response (110-Hz bandwidth) overboard bypass doors were used, both as the variable to control shock position and as the means of disturbing the inlet airflow. An inherent instability in inlet shock position resulted in noisy feedback signals and thus restricted the terminal shock position control performance that was achieved. Proportional-plus-integral type controllers using either throat exit static pressure or shock position sensor feedback gave adequate low-frequency control. The inlet restart control system kept the terminal shock control loop closed throughout the unstart-restart transient. The capability to restart the inlet was non limited by the inlet instability.

  14. Compressible instability of rapidly expanding spherical material interfaces

    NASA Astrophysics Data System (ADS)

    Mankbadi, Mina Reda

    The focus herein is on the instability of a material interface formed during an abrupt release of concentrated energy as in detonative combustion, explosive dispersals, and inertial-confinement fusion. These applications are modeled as a spherical shock-tube in which high-pressure gas initially contained in a small spherical shell is suddenly released. A forward-moving shock and an inward-moving secondary shock are formed, and between them a material interface develops that separates high-density fluid from the low-density one. The wrinkling of this interface controls mixing and energy release. The interface's stability is studied with and without the inclusion of metalized particulates. A numerical scheme is developed to discretize the full nonlinear equations of the base flow, and the 3D linearized perturbed flow equations. Linearization is followed by spherical harmonic decomposition of the disturbances, thereby reducing the 3D computational domain to one-dimensional radial domain. The 3D physical nature of the disturbances is maintained throughout the procedure. An extended Roe-Pike scheme coupled with a WENO scheme is developed to capture the discontinuities and accurately predict the disturbances. In Chapter 2, the contact interface's stability is analyzed in the inviscid single-phase. The disturbances grow exponentially and the growth rate is insensitive to the radial initial-disturbance profile. For wave numbers less than 100, the results are in accordance with previous theories but clarify that compressibility reduces the growth rate. Unlike the classical RTI, the growth rate reaches saturation at high wavenumbers. The parametric studies show that for specific ratios of initial pressure and temperature, the instability can be eliminated altogether. Chapter 3 discusses the full effects of viscosity and thermal diffusivity. Although Prandtl number effects are minimal, viscous effects dampen the high-wave numbers. For a given Reynolds number there is a peak wave number at which the disturbances are most amplified. In Chapter 4, the multiphase case with metalized particles is investigated. The quasi steady gas-particle interaction forces and heat transfer decelerate the contact interface and reduce its Atwood number, which results in reducing the growth of the interfacial instabilities. A parametric study of the multiphase instability is presented to assist in controlling the instability.

  15. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall

    2017-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.

  16. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  17. A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum

    NASA Astrophysics Data System (ADS)

    Sternberger, Z.; Maddox, B. R.; Opachich, Y. P.; Wehrenberg, C. E.; Kraus, R. G.; Remington, B. A.; Randall, G. C.; Farrell, M.; Ravichandran, G.

    2017-01-01

    Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.

  18. Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  19. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  20. The shock sensitivity of nitromethane/methanol mixtures

    NASA Astrophysics Data System (ADS)

    Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee

    2013-06-01

    The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.

  1. ACCRETION OF SUPERSONIC WINDS ONTO BLACK HOLES IN 3D: STABILITY OF THE SHOCK CONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia-Linares, M.; Guzmán, F. S.

    Using numerical simulations we present the accretion of supersonic winds onto a rotating black hole in three dimensions. We study five representative directions of the wind with respect to the axis of rotation of the black hole and focus on the evolution and stability of the high-density shock cone that is formed during the process. We explore both the regime in which the shock cone is expected to be stable in order to confirm previous results obtained with two-dimensional simulations, and the regime in which the shock cone is expected to show a flip–flop (FF) type of instability. The methodsmore » used to attempt a triggering of the instability were (i) the accumulation of numerical errors and (ii) the explicit application of a perturbation on the velocity field after the shock cone was formed. The result is negative, that is, we did not find the FF instability within the parameter space we explored, including cases that are expected to be unstable.« less

  2. Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration.

    PubMed

    Piriz, A R; Sun, Y B; Tahir, N A

    2015-03-01

    A model is presented for the linear Rayleigh-Taylor instability taking place at the early stage of acceleration of an elastic-plastic solid, when the shock wave is still running into the solid and is driven by a time varying pressure on the interface. When the the shock is formed sufficiently close to the interface, this stage is considered to follow a previous initial phase controlled by the Ritchmyer-Meshkov instability that settles new initial conditions. The model reproduces the behavior of the instability observed in former numerical simulation results and provides a relatively simpler physical picture than the currently existing one for this stage of the instability evolution.

  3. A Computational Study of a Circular Interface Richtmyer-Meshkov Instability in MHD

    NASA Astrophysics Data System (ADS)

    Maxon, William; Black, Wolfgang; Denissen, Nicholas; McFarland, Jacob; Los Alamos National Laboratory Collaboration; University of Missouri Shock Tube Laboratory Team

    2017-11-01

    The Richtmyer-Meshkov instability (RMI) is a hydrodynamic instability that appears in several high energy density applications such as inertial confinement fusion (ICF). In ICF, as the thermonuclear fuel is being compressed it begins to mix due to fluid instabilities including the RMI. This mixing greatly decreases the energy output. The RMI occurs when two fluids of different densities are impulsively accelerated and the pressure and density gradients are misaligned. In magnetohydrodynamics (MHD), the RMI may be suppressed by introducing a magnetic field in an electrically conducting fluid, such as a plasma. This suppression has been studied as a possible mechanism for improving confinement in ICF targets. In this study,ideal MHD simulations are performed with a circular interface impulsively accelerated by a shock wave in the presence of a magnetic field. These simulations are executed with the research code FLAG, a multiphysics, arbitrary Lagrangian/Eulerian, hydrocode developed and utilized at Los Alamos National Laboratory. The simulation results will be assessed both quantitatively and qualitatively to examine the stabilization mechanism. These simulations will guide ongoing MHD experiments at the University of Missouri Shock Tube Facility.

  4. The Benjamin Shock Tube Problem in KULL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulitsky, M

    2005-08-26

    The goal of the EZturb mix model in KULL is to predict the turbulent mixing process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz instabilities. In this report we focus on a simple example of the Richtmyer-Meshkov instability (which occurs when a shock hits an interface between fluids of different densities) without the complication of reshock. The experiment by Benjamin et al. involving a Mach 1.21 incident shock striking an air / SF6 interface, is a good one to model and understand before moving onto shock tubes that follow the growth of the turbulent mixing zone from first shock throughmore » well after reshock.« less

  5. A New Mechanism of Magnetic Field Generation in Supernova Shock Waves and its Implication for Cosmic Ray Acceleration

    NASA Astrophysics Data System (ADS)

    Diamond, Patrick

    2005-10-01

    SNR shocks are the most probable source of galactic cosmic rays. We discuss the diffusive acceleration mechanism in terms of its potential to accelerate CRs to 10^18 eV, as observations imply. One possibility, currently discussed in the literature, is to resonantly generate a turbulent magnetic field via accelerated particles in excess of the background field. We indicate some difficulties of this scenario and suggest a different possibility, which is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves. The essential idea is an A-->A+S decay instability process, where one of the interacting scatterers (i.e. the sound, or S-waves) are driven by the Drury instability process. This rapidly generates longer wavelength Alfven waves, which in turn resonate with high energy CRs thus binding them to the shock and enabling their further acceleration.

  6. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2004-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  7. Observation of the development of secondary features in a Richtmyer–Meshkov instability driven flow

    DOE PAGES

    Bernard, Tennille; Truman, C. Randall; Vorobieff, Peter; ...

    2014-09-10

    Richtmyer–Meshkov instability (RMI) has long been the subject of interest for analytical, numerical, and experimental studies. In comparing results of experiment with numerics, it is important to understand the limitations of experimental techniques inherent in the chosen method(s) of data acquisition. We discuss results of an experiment where a laminar, gravity-driven column of heavy gas is injected into surrounding light gas and accelerated by a planar shock. A popular and well-studied method of flow visualization (using glycol droplet tracers) does not produce a flow pattern that matches the numerical model of the same conditions, while revealing the primary feature ofmore » the flow developing after shock acceleration: the pair of counter-rotating vortex columns. However, visualization using fluorescent gaseous tracer confirms the presence of features suggested by the numerics; in particular, a central spike formed due to shock focusing in the heavy-gas column. Furthermore, the streamwise growth rate of the spike appears to exhibit the same scaling with Mach number as that of the counter-rotating vortex pair (CRVP).« less

  8. Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Malkov, M. A.

    2007-01-01

    We present a theory for the generation of mesoscale (krg<<1, where rg is the cosmic-ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfvén waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by the diffusion of Alfvén wave packets in k-space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic-ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic fields on rg scales.

  9. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  10. Collisionless shock formation, spontaneous electromagnetic fluctuations, and streaming instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real; Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138

    2013-04-15

    Collisionless shocks are ubiquitous in astrophysics and in the lab. Recent numerical simulations and experiments have shown how they can arise from the encounter of two collisionless plasma shells. When the shells interpenetrate, the overlapping region turns unstable, triggering the shock formation. As a first step towards a microscopic understanding of the process, we analyze here in detail the initial instability phase. On the one hand, 2D relativistic Particle-In-Cell simulations are performed where two symmetric initially cold pair plasmas collide. On the other hand, the instabilities at work are analyzed, as well as the field at saturation and the seedmore » field which gets amplified. For mildly relativistic motions and onward, Weibel modes govern the linear phase. We derive an expression for the duration of the linear phase in good agreement with the simulations. This saturation time constitutes indeed a lower-bound for the shock formation time.« less

  11. TIME EVOLUTION OF KELVIN–HELMHOLTZ VORTICES ASSOCIATED WITH COLLISIONLESS SHOCKS IN LASER-PRODUCED PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuramitsu, Y.; Moritaka, T.; Mizuta, A.

    2016-09-10

    We report experimental results on Kelvin–Helmholtz (KH) instability and resultant vortices in laser-produced plasmas. By irradiating a double plane target with a laser beam, asymmetric counterstreaming plasmas are created. The interaction of the plasmas with different velocities and densities results in the formation of asymmetric shocks, where the shear flow exists along the contact surface and the KH instability is excited. We observe the spatial and temporal evolution of plasmas and shocks with time-resolved diagnostics over several shots. Our results clearly show the evolution of transverse fluctuations, wavelike structures, and circular features, which are interpreted as the KH instability andmore » resultant vortices. The relevant numerical simulations demonstrate the time evolution of KH vortices and show qualitative agreement with experimental results. Shocks, and thus the contact surfaces, are ubiquitous in the universe; our experimental results show general consequences where two plasmas interact.« less

  12. LAD Early Career Prize Talk:Laboratory astrophysics experiments investigating the effects of high energy fluxes on Rayleigh-Taylor instability growth relevant to young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn C.; Drake, R. Paul; Park, Hye Sook; Huntington, Channing; Miles, Aaron R.; Remington, Bruce A.; Plewa, Tomek; Trantham, Matt; Shvarts, Dov; Raman, Kumar; MacLaren, Steven; Wan, Wesley; Doss, Forrest; Kline, John; Flippos, Kirk; Malamud, Guy; Handy, Timothy; Prisbey, Shon; Grosskopf, Michael; Krauland, Christine; Klein, Sallee; Harding, Eric; Wallace, Russell; Marion, Donna; Kalantar, Dan

    2017-06-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor (RT) instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter (CSM), based on simple models and hydrodynamic simulations. When a blast wave emerges from an exploding star, it drives a forward shock into the CSM and a reverse shock forms in the expanding stellar ejecta, creating a young supernova remnant (SNR). As mass accumulates in the shocked layers, the interface between these two shocks decelerates, becoming unstable to the RT instability. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility (NIF) to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. The experiment used NIF to create a RT unstable interface subject to a high energy flux by the emergence of a blast wave into lower-density matter, in analogy to the SNR. We also preformed and with a low energy flux to compare the affect of the energy flux on the instability growth. We found that the RT growth was reduced in the experiments with a high energy flux. In analyzing the comparison with SN 1993J, we discovered that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling SNRs.

  13. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a a uniform magnetic field. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  14. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of jitter radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a a uniform magnetic field. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  15. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This small- scale magnetic field structure is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a uniform magnetic field. The jitter radiation resulting from small-scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  16. Prolonged electron accelerations at a high-Mach-number, quasi-perpendicular shock

    NASA Astrophysics Data System (ADS)

    Matsumoto, Y.; Amano, T.; Kato, T.; Hoshino, M.

    2016-12-01

    Elucidating acceleration mechanisms of charged particles have been of great interests in laboratory, space, and astrophysical plasmas. Among other mechanisms, a collision-less shock is thought as an efficient particle accelerator. The idea has been strengthened by radio, X-ray, and gamma-ray observations of astrophysical objects such as supernova remnant shocks, where it has been indicated that protons and electrons are efficiently accelerated to TeV energies at such very strong shock waves. Efficient electron accelerations at high-Mach-number shocks was also suggested recently by in-situ measurements at the Saturn's bow shock. Motivated by these circumstances, laboratory experiments using high-power laser facilities emerge to provide a new platform to tackle these problems.Numerical simulations have revealed that electrons can be efficiently heated and accelerated via so-called the shock surfing acceleration mechanism in which electron-scale Buneman instability played key roles. Recently, Matsumoto et al. [2015] proposed a stochastic acceleration mechanism by turbulent reconnection in the shock transition region through excitation of the ion Weibel instability. In order to deal with the two different acceleration mechanisms in a self-consistent system, we examined 3D PIC simulations of a quasi-perpendicular, high-Mach-number shock. We successfully followed a long term evolution in which two different acceleration mechanisms coexist in the 3D shock structure. The Buneman instability is strongly excited ahead of the shock front in the same manner as have been found in 2D simulations. The surfing acceleration is found to be very effective in the present 3D system. In the transition region, the ion-beam Weibel instability generated strong magnetic field turbulence in 3D space. Energetic electrons, which initially experienced the surfing acceleration, undergo pitch-angle diffusion by interacting with the turbulent fields and thus stay in the upstream regions. The ion Weibel turbulence is essentially the key to prolonged acceleration processes which can produce relativistic particles with energies more than 1000 times the initial kinetic energy. We present how such relativistic electrons are produced during traveling in the 3D shock structure.

  17. Electron velocity distributions near the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Anderson, R. C.; Bame, S. J.; Gary, S. P.; Gosling, J. T.; Mccomas, D. J.; Thomsen, M. F.; Paschmann, G.; Hoppe, M. M.

    1983-01-01

    New information is presented on the general characteristics of electron distribution functions upstream, within, and downstream of the earth's bow shock, thereby providing new insights into the instabilities in collisionless shocks. The results presented are from a survey of electron velocity distributions measured near the earth's bow shock between October 1977 and December 1978 using the Los Alamos/Garching plasma instrumentation aboard ISEE 2. A wide variety of distribution shapes is found within the different plasma regions in close proximity to the bow shock. It is found that these shapes can be classified into general types that are characteristic of three different plasma regions, namely the upstream region or electron foreshock, the shock proper where most of the heating occurs, and the downstream region or the magnetosheath. Evidence is provided that field-aligned, rather than cross-field, instabilities are the major source of electron dissipation in the earth's bow shock.

  18. Nature of the wiggle instability of galactic spiral shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woong-Tae; Kim, Yonghwi; Kim, Jeong-Gyu, E-mail: wkim@astro.snu.ac.kr, E-mail: kimyh@astro.snu.ac.kr, E-mail: jgkim@astro.snu.ac.kr

    Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis and nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gasmore » in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinuity of shear across the shock stabilize the WI. The wavelength and growth time of the WI depend on the arm strength quite sensitively. When the stellar-arm forcing is moderate at 5%, the wavelength of the most unstable mode is about 0.07 times the arm-to-arm spacing, with the growth rate comparable to the orbital angular frequency, which is found to be in good agreement with the results of numerical simulations.« less

  19. Robustness of the filamentation instability as shock mediator in arbitrarily oriented magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Alvaro, E. Perez

    2011-08-15

    The filamentation instability (sometimes also referred to as ''Weibel'') is a key process in many astrophysical scenario. In the Fireball model for gamma ray bursts, this instability is believed to mediate collisionless shock formation from the collision of two plasma shells. It has been known for long that a flow aligned magnetic field can completely cancel this instability. We show here that in the general case where there is an angle between the field and the flow, the filamentation instability can never be stabilized, regardless of the field strength. The presented model analyzes the stability of two symmetric counter-streaming coldmore » electron/proton plasma shells. Relativistic effects are accounted for, and various exact analytical results are derived. This result guarantees the occurrence of the instability in realistic settings fulfilling the cold approximation.« less

  20. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Higginson, D. P.; Wilks, S. C.; Haberberger, D.; Katz, J.; Froula, D. H.; Hoffman, N. M.; Kagan, G.; Keenan, B. D.; Vold, E. L.

    2018-03-01

    The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M ˜11 ) propagating through a low-density (ρ ˜0.01 mg /cc ) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.

  1. New Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-ichi; Hardee, P.; Mizuno, Y.; Zhang, B.; Medvedev, M.; Hartmann, D.; Fishman, J. F.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  2. Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.; hide

    2009-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  3. A study of planar Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state

    NASA Astrophysics Data System (ADS)

    Ward, G. M.; Pullin, D. I.

    2011-07-01

    We present a numerical comparison study of planar Richtmyer-Meshkov instability with the intention of exposing the role of the equation of state. Results for Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state derived from a linear shock-particle speed Hugoniot relationship (Jeanloz, J. Geophys. Res. 94, 5873, 1989; McQueen et al., High Velocity Impact Phenomena (1970), pp. 294-417; Menikoff and Plohr, Rev. Mod. Phys. 61(1), 75 1989) are compared to those from perfect gases under nondimensionally matched initial conditions at room temperature and pressure. The study was performed using Caltech's Adaptive Mesh Refinement, Object-oriented C++ (AMROC) (Deiterding, Adaptive Mesh Refinement: Theory and Applications (2005), Vol. 41, pp. 361-372; Deiterding, "Parallel adaptive simulation of multi-dimensional detonation structures," Ph.D. thesis (Brandenburgische Technische Universität Cottbus, September 2003)) framework with a low-dissipation, hybrid, center-difference, limiter patch solver (Ward and Pullin, J. Comput. Phys. 229, 2999 (2010)). Results for single and triple mode planar Richtmyer-Meshkov instability when a reflected shock wave occurs are first examined for mid-ocean ridge basalt (MORB) and molybdenum modeled by Mie-Grüneisen equations of state. The single mode case is examined for incident shock Mach numbers of 1.5 and 2.5. The planar triple mode case is studied using a single incident Mach number of 2.5 with initial corrugation wavenumbers related by k1=k2+k3. Comparison is then drawn to Richtmyer-Meshkov instability in perfect gases with matched nondimensional pressure jump across the incident shock, post-shock Atwood ratio, post-shock amplitude-to-wavelength ratio, and time nondimensionalized by Richtmyer's linear growth time constant prediction. Differences in start-up time and growth rate oscillations are observed across equations of state. Growth rate oscillation frequency is seen to correlate directly to the oscillation frequency for the transmitted and reflected shocks. For the single mode cases, further comparison is given for vorticity distribution and corrugation centerline shortly after shock interaction. Additionally, we examine single mode Richtmyer-Meshkov instability when a reflected expansion wave is present for incident Mach numbers of 1.5 and 2.5. Comparison to perfect gas solutions in such cases yields a higher degree of similarity in start-up time and growth rate oscillations. The formation of incipient weak waves in the heavy fluid driven by waves emanating from the perturbed transmitted shock is observed when an expansion wave is reflected.

  4. Influence of deposited nanoparticles on the spall strength of metals under the action of picosecond pulses of shock compression

    NASA Astrophysics Data System (ADS)

    Ebel, A. A.; Mayer, A. E.

    2018-01-01

    Molecular dynamic simulations of the generation and propagation of shock pulses of picosecond duration initiated by nanoscale impactors, and their interaction with the rear surface is carried out for aluminum and copper. It is shown that the presence of deposited nanoparticles on the rear surface increases the threshold value of the impact intensity leading to the rear spallation. The interaction of a shock wave with nanoparticles leads to severe plastic deformation in the surface layer of the metal including nanoparticles. A part of the compression pulse energy is expended on the plastic deformation, which suppresses the spall fracture. Spallation threshold substantially increases at large diameters of deposited nanoparticles, but instability develops on the rear surface of the target, which is accompanied by ejection of droplets. The instability disrupts the integrity of the rear surface, though the loss of integrity occurs through the ejection of mass, rather than a spallation.

  5. COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Marle, A. J.; Meliani, Z.; Keppens, R.

    2011-06-20

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varyingmore » sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 {mu}m) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.« less

  6. Progress toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike laser

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.; Dwarkadas, V. V.

    2008-04-01

    In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities of concern: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been readily observed and diagnosed in the laboratory, the KH instability remains relatively unexplored in HED plasmas. Unlike the RT and RM instabilities, the KH instability is driven by a lifting force generated by a strong velocity gradient in a stratified fluid. Understanding the KH instability mechanism in HED plasmas will provide essential insight into oblique shock systems, jets, mass stripping, and detailed RT-spike development. In addition, our KH experiment will help provide the groundwork for future transition to turbulence experiments. We present 2D FLASH simulations and experimental data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.

  7. Electromagnetic ion/ion cyclotron instability - Theory and simulations

    NASA Technical Reports Server (NTRS)

    Winske, D.; Omidi, N.

    1992-01-01

    Linear theory and 1D and 2D hybrid simulations are employed to study electromagnetic ion/ion cyclotron (EMIIC) instability driven by the relative streaming of two field-aligned ion beams. The characteristics of the instability are studied as a function of beam density, propagation angle, electron-ion temperature ratios, and ion beta. When the propagation angle is near 90 deg the EMIIC instability has the characteristics of an electrostatic instability, while at smaller angles electromagnetic effects play a significant role as does strong beam coupling. The 2D simulations point to a narrowing of the wave spectrum and accompanying coherent effects during the linear growth stage of development. The EMIIC instability is an important effect where ion beta is low such as in the plasma-sheet boundary layer and upstream of slow shocks in the magnetotail.

  8. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  9. Feathering instability of spiral arms. II. Parameter study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wing-Kit, E-mail: wklee@asiaa.sinica.edu.tw; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 115, Taiwan

    2014-09-10

    We report the results of a parameter study of the feathering stability in the galactic spiral arms. A two-dimensional, razor-thin magnetized self-gravitating gas disk with an imposed two-armed stellar spiral structure is considered. Using the formulation developed previously by Lee and Shu, a linear stability analysis of the spiral shock is performed in a localized Cartesian geometry. Results of the parameter study of the base state with a spiral shock are also presented. The single-mode feathering instability that leads to growing perturbations may explain the feathering phenomenon found in nearby spiral galaxies. The self-gravity of the gas, characterized by itsmore » average surface density, is an important parameter that (1) shifts the spiral shock farther downstream and (2) increases the growth rate and decreases the characteristic spacing of the feathering structure due to the instability. On the other hand, while the magnetic field suppresses the velocity fluctuation associated with the feathers, it does not strongly affect their growth rate. Using a set of typical parameters of the grand-design spiral galaxy M51 at 2 kpc from the center, the spacing of the feathers with the maximum growth rate is found to be 530 pc, which agrees with the previous observational studies.« less

  10. Robustness of the filamentation instability for asymmetric plasma shells collision in arbitrarily oriented magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.

    2013-10-15

    The filamentation instability triggered when two counter streaming plasma shells overlap appears to be the main mechanism by which collisionless shocks are generated. It has been known for long that a flow aligned magnetic field can completely suppress this instability. In a recent paper [Phys. Plasmas 18, 080706 (2011)], it was demonstrated in two dimensions that for the case of two cold, symmetric, relativistically colliding shells, such cancellation cannot occur if the field is not perfectly aligned. Here, this result is extended to the case of two asymmetric shells. The filamentation instability appears therefore as an increasingly robust mechanism tomore » generate shocks.« less

  11. Tension pneumocephalus mimicking septic shock: a case report.

    PubMed

    Miranda, Caroline; Mahta, Ali; Wheeler, Lee Adam; Tsiouris, A John; Kamel, Hooman

    2018-02-01

    Tension pneumocephalus can lead to rapid neurologic deterioration. We report for the first time its association with aseptic systemic inflammatory response syndrome mimicking septic shock and the efficacy of prompt neurosurgical intervention and critical care support in treating this condition. A 64-year-old man underwent 2-stage olfactory groove meningioma resection. The patient developed altered mental status and gait instability on postoperative day 6. Imaging showed significant pneumocephalus. The patient subsequently developed worsening mental status, respiratory failure, and profound shock requiring multiple vasopressors. Bedside needle decompression, identification and repair of the cranial fossa defect, and critical care support led to improved mental status and reversal of shock and multiorgan dysfunction. Thorough evaluation revealed no evidence of an underlying infection. In this case, tension pneumocephalus incited an aseptic systemic inflammatory response syndrome mimicking septic shock. Prompt neurosurgical correction of pneumocephalus and critical care support not only improved neurologic status, but also reversed shock. Such a complication indicates the importance of close monitoring of patients with progressive pneumocephalus.

  12. Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation

    NASA Astrophysics Data System (ADS)

    Boss, A. P.; Durisen, R. H.

    2005-03-01

    Chondrules are millimeter-sized spherules found throughout primitive chondritic meteorites. Flash heating by a shock front is the leading explanation of their formation. However, identifying a mechanism for creating shock fronts inside the solar nebula has been difficult. In a gaseous disk capable of forming Jupiter, the disk must have been marginally gravitationally unstable at and beyond Jupiter's orbit. We show that this instability can drive inward spiral shock fronts with shock speeds of up to ~10 km s-1 at asteroidal orbits, sufficient to account for chondrule formation. The mixing and transport of solids in such a disk, combined with the planet-forming tendencies of gravitational instabilities, results in a unified scenario linking chondrite production with gas giant planet formation.

  13. Simulations of the Richtmyer-Meshkov Instability with experimentally measured volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Ferguson, Kevin; Sewell, Everest; Krivets, Vitaliy; Greenough, Jeffrey; Jacobs, Jeffrey

    2016-11-01

    Initial conditions for the Richtmyer-Meshkov instability (RMI) are measured in three dimensions in the University of Arizona Vertical Shock Tube using a moving magnet galvanometer system. The resulting volumetric data is used as initial conditions for the simulation of the RMI using ARES at Lawrence-Livermore National Laboratory (LLNL). The heavy gas is sulfur hexafluoride (SF6), and the light gas is air. The perturbations are generated by harmonically oscillating the gasses vertically using two loudspeakers mounted to the shock tube which cause Faraday resonance, producing a random short wavelength perturbation on the interface. Planar Mie scattering is used to illuminate the flow field through the addition of propylene glycol particles seeded in the heavy gas. An M=1.2 shock impulsively accelerates the interface, initiating instability growth. Images of the initial condition and instability growth are captured at a rate of 6 kHz using high speed cameras. Comparisons between experimental and simulation results, mixing diagnostics, and mixing zone growth are presented.

  14. Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Massa, L.; Jha, P.

    2012-05-01

    Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.

  15. Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected

    NASA Astrophysics Data System (ADS)

    Wouchuk, J. G.

    2001-05-01

    An analytic model is presented to calculate the growth rate of the linear Richtmyer-Meshkov instability in the shock-reflected case. The model allows us to calculate the asymptotic contact surface perturbation velocity for any value of the incident shock intensity, arbitrary fluids compressibilities, and for any density ratio at the interface. The growth rate comes out as the solution of a system of two coupled functional equations and is expressed formally as an infinite series. The distinguishing feature of the procedure shown here is the high speed of convergence of the intermediate calculations. There is excellent agreement with previous linear simulations and experiments done in shock tubes.

  16. GRB 091208B: FIRST DETECTION OF THE OPTICAL POLARIZATION IN EARLY FORWARD SHOCK EMISSION OF A GAMMA-RAY BURST AFTERGLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, T.; Chiyonobu, S.; Fukazawa, Y.

    We report that the optical polarization in the afterglow of GRB 091208B is measured at t = 149-706 s after the burst trigger, and the polarization degree is P = 10.4( {+-} 2.5%. The optical light curve at this time shows a power-law decay with index -0.75 {+-} 0.02, which is interpreted as the forward shock synchrotron emission, and thus this is the first detection of the early-time optical polarization in the forward shock (rather than that in the reverse shock reported by Steele et al.). This detection disfavors the afterglow model in which the magnetic fields in the emissionmore » region are random on the plasma skin depth scales, such as those amplified by the plasma instabilities, e.g., Weibel instability. We suggest that the fields are amplified by the magnetohydrodynamic instabilities, which would be tested by future observations of the temporal changes of the polarization degrees and angles for other bursts.« less

  17. Ion streaming instabilities with application to collisionless shock wave structure

    NASA Technical Reports Server (NTRS)

    Golden, K. I.; Linson, L. M.; Mani, S. A.

    1973-01-01

    The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.

  18. Some Effects of Leading-Edge Sweep on Boundary-Layer Transition at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Chapman, Gray T.

    1961-01-01

    The effects of crossflow and shock strength on transition of the laminar boundary layer behind a swept leading edge have been investigated analytically and with the aid of available experimental data. An approximate method of determining the crossflow Reynolds number on a leading edge of circular cross section at supersonic speeds is presented. The applicability of the critical crossflow criterion described by Owen and Randall for transition on swept wings in subsonic flow was examined for the case of supersonic flow over swept circular cylinders. A wide range of applicability of the subsonic critical values is indicated. The corresponding magnitude of crossflow velocity necessary to cause instability on the surface of a swept wing at supersonic speeds was also calculated and found to be small. The effects of shock strength on transition caused by Tollmien-Schlichting type of instability are discussed briefly. Changes in local Reynolds number, due to shock strength, were found analytically to have considerably more effect on transition caused by Tollmien-Schlichting instability than on transition caused by crossflow instability. Changes in the mechanism controlling transition from Tollmien-Schlichting instability to crossflow instability were found to be possible as a wing is swept back and to result in large reductions in the length of laminar flow.

  19. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, W.; Ostriker, E. C.

    2010-01-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation of spiral arms in disk galaxies. They can also provide a large amount of kinetic energy for the interstellar gas by tapping the rotational energy. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability in vertically stratified galactic disks. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve under interstellar cooling and heating. Due to cooling and heating, the disk rapidly turns to a dense slab near the midplane surrounded by rarefied gas at high-altitude regions. The imposed stellar spiral potential develops a vertically curved shock that exhibits strong flapping motions along the direction perpendicular to the arm. The flows across the spiral shock are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases at the postshock expansion zone. The shock flapping motions stirs the disk, supplying the gas with random kinetic energy. For a model resembling the galactic disk near the solar neighborhood, the density-weighted vertical velocity dispersions are 2 km/s for the rarefied gas and 1 km/s for the dense gas. The shock compression in this model reduces an amount of the rarefied gas from 29% to 19% by mass. Despite the flapping motions, the time-averaged profiles of surface density are similar to those of the one-dimensional counterparts, and the vertical density distribution is overall consistent with effective hydrostatic equilibrium. When self-gravity is included, the shock compression forms large gravitationally bound condensations with virial ratio of about 2 and typical masses of 0.5 to one million solar masses, comparable to the Jeans mass.

  20. Richtmyer-Meshkov instability for elastic-plastic solids in converging geometries

    NASA Astrophysics Data System (ADS)

    López Ortega, A.; Lombardini, M.; Barton, P. T.; Pullin, D. I.; Meiron, D. I.

    2015-03-01

    We present a detailed study of the interface instability that develops at the boundary between a shell of elastic-plastic material and a cylindrical core of confined gas during the inbound implosive motion generated by a shock-wave. The main instability in this configuration is the so-called Richtmyer-Meshkov instability that arises when the shock wave crosses the material interface. Secondary instabilities, such as Rayleigh-Taylor, due to the acceleration of the interface, and Kelvin-Helmholtz, due to slip between solid and fluid, arise as the motion progresses. The reflection of the shock wave at the axis and its second interaction with the material interface as the shock moves outbound, commonly known as re-shock, results in a second Richtmyer-Meshkov instability that potentially increases the growth rate of interface perturbations, resulting in the formation of a mixing zone typical of fluid-fluid configurations and the loss of the initial perturbation length scales. The study of this problem is of interest for achieving stable inertial confinement fusion reactions but its complexity and the material conditions produced by the implosion close to the axis prove to be challenging for both experimental and numerical approaches. In this paper, we attempt to circumvent some of the difficulties associated with a classical numerical treatment of this problem, such as element inversion in Lagrangian methods or failure to maintain the relationship between the determinant of the deformation tensor and the density in Eulerian approaches, and to provide a description of the different events that occur during the motion of the interface. For this purpose, a multi-material numerical solver for evolving in time the equations of motion for solid and fluid media in an Eulerian formalism has been implemented in a Cartesian grid. Equations of state are derived using thermodynamically consistent hyperelastic relations between internal energy and stresses. The resolution required for capturing the state of solid and fluid materials close to the origin is achieved by making use of adaptive mesh refinement techniques. Rigid-body rotations contained in the deformation tensor have been shown to have a negative effect on the accuracy of the method in extreme compression conditions and are removed by transforming the deformation tensor into a stretch tensor at each time step. With this methodology, the evolution of the interface can be tracked up to a point at which numerical convergence cannot be achieved due to the inception of numerical Kelvin-Helmholtz instabilities caused by slip between materials. From that point, only qualitative conclusions can be extracted from this analysis. The influence of different geometrical parameters, initial conditions, and material properties on the motion of the interface are investigated. Some major differences are found with respect to the better understood fluid-fluid case. For example, increasing the wave number of the interface perturbations leads to a second phase reversal of the interface (i.e., the first phase reversal of the interface naturally occurs due to the initial negative growth-rate of the instability as the shock wave transitions from the high-density material to the low-density one). This phenomenon is caused by the compressive effect of the converging geometry and the low density of the gas with respect to the solid, which allows for the formation of an incipient spike in the center of an already existing bubble. Multiple solid-gas density ratios are also considered. Results show that the motion of the interface asymptotically converges to the solid-vacuum case. When a higher initial density for the gas is considered, the growth rate of interface perturbations decreases and, in some situations, its sign may reverse, as the fluid becomes more dense than the solid due to having higher compressibility. Finally, the influence of the Mach number of the driving shock and the yield stress on the mixing-zone is examined. We find that the width of the mixing zone produced after the re-shock increases in proportion to the strength of the incident shock. An increased yield stress in the solid material makes the interface less unstable due to vorticity being carried away from the interface by shear waves and limits the generation of smaller length scales after the re-shock.

  1. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    DOE PAGES

    Rinderknecht, Hans G.; Park, H. -S.; Ross, J. S.; ...

    2018-03-02

    In this paper, the structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (more » $$M{\\sim}11$$) propagating through a low-density ($${\\rho}{\\sim}0.01\\text{ }\\text{ }\\mathrm{mg}/\\mathrm{cc}$$) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Finally, instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.« less

  2. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, Hans G.; Park, H. -S.; Ross, J. S.

    In this paper, the structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (more » $$M{\\sim}11$$) propagating through a low-density ($${\\rho}{\\sim}0.01\\text{ }\\text{ }\\mathrm{mg}/\\mathrm{cc}$$) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Finally, instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.« less

  3. Simulation of Interaction of Strong Shocks with Gas Bubbles using the Direct Simulation Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Puranik, Bhalchandra; Watvisave, Deepak; Bhandarkar, Upendra

    2016-11-01

    The interaction of a shock with a density interface is observed in several technological applications such as supersonic combustion, inertial confinement fusion, and shock-induced fragmentation of kidney and gall-stones. The central physical process in this interaction is the mechanism of the Richtmyer-Meshkov Instability (RMI). The specific situation where the density interface is initially an isolated spherical or cylindrical gas bubble presents a relatively simple geometry that exhibits all the essential RMI processes such as reflected and refracted shocks, secondary instabilities, turbulence and mixing of the species. If the incident shocks are strong, the calorically imperfect nature needs to be modelled. In the present work, we have carried out simulations of the shock-bubble interaction using the DSMC method for such situations. Specifically, an investigation of the shock-bubble interaction with diatomic gases involving rotational and vibrational excitations at high temperatures is performed, and the effects of such high temperature phenomena will be presented.

  4. Progress Toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike Laser

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Dwarkadas, V. V.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Gjeci, N.; Campbell, D. A.; Marion, D. C.

    2007-11-01

    In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been observed in the laboratory, no experiment to our knowledge has cleanly diagnosed the KH instability. While the RT instability results from the acceleration of a more dense fluid into a less dense fluid and the RM instability is due to shock deposited vorticity onto an interface, the KH instability is driven by a lifting force generated by velocity shear at a perturbed fluid interface. Understanding the KH instability mechanism in HED plasmas will provide essential insight into detailed RT-spike development, mass stripping, many astrophysical processes, as well as laying the groundwork for future transition to turbulence experiments. We present 2D simulations and data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.

  5. Atypical Particle Heating at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn B., III

    2010-01-01

    We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  6. Magnetic field production via the Weibel instability in interpenetrating plasma flows

    DOE PAGES

    Huntington, C. M.; Manuel, M. J. -E.; Ross, J. S.; ...

    2017-04-26

    Here, many astrophysical systems are effectively “collisionless,” that is, the mean free path for collisions between particles is much longer than the size of the system. The absence of particle collisions does not preclude shock formation, however, as shocks can be the result of plasma instabilities that generate and amplify electromagnetic fields. The magnetic fields required for shock formation may either be initially present, for example, in supernova remnants or young galaxies, or they may be self-generated in systems such as gamma-ray bursts (GRBs). In the case of GRB outflows, the Weibel instability is a candidate mechanism for the generationmore » of sufficiently strong magnetic fields to produce shocks. In experiments on the OMEGA Laser, we have demonstrated a quasi-collisionless system that is optimized for the study of the non-linear phase of Weibel instability growth. Using a proton probe to directly image electromagnetic fields, we measure Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows. The collisionality of the system is determined from coherent Thomson scattering measurements, and the data are compared to similar measurements of a fully collisionless system. The strong, persistent Weibel growth observed here serves as a diagnostic for exploring large-scale magnetic field amplification and the microphysics present in the collisional–collisionless transition.« less

  7. Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks

    NASA Astrophysics Data System (ADS)

    Malkov, Mikhail; Diamond, Patrick

    2008-11-01

    Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.

  8. On the instability of hypersonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Cowley, Stephen; Hall, Philip

    1988-01-01

    The instability of a compressible flow past a wedge is investigated in the hypersonic limit. Particular attention is given to the Tollmien-Schlichting waves governed by triple-deck theory though some discussion of inviscid modes is given. It is shown that the attached shock has a significant effect on the growth rates of Tollmien-Schlichting waves. Moreover, the presence of the shock allows for more than one unstable Tollmien-Schlichting wave. Indeed, an infinite discrete spectrum of unstable waves is induced by the shock, but these modes are unstable over relatively small but high frequency ranges. The shock is shown to have little effect on the inviscid modes considered by previous authors and an asymptotic description of inviscid modes in the hypersonic limit is given.

  9. Instability Coupling Experiments*

    NASA Astrophysics Data System (ADS)

    Chrien, R. E.; Hoffman, N. M.; Magelssen, G. R.; Schappert, G. T.; Smitherman, D. P.

    1996-11-01

    The coupling of Richtmyer-Meshkov (RM) and ablative Rayleigh-Taylor (ART) instabilities is being studied with indirectly-driven planar foil experiments on the Nova laser at Livermore. The foil is attached to a 1.6-mm-diameter, 2.75-mm-long Au hohlraum driven by a 2.2-ns long, 1:5-contrast-ratio shaped laser pulse. A shock is generated in 35-μm or 86-μm thick Al foils with a 50-μm-wavelength, 4-μm-amplitude sinusoidal perturbation on its rear surface. In some experiments, the perturbation is applied to a 10-μm Be layer on the Al. A RM instability develops when the shock encounters the perturbed surface. The flow field of the RM instability can ``feed out'' to the ablation surface of the foil and provide the seed for ART perturbation growth. Face-on and side-on x-radiography are used to observe areal density perturbations in the foil. For the 86-μm foil, the perturbation arrives at the ablation surface while the hohlraum drive is dropping and the data are consistent with RM instability alone. For the 35-μm foil, the perturbation feeds out while the hohlraum drive is close to its peak and the data appear to show strong ART perturbation growth. Comparisons with LASNEX simulations will be presented. *This work supported under USDOE contract W-7405-ENG-36.

  10. A three-dimensional numerical study on instability of sinusoidal flame induced by multiple shock waves

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Dong, Gang; Jiang, Hua

    2017-04-01

    The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, η , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter η can reasonably character the features of flame interface development induced by the multiple shock waves.

  11. Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density

    DOE PAGES

    Di Stefano, Carlos A.; Malamud, G.; Kuranz, C. C.; ...

    2015-10-19

    Here, we present experiments observing Richtmyer–Meshkov mode coupling and bubble competition in a system arising from well-characterized initial conditions and driven by a strong (Mach ~ 8) shock. These measurements and the analysis method developed to interpret them provide an important step toward the possibility of observing self-similarity under such conditions, as well as a general platform for performing and analyzing hydrodynamic instability experiments. A key feature of these experiments is that the shock is sustained sufficiently long that this nonlinear behavior occurs without decay of the shock velocity or other hydrodynamic properties of the system, which facilitates analysis andmore » allows the results to be used in the study of analytic models.« less

  12. Observation and analysis of emergent coherent structures in a high-energy-density shock-driven planar mixing layer experiment

    DOE PAGES

    Doss, Forrest William; Flippo, Kirk Adler; Merritt, Elizabeth Catherine

    2016-08-03

    Coherent emergent structures have been observed in a high-energy-density supersonic mixing layer experiment. A millimeter-scale shock tube uses lasers to drive Mbar shocks into the tube volume. The shocks are driven into initially solid foam (60 mg/cm 3) hemicylinders separated by an Al or Ti metal tracer strip; the components are vaporized by the drive. Before the experiment disassembles, the shocks cross at the tube center, creating a very fast (ΔU > 200 km/s) shear-unstable zone. After several nanoseconds, an expanding mixing layer is measured, and after 10+ ns we observe the appearance of streamwise-periodic, spanwise-aligned rollers associated with themore » primary Kelvin-Helmholtz instability of mixing layers. We additionally image roller pairing and spanwise-periodic streamwise-aligned filaments associated with secondary instabilities. New closures are derived to connect length scales of these structures to estimates of fluctuating velocity data otherwise unobtainable in the high-energy-density environment. Finally, this analysis indicates shear-induced specific turbulent energies 10 3 – 10 4 times higher than the nearest conventional experiments. Because of difficulties in continuously driving systems under these conditions and the harshness of the experimental environment limiting the usable diagnostics, clear evidence of these developing structures has never before been observed in this regime.« less

  13. 2-Shock layered tuning campaign

    NASA Astrophysics Data System (ADS)

    Masse, Laurent; Dittrich, T.; Khan, S.; Kyrala, G.; Ma, T.; MacLaren, S.; Ralph, J.; Salmonson, J.; Tipton, R.; Los Alamos Natl Lab Team; Lawrence Livermore Natl Lab Team

    2016-10-01

    The 2-Shock platform has been developed to maintain shell sphericity throughout the compression phase of an indirect-drive target implosion and produce a stagnating hot spot in a quasi 1D-like manner. A sub-scale, 1700 _m outer diameter, and thick, 200 _m, uniformly Silicon doped, gas-filled plastic capsule is driven inside a nominal size 5750 _m diameter ignition hohlraum. The hohlraum fill is near vacuum to reduce back-scatter and improve laser/drive coupling. A two-shock pulse of about 1 MJ of laser energy drives the capsule. The thick capsule prevents ablation front feed-through to the imploded core. This platform has demonstrated its efficiency to tune a predictable and reproducible 1-D implosion with a nearly round shape. It has been shown that the high foot performance was dominated by the local defect growth due to the ablation front instability and by the hohlraum radiation asymmetries. The idea here is to take advantage of this 2-Shock platform to design a 1D-like layered implosion and eliminates the deleterious effects of radiation asymmetries and ablation front instability growth. We present the design work and our first experimental results of this near one-dimensional 2-Shock layered design. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  14. Calibration of PCB-132 Sensors in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Berridge, Dennis C.; Schneider, Steven P.

    2012-01-01

    While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.

  15. Using growth and arrest of Richtmyer-Meshkov instabilities and Lagrangian simulations to study high-rate material strength

    NASA Astrophysics Data System (ADS)

    Prime, M. B.; Vaughan, D. E.; Preston, D. L.; Buttler, W. T.; Chen, S. R.; Oró, D. M.; Pack, C.

    2014-05-01

    Experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/s using Richtmyer-Meshkov (RM) instabilities. Buttler et al. recently reported experimental results for RM instability growth in copper but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and interpretation from numerical simulations of the Buttler RM instability experiments. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data. The numerical simulations are used to examine various assumptions previously made in an analytical model and to estimate the sensitivity of such experiments to material strength.

  16. Non-radial instabilities and progenitor asphericities in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Müller, B.; Janka, H.-Th.

    2015-04-01

    Since core-collapse supernova simulations still struggle to produce robust neutrino-driven explosions in 3D, it has been proposed that asphericities caused by convection in the progenitor might facilitate shock revival by boosting the activity of non-radial hydrodynamic instabilities in the post-shock region. We investigate this scenario in depth using 42 relativistic 2D simulations with multigroup neutrino transport to examine the effects of velocity and density perturbations in the progenitor for different perturbation geometries that obey fundamental physical constraints (like the anelastic condition). As a framework for analysing our results, we introduce semi-empirical scaling laws relating neutrino heating, average turbulent velocities in the gain region, and the shock deformation in the saturation limit of non-radial instabilities. The squared turbulent Mach number, , reflects the violence of aspherical motions in the gain layer, and explosive runaway occurs for ≳ 0.3, corresponding to a reduction of the critical neutrino luminosity by ˜ 25 per cent compared to 1D. In the light of this theory, progenitor asphericities aid shock revival mainly by creating anisotropic mass flux on to the shock: differential infall efficiently converts velocity perturbations in the progenitor into density perturbations δρ/ρ at the shock of the order of the initial convective Mach number Maprog. The anisotropic mass flux and ram pressure deform the shock and thereby amplify post-shock turbulence. Large-scale (ℓ = 2, ℓ = 1) modes prove most conducive to shock revival, whereas small-scale perturbations require unrealistically high convective Mach numbers. Initial density perturbations in the progenitor are only of the order of Ma_prog^2 and therefore play a subdominant role.

  17. The Study of High-Speed Surface Dynamics Using a Pulsed Proton Beam

    NASA Astrophysics Data System (ADS)

    Buttler, William; Stone, Benjamin; Oro, David; Dimonte, Guy; Preston, Dean; Cherne, Frank; Germann, Timothy; Terrones, Guillermo; Tupa, Dale

    2011-06-01

    Los Alamos National Laboratory is presently engaged in development and implementation of ejecta source term and transport models for integration into LANL hydrodynamic computer codes. Experimental support for the effort spans a broad array of activities, including ejecta source term measurements from machine roughened Sn surfaces shocked by HE or flyer plates. Because the underlying postulate for ejecta formation is that ejecta are characterized by Richtmyer-Meshkov instability (RMI) phenomena, a key element of the theory and modeling effort centers on validation and verification RMI experiments at the LANSCE Proton Radiography Facility (pRad) to compare with modeled ejecta measurements. Here we present experimental results used to define and validate a physics based ejecta model together with remarkable, unexpected results of Sn instability growth in vacuum and gasses, and Sn and Cu RM growth that reveals the sensitivity of the RM instability to the yield strength of the material, Cu. The motivation of this last subject, RM growth linked to material strength, is to probe the shock pressure regions over which ejecta begins to form. Presenter

  18. A platform for studying the Rayleigh-Taylor and Richtmyer-Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Raman, K. S.; Huntington, C. M.; MacLaren, S. A.; Wang, P.; Barrios, M. A.; Baumann, T.; Bender, J. D.; Benedetti, L. R.; Doane, D. M.; Felker, S.; Fitzsimmons, P.; Flippo, K. A.; Holder, J. P.; Kaczala, D. N.; Perry, T. S.; Seugling, R. M.; Savage, L.; Zhou, Y.

    2017-07-01

    A new experimental platform has been developed at the National Ignition Facility (NIF) for studying the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities in a planar geometry at high-energy-densities. The platform uses 60 beams of the NIF laser to drive an initially solid shock tube containing a pre-machined interface between dense and light materials. The strong shock turns the initially solid target into a plasma and the material boundary into a fluid interface with the imprinted initial condition. The interface evolves by action of the RT and RM instabilities, and the growth is imaged with backlit x-ray radiography. We present our first data involving sinusoidal interface perturbations driven from the heavy side to the light side. Late-time radiographic images show the initial conditions reaching the deeply nonlinear regime, and an evolution of fine structure consistent with a transition to turbulence. We show preliminary comparisons with post-shot numerical simulations and discuss the implications for future campaigns.

  19. Evaporation effects in a shock-driven multiphase instability with a spherical interface

    NASA Astrophysics Data System (ADS)

    Paudel, Manoj; Dahal, Jeevan; McFarland, Jacob

    2017-11-01

    This talk presents results from 3D numerical simulations of a shock driven instability of a gas-particle system with a spherical interface. Two cases, one with an evaporating particle cloud and another with a gas only approximation of this particle cloud, were run in the hydrodynamics code FLASH, developed at University of Chicago. It is shown that the gas only approximation, a classical Richtmyer Meshkov instability, cannot replicate effects from particles like, lag, clustering, and evaporation. Instead, both gas hydrodynamics and particle properties influence one another and are coupled. Results are presented to highlight the coupling of interface evolution and particle evaporation. Qualitative and quantitative differences in the RMI and SDMI are presented by studying the change in gas properties like density and vorticity within the interface. Similarly, the effect of gas hydrodynamics on particles distribution and evaporation is studied. Particle evaporation rates are compared with 1D models and show poor agreement. The variation in evaporation rates for similar sized particles and the role of gas hydrodynamics in these variation is explored.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjardins, Tiffany; Schmidt, Derek William; Di Stefano, Carlos

    These experiments are the first experiments in the Mshock campaign at the National Ignition Facility. The experiment is scheduled to be conducted on Dec. 14, 2017. The goal of the Mshock campaign is to study feedthrough dynamics of the Richtmyer- Meshkov instability in a thin layer. These dynamics will be studied in both a reshock configuration (initially) and then in a multi-shock configuration where it is planned to reshock the RM instability up to 3 times (four shocks total).

  1. Elucidation of the Dynamics for Hot-Spot Initiation at Nonuniform Interfaces of Highly Shocked Materials

    DTIC Science & Technology

    2011-12-07

    with nonuniform interfaces plays an essential role in the interfacial instabilities in iner- tial confinement fusion (ICF), in shock-induced...involved in interfacial instabilities at the atomic scale, providing insights on such phenomenon. Thus ReaxFF provides the possibility of realistic...calculations was also performed on the IPDI and DOA to determine the charges and structures for the binder model. These QM results and model preparation

  2. Elucidation of the Dynamics for Hot-Spot Initiation at Nonuniform Interfaces of Highly Shocked Materials

    DTIC Science & Technology

    2011-12-07

    with nonuniform interfaces plays an essential role in the interfacial instabilities in iner- tial confinement fusion (ICF), in shock-induced...involved in interfacial instabilities at the atomic scale, providing insights on such phenomenon. Thus ReaxFF provides the possibility of realistic...on the IPDI and DOA to determine the charges and structures for the binder model. These QM results and model preparation procedure are provided as part

  3. e(sup +/-) Pair Loading and the Origin of the Upstream Magnetic Field in GRB Shocks

    NASA Technical Reports Server (NTRS)

    Ramirez-Ruiz, Enrico; Nishikawa, Ken-Ichi; Hededal, Christian B.

    2006-01-01

    We investigate here the effects of plasma instabilities driven by rapid e(sup +/-) pair cascades, which arise in the environment of GRB sources as a result of back-scattering of a seed fraction of their original spectrum. The injection of e(sup +/-) pairs induces strong streaming motions in the ambient medium. One therefore expects the pair-enriched medium ahead of the forward shock to be strongly sheared on length scales comparable to the radiation front thickness. Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e(sup +/-) pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between e(sup +/-) pairs and ions, and may help explain the origin of large upstream fields in GRB shocks.

  4. e+/- Pair Loading and the Origin of the Upstream Field in GRB Shocks

    NASA Technical Reports Server (NTRS)

    Ramirez-Ruiz, Enrico; Nishikawa, Ken-Ichi; Hededal, Christian B.

    2006-01-01

    We investigate here the effects of plasma instabilities driven by rapid e(sup plus or minus) pair cascades, which arise in the environment of GRB sources as a result of back-scattering of a seed fraction of their original spectrum. The injection of e(sup plus or minus) pairs induces strong streaming motions in the ambient medium. One therefore expects the pair-enriched medium ahead of the forward shock to be strongly sheared on length scales comparable to the radiation front thickness. Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e(sup plus or minus) pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between e(sup plus or minus) pairs and ions, and may help explain the origin of large upstream fields in GRB shocks.

  5. NIF laboratory astrophysics simulations investigating the effects of a radiative shock on hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Angulo, A. A.; Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Park, H.-S.; Remington, B. A.; Kalantar, D.; MacLaren, S.; Raman, K.; Miles, A.; Trantham, Matthew; Kline, J. L.; Flippo, K.; Doss, F. W.; Shvarts, D.

    2016-10-01

    This poster will describe simulations based on results from ongoing laboratory astrophysics experiments at the National Ignition Facility (NIF) relevant to the effects of radiative shock on hydrodynamically unstable surfaces. The experiments performed on NIF uniquely provide the necessary conditions required to emulate radiative shock that occurs in astrophysical systems. The core-collapse explosions of red supergiant stars is such an example wherein the interaction between the supernova ejecta and the circumstellar medium creates a region susceptible to Rayleigh-Taylor (R-T) instabilities. Radiative and nonradiative experiments were performed to show that R-T growth should be reduced by the effects of the radiative shocks that occur during this core-collapse. Simulations were performed using the radiation hydrodynamics code Hyades using the experimental conditions to find the mean interface acceleration of the instability and then further analyzed in the buoyancy drag model to observe how the material expansion contributes to the mix-layer growth. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas under Grant Number DE-FG52-09NA29548.

  6. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    NASA Astrophysics Data System (ADS)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  7. Magnetically-Driven Radiative Shock Experiments for Laboratory Astrophysics

    NASA Astrophysics Data System (ADS)

    Clayson, Thomas; Lebedev, Sergey; Suzuki-Vidal, Francisco; Burdiak, Guy; Halliday, Jonathon; Hare, Jack; Suttle, Lee; Tubman, Ellie

    2017-10-01

    We present results from new experiments, aimed at producing radiative shocks, using an ``inverse liner'' configuration on the MAGPIE pulsed power facility (1.4 MA in 240 ns) at Imperial College London in the UK. In these experiments current passes through a thin walled metal tube and is returned through a central rod on the axis, generating a strong (40 Tesla) toroidal magnetic field. This drives a shock through the tube which launches a cylindrically symmetric, radially expanding radiative shock in to gas surrounding the tube. Unlike previous converging shock experiments, where the shock is located within the imploding liner and thus only permits end on probing, this experimental setup is much more open for diagnostic access and allows shocks to propagate further instead of colliding of axis. Multi-frame self-emission imaging, laser interferometry, emission spectrometry and magnetic probes were used to provide a better understanding of the shock dynamics. Results are shown from experiments performed in a variety of gases (Ne, Ar, Kr, Xe 1-50 mbar). In addition, methods for seeding perturbations are discussed which may allow for the study of several shock instabilities such as the Vishniac instability.

  8. Persistence of Precursor Waves in Two-dimensional Relativistic Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro

    2017-05-01

    We investigated the efficiency of coherent upstream large-amplitude electromagnetic wave emission via synchrotron maser instability in relativistic magnetized shocks using two-dimensional particle-in-cell simulations. We considered a purely perpendicular shock in an electron–positron plasma. The coherent wave emission efficiency was measured as a function of the magnetization parameter σ , which is defined as the ratio of the Poynting flux to the kinetic energy flux. The wave amplitude was systematically smaller than that observed in one-dimensional simulations. However, it continued to persist, even at a considerably low magnetization rate, where the Weibel instability dominated the shock transition. The emitted electromagnetic wavesmore » were sufficiently strong to disturb the upstream medium, and transverse filamentary density structures of substantial amplitude were produced. Based on this result, we discuss the possibility of the wakefield acceleration model to produce nonthermal electrons in a relativistic magnetized ion–electron shock.« less

  9. Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.

    2010-01-01

    We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  10. Ion-impact-induced multifragmentation of liquid droplets★

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Verkhovtsev, Alexey; Solov'yov, Andrey V.

    2017-11-01

    An instability of a liquid droplet traversed by an energetic ion is explored theoretically. This instability is brought about by the predicted shock wave induced by the ion. An observation of multifragmentation of small droplets traversed by ions with high linear energy transfer is suggested to demonstrate the existence of shock waves. A number of effects are analysed in effort to find the conditions for such an experiment to be signifying. The presence of shock waves crucially affects the scenario of radiation damage with ions since the shock waves significantly contribute to the thermomechanical damage of biomolecules as well as the transport of reactive species. While the scenario has been upheld by analyses of biological experiments, the shock waves have not yet been observed directly, regardless of a number of ideas of experiments to detect them were exchanged at conferences. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  11. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    DOE PAGES

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; ...

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm 2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  12. Kinetic theory and turbulent discontinuities. [shock tube flow

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; I, L.; Li, Y.; Ramaian, R.; Santigo, J. P.

    1981-01-01

    Shock tube discontinuities were used to test and extend a kinetic theory of turbulence. In shock wave and contact surface fluctuations, coherent phenomena were found which provide new support for the microscopic nonempirical approach to turbulent systems, especially those with boundary layer-like instabilities.

  13. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    NASA Astrophysics Data System (ADS)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  14. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  15. Sound velocities in highly oriented pyrolytic graphite shocked to 18 GPa: Orientational order dependence and elastic instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Marcel; Winey, J. M.; Gupta, Y. M.

    Previous reports of rapid phase transformation above 18 GPa [Erskine and Nellis, Nature 349, 317 (1991)] and large elastic waves below 18 GPa [Lucas et al., J. Appl. Phys. 114, 093515 (2013)] for shock-compressed ZYB-grade highly-oriented pyrolytic graphite (HOPG), but not for less oriented ZYH-grade HOPG, indicated a link between the orientational order dependence of the HOPG response above and below the phase transformation stress. To gain insight into this link and into the mechanical response of HOPG shocked to peak stresses approaching the phase transformation onset, the compressibility of ZYB- and ZYH-grade HOPG in the shocked state was examinedmore » using front surface impact experiments. Particle velocity histories and sound velocities were measured for peak stresses reaching 18 GPa. Although the locus of the measured peak stress-particle velocity states is indistinguishable for the two grades of HOPG, the measured sound velocities in the peak state reveal significant differences between the two grades. Specifically, 1) The measured sound velocities are somewhat higher for ZYH-grade HOPG, compared to ZYB-grade HOPG. 2) The measured sound velocities for ZYH-grade HOPG increase smoothly with compression, whereas those for ZYB-2 grade HOPG exhibit a significant reduction in the compression dependence from 12 GPa to 17 GPa and an abrupt increase from 17 GPa to 18 GPa. 3) The longitudinal moduli, determined from the measured sound velocities, are smaller than the calculated bulk moduli for ZYB-grade HOPG shocked to peak stresses above 15 GPa, indicating the onset of an elastic instability. The present findings demonstrate that the softening of the longitudinal modulus (or elastic instability) presented here is linked to the large elastic waves and the rapid phase transformation reported previously – all observed only for shocked ZYB-grade HOPG. The elastic instability in shocked ZYB-grade HOPG is likely a precursor to the rapid phase transformation observed above 18 GPa for this HOPG grade.« less

  16. Sound velocities in highly oriented pyrolytic graphite shocked to 18 GPa: Orientational order dependence and elastic instability

    DOE PAGES

    Lucas, Marcel; Winey, J. M.; Gupta, Y. M.

    2015-12-28

    Previous reports of rapid phase transformation above 18 GPa [Erskine and Nellis, Nature 349, 317 (1991)] and large elastic waves below 18 GPa [Lucas et al., J. Appl. Phys. 114, 093515 (2013)] for shock-compressed ZYB-grade highly-oriented pyrolytic graphite (HOPG), but not for less oriented ZYH-grade HOPG, indicated a link between the orientational order dependence of the HOPG response above and below the phase transformation stress. To gain insight into this link and into the mechanical response of HOPG shocked to peak stresses approaching the phase transformation onset, the compressibility of ZYB- and ZYH-grade HOPG in the shocked state was examinedmore » using front surface impact experiments. Particle velocity histories and sound velocities were measured for peak stresses reaching 18 GPa. Although the locus of the measured peak stress-particle velocity states is indistinguishable for the two grades of HOPG, the measured sound velocities in the peak state reveal significant differences between the two grades. Specifically, 1) The measured sound velocities are somewhat higher for ZYH-grade HOPG, compared to ZYB-grade HOPG. 2) The measured sound velocities for ZYH-grade HOPG increase smoothly with compression, whereas those for ZYB-2 grade HOPG exhibit a significant reduction in the compression dependence from 12 GPa to 17 GPa and an abrupt increase from 17 GPa to 18 GPa. 3) The longitudinal moduli, determined from the measured sound velocities, are smaller than the calculated bulk moduli for ZYB-grade HOPG shocked to peak stresses above 15 GPa, indicating the onset of an elastic instability. The present findings demonstrate that the softening of the longitudinal modulus (or elastic instability) presented here is linked to the large elastic waves and the rapid phase transformation reported previously – all observed only for shocked ZYB-grade HOPG. The elastic instability in shocked ZYB-grade HOPG is likely a precursor to the rapid phase transformation observed above 18 GPa for this HOPG grade.« less

  17. The Vetter-Sturtevant Shock Tube Problem in KULL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulitsky, M S

    2005-10-06

    The goal of the EZturb mix model in KULL is to predict the turbulent mixing process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz instabilities. In this report we focus on an example of the Richtmyer-Meshkov instability (which occurs when a shock hits an interface between fluids of different densities) with the additional complication of reshock. The experiment by Vetter & Sturtevant (VS) [1], involving a Mach 1.50 incident shock striking an air/SF{sub 6} interface, is a good one to model, now that we understand how the model performs for the Benjamin shock tube [2] and a prototypical incompressible Rayleigh-Taylormore » problem [3]. The x-t diagram for the VS shock tube is quite complicated, since the transmitted shock hits the far wall at {approx}2 millisec, reshocks the mixing zone slightly after 3 millisec (which sets up a release wave that hits the wall at {approx}4 millisec), and then the interface is hit with this expansion wave around 5 millisec. Needless to say, this problem is much more difficult to model than the Bejamin shock tube.« less

  18. Dependence of the aftershock flow on the main shock magnitude

    NASA Astrophysics Data System (ADS)

    Guglielmi, A. V.; Zavyalov, A. D.; Zotov, O. D.; Lavrov, I. P.

    2017-01-01

    Previously, we predicted and then observed in practice the property of aftershocks which consists in the statistically regular clustering of events in time during the first hours after the main shock. The characteristic quasi-period of clustering is three hours. This property is associated with the cumulative action of the surface waves converging to the epicenter, whereas the quasi-period is mainly determined by the time delay of the round-the-world seismic echo. The quasi-period varies from case to case. In the attempt to find the cause of this variability, we have statistically explored the probable dependence of quasi-period on the magnitude of the main shock. In this paper, we present the corresponding result of analyzing global seismicity from the USGS/NEIC earthquake catalog. We succeeded in finding a significant reduction in the quasiperiod of the strong earthquakes clustering with growth in the magnitude of the main shock. We suggest the interpretation of this regularity from the standpoint of the phenomenological theory of explosive instability. It is noted that the phenomenon of explosive instability is fairly common in the geophysical media. The examples of explosive instability in the radiation belt and magnetospheric tail are presented. The search for the parallels in the evolution of explosive instability in the lithosphere and magnetosphere of the Earth will enrich both the physics of the earthquakes and physics of the magnetospheric pulsations.

  19. Initial conditions and modeling for simulations of shock driven turbulent material mixing

    DOE PAGES

    Grinstein, Fernando F.

    2016-11-17

    Here, we focus on the simulation of shock-driven material mixing driven by flow instabilities and initial conditions (IC). Beyond complex multi-scale resolution issues of shocks and variable density turbulence, me must address the equally difficult problem of predicting flow transition promoted by energy deposited at the material interfacial layer during the shock interface interactions. Transition involves unsteady large-scale coherent-structure dynamics capturable by a large eddy simulation (LES) strategy, but not by an unsteady Reynolds-Averaged Navier–Stokes (URANS) approach based on developed equilibrium turbulence assumptions and single-point-closure modeling. On the engineering end of computations, such URANS with reduced 1D/2D dimensionality and coarsermore » grids, tend to be preferred for faster turnaround in full-scale configurations.« less

  20. Computational Study of the Richtmyer-Meshkov Instability with a Complex Initial Condition

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob; Reilly, David; Greenough, Jeffrey; Ranjan, Devesh

    2014-11-01

    Results are presented for a computational study of the Richtmyer-Meshkov instability with a complex initial condition. This study covers experiments which will be conducted at the newly-built inclined shock tube facility at the Georgia Institute of Technology. The complex initial condition employed consists of an underlying inclined interface perturbation with a broadband spectrum of modes superimposed. A three-dimensional staggered mesh arbitrary Lagrange Eulerian (ALE) hydrodynamics code developed at Lawerence Livermore National Laboratory called ARES was used to obtain both qualitative and quantitative results. Qualitative results are discussed using time series of density plots from which mixing width may be extracted. Quantitative results are also discussed using vorticity fields, circulation components, and energy spectra. The inclined interface case is compared to the complex interface case in order to study the effect of initial conditions on shocked, variable-density flows.

  1. Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments.

    PubMed

    Espinosa, G; Rodríguez, R; Gil, J M; Suzuki-Vidal, F; Lebedev, S V; Ciardi, A; Rubiano, J G; Martel, P

    2017-03-01

    Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.

  2. Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Rodríguez, R.; Gil, J. M.; Suzuki-Vidal, F.; Lebedev, S. V.; Ciardi, A.; Rubiano, J. G.; Martel, P.

    2017-03-01

    Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.

  3. Effects of Phase Transformations and Dynamic Material Strength on Hydrodynamic Instability Evolution in Metals

    NASA Astrophysics Data System (ADS)

    Opie, Saul

    Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased pressure causes shock front perturbations to decay sooner, while plastic strength has the opposite effect which is significantly different from the effect viscosity has. These results suggest additional experimental setups to validate material models, or relevant material parameters that can be optimized for system design objectives, e.g., minimize feed through perturbations in inertial confinement fusion capsules.

  4. Simulation of Relativistic Shocks and Associated Self-Consistent Radiation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; hide

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs.

  5. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; hide

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs

  6. Shock-driven Rayleigh-Taylor / Richtmyer-Meshkov 2D multimode ripple evolution before and after re-shock

    NASA Astrophysics Data System (ADS)

    Nagel, Sabrina; Huntington, Channing; Bender, Jason; Raman, Kumar; Baumann, Ted; MacLaren, Stephan; Prisbrey, Shon; Zhou, Ye

    2017-10-01

    Laser-driven hydrodynamic experiments allow for the precise control over several important experimental parameters, including the timing of the laser irradiation delivered and the initial conditions of the laser-driven target. Our experimental platform at the National Ignition Facility enables the investigation of the physics of instability growth after the passage of a second shock (``reshock''). This is done by varying the laser to change the strength and timing of the secondary shock. Here we present x-ray images capturing the rapid post-reshock instability growth for a set of reshock strengths. The radiation hydrodynamics simulations used to design these experiments are also introduced. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-734509.

  7. Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92

    NASA Astrophysics Data System (ADS)

    Hildebrand, Nathaniel; Dwivedi, Anubhav; Nichols, Joseph W.; Jovanović, Mihailo R.; Candler, Graham V.

    2018-01-01

    We investigate flow instability created by an oblique shock wave impinging on a Mach 5.92 laminar boundary layer at a transitional Reynolds number. The adverse pressure gradient of the oblique shock causes the boundary layer to separate from the wall, resulting in the formation of a recirculation bubble. For sufficiently large oblique shock angles, the recirculation bubble is unstable to three-dimensional perturbations and the flow bifurcates from its original laminar state. We utilize direct numerical simulation (DNS) and global stability analysis to show that this first occurs at a critical shock angle of θ =12 .9∘ . At bifurcation, the least-stable global mode is nonoscillatory and it takes place at a spanwise wave number β =0.25 , in good agreement with DNS results. Examination of the critical global mode reveals that it originates from an interaction between small spanwise corrugations at the base of the incident shock, streamwise vortices inside the recirculation bubble, and spanwise modulation of the bubble strength. The global mode drives the formation of long streamwise streaks downstream of the bubble. While the streaks may be amplified by either the lift-up effect or by Görtler instability, we show that centrifugal instability plays no role in the upstream self-sustaining mechanism of the global mode. We employ an adjoint solver to corroborate our physical interpretation by showing that the critical global mode is most sensitive to base flow modifications that are entirely contained inside the recirculation bubble.

  8. Nonlinear analysis of generalized cross-field current instability

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Lui, Anthony T. Y.

    1993-01-01

    Analysis of the generalized cross-field current instability is carried out in which cross-field drift of both the ions and electrons and their temperatures are permitted to vary in time. The unstable mode under consideration is the electromagnetic generalization of the classical modified-two-stream instability. The generalized instability is made of the modified-two-stream and ion-Weibel modes. The relative importance of the features associated with the ion-Weibel mode and those of the modified-two-stream mode is assessed. Specific applications are made to the Earth's neutral sheet prior to substorm onset and to the Earth's bow shock. The numerical solution indicates that the ion-Weibel mode dominates in the Earth's neutral sheet environment. In contrast, the situation for the bow shock is dominated by the modified-two-stream mode. Notable differences are found between the present calculation and previous results on ion-Weibel mode which restrict the analysis to only parallel propagating waves. However, in the case of Earth's bow shock for which the ion-Weibel mode plays no important role, the inclusion of the electromagnetic ion response is found to differ little from the previous results which treats ions responding only to the electrostatic component of the excited waves.

  9. Delayed Neutrino-Driven Supernova Explosions Aided by the Standing Accretion-Shock Instability

    NASA Astrophysics Data System (ADS)

    Marek, A.; Janka, H.-Th.

    2009-03-01

    We present two-dimensional hydrodynamic simulations of stellar core collapse and develop the framework for a detailed analysis of the energetic aspects of neutrino-powered supernova explosions. Our results confirm that the neutrino-heating mechanism remains a viable explanation of the explosion of a wider mass range of supernova progenitors with iron cores, but the explosion sets in later and develops differently than thought so far. The calculations were performed with an energy-dependent treatment of the neutrino transport based on the "ray-by-ray plus" approximation, in which the neutrino number, energy, and momentum equations are closed with a variable Eddington factor obtained by iteratively solving a model Boltzmann equation. We focus here on the evolution of a 15 M sun progenitor and provide evidence that shock revival and an explosion are initiated at about 600 ms after core bounce, powered by neutrino energy deposition. This is significantly later than previously found for an 11.2 M sun star, for which we also present a continuation of the explosion model published by Buras et al. The onset of the blast is fostered in both cases by the standing accretion-shock instability. This instability exhibits highest growth rates for the dipole and quadrupole modes, which lead to large-amplitude bipolar shock oscillations and push the shock to larger radii, thus increasing the time accreted matter is exposed to neutrino heating in the gain layer. As a consequence, also convective overturn behind the shock is strengthened, which otherwise is suppressed or damped because of the small shock stagnation radius. When the explosion sets in, the shock reveals a pronounced global deformation with a dominant dipolar component. In both the 11.2 M sun and 15 M sun explosions long-lasting equatorial downflows supply the gain layer with fresh gas, of which a sizable fraction is heated by neutrinos and leads to the build-up of the explosion energy of the ejecta over possibly hundreds of milliseconds. A "soft" nuclear equation of state that causes a rapid contraction, and a smaller radius of the forming neutron star and thus a fast release of gravitational binding energy, seems to be more favorable for the development of an explosion. Rotation has the opposite effect because in the long run it leads to a more extended and cooler neutron star and thus lower neutrino luminosities and mean energies and overall less neutrino heating. Neutron star g-mode oscillations, although we see their presence, and the acoustic mechanism play no important role in our simulations. While numerical tests show that our code is also well able to follow large-amplitude core g-modes if they are instigated; the amplitude of such oscillations remains small in our supernova runs and the acoustic energy flux injected by the ringing neutron star and by the deceleration of supersonic downflows near the neutron star surface is small compared to the neutrino energy deposition.

  10. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  11. Studies of Plasma Instabilities using Unstructured Discontinuous Galerkin Method with the Two-Fluid Plasma Model

    NASA Astrophysics Data System (ADS)

    Song, Yang; Srinivasan, Bhuvana

    2017-10-01

    The discontinuous Galerkin (DG) method has the advantage of resolving shocks and sharp gradients that occur in neutral fluids and plasmas. An unstructured DG code has been developed in this work to study plasma instabilities using the two-fluid plasma model. Unstructured meshes are known to produce small and randomized grid errors compared to traditional structured meshes. Computational tests for Rayleigh-Taylor instabilities in radially-converging flows are performed using the MHD model. Choice of grid geometry is not obvious for simulations of instabilities in these circular configurations. Comparisons of the effects for different grids are made. A 2D magnetic nozzle simulation using the two-fluid plasma model is also performed. A vacuum boundary condition technique is applied to accurately solve the Riemann problem on the edge of the plume.

  12. Grain orientation effects on dynamic strength of FCC multicrystals at low shock pressures: a hydrodynamic instability study

    DOE PAGES

    Peralta, P.; Loomis, E.; Chen, Y.; ...

    2015-04-09

    Variability in local dynamic plasticity due to material anisotropy in polycrystalline metals is likely to be important on damage nucleation and growth at low pressures. Hydrodynamic instabilities could be used to study these plasticity effects by correlating measured changes in perturbation amplitudes at free surfaces to local plastic behaviour and grain orientation, but amplitude changes are typically too small to be measured reliably at low pressures using conventional diagnostics. Correlations between strength at low shock pressures and grain orientation were studied in copper (grain size ≈ 800 μm) using the Richtmyer–Meshkov instability with a square-wave surface perturbation (wavelength = 150 μm, amplitude = 5 μm), shocked at 2.7 GPa using symmetric plate impacts. A Plexiglas window was pressed against the peaks of the perturbation, keeping valleys as free surfaces. This produced perturbation amplitude changes much larger than those predicted without the window. Amplitude reductions from 64 to 88% were measured in recovered samples and grains oriented close tomore » $$\\langle$$0 0 1$$\\rangle$$ parallel to the shock had the largest final amplitude, whereas grains with shocks directions close to $$\\langle$$1 0 1$$\\rangle$$ had the lowest. Finite element simulations were performed with elastic-perfectly plastic models to estimate yield strengths leading lead to those final amplitudes. Anisotropic elasticity and these yield strengths were used to calculate the resolved shear stresses at yielding for the two orientations. In conclusion, results are compared with reports on orientation dependence of dynamic yielding in Cu single crystals and the higher values obtained suggest that strength estimations via hydrodynamic instabilities are sensitive to strain hardening and strain rate effects.« less

  13. Shock induced Richtmyer-Meshkov instability in the presence of a wall boundary layer

    NASA Astrophysics Data System (ADS)

    Jourdan, G.; Billiotte, M.; Houas, L.

    1996-06-01

    An experimental investigation on gaseous mixing zones originated from the Richtmyer-Meshkov instability has been undertaken in a square cross section shock tube. Mass concentration fields, of one of the two mixing constituents, have been determined within the mixing zone when the shock wave passes from the heavy gas to the light one, from one gas to an other of close density, and from the light gas to the heavy one. Results have been obtained before and after the coming back of the reflected shock wave. The diagnostic method is based on the infrared absorption of one of the two constituents of the mixing zone. It is shown that the mixing zone is strongly deformed by the wall boundary layer. The consequence is the presence of strong gradients of concentration in the direction perpendicular to the shock wave propagation. Finally, it is pointed out that the mixing goes more homogeneous when the Atwood number tends to zero.

  14. Simulation Study of Magnetic Fields Generated by the Electromagnetic Filamentation Instability

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C. B.; Mizuno, Y.; Fishman, G. J.

    2007-01-01

    We have investigated the effects of plasma instabilities driven by rapid e(sup plus or minus) pair cascades, which arise in the environment of GRB sources as a result of back-scattering of a seed fraction of the original spectrum. The injection of e(sup plus or minus) pairs induces strong streaming motions in the ambient medium. One therefore expects the pair-enriched medium ahead of the forward shock to be strongly sheared on length scales comparable to the radiation front thickness. Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e(sup plus or minus) pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between e(sup plus or minus) pairs and ions, and may help explain the origin of large upstream fields in GRB shocks.

  15. Pre-Stall Behavior of a Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Chen, Jen-Ping; Hathaway, Michael D.; Herrick, Gregory P.

    2008-01-01

    CFD calculations using high-performance parallel computing were conducted to simulate the pre-stall flow of a transonic compressor stage, NASA compressor Stage 35. The simulations were run with a full-annulus grid that models the 3D, viscous, unsteady blade row interaction without the need for an artificial inlet distortion to induce stall. The simulation demonstrates the development of the rotating stall from the growth of instabilities. Pressure-rise performance and pressure traces are compared with published experimental data before the study of flow evolution prior to the rotating stall. Spatial FFT analysis of the flow indicates a rotating long-length disturbance of one rotor circumference, which is followed by a spike-type breakdown. The analysis also links the long-length wave disturbance with the initiation of the spike inception. The spike instabilities occur when the trajectory of the tip clearance flow becomes perpendicular to the axial direction. When approaching stall, the passage shock changes from a single oblique shock to a dual-shock, which distorts the perpendicular trajectory of the tip clearance vortex but shows no evidence of flow separation that may contribute to stall.

  16. Numerical techniques for solving nonlinear instability problems in smokeless tactical solid rocket motors. [finite difference technique

    NASA Technical Reports Server (NTRS)

    Baum, J. D.; Levine, J. N.

    1980-01-01

    The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.

  17. Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecz, Zs.; Andreev, A.; Max-Born Institute, Berlin

    The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter thanmore » the characteristic development time of the parasitic Weibel instability.« less

  18. H_Hyd_Shktub_Mshock_III, JJJ, KKK (S01,S02,S03) on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjardins, Tiffany; Schmidt, Derek William; Di Stefano, Carlos

    2017-12-15

    These experiments are the first experiments in the Mshock campaign at the National Ignition Facility. The experiment is scheduled to be conducted on Dec. 14, 2017. The goal of the Mshock campaign is to study feedthrough dynamics of the Richtmyer- Meshkov instability in a thin layer. These dynamics will be studied in both a reshock configuration (initially) and then in a multi-shock configuration where it is planned to reshock the RM instability up to 3 times (four shocks total).

  19. The simulation of shock- and impact-driven flows with Mie-Gruneisen equations of state

    NASA Astrophysics Data System (ADS)

    Ward, Geoffrey M.

    An investigation of shock- and impact-driven flows with Mie-Gruneisen equation of state derived from a linear shock-particle speed Hugoniot relationship is presented. Cartesian mesh methods using structured adaptive refinement are applied to simulate several flows of interest in an Eulerian frame of reference. The flows central to the investigation include planar Richtmyer-Meshkov instability, the impact of a sphere with a plate, and an impact-driven Mach stem. First, for multicomponent shock-driven flows, a dimensionally unsplit, spatially high-order, hybrid, center-difference, limiter methodology is developed. Effective switching between center-difference and upwinding schemes is achieved by a set of robust tolerance and Lax-entropy-based criteria [49]. Oscillations that result from such a mixed stencil scheme are minimized by requiring that the upwinding method approaches the center-difference method in smooth regions. The solver is then applied to investigate planar Richtmyer-Meshkov instability in the context of an equation of state comparison. Comparisons of simulations with materials modeled by isotropic stress Mie-Gruneisen equations of state derived from a linear shock-particle speed Hugoniot relationship [36,52] to those of perfect gases are made with the intention of exposing the role of the equation of state. First, results for single- and triple-mode planar Richtmyer-Meshkov instability between mid-ocean ridge basalt (MORB) and molybdenum modeled by Mie-Gruneisen equations of state are presented for the case of a reflected shock. The single-mode case is explored for incident shock Mach numbers of 1.5 and 2.5. Additionally, examined is single-mode Richtmyer-Meshkov instability when a reflected expansion wave is present for incident Mach numbers of 1.5 and 2.5. Comparison to perfect gas solutions in such cases yields a higher degree of similarity in start-up time and growth rate oscillations. Vorticity distribution and corrugation centerline shortly after shock interaction is also examined. The formation of incipient weak shock waves in the heavy fluid driven by waves emanating from the perturbed transmitted shock is observed when an expansion wave is reflected. Next, the ghost fluid method [83] is explored for application to impact-driven flows with Mie-Gruneisen equations of state in a vacuum. Free surfaces are defined utilizing a level-set approach. The level-set is reinitialized to the signed distance function periodically by solution to a Hamilton-Jacobi differential equation in artificial time. Flux reconstruction along each Cartesian direction of the domain is performed by subdividing in a way that allows for robust treatment of grid-scale sized voids. Ghost cells in voided regions near the material-vacuum interface are determined from surface-normal Riemann problem solution. The method is then applied to several impact problems of interest. First, a one-dimensional impact problem is examined in Mie-Gruneisen aluminum with simple point erosion used to model separation by spallation under high tension. A similar three-dimensional axisymmetric simulation of two rods impacting is then performed without a model for spallation. Further results for three-dimensional axisymmetric simulation of a sphere hitting a plate are then presented. Finally, a brief investigation of the assumptions utilized in modeling solids as isotropic fluids is undertaken. An Eulerian solver approach to handling elastic and elastic-plastic solids is utilized for comparison to the simple fluid model assumption. First, in one dimension an impact problem is examined for elastic, elastic-plastic, and fluid equations of state for aluminum. The results demonstrate that in one dimension the fluid models the plastic shock structure of the flow well. Further investigation is made using a three-dimensional axisymmetric simulation of an impact problem involving a copper cylinder surrounded by aluminum. An aluminum slab impact drives a faster shock in the outer aluminum region yielding a Mach reflection in the copper. The results demonstrate similar plastic shock structures. Several differences are also notable that include a lack of roll-up instability at the material interface and slip-line emanating from the Mach stem's triple point. (Abstract shortened by UMI.)

  20. Nonlinear Longitudinal Mode Instability in Liquid Propellant Rocket Engine Preburners

    NASA Technical Reports Server (NTRS)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    Nonlinear pressure oscillations have been observed in liquid propellant rocket instability preburner devices. Unlike the familiar transverse mode instabilities that characterize primary combustion chambers, these oscillations appear as longitudinal gas motions with frequencies that are typical of the chamber axial acoustic modes. In several respects, the phenomenon is similar to longitudinal mode combustion instability appearing in low-smoke solid propellant motors. An important feature is evidence of steep-fronted wave motions with very high amplitude. Clearly, gas motions of this type threaten the mechanical integrity of associated engine components and create unacceptably high vibration levels. This paper focuses on development of the analytical tools needed to predict, diagnose, and correct instabilities of this type. For this purpose, mechanisms that lead to steep-fronted, high-amplitude pressure waves are described in detail. It is shown that such gas motions are the outcome of the natural steepening process in which initially low amplitude standing acoustic waves grow into shock-like disturbances. The energy source that promotes this behavior is a combination of unsteady combustion energy release and interactions with the quasi-steady mean chamber flow. Since shock waves characterize the gas motions, detonation-like mechanisms may well control the unsteady combustion processes. When the energy gains exceed the losses (represented mainly by nozzle and viscous damping), the waves can rapidly grow to a finite amplitude limit cycle. Analytical tools are described that allow the prediction of the limit cycle amplitude and show the dependence of this wave amplitude on the system geometry and other design parameters. This information can be used to guide corrective procedures that mitigate or eliminate the oscillations.

  1. Gravitational Instabilities in Disks with Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Mejía, A. C.; Durisen, R. H.; Pickett, B. K.

    Previous simulations of self-gravitating protoplanetary disks by our group have shown that, once developed, gravitational instabilities are enhanced by cooling the disk constantly during its evolution (Pickett et al. 2002). These earlier calculations included a very simple form of volumetric cooling which acted against the stabilizing effects of shock heating. The present work incorporates more realistic treatments of energy transport. The initial disk model extends from 2.3 to 40 AU, has a mass of 0.07 M⊙, and orbits a 0.5 M⊙ star. The models evolve for a period of over 2500 years, during which the structure of the disks is profoundly altered, transient clumps form in one case, but no permanent bound companion objects develop.

  2. Experimental growth of inertial forced Richtmyer-Meshkov instabilities for different Atwood numbers

    NASA Astrophysics Data System (ADS)

    Redondo, J. M.; Castilla, R.

    2009-04-01

    Richtmyer-Meshkov instability occurs when a shock wave impinges on an interface separating two fluids having different densities [1,2]. The instability causes perturbations on the interface to grow, bubbles and spikes, producing vortical structures which potentially result in a turbulent mixing layer. In addition to shock tube experiments, the incompressible Richtmyer-Meshkov instability has also been studied by impulsively accelerating containers of incompressible fluids. Castilla and Redondo (1994) [3] first exploited this technique by dropping tanks containing a liquid and air or two liquids onto a cushioned surface. This technique was improved upon by Niederhaus and Jacobs (2003)[4] by mounting the tank onto a rail system and then allowing it to bounce off of a fixed spring. A range of both miscible and inmiscible liquids were used, giving a wide range of Atwood numbers using the combinations of air, water, alcohol, oil and mercury. Experimental results show the different pattern selection of both the bubbles and spikes for the different Atwood numbers. Visual analysis of the marked interfaces allows to distinguish the regions of strong mixing and compare self-similarity growth of the mixing region. [1] Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics 4, 101-104. [2] Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface. Journal of Fluid Mechanics 263, 271-292. [3] Castilla, R. & Redondo, J. M. 1994 Mixing Front Growth in RT and RM Instabilities. Proceedings of the Fourth International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge, United Kingdom, edited by P. F. Linden, D. L. Youngs, and S. B. Dalziel, 11-31. [4] Niederhaus, C. E. & Jacobs, J. W. 2003 Experimental study of the Richtmyer-Meshkov instability of incompressible fluids. Journal of Fluid Mechanics 485, 243-277.

  3. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  4. Observation of astrophysical Weibel instability in counterstreaming laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Fiksel, G.; Bhattacharjee, A.; Germaschewski, K.; Chang, P.-Y.; Hu, S. X.; Nilson, P. M.

    2013-10-01

    Astrophysical shocks are typically collisionless and require collective electromagnetic fields to couple the upstream and downstream plasmas. The Weibel instability has been proposed to be one of such collective mechanism. Here we present laboratory tests of this process through observations of the Weibel instability generated between two counterstreaming, supersonic plasma flows, generated on the OMEGA EP laser facility by irradiating of a pair of opposing parallel CH targets by UV laser pulses (0.351 μm, 1.8 kJ, 2 ns). The Weibel-generated electromagnetic fields were probed with an ultrafast proton beam, generated with a high-intensity laser pulse (1.053 μm, 800 J, 10 ps) focused to >1018 W/cm2 onto a thin Cu disk. Growth of a striated, transverse instability is observed at the midplane as the two plasmas interpenetrate, which is identified as the Weibel instability through agreement with analytic theory and particle-in-cell simulations. These laboratory observations directly demonstrate the existence of this astrophysical process, and pave the way for further detailed laboratory study of this instability and its consequences for particle energization and shock formation. This work was supported by DOE grant DE-SC0007168.

  5. Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves

    NASA Astrophysics Data System (ADS)

    Si, T.; Zhai, Z.; Luo, X.; Yang, J.

    2014-01-01

    The Richtmyer-Meshkov instability behavior of a heavy-gas cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of in a mm square cross-section shock tube. The cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.

  6. Multidimensional neutrino-transport simulations of the core-collapse supernova central engine

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan; Couch, Sean

    2017-01-01

    Core-collapse supernovae (CCSNe) mark the explosive death of a massive star. The explosion itself is triggered by the collapse of the iron core that forms near the end of a massive star's life. The core collapses to nuclear densities where the stiff nuclear equation of state halts the collapse and leads to the formation of the supernova shock. In many cases, this shock will eventually propagate throughout the entire star and produces a bright optical display. However, the path from shock formation to explosion has proven difficult to recreate in simulations. Soon after the shock forms, its outward propagation is stagnated and must be revived in order for the CCSNe to be successful. The leading theory for the mechanism that reenergizes the shock is the deposition of energy by neutrinos. In 1D simulations this mechanism fails. However, there is growing evidence that in 2D and 3D, hydrodynamic instabilities can assist the neutrino heating in reviving the shock. In this talk, I will present new multi-D neutrino-radiation-hydrodynamic simulations of CCSNe performed with the FLASH hydrodynamics package. I will discuss the efficacy of neutrino heating in our simulations and show the impact of the multi-D hydrodynamic instabilities.

  7. Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2009-02-01

    We report numerical simulations and analytic modeling of shock tube experiments on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type A /B where the incident shock is initiated in A and the transmitted shock proceeds into B. Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A /B/A configurations such as air/SF6/air gas-curtain experiments. We first consider conventional shock tubes that have a "fixed" boundary: A solid endwall which reflects the transmitted shock and reshocks the interface(s). Then we focus on new experiments with a "free" boundary—a membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction toward the interface(s). Complex acceleration histories are achieved, relevant for inertial confinement fusion implosions. We compare our simulation results with a generalized Layzer model for two fluids with time-dependent densities and derive a new freeze-out condition whereby accelerating and compressive forces cancel each other out. Except for the recently reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations for reshocks and rarefactions agree well with each other and remain to be verified experimentally.

  8. Influence of Shock Wave on the Flutter Behavior of Fan Blades Investigated

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh; Bakhle, Milind A.; Stefko, George L.

    2003-01-01

    Modern fan designs have blades with forward sweep; a lean, thin cross section; and a wide chord to improve performance and reduce noise. These geometric features coupled with the presence of a shock wave can lead to flutter instability. Flutter is a self-excited dynamic instability arising because of fluid-structure interaction, which causes the energy from the surrounding fluid to be extracted by the vibrating structure. An in-flight occurrence of flutter could be catastrophic and is a significant design issue for rotor blades in gas turbines. Understanding the flutter behavior and the influence of flow features on flutter will lead to a better and safer design. An aeroelastic analysis code, TURBO, has been developed and validated for flutter calculations at the NASA Glenn Research Center. The code has been used to understand the occurrence of flutter in a forward-swept fan design. The forward-swept fan, which consists of 22 inserted blades, encountered flutter during wind tunnel tests at part speed conditions.

  9. The role of hot electrons in the dynamics of a laser-driven strong converging shock

    DOE PAGES

    Llor Aisa, E.; Ribeyre, X.; Duchateau, G.; ...

    2017-11-30

    Experiments on strong shock excitation in spherical plastic targets conducted at the Omega Laser Facility are interpreted with the radiation–hydrodynamics code CHIC to account for parametric instabilities excitation and hot-electron generation. The effects of hot electrons on the shock-pressure amplification and upstream preheat are analyzed. In this study, it is demonstrated that both effects contribute to an increase in shock velocity. Comparison of the measured laser reflectivity and shock flash time with numerical simulations make it possible to reconstitute the time history of the ablation and shock pressures. Finally, consequences of this analysis for the shock-ignition target design are discussed.

  10. The role of hot electrons in the dynamics of a laser-driven strong converging shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llor Aisa, E.; Ribeyre, X.; Duchateau, G.

    Experiments on strong shock excitation in spherical plastic targets conducted at the Omega Laser Facility are interpreted with the radiation–hydrodynamics code CHIC to account for parametric instabilities excitation and hot-electron generation. The effects of hot electrons on the shock-pressure amplification and upstream preheat are analyzed. In this study, it is demonstrated that both effects contribute to an increase in shock velocity. Comparison of the measured laser reflectivity and shock flash time with numerical simulations make it possible to reconstitute the time history of the ablation and shock pressures. Finally, consequences of this analysis for the shock-ignition target design are discussed.

  11. Numerical Study of Richtmyer-Meshkov Instability with Re-Shock

    NASA Astrophysics Data System (ADS)

    Wong, Man Long; Livescu, Daniel; Lele, Sanjiva

    2017-11-01

    The interaction of a Mach 1.45 shock wave with a perturbed planar interface between two gases with an Atwood number 0.68 is studied through 2D and 3D shock-capturing adaptive mesh refinement (AMR) simulations with physical diffusive and viscous terms. The simulations have initial conditions similar to those in the actual experiment conducted by Poggi et al. [1998]. The development of the flow and evolution of mixing due to the interactions with the first shock and the re-shock are studied together with the sensitivity of various global parameters to the properties of the initial perturbation. Grid resolutions needed for fully resolved and 2D and 3D simulations are also evaluated. Simulations are conducted with an in-house AMR solver HAMeRS built on the SAMRAI library. The code utilizes the high-order localized dissipation weighted compact nonlinear scheme [Wong and Lele, 2017] for shock-capturing and different sensors including the wavelet sensor [Wong and Lele, 2016] to identify regions for grid refinement. First and third authors acknowledge the project sponsor LANL.

  12. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a rarefaction is reflected

    NASA Astrophysics Data System (ADS)

    Wouchuk, J. G.; Sano, T.

    2015-02-01

    The Richtmyer-Meshkov instability (RMI) develops when a shock front hits a rippled contact surface separating two different fluids. After the incident shock refraction, a transmitted shock is always formed and another shock or a rarefaction is reflected back. The pressure-entropy-vorticity fields generated by the rippled wave fronts are responsible for the generation of hydrodynamic perturbations in both fluids. In linear theory, the contact surface ripple reaches an asymptotic normal velocity which is dependent on the incident shock Mach number, fluids density ratio, and compressibilities. It was speculated in the past about the possibility of getting a zero value for the asymptotic normal velocity, a phenomenon that was called "freeze-out" [G. Fraley, Phys. Fluids 29, 376 (1986), 10.1063/1.865722; K. Mikaelian, Phys. Fluids 6, 356 (1994), 10.1063/1.868091, A. L. Velikovich et al., Phys. Plasmas 8, 592 (2001), 10.1063/1.1335829]. In a previous paper, freeze-out was studied for the case when a shock is reflected at the contact surface [J. G. Wouchuk and K. Nishihara, Phys. Rev. E 70, 026305 (2004), 10.1103/PhysRevE.70.026305]. In this work the freeze-out of the RMI is studied for the case in which a rarefaction is reflected back. Two different regimes are found: nearly equal preshock densities at the interface at any shock intensity, and very large density difference for strong shocks. The contour curves that relate shock Mach number and preshock density ratio are obtained in both regimes for fluids with equal and different compressibilities. An analysis of the temporal evolution of different cases of freeze-out is shown. It is seen that the freeze-out is the result of the interaction between the unstable interface and the rippled wave fronts. As a general and qualitative criterion to look for freeze-out situations, it is seen that a necessary condition for freeze-out is the same orientation for the tangential velocities generated at each side of the contact surface at t =0 + . A comparison with the results of previous works is also shown.

  13. On the mechanism of flow evolution in shock-tube experiments

    NASA Astrophysics Data System (ADS)

    Kiverin, Alexey; Yakovenko, Ivan

    2018-02-01

    The paper studies numerically the flow development behind the shock wave propagating inside the tube. The detailed analysis of the flow patterns behind the shock wave allows determination of the gas-dynamical origins of the temperature non-uniformities responsible for the subsequent localized start of chemical reactions in the test mixture. In particular, it is shown that the temperature field structure is determined mainly by the mechanisms of boundary layer instability development. The kinetic energy dissipation related to the flow deceleration inside boundary layer results in local heating of the test gas. At the same time, the heat losses to the tube wall lead to the cooling of the gas. Therefore the temperature stratification takes place on the scales of the boundary layer. As soon as the shock wave reflected from the end-wall of the tube interacts with the developed boundary layer the localized hot regions arise at a certain distance from the end wall. The position of these hot regions is associated with the zones of shock wave interaction with roller vortices at the margin between the boundary layer and the bulk flow. Formulated mechanism of the temperature field evolution can be used to explain the peculiarities of non-steady shock-induced ignition of combustible mixtures with moderate ignition delay times, where the ignition starts inside localized kernels at distance from the end wall.

  14. Kinetic Simulations of Particle Acceleration at Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprioli, Damiano; Guo, Fan

    2015-07-16

    Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shockmore » drift acceleration; and electron DSA is efficient at oblique shocks.« less

  15. Plasma and energetic particle structure of a collisionless quasi-parallel shock

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.

    1983-01-01

    The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.

  16. Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  17. On the maximum energy of shock-accelerated cosmic rays at ultra-relativistic shocks

    NASA Astrophysics Data System (ADS)

    Reville, B.; Bell, A. R.

    2014-04-01

    The maximum energy to which cosmic rays can be accelerated at weakly magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropized in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high-energy cosmic rays. To circumvent this limit, a highly disorganized field is required on larger scales. The growth of cosmic ray-induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic shocks, on scales comparable to the gyroradius of the most energetic particles, the calculated growth rates have insufficient time to modify the scattering. Since strong modification is a necessary condition for particles in the downstream region to re-cross the shock, in the absence of an alternative scattering mechanism, these results imply that acceleration to higher energies is ruled out. If weakly magnetized ultra-relativistic shocks are disfavoured as high-energy particle accelerators in general, the search for potential sources of ultra-high-energy cosmic rays can be narrowed.

  18. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks

    NASA Astrophysics Data System (ADS)

    Wu, Bao; Wu, FengChao; Zhu, YinBo; Wang, Pei; He, AnMin; Wu, HengAn

    2018-04-01

    Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD) simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.

  19. Shock-induced perturbation evolution in planar laser targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2013-10-01

    Experimental studies of hydrodynamic perturbation evolution triggered by a laser-driven shock wave in a planar target done on the KrF Nike laser facility are reported. The targets were made of solid plastic and/or plastic foam with single mode sinusoidal perturbation on the front or back surface or plastic/foam interface. Two specific cases are discussed. When a planar solid plastic target rippled at the front side is irradiated with a 350 ps long laser pulse, ablative Richtmyer-Meshkov (RM) oscillation of its areal mass modulation amplitude is detected while the laser is on, followed by observed strong oscillations of the areal mass in the unsupported shock flow after the laser pulse ends. When the target is rippled at the rear side, the nature of the perturbation evolution after the shock breakout is determined by the strength of the laser-driven shock wave. At pressure below 1 Mbar shock interaction with rear-surface ripples produces planar collimated jets manifesting the development of a classical RM instability in a weakly compressible shocked fluid. At shock pressure ~ 8 Mbar sufficient for vaporizing the shocked target material we observed instead the strong areal mass oscillations characteristic of a rippled centered rarefaction wave. Work supported by US DOE, Defense Programs.

  20. Assessment of numerical methods for the solution of fluid dynamics equations for nonlinear resonance systems

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Yang, H. Q.

    1989-01-01

    The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.

  1. A k-ɛ model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Bonnet, Michel

    1990-09-01

    A k-ɛ model for turbulent mixing induced by Rayleigh-Taylor instability is described. The classical linear closure relations are supplemented with algebraic relations in order to be valid under strong gradients. Calibrations were made against two shock-tube experiments (Andronov et al. [Sov. Phys. JETP 44, 424 (1976); Sov. Phys. Dokl. 27, 393 (1982)] and Houas et al. [Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes (Stanford U.P., Stanford, CA, 1986)]) using the same set of constants. The new interpretation of the experimental data of Brouillette and Sturtevant [Physica D 37, 248 (1989)], where the mixing length is discriminated from the wall jet, requires a different numerical value for the Rayleigh-Taylor source term coefficient. A detailed physical study is given in both cases. It turns out that the spectrum is narrower in the Brouillette and Sturtevant case than in the Andronov et al. case but the small length scales are of the same magnitude.

  2. Investigation of Weibel-filament growth in the nonlinear regime using laser-irradiated foils of different materials

    NASA Astrophysics Data System (ADS)

    Manuel, Mario

    2017-10-01

    M.J.-E. MANUEL GENERAL ATOMICS, C.M. HUNTINGTON, D.P. HIGGINSON, B.B. POLLOCK, B.A. REMINGTON, H. RINDERKNECHT, J.S. ROSS, D. RYUTOV, G. SWADLING, S. WILKS, A.B. ZYLSTRA, H.-S. PARK LLNL, F. FIUZA, S. TOTORICASLAC, G. GREGORIOXFORD, J. PARK, A. SPITKOVSKYPRINCETON, Y. SAKAWA, H. TAKABEOSAKA, H. SIOMIT, A.B. ZYLSTRALANL. The Weibel instability is presently the leading mechanism proposed to amplify magnetic fields necessary to form `collisionless' shocks in weakly magnetized astrophysical systems, including young supernova remnants and gamma-ray bursts. These systems rely on the presence of strong self-generated magnetic fields to mediate shock formation since the typical collisional mean-free-path is much larger than the system size. The work presented here investigates the development of the Weibel instability in the nonlinear regime through experimental variation of plasma parameters using different ion species and separation distances. Our goal is to investigate the underlying physical mechanism that may allow the formation of collisionless shocks in astrophysical objects. Recent experimental and computational results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and in collaboration with LLNL under contract DE-AC52-07NA27344.

  3. Evolution of wave patterns and temperature field in shock-tube flow

    NASA Astrophysics Data System (ADS)

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  4. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; hide

    2011-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  5. High-pressure mechanical instability in rocks

    USGS Publications Warehouse

    Byerlee, J.D.; Brace, W.F.

    1969-01-01

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  6. High-pressure mechanical instability in rocks.

    PubMed

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  7. High-Speed Unsteady Flows around Concave Axisymmetric Bodies: Flow Instabilities and their Suppression

    NASA Astrophysics Data System (ADS)

    Panaras, A.; Drikakis, D.

    2009-01-01

    The axisymmetric concave body, i.e. a body in which the normals to its surface intersect, is a typical configuration about which shock/shock interactions appear. Various shapes of axisymmetric concave bodies are used in a variety of applications in aeronautics. For exampe: axisymmetric jet inlets with conical centerbody, ballistic missiles drag reduction by spike, plasma or hot gas injection, parachutes for pilot-ejection capsules. However, it is well known that two distinct modes of instability appear around a concave body in the high-speed flow regime, for a certain range of geometric parameters. These instabilities can cause undesirable effects such as severe vibration of the structure, heating and pressure loads. According to the experimental evidence, the unsteady flow is characterized by periodic radial inflation and collapse of the conical separation bubble formed around the forebody (pulsation). Various explanations have been given for the driving mechanism of the instabilities. They are based on interpretation of experimental results or on numerical simulation of the related flows. A merging of the leading explanations is done, and basic rules for the passive suppression of the instabilities are applied, in order to enforce the proposed driving mechanism of the instabilities. Most of the analysis is based on numerical simulations.

  8. STANDING SHOCK INSTABILITY IN ADVECTION-DOMINATED ACCRETION FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Truong; Wood, Kent S.; Wolff, Michael T.

    2016-03-10

    Depending on the values of the energy and angular momentum per unit mass in the gas supplied at large radii, inviscid advection-dominated accretion flows can display velocity profiles with either preshock deceleration or preshock acceleration. Nakayama has shown that these two types of flow configurations are expected to have different stability properties. By employing the Chevalier and Imamura linearization method and the Nakayama instability boundary conditions, we discover that there are regions of parameter space where disks/shocks with outflows can be stable or unstable. In regions of instability, we find that preshock deceleration is always unstable to the zeroth mode withmore » zero frequency of oscillation, but is always stable to the fundamental mode and overtones. Furthermore, we also find that preshock acceleration is always unstable to the zeroth mode and that the fundamental mode and overtones become increasingly less stable as the shock location moves away from the horizon when the disk half-height expands above ∼12 gravitational radii at the shock radius. In regions of stability, we demonstrate the zeroth mode to be stable for the velocity profiles that exhibit preshock acceleration and deceleration. Moreover, for models that are linearly unstable, our model suggests the possible existence of quasi-periodic oscillations (QPOs) with ratios 2:3 and 3:5. These ratios are believed to occur in stellar and supermassive black hole candidates, for example, in GRS 1915+105 and Sgr A*, respectively. We expect that similar QPO ratios also exist in regions of stable shocks.« less

  9. Shock waves generated by sudden expansions of a water jet

    NASA Astrophysics Data System (ADS)

    Salinas-Vázquez, M.; Echeverría, C.; Porta, D.; Stern, C. E.; Ascanio, G.; Vicente, W.; Aguayo, J. P.

    2018-07-01

    Direct shadowgraph with parallel light combined with high-speed recording has been used to analyze the water jet of a cutting machine. The use of image processing allowed observing sudden expansions in the jet diameter as well as estimating the jet velocity by means of the Mach angle, obtaining velocities of about 500 m s^{-1}. The technique used here revealed the development of hydrodynamic instabilities in the jet. Additionally, this is the first reporting of the onset of shock waves generated by small fluctuations of a continuous flow of water at high velocity surrounded by air, a result confirmed by a transient computational fluid dynamics simulation.

  10. Instability of isolated planar shock waves

    DTIC Science & Technology

    2007-06-07

    Note that multi-mode perturbations can be treated by the inclusion of additional terms in Eq. (4), but owing to the linear independence of the... Volterra equation Figure 4 shows five examples of the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by...showing the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by numerically solving the Volterra equation in

  11. Waves and Instabilities in Collisionless Shocks

    DTIC Science & Technology

    1984-04-01

    occur in the electron foreshock and are driven by suprathermal electrons escaping into the region upstream of the shock. Both the ion-acoustic and...ULF waves occur in the ion foreshock and are associated with ions streaming into the region upstream of 11 the shock. The region downstream of the...the discussion of these waves it is useful to distinguish two regions, called the electron foreshock and the ion foreshock . Because the particles

  12. A review of recent developments in the understanding of transonic shock buffet

    NASA Astrophysics Data System (ADS)

    Giannelis, Nicholas F.; Vio, Gareth A.; Levinski, Oleg

    2017-07-01

    Within a narrow band of flight conditions in the transonic regime, interactions between shock-waves and intermittently separated shear layers result in large amplitude, self-sustained shock oscillations. This phenomenon, known as transonic shock buffet, limits the flight envelope and is detrimental to both platform handling quality and structural integrity. The severity of this instability has incited a plethora of research to ascertain an underlying physical mechanism, and yet, with over six decades of investigation, aspects of this complex phenomenon remain inexplicable. To promote continual progress in the understanding of transonic shock buffet, this review presents a consolidation of recent investigations in the field. The paper begins with a conspectus of the seminal literature on shock-induced separation and modes of shock oscillation. The currently prevailing theories for the governing physics of transonic shock buffet are then detailed. This is followed by an overview of computational studies exploring the phenomenon, where the results of simulation are shown to be highly sensitive to the specific numerical methods employed. Wind tunnel investigations on two-dimensional aerofoils at shock buffet conditions are then outlined and the importance of these experiments for the development of physical models stressed. Research considering dynamic structural interactions in the presence of shock buffet is also highlighted, with a particular emphasis on the emergence of a frequency synchronisation phenomenon. An overview of three-dimensional buffet is provided next, where investigations suggest the governing mechanism may differ significantly from that of two-dimensional sections. Subsequently, a number of buffet suppression technologies are described and their efficacy in mitigating shock oscillations is assessed. To conclude, recommendations for the direction of future research efforts are given.

  13. Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narkis, J.; Rahman, H. U.; Ney, P.

    2016-12-29

    1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compressionmore » heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.« less

  14. On the fundamental unsteady fluid dynamics of shock-induced flows through ducts

    NASA Astrophysics Data System (ADS)

    Mendoza, Nicole Renee

    Unsteady shock wave propagation through ducts has many applications, ranging from blast wave shelter design to advanced high-speed propulsion systems. The research objective of this study was improved fundamental understanding of the transient flow structures during unsteady shock wave propagation through rectangular ducts with varying cross-sectional area. This research focused on the fluid dynamics of the unsteady shock-induced flow fields, with an emphasis placed on understanding and characterizing the mechanisms behind flow compression (wave structures), flow induction (via shock waves), and enhanced mixing (via shock-induced viscous shear layers). A theoretical and numerical (CFD) parametric study was performed, in which the effects of these parameters on the unsteady flow fields were examined: incident shock strength, area ratio, and viscous mode (inviscid, laminar, and turbulent). Two geometries were considered: the backward-facing step (BFS) geometry, which provided a benchmark and conceptual framework, and the splitter plate (SP) geometry, which was a canonical representation of the engine flow path. The theoretical analysis was inviscid, quasi-1 D and quasi-steady; and the computational analysis was fully 2D, time-accurate, and VISCOUS. The theory provided the wave patterns and primary wave strengths for the BFS geometry, and the simulations verified the wave pattems and quantified the effects of geometry and viscosity. It was shown that the theoretical wave patterns on the BFS geometry can be used to systematically analyze the transient, 20, viscous flows on the SP geometry. This work also highlighted the importance and the role of oscillating shock and expansion waves in the development of these unsteady flows. The potential for both upstream and downstream flow induction was addressed. Positive upstream flow induction was not found in this study due to the persistent formation of an upstream-moving shock wave. Enhanced mixing was addressed by examining the evolution of the unsteady shear layer, its instability, and their effects on the flow field. The instability always appeared after the reflected shock interaction, and was exacerbated in the laminar cases and damped out in the turbulent cases. This research provided new understanding of the long-term evolution of these confined flows. Lastly, the turbulent work is one of the few turbulent studies on these flows.

  15. Shock front distortion and Richtmyer-Meshkov-type growth caused by a small preshock nonuniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Wouchuk, J. G.; Huete Ruiz de Lira, C.

    The response of a shock front to small preshock nonuniformities of density, pressure, and velocity is studied theoretically and numerically. These preshock nonuniformities emulate imperfections of a laser target, due either to its manufacturing, like joints or feeding tubes, or to preshock perturbation seeding/growth, as well as density fluctuations in foam targets, ''thermal layers'' near heated surfaces, etc. Similarly to the shock-wave interaction with a small nonuniformity localized at a material interface, which triggers a classical Richtmyer-Meshkov (RM) instability, interaction of a shock wave with periodic or localized preshock perturbations distributed in the volume distorts the shape of the shockmore » front and can cause a RM-type instability growth. Explicit asymptotic formulas describing distortion of the shock front and the rate of RM-type growth are presented. These formulas are favorably compared both to the exact solutions of the corresponding initial-boundary-value problem and to numerical simulations. It is demonstrated that a small density modulation localized sufficiently close to a flat target surface produces the same perturbation growth as an 'equivalent' ripple on the surface of a uniform target, characterized by the same initial areal mass modulation amplitude.« less

  16. Two Non Linear Dynamics Plasma Astrophysics Experiments At LANL

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Weber, T.; Feng, Y.; Sears, J.; Smith, R. J.; Swan, H.; Hutchinson, T.; Boguski, J.; Gao, K.; Chapdelaine, L.; Dunn, J. P.

    2013-12-01

    Two laboratory experiments at Los Alamos National Laboratory (LANL) have been built to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The over arching theme is magnetized plasma dynamics that include currents, MHD forces and instabilities, sheared flows and shocks, along with creation and annihilation of magnetic field. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, that are observed to kink, bounce, merge and reconnect, shred, and reform in complicated ways. We show recent movies from a large detailed data set that describe the 3D magnetic structure and helicity budget of a driven and dissipative system that spontaneously self saturates a kink instability. The Magnetized Shock Experiment (MSX) uses a Field reversed configuration (FRC) that is ejected at high speed and then stagnated onto a stopping mirror field, which drives a collisionless magnetized shock. A plasmoid accelerator will also access super critical shocks at much larger Alfven Mach numbers. Unique features include access to parallel, oblique and perpendicular shocks, in regions much larger than ion gyro radius and inertial length, large magnetic and fluid Reynolds numbers, and volume for turbulence.

  17. Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation

    DOE PAGES

    Jacobs, J. W.; Krivets, V. V.; Tsiklashvili, V.; ...

    2013-03-16

    A vertical shock tube is used to perform experiments on the Richtmyer–Meshkov instability with a three-dimensional random initial perturbation. A membraneless flat interface is formed by opposed gas flows in which the light and heavy gases enter the shock tube from the top and from the bottom of the shock tube driven section. An air/SF6 gas combination is used and a Mach number M = 1.2 incident shock wave impulsively accelerates the interface. Initial perturbations on the interface are created by vertically oscillating the gas column within the shock tube to produce Faraday waves on the interface resulting in amore » short wavelength, three-dimensional perturbation. Planar Mie scattering is used to visualize the flow in which light from a laser sheet is scattered by smoke seeded in the air, and image sequences are captured using three high-speed video cameras. Measurements of the integral penetration depth prior to reshock show two growth behaviors, both having power law growth with growth exponents in the range found in previous experiments and simulations. Following reshock, all experiments showvery consistent linear growth with a growth rate in good agreement with those found in previous studies.« less

  18. Use of the Richtmyer-Meshkov Instability to Infer Yield Stress at High-Energy Densities

    NASA Astrophysics Data System (ADS)

    Dimonte, Guy; Terrones, G.; Cherne, F. J.; Germann, T. C.; Dupont, V.; Kadau, K.; Buttler, W. T.; Oro, D. M.; Morris, C.; Preston, D. L.

    2011-12-01

    We use the Richtmyer-Meshkov instability (RMI) at a metal-gas interface to infer the metal’s yield stress (Y) under shock loading and release. We first model how Y stabilizes the RMI using hydrodynamics simulations with a perfectly plastic constitutive relation for copper (Cu). The model is then tested with molecular dynamics (MD) of crystalline Cu by comparing the inferred Y from RMI simulations with direct stress-strain calculations, both with MD at the same conditions. Finally, new RMI experiments with solid Cu validate our simulation-based model and infer Y˜0.47GPa for a 36 GPa shock.

  19. Shock heating in numerical simulations of kink-unstable coronal loops

    PubMed Central

    Bareford, M. R.; Hood, A. W.

    2015-01-01

    An analysis of the importance of shock heating within coronal magnetic fields has hitherto been a neglected area of study. We present new results obtained from nonlinear magnetohydrodynamic simulations of straight coronal loops. This work shows how the energy released from the magnetic field, following an ideal instability, can be converted into thermal energy, thereby heating the solar corona. Fast dissipation of magnetic energy is necessary for coronal heating and this requirement is compatible with the time scales associated with ideal instabilities. Therefore, we choose an initial loop configuration that is susceptible to the fast-growing kink, an instability that is likely to be created by convectively driven vortices, occurring where the loop field intersects the photosphere (i.e. the loop footpoints). The large-scale deformation of the field caused by the kinking creates the conditions for the formation of strong current sheets and magnetic reconnection, which have previously been considered as sites of heating, under the assumption of an enhanced resistivity. However, our simulations indicate that slow mode shocks are the primary heating mechanism, since, as well as creating current sheets, magnetic reconnection also generates plasma flows that are faster than the slow magnetoacoustic wave speed. PMID:25897092

  20. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  1. Studying Electromagnetic Beam Instabilities in Laser Plasmas for Alfvénic Parallel Shock Formation

    NASA Astrophysics Data System (ADS)

    Dorst, R. S.; Heuer, P. V.; Weidl, M. S.; Schaeffer, D. B.; Constantin, C. G.; Vincena, S.; Tripathi, S.; Gekelman, W.; Winske, D.; Niemann, C.

    2017-10-01

    We present measurements of the collisionless interaction between an exploding laser-produced plasma (LPP) and a large, magnetized ambient plasma. The LPP is created by focusing a high energy laser on a target embedded in the ambient Large Plasma Device (LAPD) plasma at the University of California, Los Angeles. The resulting super-Alfvénic (MA = 5) ablated material moves parallel to the background magnetic field (300 G) through 12m (80 δ i) of the LAPD, interacting with the ambient Helium plasma (ni = 9 ×1012 cm-3) through electromagnetic beam instabilities. The debris is characterized by Langmuir probes and a time-resolved fluorescence monochromator. Waves in the magnetic field produced by the instabilities are diagnosed by an array of 3-axis `bdot' magnetic field probes. Measurements are compared to hybrid simulations of both the experiment and of parallel shocks.

  2. Variations in plasma wave intensity with distance along the electron foreshock boundary at Venus

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1991-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. Wave intensity is analyzed as a function of distance along the electron foreshock boundary. It is found that the peak wave intensity may increase along the foreshock boundary from the tangent point to a maximum value at several Venus radii, then decrease in intensity with subsequent increase in distance. These observations could be associated with the instability process: the instability of the distribution function increasing with distance from the tangent point to saturation at the peak. Thermalization of the beam for distances beyond this point could reduce the distribution function instability resulting in weaker wave signatures.

  3. Switch-on Shock and Nonlinear Kink Alfvén Waves in Solar Polar Jets

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.; Uritsky, Vadim

    2016-05-01

    It is widely accepted that solar polar jets are produced by fast magnetic reconnection in the low corona, whether driven directly by flux emergence from below or indirectly by instability onset above the photosphere. In either scenario, twisted flux on closed magnetic field lines reconnects with untwisted flux on nearby open field lines. Part of the twist is inherited by the newly reconnected open flux, which rapidly relaxes due to magnetic tension forces that transmit the twist impulsively into the outer corona and heliosphere. We propose that this transfer of twist launches switch-on MHD shock waves, which propagate parallel to the ambient coronal magnetic field ahead of the shock and convect a perpendicular component of magnetic field behind the shock. In the frame moving with the shock front, the post-shock flow is precisely Alfvénic in all three directions, whereas the pre-shock flow is super-Alfvénic along the ambient magnetic field, yielding a density enhancement at the shock front. Nonlinear kink Alfvén waves are exact solutions of the time-dependent MHD equations in the post-shock region when the ambient corona is uniform and the magnetic field is straight. We have performed and analyzed 3D Cartesian and spherical simulations of polar jets driven by instability onset in the corona. The results of both simulations are consistent with the generation of MHD switch-on shocks trailed predominantly by incompressible kink Alfvén waves. It is noteworthy that the kink waves are irrotational, in sharp contrast to the vorticity-bearing torsional waves reported from previous numerical studies. We will discuss the implications of the results for understanding solar polar jets and predicting their heliospheric signatures. Our research was supported by NASA’s LWS TR&T and H-SR programs.

  4. Analytical scalings of the linear Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Cobos, Francisco; Wouchuk, Juan Gustavo

    2017-11-01

    In the linear Richtmyer-Meshkov instability (RMI), hydrodynamic perturbations are generated behind the transmitted and reflected rippled fronts. The contact surface reaches an asymptotic normal velocity and two different tangential velocities at each side, which are always different for moderate to strong levels of compression, depending on the amount of vorticity generated by the corrugated shocks. We show analytical scaling laws for the ripple velocity (δvi∞)in different physical limits and approximate formulas are provided, valid for arbitrary initial pre-shock parameters. An asymptotic growth for the contact surface ripple of the form ψi(t) ψ∞ + δ vi∞t is obtained. The quantity ψ∞ is in general different from the initial post-shock ripple amplitude, in agreement with the early finding of. Comparison to simulations and experimental work is shown. F.C. acknowledges support from UCLM for a predoctoral fellowship. This work has received support from MINECO, JCCM, and UCLM (Spain).

  5. Rayleigh Taylor growth at an embedded interface driven by a radiative shock

    NASA Astrophysics Data System (ADS)

    Huntington, Channing

    2016-10-01

    Radiative shocks are those where the radiation generated by the shock influences the hydrodynamics of the matter in the system. Radiative shocks are common in astrophysics, including during type II supernovae, and have also been observed in the rebound phase of a compressed inertial confinement fusion (ICF) capsule. It is predicted that the radiative heating serves to stabilize hydrodynamic instabilities in these systems, but studying the effect is challenging. Only in recent experiments at the National Ignition Facility has the energy been available to drive a radiative shock across a planar, Rayleigh-Taylor unstable interface in solid-density materials. Because the generation of radiation at the shock front is a strong function of shock velocity (v8) , the RT growth rates in the presence of fast and slow shockas were directly compared. We observe reduced RT spike development when the driving shock is expected to be radiative. Both low drive (225 eV) hydrodynamic RT growth and high drive (325 eV), radiatively-stabilized growth rates are in good agreement with 2D models. This NIF Discovery Science result has important implications for our understanding of astrophysical radiative shocks, as well as the dynamics of ICF capsules. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Nonrelativistic Perpendicular Shocks Modeling Young Supernova Remnants: Nonstationary Dynamics and Particle Acceleration at Forward and Reverse Shocks

    NASA Astrophysics Data System (ADS)

    Wieland, Volkmar; Pohl, Martin; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi

    2016-03-01

    For parameters that are applicable to the conditions at young supernova remnants, we present results of two-dimensional, three-vector (2D3V) particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at a 45^\\circ angle to the simulation plane to approximate three-dimensional (3D) physics. We developed an improved clean setup that uses the collision of two plasma slabs with different densities and velocities, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations due to shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales produced by the gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but is commensurate with {\\boldsymbol{E}}× {\\boldsymbol{B}} drift. We observe a stable supra-thermal tail in the ion spectra, but no electron acceleration because the amplitude of the Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other two-dimensional (2D) simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but the pre-acceleration efficacy might be reduced with respect to the 2D results once 3D effects are fully accounted for. Other microphysical factors may also play a part in limiting the amplitude of the Buneman waves or preventing the return of electrons to the foot region.

  7. Role of the magnetosheath in the interaction of magnetic clouds with the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Fontaine, Dominique; Turc, Lucile; Savoini, Philippe; Modolo, Ronan

    2016-04-01

    Magnetic clouds are among the most geoeffective solar events capable to trigger strong magnetic storms in the terrestrial magnetosphere. However, their characteristics and those of the surrounding media are not always capable to explain their high level of geoeffectivity. From observations and simulations, we investigate here the role of the bow shock and of the magnetosheath. Conjugated observations upstream (ACE) and downstream (CLUSTER) of the bow shock show that the magnetic clouds' magnetic structure in the magnetosheath can strongly depart from their pristine structure upstream of the bow shock. This modification depends on the shock configuration (quasi-perpendicular, quasi-parallel). We also discuss this question from hybrid simulations of the interaction of magnetic clouds with the bow shock. We show that this interaction may produce unexpected characteristics in the magnetosheath, such as asymmetric distributions of magnetic field, density, temperature, velocity. They thus lead to interactions with the magnetosphere which were not expected from the pristine characteristics of the magnetic clouds in the solar wind upstream of bow shock. We here discuss the effects of such an asymmetric magnetosheath on key parameters for the interaction with the magnetopause (reconnection, instabilities), responsible in turn for the development of geomagnetic activity inside the magnetosphere.

  8. Three- and Two- Dimensional Simulations of Re-shock Experiments at High Energy Densities at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Raman, Kumar; MacLaren, Stephan; Huntington, Channing; Nagel, Sabrina

    2016-10-01

    We present simulations of recent high-energy-density (HED) re-shock experiments on the National Ignition Facility (NIF). The experiments study the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instability growth that occurs after successive shocks transit a sinusoidally-perturbed interface between materials of different densities. The shock tube is driven at one or both ends using indirect-drive laser cavities or hohlraums. X-ray area-backlit imaging is used to visualize the growth at different times. Our simulations are done with the three-dimensional, radiation hydrodynamics code ARES, developed at LLNL. We show the instabilitygrowth rate, inferred from the experimental radiographs, agrees well with our 2D and 3D simulations. We also discuss some 3D geometrical effects, suggested by our simulations, which could deteriorate the images at late times, unless properly accounted for in the experiment design. Work supported by U.S. Department of Energy under Contract DE- AC52-06NA27279. LLNL-ABS-680789.

  9. Simultaneous density-field visualization and PIV of the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Prestridge, Katherine; Rightley, Paul; Benjamin, Robert; Kurnit, Norman; Boxx, Isaac; Vorobieff, Peter

    1999-11-01

    We describe a highly-detailed experimental characterization of the Richtmyer-Meshkov instability. A vertical curtain of heavy gas (SF_6) flows into the test section of an air-filled, horizontal shock tube, and the instability evolves after the passage of a Mach 1.2 shock past the curtain. The evolution of the curtain is visualized by seeding the SF6 with small (d ≈ 0.5 μm) glycol/water droplets using a modified theatrical fog generator. Because the event lasts only 1 ms and the initial conditions vary from test to test, rapid and high-resolution (both spatial and temporal) data acquisition is required in order to characterize the initial and dynamic conditions for each experimental event. A customized, frequency-doubled, burst mode Nd:YAG laser and a commercial single-pulse laser are used for the implementation of simultaneous density-field imaging and PIV diagnostics. We have provided data about flow scaling and mixing through image analysis, and PIV data gives us further quantitative physical insight into the evolution of the Richtmyer-Meshkov instability.

  10. A numerical method for shock driven multiphase flow with evaporating particles

    NASA Astrophysics Data System (ADS)

    Dahal, Jeevan; McFarland, Jacob A.

    2017-09-01

    A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.

  11. Dynamics and stability of relativistic gamma-ray-bursts blast waves

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Keppens, R.

    2010-09-01

    Aims: In gamma-ray-bursts (GRBs), ultra-relativistic blast waves are ejected into the circumburst medium. We analyse in unprecedented detail the deceleration of a self-similar Blandford-McKee blast wave from a Lorentz factor 25 to the nonrelativistic Sedov phase. Our goal is to determine the stability properties of its frontal shock. Methods: We carried out a grid-adaptive relativistic 2D hydro-simulation at extreme resolving power, following the GRB jet during the entire afterglow phase. We investigate the effect of the finite initial jet opening angle on the deceleration of the blast wave, and identify the growth of various instabilities throughout the coasting shock front. Results: We find that during the relativistic phase, the blast wave is subject to pressure-ram pressure instabilities that ripple and fragment the frontal shock. These instabilities manifest themselves in the ultra-relativistic phase alone, remain in full agreement with causality arguments, and decay slowly to finally disappear in the near-Newtonian phase as the shell Lorentz factor drops below 3. From then on, the compression rate decreases to levels predicted to be stable by a linear analysis of the Sedov phase. Our simulations confirm previous findings that the shell also spreads laterally because a rarefaction wave slowly propagates to the jet axis, inducing a clear shell deformation from its initial spherical shape. The blast front becomes meridionally stratified, with decreasing speed from axis to jet edge. In the wings of the jetted flow, Kelvin-Helmholtz instabilities occur, which are of negligible importance from the energetic viewpoint. Conclusions: Relativistic blast waves are subject to hydrodynamical instabilities that can significantly affect their deceleration properties. Future work will quantify their effect on the afterglow light curves.

  12. Annealing of Silicate Dust by Nebular Shocks at 10 AU

    NASA Technical Reports Server (NTRS)

    Harker, David E.; Desch, Steven J.; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Silicate dust grains in the interstellar medium are known to be mostly amorphous, yet crystalline silicate grains have been observed in many long-period comets and in protoplanetary disks. Annealing of amorphous silicate grains into crystalline grains requires temperatures greater than or approximately equal to 1000 K, but exposure of dust grains in comets to such high temperatures is apparently incompatible with the generally low temperatures experienced by comets. This has led to the proposal of models in which dust grains were thermally processed near the protoSun, then underwent considerable radial transport until they reached the gas giant planet region where the long-period comets originated. We hypothesize instead that silicate dust grains were annealed in situ, by shock waves triggered by gravitational instabilities. We assume a shock speed of 5 km/s, a plausible value for shocks driven by gravitational instabilities. We calculate the peak temperatures of pyroxene grains under conditions typical in protoplanetary disks at 5-10 AU. We show that in situ annealing of micron-sized dust grains can occur, obviating the need for large-scale radial transport.

  13. Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interface at extreme compressing conditions

    NASA Astrophysics Data System (ADS)

    Huang, Shenghong; Wang, Weirong; Luo, Xisheng

    2018-06-01

    The new characteristics of Richtmyer-Meshkov instability (RMI) under extreme shock conditions are numerically studied by using molecular dynamics simulation incorporated with the electron force field model. The emphasis is placed on the ionization effects caused by different impacting speeds (6-30 km/s) on the microscale RMI on a Li-H2 interface. The linear region of the amplitude growth rate of the shocked interface under extreme shock conditions is observed to be much longer than that at the ordinary impact, which is in good accord with experimental results obtained with a Nova laser. It is also found that the amplitude of the nonlinear region is larger than the ordinary counterpart or the prediction by theory without considering the ionization effect. The two new characteristics are attributed to the ambipolar acceleration induced by the extra electric field due to the electron/ion separation under extreme shock conditions. These new findings may shed new light on the very complex physical process of the inertial confinement fusion on nanoscales.

  14. Model experiment of magnetic field amplification in laser-produced plasmas via the Richtmyer-Meshkov instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuramitsu, Y., E-mail: yasu@ncu.edu.tw; Moritaka, T.; Ohnishi, N.

    2016-03-15

    A model experiment of magnetic field amplification (MFA) via the Richtmyer-Meshkov instability (RMI) in supernova remnants (SNRs) was performed using a high-power laser. In order to account for very-fast acceleration of cosmic rays observed in SNRs, it is considered that the magnetic field has to be amplified by orders of magnitude from its background level. A possible mechanism for the MFA in SNRs is stretching and mixing of the magnetic field via the RMI when shock waves pass through dense molecular clouds in interstellar media. In order to model the astrophysical phenomenon in laboratories, there are three necessary factors formore » the RMI to be operative: a shock wave, an external magnetic field, and density inhomogeneity. By irradiating a double-foil target with several laser beams with focal spot displacement under influence of an external magnetic field, shock waves were excited and passed through the density inhomogeneity. Radiative hydrodynamic simulations show that the RMI evolves as the density inhomogeneity is shocked, resulting in higher MFA.« less

  15. Experimental investigation of the breakup of a round liquid jet in a shock-induced crossflow

    NASA Astrophysics Data System (ADS)

    Olles, Joseph; Guildenbecher, Daniel; Wagner, Justin; Demauro, Edward; Farias, Paul; Grasser, Thomas; Sojka, Paul

    2015-11-01

    The breakup of a round water jet due to a step change in the convective air velocity following a 1D air-shock was experimentally investigated. Variations of this experiment have been conducted in the past, however here quantitative results on the breakup sizes and trajectories are shown. A shock tube was utilized to create the jet breakup, and the primary shape of the liquid and secondary droplet sizes were recorded optically. Through the use of digital in-line holography (DIH), the sizes, 3D position, and 3C velocities of secondary droplets were measured at kHz rates. Care was taken to ensure that the jet was kept round throughout the shock tube test section (absent of Plateau-Rayleigh instability). While the liquid jet geometry and velocity was kept constant, various gas-phase velocities allowed for the investigation of multiple breakup morphologies, as a function of the crossflow Weber number. The typical breakup regimes are seen; bag, multimode, and sheet-thinning. With high temporal and spatial resolution, interfacial and liquid column instabilities are seen in the jet breakup.

  16. Shock-Induced Disappearance and Subsequent Recovery of Plasmaspheric Hiss: Coordinated Observations of RBSP, THEMIS, and POES Satellite

    DOE PAGES

    Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; ...

    2017-10-04

    Here, plasmaspheric hiss is an extremely low frequency whistler–mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here on the basis of the analysis of an event of shock–induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS, and POES missions, we attempt to identify its dominant generation mechanism. In the preshock plasmasphere, the local electron instability was relatively weak and the hiss waves with bidirectional Poynting fluxes mainlymore » originated from the dayside chorus waves. On arrival of the shock, the removal of preexisting dayside chorus and the insignificant variation of low–frequency wave instability caused the prompt disappearance of hiss waves. In the next few hours, the local instability in the plasmasphere was greatly enhanced due to the substorm injection of hot electrons. The enhancement of local instability likely played a dominant role in the temporary recovery of hiss with unidirectional Poynting fluxes. These temporarily recovered hiss waves were generated near the equator and then propagated toward higher latitudes. In contrast, both the enhancement of local instability and the recurrence of prenoon chorus contributed to the substantial recovery of hiss with bidirectional Poynting fluxes.« less

  17. Shock-Induced Disappearance and Subsequent Recovery of Plasmaspheric Hiss: Coordinated Observations of RBSP, THEMIS, and POES Satellite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei

    Here, plasmaspheric hiss is an extremely low frequency whistler–mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here on the basis of the analysis of an event of shock–induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS, and POES missions, we attempt to identify its dominant generation mechanism. In the preshock plasmasphere, the local electron instability was relatively weak and the hiss waves with bidirectional Poynting fluxes mainlymore » originated from the dayside chorus waves. On arrival of the shock, the removal of preexisting dayside chorus and the insignificant variation of low–frequency wave instability caused the prompt disappearance of hiss waves. In the next few hours, the local instability in the plasmasphere was greatly enhanced due to the substorm injection of hot electrons. The enhancement of local instability likely played a dominant role in the temporary recovery of hiss with unidirectional Poynting fluxes. These temporarily recovered hiss waves were generated near the equator and then propagated toward higher latitudes. In contrast, both the enhancement of local instability and the recurrence of prenoon chorus contributed to the substantial recovery of hiss with bidirectional Poynting fluxes.« less

  18. A new relativistic viscous hydrodynamics code and its application to the Kelvin-Helmholtz instability in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuhisa; Nonaka, Chiho

    2017-06-01

    We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.

  19. The Role of Hydromagnetic Waves in the Magnetosphere and the Ionosphere

    DTIC Science & Technology

    1991-01-31

    of right-hand-polarized waves in instabilities, we follow the examples discussed by Wong interplanetary shocks and in the terrestrial foreshock and... foreshock , (Received January 14, 1988;J. Geophys. Res., 90, 1429, 1985. Spangler, S.R., and J.P. Sheerin, Alfv6.n wave revised April 15, 1988;collapse...bow shocks,2 and in the interplanetary shocks and the a four-wave parametric coupling process is a.alyzed for the terrestrial foreshock .3 .4 Moreover

  20. Gravitational Instabilities in the Disks of Massive Protostars as an Explanation for Linear Distributions of Methanol Masers

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.; Mejia, Annie C.; Pickett, Brian K.; Hartquist, Thomas W.

    2001-12-01

    Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large disks, at radii of hundreds to thousands of AU from the central mass. This is particularly true for methanol (CH3OH), for which linear distributions of masers are found with disklike kinematics. In three-dimensional hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on.

  1. Multi-dimensional PIC-simulations of parametric instabilities for shock-ignition conditions

    NASA Astrophysics Data System (ADS)

    Riconda, C.; Weber, S.; Klimo, O.; Héron, A.; Tikhonchuk, V. T.

    2013-11-01

    Laser-plasma interaction is investigated for conditions relevant for the shock-ignition (SI) scheme of inertial confinement fusion using two-dimensional particle-in-cell (PIC) simulations of an intense laser beam propagating in a hot, large-scale, non-uniform plasma. The temporal evolution and interdependence of Raman- (SRS), and Brillouin- (SBS), side/backscattering as well as Two-Plasmon-Decay (TPD) are studied. TPD is developing in concomitance with SRS creating a broad spectrum of plasma waves near the quarter-critical density. They are rapidly saturated due to plasma cavitation within a few picoseconds. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below one hundred keV.

  2. Using Growth and Arrest of Richtmyer-Meshkov Instabilities and Lagrangian Simulations to Study High-Rate Material Strength

    NASA Astrophysics Data System (ADS)

    Prime, Michael; Vaughan, Diane; Preston, Dean; Oro, David; Buttler, William

    2013-06-01

    Rayleigh-Taylor instabilities have been widely used to study the deviatoric (flow) strength of solids at high strain rates. More recently, experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/sec using Richtmyer-Meshkov (RM) instabilities. Buttler et al. [J. Fluid Mech., 2012] recently reported experimental results for RM instability growth but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and detailed interpretation from numerical simulations of the Buttler experiments on copper. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data in spite of the PTW model being calibrated on lower strain rate data. The numerical simulations are used to 1) examine various assumptions previously made in an analytical model, 2) to estimate the sensitivity of such experiments to material strength and 3) to explore the possibility of extracting meaningful strength information in the face of complicated spatial and temporal variations of stress, pressure, and temperature during the experiments.

  3. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Turbulent Regime

    NASA Astrophysics Data System (ADS)

    Dimonte, G.

    1998-11-01

    The Rayleigh-Taylor instability (RTI) and its shock driven analog, the Richtmyer-Meshkov instability (RMI), affect a wide variety of important phenomena from sub-terrainian to astrophysical environments. The ``fluids" are equally varied from plasmas and magnetic fields to elastic-plastic solids. In most applications, the instabilities occur with a complex acceleration history and evolve to a highly nonlinear state, making the theoretical description formidable. We will link the fluid and plasma regimes while describing the theoretical issues and basic experiments in different venues to isolate key physics issues. RMI experiments on the Nova laser investigate the affects of compressibility with strong radiatively driven shocks (Mach > 10) in near solid density plasmas of sub-millimeter scale. The growth of single sinusoidal and random 3-D perturbations are measured using backlit radiography. RTI experiments with the Linear Electric Motor (LEM) are conducted with a variety of acceleration (<< 10^4 m/s^2) histories and fluids of 10 cm scale. Turbulent RTI experiments with high Reynolds number liquids show self-similar growth which is characterized with laser induced fluorescence. LEM experiments with an elastic-plastic material (yogurt) exhibit a critical wavelength and amplitude for instability. The experimental results will be compared with linear and nonlinear theories and hydrodynamic simulations.

  4. A Numerical Investigation of the Burnett Equations Based on the Second Law

    NASA Technical Reports Server (NTRS)

    Comeaux, Keith A.; Chapman, Dean R.; MacCormack, Robert W.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The Burnett equations have been shown to potentially violate the second law of thermodynamics. The objective of this investigation is to correlate the numerical problems experienced by the Burnett equations to the negative production of entropy. The equations have had a long history of numerical instability to small wavelength disturbances. Recently, Zhong corrected the instability problem and made solutions attainable for one dimensional shock waves and hypersonic blunt bodies. Difficulties still exist when attempting to solve hypersonic flat plate boundary layers and blunt body wake flows, however. Numerical experiments will include one-dimensional shock waves, quasi-one dimensional nozzles, and expanding Prandlt-Meyer flows and specifically examine the entropy production for these cases.

  5. Eta Carinae: X-ray Line Variations during the 2003 X-ray Minimum, and the Orbit Orientation

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Henley, D.; Hamaguchi, K.; Khibashi, K.; Pittard, J. M.; Stevens, I. R.; Gull, T. R.

    2007-01-01

    The future evolution of Eta Carinae will be as a supernova (or hypernova) and black hole. The evolution is highly contingent on mass and angular momentum changes and instabilities. The presence of a companion can serve to trigger instabilities and provide pathways for mass and angular momentum exchange loss. X-rays can be used a a key diagnostic tool: x-ray temperatures trace pre-shock wind velocities, periodic x-ray variability traces the orbit, and x-ray line variations traces the flow and orientation of shocked gas. This brief presentation highlights x-ray line variations from the HETG and presents a model of the colliding wind flow.

  6. Wave instabilities in the presence of non vanishing background in nonlinear Schrödinger systems

    PubMed Central

    Trillo, S.; Gongora, J. S. Totero; Fratalocchi, A.

    2014-01-01

    We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign. PMID:25468032

  7. Gas Evolution Dynamics in Godunov-Type Schemes and Analysis of Numerical Shock Instability

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    1999-01-01

    In this paper we are going to study the gas evolution dynamics of the exact and approximate Riemann solvers, e.g., the Flux Vector Splitting (FVS) and the Flux Difference Splitting (FDS) schemes. Since the FVS scheme and the Kinetic Flux Vector Splitting (KFVS) scheme have the same physical mechanism and similar flux function, based on the analysis of the discretized KFVS scheme the weakness and advantage of the FVS scheme are closely observed. The subtle dissipative mechanism of the Godunov method in the 2D case is also analyzed, and the physical reason for shock instability, i.e., carbuncle phenomena and odd-even decoupling, is presented.

  8. The role of milrinone in children with cardiovascular compromise: review of the literature.

    PubMed

    Meyer, Sascha; Gortner, Ludwig; Brown, Kate; Abdul-Khaliq, Hashim

    2011-04-01

    Cardiovascular instability is a common complication in children after cardiac surgery and in various forms of shock. Systematic literature review. Four randomized controlled trials (RCTs) were included in this systematic literature review. In children after corrective surgery for congenital heart disease milrinone significantly reduced the risk of development of LCOS compared with placebo. In another study in children with high pulmonary vascular resistance and impaired oxygenation after Fontan operation, inhalation of NO with milrinone led to the most significant reduction of pulmonary vascular resistance and improvement of oxygenation. When only milrinone was given these changes were less pronounced. In non-hyperdynamic septic shock, CI, SVI, and DO₂ significantly increased while SVRI significantly decreased after milrinone when compared to placebo. There are a limited number of RCTs in children that suggest a beneficial effect of milrinone in the optimization of cardiovascular function after cardiac surgery and in septic shock.

  9. The properties and causes of rippling in quasi-perpendicular collisionless shock fronts

    NASA Astrophysics Data System (ADS)

    Lowe, R. E.; Burgess, D.

    2003-03-01

    The overall structure of quasi-perpendicular, high Mach number collisionless shocks is controlled to a large extent by ion reflection at the shock ramp. Departure from a strictly one-dimensional structure is indicated by simulation results showing that the surface of such shocks is rippled, with variations in the density and all field components. We present a detailed analysis of these shock ripples, using results from a two-dimensional hybrid (particle ions, electron fluid) simulation. The process that generates the ripples is poorly understood, because the large gradients at the shock ramp make it difficult to identify instabilities. Our analysis reveals new features of the shock ripples, which suggest the presence of a surface wave mode dominating the shock normal magnetic field component of the ripples, as well as whistler waves excited by reflected ions.

  10. Two non linear dynamics plasma astrophysics experiments at LANL

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Weber, T. E.; Feng, Y.; Sears, J. A.; Swan, H.; Hutchinson, T.; Boguski, J.; Gao, K.; Chapdelaine, L.; Dunn, J.

    2013-10-01

    Two laboratory experiments at Los Alamos National Laboratory (LANL) have been built to gain access to a wide range of fundamental plasma physics issues germane astro, space, and fusion plasmas. The over arching theme is magnetized plasma dynamics that include currents, MHD forces and instabilities, sheared flows and shocks, creation and annihilation of magnetic field. The Reconnection Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, that can kink, bounce, merge and reconnect, shred, and reform in complicated ways. The most recent movies from a large detailed data set describe the 3D magnetic structure and helicity budget of a driven and dissipative system that spontaneously self saturates a kink instability. The Magnetized Shock Experiment (MSX) uses a Field reversed configuration (FRC) that is ejected at high speed and then stagnated onto a stopping mirror field, which drives a collisionless magnetized shock. A plasmoid accelerator will also access super critical shocks at much larger Alfven Mach numbers. Unique features include access to parallel, oblique and perpendicular shocks, in regions much larger than ion gyro radius and inertial length, large magnetic and fluid Reynolds numbers, and volume for turbulence. Center for Magnetic Self Organization, NASA Geospace NNHIOA044I-Basic, Department of Energy DE-AC52-06NA25369.

  11. Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes

    NASA Astrophysics Data System (ADS)

    Capuano, M.; Bogey, C.; Spelt, P. D. M.

    2018-05-01

    A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.

  12. On the instability of hypersonic flow past a flat plate

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Cowley, Stephen; Hall, Philip

    1990-01-01

    The instability of hypersonic boundary-layer flows over flat plates is considered. The viscosity of the fluid is taken to be governed by Sutherland's law, which gives a much more accurate representation of the temperature dependence of fluid viscosity at hypersonic speeds than Chapman's approximate linear law; although at lower speeds the temperature variation of the mean state is less pronounced so that the Chapman law can be used with some confidence. Attention is focussed on the so-called (vorticity) mode of instability of the viscous hypersonic boundary layer. This is thought to be the fastest growing inviscid disturbance at hypersonic speeds; it is also believed to have an asymptotically larger growth rate than any viscous or centrifugal instability. As a starting point the instability of the hypersonic boundary layer which exists far downstream from the leading edge of the plate is investigated. In this regime the shock that is attached to the leading edge of the plate plays no role, so that the basic boundary layer is non-interactive. It is shown that the vorticity mode of instability of this flow operates on a significantly different lengthscale than that obtained if a Chapman viscosity law is assumed. In particular, it is found that the growth rate predicted by a linear viscosity law overestimates the size of the growth rate by O(M(exp 2). Next, the development of the vorticity mode as the wavenumber decreases is described, and it is shown that acoustic modes emerge when the wavenumber has decreased from it's O(1) initial value to O(M (exp -3/2). Finally, the inviscid instability of the boundary layer near the leading edge in the interaction zone is discussed and particular attention is focussed on the strong interaction region which occurs sufficiently close to the leading edge. It is found that the vorticity mode in this regime is again unstable, and that it is concentrated in the transition layer at the edge of the boundary layer where the temperature adjusts from its large, O(M(exp 2), value in the viscous boundary layer, to its O(1) free stream value. The existence of the shock indirectly, but significantly, influences the instability problem by modifying the basic flow structure in this layer.

  13. Sources of Shock Waves in the Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Boss, A. P.; Durisen, R. H.

    2005-12-01

    Finding an appropriate heat source for melting the chondrules that constitute the bulk of many primitive meteorites is perhaps the most important outstanding problem in all of meteoritics. Shock waves within the Solar Nebula are one possible means for accomplishing this provided that they move with respect to the precursor aggregates at speeds of ~ 6 to 9 km s-1 in environments with appropriate nebular pressures and densities. Here we briefly review the status of four different mechanisms which have been proposed as sources of such shock fronts. We argue that two of them, the accretion shock at the nebular surface and shocks propagating inside the nebula launched by the impact of gas clumps falling onto the disk, are unlikely to work. Bow shocks driven by 1000-km-size planetesimals show more promise, but require the presence of Jupiter to raise the eccentricities of the planetesimals. We then focus this chapter on the fourth mechanism, which may be the dominant source of shocks in the early nebula. Wood (1996) proposed that the chondrule-producing shocks were due to nebular spiral arms. This hypothesis is now strongly supported by recent calculations of the evolution of gravitationally unstable disks. In a gaseous disk capable of forming Jupiter, the disk gas must have been close to marginal gravitational instability near or beyond Jupiter's orbit. Massive clumps and spirals due to such instability can drive spiral shock fronts inward with shock speeds as large as ~ 10 km s-1 at asteroidal orbits, sufficient to account for chondrule formation. Once Jupiter forms, it may either continue to drive strong shock fronts at asteroidal distances, or it may pump up the eccentricity of planetesimals, leading to chondrule processing for as long as the inner disk gas survives, a few Myr or so. Mixing and transport of solids in an unstable disk results in a scenario that unifies chondrite formation from chondrules, refractory inclusions, and matrix grains with disk processes associated with gas giant planet formation.

  14. An Experimental Study of Nonstationary Instabilities of Planar Shock Waves in Ionizing Argon

    DTIC Science & Technology

    1980-08-01

    Distribution is unlimited. A. D. BLOSS Technioal Information Ottoer AN EPERIMeNTAL STUDY OF NONSTATIONARY INSTABILTIES OF PLANAR SHOCK WAVES IN IONIZIG...UTIAS hypervelocity shock tube are performed with the aid of a 23-cm dia aperture Mach-Zehnder interferometer. Details of the design and operation of...and the Q-switching, and normally is designed to be 900 us for optimal single-exposure photos. A different value of t = 500 us was used for some of the

  15. Evidence of Collisionless Shocks in a Hall Thruster Plume

    DTIC Science & Technology

    2003-04-25

    Triple Langmuir probes and emissive probes are used to measure the electron number density, electron temperature, and plasma potential downstream of a low-power Hall thruster . The results show a high density plasma core with elevated electron temperature and plasma potential along the thruster centerline. These properties are believed to be due to collisionless shocks formed as a result of the ion/ion acoustic instability. A simple model is presented that shows the existence of a collisionless shock to be consistent with the observed phenomena.

  16. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; hide

    2012-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. Our initial results of a jet-ambient interaction with anti-parallelmagnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in a transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  17. The multi-species Farley-Buneman instability in the solar chromosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.

    2014-03-10

    Empirical models of the solar chromosphere show intense electron heating immediately above its temperature minimum. Mechanisms such as resistive dissipation and shock waves appear insufficient to account for the persistence and uniformity of this heating as inferred from both UV lines and continuum measurements. This paper further develops the theory of the Farley-Buneman instability (FBI) which could contribute substantially to this heating. It expands upon the single-ion theory presented by Fontenla by developing a multiple-ion-species approach that better models the diverse, metal-dominated ion plasma of the solar chromosphere. This analysis generates a linear dispersion relationship that predicts the critical electronmore » drift velocity needed to trigger the instability. Using careful estimates of collision frequencies and a one-dimensional, semi-empirical model of the chromosphere, this new theory predicts that the instability may be triggered by velocities as low as 4 km s{sup -1}, well below the neutral acoustic speed. In the Earth's ionosphere, the FBI occurs frequently in situations where the instability trigger speed significantly exceeds the neutral acoustic speed. From this, we expect neutral flows rising from the photosphere to have enough energy to easily create electric fields and electron Hall drifts with sufficient amplitude to make the FBI common in the chromosphere. If so, this process will provide a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.« less

  18. The Multi-species Farley-Buneman Instability in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.; Fontenla, Juan M.

    2014-03-01

    Empirical models of the solar chromosphere show intense electron heating immediately above its temperature minimum. Mechanisms such as resistive dissipation and shock waves appear insufficient to account for the persistence and uniformity of this heating as inferred from both UV lines and continuum measurements. This paper further develops the theory of the Farley-Buneman instability (FBI) which could contribute substantially to this heating. It expands upon the single-ion theory presented by Fontenla by developing a multiple-ion-species approach that better models the diverse, metal-dominated ion plasma of the solar chromosphere. This analysis generates a linear dispersion relationship that predicts the critical electron drift velocity needed to trigger the instability. Using careful estimates of collision frequencies and a one-dimensional, semi-empirical model of the chromosphere, this new theory predicts that the instability may be triggered by velocities as low as 4 km s-1, well below the neutral acoustic speed. In the Earth's ionosphere, the FBI occurs frequently in situations where the instability trigger speed significantly exceeds the neutral acoustic speed. From this, we expect neutral flows rising from the photosphere to have enough energy to easily create electric fields and electron Hall drifts with sufficient amplitude to make the FBI common in the chromosphere. If so, this process will provide a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.

  19. [Phaeochromocytoma as an unusual aetiology of cardiogenic shock].

    PubMed

    Ouchikhe, A; Lehoux, P; Gringore, A; Renouf, P; Deredec, R; Tasle, M; Massetti, M; Khayat, A; Saloux, E; Grollier, G; Samama, G; Gérard, J-L

    2006-01-01

    The authors reported a case involving a young patient with a cardiogenic shock associated to an acute pulmonary oedema. According to the seriousness of the shock, an external ventricular assist device (VAD) was initially inserted and replaced thereafter because of the cardiovascular instability, by an external pneumatic biventricular assist device. A cardiogenic shock induced by an acute adrenergic myocarditis due to a phaeochromocytoma was diagnosed. The patient was weaned from the VAD on day 84 and was scheduled for elective surgery of the phaeochromocytoma on day 93. The authors discussed the time of the surgery according to the anticoagulation therapy necessary to the VAD and the necessary caution taken if a cardiogenic shock appeared around surgery.

  20. A description of electron heating with an electrostatic potential jump in a parallel, collisionless, fire hose shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1988-01-01

    The electron heating required if protons scatter elastically in a parallel, collisionless shock is calculated. Near-elastic proton scattering off large amplitude background magnetic field fluctuations might be expected if the waves responsible for the shock dissipation are generated by the fire hose instability. The effects of an electrostatic potential jump in the shock layer are included by assuming that the energy lost by protons in traversing the potential jump is converted into electron thermal pressure. It is found that the electron temperature increase is a strong function of the potential jump. Comparison is made to the parallel shock plasma simulation of Quest (1987).

  1. The formation of relativistic plasma structures and their potential role in the generation of cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.

    2008-11-01

    Recent particle-in-cell (PIC) simulation studies have addressed particle acceleration and magnetic field generation in relativistic astrophysical flows by plasma phase space structures. We discuss the astrophysical environments such as the jets of compact objects, and we give an overview of the global PIC simulations of shocks. These reveal several types of phase space structures, which are relevant for the energy dissipation. These structures are typically coupled in shocks, but we choose to consider them here in an isolated form. Three structures are reviewed. (1) Simulations of interpenetrating or colliding plasma clouds can trigger filamentation instabilities, while simulations of thermally anisotropic plasmas observe the Weibel instability. Both transform a spatially uniform plasma into current filaments. These filament structures cause the growth of the magnetic fields. (2) The development of a modified two-stream instability is discussed. It saturates first by the formation of electron phase space holes. The relativistic electron clouds modulate the ion beam and a secondary, spatially localized electrostatic instability grows, which saturates by forming a relativistic ion phase space hole. It accelerates electrons to ultra-relativistic speeds. (3) A simulation is also revised, in which two clouds of an electron-ion plasma collide at the speed 0.9c. The inequal densities of both clouds and a magnetic field that is oblique to the collision velocity vector result in waves with a mixed electrostatic and electromagnetic polarity. The waves give rise to growing corkscrew distributions in the electrons and ions that establish an equipartition between the electron, the ion and the magnetic energy. The filament-, phase space hole- and corkscrew structures are discussed with respect to electron acceleration and magnetic field generation.

  2. Investigation of instabilities affecting detonations: Improving the resolution using block-structured adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Ravindran, Prashaanth

    The unstable nature of detonation waves is a result of the critical relationship between the hydrodynamic shock and the chemical reactions sustaining the shock. A perturbative analysis of the critical point is quite challenging due to the multiple spatio-temporal scales involved along with the non-linear nature of the shock-reaction mechanism. The author's research attempts to provide detailed resolution of the instabilities at the shock front. Another key aspect of the present research is to develop an understanding of the causality between the non-linear dynamics of the front and the eventual breakdown of the sub-structures. An accurate numerical simulation of detonation waves requires a very efficient solution of the Euler equations in conservation form with detailed, non-equilibrium chemistry. The difference in the flow and reaction length scales results in very stiff source terms, requiring the problem to be solved with adaptive mesh refinement. For this purpose, Berger-Colella's block-structured adaptive mesh refinement (AMR) strategy has been developed and applied to time-explicit finite volume methods. The block-structured technique uses a hierarchy of parent-child sub-grids, integrated recursively over time. One novel approach to partition the problem within a large supercomputer was the use of modified Peano-Hilbert space filling curves. The AMR framework was merged with CLAWPACK, a package providing finite volume numerical methods tailored for wave-propagation problems. The stiffness problem is bypassed by using a 1st order Godunov or a 2nd order Strang splitting technique, where the flow variables and source terms are integrated independently. A linearly explicit fourth-order Runge-Kutta integrator is used for the flow, and an ODE solver was used to overcome the numerical stiffness. Second-order spatial resolution is obtained by using a second-order Roe-HLL scheme with the inclusion of numerical viscosity to stabilize the solution near the discontinuity. The scheme is made monotonic by coupling the van Albada limiter with the higher order MUSCL-Hancock extrapolation to the primitive variables of the Euler equations. Simulations using simplified single-step and detailed chemical kinetics have been provided. In detonations with simplified chemistry, the one-dimensional longitudinal instabilities have been simulated, and a mechanism forcing the collapse of the period-doubling modes was identified. The transverse instabilities were simulated for a 2D detonation, and the corresponding transverse wave was shown to be unstable with a periodic normal mode. Also, a Floquet analysis was carried out with the three-dimensional inviscid Euler equations for a longitudinally stable case. Using domain decomposition to identify the global eigenfunctions corresponding to the two least stable eigenvalues, it was found that the bifurcation of limit cycles in three dimensions follows a period doubling process similar to that proven to occur in one dimension and it is because of transverse instabilities. For detonations with detailed chemistry, the one dimensional simulations for two cases were presented and validated with experimental results. The 2D simulation shows the re-initiation of the triple point leading to the formation of cellular structure of the detonation wave. Some of the important features in the front were identified and explained.

  3. Numerical simulations of high-energy flows in accreting magnetic white dwarfs

    NASA Astrophysics Data System (ADS)

    Van Box Som, Lucile; Falize, É.; Bonnet-Bidaud, J.-M.; Mouchet, M.; Busschaert, C.; Ciardi, A.

    2018-01-01

    Some polars show quasi-periodic oscillations (QPOs) in their optical light curves that have been interpreted as the result of shock oscillations driven by the cooling instability. Although numerical simulations can recover this physics, they wrongly predict QPOs in the X-ray luminosity and have also failed to reproduce the observed frequencies, at least for the limited range of parameters explored so far. Given the uncertainties on the observed polar parameters, it is still unclear whether simulations can reproduce the observations. The aim of this work is to study QPOs covering all relevant polars showing QPOs. We perform numerical simulations including gravity, cyclotron and bremsstrahlung radiative losses, for a wide range of polar parameters, and compare our results with the astronomical data using synthetic X-ray and optical luminosities. We show that shock oscillations are the result of complex shock dynamics triggered by the interplay of two radiative instabilities. The secondary shock forms at the acoustic horizon in the post-shock region in agreement with our estimates from steady-state solutions. We also demonstrate that the secondary shock is essential to sustain the accretion shock oscillations at the average height predicted by our steady-state accretion model. Finally, in spite of the large explored parameter space, matching the observed QPO parameters requires a combination of parameters inconsistent with the observed ones. This difficulty highlights the limits of one-dimensional simulations, suggesting that multi-dimensional effects are needed to understand the non-linear dynamics of accretion columns in polars and the origins of QPOs.

  4. Effects of initial condition spectral content on shock-driven turbulent mixing.

    PubMed

    Nelson, Nicholas J; Grinstein, Fernando F

    2015-07-01

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the rage code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF(6)) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF(6) bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF(6) band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

  5. Effects of Initial Condition Spectral Content on Shock Driven-Turbulent Mixing

    DOE PAGES

    Nelson, Nicholas James; Grinstein, Fernando F.

    2015-07-15

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the RAGE code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band ofmore » high density gas (SF 6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF 6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF 6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.« less

  6. Parametric study of shock-induced combustion in a hydrogen air system

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, Surendra N.

    1994-01-01

    A numerical parametric study is conducted to simulate shock-induced combustion under various free-stream conditions and varying blunt body diameter. A steady combustion front is established if the free-stream Mach number is above the Chapman-Jouguet speed of the mixture, whereas an unsteady reaction front is established if the free-stream Mach number is below or at the Chapman-Jouguet speed of the mixture. The above two cases have been simulated for Mach 5.11 and Mach 6.46 with a projectile diameter of 15 mm. Mach 5.11, which is an underdriven case, shows an unsteady reaction front, whereas Mach 6.46, which is an overdriven case, shows a steady reaction front. Next for Mach 5. 11 reducing the diameter to 2.5 mm causes the instabilities to disappear, whereas, for Mach 6.46 increasing the diameter of the projectile to 225 mm causes the instabilities to reappear, indicating that Chapman-Jouguet speed is not the only deciding factor for these instabilities to trigger. The other key parameters are the projectile diameter, induction time, activation energy and the heat release. The appearance and disappearance of the instabilities have been explained by the one-dimensional wave interaction model.

  7. Particle force model effects in a shock-driven multiphase instability

    NASA Astrophysics Data System (ADS)

    Black, W. J.; Denissen, N.; McFarland, J. A.

    2018-05-01

    This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.

  8. Effects of laser energy fluence on the onset and growth of the Rayleigh-Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, S.; Department of Physics, University of Karachi, Karachi 75270; Rawat, R. S.

    2012-10-15

    The effect of laser energy fluence on the onset and growth of Rayleigh-Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsedmore » laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.« less

  9. The Origin of Radially Aligned Magnetic Fields in Young Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo

    2013-08-01

    It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)—in other words, the effect of rippled shock—by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability.

  10. Colliding winds from early-type stars in binary systems

    NASA Technical Reports Server (NTRS)

    Stevens, Ian R.; Blondin, John M.; Pollock, A. M. T.

    1992-01-01

    The dynamics of the wind and shock structure formed by the wind collision in early-type binary systems is examined by means of a 2D hydrodynamics code, which self-consistently accounts for radiative cooling, and represents a significant improvement over previous attempts to model these systems. The X-ray luminosity and spectra of the shock-heated region, accounting for wind attenuation and the influence of different abundances on the resultant level and spectra of X-ray emission are calculated. A variety of dynamical instabilities that are found to dominate the intershock region is examined. These instabilities are found to be particularly important when postshock material is able to cool. These instabilities disrupt the postshock flow and add a time variability of order 10 percent to the X-ray luminosity. The X-ray spectrum of these systems is found to vary with the nuclear abundances of winds. These theoretical models are used to study several massive binary systems, in particular V444 Cyg and HD 193793.

  11. Laser driven supersonic flow over a compressible foam surface on the Nike lasera)

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.

    2010-05-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  12. Astrophysical Connections to Collapsing Radiative Shock Experiments

    NASA Astrophysics Data System (ADS)

    Reighard, A. B.; Hansen, J. F.; Bouquet, S.; Koenig, M.

    2005-10-01

    Radiative shocks occur in many high-energy density explosions, but prove difficult to create in laboratory experiments or to fully model with astrophysical codes. Low astrophysical densities combined with powerful explosions provide ideal conditions for producing radiative shocks. Here we describe an experiment significant to astrophysical shocks, which produces a driven, planar radiative shock in low density Xe gas. Including radiation effects precludes scaling experiments directly to astrophysical conditions via Euler equations, as can be done in purely hydrodynamic experiments. We use optical depth considerations to make comparisons between the driven shock in xenon and specific astrophysical phenomena. This planar shock may be subject to thin shell instabilities similar to those affecting the evolution of astrophysical shocks. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  13. Hydrodynamic instabilities at an oblique interface: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Douglas-Mann, E.; Fiedler Kawaguchi, C.; Trantham, M. A.; Malamud, G.; Wan, W. C.; Klein, S. R.; Kuranz, C. C.

    2017-10-01

    Hydrodynamic instabilities are important phenomena that occur in high-energy-density systems, such as astrophysical systems and inertial confinement fusion experiments, where pressure, density, and velocity gradients are present. Using a 30 ns laser pulse from the Omega EP laser system, a steady shock wave is driven into a target. A Spherical Crystal Imager provides high-resolution x-ray radiographs to study the evolution of complex hydrodynamic structures. This experiment has a light-to-heavy interface at an oblique angle with a precision-machined perturbation. The incident shock wave deposits shear and vorticity at the interface causing the perturbation to grow via Richtmyer-Meshkov and Kelvin-Helmholtz processes. We present results from analysis of radiographic data and hydrodynamics simulations showing the evolution of the shock and unstable structure. This work is supported by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program and LILAC.

  14. Mach number dependence of electron heating at high Mach number interplanetary shocks in the inner heliospere

    NASA Astrophysics Data System (ADS)

    Matsukiyo, Shuichi

    In the inner heliosphere a variety of interplanetary shocks with different Mach numbers are expected to be present. A possible maximum Mach number at 0.3AU from the sun is esti-mated to be about 40. Efficiency of electron heating in such high Mach number shocks is one of the outstanding issues of space plasma physics as well as astrophysics. Here, from this aspect, electron heating rate through microinstabilities generated in the transition region of a quasi-perpendicular shock for wide range of Mach numbers is investigated. Saturation levels of effective electron temperature as a result of modified two-stream instability (MTSI) are es-timated by using a semianalytic approach which we call an extended quasilinear analysis here. The results are compared with one-dimensional full particle-in-cell simulations. It is revealed that Mach number dependence of the effective electron temperature is weak when a Mach num-ber is below a certain critical value. Above the critical value, electron temperature increases being proportional to an upstream flow energy because of that a dominant microinstability in the foot changes from the MTSI to Buneman instability. The critical Mach number is roughly estimated to be a few tens.

  15. Time-resolved particle image velocimetry measurements of the 3D single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Krivets, Vitaliy V.; Sewell, Everest G.; Jacobs, Jeffrey W.

    2016-11-01

    A vertical shock tube is used to perform experiments on the single-mode three-dimensional Richtmyer-Meshkov Instability (RMI). The light gas (Air) and the heavy gas (SF6) enter from the top and the bottom of the shock tube driven section to form the interface. The initial perturbation is then generated by oscillating the gases vertically. Both gases are seeded with particles generated through vaporizing propylene glycol. An incident shock wave (M 1.2) impacts the interface to create an impulsive acceleration. The seeded particles are illuminated by a dual cavity 75W, Nd: YLF laser. Three high-speed CMOS cameras record time sequences of image pairs at a rate of 2 kHz. The initial perturbation used is that of a single, square-mode perturbation with either a single spike or a single bubble positioned at the center of the shock tube. The full time dependent velocity field is obtained allowing the determination of the circulation versus time. In addition, the evolution of time dependent amplitude is also determined. The results are compared with PIV measurements from previous two-dimensional single mode experiments along with PLIF measurements from previous three-dimensional single mode experiments.

  16. A new relativistic viscous hydrodynamics code and its application to the Kelvin–Helmholtz instability in high-energy heavy-ion collisions

    DOE PAGES

    Okamoto, Kazuhisa; Nonaka, Chiho

    2017-06-09

    Here, we construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We also split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. Furthemore, we check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken’s flow and the Israel–Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin–Helmholtz instability inmore » high-energy heavy-ion collisions.« less

  17. Two LANL laboratory astrophysics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a drivenmore » and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.« less

  18. Intermittent laser-plasma interactions and hot electron generation in shock ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Li, J.; Ren, C.

    We study laser-plasma interactions and hot electron generation in the ignition phase of shock ignition through 1D and 2D particle-in-cell simulations in the regime of long density scale length and moderately high laser intensity. These long-term simulations show an intermittent bursting pattern of laser-plasma instabilities, resulting from a coupling of the modes near the quarter-critical-surface and those in the lower density region via plasma waves and laser pump depletion. The majority of the hot electrons are found to be from stimulated Raman scattering and of moderate energies. However, high energy electrons of preheating threat can still be generated from themore » two-plasmon-decay instability.« less

  19. Turbulent mixing induced by Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Krivets, V. V.; Ferguson, K. J.; Jacobs, J. W.

    2017-01-01

    Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent θ where a fairly wide range of values is found varying from θ ≈ 0.2 to 0.6.

  20. Laboratory Observation of High-Mach Number, Laser-Driven Magnetized Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek; Fox, Will; Haberberger, Dan; Fiksel, Gennady; Bhattacharjee, Amitava; Barnak, Daniel; Hu, Suxing; Germaschewski, Kai

    2017-06-01

    Collisionless shocks are common phenomena in space and astrophysical systems, including solar and planetary winds, coronal mass ejections, supernovae remnants, and the jets of active galactic nuclei, and in many the shocks are believed to efficiently accelerate particles to some of the highest observed energies. Only recently, however, have laser and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of collisionless shocks over a large parameter regime. We present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on timescales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier, between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration. The platform is also flexible, allowing us to study shocks in different magnetic field geometries, in different ambient plasma conditions, and in relation to other effects in magnetized, high-Mach number plasmas such as magnetic reconnection or the Weibel instability.

  1. Symmetry tuning of a near one-dimensional 2-shock platform for code validation at the National Ignition Facility

    DOE PAGES

    Khan, S. F.; MacLaren, S. A.; Salmonson, J. D.; ...

    2016-04-27

    Here, we introduce a new quasi 1-D implosion experimental platform at the National Ignition Facility designed to validate physics models as well as to study various Inertial Confinement Fusion aspects such as implosion symmetry, convergence, hydrodynamic instabilities, and shock timing. The platform has been developed to maintain shell sphericity throughout the compression phase and produce a round hot core at stagnation. This platform utilizes a 2-shock 1 MJ pulse with 340 TW peak power in a near-vacuum AuHohlraum and a CH ablator capsule uniformly doped with 1% Si. We also performed several inflight radiography, symmetry capsule, and shock timing experimentsmore » in order to tune the symmetry of the capsule to near round throughout several epochs of the implosion. Finally, adjusting the relative powers of the inner and outer cones of beams has allowed us to control the drive at the poles and equator of the capsule, thus providing the mechanism to achieve a spherical capsule convergence. Details and results of the tuning experiments are described.« less

  2. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David

    2015-07-20

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M{sub ⊙} progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor ofmore » ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ{sup −1} in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ{sup −5/3}. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.« less

  3. Numerical Modeling of Tidal Effects in Polytropic Accretion Disks

    NASA Technical Reports Server (NTRS)

    Godon, Patrick

    1997-01-01

    A two-dimensional time-dependent hybrid Fourier-Chebyshev method of collocation is developed and used for the study of tidal effects in accretion disks, under the assumptions of a polytropic equation of state and a standard alpha viscosity prescription. Under the influence of the m = 1 azimuthal component of the tidal potential, viscous oscillations in the outer disk excite an m = 1 eccentric instability in the disk. While the m = 2 azimuthal component of the tidal potential excites a Papaloizou-Pringle instability in the inner disk (a saturated m = 2 azimuthal mode), with an elliptic pattern rotating at about a fraction (approx. = 1/3) of the local Keplerian velocity in the inner disk. The period of the elliptic mode corresponds well to the periods of the short-period oscillations observed in cataclysmic variables. In cold disks (r(Omega)/c(sub s) = M approx. = 40) we also find a critical value of the viscosity parameter (alpha approx. = 0.01), below which shock dissipation dominates and is balanced by the wave amplification due to the wave action conservation. In this case the double spiral shock propagates all the way to the inner boundary with a Mach number M(sub s) approx. = 1.3.

  4. Observations and modeling of magnetized plasma jets and bubbles launched into a transverse B-field

    NASA Astrophysics Data System (ADS)

    Fisher, Dustin M.; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward B., IV; van der Holst, Bart; Rogers, Barrett N.; Hsu, Scott C.

    2017-10-01

    Hot, dense, plasma structures launched from a coaxial plasma gun on the HelCat dual-source plasma device at the University of New Mexico drag frozen-in magnetic flux into the chamber's background magnetic field providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, shocks, as well as CME-like dynamics possibly relevant to the solar corona. Vector magnetic field data from an eleven-tipped B-dot rake probe and images from an ultra-fast camera will be presented in comparison with ongoing MHD modeling using the 3-D MHD BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid (AMR) that enables the capture and resolution of shock structures and current sheets and is uniquely suited for flux-rope expansion modeling. Recent experiments show a possible magnetic Rayleigh-Taylor (MRT) instability that appears asymmetrically at the interface between launched spheromaks (bubbles) and their entraining background magnetic field. Efforts to understand this instability using in situ measurements, new chamber boundary conditions, and ultra-fast camera data will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  5. Parametric Study of Flow Patterns behind the Standing Accretion Shock Wave for Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi

    2014-05-01

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  6. SPHYNX: an accurate density-based SPH method for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Cabezón, R. M.; García-Senz, D.; Figueira, J.

    2017-10-01

    Aims: Hydrodynamical instabilities and shocks are ubiquitous in astrophysical scenarios. Therefore, an accurate numerical simulation of these phenomena is mandatory to correctly model and understand many astrophysical events, such as supernovas, stellar collisions, or planetary formation. In this work, we attempt to address many of the problems that a commonly used technique, smoothed particle hydrodynamics (SPH), has when dealing with subsonic hydrodynamical instabilities or shocks. To that aim we built a new SPH code named SPHYNX, that includes many of the recent advances in the SPH technique and some other new ones, which we present here. Methods: SPHYNX is of Newtonian type and grounded in the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique. Its distinctive features are: the use of an integral approach to estimating the gradients; the use of a flexible family of interpolators called sinc kernels, which suppress pairing instability; and the incorporation of a new type of volume element which provides a better partition of the unity. Unlike other modern formulations, which consider volume elements linked to pressure, our volume element choice relies on density. SPHYNX is, therefore, a density-based SPH code. Results: A novel computational hydrodynamic code oriented to Astrophysical applications is described, discussed, and validated in the following pages. The ensuing code conserves mass, linear and angular momentum, energy, entropy, and preserves kernel normalization even in strong shocks. In our proposal, the estimation of gradients is enhanced using an integral approach. Additionally, we introduce a new family of volume elements which reduce the so-called tensile instability. Both features help to suppress the damp which often prevents the growth of hydrodynamic instabilities in regular SPH codes. Conclusions: On the whole, SPHYNX has passed the verification tests described below. For identical particle setting and initial conditions the results were similar (or better in some particular cases) than those obtained with other SPH schemes such as GADGET-2, PSPH or with the recent density-independent formulation (DISPH) and conservative reproducing kernel (CRKSPH) techniques.

  7. Magnetostructural Transition Kinetics in Shocked Iron

    DOE PAGES

    Surh, Michael P.; Benedict, Lorin X.; Sadigh, Babak

    2016-08-15

    Here, a generalized Heisenberg model is implemented to study the effect of thermal magnetic disorder on kinetics of the Fe α–ε transition. The barrier to bulk martensitic displacement remains large in α-Fe shocked well past the phase line but is much reduced in the [001] α–ε boundary. The first result is consistent with observed overdriving to metastable α, while the second suggests structural instability, as implied by observation of a [001] shock transformation front without plastic relaxation. Reconciling both behaviors may require concurrent treatment of magnetic and structural order.

  8. Comparing Split and Unsplit Numerical Methods for Simulating Low and High Mach Number Turbulent Flows in Xrage

    NASA Astrophysics Data System (ADS)

    Saenz, Juan; Grinstein, Fernando; Dolence, Joshua; Rauenzahn, Rick; Masser, Thomas; Francois, Marianne; LANL Team

    2017-11-01

    We report progress in evaluating an unsplit hydrodynamic solver being implemented in the radiation adaptive grid Eulerian (xRAGE) code, and compare to a split scheme. xRage is a Eulerian hydrodynamics code used for implicit large eddy simulations (ILES) of multi-material, multi-physics flows where low and high Mach number (Ma) processes and instabilities interact and co-exist. The hydrodynamic solver in xRAGE uses a directionally split, second order Godunov, finite volume (FV) scheme. However, a standard, unsplit, Godunov-type FV scheme with 2nd and 3rd order reconstruction options, low Ma correction and a variety of Riemann solvers has recently become available. To evaluate the hydrodynamic solvers for turbulent low Ma flows, we use simulations of the Taylor Green Vortex (TGV), where there is a transition to turbulence via vortex stretching and production of small-scale eddies. We also simulate a high-low Ma shock-tube flow, where a shock passing over a perturbed surface generates a baroclinic Richtmyer-Meshkov instability (RMI); after the shock has passed, the turbulence in the accelerated interface region resembles Rayleigh Taylor (RT) instability. We compare turbulence spectra and decay in simulated TGV flows, and we present progress in simulating the high-low Ma RMI-RT flow. LANL is operated by LANS LLC for the U.S. DOE NNSA under Contract No. DE-AC52-06NA25396.

  9. Nonthermal Radiation Processes in Interplanetary Plasmas

    NASA Astrophysics Data System (ADS)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large amplitude to exceed the thresfiold conditions, nonlinear mode conversion electromagnetic waves can be effected through parametric instabilities. A number of electromagnetic parametric instabilities driven by intense Langmuir waves can be excited in a plasma: (1) electromagnetic decay/fusion instabilities driven by a traveling Langmuir pump; (2) double electromagnetic decay/fusion instabilities driven by two oppositely directed Langmuir pumps; and (3) electromagnetic oscillating two-stream instabilities driven by two counterstreaming Langmuir pumps. It is concluded that the electromagnetic parametric instabilities induced by Langmuir waves are likely sources of nonthermal radiations in interplanetary plasmas. Keq ( : INTERPLANETARY MEDIUM - PLASMAS

  10. Masers in Disks due to Gravitational Instabilities

    NASA Astrophysics Data System (ADS)

    Mejia, A. C.; Durisen, R. H.; Pickett, B. K.; Hartquist, T. W.

    2001-12-01

    Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large circumstellar disks, at radii of 100's to 1000's of AU from the central mass. This is particularly true for methanol (CH3OH), where linear distributions of masers are found with disk-like kinematics. In 3D hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on. This work was supported by NASA Origins Program Grant NAGW5-4342, by the Alexander von Humboldt Foundation, and by NASA Planetary Geology and Geophysics Program Grant NAG5-10262.

  11. Investigations of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardo Bonazza; Mark Anderson; Jason Oakley

    2008-03-14

    The present program is centered on the experimental study of shock-induced interfacial fluid instabilities. Both 2-D (near-sinusoids) and 3-D (spheres) initial conditions are studied in a large, vertical square shock tube facility. The evolution of the interface shape, its distortion, the modal growth rates and the mixing of the fluids at the interface are all objectives of the investigation. In parallel to the experiments, calculations are performed using the Raptor code, on platforms made available by LLNL. These flows are of great relevance to both ICF and stockpile stewardship. The involvement of four graduate students is in line with themore » national laboratories' interest in the education of scientists and engineers in disciplines and technologies consistent with the labs' missions and activities.« less

  12. Investigation of the Richtmyer-Meshkov instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardo Bonazza; Mark Anderson; Jason Oakley

    2008-12-22

    The present program is centered on the experimental study of shock-induced interfacial fluid instabilities. Both 2-D (near-sinusoids) and 3-D (spheres) initial conditions are studied in a large, vertical square shock tube facility. The evolution of the interface shape, its distortion, the modal growth rates and the mixing of the fluids at the interface are all objectives of the investigation. In parallel to the experiments, calculations are performed using the Raptor code, on platforms made available by LLNL. These flows are of great relevance to both ICF and stockpile stewardship. The involvement of three graduate students is in line with themore » national laboratories' interest in the education of scientists and engineers in disciplines and technologies consistent with the labs' missions and activities.« less

  13. Ordinary mode instability associated with thermal ring distribution

    NASA Astrophysics Data System (ADS)

    Hadi, F.; Yoon, P. H.; Qamar, A.

    2015-02-01

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  14. Fates of the most massive primordial stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Almgren, Ann; Woosley, Stan

    2012-09-01

    We present our results of numerical simulations of the most massive primordial stars. For the extremely massive non-rotating Pop III stars over 300Msolar, they would simply die as black holes. But the Pop III stars with initial masses 140 - 260Msolar may have died as gigantic explosions called pair-instability supernovae (PSNe). We use a new radiation-hydrodynamics code CASTRO to study evolution of PSNe. Our models follow the entire explosive burning and the explosion until the shock breaks out from the stellar surface. In our simulations, we find that fluid instabilities occurred during the explosion. These instabilities are driven by both nuclear burning and hydrodynamical instability. In the red supergiant models, fluid instabilities can lead to significant mixing of supernova ejecta and alter the observational signature.

  15. Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected.

    PubMed

    Campos, F Cobos; Wouchuk, J G

    2016-05-01

    When a planar shock hits a corrugated contact surface between two fluids, hydrodynamic perturbations are generated in both fluids that result in asymptotic normal and tangential velocity perturbations in the linear stage, the so called Richtmyer-Meshkov instability. In this work, explicit and exact analytical expansions of the asymptotic normal velocity (δv_{i}^{∞}) are presented for the general case in which a shock is reflected back. The expansions are derived from the conservation equations and take into account the whole perturbation history between the transmitted and reflected fronts. The important physical limits of weak and strong shocks and the high/low preshock density ratio at the contact surface are shown. An approximate expression for the normal velocity, valid even for high compression regimes, is given. A comparison with recent experimental data is done. The contact surface ripple growth is studied during the linear phase showing good agreement between theory and experiments done in a wide range of incident shock Mach numbers and preshock density ratios, for the cases in which the initial ripple amplitude is small enough. In particular, it is shown that in the linear asymptotic phase, the contact surface ripple (ψ_{i}) grows as ψ_{∞}+δv_{i}^{∞}t, where ψ_{∞} is an asymptotic ordinate different from the postshock ripple amplitude at t=0+. This work is a continuation of the calculations of F. Cobos Campos and J. G. Wouchuk, [Phys. Rev. E 90, 053007 (2014)PLEEE81539-375510.1103/PhysRevE.90.053007] for a single shock moving into one fluid.

  16. Two LANL laboratory astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas; Weber, Thomas; Feng, Yan; Hutchinson, Trevor; Dunn, John; Akcay, Cihan

    2014-06-01

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The over arching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown.The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.*DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25396, NASA Geospace NNHIOA044I, Basic, Center for Magnetic Self Organization

  17. Physical and numerical aspects of the high-speed unsteady flow around concave axisymmetric bodies

    NASA Astrophysics Data System (ADS)

    Panaras, Argyris; Drikakis, Dimitris

    2011-09-01

    The axisymmetric concave body is a typical configuration about which shock/shock interactions appear. Various shapes of axisymmetric concave bodies are used in a variety of applications in aeronautics, for example, axisymmetric jet inlets with conical centerbody, ballistic missiles drag reduction by spike, plasma or hot gas injection, parachutes for pilot-ejection capsules. However, it is well known that two distinct modes of instability appear around a concave body in the high-speed flow regime for a certain range of geometric parameters. These instabilities can cause undesirable effects such as severe vibration of the structure, heating and pressure loads. According to the experimental evidence, the unsteady flow is characterised by periodic radial inflation and collapse of the conical separation bubble formed around the forebody (pulsation). Various explanations have been given for the driving mechanism of the instabilities. In the present, merging of the leading explanations is done, and basic rules for the passive suppression of the instabilities are applied, in order to enforce their proposed driving. In addition, the effect of the flow initialisation method on the flow structure predicted by numerical simulations is examined. For certain configurations, bifurcation of the time-dependent flow has been found. This behaviour is explained with recourse to the phenomenon of hysteresis, which is an inherent feature of the examined flows.

  18. Shock effects in particle beam fusion targets

    NASA Astrophysics Data System (ADS)

    Sweeney, M. A.; Perry, F. C.; Asay, J. R.; Widner, M. M.

    1982-04-01

    At Sandia National Laboratorics we are assessing the response of fusion target materials to shock loading with the particle beam accelerators HYDRA and PROTO I and the gas gun facility. Nonlinear shock-accelerated unstable growth of fabriction irregularities has been demonstrated, and jetting is found to occur in imploding targets because of asymmetric beam deposition. Cylindrical ion targets display an instability due either to beam or target nonuniformity. However, the data suggest targets with aspect ratios of 30 may implode stably. The first time- and space-resolved measurements of shock-induced vaporization have been made. A homogeneous mixed phase EOS model cannot adequately explain the results because of the kinetic effects of vapor formation and expansion.

  19. Oblique Alfvén instabilities driven by compensated currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malovichko, P.; Voitenko, Y.; De Keyser, J., E-mail: voitenko@oma.be

    2014-01-10

    Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam currentmore » and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.« less

  20. Magnetic field generation, Weibel-mediated collisionless shocks, and magnetic reconnection in colliding laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Bhattacharjee, A.; Fiksel, G.

    2016-10-01

    Colliding plasmas are ubiquitous in astrophysical environments and allow conversion of kinetic energy into heat and, most importantly, the acceleration of particles to extremely high energies to form the cosmic ray spectrum. In collisionless astrophysical plasmas, kinetic plasma processes govern the interaction and particle acceleration processes, including shock formation, self-generation of magnetic fields by kinetic plasma instabilities, and magnetic field compression and reconnection. How each of these contribute to the observed spectra of cosmic rays is not fully understood, in particular both shock acceleration processes and magnetic reconnection have been proposed. We will review recent results of laboratory astrophysics experiments conducted at high-power, inertial-fusion-class laser facilities, which have uncovered significant results relevant to these processes. Recent experiments have now observed the long-sought Weibel instability between two interpenetrating high temperature plasma plumes, which has been proposed to generate the magnetic field necessary for shock formation in unmagnetized regimes. Secondly, magnetic reconnection has been studied in systems of colliding plasmas using either self-generated magnetic fields or externally applied magnetic fields, and show extremely fast reconnection rates, indicating fast destruction of magnetic energy and further possibilities to accelerate particles. Finally, we highlight kinetic plasma simulations, which have proven to be essential tools in the design and interpretation of these experiments.

  1. Comparative Study on High-Order Positivity-preserving WENO Schemes

    NASA Technical Reports Server (NTRS)

    Kotov, Dmitry V.; Yee, Helen M.; Sjogreen, Bjorn Axel

    2013-01-01

    The goal of this study is to compare the results obtained by non-positivity-preserving methods with the recently developed positivity-preserving schemes for representative test cases. In particular the more di cult 3D Noh and Sedov problems are considered. These test cases are chosen because of the negative pressure/density most often exhibited by standard high-order shock-capturing schemes. The simulation of a hypersonic nonequilibrium viscous shock tube that is related to the NASA Electric Arc Shock Tube (EAST) is also included. EAST is a high-temperature and high Mach number viscous nonequilibrium ow consisting of 13 species. In addition, as most common shock-capturing schemes have been developed for problems without source terms, when applied to problems with nonlinear and/or sti source terms these methods can result in spurious solutions, even when solving a conservative system of equations with a conservative scheme. This kind of behavior can be observed even for a scalar case (LeVeque & Yee 1990) as well as for the case consisting of two species and one reaction (Wang et al. 2012). For further information concerning this issue see (LeVeque & Yee 1990; Griffiths et al. 1992; Lafon & Yee 1996; Yee et al. 2012). This EAST example indicated that standard high-order shock-capturing methods exhibit instability of density/pressure in addition to grid-dependent discontinuity locations with insufficient grid points. The evaluation of these test cases is based on the stability of the numerical schemes together with the accuracy of the obtained solutions.

  2. A Study of the Unstable Modes in High Mach Number Gaseous Jets and Shear Layers

    NASA Astrophysics Data System (ADS)

    Bassett, Gene Marcel

    1993-01-01

    Instabilities affecting the propagation of supersonic gaseous jets have been studied using high resolution computer simulations with the Piecewise-Parabolic-Method (PPM). These results are discussed in relation to jets from galactic nuclei. These studies involve a detailed treatment of a single section of a very long jet, approximating the dynamics by using periodic boundary conditions. Shear layer simulations have explored the effects of shear layers on the growth of nonlinear instabilities. Convergence of the numerical approximations has been tested by comparing jet simulations with different grid resolutions. The effects of initial conditions and geometry on the dominant disruptive instabilities have also been explored. Simulations of shear layers with a variety of thicknesses, Mach numbers and densities perturbed by incident sound waves imply that the time for the excited kink modes to grow large in amplitude and disrupt the shear layer is taug = (546 +/- 24) (M/4)^{1.7 } (Apert/0.02) ^{-0.4} delta/c, where M is the jet Mach number, delta is the half-width of the shear layer, and A_ {pert} is the perturbation amplitude. For simulations of periodic jets, the initial velocity perturbations set up zig-zag shock patterns inside the jet. In each case a single zig-zag shock pattern (an odd mode) or a double zig-zag shock pattern (an even mode) grows to dominate the flow. The dominant kink instability responsible for these shock patterns moves approximately at the linear resonance velocity, nu_ {mode} = cextnu_ {relative}/(cjet + c_ {ext}). For high resolution simulations (those with 150 or more computational zones across the jet width), the even mode dominates if the even penetration is higher in amplitude initially than the odd perturbation. For low resolution simulations, the odd mode dominates even for a stronger even mode perturbation. In high resolution simulations the jet boundary rolls up and large amounts of external gas are entrained into the jet. In low resolution simulations this entrainment process is impeded by numerical viscosity. The three-dimensional jet simulations behave similarly to two-dimensional jet runs with the same grid resolutions.

  3. A scale-invariant cellular-automata model for distributed seismicity

    NASA Technical Reports Server (NTRS)

    Barriere, Benoit; Turcotte, Donald L.

    1991-01-01

    In the standard cellular-automata model for a fault an element of stress is randomly added to a grid of boxes until a box has four elements, these are then redistributed to the adjacent boxes on the grid. The redistribution can result in one or more of these boxes having four or more elements in which case further redistributions are required. On the average added elements are lost from the edges of the grid. The model is modified so that the boxes have a scale-invariant distribution of sizes. The objective is to model a scale-invariant distribution of fault sizes. When a redistribution from a box occurs it is equivalent to a characteristic earthquake on the fault. A redistribution from a small box (a foreshock) can trigger an instability in a large box (the main shock). A redistribution from a large box always triggers many instabilities in the smaller boxes (aftershocks). The frequency-size statistics for both main shocks and aftershocks satisfy the Gutenberg-Richter relation with b = 0.835 for main shocks and b = 0.635 for aftershocks. Model foreshocks occur 28 percent of the time.

  4. Numerical study of blast characteristics from detonation of homogeneous explosives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik; Genin, Franklin; Nance, Doug V.; Menon, Suresh

    2010-04-01

    A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.

  5. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  6. Acceleration of High Energy Cosmic Rays in the Nonlinear Shock Precursor

    NASA Astrophysics Data System (ADS)

    Derzhinsky, F.; Diamond, P. H.; Malkov, M. A.

    2006-10-01

    The problem of understanding acceleration of very energetic cosmic rays to energies above the 'knee' in the spectrum at 10^15-10^16eV remains one of the great challenges in modern physics. Recently, we have proposed a new approach to understanding high energy acceleration, based on exploiting scattering of cosmic rays by inhomogenities in the compressive nonlinear shock precursor, rather than by scattering across the main shock, as is conventionally assumed. We extend that theory by proposing a mechanism for the generation of mesoscale magnetic fields (krg<1, where rg is the cosmic ray gyroradius). The mechanism is the decay or modulational instability of resonantly generated Alfven waves scattering off ambient density perturbations in the precursors. Such perturbations can be produced by Drury instability. This mechanism leads to the generation of longer wavelength Alfven waves, thus enabling the confinement of higher energy particles. A simplified version of the theory, cast in the form of a Fokker-Planck equation for the Alfven population, will also be presented. This process also limits field generation on rg scales.

  7. The Interaction of Coronal Mass Ejections with Alfvénic Turbulence

    NASA Astrophysics Data System (ADS)

    Manchester, Ward, IV; Van Der Holst, Bart

    2017-09-01

    We provide a first attempt to understand the interaction between Alfvén wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME) near the Sun. The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfvén Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of fire hose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning all in a global-scale numerical simulation. We find amplified turbulent energy in the CME sheath, along with strong wave reflection at the shock combine to cause wave dissipation rates to increase by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.

  8. The Interaction of Coronal Mass Ejections with Alfvenic Turbulence

    NASA Astrophysics Data System (ADS)

    Manchester, W.; van der Holst, B.

    2017-12-01

    We provide a first attempt to understand the interaction between Alfven wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME). The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfven Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of firehose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning, all in a global-scale numerical simulation. We find turbulent energy greatly enhanced in the CME sheath, strong wave reflection at the shock, which leads to wave dissipation rates increasing by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.

  9. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshingmore » motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.« less

  10. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock.

    PubMed

    Chen, L-J; Wang, S; Wilson, L B; Schwartz, S; Bessho, N; Moore, T; Gershman, D; Giles, B; Malaspina, D; Wilder, F D; Ergun, R E; Hesse, M; Lai, H; Russell, C; Strangeway, R; Torbert, R B; F-Vinas, A; Burch, J; Lee, S; Pollock, C; Dorelli, J; Paterson, W; Ahmadi, N; Goodrich, K; Lavraud, B; Le Contel, O; Khotyaintsev, Yu V; Lindqvist, P-A; Boardsen, S; Wei, H; Le, A; Avanov, L

    2018-06-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  11. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wang, S.; Wilson, L. B.; Schwartz, S.; Bessho, N.; Moore, T.; Gershman, D.; Giles, B.; Malaspina, D.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C.; Strangeway, R.; Torbert, R. B.; F.-Vinas, A.; Burch, J.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W.; Ahmadi, N.; Goodrich, K.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L.

    2018-06-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  12. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  13. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    NASA Astrophysics Data System (ADS)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  14. Plasma instability in fast spherical discharge induced by a preionization

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.

    2015-04-01

    As it was shown earlier, fast discharge (dI/dt ˜ 1012 A/s and Imax ≈ 40 kA) in a spherical cavity (Al2O3, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.

  15. NIF Target Designs and OMEGA Experiments for Shock-Ignition Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.

    2012-10-01

    Shock ignition (SI)footnotetextR. Betti et al., Phys. Rev. Lett. 98, 155001 (2007). is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs require the addition of a high-intensity (˜5 x 10^15 W/cm^2) laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the imploding capsule. Achieving ignition with SI requires the laser spike to generate an ignitor shock with a launching pressure typically in excess of ˜300 Mbar. At the high laser intensities required during the spike pulse, stimulated Raman (SRS) and Brillouin scattering (SBS) could reflect a significant fraction of the incident light. In addition, SRS and the two-plasmon-decay instability can accelerate hot electrons into the shell and preheat the fuel. Since the high-power spike occurs at the end of the pulse when the areal density of the shell is several tens of mg/cm^2, shock-ignition fuel layers are shielded against hot electrons with energies below 150 keV. This paper will present data for a set of OMEGA experiments that were designed to study laser--plasma interactions during the spike pulse. In addition, these experiments were used to demonstrate that high-pressure shocks can be produced in long-scale-length plasmas with SI-relevant intensities. Within the constraints imposed by the hydrodynamics of strong shock generation and the laser--plasma instabilities, target designs for SI experiments on the NIF will be presented. Two-dimensional radiation--hydrodynamic simulations of SI target designs for the NIF predict ignition in the polar-drive beam configuration at sub-MJ laser energies. Design robustness to various 1-D effects and 2-D nonuniformities has been characterized. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  16. Pair-instability supernovae of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2015-01-01

    We present 2D simulations of pair-instability supernovae considering rapid rotation during their explosion phases. Recent studies of the Population III (Pop III) star formation suggested that these stars could be born with a mass scale about 100 M⊙ and with a strong rotation. Based on stellar evolution models, these massive Pop III stars might have died as highly energetic pair-instability supernovae. We perform 2D calculations to investigate the impact of rotation on pair-instability supernovae. Our results suggest that rotation leads to an aspherical explosion due to an anisotropic collapse. If the first stars have a 50% of keplerian rotational rate of the oxygen core before their pair-instability explosions, the overall 56Ni production can be significantly reduced by about two orders of magnitude. An extreme case of 100% keplerian rotational rate shows an interesting feature of fluid instabilities along the equatorial plane caused by non-synchronized and non-isotropic ignitions of explosions, so that the shocks run into the in-falling gas and generate the Richtmyer-Meshkov instability.

  17. Evidence for a Higher Risk of Hypovolemia-Induced Hemodynamic Instability in Females: Implications for Decision Support During Prehospital Triage

    DTIC Science & Technology

    2015-03-01

    2): 138–45. 12. el-Bedawi KM, Hainsworth R: Combined head -up tilt and lower body suction: a test of orthostatic tolerance. Clin Auton Res 1994; 4: 41...clearly identify the need to develop strategies to help improve care and triage proce- dures administered by combat medics. Although there are multiple...failure of compensatory mechanisms to maintain adequate tissue perfusion, subse- quently leading to cardiovascular collapse (circulatory shock) and

  18. Flute Instability of Expanding Plasma Cloud

    NASA Astrophysics Data System (ADS)

    Dudnikova, Galina; Vshivkov, Vitali

    2000-10-01

    The expansion of plasma against a magnetized background where collisions play no role is a situation common to many plasma phenomena. The character of interaction between expanding plasma and background plasma is depending of the ratio of the expansion velocity to the ambient Alfven velocity. If the expansion speed is greater than the background Alfven speed (super-Alfvenic flows) a collisionless shock waves are formed in background plasma. It is originally think that if the expansion speed is less than Alfvenic speed (sub-Alfvenic flows) the interaction of plasma flows will be laminar in nature. However, the results of laboratory experiments and chemical releases in magnetosphere have shown the development of flute instability on the boundary of expanding plasma (Rayleigh-Taylor instability). A lot of theoretical and experimental papers have been devoted to study the Large Larmor Flute Instability (LLFI) of plasma expanding into a vacuum magnetic field. In the present paper on the base of computer simulation of plasma cloud expansion in magnetizied background plasma the regimes of development and stabilization LLFI for super- and sub-Alfvenic plasma flows are investigated. 2D hybrid numerical model is based on kinetic Vlasov equation for ions and hydrodynamic approximation for electrons. The similarity parameters characterizing the regimes of laminar flows are founded. The stabilization of LLFI takes place with the transition from sub- to super-Alfvenic plasma cloud expansion. The results of the comparision between computer simulation and laboratory simulation are described.

  19. A two-layer model for buoyant inertial displacement flows in inclined pipes

    NASA Astrophysics Data System (ADS)

    Etrati, Ali; Frigaard, Ian A.

    2018-02-01

    We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.

  20. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibayama, Takuya, E-mail: shibayama@stelab.nagoya-u.ac.jp; Nakabou, Takashi; Kusano, Kanya

    2015-10-15

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate thatmore » fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.« less

  1. Advanced hemodynamic monitoring in intensive care medicine : A German web-based survey study.

    PubMed

    Saugel, B; Reese, P C; Wagner, J Y; Buerke, M; Huber, W; Kluge, S; Prondzinsky, R

    2018-04-01

    Advanced hemodynamic monitoring is recommended in patients with complex circulatory shock. To evaluate the current attitudes and beliefs among German intensivists, regarding advanced hemodynamic monitoring, the actual hemodynamic management in clinical practice, and the barriers to using it. Web-based survey among members of the German Society of Medical Intensive Care and Emergency Medicine. Of 284 respondents, 249 (87%) agreed that further hemodynamic assessment is needed to determine the type of circulatory shock if no clear clinical diagnosis can be made. In all, 281 (99%) agreed that echocardiography is helpful for this purpose (transpulmonary thermodilution: 225 [79%]; pulmonary artery catheterization: 126 [45%]). More than 70% of respondents agreed that blood flow variables (cardiac output, stroke volume) should be measured in patients with hemodynamic instability. The parameters most respondents agreed should be assessed in a patient with hemodynamic instability were mean arterial pressure, cardiac output, and serum lactate. Echocardiography is available in 99% of ICUs (transpulmonary thermodilution: 91%; pulmonary artery catheter: 63%). The respondents stated that, in clinical practice, invasive arterial pressure measurements and serum lactate measurements are performed in more than 90% of patients with hemodynamic instability (cardiac output monitoring in about 50%; transpulmonary thermodilution in about 40%). The respondents did not feel strong barriers to the use of advanced hemodynamic monitoring in clinical practice. This survey study shows that German intensivists deem advanced hemodynamic assessment necessary for the differential diagnosis of circulatory shock and to guide therapy with fluids, vasopressors, and inotropes in ICU patients.

  2. OBSERVATIONS OF THE CRAB NEBULA'S ASYMMETRICAL DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loll, A. M.; Desch, S. J.; Scowen, P. A.

    2013-03-10

    We present the first Hubble Space Telescope Wide Field Planetary Camera-2 imaging survey of the entire Crab Nebula, in the filters F502N ([O III] emission), F673N ([S II]), F631N ([O I]), and F547M (continuum). We use our mosaics to characterize the pulsar wind nebula (PWN) and its three-dimensional structure, the ionizational structure in the filaments forming at its periphery, the speed of the shock driven by the PWN into surrounding ejecta (by inferring the cooling rates behind the shock), and the morphology and ionizational structure of the Rayleigh-Taylor (R-T) fingers. We quantify a number of asymmetries between the northwest (NW)more » and southeast (SE) quadrants of the Crab Nebula. The lack of observed filaments in the NW, and our observations of the spatial extent of [O III] emission lead us to conclude that cooling rates are slower, and therefore the shock speeds are greater, in the NW quadrant of the nebula, compared with the SE. We conclude that R-T fingers are longer, more ionizationally stratified, and apparently more massive in the NW than in the SE, and the R-T instability appears more fully developed in the NW.« less

  3. Application of cosmic-ray shock theories to the Cygnus Loop - an alternative model

    NASA Astrophysics Data System (ADS)

    Boulares, Ahmed; Cox, Donald P.

    1988-10-01

    Steady state cosmic-ray shock models are investigated in light of observations of the Cygnus Loop supernova remnant. In this work the authors find that the model of Völk, Drury, and McKenzie, in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of Cygnus Loop shocks. The waves heat the gas substantially in the cosmic-ray precursor, in addition to the usual heating in the (possibly weak) gas shock. The model is used to deduce upstream densities and shock velocities using known quantities for Cygnus Loop shocks. Compared to the usual pure gas shock interpretation, it is found that lower densities and approximately 3 times higher velocities are required. If the cosmic-ray models are valid, this could significantly alter our understanding of the Cygnus Loop's distance and age and of the energy released during the initial explosion.

  4. Parametric instabilities of the circularly polarized Alfven waves including dispersion. [for solar wind

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1986-01-01

    A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.

  5. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...

    2015-08-27

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  6. Stable quasi-monoenergetic ion acceleration from the laser-driven shocks in a collisional plasma

    NASA Astrophysics Data System (ADS)

    Bhadoria, Shikha; Kumar, Naveen; Keitel, Christoph H.

    2017-10-01

    Effect of collisions on the shock formation and subsequent ion acceleration from the laser-plasma interaction is explored by the means of particle-in-cell simulations. In this setup, the incident laser pushes the laser-plasma interface inside the plasma target through the hole-boring effect and generates hot electrons. The propagation of these hot electrons inside the target excites a return plasma current, leading to filamentary structures caused by the Weibel/filamentation instability. Weakening of the space-charge effects due to collisions results in the shock formation with a higher density jump than in a collisionless plasma. This results in the formation of a stronger shock leading to a stable quasi-monoenergetic acceleration of ions.

  7. Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan

    2014-06-01

    The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.

  8. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    NASA Astrophysics Data System (ADS)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  9. Observations of subsonic and supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.

    2009-11-01

    Shear layers containing strong velocity gradients appear in many high-energy-density (HED) systems and play important roles in mixing and the transition to turbulence. Yet few laboratory experiments have been carried out to study their detailed evolution in this extreme environment where plasmas are compressible, actively ionizing, often involve strong shock waves and have complex material properties. Many shear flows produce the Kelvin-Helmholtz (KH) instability, which initiates the mixing at a fluid interface. We present results from two dedicated shear flow experiments that produced overall subsonic and supersonic flows using novel target designs. In the subsonic case, the Omega laser was used to drive a blast wave along a rippled interface between plastic and foam, shocking both the materials to produce two fluids separated by a sharp shear layer. The interface subsequently rolled-upped into large KH vortices that were accompanied by bubble-like structures of unknown origin. This was the first time the evolution of a well-resolved KH instability was observed in a HED plasma in the laboratory. We have analyzed the properties and dynamics of the plasma based on the data and fundamental models, without resorting to simulated values. In the second, supersonic experiment the Nike laser was used to drive a supersonic flow of Al plasma along a rippled, low-density foam surface. Here again the flowing plasma drove a shock into the second material, so that two fluids were separated by a shear layer. In contrast to the subsonic case, the flow developed shocks around the ripples in response to the supersonic flow of Al. Collaborators: R.P. Drake, O.A. Hurricane, J.F. Hansen, Y. Aglitskiy, T. Plewa, B.A. Remington, H.F. Robey, J.L. Weaver, A.L. Velikovich, R.S. Gillespie, M.J. Bono, M.J. Grosskopf, C.C. Kuranz, A. Visco.

  10. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-05-01

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  11. Investigation of hypersonic shock-induced combustion in a hydrogen-air system

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, S. N.; Singh, D. J.

    1992-01-01

    A numerical study is conducted to simulate the ballistic range experiments at Mach 5.11 and 6.46. The flow field is found to be unsteady with periodic instabilities originating in the stagnation zone. The unsteadiness of the flow field decreased with increase in the Mach number, thus indicating that it is possible to stabilize such flow fields with a high degree of overdrive. The frequency of periodic instability is determined using Fourier power spectrum and is found to be in good agreement with the experimental data. The physics of the instability is explained by the wave interaction models available in the literature.

  12. A scheme for reducing deceleration-phase Rayleigh–Taylor growth in inertial confinement fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F., E-mail: wang-lifeng@iapcm.ac.cn; Ye, W. H.; Liu, Jie

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh–Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  13. Rayleigh-Taylor instability experiments in cryogenic deuterium

    NASA Astrophysics Data System (ADS)

    Hansen, J. F.; Smalyuk, V. A.

    2005-10-01

    We report on experiments under way at the Omega laser, using cryogenic deuterium to study Rayleigh-Taylor instabilities in laser targets. These instabilities are important in astrophysical situations (e.g., mixing of the different shells during a supernova explosion) and in inertial fusion (during the compression stage of a fusion target). They can be studied in small (˜1 mm) shock tubes filled with one heavy and one light material, with an interface between the two materials that is machined to seed the instability. A high-energy laser (˜5 kJ) drives a shock from the heavy to the light material. The evolution of the interface is studied using gated x-ray cameras, where x-ray illumination is obtained from additional laser beams focused on metal backlighter foils. Traditionally the heavy material is CH (1 g/cm^3) doped with I or Br for improved contrast, while the light material is a low-density (˜0.1 g/cm^3) C foam. The goal of the current experiments is to determine if contrast can be improved even further by replacing the foam with cryogenic deuterium, which has a density similar to the foam, but a lower x-ray opacity allowing clearer images, including images taken at late times in the evolution. Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

  14. Traumatic hemorrhage of occult phaeochromocytoma in a patient with septic shock

    PubMed Central

    Moazzam, Mohammad Shahnawaz; Ahmed, Syed Moied; Bano, Shahjahan

    2010-01-01

    Phaeochromocytoma can have a variety of presentations; however, traumatic hemorrhage into a phaeochromocytoma is a very rare presentation. Diagnosing and managing a critically ill, septic patient with a Phaeochromocytoma can be very challenging. We report a case of 53 years old man with a previously undiagnosed Phaeochromocytoma, who presented initially with bowel perforation following an assault. Following a laparotomy for bowel resection and anastomosis, whilst on the intensive care unit, he developed paroxysmal severe hypertension overlying septic shock. Phaeochromocytoma was confirmed using a computed tomography scan and urinary assay of metanephrine and catecholamines. We managed the haemodynamic instability using labetalol and noradrenaline infusions. As his septic state improved he was convention therapy and following control of his symptoms over the next few weeks, he underwent an uncomplicated right sided adrenalectomy. He made a full recovery. PMID:20930983

  15. Subsonic and Supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Kuranz, C. C.; Visco, A.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Hurricane, O. A.; Hansen, J. F.; Remington, B. A.; Robey, H. F.; Bono, M. J.; Plewa, T.

    2009-05-01

    Shear flows arise in many high-energy-density (HED) and astrophysical systems, yet few laboratory experiments have been carried out to study their evolution in these extreme environments. Fundamentally, shear flows can initiate mixing via the Kelvin-Helmholtz (KH) instability and may eventually drive a transition to turbulence. We present two dedicated shear flow experiments that created subsonic and supersonic shear layers in HED plasmas. In the subsonic case the Omega laser was used to drive a shock wave along a rippled plastic interface, which subsequently rolled-upped into large KH vortices. In the supersonic shear experiment the Nike laser was used to drive Al plasma across a low-density foam surface also seeded with a ripple. Unlike the subsonic case, detached shocks developed around the ripples in response to the supersonic Al flow.

  16. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.

  17. THREE-DIMENSIONAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE BEHIND RELATIVISTIC SHOCK WAVES AND THEIR IMPLICATIONS FOR GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Tsuyoshi; Asano, Katsuaki; Ioka, Kunihito, E-mail: inouety@phys.aoyama.ac.jp

    2011-06-20

    Relativistic astrophysical phenomena such as gamma-ray bursts (GRBs) and active galactic nuclei often require long-lived strong magnetic fields that cannot be achieved by shock compression alone. Here, we report on three-dimensional special-relativistic magnetohydrodynamic (MHD) simulations that we performed using a second-order Godunov-type conservative code to explore the amplification and decay of macroscopic turbulence dynamo excited by the so-called Richtmyer-Meshkov instability (RMI; a Rayleigh-Taylor-type instability). This instability is an inevitable outcome of interactions between shock and ambient density fluctuations. We find that the magnetic energy grows exponentially in a few eddy-turnover times because of field-line stretching and then, following the decaymore » of kinetic turbulence, decays with a temporal power-law exponent of -0.7. The magnetic energy fraction can reach {epsilon}{sub B} {approx} 0.1 but depends on the initial magnetic field strength, which can diversify the observed phenomena. We find that the magnetic energy grows by at least two orders of magnitude compared to the magnetic energy immediately behind the shock, provided the kinetic energy of turbulence injected by the RMI is greater than the magnetic energy. This minimum degree of amplification does not depend on the amplitude of the initial density fluctuations, while the growth timescale and the maximum magnetic energy depend on the degree of inhomogeneity in the density. The transition from Kolmogorov cascade to MHD critical balance cascade occurs at {approx}1/10th the initial inhomogeneity scale, which limits the maximum synchrotron polarization to less than {approx}2%. We derive analytical formulas for these numerical results and apply them to GRBs. New results include the avoidance of electron cooling with RMI turbulence, the turbulent photosphere model via RMI, and the shallow decay of the early afterglow from RMI. We also perform a simulation of freely decaying turbulence with relativistic velocity dispersion. We find that relativistic turbulence begins to decay much more quickly than one eddy-turnover time because of rapid shock dissipation, which does not support the relativistic turbulence model by Narayan and Kumar.« less

  18. On the maximum energy achievable in the first order Fermi acceleration at shocks

    NASA Astrophysics Data System (ADS)

    Grozny, I.; Diamond, P.; Malkov, M.

    2002-11-01

    Astrophysical shocks are considered as the sites of cosmic ray (CR) production. The primary mechanism is the diffusive shock (Fermi) acceleration which operates via multiple shock recrossing by a particle. Its efficiency, the rate of energy gain, and the maximum energy are thus determined by the transport mechanisms (confinement to the shock) of these particles in a turbulent shock environment. The turbulence is believed to be generated by accelerated particles themselves. Moreover, in the most interesting case of efficient acceleration the entire MHD shock structure is dominated by their pressure. This makes this problem one of the challenging strongly nonlinear problems of astrophysics. We suggest a physical model that describes particle acceleration, shock structure and the CR driven turbulence on an equal footing. The key new element in this scheme is nonlinear cascading of the MHD turbulence on self-excited (via modulational and Drury instability) sound-like perturbations which gives rise to a significant enrichment of the long wave part of the MHD spectrum. This is critical for the calculation of the maximum energy.

  19. The Progenitor Dependence of Core-collapse Supernovae from Three-dimensional Simulations with Progenitor Models of 12–40 M ⊙

    NASA Astrophysics Data System (ADS)

    Ott, Christian D.; Roberts, Luke F.; da Silva Schneider, André; Fedrow, Joseph M.; Haas, Roland; Schnetter, Erik

    2018-03-01

    We present a first study of the progenitor star dependence of the three-dimensional (3D) neutrino mechanism of core-collapse supernovae. We employ full 3D general-relativistic multi-group neutrino radiation-hydrodynamics and simulate the postbounce evolutions of progenitors with zero-age main sequence masses of 12, 15, 20, 27, and 40 M ⊙. All progenitors, with the exception of the 12 M ⊙ star, experience shock runaway by the end of their simulations. In most cases, a strongly asymmetric explosion will result. We find three qualitatively distinct evolutions that suggest a complex dependence of explosion dynamics on progenitor density structure, neutrino heating, and 3D flow. (1) Progenitors with massive cores, shallow density profiles, and high post-core-bounce accretion rates experience very strong neutrino heating and neutrino-driven turbulent convection, leading to early shock runaway. Accretion continues at a high rate, likely leading to black hole formation. (2) Intermediate progenitors experience neutrino-driven, turbulence-aided explosions triggered by the arrival of density discontinuities at the shock. These occur typically at the silicon/silicon–oxygen shell boundary. (3) Progenitors with small cores and density profiles without strong discontinuities experience shock recession and develop the 3D standing-accretion shock instability (SASI). Shock runaway ensues late, once declining accretion rate, SASI, and neutrino-driven convection create favorable conditions. These differences in explosion times and dynamics result in a non-monotonic relationship between progenitor and compact remnant mass.

  20. Influence of the backreaction of streaming cosmic rays on magnetic field generation and thermal instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Anatoly K.; Shadmehri, Mohsen, E-mail: anekrasov@ifz.ru, E-mail: nekrasov.anatoly@gmail.com, E-mail: m.shadmehri@gu.ac.ir

    2014-06-10

    Using a multifluid approach, we investigate streaming and thermal instabilities of the electron-ion plasma with homogeneous cold cosmic rays propagating perpendicular to the background magnetic field. Perturbations are also considered to be across the magnetic field. The backreaction of cosmic rays resulting in strong streaming instabilities is taken into account. It is shown that, for sufficiently short wavelength perturbations, the growth rates can exceed the growth rate of cosmic-ray streaming instability along the magnetic field, found by Nekrasov and Shadmehri, which is in turn considerably larger than the growth rate of the Bell instability. The thermal instability is shown notmore » to be subject to the action of cosmic rays in the model under consideration. The dispersion relation for the thermal instability has been derived, which includes sound velocities of plasma and cosmic rays and Alfvén and cosmic-ray streaming velocities. The relation between these parameters determines the kind of thermal instability ranging from the Parker to the Field instabilities. The results obtained can be useful for a more detailed investigation of electron-ion astrophysical objects, such as supernova remnant shocks, galaxy clusters, and others, including the dynamics of streaming cosmic rays.« less

  1. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-07-01

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and a critical Mach number Mscritical of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mscritical . Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. We point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.

  2. Generation of waves in the Venus mantle by the ion acoustic beam instability

    NASA Technical Reports Server (NTRS)

    Huba, J. D.

    1993-01-01

    The ion acoustic beam instability is suggested as a mechanism to produce wave turbulence observed in the Venus mantle at frequencies 100 Hz and 730 Hz. The plasma is assumed to consist of a stationary cold O(+) ion plasma and a flowing, shocked solar wind plasma. The O(+) ions appear as a beam relative to the flowing ionosheath plasma which provides the free energy to drive the instability. The plasma is driven unstable by inverse electron Landau damping of an ion acoustic wave associated with the cold ionospheric O(+) ions. The instability can directly generate the observed 100 Hz waves in the Venus mantle as well as the observed 730 Hz waves through the Doppler shift of the frequency caused by the satellite motion.

  3. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube

    NASA Astrophysics Data System (ADS)

    Zhou, Guangzhao; Xu, Kun; Liu, Feng

    2018-01-01

    The flow in a shock tube is extremely complex with dynamic multi-scale structures of sharp fronts, flow separation, and vortices due to the interaction of the shock wave, the contact surface, and the boundary layer over the side wall of the tube. Prediction and understanding of the complex fluid dynamics are of theoretical and practical importance. It is also an extremely challenging problem for numerical simulation, especially at relatively high Reynolds numbers. Daru and Tenaud ["Evaluation of TVD high resolution schemes for unsteady viscous shocked flows," Comput. Fluids 30, 89-113 (2001)] proposed a two-dimensional model problem as a numerical test case for high-resolution schemes to simulate the flow field in a square closed shock tube. Though many researchers attempted this problem using a variety of computational methods, there is not yet an agreed-upon grid-converged solution of the problem at the Reynolds number of 1000. This paper presents a rigorous grid-convergence study and the resulting grid-converged solutions for this problem by using a newly developed, efficient, and high-order gas-kinetic scheme. Critical data extracted from the converged solutions are documented as benchmark data. The complex fluid dynamics of the flow at Re = 1000 are discussed and analyzed in detail. Major phenomena revealed by the numerical computations include the downward concentration of the fluid through the curved shock, the formation of the vortices, the mechanism of the shock wave bifurcation, the structure of the jet along the bottom wall, and the Kelvin-Helmholtz instability near the contact surface. Presentation and analysis of those flow processes provide important physical insight into the complex flow physics occurring in a shock tube.

  4. Multidimensional simulations of core-collapse supernovae with CHIMERA

    NASA Astrophysics Data System (ADS)

    Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.

    2014-01-01

    Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.

  5. Particle acceleration and turbulence in cosmic Ray shocks: possible pathways beyond the Bohm limit

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Diamond, P. H.

    2007-08-01

    Diffusive shock acceleration is discussed in terms of its potential to accelerate cosmic rays (CR) to 1018 eV (beyond the ``knee,'' as observations suggest) and in terms of the related observational signatures (spectral features). One idea to reach this energy is to resonantly generate a turbulent magnetic field via accelerated particles much in excess of the background field. We identify difficulties with this scenario and suggest two separate mechanisms that can work in concert with one another leading to a significant acceleration enhancement. The first mechanism is based on a nonlinear modification of the flow ahead of the shock supported by particles already accelerated to some specific (knee) momentum. The particles gain energy by bouncing off converging magnetic irregularities frozen into the flow in the shock precursor and not so much by re-crossing the shock itself. The acceleration rate is determined by the gradient of the flow velocity and turns out to be formally independent of the particle mean free path. The velocity gradient is set by the knee-particles. The acceleration rate of particles above the knee does not decrease with energy, unlike in the linear acceleration regime. The knee (spectrum steepening) forms because particles above it are effectively confined to the shock only if they are within limited domains in the momentum space, while other particles fall into ``loss-islands'', similar to the ``loss-cone'' of magnetic traps. This also maintains the steep velocity gradient and high acceleration rate. The second mechanism is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves.

  6. Investigation and suppression of high dynamic response encountered on an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Adams, William M., Jr.; Eckstrom, Clinton V.; Sandford, Maynard C.

    1989-01-01

    The DAST Aeroelastic Research Wing had been previously in the NASA Langley TDT and an unusual instability boundary was predicted based upon supercritical response data. Contrary to the predictions, no instability was found during the present test. Instead a region of high dynamic wing response was observed which reached a maximum value between Mach numbers 0.92 and 0.93. The amplitude of the dynamic response increased directly with dynamic pressure. The reponse appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on the upper and lower wing surfaces. The onset of flow separation coincided with the occurrence of strong shocks on a surface. A controller was designed to suppress the wing response. The control law attenuated the response as compared with the uncontrolled case and added a small but significant amount of damping for the lower density condition.

  7. An Experimental Investigation of Incompressible Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Jacobs, J. W.; Niederhaus, C. E.

    2002-01-01

    Richtmyer-Meshkov (RM) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and eventually become a turbulent flow. It is closely related to Rayleigh-Taylor instability, which is the instability of a planar interface undergoing constant acceleration, such as caused by the suspension of a heavy fluid over a lighter one in the earth's gravitational field. Like the well-known Kelvin-Helmholtz instability, RM instability is a fundamental hydrodynamic instability which exhibits many of the nonlinear complexities that transform simple initial conditions into a complex turbulent flow. Furthermore, the simplicity of RM instability (in that it requires very few defining parameters), and the fact that it can be generated in a closed container, makes it an excellent test bed to study nonlinear stability theory as well as turbulent transport in a heterogeneous system. However, the fact that RM instability involves fluids of unequal densities which experience negligible gravitational force, except during the impulsive acceleration, requires RM instability experiments to be carried out under conditions of microgravity. This experimental study investigates the instability of an interface between incompressible, miscible liquids with an initial sinusoidal perturbation. The impulsive acceleration is generated by bouncing a rectangular tank containing two different density liquids off a retractable vertical spring. The initial perturbation is produced prior to release by oscillating the tank in the horizontal direction to produce a standing wave. The instability evolves in microgravity as the tank travels up and then down the vertical rails of a drop tower until hitting a shock absorber at the bottom. Planar Laser Induced Fluorescence (PLIF) is employed to visualize the flow. PLIF images are captured by a video camera that travels with the tank. Figure 1 is as sequence of images showing the development of the instability from the initial sinusoidal disturbance far into the nonlinear regime which is characterized by the appearance of mushroom structures resulting from the coalescence of baroclinic vorticity produced by the impulsive acceleration. At later times in this sequence the vortex cores are observed to become unstable showing the beginnings of the transition to turbulence in this flow. The amplitude of the growing disturbance after the impulsive acceleration is measured and found to agree well with theoretical predictions. The effects of Reynolds number (based on circulation) on the development of the vortices and the transition to turbulence are also determined.

  8. The optical emission from oscillating white dwarf radiative shock waves

    NASA Technical Reports Server (NTRS)

    Imamura, James N.; Rashed, Hussain; Wolff, Michael T.

    1991-01-01

    The hypothesis that quasi-periodic oscillations (QPOs) are due to the oscillatory instability of radiative shock waves discovered by Langer et al. (1981, 1092) is examined. The time-dependent optical spectra of oscillating radiative shocks produced by flows onto magnetic white dwarfs are calculated. The results are compared with the observations of the AM Her QPO sources V834 Cen, AN UMa, EF Eri, and VV Pup. It is found that the shock oscillation model has difficulties with aspects of the observations for each of the sources. For VV Pup, AN UMa, and V834 Cen, the cyclotron luminosities for the observed magnetic fields of these systems, based on our calculations, are large. The strong cyclotron emission probably stabilizes the shock oscillations. For EF Eri, the mass of the white dwarf based on hard X-ray observations is greater than 0.6 solar mass.

  9. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  10. Application of cosmic-ray shock theories to the Cygnus Loop - An alternative model

    NASA Technical Reports Server (NTRS)

    Boulares, Ahmed; Cox, Donald P.

    1988-01-01

    Steady state cosmic-ray shock models are investigated here in the light of observations of the Cygnus Loop supernova remnant. The predicted downstream temperature is derived for each model. The Cygnus Loop data and the application of the models to them, including wave dissipation, are presented. Heating rate and ionization fraction structures are provided along with an estimate of the cosmic-ray diffusion coefficient. It is found that the model of Voelk, Drury, and McKenzie (1984), in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of the Cygnus Loop shocks. The model is used to deduce upstream densities and shock velocities and, compared to the usual pure gas shock interpretation, it is found that lower densities and approximately three times higher velocities are required.

  11. Strength and viscosity effects on perturbed shock front stability in metals

    DOE PAGES

    Opie, Saul; Loomis, Eric Nicholas; Peralta, Pedro; ...

    2017-05-09

    Here, computational modeling and experimental measurements on metal samples subject to a laser-driven, ablative Richtmyer-Meshkov instability showed differences between viscosity and strength effects. In particular, numerical and analytical solutions, coupled with measurements of fed-through perturbations, generated by perturbed shock fronts onto initially flat surfaces, show promise as a validation method for models of deviatoric response in the post shocked material. Analysis shows that measurements of shock perturbation amplitudes at low sample thickness-to-wavelength ratios are not enough to differentiate between strength and viscosity effects, but that surface displacement data of the fed-through fed-thru perturbations appears to resolve the ambiguity. Additionally, analyticalmore » and numerical results show shock front perturbation evolution dependence on initial perturbation amplitude and wavelength is significantly different in viscous and materials with strength, suggesting simple experimental geometry changes should provide data supporting one model or the other.« less

  12. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Wenhu; Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084; Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale.more » Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.« less

  13. Life Shocks and Homelessness

    PubMed Central

    Corman, Hope; Noonan, Kelly; Reichman, Nancy E.

    2014-01-01

    We exploited an exogenous health shock—namely, the birth of a child with a severe health condition—to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide. PMID:23868747

  14. Predicted and experimental steady and unsteady transonic flows about a biconvex airfoil

    NASA Technical Reports Server (NTRS)

    Levy, L. L., Jr.

    1981-01-01

    Results of computer code time dependent solutions of the two dimensional compressible Navier-Stokes equations and the results of independent experiments are compared to verify the Mach number range for instabilities in the transonic flow field about a 14 percent thick biconvex airfoil at an angle of attack of 0 deg and a Reynolds number of 7 million. The experiments were conducted in a transonic, slotted wall wind tunnel. The computer code included an algebraic eddy viscosity turbulence model developed for steady flows, and all computations were made using free flight boundary conditions. All of the features documented experimentally for both steady and unsteady flows were predicted qualitatively; even with the above simplifications, the predictions were, on the whole, in good quantitative agreement with experiment. In particular, predicted time histories of shock wave position, surface pressures, lift, and pitching moment were found to be in very good agreement with experiment for an unsteady flow. Depending upon the free stream Mach number for steady flows, the surface pressure downstream of the shock wave or the shock wave location was not well predicted.

  15. Numerical Investigation of Double-Cone Flows with High Enthalpy Effects

    NASA Astrophysics Data System (ADS)

    Nompelis, I.; Candler, G. V.

    2009-01-01

    A numerical study of shock/shock and shock/boundary layer interactions generated by a double-cone model that is placed in a hypersonic free-stream is presented. Computational results are compared with the experimental measurements made at the CUBRC LENS facility for nitrogen flows at high enthalpy conditions. The CFD predictions agree well with surface pressure and heat-flux measurements for all but one of the double-cone cases that have been studied by the authors. Unsteadiness is observed in computations of one of the LENS cases, however for this case the experimental measurements show that the flowfield is steady. To understand this discrepancy, several double-cone experiments performed in two different facilities with both air and nitrogen as the working gas are examined in the present study. Computational results agree well with measurements made in both the AEDC tunnel 9 and the CUBRC LENS facility for double-cone flows at low free-stream Reynolds numbers where the flow is steady. It is shown that at higher free- stream pressures the double-cone simulations develop instabilities that result in an unsteady separation.

  16. Exploring Richtmyer-Meshkov instability phenomena and ejecta cloud physics

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Buttler, W. T.

    2008-09-01

    This effort investigates ejecta cloud expansion from a shocked Sn target propagating into vacuum. To assess the expansion, dynamic ejecta cloud density distributions were measured via piezoelectric pin diagnostics offset at three heights from the target free surface. The dynamic distributions were first converted into static distributions, similar to a radiograph, and then self compared. The cloud evolved self-similarly at the distances and times measured, inferring that the amount of mass imparted to the instability, detected as ejecta, either ceased or approached an asymptotic limit.

  17. Optical diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.

  18. Expansion of a radially symmetric blast shell into a uniformly magnetized plasma

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Moreno, Q.; Doria, D.; Romagnani, L.; Sarri, G.; Folini, D.; Walder, R.; Bret, A.; d'Humières, E.; Borghesi, M.

    2018-05-01

    The expansion of a thermal pressure-driven radial blast shell into a dilute ambient plasma is examined with two-dimensional PIC simulations. The purpose is to determine if laminar shocks form in a collisionless plasma which resemble their magnetohydrodynamic counterparts. The ambient plasma is composed of electrons with the temperature of 2 keV and cool fully ionized nitrogen ions. It is permeated by a spatially uniform magnetic field. A forward shock forms between the shocked ambient medium and the pristine ambient medium, which changes from an ion acoustic one through a slow magnetosonic one to a fast magnetosonic shock with increasing shock propagation angles relative to the magnetic field. The slow magnetosonic shock that propagates obliquely to the magnetic field changes into a tangential discontinuity for a perpendicular propagation direction, which is in line with the magnetohydrodynamic model. The expulsion of the magnetic field by the expanding blast shell triggers an electron-cyclotron drift instability.

  19. Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions

    NASA Technical Reports Server (NTRS)

    Sandham, N. D.; Yee, H. C.

    1998-01-01

    Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost.

  20. Development of Jet Noise Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2011-01-01

    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single streams, efforts are underway to generate a data bank and algorithm applicable to dual-stream jets. Shock-associated noise in high-powered jets such as military aircraft can benefit from these predictions.

  1. Coronal plasma development in wire-array z-pinches made of twisted-pairs

    NASA Astrophysics Data System (ADS)

    Hoyt, C. L.; Greenly, J. B.; Gourdain, P. A.; Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2009-11-01

    We have investigated coronal and core plasma development in wire array z-pinches in which single fine wires are replaced by twisted-pairs (``cable'') on the 1 MA, 100 ns rise time COBRA pulsed power generator. X-ray radiography, employed to investigate dense wire core expansion, showed periodic axial nonuniformity and evidence for shock waves developing where the individual wire plasmas collide. Laser shadowgraphy images indicated that the axial instability properties of the coronal plasma are substantially modified from ordinary wire arrays. Cable mass per unit length, material and the twist wavelength were varied in order to study their effects upon the instability wavelength. Implosion uniformity and bright-spot formation, as well as magnetic topology evolution, have also been investigated using self-emission imaging, x-ray diagnostics and small B-dot probes, respectively. Results from the cable-array z-pinches will be compared with results from ordinary wire-array z-pinches. This research was supported by the SSAA program of the National Nuclear Security Administration under DOE Cooperative agreement DE-FC03-02NA00057.

  2. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  3. Modeling magnetic field amplification in nonlinear diffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Vladimirov, Andrey

    2009-02-01

    This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.

    This report describes an extensive program of investigations conducted at Arzamas-16 in Russia over the past several decades. The focus of the work is on material interface instability and the mixing of two materials. Part 1 of the report discusses analytical and computational studies of hydrodynamic instabilities and turbulent mixing. The EGAK codes are described and results are illustrated for several types of unstable flow. Semiempirical turbulence transport equations are derived for the mixing of two materials, and their capabilities are illustrated for several examples. Part 2 discusses the experimental studies that have been performed to investigate instabilities and turbulentmore » mixing. Shock-tube and jelly techniques are described in considerable detail. Results are presented for many circumstances and configurations.« less

  5. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1990-01-01

    A collection of papers is presented. The outline of this report is as follows. Chapter three contains a description of a weakly nonlinear turbulence model that was developed. An essential part of the application of such a closure scheme to general geometry jets is the solution of the local hydrodynamic stability equation for a given jet cross-section. Chapter four describes the conformal mapping schemes used to map such geometries onto a simple computational domain. Chapter five describes a solution of a stability problem for circular, elliptic, and rectangular geometries. In chapter six linear models for the shock shell structure in non-circular jets is given. The appendices contain reprints of papers also published during this study including the following topics: (1) instability of elliptic jets; (2) a technique for predicting the shock cell structure in non-circular jets using a vortex sheet model; and (3) the resonant interaction between twin supersonic jets.

  6. Convective instabilities in SN 1987A

    NASA Technical Reports Server (NTRS)

    Benz, Willy; Thielemann, Friedrich-Karl

    1990-01-01

    Following Bandiera (1984), it is shown that the relevant criterion to determine the stability of a blast wave, propagating through the layers of a massive star in a supernova explosion, is the Schwarzschild (or Ledoux) criterion rather than the Rayleigh-Taylor criterion. Both criteria coincide only in the incompressible limit. Results of a linear stability analysis are presented for a one-dimensional (spherical) explosion in a realistic model for the progenitor of SN 1987A. When applying the Schwarzschild criterion, unstable regions get extended considerably. Convection is found to develop behind the shock, with a characteristic growth rate corresponding to a time scale much smaller than the shock traversal time. This ensures that efficient mixing will take place. Since the entire ejected mass is found to be convectively unstable, Ni can be transported outward, even into the hydrogen envelope, while hydrogen can be mixed deep into the helium core.

  7. Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjiva Lele

    2012-10-01

    The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNSmore » databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.« less

  8. Linear and nonlinear properties of the ULF waves driven by ring-beam distribution functions

    NASA Technical Reports Server (NTRS)

    Killen, K.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    The problem of the exitation of obliquely propagating magnetosonic waves which can steepen up (also known as shocklets) is considered. Shocklets have been observed upstream of the Earth's bow shock and at comets Giacobini-Zinner and Grigg-Skjellerup. Linear theory as well as two-dimensional (2-D) hybrid (fluid electrons, particle ions) simulations are used to determine the properties of waves generated by ring-beam velocity distributions in great detail. The effects of both proton and oxygen ring-beams are considered. The study of instabilities excited by a proton ring-beam is relevant to the region upstream of the Earth's bow shock, whereas the oxygen ring-beam corresponds to cometary ions picked up by the solar wind. Linear theory has shown that for a ring-beam, four instabilities are found, one on the nonresonant mode, one on the Alfven mode, and two along the magnetosonic/whistler branch. The relative growth rate of these instabilities is a sensitive function of parameters. Although one of the magnetosonic instabilities has maximum growth along the magnetic field, the other has maximum growth in oblique directions. We have studied the competition of these instabilities in the nonlinear regime using 2-D simulations. As in the linear limit, the nonlinear results are a function of beam density and distribution function. By performing the simulations as both initial value and driven systems, we have found that the outcome of the simulations can vary, suggesting that the latter type simulations is needed to address the observations. A general conclusion of the simulation results is that field-aligned beams do not result in the formation of shocklets, whereas ring-beam distributions can.

  9. Relative adrenal insufficiency in severe congestive heart failure with preserved systolic function: a case report.

    PubMed

    Lovelock, Joshua D; Coslet, Sandra; Johnson, Marie; Rich, Stuart; Gomberg-Maitland, Mardi

    2007-09-01

    Relative adrenal insufficiency in critically ill patients is an important syndrome in septic shock. The insufficient stress response of the hypothalamic-pituitary-adrenal axis in acute illness contributes to hemodynamic instability. Treatment of this state in septic shock improves patient outcomes. In this report, we describe the case of a patient with severe diastolic dysfunction who presented in cardiogenic shock associated with relative adrenal insufficiency and had a complete recovery with corticosteroid replacement. Alteration of the hypothalamic-pituitary-adrenal axis may be more prevalent than suspected in end-stage heart failure, and the diagnosis and treatment of this syndrome may ultimately improve outcomes in a subgroup of heart failure patients.

  10. Instability of a planar expansion wave.

    PubMed

    Velikovich, A L; Zalesak, S T; Metzler, N; Wouchuk, J G

    2005-10-01

    An expansion wave is produced when an incident shock wave interacts with a surface separating a fluid from a vacuum. Such an interaction starts the feedout process that transfers perturbations from the rippled inner (rear) to the outer (front) surface of a target in inertial confinement fusion. Being essentially a standing sonic wave superimposed on a centered expansion wave, a rippled expansion wave in an ideal gas, like a rippled shock wave, typically produces decaying oscillations of all fluid variables. Its behavior, however, is different at large and small values of the adiabatic exponent gamma. At gamma > 3, the mass modulation amplitude delta(m) in a rippled expansion wave exhibits a power-law growth with time alpha(t)beta, where beta = (gamma - 3)/(gamma - 1). This is the only example of a hydrodynamic instability whose law of growth, dependent on the equation of state, is expressed in a closed analytical form. The growth is shown to be driven by a physical mechanism similar to that of a classical Richtmyer-Meshkov instability. In the opposite extreme gamma - 1 < 1, delta(m) exhibits oscillatory growth, approximately linear with time, until it reaches its peak value approximately (gamma - 1)(-1/2), and then starts to decrease. The mechanism driving the growth is the same as that of Vishniac's instability of a blast wave in a gas with low . Exact analytical expressions for the growth rates are derived for both cases and favorably compared to hydrodynamic simulation results.

  11. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability

    DOE PAGES

    Mikaelian, Karnig O.

    2016-07-13

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio R critical, in terms of the adiabatic indices of the two fluids, andmore » a critical Mach number M critical s of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than R critical then a standing shock wave is possible at M s=M critical s. Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. Furthermore, we point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.« less

  12. A New Gravitational-wave Signature from Standing Accretion Shock Instability in Supernovae

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2016-09-01

    We present results from fully relativistic three-dimensional core-collapse supernova simulations of a non-rotating 15{M}⊙ star using three different nuclear equations of state (EoSs). From our simulations covering up to ˜350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ˜100 to 200 Hz and persists for ˜150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we show that the SASI frequency is correlated with the GW frequency. This is because the SASI-induced temporary perturbed mass accretion strikes the PNS surface, leading to the quasi-periodic GW emission. Our results show that the GW signal, which could be a smoking-gun signature of the SASI, is within the detection limits of LIGO, advanced Virgo, and KAGRA for Galactic events.

  13. Richtmyer-Meshkov instability of a sinusoidal interface driven by a cylindrical shock

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ding, J.; Zhai, Z.; Luo, X.

    2018-04-01

    Evolution of a single-mode interface triggered by a cylindrically converging shock in a V-shaped geometry is investigated numerically using an adaptive multi-phase solver. Several physical mechanisms, including the Bell-Plesset (BP) effect, the Rayleigh-Taylor (RT) effect, the nonlinearity, and the compressibility are found to be pronounced in the converging environment. Generally, the BP and nonlinear effects play an important role at early stages, while the RT effect and the compressibility dominate the late-stage evolution. Four sinusoidal interfaces with different initial amplitudes (a_0 ) and wavelengths (λ ) are found to evolve differently in the converging geometry. For the very small a_0 /λ interfaces, nonlinearity is negligible at the early stages and the sole presence of the BP effect results in an increasing growth rate, confining the linear growth of the instability to a relatively small amount of time. For the moderately small a_0 /λ cases, the BP and nonlinear effects, which, respectively, promote and inhibit the perturbation development, coexist in the early stage. The counterbalancing effects between them produce a very long period of growth that is linear in time, even to a moment when the amplitude over wavelength ratio approaches 0.6. The RT stabilization effect at late stages due to the interface deceleration significantly inhibits the perturbation growth, which can be reasonably predicted by a modified Bell model.

  14. Simulations and experiments of ejecta generation in twice-shocked metals

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William; Hammerberg, James; Cherne, Frank; Andrews, Malcolm

    2016-11-01

    Using continuum hydrodynamics embedded in the FLASH code, we model ejecta generation in recent target experiments, where a metallic surface was loaded by two successive shock waves. The experimental data were obtained from a two-shockwave, high-explosive tool at Los Alamos National Laboratory, capable of generating ejecta from a shocked tin surface in to a vacuum. In both simulations and experiment, linear growth is observed following the first shock event, while the second shock strikes a finite-amplitude interface leading to nonlinear growth. The timing of the second incident shock was varied systematically in our simulations to realize a finite-amplitude re-initialization of the RM instability driving the ejecta. We find the shape of the interface at the event of second shock is critical in determining the amount of ejecta, and thus must be used as an initial condition to evaluate subsequent ejected mass using a source model. In particular, the agreement between simulations, experiments and the mass model is improved when shape effects associated with the interface at second shock are incorporated. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.

  15. Characterization for the performance of capacitive switches activated by mechanical shock.

    PubMed

    Younis, Mohammad I; Alsaleem, Fadi M; Miles, Ronald; Su, Quang

    2007-01-01

    This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required.

  16. Characterization for the performance of capacitive switches activated by mechanical shock

    PubMed Central

    Younis, Mohammad I.; Alsaleem, Fadi M; Miles, Ronald; Su, Quang

    2009-01-01

    This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required. PMID:21720493

  17. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Fernandez, Juan; Ma, Wenjun; Schreiber, Jorg; LANL Collaboration; LMU Team

    2016-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. Several spacecraft observations have revealed acceleration of charged particles, mostly electrons, to very high energies with in the shock front. There is now also clear observational evidence that supernova remnant shocks accelerate both protons and electrons. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick aluminum foil is used to image the laser-driven plasma.

  18. Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism

    NASA Astrophysics Data System (ADS)

    Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh

    2017-12-01

    Recent X-ray observations of merger shocks in galaxy clusters have shown that the postshock plasma has two temperatures, with the protons hotter than the electrons. By means of two-dimensional particle-in-cell simulations, we study the physics of electron irreversible heating in low-Mach-number perpendicular shocks, for a representative case with sonic Mach number of 3 and plasma beta of 16. We find that two basic ingredients are needed for electron entropy production: (1) an electron temperature anisotropy, induced by field amplification coupled to adiabatic invariance; and (2) a mechanism to break the electron adiabatic invariance itself. In shocks, field amplification occurs at two major sites: at the shock ramp, where density compression leads to an increase of the frozen-in field; and farther downstream, where the shock-driven proton temperature anisotropy generates strong proton cyclotron and mirror modes. The electron temperature anisotropy induced by field amplification exceeds the threshold of the electron whistler instability. The growth of whistler waves breaks the electron adiabatic invariance and allows for efficient entropy production. For our reference run, the postshock electron temperature exceeds the adiabatic expectation by ≃ 15 % , resulting in an electron-to-proton temperature ratio of ≃ 0.45. We find that the electron heating efficiency displays only a weak dependence on mass ratio (less than ≃ 30 % drop, as we increase the mass ratio from {m}i/{m}e=49 up to {m}i/{m}e=1600). We develop an analytical model of electron irreversible heating and show that it is in excellent agreement with our simulation results.

  19. The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel. I. Evidence of clumps, multiple arcs, and a linear bar-like structure

    NASA Astrophysics Data System (ADS)

    Decin, L.; Cox, N. L. J.; Royer, P.; Van Marle, A. J.; Vandenbussche, B.; Ladjal, D.; Kerschbaum, F.; Ottensamer, R.; Barlow, M. J.; Blommaert, J. A. D. L.; Gomez, H. L.; Groenewegen, M. A. T.; Lim, T.; Swinyard, B. M.; Waelkens, C.; Tielens, A. G. G. M.

    2012-12-01

    Context. The interaction between stellar winds and the interstellar medium (ISM) can create complex bow shocks. The photometers on board the Herschel Space Observatory are ideally suited to studying the morphologies of these bow shocks. Aims: We aim to study the circumstellar environment and wind-ISM interaction of the nearest red supergiant, Betelgeuse. Methods.Herschel PACS images at 70, 100, and 160 μm and SPIRE images at 250, 350, and 500 μm were obtained by scanning the region around Betelgeuse. These data were complemented with ultraviolet GALEX data, near-infrared WISE data, and radio 21 cm GALFA-HI data. The observational properties of the bow shock structure were deduced from the data and compared with hydrodynamical simulations. Results: The infrared Herschel images of the environment around Betelgeuse are spectacular, showing the occurrence of multiple arcs at ~6-7' from the central target and the presence of a linear bar at ~9'. Remarkably, no large-scale instabilities are seen in the outer arcs and linear bar. The dust temperature in the outer arcs varies between 40 and 140 K, with the linear bar having the same colour temperature as the arcs. The inner envelope shows clear evidence of a non-homogeneous clumpy structure (beyond 15''), probably related to the giant convection cells of the outer atmosphere. The non-homogeneous distribution of the material even persists until the collision with the ISM. A strong variation in brightness of the inner clumps at a radius of ~2' suggests a drastic change in mean gas and dust density ~32 000 yr ago. Using hydrodynamical simulations, we try to explain the observed morphology of the bow shock around Betelgeuse. Conclusions: Different hypotheses, based on observational and theoretical constraints, are formulated to explain the origin of the multiple arcs and the linear bar and the fact that no large-scale instabilities are visible in the bow shock region. We infer that the two main ingredients for explaining these phenomena are a non-homogeneous mass-loss process and the influence of the Galactic magnetic field. The hydrodynamical simulations show that a warm interstellar medium, reflecting a warm neutral or partially ionized medium, or a higher temperature in the shocked wind also prevent the growth of strong instabilities. The linear bar is probably an interstellar structure illuminated by Betelgeuse itself. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices (including movies) are available in electronic form at http://www.aanda.org

  20. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haocheng; Taylor, Greg; Li, Hui

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarizationmore » fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.« less

  1. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haocheng; Li, Hui; Guo, Fan

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. Here, in this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares withmore » polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. In addition, compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.« less

  2. Structure of the reconnection layer and the associated slow shocks: Two-dimensional simulations of a Riemann problem

    NASA Astrophysics Data System (ADS)

    Cremer, Michael; Scholer, Manfred

    2000-12-01

    The kinetic structure of the reconnection layer in the magnetotail is investigated by two-dimensional hybrid simulations. As a proxy, the solution of the Riemann problem of the collapse of a current sheet with a normal magnetic field component is considered for two cases of the plasma beta (particle to magnetic field pressure): β=0.02 and β=0.002. The collapse results in an expanding layer of compressed and heated plasma, which is accelerated up to the Alfvén speed vA. The boundary layer separating this hot reconnection like layer from the cold lobe plasma is characterized by a beam of back-streaming ions with a field-aligned bulk speed of ~=2vA relative to the cold lobe ion population at rest. As a consequence, obliquely propagating waves are excited via the electromagnetic ion/ion cyclotron instability, which led to perpendicular heating of the ions in the boundary layer as well as further outside the layer in the lobe. In both regions, waves are found which propagate almost parallel to the magnetic field and which are identified as Alfvén ion cyclotron (AIC) waves. These waves are excited by the temperature anisotropy instability. The temperature anisotropy increases with decreasing plasma beta. Thus the anisotropy threshold of the instability is exceeded even in the case of a rather small beta value. The AIC waves, when convected downstream of what can be defined as the the slow shock, make an important contribution to the ion thermalization process. More detailed information on the dissipation process in the slow shocks is gained by analyzing individual ion trajectories.

  3. Fully compressible solutions for early stage Richtmyer–Meshkov instability

    DOE PAGES

    Margolin, Len G.; Reisner, Jon Michael

    2016-10-27

    Here, we will consider the effects of compressibility and viscosity on the early dynamics of the Richtmyer–Meshkov instability (RMI). In particular, we will combine theory, scaling, and high resolution simulation of RMI to probe the details of the initial compression and the subsequent viscous damping as a shock interacts with a density discontinuity. We will propose a refinement of the classic 1D model for the linear regime of RMI that, for small initial perturbation wavelengths, more accurately reproduces the 2D dynamics of a fully resolved numerical simulation.

  4. Pulsar Wind Bubble Blowout from a Supernova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blondin, John M.; Chevalier, Roger A., E-mail: blondin@ncsu.edu

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell ismore » subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.« less

  5. Simulations of AGN jets: magnetic kink instability versus conical shocks

    NASA Astrophysics Data System (ADS)

    Barniol Duran, Rodolfo; Tchekhovskoy, Alexander; Giannios, Dimitrios

    2017-08-01

    Relativistic jets in active galactic nuclei (AGN) convert as much as half of their energy into radiation. To explore the poorly understood processes that are responsible for this conversion, we carry out fully 3D magnetohydrodynamic (MHD) simulations of relativistic magnetized jets. Unlike the standard approach of injecting the jets at large radii, our simulated jets self-consistently form at the source and propagate and accelerate outwards for several orders of magnitude in distance before they interact with the ambient medium. We find that this interaction can trigger strong energy dissipation of two kinds inside the jets, depending on the properties of the ambient medium. Those jets that form in a new outburst and drill a fresh hole through the ambient medium fall victim to a 3D magnetic kink instability and dissipate their energy primarily through magnetic reconnection in the current sheets formed by the instability. On the other hand, those jets that form during repeated cycles of AGN activity and escape through a pre-existing hole in the ambient medium maintain their stability and dissipate their energy primarily at MHD recollimation shocks. In both cases, the dissipation region can be associated with a change in the density profile of the ambient gas. The Bondi radius in AGN jets serves as such a location.

  6. Receptivity of Hypersonic Boundary Layers Due to Acoustic Disturbances over Blunt Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2007-01-01

    The transition process induced by the interaction of acoustic disturbances in the free-stream with boundary layers over a 5-degree straight cone and a wedge with blunt tips is numerically investigated at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves the Navier-Stokes equations are solved in axisymmetric coordinates. The governing equations are solved using the 5th -order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, acoustic disturbances are introduced at the outer boundary of the computational domain and unsteady simulations are performed. Generation and evolution of instability waves and the receptivity of boundary layer to slow and fast acoustic waves are investigated. The mean flow data are compared with the experimental results. The results show that the instability waves are generated near the leading edge and the non-parallel effects are stronger near the nose region for the flow over the cone than that over a wedge. It is also found that the boundary layer is much more receptive to slow acoustic wave (by almost a factor of 67) as compared to the fast wave.

  7. Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks

    NASA Astrophysics Data System (ADS)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke

    2018-05-01

    We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.

  8. Numerical Simulation of the Generation of Axisymmetric Mode Jet Screech Tones

    NASA Technical Reports Server (NTRS)

    Shen, Hao; Tam, Christopher K. W.

    1998-01-01

    An imperfectly expanded supersonic jet, invariably, radiates both broadband noise and discrete frequency sound called screech tones. Screech tones are known to be generated by a feedback loop driven by the large scale instability waves of the jet flow. Inside the jet plume is a quasi-periodic shock cell structure. The interaction of the instability waves and the shock cell structure, as the former propagates through the latter, is responsible for the generation of the tones. Presently, there are formulas that can predict the tone frequency fairly accurately. However, there is no known way to predict the screech tone intensity. In this work, the screech phenomenon of an axisymmetric jet at low supersonic Mach number is reproduced by numerical simulation. The computed mean velocity profiles and the shock cell pressure distribution of the jet are found to be in good agreement with experimental measurements. The same is true with the simulated screech frequency. Calculated screech tone intensity and directivity at selected jet Mach number are reported in this paper. The present results demonstrate that numerical simulation using computational aeroacoustics methods offers not only a reliable way to determine the screech tone intensity and directivity but also an opportunity to study the physics and detailed mechanisms of the phenomenon by an entirely new approach.

  9. Heating, Cooling, and Gravitational Instabilities in Protostellar and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Pickett, B. K.; Mejia, A. C.; Durisen, R. H.

    2001-12-01

    We present three-dimensional hydrodynamic simulations of protostellar disk models, in order to explore how the interplay between heating and cooling regulates significant gravitational instabilities. Artificial viscosity is used to treat irreversible heating, such as would occur in shocks; volumetric cooling at several different rates is also applied throughout a broad radial region of the disk. We study the evolution of a disk that is already unstable (due to the low value of the Toomre Q parameter), and a marginally unstable disk that is cooled towards instability. The evolutions have implications for the transport of mass and angular momentum in protostellar disks, the effects of gravitational instabilities on the vertical structure of the disks, and the formation of stellar and substellar companions on dynamic time scales due to disk instabilties. This work is supported by grants from the NASA Planetary Geology and Geophysics and Origins of Solar Systems Programs.

  10. Numerical computation of linear instability of detonations

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry; Kasimov, Aslan

    2017-11-01

    We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.

  11. Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelmashuk, V., E-mail: vitalij@ipp.cas.cz

    2014-01-15

    When a high voltage pulse with an amplitude of 30 kV is applied to a pair of disk electrodes at a time when a shock wave is passing between them, an electrical spark is generated. The dynamic changes in the spark morphology are studied here using a high-speed framing camera. The primary result of this work is the provision of experimental evidence of plasma instability that was observed in the channel of the electric spark.

  12. Towards a parallel collisionless shock in LAPD

    NASA Astrophysics Data System (ADS)

    Weidl, M. S.; Heuer, P.; Schaeffer, D.; Dorst, R.; Winske, D.; Constantin, C.; Niemann, C.

    2017-09-01

    Using a high-energy laser to produce a super-Alfvénic carbon-ion beam in a strongly magnetized helium plasma, we expect to be able to observe the formation of a collisionless parallel shock inside the Large Plasma Device. We compare early magnetic-field measurements of the resonant right-hand instability with analytical predictions and find excellent agreement. Hybrid simulations show that the carbon ions couple to the background plasma and compress it, although so far the background ions are mainly accelerated perpendicular to the mean-field direction.

  13. Comparison of hydrodynamic simulations with two-shockwave drive target experiments

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William

    2015-11-01

    We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number (A --> - 1) of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments.

  14. Temperatures of shock-induced shear instabilities and their relationship to fusion curves. [emission from glass

    NASA Technical Reports Server (NTRS)

    Schmitt, D. R.; Ahrens, T. J.

    1983-01-01

    New emission spectra for MgO and CaAl2Si2O8 (glass) are observed from 430 to 820 nm. Taken with previous data, it is suggested that transparent solids display three regimes of light emission upon shock compression to successively higher pressures: (1) characteristic radiation such as observed in MgO and previously in other minerals, (2) heterogeneous hot spot (greybody) radiation observed in CaAl2Si2O8 and previously in all transparent solids undergoing shock-induced phase transformations, and (3) blackbody emission observed in the high pressure phase regime in NaCl, SiO2, CaO, CaAl2Si2O8, and Mg2SiO4. The onset of the second regime may delineate the onset of shock-induced polymorphism whereas the onset of the third regime delineates the Hugoniot pressure required to achieve local thermal equilibrium in the shocked solid. It is also proposed that the hot spot temperatures and corresponding shock pressures determined in the second regime delineate points on the fusion curves of the high pressure phase.

  15. Perpendicular relativistic shocks in magnetized pair plasma

    NASA Astrophysics Data System (ADS)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-07-01

    Perpendicular relativistic (γ0= 10) shocks in magnetized pair plasmas are investigated using two-dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 < σ < 10-2 at which a strong perpendicular net current is observed in the precursor, driving the so-called current-filamentation instability. The global structure of the shock and shock formation time are discussed. The magnetohydrodynamics shock jump conditions are found in good agreement with the numerical results, except for 10-4 < σ < 10-2 where a deviation up to 10 per cent is observed. The particle precursor length converges towards the Larmor radius of particles injected in the upstream magnetic field at intermediate magnetizations. For σ > 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive shock acceleration is observed only in weakly magnetized shocks, while a dominant contribution of shock drift acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of active galactic nucleus jets and in the termination shocks of pulsar wind nebulae.

  16. Perpendicular relativistic shocks in magnetized pair plasma

    NASA Astrophysics Data System (ADS)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 < σ < 10-2 at which a strong perpendicular net current is observed in the precursor, driving the so-called current-filamentation instability. The global structure of the shock and shock formation time are discussed. The MHD shock jump conditions are found in good agreement with the numerical results, except for 10-4 < σ < 10-2 where a deviation up to 10% is observed. The particle precursor length converges toward the Larmor radius of particles injected in the upstream magnetic field at intermediate magnetizations. For σ > 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  17. Gravitational Instabilities, Chondrule Formation, and the FU Orionis Phenomenon

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Durisen, Richard H.

    2008-10-01

    Using analytic arguments and numerical simulations, we examine whether chondrule formation and the FU Orionis phenomenon can be caused by the burstlike onset of gravitational instabilities (GIs) in dead zones. At least two scenarios for bursting dead zones can work, in principle. If the disk is on the verge of fragmentation, GI activation near r ~ 4-5 AU can produce chondrule-forming shocks, at least under extreme conditions. Mass fluxes are also high enough during the onset of GIs to suggest that the outburst is related to an FU Orionis phenomenon. This situation is demonstrated by numerical simulations. In contrast, as supported by analytic arguments, if the burst takes place close to r ~ 1 AU, then even low pitch angle spiral waves can create chondrule-producing shocks and outbursts. We also study the stability of the massive disks in our simulations against fragmentation and find that although disk evolution is sensitive to changes in opacity, the disks we study do not fragment, even at high resolution and even for extreme assumptions.

  18. A multi-scale Q1/P0 approach to langrangian shock hydrodynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashkov, Mikhail; Love, Edward; Scovazzi, Guglielmo

    A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to currently implemented hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical meaning, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples and acts to counter the production of entropy due to numerical instabilities. The proposed techniquemore » is applicable to materials with no shear strength, for which there exists a caloric equation of state. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.« less

  19. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Park, H.-S.; Huntington, C. M.; Miles, A. R.; Remington, B. A.; Drake, R. P.; Tranthan, M. A.; Handy, T. A.; Shvarts, D.; Malamud, G.; Shimony, A.; Shvarts, D.; Kline, J.; Flippo, K. A.; Doss, F. W.; Plewa, T.

    2017-10-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. We present data and simulations from Rayleigh-Taylor instability experiments in high- and low- energy flux experiments performed at the National Ignition Facility. We also will discuss the apparent, larger role of heat conduction when we closely examined the comparison between the experimental results, and the SNR observations and models. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  20. Kelvin-Helmholtz evolution in subsonic cold streams feeding galaxies

    NASA Astrophysics Data System (ADS)

    Angulo, Adrianna; Coffing, S.; Kuranz, C.; Drake, R. P.; Klein, S.; Trantham, M.; Malamud, G.

    2017-10-01

    The most prolific star formers in cosmological history lie in a regime where dense filament structures carried substantial mass into the galaxy to sustain star formation without producing a shock. However, hydrodynamic instabilities present on the filament surface limit the ability of such structures to deliver dense matter deeply enough to sustain star formation. Simulations lack the finite resolution necessary to allow fair treatment of the instabilities present at the stream boundary. Using the Omega EP laser, we simulate this mode of galaxy formation with a cold, dense, filament structure within a hotter, subsonic flow and observe the interface evolution. Machined surface perturbations stimulate the development of the Kelvin-Helmholtz (KH) instability due to the resultant shear between the two media. A spherical crystal imaging system produces high-resolution radiographs of the KH structures along the filament surface. The results from the first experiments of this kind, using a rod with single-mode, long-wavelength modulations, will be discussed. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and the National Laser User Facility Program, Grant Number DE-NA0002719, and through.

  1. Radio jet propagation and wide-angle tailed radio sources in merging galaxy cluster environments

    NASA Technical Reports Server (NTRS)

    Loken, Chris; Roettiger, Kurt; Burns, Jack O.; Norman, Michael

    1995-01-01

    The intracluster medium (ICM) within merging clusters of galaxies is likely to be in a violent or turbulent dynamical state which may have a significant effect on the evolution of cluster radio sources. We present results from a recent gas + N-body simulation of a cluster merger, suggesting that mergers can result in long-lived, supersonic bulk flows, as well as shocks, within a few hundred kiloparsecs of the core of the dominant cluster. These results have motivated our new two-dimensional and three-dimensional simulations of jet propagation in such environments. The first set of simulations models the ISM/ICM transition as a contact discontinuity with a strong velocity shear. A supersonic (M(sub j) = 6) jet crossing this discontinuity into an ICM with a transverse, supersonic wind bends continuously, becomes 'naked' on the upwind side, and forms a distended cocoon on the downwind side. In the case of a mildly supersonic jet (M(sub j) = 3), however, a shock is driven into the ISM and ISM material is pulled along with the jet into the ICM. Instabilities excited at the ISM/ICM interface result in the jet repeatedly pinching off and reestablishing itself in a series of 'disconnection events.' The second set of simulations deals with a jet encountering a shock in the merging cluster environment. A series of relatively high-resolution two-dimensional calculations is used to confirm earlier analysis predicting that the jet will not disrupt when the jet Mach number is greater than the shock Mach number. A jet which survives the encounter with the shock will decrease in radius and disrupt shortly thereafter as a result of the growth of Kelvin-Helmholtz instabilities. We also find, in disagreement with predictions, that the jet flaring angle decreases with increasing jet density. Finally, a three-dimensional simulation of a jet crossing an oblique shock gives rise to a morphology which resembles a wide-angle tailed radio source with the jet flaring at the shock and disrupting to form a long, turbulent tail which is dragged downstream by the preshock wind.

  2. Starbursts triggered by central overpressure in interacting galaxies

    NASA Technical Reports Server (NTRS)

    Jog, Chanda J.; Das, Mousumi

    1993-01-01

    A triggering mechanism for the origin of enhanced, massive-star formation in the central regions of interacting spiral galaxy pairs is proposed. Our mechanism is based on the detailed evolution of a realistic interstellar medium in a galaxy following an encounter. As a disk giant molecular cloud (GMC) tumbles into the central region following a galaxy encounter, it undergoes a radiative shock compression via the pre-existing high pressure of the central intercloud medium. The shocked outer shell of a GMC becomes gravitationally unstable and begins to fragment thus resulting in a burst of star formation, when the growth time for the gravitational instabilities in the shell becomes smaller than the crossing time of the shock. The resulting values of typical infrared luminosity agree with observations.

  3. Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale

    NASA Astrophysics Data System (ADS)

    Shang, W.; Betti, R.

    2016-10-01

    Shock ignition uses a late strong shock to ignite the hot spot of an inertial confinement fusion capsule. In the standard shock-ignition scheme, an ignitor shock is launched by the ablation pressure from a spike in laser intensity. Recent experiments on OMEGA have shown that focused beams with intensity up to 6 ×1015 W /cm2 can produce copious amounts of hot electrons. The hot electrons are produced by laser-plasma instabilities (LPI's) and can carry up to 15 % of the instantaneous laser power. Megajoule-scale targets will likely produce even more hot electrons because of the large plasma scale length. We show that it is possible to design ignition targets with low implosion velocities that can be shock ignited using LPI-generated hot electrons to obtain high energy gains. These designs are robust to low-mode asymmetries and they ignite even for highly distorted implosions. Electron shock ignition requires tens of kilojoules of hot electrons, which can only be produced on a large laser facility like the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. Investigating the Formation and Sub-Structure of Unmagnetized Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Endrizzi, Douglass; Egedal, J.; Forest, C.; Greess, S.; Millet-Ayala, A.; Olson, J.; Ready, A.; Waleffe, R.; Gota, H.

    2017-10-01

    Collisionless shocks, where the shock thickness is much smaller than the collisional mean free path, are ubiquitous astrophysical phenomena. In all shocks, the Rankine-Hugoniot jump conditions are satisfied through entropy generation at the interface; the shock propagation angle with respect to the magnetic field affects the mechanism by which this entropy is generated. Two experiments on the Big Red Ball (BRB) at UW-Madison explored the formation mechanisms of parallel and perpendicular, unmagnetized and magnetized collisionless shocks with large (1 - 3 m) system sizes. In the first experiment, a 1 m diameter theta-pinch drove a supersonic (3 < M < 4) compressive flow perpendicular to the background magnetic field. In the second, a compact toroid ([cite TriAlpha]) was fired supersonically (4 < M < 5) parallel to the background magnetic field. Triple, Langmuir, emissive, and magnetic probes were used to measure electron density, temperature, plasma potential, and fluctuations in magnetic fields. Results showing the transition from above to below MA = 1 , measurements of electron precursors, exploration of subshock structure, evidence of instabilities in the shock formation process, and future work will be presented. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256259.

  5. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  6. Screech tones from free and ducted supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III

    1994-01-01

    It is well known that screech tones from supersonic jets are generated by a feedback loop. The loop consists of three main components. They are the downstream propagating instability wave, the shock cell structure in the jet plume, and the feedback acoustic waves immediately outside the jet. Evidence will be presented to show that the screech frequency is largely controlled by the characteristics of the feedback acoustic waves. The feedback loop is driven by the instability wave of the jet. Thus the tone intensity and its occurrence are dictated by the characteristics of the instability wave. In this paper the dependence of the instability wave spectrum on the azimuthal mode number (axisymmetric or helical/flapping mode, etc.), the jet-to-ambient gas temperature ratio, and the jet Mach number are studied. The results of this study provide an explanation for the observed screech tone mode switch phenomenon (changing from axisymmetric to helical mode as Mach number increases) and the often-cited experimental observation that tone intensity reduces with increase in jet temperature. For ducted supersonic jets screech tones can also be generated by feedback loops formed by the coupling of normal duct modes to instability waves of the jet. The screech frequencies are dictated by the frequencies of the duct modes. Super resonance, resonance involving very large pressure oscillations, can occur when the feedback loop is powered by the most amplified instability wave. It is proposed that the observed large amplitude pressure fluctuations and tone in the test cells of Arnold Engineering Development Center were generated by super resonance. Estimated super-resonance frequency for a Mach 1.3 axisymmetric jet tested in the facility agrees well with measurement.

  7. Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth's bow shock

    NASA Technical Reports Server (NTRS)

    Wilkinson, W. P.; Pardaens, A. K.; Schwartz, S. J.; Burgess, D.; Luehr, H.; Kessel, R. L.; Dunlop, M.; Farrugia, C. J.

    1993-01-01

    Attention is given to ion and magnetic field measurements at the earth's bow shock from the AMPTE-UKS and -IRM spacecraft, which were examined in high time resolution during a 45-min interval when the field remained closely aligned with the model bow shock normal. Dense ion beams were detected almost exclusively in the midst of short-duration periods of turbulent magnetic field wave activity. Many examples of propagation at large elevation angles relative to the ecliptic plane, which is inconsistent with reflection in the standard model shock configuration, were discovered. The associated waves are elliptically polarized and are preferentially left-handed in the observer's frame of reference, but are less confined to the maximum variance plane than other previously studied foreshock waves. The association of the wave activity with the ion beams suggests that the former may be triggered by an ion-driven instability, and possible candidates are discussed.

  8. Hydrodynamic simulations of microjetting from shock-loaded grooves

    NASA Astrophysics Data System (ADS)

    Roland, C.; de Rességuier, T.; Sollier, A.; Lescoute, E.; Soulard, L.; Loison, D.

    2017-01-01

    The interaction of a shock wave with a free surface which has geometrical defects, such as cavities or grooves, may lead to the ejection of micrometric debris at velocities of km/s. This process can be involved in many applications, like pyrotechnics or industrial safety. Recent laser shock experiments reported elsewhere in this conference have provided some insight into jet formation as well as jet tip velocities for various groove angles and shock pressures. Here, we present hydrodynamic simulations of these experiments, in both 2D and 3D geometries, using both finite element method and smoothed particle hydrodynamics. Numerical results are compared to several theoretical predictions including the Richtmyer-Meshkov instabilities. The role of the elastic-plastic behavior on jet formation is illustrated. Finally, the possibility to simulate the late stage of jet expansion and fragmentation is explored, to evaluate the mass distribution of the ejecta and their ballistic properties, still essentially unknown in the experiments.

  9. Structure of a quasi-parallel, quasi-laminar bow shock

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Russell, C. T.; Formisano, V.; Hedgecock, P. C.; Scarf, F. L.; Neugebauer, M.; Holzer, R. E.

    1976-01-01

    A thick, quasi-parallel bow shock structure was observed with field and particle detectors of both HEOS 1 and OGO 5. The typical magnetic pulsation structure was at least 1 to 2 earth radii thick radially and was accompanied by irregular but distinct plasma distributions characteristic of neither the solar wind nor the magnetosheath. Waves constituting the large pulsations were polarized principally in the plane of the nominal shock, therefore also in the plane perpendicular to the average interplanetary field. A separate interpulsation regime detected between bursts of large amplitude oscillations was similar to the upstream wave region magnetically, but was characterized by disturbed plasma flux and enhanced noise around the ion plasma frequency. The shock structure appeared to be largely of an oblique, whistler type, probably complicated by counterstreaming high energy protons. Evidence for firehose instability-based structure was weak at best and probably negative.

  10. The study of high-speed surface dynamics using a pulsed proton beam

    NASA Astrophysics Data System (ADS)

    Buttler, William T.; Oro, David M.; Preston, Dean; Mikaelian, Karnig O.; Cherne, Frank J.; Hixson, Robert S.; Mariam, Fesseha G.; Morris, Christopher L.; Stone, Joseph B.; Terrones, Guillermo; Tupa, Dale

    2012-03-01

    We present experimental results supporting physics based ejecta model development, where we assume ejecta form as a special limiting case of a Richtmyer-Meshkov (RM) instability with Atwood number A = -1. We present and use data to test established RM spike and bubble growth rate theory through application of modern laser Doppler velocimetry techniques applied in a novel manner to coincidentally measure bubble and spike velocities from shocked metals. We also explore the link of ejecta formation from a solid material to its plastic flow stress at high-strain rates (107/s) and high strains (700%).

  11. Statistical study of mirror mode events in the Earth magnetosheath

    NASA Astrophysics Data System (ADS)

    Genot, V.; Budnik, E.; Jacquey, C.; Sauvaud, J.; Dandouras, I.; Lucek, E.

    2006-12-01

    Using a search and classification tool developed at CDPP (Centre de la Physique des Plasmas, http://cdpp.cesr.fr), we investigate the physics of the mirror instability. Indeed both analytical and observational recent studies have shown the paramount importance of this instability in the development of magnetosheath turbulence and its potential role in reconnection. 5 years of Cluster data have been mined by our tool which can be intuitively parametrized and set up with specific constraints on the actual data content. The strength of the method is illustrated by our results concerning the efficiency of different identification procedures. Beyond the presentation of the general mirror mode event distribution in the magnetosheath, some of the key questions we address include : evolution of the wave amplitude with the fractional distance to the boundaries (bow shock/magnetopause), mirror structure behaviour in relation with 1/ local parameters (plasma beta, temperature anisotropy) and 2/ conditioning parameters (solar wind Mach numbers, IMF orientation), tests of theoretical expressions obtained with different closure equations, ... The implications of these results for the mirror mode modelization is discussed.

  12. A systematic comparison of two-equation Reynolds-averaged Navier-Stokes turbulence models applied to shock-cloud interactions

    NASA Astrophysics Data System (ADS)

    Goodson, Matthew D.; Heitsch, Fabian; Eklund, Karl; Williams, Virginia A.

    2017-07-01

    Turbulence models attempt to account for unresolved dynamics and diffusion in hydrodynamical simulations. We develop a common framework for two-equation Reynolds-averaged Navier-Stokes turbulence models, and we implement six models in the athena code. We verify each implementation with the standard subsonic mixing layer, although the level of agreement depends on the definition of the mixing layer width. We then test the validity of each model into the supersonic regime, showing that compressibility corrections can improve agreement with experiment. For models with buoyancy effects, we also verify our implementation via the growth of the Rayleigh-Taylor instability in a stratified medium. The models are then applied to the ubiquitous astrophysical shock-cloud interaction in three dimensions. We focus on the mixing of shock and cloud material, comparing results from turbulence models to high-resolution simulations (up to 200 cells per cloud radius) and ensemble-averaged simulations. We find that the turbulence models lead to increased spreading and mixing of the cloud, although no two models predict the same result. Increased mixing is also observed in inviscid simulations at resolutions greater than 100 cells per radius, which suggests that the turbulent mixing begins to be resolved.

  13. The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid

    NASA Astrophysics Data System (ADS)

    Pavlenko, Alexander

    2011-06-01

    The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.

  14. EVIDENCE OF MAGNETIC FIELD SWITCH-OFF IN COLLISIONLESS MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenti, M. E.; Lapenta, G.; Goldman, M.

    2015-09-10

    The long-term evolution of large domain particle-in-cell simulations of collisionless magnetic reconnection is investigated following observations that show two possible outcomes for collisionless reconnection: toward a Petschek-like configuration or toward multiple X points. In the present simulation, a mixed scenario develops. At earlier time, plasmoids are emitted, disrupting the formation of Petschek-like structures. Later, an almost stationary monster plasmoid forms, preventing the emission of other plasmoids. A situation reminiscent of Petschek’s switch-off then ensues. Switch-off is obtained through a slow shock/rotational discontinuity compound structure. Two external slow shocks (SS) located at the separatrices reduce the in-plane tangential component of themore » magnetic field, but not to zero. Two transitions reminiscent of rotational discontinuities (RD) in the internal part of the exhaust then perform the final switch-off. Both the SS and the RD are characterized through analysis of their Rankine–Hugoniot jump conditions. A moderate guide field is used to suppress the development of the firehose instability in the exhaust.« less

  15. [Kelvin-Helmholtz instability in protostellar jets

    NASA Technical Reports Server (NTRS)

    Stone, James; Hardee, Philip

    1996-01-01

    NASA grant NAG 5 2866, funded by the Astrophysics Theory Program, enabled the study the Kelvin-Helmholtz instability in protostellar jets. In collaboration with co-investigator Philip Hardee, the PI derived the analytic dispersion relation for the instability in including a cooling term in the energy equation which was modeled as one of two different power laws. Numerical solutions to this dispersion relation over a wide range of perturbation frequencies, and for a variety of parameter values characterizing the jet (such as Mach number, and density ratio) were found It was found that the growth rates and wavelengths associated with unstable roots of the dispersion relation in cooling jets are significantly different than those associated with adiabatic jets, which have been studied previously. In collaboration with graduate student Jianjun Xu (funded as a research associate under this grant), hydrodynamical simulations were used to follow the growth of the instability into the nonlinear regime. It was found that asymmetric surface waves lead to large amplitude, sinusoidal distortions of the jet, and ultimately to disruption Asymmetric body waves, on the other hand, result in the formation of shocks in the jet beam in the nonlinear regime. In cooling jets, these shocks lead to the formation of dense knots and filaments of gas within the jet. For sufficiently high perturbation frequencies, however, the jet cannot respond and it remains symmetric. Applying these results to observed systems, such as the Herbig-Haro jets HH34, HH111 and HH47 which have been observed with the Hubble Space Telescope, we predicted that some of the asymmetric structures observed in these systems could be attributed to the K-H modes, but that perturbations on timescales associated with the inner disk (about 1 year) would be too rapid to cause disruption. Moreover, it was discovered that weak shock 'spurs' in the ambient gas produced by ripples in the jet surface due to nonlinear, modes of surface and/or body waves could accelerate the ambient gas to low velocity. This latter effect represents a new mechanism by which supersonic jets can accelerate low velocity outflows.

  16. Direct Simulation Monte Carlo for astrophysical flows - II. Ram-pressure dynamics

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.

    2014-03-01

    We use the Direct Simulation Monte Carlo method combined with an N-body code to study the dynamics of the interaction between a gas-rich spiral galaxy and intracluster or intragroup medium, often known as the ram pressure scenario. The advantage of this gas kinetic approach over traditional hydrodynamics is explicit treatment of the interface between the hot and cold, dense and rarefied media typical of astrophysical flows and the explicit conservation of energy and momentum and the interface. This approach yields some new physical insight. Owing to the shock and backward wave that forms at the point intracluster medium (ICM)-interstellar medium (ISM) contact, ICM gas is compressed, heated and slowed. The shock morphology is Mach disc like. In the outer galaxy, the hot turbulent post-shock gas flows around the galaxy disc while heating and ablating the initially cool disc gas. The outer gas and angular momentum are lost to the flow. In the inner galaxy, the hot gas pressurizes the neutral ISM gas causing a strong two-phase instability. As a result, the momentum of the wind is no longer impulsively communicated to the cold gas as assumed in the Gunn-Gott formula, but oozes through the porous disc, transferring its linear momentum to the disc en masse. The escaping gas mixture has a net positive angular momentum and forms a slowly rotating sheath. The shear flow caused by the post-shock ICM flowing through the porous multiphase ISM creates a strong Kelvin-Helmholtz instability in the disc that results in Cartwheel-like ring and spoke morphology.

  17. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    PubMed

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P =28(+4)(-4) per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = 16(+5)(-4) per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  18. Wave-Particle Interactions and Particle Acceleration in Turbulent Plasmas: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Kucharek, Harald; Pogorelov, Nikolai; Mueller, Hans; Gamayunov, Konstantin; Farrugia, Charles

    2015-04-01

    Wave-particle interactions and acceleration processes are present in all key regions inside and outside of the heliosphere. Spacecraft observations measure ion distributions and accelerated ion populations, which are the result of one or several processes. For instance STEREO measures energetic particles associated with interplanetary discontinuities and in the solar wind. Voyager and IBEX provide unique data of energetic particles from the termination shock and the inner and outer heliopause. The range of plasma conditions covered by observations is enormous. However, the physical processes causing particle acceleration and wave-particle interaction and determining the particle distributions are still unknown. Currently two mechanisms, the so-called pumping mechanism (Fisk and Gloeckler, 2010) and merging/contracting island (Fermo, Drake & Swisdak, 2010) are discussed as promising models. In order to determine these individual processes, numerical models or theoretical considerations are needed. Hybrid simulations, which include all kinetic processes self-consistently on the ion level, are a very proven, powerful tool to investigate wave-particle interaction, turbulence, and phase-space evolution of pickup and solar wind ions. In the framework of this study we performed 3D multi-species hybrid simulations for an ion/ion beam instability to study the temporal evolution of ion distributions, their stability, and the influence of self-generated waves. We investigated the energization of ions downstream of interplanetary discontinuities and shocks and downstream of the termination shock, the turbulence, and growth rate of instabilities and compared the results with theoretical predictions. The simulations show that ions can be accelerated downstream of collisionless shocks by trapping of charged particles in coherent wave fronts.

  19. Study of Unsteady, Sphere-Driven, Shock-Induced Combustion for Application to Hypervelocity Airbreathing Propulsion

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2011-01-01

    A premixed, shock-induced combustion engine has been proposed in the past as a viable option for operating in the Mach 10 to 15 range in a single stage to orbit vehicle. In this approach, a shock is used to initiate combustion in a premixed fuel/air mixture. Apparent advantages over a conventional scramjet engine include a shorter combustor that, in turn, results in reduced weight and heating loads. There are a number of technical challenges that must be understood and resolved for a practical system: premixing of fuel and air upstream of the combustor without premature combustion, understanding and control of instabilities of the shock-induced combustion front, ability to produce sufficient thrust, and the ability to operate over a range of Mach numbers. This study evaluated the stability of the shock-induced combustion front in a model problem of a sphere traveling in a fuel/air mixture at high Mach numbers. A new, rapid analysis method was developed and applied to study such flows. In this method the axisymmetric, body-centric Navier-Stokes equations were expanded about the stagnation streamline of a sphere using the local similarity hypothesis in order to reduce the axisymmetric equations to a quasi-1D set of equations. These reduced sets of equations were solved in the stagnation region for a number of flow conditions in a premixed, hydrogen/air mixture. Predictions from the quasi-1D analysis showed very similar stable or unstable behavior of the shock-induced combustion front as compared to experimental studies and higher-fidelity computational results. This rapid analysis tool could be used in parametric studies to investigate effects of fuel rich/lean mixtures, non-uniformity in mixing, contaminants in the mixture, and different chemistry models.

  20. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundberg, Torbjörn; Burgess, David; Scholer, Manfred

    2017-02-10

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained onmore » extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.« less

  1. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Sundberg, Torbjörn; Burgess, David; Scholer, Manfred; Masters, Adam; Sulaiman, Ali H.

    2017-02-01

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.

  2. WEIBEL, TWO-STREAM, FILAMENTATION, OBLIQUE, BELL, BUNEMAN...WHICH ONE GROWS FASTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.

    2009-07-10

    Many competing linear instabilities are likely to occur in astrophysical settings, and it is important to assess which one grows faster for a given situation. An analytical model including the main beam plasma instabilities is developed. The full three-dimensional dielectric tensor is thus explained for a cold relativistic electron beam passing through a cold plasma, accounting for a guiding magnetic field, a return electronic current, and moving protons. Considering any orientations of the wave vector allows to retrieve the most unstable mode for any parameters set. An unified description of the filamentation (Weibel), two-stream, Buneman, Bell instabilities (and more) ismore » thus provided, allowing for the exact determination of their hierarchy in terms of the system parameters. For relevance to both real situations and PIC simulations, the electron-to-proton mass ratio is treated as a parameter, and numerical calculations are conducted with two different values, namely 1/1836 and 1/100. In the system parameter phase space, the shape of the domains governed by each kind of instability is far from being trivial. For low-density beams, the ultra-magnetized regime tends to be governed by either the two-stream or the Buneman instabilities. For beam densities equaling the plasma one, up to four kinds of modes are likely to play a role, depending of the beam Lorentz factor. In some regions of the system parameters phase space, the dominant mode may vary with the electron-to-proton mass ratio. Application is made to solar flares, intergalactic streams, and relativistic shocks physics.« less

  3. Numerical simulations of the process of multiple shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Jiang, Hua; Dong, Gang; chen, Xiao; Wu, Jin-Tao

    2016-08-01

    Based on a weighted essentially nonoscillatory scheme, the multiple interactions of a flame interface with an incident shock wave and its reshock waves are numerically simulated by solving the compressible reactive Navier-Stokes equations with a single-step Arrhenius chemical reaction. The two-dimensional sinusoidally perturbed premixed flames with different initial perturbed amplitudes are used to investigate the effect of the initial perturbation on the flame evolutions. The results show that the development of the flame interface is directly affected by the initial perturbed amplitudes before the passages of reshock waves, and the perturbation development is mainly controlled by the Richtmyer-Meshkov instability (RMI). After the successive impacts of multiple reshock waves, the chemical reaction accelerates the consumption of reactants and leads to a gradual disappearance of the initial perturbed information. The perturbation developments in frozen flows with the same initial interface as those in reactive flows are also demonstrated. Comparisons of results between the reactive and frozen flows show that a chemical reaction changes the perturbation pattern of the flame interface by decreasing the density gradient, thereby weakening the baroclinic torque in the flame mixing region, and therefore plays a dominant role after the passage of reshock waves.

  4. On magnetic field amplification and particle acceleration near non-relativistic collisionless shocks: Particles in MHD Cells simulations

    NASA Astrophysics Data System (ADS)

    Casse, F.; van Marle, A. J.; Marcowith, A.

    2018-01-01

    We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and supra-thermal particles. Such interaction is depicted by combining a grid-based magneto-hydrodynamics description of the thermal fluid with particle-in-cell techniques devoted to the dynamics of supra-thermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider non-relativistic super-Alfénic shocks with various magnetic field obliquity. We recover all the features from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell and hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger timescales than in the parallel case. We show that in our oblique shock simulations the streaming of supra-thermal particles induces a corrugation of the shock front. Such oscillations of both the shock front and the magnetic field then locally helps the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.

  5. A cosmic ray driven instability

    NASA Technical Reports Server (NTRS)

    Dorfi, E. A.; Drury, L. O.

    1985-01-01

    The interaction between energetic charged particles and thermal plasma which forms the basis of diffusive shock acceleration leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homogeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves.

  6. Deregulation of DNA-dependent protein kinase catalytic subunit contributes to human hepatocarcinogenesis development and has a putative prognostic value.

    PubMed

    Evert, M; Frau, M; Tomasi, M L; Latte, G; Simile, M M; Seddaiu, M A; Zimmermann, A; Ladu, S; Staniscia, T; Brozzetti, S; Solinas, G; Dombrowski, F; Feo, F; Pascale, R M; Calvisi, D F

    2013-11-12

    The DNA-repair gene DNA-dependent kinase catalytic subunit (DNA-PKcs) favours or inhibits carcinogenesis, depending on the cancer type. Its role in human hepatocellular carcinoma (HCC) is unknown. DNA-dependent protein kinase catalytic subunit, H2A histone family member X (H2AFX) and heat shock transcription factor-1 (HSF1) levels were assessed by immunohistochemistry and/or immunoblotting and qRT-PCR in a collection of human HCC. Rates of proliferation, apoptosis, microvessel density and genomic instability were also determined. Heat shock factor-1 cDNA or DNA-PKcs-specific siRNA were used to explore the role of both genes in HCC. Activator protein 1 (AP-1) binding to DNA-PKcs promoter was evaluated by chromatin immunoprecipitation. Kaplan-Meier curves and multivariate Cox model were used to study the impact on clinical outcome. Total and phosphorylated DNA-PKcs and H2AFX were upregulated in HCC. Activated DNA-PKcs positively correlated with HCC proliferation, genomic instability and microvessel density, and negatively with apoptosis and patient's survival. Proliferation decline and massive apoptosis followed DNA-PKcs silencing in HCC cell lines. Total and phosphorylated HSF1 protein, mRNA and activity were upregulated in HCC. Mechanistically, we demonstrated that HSF1 induces DNA-PKcs upregulation through the activation of the MAPK/JNK/AP-1 axis. DNA-dependent protein kinase catalytic subunit transduces HSF1 effects in HCC cells, and might represent a novel target and prognostic factor in human HCC.

  7. Lessons Learned from Numerical Simulations of Interfacial Instabilities

    NASA Astrophysics Data System (ADS)

    Cook, Andrew

    2015-11-01

    Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instabilities serve as efficient mixing mechanisms in a wide variety of flows, from supernovae to jet engines. Over the past decade, we have used the Miranda code to temporally integrate the multi-component Navier-Stokes equations at spatial resolutions up to 29 billion grid points. The code employs 10th-order compact schemes for spatial derivatives, combined with 4th-order Runge-Kutta time advancement. Some of our major findings are as follows: The rate of growth of a mixing layer is equivalent to the net mass flux through the equi-molar plane. RT growth rates can be significantly reduced by adding shear. RT instability can produce shock waves. The growth rate of RM instability can be predicted from known interfacial perturbations. RM vortex projectiles can far outrun the mixing region. Thermal fluctuations in molecular dynamics simulations can seed instabilities along the braids in KH instability. And finally, enthalpy diffusion is essential in preserving the second law of thermodynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Gyroscopic instability of a drop trapped inside an inclined circular hydraulic jump.

    PubMed

    Pirat, Christophe; Lebon, Luc; Fruleux, Antoine; Roche, Jean-Sébastien; Limat, Laurent

    2010-08-20

    A drop of moderate size deposited inside a circular hydraulic jump remains trapped at the shock front and does not coalesce with the liquid flowing across the jump. For a small inclination of the plate on which the liquid is impacting, the drop does not always stay at the lowest position and oscillates around it with a sometimes large amplitude, and a frequency that slightly decreases with flow rate. We suggest that this striking behavior is linked to a gyroscopic instability in which the drop tries to keep constant its angular momentum while sliding along the jump.

  9. Simulations of Instabilities in Tidal Tails

    NASA Astrophysics Data System (ADS)

    Comparetta, Justin N.; Quillen, A. C.

    2010-05-01

    We use graphics cards to run a hybrid test particle/N-body simulation to integrate 4 million massless particle trajectories within fully self-consistent N-body simulations of 128,000 - 256,000 particles. The number of massless particles allows us to resolve fine structure in the spatial distribution and phase space of a dwarf galaxy that is disrupted in the tidal field of a Milky Way type galaxy. The tidal tails exhibit clumping or a smoke-like appearance. By running simulations with different satellite particle mass, number of massive vs massless particles and with and without a galaxy disk, we have determined that the instabilities are not due to numerical noise or shocking as the satellite passes through the disk of the Galaxy. The instability is possibly a result of self-gravity which indicates it may be due to Jeans instabilities. Simulations involving different halo particle mass may suggest limitations on dark matter halo substructure. We find that the instabilities are visible in velocity space as well as real space and thus could be identified from velocity surveys as well as number counts.

  10. Probing dissipation mechanisms in BL Lac jets through X-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Tavecchio, F.; Landoni, M.; Sironi, L.; Coppi, P.

    2018-06-01

    The dissipation of energy flux in blazar jets plays a key role in the acceleration of relativistic particles. Two possibilities are commonly considered for the dissipation processes, magnetic reconnection - possibly triggered by instabilities in magnetically-dominated jets - , or shocks - for weakly magnetized flows. We consider the polarimetric features expected for the two scenarios analyzing the results of state-of-the-art simulations. For the magnetic reconnection scenario we conclude, using results from global relativistic MHD simulations, that the emission likely occurs in turbulent regions with unstructured magnetic fields, although the simulations do not allow us to draw firm conclusions. On the other hand, with local particle-in-cell simulations we show that, for shocks with a magnetic field geometry suitable for particle acceleration, the self-generated magnetic field at the shock front is predominantly orthogonal to the shock normal and becomes quasi-parallel downstream. Based on this result we develop a simplified model to calculate the frequency-dependent degree of polarization, assuming that high-energy particles are injected at the shock and cool downstream. We apply our results to HBLs, blazars with the maximum of their synchrotron output at UV-soft X-ray energies. While in the optical band the predicted degree of polarization is low, in the X-ray emission it can ideally reach 50%, especially during active/flaring states. The comparison between measurements in the optical and in the X-ray band made during active states (feasible with the planned IXPE satellite) are expected to provide valuable constraints on the dissipation and acceleration processes.

  11. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  12. Linear sine wave profiling to machine instability targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Derek William; Martinez, John Israel

    2016-08-01

    Specialized machining processes and programming have been developed to deliver thin tin and copper Richtmyer-Meshkov instability targets that have different amplitude perturbations across the face of one 4-in.-diameter target. Typical targets have anywhere from two to five different regions of sine waves that have different amplitudes varying from 4 to 200 μm across the face of the target. The puck is composed of multiple rings that are zero press fit together and diamond turned to create a flat platform with a tolerance of 2 μm for the shock experiment. A custom software program was written in Labview to write themore » point-to-point program for the diamond-turning profiler through the X-Y-Z movements to cut the pure planar straight sine wave geometry. As a result, the software is optimized to push the profile of the whole part into the face while eliminating any unneeded passes that do not cut any material.« less

  13. Hybrid simulations of a parallel collisionless shock in the large plasma device

    DOE PAGES

    Weidl, Martin S.; Winske, Dan; Jenko, Frank; ...

    2016-12-01

    We present two-dimensional hybrid kinetic/magnetohydrodynamic simulations of planned laser-ablation experiments in the Large Plasma Device (LAPD). Our results, based on parameters which have been validated in previous experiments, show that a parallel collisionless shock can begin forming within the available space. Carbon-debris ions that stream along the magnetic- eld direction with a blow-o speed of four times the Alfv en velocity excite strong magnetic uctuations, eventually transfering part of their kinetic energy to the surrounding hydrogen ions. This acceleration and compression of the background plasma creates a shock front, which satis es the Rankine{Hugoniot conditions and can therefore propagate onmore » its own. Furthermore, we analyze the upstream turbulence and show that it is dominated by the right-hand resonant instability.« less

  14. Instabilities in large economies: aggregate volatility without idiosyncratic shocks

    NASA Astrophysics Data System (ADS)

    Bonart, Julius; Bouchaud, Jean-Philippe; Landier, Augustin; Thesmar, David

    2014-10-01

    We study a dynamical model of interconnected firms which allows for certain market imperfections and frictions, restricted here to be myopic price forecasts and slow adjustment of production. Whereas the standard rational equilibrium is still formally a stationary solution of the dynamics, we show that this equilibrium becomes linearly unstable in a whole region of parameter space. When agents attempt to reach the optimal production target too quickly, coordination breaks down and the dynamics becomes chaotic. In the unstable, ‘turbulent’ phase, the aggregate volatility of the total output remains substantial even when the amplitude of idiosyncratic shocks goes to zero or when the size of the economy becomes large. In other words, crises become endogenous. This suggests an interesting resolution of the ‘small shocks, large business cycles’ puzzle.

  15. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  16. Structure in Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul; Visco, A.; Doss, F.; Reighard, A.; Froula, D.; Glenzer, S.; Knauer, J.

    2008-05-01

    Radiative shocks are shock waves fast enough that radiation from the shock-heated matter alters the structure of the shock. They are of fundamental interest to high-energy-density physics and also have applications throughout astrophysics. This poster will review the dimensionless parameters that determine structure in these shocks and will discuss recent experiments to measure such structure for strongly radiative shocks that are optically thin upstream and optically thick downstream. The shock transition itself heats mainly the ions. Immediately downstream of the shock, the ions heat the electrons and the electrons radiate, producing an optically thin cooling layer, followed by the downstream layer of warm, shocked material. The axial structure of these systems is of interest, because the transition from precursor through the cooling layer to the final state is complex and difficult to calculate. Their lateral structure is also of interest, as they seem likely to be subject to some variation on the Vishniac instability of thin layers. In our experiments to produce such shocks, laser ablation launches a Be plasma into a tube of Xe or Ar gas, at a velocity above 100 km/s. This drives a shock down the tube. Radiography provides fundamental information about the structure and evolution of the shocked material in Xe. Thomson scattering and pyrometry have provided data in Ar. We will summarize the available evidence regarding the properties of these shocks, and will discuss their connections to astrophysical cases. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-07NA28058, DE-FG52-04NA00064, and other grants and contracts.

  17. Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup

    2016-10-01

    Collisionless electrostatic shock ion acceleration has become a major regime of laser-driven ion acceleration owing to generation of quasi-monoenergetic ion beams from moderate parametric conditions of lasers and plasmas in comparison with target-normal-sheath-acceleration or radiation pressure acceleration. In order to construct the shock, plasma heating is an essential condition for satisfying Mach number condition 1.5

  18. Wave and ion evolution downstream of quasi-perpendicular bow shocks

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.

    1995-01-01

    Distribution functions of ions heated in quasi-perpendicular bow shocks have a large perpendicular temperature anisotropy that provides free energy for the growth of Alfven ion cyclotron (AIC) waves and mirror waves. Both types of waves have been observed in the Earth's magnetosheath downstream of quasi-perpendicular shocks. We use a two-dimensional hybrid simulations to give a self-consistent description of the evolution of the wave spectra downstream of quasi-perpendicular shocks. Both mirror and AIC waves are identified in the simulated magnetosheath. They are generated at or near the shock front and convected away from it by the sheath plasma. Near the shock, the waves have a broad spectrum, but downstream of the shock, shorter-wavelength modes are heavily damped and only longer-wavelength modes persist. The characteristics of these surviving modes can be predicted with reasonable accuracy by linear kinetic theory appropriate for downstream conditions. We also follow the evolution of the ion distribution function. The shocked ions that provide the free energy for wave growth have a two-component distribution function. The halo is initially gyrophase-bunched and extremely anisotropic. Within a relatively short distance downstream of the shock (of the order of 10 ion inertial lengths), wave-particle interactions remove these features from the halo and reduce the anisotropy of the distribution to near-threshold levels for the mirror and AIC instabilities. A similar evolution has been observed for ions at the Earth's bow shock.

  19. Instability analysis of cosmic viscoelastic gyro-gravitating clouds in the presence of dark matter

    NASA Astrophysics Data System (ADS)

    Karmakar, Pralay Kumar; Das, Papari

    2017-08-01

    A classical formalism for the weakly nonlinear instability analysis of a gravitating rotating viscoelastic gaseous cloud in the presence of gyratory dark matter is presented on the cosmic Jeans flat scales of space and time. The constituent neutral gaseous fluid (NGF) and dark matter fluid (DMF) are inter-coupled frictionally via mutual gravity alone. Application of standard nonlinear perturbation techniques over the complex gyro-gravitating clouds results in a unique conjugated pair of viscoelastic forced Burgers (VFB) equations. The VFB pair is conjointly twinned by correlational viscoelastic effects. There is no regular damping term here, unlike, in the conventional Burgers equation for the luminous (bright) matter solely. Instead, an interesting linear self-consistent derivative force-term naturalistically appears. A numerical illustrative platform is provided to reveal the micro-physical insights behind the weakly non-linear natural diffusive eigen-modes. It is fantastically seen that the perturbed NGF evolves as extended compressive solitons and compressive shock-like structures. In contrast, the perturbed DMF grows as rarefactive extended solitons and hybrid shocks. The latter is micro-physically composed of rarefactive solitons and compressive shocks. The consistency and reliability of the results are validated in the panoptic light of the existing reports based on the preeminent nonlinear advection-diffusion-based Burgers fabric. At the last, we highlight the main implications and non-trivial futuristic applications of the explored findings.

  20. Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov Instabilities

    DOE PAGES

    Prime, Michael Bruce; Buttler, William Tillman; Buechler, Miles Allen; ...

    2017-03-08

    Recently, Richtmyer–Meshkov Instabilities (RMI) have been proposed for studying the average strength at strain rates up to at least 10 7/s. RMI experiments involve shocking a metal interface that has initial sinusoidal perturbations. The perturbations invert and grow subsequent to shock and may arrest because of strength effects. In this work we present new RMI experiments and data on a copper target that had five regions with different perturbation amplitudes on the free surface opposite the shock. We estimate the high-rate, low-pressure copper strength by comparing experimental data with Lagrangian numerical simulations. From a detailed computational study we find thatmore » mesh convergence must be carefully addressed to accurately compare with experiments, and numerical viscosity has a strong influence on convergence. We also find that modeling the as-built perturbation geometry rather than the nominal makes a significant difference. Because of the confounding effect of tensile damage on total spike growth, which has previously been used as the metric for estimating strength, we instead use a new strength metric: the peak velocity during spike growth. Furthermore, this new metric also allows us to analyze a broader set of experimental results that are sensitive to strength because some larger initial perturbations grow unstably to failure and so do not have a finite total spike growth.« less

  1. Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov Instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prime, Michael Bruce; Buttler, William Tillman; Buechler, Miles Allen

    Recently, Richtmyer–Meshkov Instabilities (RMI) have been proposed for studying the average strength at strain rates up to at least 10 7/s. RMI experiments involve shocking a metal interface that has initial sinusoidal perturbations. The perturbations invert and grow subsequent to shock and may arrest because of strength effects. In this work we present new RMI experiments and data on a copper target that had five regions with different perturbation amplitudes on the free surface opposite the shock. We estimate the high-rate, low-pressure copper strength by comparing experimental data with Lagrangian numerical simulations. From a detailed computational study we find thatmore » mesh convergence must be carefully addressed to accurately compare with experiments, and numerical viscosity has a strong influence on convergence. We also find that modeling the as-built perturbation geometry rather than the nominal makes a significant difference. Because of the confounding effect of tensile damage on total spike growth, which has previously been used as the metric for estimating strength, we instead use a new strength metric: the peak velocity during spike growth. Furthermore, this new metric also allows us to analyze a broader set of experimental results that are sensitive to strength because some larger initial perturbations grow unstably to failure and so do not have a finite total spike growth.« less

  2. Stability analysis applied to the early stages of viscous drop breakup by a high-speed gas stream

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Longmire, Ellen K.

    2013-11-01

    The instability of a liquid drop suddenly exposed to a high-speed gas stream behind a shock wave is studied by considering the gas-liquid motion at the drop interface. The discontinuous velocity profile given by the uniform, parallel flow of an inviscid, compressible gas over a viscous liquid is considered, and drop acceleration is included. Our analysis considers compressibility effects not only in the base flow, but also in the equations of motion for the perturbations. Recently published high-resolution images of the process of drop breakup by a passing shock have provided experimental evidence supporting the idea that a critical gas dynamic pressure can be found above which drop piercing by the growth of acceleration-driven instabilities gives way to drop breakup by liquid entrainment resulting from the gas shearing action. For a set of experimental runs from the literature, results show that, for shock Mach numbers >= 2, a band of rapidly growing waves forms in the region well upstream of the drop's equator at the location where the base flow passes from subsonic to supersonic, in agreement with experimental images. Also, the maximum growth rate can be used to predict the transition of the breakup mode from Rayleigh-Taylor piercing to shear-induced entrainment. The authors acknowledge support of the NSF (DMS-0908561).

  3. Thermally driven film climbing a vertical cylinder

    NASA Astrophysics Data System (ADS)

    Smolka, Linda

    2017-11-01

    The dynamics of a Marangoni driven film climbing the outside of a vertical cylinder is examined in numerical simulations of a thin film model. The model has three parameters: the scaled cylinder radius R̂, upstream film height h∞ and downstream precursor film thickness b , and reduces to the model for Marangoni driven film climbing a vertical plate when R̂ -> ∞ . The advancing front displays dynamics similar to that along a vertical plate where, depending on h∞ , the film forms a Lax shock, an undercompressive double shock or a rarefaction-undercompressive shock. A linear stability analysis of the Lax shock reveals the number of fingers that form along the contact line increases linearly with cylinder circumference while no fingers form below R̂ 1.15 with b = 0.1 . The substrate curvature controls the Lax shock height, bounds on h∞ that define the three solutions and the maximum growth rate of perturbations when R̂ = O (1) , whereas the shape of solutions and the stability of the Lax shock converge to the behavior on a vertical plate when R̂ >= O (10) . The azimuthal curvatures of the base state and perturbation, arising from the annular geometry of the film, promote instability of the advancing contact line.

  4. Simulations of Shock Wave Interaction with a Particle Cloud

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  5. Shock-initiated Combustion of a Spherical Density Inhomogeneity

    NASA Astrophysics Data System (ADS)

    Haehn, Nicholas; Oakley, Jason; Rothamer, David; Anderson, Mark; Ranjan, Devesh; Bonazza, Riccardo

    2010-11-01

    A spherical density inhomogeneity is prepared using fuel and oxidizer at a stoichiometric ratio and Xe as a diluent that increases the overall density of the bubble mixture (55% Xe, 30% H2, 15% O2). The experiments are performed in the Wisconsin Shock Tube Laboratory in a 9.2 m vertical shock tube with a 25.4 cm x 25.4 cm square cross-section. An injector is used to generate a 5 cm diameter soap film bubble filled with the combustible mixture. The injector retracts flush into the side of the tube releasing the bubble into a state of free fall. The combustible bubble is accelerated by a planar shock wave in N2 (2.0 < M < 2.8). The mismatch of acoustic impedances results in shock-focusing at the downstream pole of the bubble. The shock focusing results in localized temperatures and pressures significantly larger than nominal conditions behind a planar shock wave, resulting in auto-ignition at the focus. Planar Mie scattering and chemiluminescence are used simultaneously to visualize the bubble morphology and combustion characteristics. During the combustion phase, both the span-wise and stream-wise lengths of the bubble are seen to increase compared to the non-combustible scenario. Additionally, smaller instabilities are observed on the upstream surface, which are absent in the non-combustible bubbles.

  6. Magnetized SASI: its mechanism and possible connection to some QPOs in XRBs

    NASA Astrophysics Data System (ADS)

    Dhang, Prasun; Sharma, Prateek; Mukhopadhyay, Banibrata

    2018-05-01

    The presence of a surface at the inner boundary, such as in a neutron star or a white dwarf, allows the existence of a standing shock in steady spherical accretion. The standing shock can become unstable in 2D or 3D; this is called the standing accretion shock instability (SASI). Two mechanisms - advective-acoustic and purely acoustic - have been proposed to explain SASI. Using axisymmetric hydrodynamic and magnetohydrodynamic simulations, we find that the advective-acoustic mechanism better matches the observed oscillation time-scales in our simulations. The global shock oscillations present in the accretion flow can explain many observed high frequency (≳100 Hz) quasi-periodic oscillations (QPOs) in X-ray binaries. The presence of a moderately strong magnetic field adds more features to the shock oscillation pattern, giving rise to low frequency modulation in the computed light curve. This low frequency modulation can be responsible for ˜100 Hz QPOs (known as hHz QPOs). We propose that the appearance of hHz QPO determines the separation of twin peak QPOs of higher frequencies.

  7. Shock Corrugation by Rayleigh-Taylor Instability in Gamma-Ray Burst Afterglow Jets

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2014-08-01

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  8. Studies on Equatorial Shock Formation During Plasmaspheric Refilling

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1995-01-01

    During the grant period from August 1, 1994 to October 31, 1995 we have continued to investigate the effects of plasma wave instabilities on the early stage plasmaspheric refilling. Since ion beams are the primary feature of the interhemispheric plasma flows during the early stage refilling, ion-beam driven instabilities and associated waves are of primary interest. The major findings of this research are briefly summarized here. After a systematic examination of the relevant plasma instabilities, we realized that when the interhemispheric plasma flows begin to interpenetrate at the equator, the most relevant plasma instability is the electrostatic ion cyclotron wave instability. Only at later stages the ion-acoustic instability may be affecting the plasma flow. An interesting property of the electrostatic ion cyclotron wave is that it heats ions perpendicular to the magnetic field. When the ions in the field-aligned flows are transversely heated, they are trapped in the magnetic flux tube, thus affecting the refilling process. The eic wave instability is a microprocess with scale length of the order of ion Larmor radius and the corresponding time scale is the ion cyclotron period. We have attempted to tackle the problem for the plasmaspheric refilling by incorporating the effects of eic wave instability on the mesoscale plasma flow when the properties of the latter exceeds the critical conditions for the former. We have compared the results on refilling from the model with and without the eic instability effects.

  9. Gravitational Instabilities in Gaseous Protoplanetary Disks and Implications for Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Durisen, R. H.; Boss, A. P.; Mayer, L.; Nelson, A. F.; Quinn, T.; Rice, W. K. M.

    Protoplanetary gas disks are likely to experience gravitational instabilities (GIs) during some phase of their evolution. Density perturbations in an unstable disk grow on a dynamic timescale into spiral arms that produce efficient outward transfer of angular momentum and inward transfer of mass through gravitational torques. In a cool disk with sufficiently rapid cooling, the spiral arms in an unstable disk form self-gravitating clumps. Whether gas giant protoplanets can form by such a disk instability process is the primary question addressed by this review. We discuss the wide range of calculations undertaken by ourselves and others using various numerical techniques, and we report preliminary results from a large multicode collaboration. Additional topics include triggering mechanisms for GIs, disk heating and cooling, orbital survival of dense clumps, interactions of solids with GI-driven waves and shocks, and hybrid scenarios where GIs facilitate core accretion. The review ends with a discussion of how well disk instability and core accretion fare in meeting observational constraints.

  10. Mind the gap: a flow instability controlled by particle-surface distance

    NASA Astrophysics Data System (ADS)

    Driscoll, Michelle; Delmotte, Blaise; Youssef, Mena; Sacanna, Stefano; Donev, Aleksandar; Chaikin, Paul

    2016-11-01

    Does a rotating particle always spin in place? Not if that particle is near a surface: rolling leads to translational motion, as well as very strong flows around the particle, even quite far away. These large advective flows strongly couple the motion of neighboring particles, giving rise to strong collective effects in groups of rolling particles. Using a model experimental system, weakly magnetic colloids driven by a rotating magnetic field, we observe that driving a compact group of microrollers leads to a new kind of flow instability. First, an initially uniformly-distributed strip of particles evolves into a shock structure, and then it becomes unstable, emitting fingers with a well-defined wavelength. Using 3D large-scale simulations in tandem with our experiments, we find that the instability wavelength is controlled not by the driving torque or the fluid viscosity, but a geometric parameter: the microroller's distance above the container floor. Furthermore, we find that the instability dynamics can be reproduced using only one ingredient: hydrodynamic interactions near a no-slip boundary.

  11. The Multi-Dimensional Structure of Radiative Shocks: Suppressed Thermal X-rays and Relativistic Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Steinberg, Elad; Metzger, Brian D.

    2018-06-01

    Radiative shocks, behind which gas cools faster than the dynamical time, play a key role in many astrophysical transients, including classical novae and young supernovae interacting with circumstellar material. The dense layer behind high Mach number M ≫ 1 radiative shocks is susceptible to thin-shell instabilities, creating a "corrugated" shock interface. We present two and three-dimensional hydrodynamical simulations of optically-thin radiative shocks to study their thermal radiation and acceleration of non-thermal relativistic ions. We employ a moving-mesh code and a specialized numerical technique to eliminate artificial heat conduction across grid cells. The fraction of the shock's luminosity Ltot radiated at X-ray temperatures kT_sh ≈ (3/16)μ m_p v_sh2 expected from a one-dimensional analysis is suppressed by a factor L(>T_sh/3)/L_tot ≈ 4.5/M^{4/3} for M ≈ 4-36. This suppression results in part from weak shocks driven into under-pressured cold filaments by hot shocked gas, which sap thermal energy from the latter faster than it is radiated. Combining particle-in-cell simulation results for diffusive shock acceleration with the inclination angle distribution across the shock (relative to an upstream magnetic field in the shock plane-the expected geometry for transient outflows), we predict the efficiency and energy spectrum of ion acceleration. Though negligible acceleration is predicted for adiabatic shocks, the corrugated shock front enables local regions to satisfy the quasi-parallel magnetic field geometry required for efficient acceleration, resulting in an average acceleration efficiency of ɛnth ˜ 0.005 - 0.02 for M ≈ 12-36, in agreement with modeling of the gamma-ray nova ASASSN-16ma.

  12. Gravitational instabilities in a protosolar-like disc - I. Dynamics and chemistry

    NASA Astrophysics Data System (ADS)

    Evans, M. G.; Ilee, J. D.; Boley, A. C.; Caselli, P.; Durisen, R. H.; Hartquist, T. W.; Rawlings, J. M. C.

    2015-10-01

    To date, most simulations of the chemistry in protoplanetary discs have used 1 + 1D or 2D axisymmetric α-disc models to determine chemical compositions within young systems. This assumption is inappropriate for non-axisymmetric, gravitationally unstable discs, which may be a significant stage in early protoplanetary disc evolution. Using 3D radiative hydrodynamics, we have modelled the physical and chemical evolution of a 0.17 M⊙ self-gravitating disc over a period of 2000 yr. The 0.8 M⊙ central protostar is likely to evolve into a solar-like star, and hence this Class 0 or early Class I young stellar object may be analogous to our early Solar system. Shocks driven by gravitational instabilities enhance the desorption rates, which dominate the changes in gas-phase fractional abundances for most species. We find that at the end of the simulation, a number of species distinctly trace the spiral structure of our relatively low-mass disc, particularly CN. We compare our simulation to that of a more massive disc, and conclude that mass differences between gravitationally unstable discs may not have a strong impact on the chemical composition. We find that over the duration of our simulation, successive shock heating has a permanent effect on the abundances of HNO, CN and NH3, which may have significant implications for both simulations and observations. We also find that HCO+ may be a useful tracer of disc mass. We conclude that gravitational instabilities induced in lower mass discs can significantly, and permanently, affect the chemical evolution, and that observations with high-resolution instruments such as Atacama Large Millimeter/submillimeter Array (ALMA) offer a promising means of characterizing gravitational instabilities in protosolar discs.

  13. Spectral analysis of heart rate variability predicts mortality and instability from vascular injury.

    PubMed

    Koko, Kiavash R; McCauley, Brian D; Gaughan, John P; Fromer, Marc W; Nolan, Ryan S; Hagaman, Ashleigh L; Brown, Spencer A; Hazelton, Joshua P

    2018-04-01

    Spectral analysis of continuous blood pressure and heart rate variability provides a quantitative assessment of autonomic response to hemorrhage. This may reveal markers of mortality as well as endpoints of resuscitation. Fourteen male Yorkshire pigs, ranging in weight from 33 to 36 kg, were included in the analysis. All pigs underwent laparotomy and then sustained a standardized retrohepatic inferior vena cava injury. Animals were then allowed to progress to class 3 hemorrhagic shock and where then treated with abdominal sponge packing followed by 6 h of crystalloid resuscitation. If the pigs survived the 6 h resuscitation, they were in the survival (S) group, otherwise they were placed in the nonsurvival (NS) group. Fast Fourier transformation calculations were used to convert the components of blood pressure and heart rate variability into corresponding frequency classifications. Autonomic tones are represented as the following: high frequency (HF) = parasympathetic tone, low frequency (LF) = sympathetic, and very low frequency (VLF) = renin-angiotensin aldosterone system. The relative sympathetic to parasympathetic tone was expressed as LF/HF ratio. Baseline hemodynamic parameters were equal for the S (n = 11) and NS groups. LF/HF was lower at baseline for the NS group but was higher after hemorrhage and the resuscitation period indicative of a predominately parasympathetic response during hemorrhagic shock before mortality. HF signal was lower in the NS group during the resuscitation indicating a relatively lower sympathetic tone during hemorrhagic shock, which may have contributed to mortality. Finally, the NS group had a lower VLF signal at baseline (e.g., [S] 16.3 ± 2.5 versus [NS] 4.6 ± 2.9 P < 0.05,) which was predictive of mortality and hemodynamic instability in response to a similar hemorrhagic injury. An increased LF/HF ratio, indicative of parasympathetic predominance following injury and during resuscitation of hemorrhagic shock was a marker of impending death. Spectral analysis of heart rate variability can also identify autonomic lability following hemorrhagic injuries with implications for first responder triage. Furthermore, a decreased VLF signal at baseline indicates an additional marker of hemodynamic instability and marker of mortality following a hemorrhagic injury. These data indicate that continuous quantitative assessment of autonomic response can be a predictor of mortality and potentially guide resuscitation of patients in hemorrhagic shock. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Soft-sphere simulations of a planar shock interaction with a granular bed

    NASA Astrophysics Data System (ADS)

    Stewart, Cameron; Balachandar, S.; McGrath, Thomas P.

    2018-03-01

    Here we consider the problem of shock propagation through a layer of spherical particles. A point particle force model is used to capture the shock-induced aerodynamic force acting upon the particles. The discrete element method (DEM) code liggghts is used to implement the shock-induced force as well as to capture the collisional forces within the system. A volume-fraction-dependent drag correction is applied using Voronoi tessellation to calculate the volume of fluid around each individual particle. A statistically stationary frame is chosen so that spatial and temporal averaging can be performed to calculate ensemble-averaged macroscopic quantities, such as the granular temperature. A parametric study is carried out by varying the coefficient of restitution for three sets of multiphase shock conditions. A self-similar profile is obtained for the granular temperature that is dependent on the coefficient of restitution. A traveling wave structure is observed in the particle concentration downstream of the shock and this instability arises from the volume-fraction-dependent drag force. The intensity of the traveling wave increases significantly as inelastic collisions are introduced. Downstream of the shock, the variance in Voronoi volume fraction is shown to have a strong dependence upon the coefficient of restitution, indicating clustering of particles induced by collisional dissipation. Statistics of the Voronoi volume are computed upstream and downstream of the shock and compared to theoretical results for randomly distributed hard spheres.

  15. Incident shock strength evolution in overexpanded jet flow out of rocket nozzle

    NASA Astrophysics Data System (ADS)

    Silnikov, Mikhail V.; Chernyshov, Mikhail V.

    2017-06-01

    The evolution of the incident shock in the plane overexpanded jet flow or in the axisymmetric one is analyzed theoretically and compared at the whole range of governing flow parameters. Analytical results can be applied to avoid jet flow instability and self-oscillation effects at rocket launch, to improve launch safety and to suppress shock-wave induced noise harmful to environment and personnel. The mathematical model of ;differential conditions of dynamic compatibility; was applied to the curved shock in non-uniform plane or axisymmetrical flow. It allowed us to study such features of the curved incident shock and flow downstream it as shock geometrical curvature, jet boundary curvature, local increase or decrease of the shock strength, flow vorticity rate (local pressure gradient) in the vicinity of the nozzle lip, static pressure gradient in the compressed layer downstream the shock, and many others. All these quantities sufficiently depend on the flow parameters (flow Mach number, jet overexpansion rate, nozzle throat angle, and ration of gas specific heats). These dependencies are sometimes unusual, especially at small Mach numbers. It was also surprising that there is no great difference among all these flowfield features in the plane jet and in the axisymmetrical jet flow out of a nozzle with large throat angle, but all these parameters behave in a quite different way in an axisymmetrical jet at small and moderate nozzle throat angles.

  16. Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification

    NASA Astrophysics Data System (ADS)

    Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.

    2017-03-01

    Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peralta, Pedro; Fortin, Elizabeth; Opie, Saul

    Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong andmore » repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 10 5 s -1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity (or decreasing the initial wavelength) delays the perturbation decay. Conversely our experimental data, analysis and simulations show that for materials with elastic yield strength Y the normalized shock perturbation amplitude evolves with Yλ/A 0, which shows wavelength increases have the opposite effect as in viscous materials and perturbation decay is also dependent on initial amplitude A 0 (viscous materials are independent of this parameter). Materials where strength had clear strain rate dependence, e.g., such as a PTW material law, behaved similarly to materials with only an effective yield stress (elastic-perfectly plastic) in the shock front perturbation studies obeying a Y effλA 0 relationship where Y eff was a constant (near ~400 MPa for Cu for strain rates around 10 6 s -1). Magnitude changes in strain rate would increase Y eff as would be expected from the PTW behavior, but small perturbations (typical of regions behind the shock front) near a mean had little effect. Additional work based on simulations showed that phase transformation kinetics can affect the behavior of the perturbed shock front as well as the evolution of the RM-like instability that develops due to the imprint of the perturbed shock front on the initially flat surface as the shock breaks out.« less

  18. Final report on technical work accomplished under contract NASw-2953

    NASA Technical Reports Server (NTRS)

    Fredricks, R. W.

    1977-01-01

    A report is given on the technical work accomplished in the area of plasma physics. The subjects covered are: (1) oblique whistler instabilities, (2) current-limited electron beam injection, (3) three-dimensional ion sound turbulence, (4) theoretical aspects of sounder antenna operation and (5) whistler modes in bow shock structures.

  19. Effects of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability Over Cones

    NASA Technical Reports Server (NTRS)

    Kara, Kursat; Balakumar, Ponnampalam; Kandil, Osama A.

    2011-01-01

    The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary-layer transition. The current solutions, compared with experimental observations and other computational results, exhibit good agreement.

  20. Impact of Inner Surface Perturbations on the Stability of Cylindrical Liner Implosion

    NASA Astrophysics Data System (ADS)

    Weis, Matthew; Peterson, Kyle; Hess, Mark; Lau, Y. Y.; Zhang, Peng; Gilgenbach, Ronald

    2015-11-01

    This paper studies the effects of initial perturbations on the inner liner surface (ILS) of an imploding cylindrical liner. In MagLIF, nonuniform preheat of the fuel could provide an additional source of spatial nonuniformity on the ILS. A blast wave generated by the laser preheat might trigger the Richtmyer-Meshkov instability (RM) on the ILS which then serves as another seed to the Rayleigh-Taylor instability (RT) during the stagnation (deceleration) phase of the implosion. Another scenario is that the shock initiated from the outer liner surface, during current rise, propagates inward and is reflected at the ILS. This reflected shock would carry the initial ILS perturbations which then serve as an additional seed for the magneto-RT (MRT) during the acceleration phase of the implosion. These potentially dangerous interactions are analyzed using the 2D HYDRA code. The effects of axial magnetic fields, of the initial surface roughness spectrum, and of gas fill or water fill (to examine deceleration phase RT) are studied. M. R. Weis was supported by the Sandia National Laboratories. This work was also supported by DoE Grant DE-SC0012328.

  1. High Strain Rate and Shock-Induced Deformation in Metals

    NASA Astrophysics Data System (ADS)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as results from density functional theory calculations.

  2. First Satellite Measurement of the ULF Wave Growth Rate in the Ion Foreshock

    NASA Astrophysics Data System (ADS)

    Dorfman, Seth

    2017-10-01

    Waves generated by accelerated particles are important throughout our heliosphere. These particles often gain their energy at shocks via Fermi acceleration. At the Earth's bow shock, this mechanism accelerates ion beams back into the solar wind; the beams can then generate ultra low frequency (ULF) waves via an ion-ion right hand resonant instability. These waves influence the shock structure and particle acceleration, lead to coherent structures in the magnetosheath, and are ideal for non-linear interaction studies relevant to turbulence. We report the first satellite measurement of the ultralow frequency (ULF) wave growth rate in the upstream region of the Earth's bow shock. This is made possible by employing the two ARTEMIS spacecraft orbiting the moon at 60 Earth radii from Earth to characterize crescent-shaped reflected ion beams and relatively monochromatic ULF waves. The event to be presented features spacecraft separation of 2.5 Earth radii (0.9 +/- 0.1 wavelengths) in the solar wind flow direction along a nearly radial interplanetary magnetic field. By contrast, most prior ULF wave observations use spacecraft with insufficient separation to see wave growth and are so close to Earth (within 30 Earth radii) that waves convected from different events interfere. Using ARTEMIS data, the ULF wave growth rate is estimated and found to fall within dispersion solver predictions during the initial growth time. Observed frequencies and wave numbers are within the predicted range. Other ULF wave properties such as the phase speed, obliquity, and polarization are consistent with expectations from resonant beam instability theory and prior satellite measurements. These results not only advance our understanding of the foreshock, but will also inform future nonlinear studies related to turbulence and dissipation in the heliosphere. Supported by NASA, NASA Eddy Postdoctoral Fellowship.

  3. Manipulation of three-dimensional Richtmyer-Meshkov instability by initial interfacial principal curvatures

    NASA Astrophysics Data System (ADS)

    Guan, Ben; Zhai, Zhigang; Si, Ting; Lu, Xiyun; Luo, Xisheng

    2017-03-01

    The characteristics of three-dimensional (3D) Richtmyer-Meshkov instability (RMI) in the early stages are studied numerically. By designing 3D interfaces that initially possess various identical and opposite principal curvature combinations, the growth rate of perturbations can be effectively manipulated. The weighted essentially nonoscillatory scheme and the level set method combined with the real ghost fluid method are used to simulate the flow. The results indicate that the interface development and the shock propagation in 3D cases are much more complicated than those in 2D case, and the evolution of 3D interfaces is heavily dependent on the initial interfacial principal curvatures. The 3D structure of wave patterns induces high pressure zones in the flow field, and the pressure oscillations change the local instabilities of interfaces. In the linear stages, the perturbation growth rate follows regularity as the interfacial principal curvatures vary, which is further predicted by the stability theory of 2D and 3D interfaces. It is also found that hysteresis effects exist at the onset of the linear stages in the 3D case for the same initial perturbations as the 2D case, resulting in different evolutions of 3D RMI in the nonlinear stages.

  4. Solid-state experiments at high pressure and strain rates

    NASA Astrophysics Data System (ADS)

    Kalantar, D. H.

    1999-11-01

    We are developing experiments on intense laser facilities to study shock compressed metal foils in the solid state. At high pressure, Rayleigh-Taylor induced perturbation growth can be reduced by the strength of the material. [1] We use this to characterize the strength of the metal foils accelerated at high pressure in the solid state. In our experiments, Al and Cu foils are compressed and accelerated with staged shocks using a temporally shaped x-ray drive that is generated in a Nova laser hohlraum target. [2] The peak pressures exceed 1 Mbar (100 GPa), and strain rates are very high, 10^7-10^9 s-1. The instability growth is observed by x-ray radiography. To probe the state of the material under compression and to demonstrate that it remains solid, we are using the dynamic Bragg diffraction technique. [3] This technique has been demonstrated on the Nova laser [4] using Si crystals shocked to 200-500 kbar. Additionally, we have observed diffraction from Cu crystals that are shocked to 100-200 kbar by direct laser irradiation on the Trident and OMEGA lasers. Compressions of up to a 10in the crystal lattice spacing have been observed. We will present the results of our work to develop these high pressure solid-state hydrodynamics experiments. 1. J. F. Barnes et al, J. Appl. Phys. 45, 727 (1974); A. I. Lebedev et al , Proc. 4th IWPCTM, 29 March-1 April, 1993, p. 81. 2. D. H. Kalantar et al., to appear in Int. J. of Impact Eng. (1999). 3. R. R. Whitlock and J. S. Wark, Phys. Rev. B 52, 8 (1995). 4. D. H. Kalantar et al, Rev. Sci. Instrum. 70, 629 (1999).

  5. Collisionless slow shocks in magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Cremer, Michael; Scholer, Manfred

    The kinetic structure of collisionless slow shocks in the magnetotail is studied by solving the Riemann problem of the collapse of a current sheet with a normal magnetic field component using 2-D hybrid simulations. The collapse results in a current layer with a hot isotropic distribution and backstreaming ions in a boundary layer. The lobe plasma outside and within the boundary layer exhibits a large perpendicular to parallel temperature anisotropy. Waves in both regions propagate parallel to the magnetic field. In a second experiment a spatially limited high density beam is injected into a low beta background plasma and the subsequent wave excitation is studied. A model for slow shocks bounding the reconnection layer in the magnetotail is proposed where backstreaming ions first excite obliquely propagating waves by the electromagnetic ion/ion cyclotron instability, which lead to perpendicular heating. The T⊥/T∥ temperature anisotropy subsequently excites parallel propagating Alfvén ion cyclotron waves, which are convected into the slow shock and are refracted in the downstream region.

  6. Multi-dimensional high order essentially non-oscillatory finite difference methods in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1992-01-01

    The nonlinear stability of compact schemes for shock calculations is investigated. In recent years compact schemes were used in various numerical simulations including direct numerical simulation of turbulence. However to apply them to problems containing shocks, one has to resolve the problem of spurious numerical oscillation and nonlinear instability. A framework to apply nonlinear limiting to a local mean is introduced. The resulting scheme can be proven total variation (1D) or maximum norm (multi D) stable and produces nice numerical results in the test cases. The result is summarized in the preprint entitled 'Nonlinearly Stable Compact Schemes for Shock Calculations', which was submitted to SIAM Journal on Numerical Analysis. Research was continued on issues related to two and three dimensional essentially non-oscillatory (ENO) schemes. The main research topics include: parallel implementation of ENO schemes on Connection Machines; boundary conditions; shock interaction with hydrogen bubbles, a preparation for the full combustion simulation; and direct numerical simulation of compressible sheared turbulence.

  7. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun

    2008-07-01

    Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.

  8. The Ignition Physics Campaign on NIF: Status and Progress

    NASA Astrophysics Data System (ADS)

    Edwards, M. J.; Ignition Team

    2016-03-01

    We have made significant progress in ICF implosion performance on NIF since the 2011 IFSA. Employing a 3-shock, high adiabat CH (“High-Foot”) design, total neutron yields have increased 10-fold to 6.3 x1015 (a yield of ∼ 17 kJ, which is greater than the energy invested in the DT fuel ∼ 12kJ). At that level, the yield from alpha self-heating is essentially equivalent to the compression yield, indicating that we are close to the alpha self-heating regime. Low adiabat, 4-shock High Density Carbon (HDC) capsules have been imploded in conventional gas-filled hohlraums, and employing a 6 ns, 2-shock pulse, HDC capsules were imploded in near-vacuum hohlraums with overall coupling ∼ 98%. Both the 4- and 2-shock HDC capsules had very low mix and high yield over simulated performance. Rugby holraums have demonstrated uniform x-ray drive with minimal Cross Beam Energy Transfer (CBET), and we have made good progress in measuring and modelling growth of ablation front hydro instabilities.

  9. Jet and Vortex Projectile Flows in Shock/bubble-on-wall Configuration

    NASA Astrophysics Data System (ADS)

    Peng, Gaozhu; Zabusky, Norman

    2001-11-01

    We observe intense coaxial upstream and radial flow structures from a shock in air interacting with a SF6 half-bubble placed against an ideally reflecting wall. Our axisymmetric numerical simulations were done with PPM and models a spherical bubble struck symmetrically by two identical approaching shocks . A "dual" vorticity deposition arises at early time and a coaxial upstream moving primary jet and radial vortex ring flow appears. A coherent vortex ring or vortex projectile (VP), with entrained shocklets originates from the vortex layer produced at the Mach stem (which arises from the primary reflected shock). This VP moves ahead of the jet. The original transmitted wave and other trapped waves in the expanding axial jet causes a collapsing and expanding cavity and other instabilities on the complex bubble interface. We present and analyze our results with different diagnostics: vorticity, density, divergence of velocity, and numerical shadowgraph patterns; global quantification of circulation, enstrophy and r-integrated vorticity; etc. We also discuss data projection and filtering for quantifying and validating complex flows.

  10. On magnetic field amplification and particle acceleration near non-relativistic astrophysical shocks: particles in MHD cells simulations

    NASA Astrophysics Data System (ADS)

    van Marle, Allard Jan; Casse, Fabien; Marcowith, Alexandre

    2018-01-01

    We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and suprathermal particles. Such interaction is depicted by combining a grid-based magnetohydrodynamics description of the thermal fluid with particle in cell techniques devoted to the dynamics of suprathermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider in this study non-relativistic shocks with various Alfvénic Mach numbers and magnetic field obliquity. We recover all the features of both magnetic field amplification and particle acceleration from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell-hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger time-scales than in the parallel case. We show that in our simulations, the suprathermal particles are experiencing acceleration thanks to a pre-heating process of the particle similar to a shock drift acceleration leading to the corrugation of the shock front. Such oscillations of the shock front and the magnetic field locally help the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.

  11. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.

    2010-09-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation within spiral arms in disk galaxies. They can also contribute a substantial amount of kinetic energy to the interstellar gas by tapping the (differential) rotational motion. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability (TI) in vertically stratified galactic disks, focusing on environmental conditions (of heating and the galactic potential) similar to the Solar neighborhood. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve subject to interstellar cooling and heating as well as a stellar spiral potential. Due to TI, a disk with surface density Σ0 >= 6.7 M sun pc-2 rapidly turns to a thin dense slab near the midplane sandwiched between layers of rarefied gas. The imposed spiral potential leads to a vertically curved shock that exhibits strong flapping motions in the plane perpendicular to the arm. The overall flow structure at saturation is comprised of the arm, postshock expansion zone, and interarm regions that occupy typically 10%, 20%, and 70% of the arm-to-arm distance, in which the gas resides for 15%, 30%, and 55% of the arm-to-arm crossing time, respectively. The flows are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases in the postshock expansion zone, although gas with too-large postshock-density does not undergo this return phase transition, instead forming dense condensations. If self-gravity is omitted, the shock flapping drives random motions in the gas, but only up to ~2-3 km s-1 in the in-plane direction and less than 2 km s-1 in the vertical direction. Time-averaged shock profiles show that the spiral arms in stratified disks are broader and less dense compared to those in unstratified models, and that the vertical density distribution is overall consistent with local effective hydrostatic equilibrium. Inclusion of self-gravity increases the dense gas fraction by a factor of ~2 and raises the in-plane velocity dispersion to ~5-7 km s-1. When the disks are massive enough, with Σ0 >= 5 M sun pc-2, self-gravity promotes formation of bound clouds that repeatedly collide with each other in the arm and break up in the postshock expansion zone.

  12. Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Sharma, Prateek; Quataert, Eliot; Parrish, Ian J.

    2012-02-01

    We study the interplay among cooling, heating, conduction and magnetic fields in gravitationally stratified plasmas using simplified, plane-parallel numerical simulations. Since the physical heating mechanism remains uncertain in massive haloes such as groups or clusters, we adopt a simple, phenomenological prescription which enforces global thermal equilibrium and prevents a cooling flow. The plasma remains susceptible to local thermal instability, however, and cooling drives an inward flow of material. For physically plausible heating mechanisms in clusters, the thermal stability of the plasma is independent of its convective stability. We find that the ratio of the cooling time-scale to the dynamical time-scale tcool/tff controls the non-linear evolution and saturation of the thermal instability: when tcool/tff≲ 1, the plasma develops extended multiphase structure, whereas when tcool/tff≳ 1 it does not. (In a companion paper, we show that the criterion for thermal instability in a more realistic, spherical potential is somewhat less stringent, tcool/tff≲ 10.) When thermal conduction is anisotropic with respect to the magnetic field, the criterion for multiphase gas is essentially independent of the thermal conductivity of the plasma. Our criterion for local thermal instability to produce multiphase structure is an extension of the cold versus hot accretion modes in galaxy formation that applies at all radii in hot haloes, not just to the virial shock. We show that this criterion is consistent with data on multiphase gas in galaxy groups and clusters; in addition, when tcool/tff≳ 1, the net cooling rate to low temperatures and the mass flux to small radii are suppressed enough relative to models without heating to be qualitatively consistent with star formation rates and X-ray line emission in groups and clusters.

  13. The pulsed dye laser versus the Q-switched Nd:YAG laser in laser-induced shock-wave lithotripsy.

    PubMed

    Thomas, S; Pensel, J; Engelhardt, R; Meyer, W; Hofstetter, A G

    1988-01-01

    To date, there are two fairly well-established alternatives for laser-induced shock-wave lithotripsy in clinical practice. The Q-switched Nd:YAG laser is distinguished by the high-stone selectivity of its coupler systems. The necessity of a coupler system and its fairly small conversion rate of light energy into mechanical energy present serious drawbacks. Furthermore, the minimal outer diameter of the transmission system is 1.8 mm. The pulsed-dye laser can be used with a highly flexible and uncomplicated 200-micron fiber. However, the laser system itself is more complicated than the Q-switched Nd:YAG laser and requires a great deal of maintenance. Biological evaluation of damage caused by direct irradiation shows that both laser systems produce minor damage of different degrees. YAG laser lithotripsy with the optomechanical coupler was assessed in 31 patients with ureteral calculi. The instability and limited effectiveness of the fiber application system necessitated auxiliary lithotripsy methods in 14 cases. Dye-laser lithotripsy is currently being tested in clinical application. Further development, such as systems for blind application or electronic feedback mechanisms to limit adverse tissue effects, have yet to be optimized. Nevertheless, laser-induced shock-wave lithotripsy has the potential to become a standard procedure in the endourologic management of stone disease.

  14. A numerical study of the stability of radiative shocks. [in accretion flows onto white dwarf stars

    NASA Technical Reports Server (NTRS)

    Imamura, J. N.; Wolff, M. T.; Durisen, R. H.

    1984-01-01

    Attention is given to the oscillatory instability of optically thin radiative shocks in time-dependent numerical calculations of accretion flows onto degenerate dwarfs. The present nonlinear calculations yield good quantitative agreement with the linear results obtained for oscillation frequencies, damping rates, and critical alpha-values. The fundamental mode and the first overtone in the shock radius and luminosity variations can be clearly identified, and evidence is sometimes seen for the second overtone. Time-dependent calculations are also performed which include additional physics relevant to degenerate dwarf accretion, such as electron thermal conduction, unequal electron and ion temperatures, Compton cooling, and relativistic corrections to the bremsstrahlung cooling law. All oscillatory modes are found to be damped, and hence stable, in the case of a 1-solar mass white dwarf accreting in spherical symmetry.

  15. Electron-acoustic Instability Simulated By Modified Zakharov Equations

    NASA Astrophysics Data System (ADS)

    Jásenský, V.; Fiala, V.; Vána, O.; Trávnícek, P.; Hellinger, P.

    We present non-linear equations describing processes in plasma when electron - acoustic waves are excited. These waves are present for instance in the vicinity of Earth's bow shock and in the polar ionosphere. Frequently they are excited by an elec- tron beam in a plasma with two electron populations, a cold and hot one. We derive modified Zakharov equations from kinetic theory for such a case together with numer- ical method for solving of this type of equations. Bispectral analysis is used to show which non-linear wave processes are of importance in course of the instability. Finally, we compare these results with similar simulations using Vlasov approach.

  16. MULTIPLE CURRENT SHEET SYSTEMS IN THE OUTER HELIOSPHERE: ENERGY RELEASE AND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, D.; Gingell, P. W.; Matteini, L.

    2016-05-01

    In the outer heliosphere, beyond the solar wind termination shock, it is expected that the warped heliospheric current sheet forms a region of closely packed, multiple, thin current sheets. Such a system may be subject to the ion-kinetic tearing instability, and hence may generate magnetic islands and hot populations of ions associated with magnetic reconnection. Reconnection processes in this environment have important implications for local particle transport, and for particle acceleration at reconnection sites and in turbulence. We study this complex environment by means of three-dimensional hybrid simulations over long timescales, in order to capture the evolution from linear growthmore » of the tearing instability to a fully developed turbulent state at late times. The final state develops from the highly ordered initial state via both forward and inverse cascades. Component and spectral anisotropy in the magnetic fluctuations is present when a guide field is included. The inclusion of a population of newborn interstellar pickup protons does not strongly affect these results. Finally, we conclude that reconnection between multiple current sheets can act as an important source of turbulence in the outer heliosphere, with implications for energetic particle acceleration and propagation.« less

  17. Numerical comparison of Riemann solvers for astrophysical hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klingenberg, Christian; Schmidt, Wolfram; Waagan, Knut

    2007-11-01

    The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.

  18. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, Brian M., E-mail: bmhaines@lanl.gov

    2015-08-15

    In this paper, we perform a series of high-resolution 3D simulations of an OMEGA-type inertial confinement fusion (ICF) capsule implosion with varying levels of initial long-wavelength asymmetries in order to establish the physical energy loss mechanism for observed yield degradation due to long-wavelength asymmetries in symcap (gas-filled capsule) implosions. These simulations demonstrate that, as the magnitude of the initial asymmetries is increased, shell kinetic energy is increasingly retained in the shell instead of being converted to fuel internal energy. This is caused by the displacement of fuel mass away from and shell material into the center of the implosion duemore » to complex vortical flows seeded by the long-wavelength asymmetries. These flows are not fully turbulent, but demonstrate mode coupling through non-linear instability development during shell stagnation and late-time shock interactions with the shell interface. We quantify this effect by defining a separation lengthscale between the fuel mass and internal energy and show that this is correlated with yield degradation. The yield degradation shows an exponential sensitivity to the RMS magnitude of the long-wavelength asymmetries. This strong dependence may explain the lack of repeatability frequently observed in OMEGA ICF experiments. In contrast to previously reported mechanisms for yield degradation due to turbulent instability growth, yield degradation is not correlated with mixing between shell and fuel material. Indeed, an integrated measure of mixing decreases with increasing initial asymmetry magnitude due to delayed shock interactions caused by growth of the long-wavelength asymmetries without a corresponding delay in disassembly.« less

  19. ULF waves and plasma stability in different regions of the magnetosheath

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Escoubet, C. Philippe; Grison, Benjamin

    2016-04-01

    We present a statistical study of the occurrence and properties of ultra low frequency waves in the magnetosheath and interpret the results in terms of the competition of mirror and Alfvén-ion-cyclotron (AIC) instabilities. Both mirror and AIC waves are generated in high beta plasma of the magnetosheath when ion temperature anisotropy exceeds the threshold of the respective instabilities. These waves are frequently observed in the terrestrial and planetary magnetosheaths, but their distribution within the magnetosheath is inhomogeneous and their character varies as a function of location, local and upstream plasma parameters. We studied the spatial distribution of the two wave modes in the magnetosheath together with the local plasma parameters important for the stability of ULF waves. This analysis was performed on a dataset of all magnetosheath crossings observed by Cluster spacecraft over two years. For each observation we used bow shock, magnetopause and magnetosheath flow models to identify the relative position of the spacecraft with respect to magnetosheath boundaries and local properties of the upstream shock crossing. A strong dependence of parameters characterizing plasma stability and mirror/AIC wave occurrence on upstream ΘBn and MA is identified. The occurrence of mirror and AIC modes was compared against the respective instability thresholds and it was observed that AIC waves occurred nearly exclusively under mirror stable conditions. This is interpreted in terms of the different character of non-linear saturation of the two modes.

  20. Suspended liquid particle disturbance on laser-induced blast wave and low density distribution

    NASA Astrophysics Data System (ADS)

    Ukai, Takahiro; Zare-Behtash, Hossein; Kontis, Konstantinos

    2017-12-01

    The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency.

  1. GENOMIC INSTABILITY AND ENHANCED RADIOSENSITIVITY IN HSP70.1- AND HSP70.3-DEFICIENT MICE

    EPA Science Inventory



    Abstract

    Heat shock proteins (HSPs) are highly conserved among all organisms from prokaryotes to eukaryotes. In mice, the HSP genes Hsp70.1 and Hsp70.3 are induced by both endogenous and exogenous stressors, such as heat and toxicants. In order to determine wheth...

  2. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  3. Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion

    NASA Astrophysics Data System (ADS)

    Lv, Yu; Ihme, Matthias

    2014-08-01

    This paper presents the development of a discontinuous Galerkin (DG) method for application to chemically reacting flows in subsonic and supersonic regimes under the consideration of variable thermo-viscous-diffusive transport properties, detailed and stiff reaction chemistry, and shock capturing. A hybrid-flux formulation is developed for treatment of the convective fluxes, combining a conservative Riemann-solver and an extended double-flux scheme. A computationally efficient splitting scheme is proposed, in which advection and diffusion operators are solved in the weak form, and the chemically stiff substep is advanced in the strong form using a time-implicit scheme. The discretization of the viscous-diffusive transport terms follows the second form of Bassi and Rebay, and the WENO-based limiter due to Zhong and Shu is extended to multicomponent systems. Boundary conditions are developed for subsonic and supersonic flow conditions, and the algorithm is coupled to thermochemical libraries to account for detailed reaction chemistry and complex transport. The resulting DG method is applied to a series of test cases of increasing physico-chemical complexity. Beginning with one- and two-dimensional multispecies advection and shock-fluid interaction problems, computational efficiency, convergence, and conservation properties are demonstrated. This study is followed by considering a series of detonation and supersonic combustion problems to investigate the convergence-rate and the shock-capturing capability in the presence of one- and multistep reaction chemistry. The DG algorithm is then applied to diffusion-controlled deflagration problems. By examining convergence properties for polynomial order and spatial resolution, and comparing these with second-order finite-volume solutions, it is shown that optimal convergence is achieved and that polynomial refinement provides advantages in better resolving the localized flame structure and complex flow-field features associated with multidimensional and hydrodynamic/thermo-diffusive instabilities in deflagration and detonation systems. Comparisons with standard third- and fifth-order WENO schemes are presented to illustrate the benefit of the DG scheme for application to detonation and multispecies flow/shock-interaction problems.

  4. A mechanism for pressure anisotropy and mirror instability in the dayside magnetosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooker, N.U.; Siscoe, G.L.

    1977-01-01

    The plasma in the dayside magnetosheaht exhibits a persistent pressure anisotropy in the sense p/sub perpendicular/>p/sub parallel/. A likely source for this anisotropy is the effect of field compression and plasma depletion along field lines as magnetosheath plasma flows toward the magnetopause. The model of Zwan and Wolf describing this effect for the case of isotropic pressure is combined with the double-adiabatic fluid equations to predict the behavior of the anisotropic pressure. For a fluid element following a streamline inward from the bow shock, we find theoretical pressure anisotropies of magnitude large enough to trigger the mirror instability over mostmore » of the dayside magnetosheath. These findings are supported by the observations of Kaufmann et al. of large-amplitude hydromagnetic waves in the inner magnetosheath believed to be generated by the mirror instability. (AIP)« less

  5. Conditions for the onset of the current filamentation instability in the laboratory

    NASA Astrophysics Data System (ADS)

    Shukla, N.; Vieira, J.; Muggli, P.; Sarri, G.; Fonseca, R.

    2018-06-01

    The current filamentation instability (CFI) is capable of generating strong magnetic fields relevant to the explanation of radiation processes in astrophysical objects and leads to the onset of particle acceleration in collisionless shocks. Probing such extreme scenarios in the laboratory is still an open challenge. In this work, we investigate the possibility of using neutral -~e+$ beams to explore the CFI with realistic parameters, by performing two-dimensional particle-in-cell simulations. We show that CFI can occur unless the rate at which the beam expands due to finite beam emittance is larger than the CFI growth rate and as long as the role of the competing electrostatic two-stream instability (TSI) is negligible. We also show that the longitudinal energy spread, typical of plasma-based accelerated electron-positron fireball beams, plays a minor role in the growth of CFI in these scenarios.

  6. Collisionless shock formation and the prompt acceleration of solar flare ions

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Goodrich, C. C.; Vlahos, L.

    1988-01-01

    The formation mechanisms of collisionless shocks in solar flare plasmas are investigated. The priamry flare energy release is assumed to arise in the coronal portion of a flare loop as many small regions or 'hot spots' where the plasma beta locally exceeds unity. One dimensional hybrid numerical simulations show that the expansion of these 'hot spots' in a direction either perpendicular or oblique to the ambient magnetic field gives rise to collisionless shocks in a few Omega(i), where Omega(i) is the local ion cyclotron frequency. For solar parameters, this is less than 1 second. The local shocks are then subsequently able to accelerate particles to 10 MeV in less than 1 second by a combined drift-diffusive process. The formation mechanism may also give rise to energetic ions of 100 keV in the shock vicinity. The presence of these energetic ions is due either to ion heating or ion beam instabilities and they may act as a seed population for further acceleration. The prompt acceleration of ions inferred from the Gamma Ray Spectrometer on the Solar Maximum Mission can thus be explained by this mechanism.

  7. Interaction of a supernova shock with two interstellar clouds

    NASA Astrophysics Data System (ADS)

    Hansen, J. F.; McKee, C. F.

    2005-10-01

    The interaction of supernova shocks and interstellar clouds is an important astrophysical phenomenon since it can result in stellar and planetary formation. Our experiments attempt to simulate this mass-loading as it occurs when a shock passes through interstellar clouds. We drive a strong shock using a 5 kJ laser into a foam-filled cylinder with embedded Al spheres (diameter D=120 μm) simulating interstellar clouds. The density ratio between Al and foam is ˜9. We have previously reported on the interaction between shock and a single cloud, and the ensuing Kelvin-Helmholtz and Widnall instabilities. We now report on experiments under way in which two clouds are placed side by side. Cloud separation (center to center) is either 1.2xD or 1.5xD. Initial results for 1.2xD show that cloud material merges and travels further downstream than in the single cloud case. For 1.5xD, material does not merge, but the clouds tilt toward each other. Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

  8. Comparison of hydrodynamic simulations with two-shockwave drive target experiments

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William

    2015-11-01

    We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number A --> - 1 of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.

  9. DebtRank: A Microscopic Foundation for Shock Propagation.

    PubMed

    Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido

    2015-01-01

    The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical "microscopic" theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008-2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods) and six (during the crisis) when we stress the system with a 0.5% shock on external (i.e. non-interbank) assets for all banks.

  10. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    NASA Astrophysics Data System (ADS)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  11. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  12. DebtRank: A Microscopic Foundation for Shock Propagation

    PubMed Central

    Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido

    2015-01-01

    The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical “microscopic” theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008–2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods) and six (during the crisis) when we stress the system with a 0.5% shock on external (i.e. non-interbank) assets for all banks. PMID:26091013

  13. SASI ACTIVITY IN THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF SUPERNOVA CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanke, Florian; Mueller, Bernhard; Wongwathanarat, Annop

    The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M{sub Sun} progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phasemore » of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, {+-}1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M{sub Sun} progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.« less

  14. Galactic wind shells and high redshift radio galaxies. On the nature of associated absorbers

    NASA Astrophysics Data System (ADS)

    Krause, M.

    2005-06-01

    A jet is simulated on the background of a galactic wind headed by a radiative bow shock. The wind shell, which is due to the radiative bow shock, is effectively destroyed by the impact of the jet cocoon, thanks to Rayleigh-Taylor instabilities. Associated strong HI absorption, and possibly also molecular emission, in high redshift radio galaxies which is observed preferentially in the smaller ones may be explained by that model, which is an improvement of an earlier radiative bow shock model. The model requires temperatures of ≈106 K in the proto-clusters hosting these objects, and may be tested by high resolution spectroscopy of the Lyα line. The simulations show that - before destruction - the jet cocoon fills the wind shell entirely for a considerable time with intact absorption system. Therefore, radio imaging of sources smaller than the critical size should reveal the round central bubbles, if the model is correct.

  15. Cosmic Ray Production in Supernovae

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Ellison, D. C.; Marcowith, A.; Osipov, S. M.

    2018-02-01

    We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above 10^{18} eV over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.

  16. Magnetic fields and radiative shocks in protogalaxies and the origin of globular clusters

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.; Clocchiatti, Alejandro; Kang, Hyesung

    1992-01-01

    The paper examines the hypothesis that globular clusters formed from gravitational instability in dense sheets of gas produced behind radiative shocks inside protogalaxies, such as those produced by the collision of subgalactic mass fragments partaking of the virial motions within the protogalaxy, in order to determine the differences which result if a magnetic field is present in the preshock medium. The MHD conservation equations are solved along with rate equations for nonequilibrium ionization, recombination, molecular formation and dissociation, and the equations of radiative transfer for steady-state shocks of velocity 300 km/s in a gas of preshock densities of 0.1-1 cu cm, and magnetic field strengths of 0.1-6 micro-G. The magnetic field is found to limit the degree of postshock compression and, thereby, to reduce the level of external radiation flux required to suppress H2 formation and cooling.

  17. Effects of Initial Conditions on Shock Driven Flows

    NASA Astrophysics Data System (ADS)

    Martinez, Adam A.; Mula, Swathi M.; Charonko, John; Prestridge, Kathy

    2017-11-01

    The spatial and temporal evolution of shock-driven, variable density flows, such as the Richtmyer Meshkov (RM) instability, are strongly influenced by the initial conditions (IC's) of the flow at the time of interaction with shockwave. We study the effects of the IC's on the Vertical Shock Tube (VST) and on flows from Mach =1.2 to Mach =9. Experiments at the VST are of an Air-SF6 (At =0.6) multimode interface. Perturbations are generated using a shear layer with a flapper plate. Planar Laser Induced Fluorescence (PLIF) is used to characterize the IC's. New experiments are occurring using the Powder Gun driver at LANL Proton Radiography (pRad) facility. Mach number up to M =9 accelerate a Xenon-Helium (At =0.94) interface that is perturbed using a membrane supported by different sized grids. This presentation focuses on how to design and characterize different types of initial conditions for experiments.

  18. Preliminary experience with a new device for delayed sternal closure strategy in cardiac surgery.

    PubMed

    Santini, Francesco; Onorati, Francesco; Telesca, Mariassunta; Faggian, Giuseppe; Mazzucco, Alessandro

    2012-06-01

    Open chest management with delayed sternal closure (DSC) is a valuable strategy in the management of patients with postcardiotomy hemodynamic instability or severe coagulopathy. The conventional extemporized material available for off-label sternal stenting however may limit its efficacy. We evaluated outcomes of patients with refractory severe postcardiotomy cardiogenic shock (SPCCS) treated with DSC using a novel temporary sternal spreader (NTSS) which allows myocardial recovery by progressive controlled approximation of the sternal edges. Seven patients (4 male, mean age 66.5 ± 5 years) with refractory SPCCS showing acute hemodynamic instability at sternal closure, were implanted with the NTSS, consisting of stainless-steel branches linked to 2 diverging plates of polyether-ether ketone, whose progressive opening/closing mechanism can be controlled from outside the chest with a rotating steel wire. The sternal wound was closed by an elastic membrane to achieve a sterile field. Swan-Ganz monitoring was employed, and clinical outcomes evaluated. The device was successfully implanted in all patients without device-related complications or failures. Progressive approximation of sternal edges, titrated on cardiac index values, was successfully completed allowing subsequent uneventful sternal closure in all. Mean time from SPCCS to sternal closure was 70 ± 21 hours. No patient developed infective complications or late hemodynamic instability after device removal and sternal closure. One patient (14%) died of multiorgan failure on postoperative day 9. Despite the limited number of patients enrolled, the NTSS proved safe and effective in allowing complete myocardial recovery after SPCCS, avoiding hemodynamic instability related to abrupt sternal closure, with no occurrence of infective complications.

  19. Robustness of the filamentation instability in arbitrarily oriented magnetic field: Full three dimensional calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A., E-mail: antoineclaude.bret@uclm.es

    2014-02-15

    The filamentation (Weibel) instability plays a key role in the formation of collisionless shocks which are thought to produce Gamma-Ray-Bursts and High-Energy-Cosmic-Rays in astrophysical environments. While it has been known for long that a flow-aligned magnetic field can completely quench the instability, it was recently proved in 2D that in the cold regime, such cancelation is possible if and only if the field is perfectly aligned. Here, this result is finally extended to a 3D geometry. Calculations are conducted for symmetric and asymmetric counter-streaming relativistic plasma shells. 2D results are retrieved in 3D: the instability can never be completely canceledmore » for an oblique magnetic field. In addition, the maximum growth-rate is always larger for wave vectors lying in the plan defined by the flow and the oblique field. On the one hand, this bears consequences on the orientation of the generated filaments. On the other hand, it certifies 2D simulations of the problem can be performed without missing the most unstable filamentation modes.« less

  20. Aeroservoelastic Stability Analysis of the X-43A Stack

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2008-01-01

    The first air launch attempt of an X-43A stack, consisting of the booster, adapter and Hyper-X research vehicle, ended in failure shortly after the successful drop from the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) B-52B airplane and ignition of the booster. The stack was observed to begin rolling and yawing violently upon reaching transonic speeds, and the grossly oscillating fins of the booster separated shortly thereafter. The flight then had to be terminated with the stack out of control. Very careful linear flutter and aeroservoelastic analyses were subsequently performed as reported herein to numerically duplicate the observed instability. These analyses properly identified the instability mechanism and demonstrated the importance of including the flight control laws, rigid-body modes, structural flexible modes and control surface flexible modes. In spite of these efforts, however, the predicted instability speed remained more than 25 percent higher than that observed in flight. It is concluded that transonic shock phenomena, which linear analyses cannot take into account, are also important for accurate prediction of this mishap instability.

Top